51
|
Oura K, Morishita A, Hamaya S, Fujita K, Masaki T. The Roles of Epigenetic Regulation and the Tumor Microenvironment in the Mechanism of Resistance to Systemic Therapy in Hepatocellular Carcinoma. Int J Mol Sci 2023; 24:2805. [PMID: 36769116 PMCID: PMC9917861 DOI: 10.3390/ijms24032805] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Revised: 01/29/2023] [Accepted: 01/30/2023] [Indexed: 02/05/2023] Open
Abstract
Primary liver cancer is the sixth most common cancer and the third most common cause of cancer-related deaths worldwide. Hepatocellular carcinoma (HCC) is a major histologic type with a poor prognosis owing to the difficulty in early detection, the chemotherapy resistance, and the high recurrence rate of the disease. Despite recent advancements in HCC prevention and diagnosis, over 50% of patients are diagnosed at Barcelona Clinic Liver Cancer Stage B or C. Systemic therapies are recommended for unresectable HCC (uHCC) with major vascular invasion, extrahepatic metastases, or intrahepatic lesions that have a limited response to transcatheter arterial chemoembolization, but the treatment outcome tends to be unsatisfactory due to acquired drug resistance. Elucidation of the mechanisms underlying the resistance to systemic therapies and the appropriate response strategies to solve this issue will contribute to improved outcomes in the multidisciplinary treatment of uHCC. In this review, we summarize recent findings on the mechanisms of resistance to drugs such as sorafenib, regorafenib, and lenvatinib in molecularly targeted therapy, with a focus on epigenetic regulation and the tumor microenvironment and outline the approaches to improve the therapeutic outcome for patients with advanced HCC.
Collapse
Affiliation(s)
- Kyoko Oura
- Department of Gastroenterology and Neurology, Faculty of Medicine, Kagawa University, Kita 761-0793, Kagawa, Japan
| | | | | | | | | |
Collapse
|
52
|
Scheiner B, Roessler D, Phen S, Lim M, Pomej K, Pressiani T, Cammarota A, Fründt TW, von Felden J, Schulze K, Himmelsbach V, Finkelmeier F, Deibel A, Siebenhüner AR, Shmanko K, Radu P, Schwacha-Eipper B, Ebert MP, Teufel A, Djanani A, Hucke F, Balcar L, Philipp AB, Hsiehchen D, Venerito M, Sinner F, Trauner M, D'Alessio A, Fulgenzi CA, Pinato DJ, Peck-Radosavljevic M, Dufour JF, Weinmann A, Kremer AE, Singal AG, De Toni EN, Rimassa L, Pinter M. Efficacy and safety of immune checkpoint inhibitor rechallenge in individuals with hepatocellular carcinoma. JHEP Rep 2023; 5:100620. [PMID: 36578451 PMCID: PMC9791167 DOI: 10.1016/j.jhepr.2022.100620] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 10/13/2022] [Accepted: 10/14/2022] [Indexed: 11/07/2022] Open
Abstract
Background & Aims We investigated the efficacy and safety of immune checkpoint inhibitor (ICI) rechallenge in patients with hepatocellular carcinoma (HCC) who received ICI-based therapies in a previous systemic line. Methods In this international, retrospective multicenter study, patients with HCC who received at least two lines of ICI-based therapies (ICI-1, ICI-2) at 14 institutions were eligible. The main outcomes included best overall response and treatment-related adverse events. Results Of 994 ICI-treated patients screened, a total of 58 patients (male, n = 41; 71%) with a mean age of 65.0±9.0 years were included. Median systemic treatment lines of ICI-1 and ICI-2 were 1 (range, 1-4) and 3 (range, 2-9), respectively. ICI-based therapies used at ICI-1 and ICI-2 included ICI alone (ICI-1, n = 26, 45%; ICI-2, n = 4, 7%), dual ICI regimens (n = 1, 2%; n = 12, 21%), or ICI combined with targeted therapies/anti-VEGF (n = 31, 53%; n = 42, 72%). Most patients discontinued ICI-1 due to progression (n = 52, 90%). Objective response rate was 22% at ICI-1 and 26% at ICI-2. Responses at ICI-2 were also seen in patients who had progressive disease as best overall response at ICI-1 (n = 11/21; 52%). Median time-to-progression at ICI-1 and ICI-2 was 5.4 (95% CI 3.0-7.7) months and 5.2 (95% CI 3.3-7.0) months, respectively. Treatment-related adverse events of grade 3-4 at ICI-1 and ICI-2 were observed in 9 (16%) and 10 (17%) patients, respectively. Conclusions ICI rechallenge was safe and resulted in a treatment benefit in a meaningful proportion of patients with HCC. These data provide a rationale for investigating ICI-based regimens in patients who progressed on first-line immunotherapy in prospective trials. Impact and implications Therapeutic sequencing after first-line immune checkpoint inhibitor (ICI)-based therapy for advanced hepatocellular carcinoma (HCC) remains a challenge as no available second-line treatment options have been studied in immunotherapy-pretreated patients. Particularly, the role of ICI rechallenge in patients with HCC is unclear, as data from prospective trials are lacking. We investigated the efficacy and safety of ICI-based regimens in patients with HCC pretreated with immunotherapy in a retrospective, international, multicenter study. Our data provide the rationale for prospective trials investigating the role of ICI-based regimens in patients who have progressed on first-line immunotherapy.
Collapse
Key Words
- BOR, best overall response
- CR, complete response
- DCR, disease control rate
- HCC, hepatocellular carcinoma
- ICI, immune checkpoint inhibitor
- Immune checkpoint blocker
- Immunotherapy
- Liver cancer
- NE, not evaluable
- ORR, objective response rate
- OS, overall survival
- PD, progressive disease
- PR, partial response
- SD, stable disease
- Systemic therapy
- TRAEs, treatment-related adverse events
- TTP, time-to-progression
Collapse
Affiliation(s)
- Bernhard Scheiner
- Division of Gastroenterology and Hepatology, Department of Internal Medicine III, Medical University of Vienna, Vienna, Austria
- Liver Cancer (HCC) Study Group Vienna, Division of Gastroenterology and Hepatology, Department of Internal Medicine III, Medical University of Vienna, Vienna, Austria
| | - Daniel Roessler
- Department of Medicine II, University Hospital, LMU Munich, Munich, 81377, Germany
| | - Samuel Phen
- Department of Medicine, UT Southwestern Medical Center, Dallas TX, USA
| | - Mir Lim
- Department of Medicine, UT Southwestern Medical Center, Dallas TX, USA
| | - Katharina Pomej
- Division of Gastroenterology and Hepatology, Department of Internal Medicine III, Medical University of Vienna, Vienna, Austria
- Liver Cancer (HCC) Study Group Vienna, Division of Gastroenterology and Hepatology, Department of Internal Medicine III, Medical University of Vienna, Vienna, Austria
| | - Tiziana Pressiani
- Medical Oncology and Hematology Unit, Humanitas Cancer Center, IRCCS Humanitas Research Hospital, Via Manzoni 56, 20089 Rozzano (Milan), Italy
| | - Antonella Cammarota
- Medical Oncology and Hematology Unit, Humanitas Cancer Center, IRCCS Humanitas Research Hospital, Via Manzoni 56, 20089 Rozzano (Milan), Italy
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, 20072 Pieve Emanuele (Milan), Italy
| | - Thorben W. Fründt
- 1. Department of Internal Medicine, Gastroenterology & Hepatology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Johann von Felden
- 1. Department of Internal Medicine, Gastroenterology & Hepatology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Kornelius Schulze
- 1. Department of Internal Medicine, Gastroenterology & Hepatology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Vera Himmelsbach
- Department of Gastroenterology, Hepatology and Endocrinology, University Hospital Frankfurt, Frankfurt/Main, Germany
| | - Fabian Finkelmeier
- Department of Gastroenterology, Hepatology and Endocrinology, University Hospital Frankfurt, Frankfurt/Main, Germany
| | - Ansgar Deibel
- Department of Hepatology and Gastroenterology, University Hospital Zurich and University Zurich, Zurich, Switzerland
| | - Alexander R. Siebenhüner
- Department of Medical Oncology and Hematology, University Hospital Zurich and University Zurich, Zurich, Switzerland
- Department of Medical Oncology and Hematology, Cantonal Hospital Schaffhausen, Schaffhausen, Switzerland
| | - Kateryna Shmanko
- Department of Internal Medicine I, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Pompilia Radu
- Hepatology-Department of Biomedical Research, University of Bern, Bern, Switzerland
- Department of Visceral Surgery and Medicine, Inselspital, University of Bern, Bern, Switzerland
| | - Birgit Schwacha-Eipper
- Department of Visceral Surgery and Medicine, Inselspital, University of Bern, Bern, Switzerland
| | - Matthias P. Ebert
- Department of Internal Medicine II, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
- Clinical Cooperation Unit Healthy Metabolism, Center for Preventive Medicine and Digital Health Baden-Württemberg (CPDBW), Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
- DKFZ-Hector Cancer Institute at University Medical Center Mannheim, Mannheim, Germany
| | - Andreas Teufel
- Clinical Cooperation Unit Healthy Metabolism, Center for Preventive Medicine and Digital Health Baden-Württemberg (CPDBW), Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
- Department of Internal Medicine II, Division of Hepatology, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Angela Djanani
- Department of Internal Medicine I, Division of Gastroenterology, Hepatology, Endocrinology and Metabolism, Medical University of Innsbruck, Innsbruck, Austria
| | - Florian Hucke
- Internal Medicine and Gastroenterology (IMuG), Including Centralized Emergency Service (ZAE), Klinikum Klagenfurt am Wörthersee, Klagenfurt, Austria
| | - Lorenz Balcar
- Division of Gastroenterology and Hepatology, Department of Internal Medicine III, Medical University of Vienna, Vienna, Austria
- Liver Cancer (HCC) Study Group Vienna, Division of Gastroenterology and Hepatology, Department of Internal Medicine III, Medical University of Vienna, Vienna, Austria
| | - Alexander B. Philipp
- Department of Medicine II, University Hospital, LMU Munich, Munich, 81377, Germany
| | - David Hsiehchen
- Department of Medicine, UT Southwestern Medical Center, Dallas TX, USA
| | - Marino Venerito
- Department of Gastroenterology, Hepatology and Infectious Diseases, Otto-Von Guericke University Hospital, 39120 Magdeburg, Germany
| | - Friedrich Sinner
- Department of Gastroenterology, Hepatology and Infectious Diseases, Otto-Von Guericke University Hospital, 39120 Magdeburg, Germany
| | - Michael Trauner
- Division of Gastroenterology and Hepatology, Department of Internal Medicine III, Medical University of Vienna, Vienna, Austria
| | - Antonio D'Alessio
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, 20072 Pieve Emanuele (Milan), Italy
- Department of Surgery & Cancer, Imperial College London, Hammersmith Hospital, London, UK
| | - Claudia A.M. Fulgenzi
- Department of Surgery & Cancer, Imperial College London, Hammersmith Hospital, London, UK
- Department of Medical Oncology, University Campus Bio-Medico of Rome, Italy
| | - David J. Pinato
- Department of Surgery & Cancer, Imperial College London, Hammersmith Hospital, London, UK
- Division of Oncology, Department of Translational Medicine, University of Piemonte Orientale, Novara, Italy
| | - Markus Peck-Radosavljevic
- Internal Medicine and Gastroenterology (IMuG), Including Centralized Emergency Service (ZAE), Klinikum Klagenfurt am Wörthersee, Klagenfurt, Austria
| | - Jean-François Dufour
- Hepatology-Department of Biomedical Research, University of Bern, Bern, Switzerland
| | - Arndt Weinmann
- Department of Internal Medicine I, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Andreas E. Kremer
- Department of Hepatology and Gastroenterology, University Hospital Zurich and University Zurich, Zurich, Switzerland
- Department of Medicine 1, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| | - Amit G. Singal
- Department of Medicine, UT Southwestern Medical Center, Dallas TX, USA
| | - Enrico N. De Toni
- Department of Medicine II, University Hospital, LMU Munich, Munich, 81377, Germany
| | - Lorenza Rimassa
- Medical Oncology and Hematology Unit, Humanitas Cancer Center, IRCCS Humanitas Research Hospital, Via Manzoni 56, 20089 Rozzano (Milan), Italy
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, 20072 Pieve Emanuele (Milan), Italy
| | - Matthias Pinter
- Division of Gastroenterology and Hepatology, Department of Internal Medicine III, Medical University of Vienna, Vienna, Austria
- Liver Cancer (HCC) Study Group Vienna, Division of Gastroenterology and Hepatology, Department of Internal Medicine III, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
53
|
Zhang B, Tao B, Li Y, Yi C, Lin Z, Ma Y, Han J, Shao W, Chen Z, Lin J, Chen J. Dual immune checkpoint inhibitors or combined with anti-VEGF agents in advanced, unresectable hepatocellular carcinoma. Eur J Intern Med 2022; 111:37-46. [PMID: 36588054 DOI: 10.1016/j.ejim.2022.12.025] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 12/12/2022] [Accepted: 12/28/2022] [Indexed: 01/01/2023]
Abstract
BACKGROUND Immune checkpoint inhibitor monotherapy did not show superiority of survival over standard therapy in advanced hepatocellular carcinoma. The combination immunotherapy including dual immune checkpoint inhibitors or combined with anti-VEGF agents have become a trend, but not fully evaluated. This study aimed to evaluate and compare distinct combination immunotherapy on efficacy in advanced hepatocellular carcinoma. METHODS PubMed, Embase, Web of Science and Cochrane databases were systematically searched from inception to January 31, 2022. The primary endpoints were overall objective response rate (ORR), disease control rate (DCR), six-month progression-free survival rate (PFSR6m) and one-year overall survival rate (OSR1y). RESULTS 11 studies with 16 independent cohorts and 3342 patients were included in the meta-analysis. Compared with first-line sorafenib, combination immunotherapy resulted in a significant improvement in ORR (RR, 2.74; 95%CI, 1.55-4.85; p = 0.0006), PFS (HR, 0.57; 95%CI, 0.49-0.65; p<0.0001) and OS (HR, 0.65; 95%CI, 0.52-0.82; p = 0.0002). Based on RECIST 1.1, the pooled ORR, PFSR6m and OSR1y for combination immunotherapy were 24.6% (95%CI: 20.3%-29.6%), 42.0% (95%CI: 34.2%-50.3%) and 61.8% (95%CI: 57.7%-65.7%), respectively. In distinct combination regimens, PD-1/L1 inhibitors plus anti-VEGF agents showed a significant superiority of clinical benefit than PD-1/L1 inhibitors plus CTLA-4 inhibitors (ORR: 25.2% vs 23.4%, p = 0.033; PFSR6m: 47.4% vs 23.2%, p<0.001; OSR1y: 65.1% vs 55.0%, p = 0.001). CONCLUSIONS This study was the first meta-analysis to demonstrate the better survival benefit and tolerable toxicity of combination immunotherapy than standard therapy in advanced hepatocellular carcinoma. Compared with PD-1/L1 inhibitors plus CTLA-4 inhibitors, the regimens of PD-1/L1 inhibitors plus anti-VEGF agents may be associated with a significantly better clinical benefit. The difference in long-term survival and response population between two distinct combination regimens required further exploration.
Collapse
Affiliation(s)
- Bo Zhang
- Department of General Surgery, Huashan Hospital, Fudan University, Shanghai 200040, PR China; Cancer Metastasis Institute, Fudan University, Shanghai 200040, PR China
| | - Baorui Tao
- Department of General Surgery, Huashan Hospital, Fudan University, Shanghai 200040, PR China; Cancer Metastasis Institute, Fudan University, Shanghai 200040, PR China
| | - Yitong Li
- Department of General Surgery, Huashan Hospital, Fudan University, Shanghai 200040, PR China; Cancer Metastasis Institute, Fudan University, Shanghai 200040, PR China
| | - Chenhe Yi
- Department of General Surgery, Huashan Hospital, Fudan University, Shanghai 200040, PR China; Cancer Metastasis Institute, Fudan University, Shanghai 200040, PR China
| | - Zhifei Lin
- Department of General Surgery, Huashan Hospital, Fudan University, Shanghai 200040, PR China; Cancer Metastasis Institute, Fudan University, Shanghai 200040, PR China
| | - Yue Ma
- Department of General Surgery, Huashan Hospital, Fudan University, Shanghai 200040, PR China; Cancer Metastasis Institute, Fudan University, Shanghai 200040, PR China
| | - Jiahao Han
- Department of General Surgery, Huashan Hospital, Fudan University, Shanghai 200040, PR China; Cancer Metastasis Institute, Fudan University, Shanghai 200040, PR China
| | - Weiqing Shao
- Department of General Surgery, Huashan Hospital, Fudan University, Shanghai 200040, PR China; Cancer Metastasis Institute, Fudan University, Shanghai 200040, PR China
| | - Zhenmei Chen
- Department of General Surgery, Huashan Hospital, Fudan University, Shanghai 200040, PR China; Cancer Metastasis Institute, Fudan University, Shanghai 200040, PR China
| | - Jing Lin
- Department of General Surgery, Huashan Hospital, Fudan University, Shanghai 200040, PR China; Cancer Metastasis Institute, Fudan University, Shanghai 200040, PR China
| | - Jinhong Chen
- Department of General Surgery, Huashan Hospital, Fudan University, Shanghai 200040, PR China; Cancer Metastasis Institute, Fudan University, Shanghai 200040, PR China.
| |
Collapse
|
54
|
Wang J, Wu R, Sun JY, Lei F, Tan H, Lu X. An overview: Management of patients with advanced hepatocellular carcinoma. Biosci Trends 2022; 16:405-425. [PMID: 36476621 DOI: 10.5582/bst.2022.01109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Hepatocellular carcinoma (HCC) has constituted a significant health burden worldwide, and patients with advanced HCC, which is stage C as defined by the Barcelona Clinic Liver Cancer staging system, have a poor overall survival of 6-8 months. Studies have indicated the significant survival benefit of treatment based on sorafenib, lenvatinib, or atezolizumab-bevacizumab with reliable safety. In addition, the combination of two or more molecularly targeted therapies (first- plus second-line) has become a hot topic recently and is now being extensively investigated in patients with advanced HCC. In addition, a few biomarkers have been investigated and found to predict drug susceptibility and prognosis, which provides an opportunity to evaluate the clinical benefits of current therapies. In addition, many therapies other than tyrosine kinase inhibitors that might have additional survival benefits when combined with other therapeutic modalities, including immunotherapy, transarterial chemoembolization, radiofrequency ablation, hepatectomy, and chemotherapy, have also been examined. This review provides an overview on the current understanding of disease management and summarizes current challenges with and future perspectives on advanced HCC.
Collapse
Affiliation(s)
- Jincheng Wang
- The First Affiliated Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing, Jiangsu, China.,Graduate School of Biomedical Science and Engineering, Hokkaido University, Sapporo, Japan
| | - Rui Wu
- The First Affiliated Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Jin-Yu Sun
- The First Affiliated Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Feifei Lei
- Department of Infectious Diseases, Liver Disease Laboratory, Renmin Hospital, Hubei University of Medicine, Shiyan, Hubei, China
| | - Huabing Tan
- Department of Infectious Diseases, Liver Disease Laboratory, Renmin Hospital, Hubei University of Medicine, Shiyan, Hubei, China
| | - Xiaojie Lu
- Department of General Surgery, Liver Transplantation Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| |
Collapse
|
55
|
Li Q, Han J, Yang Y, Chen Y. PD-1/PD-L1 checkpoint inhibitors in advanced hepatocellular carcinoma immunotherapy. Front Immunol 2022; 13:1070961. [PMID: 36601120 PMCID: PMC9806143 DOI: 10.3389/fimmu.2022.1070961] [Citation(s) in RCA: 86] [Impact Index Per Article: 28.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Accepted: 12/06/2022] [Indexed: 12/23/2022] Open
Abstract
Hepatocellular carcinoma (HCC) has a high prevalence and mortality rate worldwide. Sorafenib monotherapy has been the standard of first-line treatment for advanced HCC for a long time, but there are still many shortcomings. In recent years, with the deepening of research on tumor immune microenvironment, researchers have begun to explore new approaches in immunotherapy, and the introduction of immune checkpoint inhibitors has brought fundamental changes to the treatment of HCC. Programmed cell death protein 1 (PD-1) is an immune checkpoint molecule that plays an important role in down-regulating immune system function and promoting tolerance. Programmed cell death ligand 1 (PDL-1) is involved in tumor immune evasion by binding to PD-1, resulting in failure of treatment. Currently, immunotherapy targeting the PD-1/PD-L1 axis has achieved unprecedented success in HCC, but it also faces great challenges, with its low remission rate still to be solved. For most patients with HCC, the PD-1/PD-L1 pathway is not the only rate limiting factor of antitumor immunity, and blocking only the PD-1/PD-L1 axis is not enough to stimulate an effective antitumor immune response; thus, combination therapy may be a better option. In this study, changes in the immune microenvironment of HCC patients were reviewed to clarify the feasibility of anti-PD-1/PD-L1 therapy, and a series of monotherapy and combination therapy clinical trials were summarized to verify the safety and efficacy of this newly developed treatment in patients with advanced HCC. Furthermore, we focused on hyperprogressive disease and drug resistance to gain a better understanding of PD-1/PD-L1 blockade as a promising treatment.
Collapse
Affiliation(s)
- Qian Li
- Department of Anesthesiology, First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Jingjing Han
- Department of Anesthesiology, First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yonglin Yang
- Department of Infectious Diseases, The Affiliated Taizhou People’s Hospital of Nanjing Medical University, Taizhou, China
| | - Yu Chen
- Department of Anesthesiology, First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
56
|
Treatment options for unresectable hepatocellular carcinoma with hepatitis virus infection following sorafenib failure. Cancer Immunol Immunother 2022; 72:1395-1403. [PMID: 36441192 DOI: 10.1007/s00262-022-03324-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 11/01/2022] [Indexed: 11/29/2022]
Abstract
Abstract
Background
Currently, there are a few treatment options for unresectable hepatocellular carcinoma (HCC) after progression following sorafenib (SOR) therapy, but with limited benefit. The purpose of this study was to investigate the efficacy and safety of tyrosine kinase inhibitors (TKIs) combined with immune checkpoint inhibitors (ICIs) as second-line treatment.
Methods
From May 2018 to May 2021, a total of 93 HCCs who failed SOR treatment were included in this study and divided into TKI group (n = 37) and TKI-ICI group (n = 56). Overall survival (OS), progression-free survival (PFS), objective response rate (ORR), disease control rate (DCR) and safety were estimated among the two groups. In addition, univariate and multivariate Cox regression analyses were performed for OS and PFS to identify possible prognostic factors.
Results
With a median follow-up time of 13.7 months, the median age of patients was 56 (range, 50–64) years and most were male. All of the patients were hepatitis virus-related HCC. Both median OS (7.63 months vs 19.23 months, P < 0.001) and median PFS (2.97 months vs 8.63 months, P < 0.001) were significantly improved in the TKI-ICI group compared to the TKI group. A significant increase in DCR was demonstrated in the TKI-ICI group compared to the TKI group (83.9% vs 45.9%, P = 0.0003), although no significant difference in ORR was reported (21.4% vs 8.1%, P = 0.1552). Multivariate Cox regression analysis of OS and PFS revealed that second-line regimen was an independent protective factor affecting death and progression in HCCs after SOR failure. In addition, Child–Pugh B7 was an independent risk factor of OS. Finally, there was no significant difference in the incidence of any grade or grade 3/4 adverse events (AEs) between the two groups, and no treatment-related deaths were observed.
Conclusion
This real-world study suggests that the combination of TKIs and ICIs benefits more than mono-TKIs and is well tolerated in HCCs with hepatitis virus infection after SOR failure.
Collapse
|
57
|
Roussot N, Ghiringhelli F, Rébé C. Tumor Immunogenic Cell Death as a Mediator of Intratumor CD8 T-Cell Recruitment. Cells 2022; 11:cells11223672. [PMID: 36429101 PMCID: PMC9688834 DOI: 10.3390/cells11223672] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 11/15/2022] [Accepted: 11/16/2022] [Indexed: 11/22/2022] Open
Abstract
The success of anticancer treatments relies on a long-term response which can be mediated by the immune system. Thus, the concept of immunogenic cell death (ICD) describes the capacity of dying cancer cells, under chemotherapy or physical stress, to express or release danger-associated molecular patterns (DAMPs). These DAMPs are essential to activate dendritic cells (DCs) and to stimulate an antigen presentation to CD8 cytotoxic cells. Then, activated CD8 T cells exert their antitumor effects through cytotoxic molecules, an effect which is transitory due to the establishment of a feedback loop leading to T-cell exhaustion. This phenomenon can be reversed using immune checkpoint blockers (ICBs), such as anti-PD-1, PD-L1 or CTLA-4 Abs. However, the blockade of these checkpoints is efficient only if the CD8 T cells are recruited within the tumor. The CD8 T-cell chemoattraction is mediated by chemokines. Hence, an important question is whether the ICD can not only influence the DC activation and resulting CD8 T-cell activation but can also favor the chemokine production at the tumor site, thus triggering their recruitment. This is the aim of this review, in which we will decipher the role of some chemokines (and their specific receptors), shown to be released during ICD, on the CD8 T-cell recruitment and antitumor response. We will also analyze the clinical applications of these chemokines as predictive or prognostic markers or as new targets which should be used to improve patients' response.
Collapse
Affiliation(s)
- Nicolas Roussot
- Cancer Biology Transfer Platform, Centre Georges-François Leclerc, F-21000 Dijon, France
- Equipe Labellisée Ligue Contre le Cancer, Centre de Recherche INSERM LNC-UMR1231, F-21000 Dijon, France
- UFR Sciences de Santé, University Bourgogne Franche-Comté, F-21000 Dijon, France
- Department of Medical Oncology, Centre Georges-François Leclerc, F-21000 Dijon, France
| | - François Ghiringhelli
- Cancer Biology Transfer Platform, Centre Georges-François Leclerc, F-21000 Dijon, France
- Equipe Labellisée Ligue Contre le Cancer, Centre de Recherche INSERM LNC-UMR1231, F-21000 Dijon, France
- UFR Sciences de Santé, University Bourgogne Franche-Comté, F-21000 Dijon, France
- Department of Medical Oncology, Centre Georges-François Leclerc, F-21000 Dijon, France
- Genetic and Immunology Medical Institute, F-21000 Dijon, France
- Correspondence: (F.G.); (C.R.)
| | - Cédric Rébé
- Cancer Biology Transfer Platform, Centre Georges-François Leclerc, F-21000 Dijon, France
- Equipe Labellisée Ligue Contre le Cancer, Centre de Recherche INSERM LNC-UMR1231, F-21000 Dijon, France
- UFR Sciences de Santé, University Bourgogne Franche-Comté, F-21000 Dijon, France
- Correspondence: (F.G.); (C.R.)
| |
Collapse
|
58
|
Duda DG, Jain RK. Revisiting Antiangiogenic Multikinase Inhibitors in the Era of Immune Checkpoint Blockade: The Case of Sorafenib. Cancer Res 2022; 82:3665-3667. [PMID: 36245248 PMCID: PMC11823948 DOI: 10.1158/0008-5472.can-22-2639] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 08/22/2022] [Indexed: 01/29/2023]
Abstract
The successful development of multikinase inhibitors over the last two decades has revolutionized the management of many malignant cancers. Agents such as the antiangiogenic kinase inhibitor sorafenib have certain advantages such as a broad spectrum of activity against cancer cells, vascular endothelial cells, and pericytes, and are the mainstay of treatment in diseases such as advanced renal or liver cancer. The more recent emergence of immunotherapy-using immune checkpoint blockade-in some of the same diseases has raised important questions about the treatment interaction with antiangiogenic drugs, seven such combinations have been approved for lung, liver, kidney, and endometrial cancers, and multiple combination therapies are being aggressively pursued in the clinic. Thus, revealing mechanisms of action of antiangiogenic kinase inhibitors in combination with immune checkpoint blockade is critical to improving the treatment outcome further. This Landmark commentary on sorafenib in cancer therapy highlights these important questions. See related article by Wilhelm et al., Cancer Res 2004;64:7099-109.
Collapse
Affiliation(s)
- Dan G Duda
- Steele Laboratories for Tumor Biology, Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Rakesh K Jain
- Steele Laboratories for Tumor Biology, Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
59
|
Saoudi González N, Castet F, Élez E, Macarulla T, Tabernero J. Current and emerging anti-angiogenic therapies in gastrointestinal and hepatobiliary cancers. Front Oncol 2022; 12:1021772. [PMID: 36300092 PMCID: PMC9589420 DOI: 10.3389/fonc.2022.1021772] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 09/26/2022] [Indexed: 09/07/2024] Open
Abstract
Gastrointestinal tumours are a heterogeneous group of neoplasms that arise in the gastrointestinal tract and hepatobiliary system. Their incidence is rising globally and they currently represent the leading cause of cancer-related mortality worldwide. Anti-angiogenic agents have been incorporated into the treatment armamentarium of most of these malignancies and have improved survival outcomes, most notably in colorectal cancer and hepatocellular carcinoma. New treatment combinations with immunotherapies and other agents have led to unprecedented benefits and are revolutionising patient care. In this review, we detail the mechanisms of action of anti-angiogenic agents and the preclinical rationale underlying their combinations with immunotherapies. We review the clinical evidence supporting their use across all gastrointestinal tumours, with a particular emphasis on colorectal cancer and hepatocellular carcinoma. We discuss available biomarkers of response to these therapies and their utility in routine clinical practice. Finally, we summarise ongoing clinical trials in distinct settings and highlight the preclinical rationale supporting novel combinations.
Collapse
Affiliation(s)
| | | | | | - Teresa Macarulla
- Department of Medical Oncology, Vall d’Hebron University Hospital and Vall d’Hebron Institute of Oncology (VHIO), Barcelona, Spain
| | | |
Collapse
|
60
|
Qin LX. Immunotherapy for hepatobiliary malignancies: Progress and prospective. Hepatobiliary Pancreat Dis Int 2022; 21:409-412. [PMID: 36117110 DOI: 10.1016/j.hbpd.2022.09.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Accepted: 08/31/2022] [Indexed: 02/05/2023]
Affiliation(s)
- Lun-Xiu Qin
- Department of General Surgery, Huashan Hospital, Fudan University, Shanghai 200040, China.
| |
Collapse
|
61
|
Zhu Y, Qin LX. Strategies for improving the efficacy of immunotherapy in hepatocellular carcinoma. Hepatobiliary Pancreat Dis Int 2022; 21:420-429. [PMID: 35977874 DOI: 10.1016/j.hbpd.2022.08.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 08/02/2022] [Indexed: 02/05/2023]
Abstract
Primary liver cancer, mainly hepatocellular carcinoma (HCC), is the sixth most diagnosed cancer and third leading cause of cancer-related death globally. Recently, immunotherapies such as immune checkpoint inhibitors (ICIs) have made great progress in the systemic treatment of HCC. However, anti-PD-1 therapy with pembrolizumab or nivolumab as a single agent did not meet their predefined end points of overall survival in the KEYNOTE-240 and CheckMate 459 trials. It is urgent to understand the immunological rationale and explore novel ways to improve the efficacy of immunotherapy. The combination of ICIs with other therapies, such as tyrosine kinase inhibitors (TKIs), monoclonal antibodies, or local therapy, has been demonstrated to improve overall response rate and survival. In addition, modulating tumor microenvironment is a potential way to overcome the primary and secondary resistance to immunotherapies. In this review, we summarized the latest findings in the immune microenvironment, the mechanisms of their synergistic effects when combined with anti-VEGF agents or TKIs, as well as other kinds of immune treatment.
Collapse
Affiliation(s)
- Ying Zhu
- Department of General Surgery, Huashan Hospital, Cancer Metastasis Institute, Fudan University, Shanghai 200040, China; Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China
| | - Lun-Xiu Qin
- Department of General Surgery, Huashan Hospital, Cancer Metastasis Institute, Fudan University, Shanghai 200040, China; Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China.
| |
Collapse
|
62
|
Liu K, Wu J, Xu Y, Li D, Huang S, Mao Y. Efficacy and Safety of Regorafenib with or without PD-1 Inhibitors as Second-Line Therapy for Advanced Hepatocellular Carcinoma in Real-World Clinical Practice. Onco Targets Ther 2022; 15:1079-1094. [PMID: 36212725 PMCID: PMC9534176 DOI: 10.2147/ott.s383685] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 09/10/2022] [Indexed: 11/25/2022] Open
Abstract
Background Regorafenib is the first oral targeted drug as a second-line agent in patients with advanced hepatocellular carcinoma (HCC) who progressed on sorafenib treatment. Recently, several studies demonstrated that the combination of regorafenib and PD-1 inhibitors showed a synergistic effect. Our study aimed to evaluate the efficacy of regorafenib with PD-1 inhibitors (RP) and regorafenib alone (R) as second-line treatment for advanced HCC. Methods From October 2018 to January 2022, our retrospective study evaluated advanced HCC patients who received regorafenib with PD-1 inhibitors or regorafenib alone as a second-line treatment at the Second Affiliated Hospital of Nanchang University, China. The efficacy and safety were compared between RP and R groups. Results In total, 78 patients were enrolled in our study and were separated into two groups – RP group (48) and R group (30) – according to the criteria. The ORR of RP group and R group was 18.8% and 10%, respectively, and the DCR was 66.7% and 43.3%, respectively. The RP group had a longer mPFS (5.9 months vs 3.0 months, P<0.001) and mOS (12.9 months vs 10.3 months, P=0.010) than the R group. Regorafenib monotherapy is an independent prognostic factor for OS and PFS. In OS, subgroup analysis showed that patients with AFP ≥ 400ng/mL, BCLC C stage and extrahepatic metastasis may benefit from RP, while in PFS, subgroup analysis showed that patients with BCLC C stage, AFP ≥ 400ng/mL, extrahepatic metastasis, ALBI ≥-2.60 and first-line treatment of sorafenib may benefit from RP. The incidence of grade 3/4 adverse reaction in the two groups was 22.9% and 23.3%, respectively, with no significant statistically difference (P=0.966). Conclusion In the second-line therapy of advanced HCC, compared to regorafenib alone, the combination of regorafenib and PD-1 inhibitors showed promising efficacy and tolerable drug toxicity.
Collapse
Affiliation(s)
- Kan Liu
- Department of Digestive Oncology, The Second Affiliated Hospital of Nanchang University, Nanchang, People’s Republic of China
- Jiangxi Key Laboratory of Clinical and Translational Cancer Research, Nanchang, People’s Republic of China
| | - Jianbing Wu
- Department of Digestive Oncology, The Second Affiliated Hospital of Nanchang University, Nanchang, People’s Republic of China
- Jiangxi Key Laboratory of Clinical and Translational Cancer Research, Nanchang, People’s Republic of China
| | - Yongkang Xu
- Department of Digestive Oncology, The Second Affiliated Hospital of Nanchang University, Nanchang, People’s Republic of China
- Jiangxi Key Laboratory of Clinical and Translational Cancer Research, Nanchang, People’s Republic of China
| | - Dan Li
- Department of Digestive Oncology, The Second Affiliated Hospital of Nanchang University, Nanchang, People’s Republic of China
- Jiangxi Key Laboratory of Clinical and Translational Cancer Research, Nanchang, People’s Republic of China
| | - Shenlang Huang
- Department of Digestive Oncology, The Second Affiliated Hospital of Nanchang University, Nanchang, People’s Republic of China
- Jiangxi Key Laboratory of Clinical and Translational Cancer Research, Nanchang, People’s Republic of China
| | - Ye Mao
- Department of Digestive Oncology, The Second Affiliated Hospital of Nanchang University, Nanchang, People’s Republic of China
- Jiangxi Key Laboratory of Clinical and Translational Cancer Research, Nanchang, People’s Republic of China
- Correspondence: Ye Mao, Email
| |
Collapse
|
63
|
Xiong J, Wang QQ. Mechanisms and strategies to overcome immunotherapy resistance in hepatobiliary malignancies. Hepatobiliary Pancreat Dis Int 2022; 21:430-439. [PMID: 35907687 DOI: 10.1016/j.hbpd.2022.07.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 07/15/2022] [Indexed: 02/06/2023]
Abstract
Unprecedented advances have been achieved in hepatobiliary cancer treatment with immune checkpoint blockade (ICB). However, the efficacy of ICB in patients with hepatobiliary malignancies is still limited. Resistance to immunotherapies is often orchestrated by complicated tumor-host-microenvironment interactions but could also occur after initial efficacy, mostly when only partial responses are obtained. Clarification of cancer-resistance mechanisms will be beneficial to provide the rationale for the administration of personalized drugs. Here, we review the factors related to resistance to immune-targeted therapies in hepatobiliary malignancies and discuss the potential strategies for overcoming resistance and future directions of immunotherapy development.
Collapse
Affiliation(s)
- Jia Xiong
- Institute of Immunology, Zhejiang University School of Medicine, Hangzhou 310058, China; The Key Laboratory for Immunity and Inflammatory Diseases of Zhejiang Province, Hangzhou 310058, China
| | - Qing-Qing Wang
- Institute of Immunology, Zhejiang University School of Medicine, Hangzhou 310058, China; The Key Laboratory for Immunity and Inflammatory Diseases of Zhejiang Province, Hangzhou 310058, China.
| |
Collapse
|
64
|
Chen JS, Hsieh YC, Chou CH, Wu YH, Yang MH, Chu SH, Chao YS, Chen CN. Chidamide plus Tyrosine Kinase Inhibitor Remodel the Tumor Immune Microenvironment and Reduce Tumor Progression When Combined with Immune Checkpoint Inhibitor in Naïve and Anti-PD-1 Resistant CT26-Bearing Mice. Int J Mol Sci 2022; 23:10677. [PMID: 36142591 PMCID: PMC9504159 DOI: 10.3390/ijms231810677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 09/08/2022] [Accepted: 09/08/2022] [Indexed: 11/25/2022] Open
Abstract
Combined inhibition of vascular endothelial growth factor receptor (VEGFR) and the programmed cell death protein 1 (PD-1) pathways has shown efficacy in multiple cancers; however, the clinical outcomes show limited benefits and the unmet clinical needs still remain and require improvement in efficacy. Using murine colon carcinoma (CT26) allograft models, we examined the efficacy and elucidated novel tumor microenvironment (TME) remodeling mechanisms underlying the combination of chidamide (a benzamide-based class l histone deacetylase inhibitor; brand name in Taiwan, Kepida®) with VEGF receptor tyrosine kinase inhibitor (TKIs; cabozantinib/regorafenib, etc.) and immune checkpoint inhibitors (ICIs; anti-PD-1/anti-PD-L1/anti-CTLA-4 antibodies). The TME was assessed using flow cytometry and RNA-sequencing to determine the novel mechanisms and their correlation with therapeutic effects in mice with significant treatment response. Compared with ICI alone or cabozantinib/regorafenib + ICI, combination of chidamide + cabozantinib/regorafenib + ICI increased the tumor response and survival benefits. In particular, treatment of CT26-bearing mice with chidamide + regorafenib + anti-PD-1 antibody showed a better objective response rate (ORR) and overall survival (OS). Similar results were observed in anti-PD-1 treatment-resistant mice. After treatment with this optimal combination, in the TME, RNA-sequencing revealed that downregulated mRNAs were correlated with leukocyte migration, cell chemotaxis, and macrophage gene sets, and flow cytometry analysis showed that the cell numbers of myeloid-derived polymorphonuclear suppressor cells and tumor-associated macrophages were decreased. Accordingly, chidamide + regorafenib + anti-PD-1 antibody combination therapy could trigger a novel TME remodeling mechanism by attenuating immunosuppressive cells, and restoring T-cell activation to enhance ORR and OS. Our studies also showed that the addition of Chidamide to the regorafenib + anti-PD-1 Ab combination could induce a durable tumor-specific response by attenuating immune suppression in the TME. In addition, this result suggests that TME remodeling, mediated by epigenetic immunomodulator combined with TKI and ICI, would be more advantageous for achieving a high objective response rate, when compared to TKI plus ICI or ICI alone, and maintaining long-lasting antitumor activity.
Collapse
Affiliation(s)
- Jia-Shiong Chen
- New Drug Research and Development Center, Great Novel Therapeutics Biotech & Medicals Corporation (GNTbm), Taipei 100, Taiwan
| | | | - Cheng-Han Chou
- Department of Biology, Great Novel Therapeutics Biotech & Medicals Corporation (GNTbm), Taipei 100, Taiwan
| | - Yi-Hong Wu
- Department of Biology, Great Novel Therapeutics Biotech & Medicals Corporation (GNTbm), Taipei 100, Taiwan
| | - Mu-Hsuan Yang
- Department of Chemistry, Great Novel Therapeutics Biotech & Medicals Corporation (GNTbm), Taipei 100, Taiwan
| | - Sz-Hao Chu
- Department of Chemistry, Great Novel Therapeutics Biotech & Medicals Corporation (GNTbm), Taipei 100, Taiwan
| | - Ye-Su Chao
- New Drug Research and Development Center, Great Novel Therapeutics Biotech & Medicals Corporation (GNTbm), Taipei 100, Taiwan
| | - Chia-Nan Chen
- New Drug Research and Development Center, Great Novel Therapeutics Biotech & Medicals Corporation (GNTbm), Taipei 100, Taiwan
| |
Collapse
|
65
|
Xu Y, Fu S, Shang K, Zeng J, Mao Y. PD-1 inhibitors plus lenvatinib versus PD-1 inhibitors plus regorafenib in patients with advanced hepatocellular carcinoma after failure of sorafenib. Front Oncol 2022; 12:958869. [PMID: 36176403 PMCID: PMC9513444 DOI: 10.3389/fonc.2022.958869] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 08/24/2022] [Indexed: 11/30/2022] Open
Abstract
Background Lenvatinib, regorafenib and anti-programmed cell death protein-1 (PD-1) immunotherapy have shown promising clinical outcomes in patients with advanced hepatocellular carcinoma (HCC) after sorafenib failure, respectively. However, the combination of the two treatments has not been reported. We compared the efficacy of PD-1 inhibitors with lenvatinib (PL) and PD-1 inhibitors plus regorafenib (PR) in patients with advanced HCC in this study. Methods We conducted a retrospective study of advanced HCC patients who undergone PD-1 inhibitors combined with lenvatinib or regorafenib after failure of sorafenib at Second Affiliated Hospital of Nanchang University from July 2018 and December 2020. The overall survival (OS), progression-free survival (PFS), effective rates and treatment-related adverse events (TRAEs) were investigated. Results In total, 61 patients met the criteria and were included in the present study, and they were divided into the PL group (n = 32) and PR group (n = 29). The overall response rate (ORR) (12.5%vs. 10.3%, respectively; p = 0.557) and disease control rate (DCR) (71.9%vs. 58.6%, respectively; p < 0.207) were higher in the PL group than in the PR group, but there was no statistical difference. Furthermore, median PFS and OS were not significantly different between the two groups in Kaplan-Meier survival analysis (PFS: 5.3 months vs 4.0 months, p = 0.512; OS: 14.1 months vs 13.7 months, p = 0.764 for the PL group vs PR group). The most common treatment-related adverse events (TRAEs) were hand -foot skin reaction (24/61,39.3%), hypertension (20/61,32.8%) and hypothyroidism (13/61,21.3%). The frequent TRAEs (≥Grade 3) during PD-1 inhibitors plus lenvatinib or regorafenib treatment were hand-foot skin reaction (5/29,12.4%), thrombocytopenia (2/29 6.90%) and proteinuria (n =2/32,6.25%). Conclusions Combination of lenvatinib/regorafenib and PD-1 inhibitors is a promising therapy for HCC patients after sorafenib failure.
Collapse
Affiliation(s)
- Yongkang Xu
- Department of Oncology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Shumin Fu
- Department of Oncology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Kai Shang
- Department of Oncology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Jiayu Zeng
- School of Clinical Medicine, Guizhou Medical University, Guiyang, China
| | - Ye Mao
- Department of Oncology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
- *Correspondence: Ye Mao,
| |
Collapse
|
66
|
Sun B, Zhang L, Sun T, Ren Y, Cao Y, Zhang W, Zhu L, Guo Y, Gui Y, Liu F, Chen L, Xiong F, Zheng C. Safety and efficacy of lenvatinib combined with camrelizumab plus transcatheter arterial chemoembolization for unresectable hepatocellular carcinoma: A two-center retrospective study. Front Oncol 2022; 12:982948. [PMID: 36172158 PMCID: PMC9511022 DOI: 10.3389/fonc.2022.982948] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 08/17/2022] [Indexed: 12/03/2022] Open
Abstract
Objectives To compare the safety and efficacy of lenvatinib (LEN) combined with camrelizumab plus transcatheter arterial chemoembolization (TACE-LEN-C) and TACE combined with LEN (TACE-LEN) in patients with unresectable hepatocellular carcinoma (uHCC). Methods Eighty-three patients with uHCC treated with TACE-LEN-C or TACE-LEN from September 2018 to May 2021 were enrolled in this retrospective study. Overall survival (OS), progression-free survival (PFS), local tumor response, and adverse events (AEs) were evaluated. Univariate and multivariate analyses were used to determine the factors affecting survival. Results There were 31 patients in the TACE-LEN-C group and 52 patients in the TACE-LEN group. The median follow-up period was 14.2 months (range 7.2–25.2 months) in the whole study. The combination of triple therapy was found to significantly prolong the PFS (12.5 months vs. 6.6 months, P<0.001) and OS (18.9 months vs. 13.9 months, P<0.001. In terms of tumor response, the combination demonstrated a higher objective response rate (71% vs. 42.3% by the modified Response Evaluation Criteria in Solid Tumors, P=0.023) without a statistically significant difference in the disease control rate (93.5% in TACE-LEN-C, 80.8% in TACE-LEN, P=0.195). In the multivariate analysis, two independent factors affecting PFS were identified: number of tumors and treatment. Three independent factors affected OS: number of tumors, Barcelona Clinic Liver Cancer (BCLC) stage, and treatment. All the AEs were tolerable. Conclusion TACE-LEN-C is a safe and effective treatment for patients with uHCC, and could be a potential treatment option.
Collapse
Affiliation(s)
- Bo Sun
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory of Molecular Imaging of Hubei Province, Wuhan, China
- Department of Interventional Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Lijie Zhang
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory of Molecular Imaging of Hubei Province, Wuhan, China
- Department of Interventional Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Tao Sun
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory of Molecular Imaging of Hubei Province, Wuhan, China
- Department of Interventional Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yanqiao Ren
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory of Molecular Imaging of Hubei Province, Wuhan, China
- Department of Interventional Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yanyan Cao
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory of Molecular Imaging of Hubei Province, Wuhan, China
- Department of Interventional Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Weihua Zhang
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory of Molecular Imaging of Hubei Province, Wuhan, China
- Department of Interventional Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Licheng Zhu
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory of Molecular Imaging of Hubei Province, Wuhan, China
- Department of Interventional Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yusheng Guo
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory of Molecular Imaging of Hubei Province, Wuhan, China
- Department of Interventional Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yuxi Gui
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory of Molecular Imaging of Hubei Province, Wuhan, China
- Department of Interventional Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Fengyong Liu
- Department of Interventional Radiology, The Fifth Medical Center of Chinese, People’s Liberation Army (PLA) General Hospital, Beijing, China
| | - Lei Chen
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory of Molecular Imaging of Hubei Province, Wuhan, China
- Department of Interventional Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- *Correspondence: Chuansheng Zheng, ; Fu Xiong, ; Lei Chen,
| | - Fu Xiong
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory of Molecular Imaging of Hubei Province, Wuhan, China
- Department of Interventional Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- *Correspondence: Chuansheng Zheng, ; Fu Xiong, ; Lei Chen,
| | - Chuansheng Zheng
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory of Molecular Imaging of Hubei Province, Wuhan, China
- Department of Interventional Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- *Correspondence: Chuansheng Zheng, ; Fu Xiong, ; Lei Chen,
| |
Collapse
|
67
|
Kikuchi H, Matsui A, Morita S, Amoozgar Z, Inoue K, Ruan Z, Staiculescu D, Wong JSL, Huang P, Yau T, Jain RK, Duda DG. Increased CD8+ T-cell Infiltration and Efficacy for Multikinase Inhibitors After PD-1 Blockade in Hepatocellular Carcinoma. J Natl Cancer Inst 2022; 114:1301-1305. [PMID: 35288743 PMCID: PMC9468280 DOI: 10.1093/jnci/djac051] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 01/24/2022] [Accepted: 03/03/2022] [Indexed: 01/07/2023] Open
Abstract
Immune checkpoint blockade combined with antiangiogenic therapy induces vascular normalization and antitumor immunity and is efficacious in hepatocellular carcinoma (HCC); but whether and how initial immunotherapy affects the efficacy of subsequent antiangiogenic therapy are unknown. We evaluated a cohort of HCC patients (n = 25) who received the pan-vascular endothelial growth factor receptor multikinase inhibitor sorafenib after initial therapy with an antiprogrammed cell death protein (PD)-1 antibody and found superior outcomes in these patients (12% overall response rate to sorafenib and a median overall survival of 12.1 months). To prove this potential benefit, we examined the impact of an anti-PD-1 antibody on response to subsequent sorafenib treatment in orthotopic models of murine HCC. Prior anti-PD-1 antibody treatment amplified HCC response to sorafenib therapy and increased survival (n = 8-9 mice per group, hazard ratio = 0.28, 95% confidence interval = 0.09 to 0.91; 2-sided P = .04). Anti-PD-1 therapy showed angioprotective effects on HCC vessels to subsequent sorafenib treatment, which enhanced the benefit of this therapy sequence in a CD8+ T-cell-dependent manner. This priming approach using immunotherapy provides an immediately translatable strategy for effective HCC treatment while reducing drug exposure.
Collapse
Affiliation(s)
- Hiroto Kikuchi
- Edwin L. Steele Laboratories for Tumor Biology, Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Aya Matsui
- Edwin L. Steele Laboratories for Tumor Biology, Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Satoru Morita
- Edwin L. Steele Laboratories for Tumor Biology, Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Zohreh Amoozgar
- Edwin L. Steele Laboratories for Tumor Biology, Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Koetsu Inoue
- Edwin L. Steele Laboratories for Tumor Biology, Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Zhiping Ruan
- Edwin L. Steele Laboratories for Tumor Biology, Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Daniel Staiculescu
- Edwin L. Steele Laboratories for Tumor Biology, Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Jeffrey Sum-Lung Wong
- Department of Medicine, Queen Mary Hospital, The University of Hong Kong, Hong Kong, China
| | - Peigen Huang
- Edwin L. Steele Laboratories for Tumor Biology, Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Thomas Yau
- Department of Medicine, Queen Mary Hospital, The University of Hong Kong, Hong Kong, China
| | - Rakesh K Jain
- Edwin L. Steele Laboratories for Tumor Biology, Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Dan G Duda
- Edwin L. Steele Laboratories for Tumor Biology, Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| |
Collapse
|
68
|
Liu J, Tao H, Yuan T, Li J, Li J, Liang H, Huang Z, Zhang E. Immunomodulatory effects of regorafenib: Enhancing the efficacy of anti-PD-1/PD-L1 therapy. Front Immunol 2022; 13:992611. [PMID: 36119072 PMCID: PMC9479218 DOI: 10.3389/fimmu.2022.992611] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 08/18/2022] [Indexed: 11/14/2022] Open
Abstract
Anti-PD-1/PD-L1 therapy has shown significant benefits in the treatment of a variety of malignancies. However, not all cancer patients can benefit from this strategy due to drug resistance. Therefore, there is an urgent need for methods that can effectively improve the efficacy of anti-PD-1/PD-L1 therapy. Combining anti-PD-1/PD-L1 therapy with regorafenib has been demonstrated as an effective method to enhance its therapeutic effect in several clinical studies. In this review, we describe common mechanisms of resistance to anti-PD-1/PD-L1 therapy, including lack of tumor immunogenicity, T cell dysfunction, and abnormal expression of PD-L1. Then, we illustrate the role of regorafenib in modifying the tumor microenvironment (TME) from multiple aspects, which is different from other tyrosine kinase inhibitors. Regorafenib not only has immunomodulatory effects on various immune cells, but can also regulate PD-L1 and MHC-I on tumor cells and promote normalization of abnormal blood vessels. Therefore, studies on the synergetic mechanism of the combination therapy may usher in a new era for cancer treatment and help us identify the most appropriate individuals for more precise treatment.
Collapse
Affiliation(s)
- Junjie Liu
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Haisu Tao
- Department of Hepatobiliary Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Tong Yuan
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jiang Li
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jian Li
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Huifang Liang
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- *Correspondence: Erlei Zhang, ; Zhiyong Huang, ; Huifang Liang,
| | - Zhiyong Huang
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- *Correspondence: Erlei Zhang, ; Zhiyong Huang, ; Huifang Liang,
| | - Erlei Zhang
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- *Correspondence: Erlei Zhang, ; Zhiyong Huang, ; Huifang Liang,
| |
Collapse
|
69
|
Ma K, Chen S, Chen X, Zhao X, Yang J. CD93 is Associated with Glioma-related Malignant Processes and Immunosuppressive Cell Infiltration as an Inspiring Biomarker of Survivance. J Mol Neurosci 2022; 72:2106-2124. [PMID: 36006582 DOI: 10.1007/s12031-022-02060-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Accepted: 08/18/2022] [Indexed: 11/24/2022]
Abstract
Previous reports have confirmed the significance of CD93 in the progression of multiple tumors; however, there are few studies examining its immune properties for gliomas. Here, we methodically investigated the pathophysiological characteristics and clinical manifestations of gliomas. Six hundred ninety-nine glioma patients in TCGA along with 325 glioma patients in CGGA were correspondingly collected for training and validating. We analyzed and visualized total statistics using RStudio. One-way ANOVA and Student's t-test were used to assess groups' differences. All differences were considered statistically significant at the level of P < 0.05. CD93 markedly upregulated among HGG, MGMT promoter unmethylated subforms, IDH wild forms, 1p19q non-codeletion subforms, and mesenchyme type gliomas. ROC analysis illustrated the favorable applicability of CD93 in estimating mesenchyme subform. Kaplan-Meier curves together with multivariable Cox analyses upon survivance identified high-expression CD93 as a distinct prognostic variable for glioma patients. GO analysis of CD93 documented its predominant part in glioma-related immunobiological processes and inflammation responses. We examined the associations of CD93 with immune-related meta-genes, and CD93 positively correlated with HCK, LCK, MHC I, MHC II, STAT1 and IFN, while adverse with IgG. Association analyses between CD93 and gliomas-infiltrating immunocytes indicated that the infiltrating degrees of most immunocytes exhibited positive correlations with CD93, particularly these immunosuppressive subsets such as TAM, Treg, and MDSCs. CD93 is markedly associated with adverse pathology types, unfavorable survival, and immunosuppressive immunocytes infiltration among gliomas, thus identifying CD93 as a practicable marker and a promising target for glioma-based precise diagnosis and therapeutic strategies.
Collapse
Affiliation(s)
- Kaiming Ma
- Department of Neurosurgery, Peking University Third Hospital, Haidian District, 49 North Garden Rd, Beijing, 100191, China
| | - Suhua Chen
- Department of Neurosurgery, Peking University Third Hospital, Haidian District, 49 North Garden Rd, Beijing, 100191, China
| | - Xin Chen
- Department of Neurosurgery, Peking University Third Hospital, Haidian District, 49 North Garden Rd, Beijing, 100191, China.,Center for Precision Neurosurgery and Oncology of Peking University Health Science Center, Beijing, China
| | - Xiaofang Zhao
- Department of Neurosurgery, Peking University Third Hospital, Haidian District, 49 North Garden Rd, Beijing, 100191, China
| | - Jun Yang
- Department of Neurosurgery, Peking University Third Hospital, Haidian District, 49 North Garden Rd, Beijing, 100191, China. .,Center for Precision Neurosurgery and Oncology of Peking University Health Science Center, Beijing, China.
| |
Collapse
|
70
|
The Multi-Kinase Inhibitor Lucitanib Enhances the Antitumor Activity of Coinhibitory and Costimulatory Immune Pathway Modulators in Syngeneic Models. J Immunother 2022; 45:335-348. [PMID: 35791438 DOI: 10.1097/cji.0000000000000427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 05/26/2022] [Indexed: 11/26/2022]
Abstract
Lucitanib is a multi-tyrosine kinase inhibitor whose targets are associated with angiogenesis and other key cancer and immune pathways. Its antiangiogenic properties are understood, but lucitanib's immunomodulatory activity is heretofore unknown. Lucitanib exhibited such activity in vivo, increasing CD3+, CD8+, and CD4+ T cells and decreasing dendritic cells and monocyte-derived suppressor cells in mouse spleens. Depletion of CD8+ T cells from syngeneic MC38 colon tumor-bearing mice reduced the antitumor efficacy of lucitanib and revealed a CD8+ T-cell-dependent component of lucitanib's activity. The combination of lucitanib and costimulatory immune pathway agonists targeting 4-1BB, glucocorticoid-induced TNFR (GITR), inducible T-cell co-stimulator (ICOS), or OX40 exhibited enhanced antitumor activity compared with each single agent in immunocompetent tumor models. Lucitanib combined with blockade of cytotoxic T-lymphocyte-associated protein 4 (CTLA-4) or programmed cell death protein-1 (PD-1) coinhibitory immune pathways also showed enhanced antitumor activity over the single agents in multiple models. In CT26 tumors, lucitanib, alone or combined with anti-PD-1, reduced CD31+ vessels and depleted F4/80+ macrophages. Combination treatment also increased the number of intratumoral T cells. Gene expression in pathways associated with immune activity was upregulated by lucitanib in MC38 tumors and further potentiated by combination with anti-PD-1. Accordingly, lucitanib, alone or combined with anti-PD-1, increased intratumoral CD8+ T-cell abundance. Lucitanib's antitumor and pharmacodynamic activity, alone or combined with anti-PD-1, was not recapitulated by specific vascular endothelial growth factor receptor-2 (VEGFR2) inhibition. These data indicate that lucitanib can modulate vascular and immune components of the tumor microenvironment and cooperate with immunotherapy to enhance antitumor efficacy. They support the clinical development of lucitanib combined with immune pathway modulators to treat cancer.
Collapse
|
71
|
Melo V, Bremer E, Martin JD. Towards Immunotherapy-Induced Normalization of the Tumor Microenvironment. Front Cell Dev Biol 2022; 10:908389. [PMID: 35712656 PMCID: PMC9196132 DOI: 10.3389/fcell.2022.908389] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 05/09/2022] [Indexed: 12/12/2022] Open
Abstract
Immunotherapies modulate the function of immune cells to eradicate cancer cells through various mechanisms. These therapies are successful across a spectrum of cancers, but they are curative only in a subset of patients. Indeed, a major obstacle to the success of immunotherapies is the immunosuppressive nature of the tumor microenvironment (TME), comprising the stromal component and immune infiltrate of tumors. Importantly, the TME in most solid cancers is characterized by sparsely perfused blood vessels resulting from so-called pathological angiogenesis. In brief, dysregulated development of new vessels results in leaky tumor blood vessels that inefficiently deliver oxygen and other nutrients. Moreover, the occurrence of dysregulated fibrosis around the lesion, known as pathological desmoplasia, further compresses tumor blood vessels and impairs blood flow. TME normalization is a clinically tested treatment strategy to reverse these tumor blood vessel abnormalities resulting in stimulated antitumor immunity and enhanced immunotherapy efficacy. TME normalization includes vascular normalization to reduce vessel leakiness and reprogramming of cancer-associated fibroblast to decompress vessels. How immunotherapies themselves normalize the TME is poorly understood. In this review, we summarize current concepts and progress in TME normalization. Then, we review observations of immunotherapy-induced TME normalization and discuss the considerations for combining vascular normalizing and immunotherapies. If TME could be more completely normalized, immunotherapies could be more effective in more patients.
Collapse
Affiliation(s)
- Vinicio Melo
- Department of Hematology, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Edwin Bremer
- Department of Hematology, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | | |
Collapse
|
72
|
Cheng X, Wang Y, Liu L, Lv C, Liu C, Xu J. SLC7A11, a Potential Therapeutic Target Through Induced Ferroptosis in Colon Adenocarcinoma. Front Mol Biosci 2022; 9:889688. [PMID: 35517862 PMCID: PMC9065265 DOI: 10.3389/fmolb.2022.889688] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 03/23/2022] [Indexed: 01/14/2023] Open
Abstract
Background: Ferroptosis induced by SLC7A11 has an important translational value in the treatment of cancers. However, the mechanism of SLC7A11 in the pathogenesis of colon adenocarcinoma (COAD) is rarely studied in detail. Methods: SLC7A11 expression was explored with The Cancer Genome Atlas (TCGA), Gene Expression Omnibus (GEO) databases, and Western blot assay. The correlation of SLC7A11 expression with the abundance of infiltrating immune cells was evaluated via the TIMER database. The relation of SLC7A11 expression with immune cell markers was investigated via Gene Expression Profiling Interactive Analysis (GEPIA). The co-expression genes of SLC7A11 were screened by R packages, and the PPI was constructed via the STRING database. SLC7A11 and co-expressed gene modulators were selected by NetworkAnalyst and DSigDB database. The correlations between SLC7A11 and cancer immune characteristics were analyzed via the TIMER and TISIDB databases. Results: SLC7A11 is overexpressed in most tumors, including COAD. The expression level of SLC7A11 has a significant correlation with the infiltration levels of CD8+ T cells, neutrophils, and dendritic cells in COAD. The infiltrated lymphocyte markers of Th1 cell such as TBX21, IL12RB2, IL27RA, STAT1, and IFN-γ were strongly correlated with SLC7A11 expression. Five hub genes co-expressed with SLC7A11 that induce ferroptosis were identified, and mir-335-5p, RELA, and securinine have regulatory effects on it. SLC7A11 was negatively correlated with the expression of chemokines and chemokine receptors, such as CCL17, CCL19, CCL22, CCL23, CXCL14, CCR10, CX3CR1, and CXCR3, in COAD. Conclusion: SLC7A11 may play a role in induced ferroptosis and regulating tumor immunity, which can be considered as potential therapeutic targets in COAD.
Collapse
Affiliation(s)
- Xin Cheng
- General Surgery Department, Wuhu Hospital of Traditional Chinese Medicine, Wuhu, China
| | - Yadong Wang
- General Surgery Department, Wuhu Hospital of Traditional Chinese Medicine, Wuhu, China
| | - Liangchao Liu
- General Surgery Department, Wuhu Hospital of Traditional Chinese Medicine, Wuhu, China
| | - Chenggang Lv
- General Surgery Department, Wuhu Hospital of Traditional Chinese Medicine, Wuhu, China
| | - Can Liu
- The First Affiliated Hospital of Wannan Medical College, Wuhu, China
| | - Jingyun Xu
- School of Basic Medicine, Wannan Medical College, Wuhu, China
| |
Collapse
|
73
|
How J, Ren S, Lombardi‐Story J, Bergeron M, Foster J, Amrein PC, Brunner AM, Fathi AT, Hock H, Khachatryan A, Kikuchi H, Ng MR, Moran J, Narayan R, Neuberg D, Ramos A, Som T, Vartanian M, Chen Y, Duda DG, Hobbs GS. A nonrandomized phase I and biomarker trial of regorafenib in advanced myeloid malignancies. EJHAEM 2022; 3:434-442. [PMID: 35846042 PMCID: PMC9175677 DOI: 10.1002/jha2.408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 02/10/2022] [Accepted: 02/21/2022] [Indexed: 06/15/2023]
Abstract
We conducted a single-center, open-label, dose escalation, and expansion phase I trial of the antiangiogenic multikinase inhibitor regorafenib in patients with advanced myeloid neoplasms. We enrolled 16 patients with relapsed/refractory acute myeloid leukemia (AML), myeloproliferative neoplasms (MPN), chronic myelomonocytic leukemia (CMML), or myelodysplastic syndrome (MDS). A 3 + 3 dose escalation design was used with two planned dose levels (120 or 160 mg daily) and one de-escalation level (80 mg daily). An additional 10 patients were treated on an expansion cohort. The recommended phase two dose of regorafenib was 160 mg daily, with no dose-limiting toxicities. The best overall disease response by International Working Group criteria included one partial and stable disease in 11 patients. Tissue studies indicated no change in Ras/mitogen-activated protein kinase (MAPK) pathway activation in responders. Pharmacodynamic changes in plasma VEGF, PlGF, and sVEGFR2 were detected during treatment. Baseline proinflammatory and angiogenic cytokine levels were not associated with clinical response. Single-agent regorafenib demonstrated an acceptable safety profile in relapsed/refractory myeloid malignancy patients. Most patients achieved stable disease, with modest improvements in cell counts in some MDS patients. Biomarker studies were consistent with on-target effects of regorafenib on angiogenesis. Future studies should investigate the role of regorafenib in combination therapy approaches.
Collapse
Affiliation(s)
- Joan How
- Division of HematologyBrigham and Women's HospitalHarvard Medical SchoolBostonMassachusettsUSA
| | - Siyang Ren
- Department of Data SciencesDana‐Farber Cancer InstituteBostonMassachusettsUSA
| | - Jennifer Lombardi‐Story
- Department of Medical OncologyMassachusetts General HospitalHarvard Medical SchoolBostonMassachusettsUSA
| | - Meghan Bergeron
- Department of Medical OncologyMassachusetts General HospitalHarvard Medical SchoolBostonMassachusettsUSA
| | - Julia Foster
- Department of Medical OncologyMassachusetts General HospitalHarvard Medical SchoolBostonMassachusettsUSA
| | - Phillip C. Amrein
- Department of Medical OncologyMassachusetts General HospitalHarvard Medical SchoolBostonMassachusettsUSA
| | - Andrew M. Brunner
- Department of Medical OncologyMassachusetts General HospitalHarvard Medical SchoolBostonMassachusettsUSA
| | - Amir T. Fathi
- Department of Medical OncologyMassachusetts General HospitalHarvard Medical SchoolBostonMassachusettsUSA
| | - Hanno Hock
- Department of Medical OncologyMassachusetts General HospitalHarvard Medical SchoolBostonMassachusettsUSA
| | - Anna Khachatryan
- Department of Radiation OncologyMassachusetts General HospitalHarvard Medical SchoolBostonMassachusettsUSA
| | - Hiroto Kikuchi
- Department of Radiation OncologyMassachusetts General HospitalHarvard Medical SchoolBostonMassachusettsUSA
| | - Mei Rosa Ng
- Department of Radiation OncologyMassachusetts General HospitalHarvard Medical SchoolBostonMassachusettsUSA
| | - Jenna Moran
- Department of Medical OncologyMassachusetts General HospitalHarvard Medical SchoolBostonMassachusettsUSA
| | - Rupa Narayan
- Department of Medical OncologyMassachusetts General HospitalHarvard Medical SchoolBostonMassachusettsUSA
| | - Donna Neuberg
- Department of Data SciencesDana‐Farber Cancer InstituteBostonMassachusettsUSA
| | - Aura Ramos
- Department of Medical OncologyMassachusetts General HospitalHarvard Medical SchoolBostonMassachusettsUSA
| | - Tina Som
- Department of Medical OncologyMassachusetts General HospitalHarvard Medical SchoolBostonMassachusettsUSA
| | - Meghan Vartanian
- Department of Medical OncologyMassachusetts General HospitalHarvard Medical SchoolBostonMassachusettsUSA
| | - Yi‐Bin Chen
- Department of Medical OncologyMassachusetts General HospitalHarvard Medical SchoolBostonMassachusettsUSA
| | - Dan G. Duda
- Department of Radiation OncologyMassachusetts General HospitalHarvard Medical SchoolBostonMassachusettsUSA
| | - Gabriela S. Hobbs
- Department of Medical OncologyMassachusetts General HospitalHarvard Medical SchoolBostonMassachusettsUSA
| |
Collapse
|
74
|
Xu YJ, Zhang P, Hu JL, Liang H, Zhu YY, Cui Y, Niu P, Xu M, Liu MY. Regorafenib combined with programmed cell death-1 inhibitor against refractory colorectal cancer and the platelet-to-lymphocyte ratio’s prediction on effectiveness. World J Gastrointest Oncol 2022; 14:920-934. [PMID: 35582108 PMCID: PMC9048533 DOI: 10.4251/wjgo.v14.i4.920] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Revised: 01/04/2022] [Accepted: 02/16/2022] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND The effectiveness of regorafenib plus programmed cell death-1 (PD-1) inhibitor in treating microsatellite stable (MSS) metastatic colorectal cancer (mCRC) remains controversial.
AIM To investigate the benefits of regorafenib combined with PD-1 inhibitor in treating MSS mCRC and explore indicators predicting response.
METHODS This retrospective study included a total of 30 patients with microsatellite stable metastatic colorectal cancer treated with regorafenib combined with programmed cell death-1 inhibitor at Henan Provincial People’s Hospital between December 2018 and December 2020. During a 4-wk treatment cycle, regorafenib was performed for 3 continuous weeks. PD-1 inhibitor was intravenously injected starting on the first day of the oral intake of regorafenib. We reviewed tumor response, progression-free survival (PFS), overall survival, and treatment-related adverse events (TRAEs) and evaluated association between platelet-to-lymphocyte ratio (PLR) and outcomes in this retrospective study.
RESULTS Stable disease and progressive disease were found in 18 (60.0%) and 12 (40.0%) patients, respectively. The disease control rate was 60.0%. The median follow-up time was 12.0 mo, and median PFS was 3.4 mo [95% confidence interval (CI): 2.2-4.6 mo]. Of the 12 patients with progressive disease, 10 (83.3%) had liver metastasis before starting the combined treatment. Among the 18 patients with SD, 10 (55.6%) did not have liver metastases. One patient without liver metastases at baseline was found with a substantially prolonged PFS of 11.2 mo. The liver metastasis, the choice of programmed cell death-1 inhibitor other than nivolumab or pembrolizumab and previous exposure to regorafenib was’t associated with treatment outcome. The median PFS in the low-PLR group was 4.2 mo (95%CI: 3.5-4.9 mo), compared with 2.8 mo (95%CI: 1.4-4.2 mo) in the high-PLR group (P = 0.005). The major TRAEs included hand-foot syndrome (33.3%), hypertension (23.3%), malaise (20.0%), and gastrointestinal reaction (16.7%). The incidence of grade 3 TRAEs was 13.3% (4/30), which comprised abnormal capillary proliferation (n = 1), transaminase elevation (n = 1), and hand-foot syndrome (n = 2). No grade 4 or higher toxicity was observed.
CONCLUSION Regorafenib combined with PD-1 inhibitor could lead to a longer PFS in some patients with MSS mCRC. The PLR might be a prediction of the patient response to this therapy.
Collapse
Affiliation(s)
- Yu-Jie Xu
- Department of Oncology, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou 450003, Henan Province, China
| | - Peng Zhang
- Department of Gastrointestinal Surgery, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou 450003, Henan Province, China
| | - Jin-Long Hu
- Department of Oncology, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou 450003, Henan Province, China
| | - Hong Liang
- Department of Gastrointestinal Surgery, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou 450003, Henan Province, China
| | - Yan-Yan Zhu
- Department of Oncology, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou 450003, Henan Province, China
| | - Yao Cui
- Department of Oncology, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou 450003, Henan Province, China
| | - Po Niu
- Department of Oncology, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou 450003, Henan Province, China
| | - Min Xu
- Department of Hepatology, The Third People's Hospital of Zhengzhou, Zhengzhou 450003, Henan Province, China
| | - Ming-Yue Liu
- Department of Oncology, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou 450003, Henan Province, China
| |
Collapse
|
75
|
Targeting oncogene and non-oncogene addiction to inflame the tumour microenvironment. Nat Rev Drug Discov 2022; 21:440-462. [PMID: 35292771 DOI: 10.1038/s41573-022-00415-5] [Citation(s) in RCA: 89] [Impact Index Per Article: 29.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/27/2022] [Indexed: 12/12/2022]
Abstract
Immune checkpoint inhibitors (ICIs) have revolutionized the clinical management of multiple tumours. However, only a few patients respond to ICIs, which has generated considerable interest in the identification of resistance mechanisms. One such mechanism reflects the ability of various oncogenic pathways, as well as stress response pathways required for the survival of transformed cells (a situation commonly referred to as 'non-oncogene addiction'), to support tumour progression not only by providing malignant cells with survival and/or proliferation advantages, but also by establishing immunologically 'cold' tumour microenvironments (TMEs). Thus, both oncogene and non-oncogene addiction stand out as promising targets to robustly inflame the TME and potentially enable superior responses to ICIs.
Collapse
|
76
|
Hu J, Pei W, Jiang M, Huang Y, Dong F, Jiang Z, Xu Y, Li Z. DFNA5 regulates immune cells infiltration and exhaustion. Cancer Cell Int 2022; 22:107. [PMID: 35248047 PMCID: PMC8897971 DOI: 10.1186/s12935-022-02487-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 01/24/2022] [Indexed: 12/11/2022] Open
Abstract
Background DFNA5 (GSDME) belongs to Gasdermin familily that is involved in a variety of cancers and triggers cell pyroptosis after chemical treatment. However, the relationship in DFNA5 between prognosis and immune cells in diverse cancers has been receiving little attention. Tumor immune cells infiltration and exhaustion may associate with patients prognosis. The roles of DFNA5 in tumor immune cells infiltration and exhaustion have not been clarified. Methods The expression level of DFNA5 was determined by the Tumour Immune Estimation Resource and the Oncomine database. Then the impacts of DFNA5 in prognosis were assessed by Kaplan–Meier plotter and ULACAN. The correlations between DFNA5 and tumour-infiltrating lymphocytes were explored by TIMER. In addition, the relationships in the expression levels of DFNA5 and typical genes combination of tumour-infiltrating lymphocytes were analysed by GEPIA and TIMER. In this study, we screened the chemokine and immune related proteins interacted with DFNA5 using TurboID system to explore the instantaneous or weak interactions. Results DFNA5 significantly influences the prognosis in different cancers according to The Cancer Genome Atlas (TCGA). The expression levels of DFNA5 showed positive correlations to the infiltration of macrophages, CD8 + T cells, CD4 + T cells in liver hepatocellular carcinoma (LIHC), colon adenocarcinoma (COAD), and lung adenocarcinoma (LUAD). DFNA5 expression displayed obvious correlations with multiple lymphocytes gene makers in COAD, LIHC and LUAD. DFNA5 expression has effects on the prognosis of liver hepatocellular carcinoma and LUAD. DFNA5 upregulated the expression levels of PDCD1 and CD274 in a dose-dependent manner. Chemokine and immune related proteins interact with DFNA5. Conclusions These results indicate that DFNA5 is related to patient prognosis and immune cells, consisting of macrophages, CD4 + T cells, and CD8 + T cells, in diverse cancers. In addition, DFNA5 expression might contribute to the regulation of T cell exhaustion, tumour-associated macrophages (TAMs), and Tregs in COAD, LIHC and LUAD. DFNA5 may regulate immune infiltration via EIF2AK2. IFNGR1 was related to the functions of PD-L1 expression and PD-1 checkpoint pathway. These results indicate that DFNA5 levels may be act as a prognostic factor and predict the degrees of immune cells infiltration in LIHC and LUAD. Supplementary Information The online version contains supplementary material available at 10.1186/s12935-022-02487-0.
Collapse
|
77
|
Abstract
Liver cancer, more specifically hepatocellular carcinoma (HCC), is the second leading cause of cancer-related death and its incidence is increasing globally. Around 50% of patients with HCC receive systemic therapies, traditionally sorafenib or lenvatinib in the first line and regorafenib, cabozantinib or ramucirumab in the second line. In the past 5 years, immune-checkpoint inhibitors have revolutionized the management of HCC. The combination of atezolizumab and bevacizumab has been shown to improve overall survival relative to sorafenib, resulting in FDA approval of this regimen. More recently, durvalumab plus tremelimumab yielded superior overall survival versus sorafenib and atezolizumab plus cabozantinib yielded superior progression-free survival. In addition, pembrolizumab monotherapy and the combination of nivolumab plus ipilimumab have received FDA Accelerated Approval in the second-line setting based on early efficacy data. Despite these major advances, the molecular underpinnings governing immune responses and evasion remain unclear. The immune microenvironment has crucial roles in the development and progression of HCC and distinct aetiology-dependent immune features have been defined. Inflamed and non-inflamed classes of HCC and genomic signatures have been associated with response to immune-checkpoint inhibitors, yet no validated biomarker is available to guide clinical decision-making. This Review provides information on the immune microenvironments underlying the response or resistance of HCC to immunotherapies. In addition, current evidence from phase III trials on the efficacy, immune-related adverse events and aetiology-dependent mechanisms of response are described. Finally, we discuss emerging trials assessing immunotherapies across all stages of HCC that might change the management of this disease in the near future.
Collapse
|
78
|
Chiang IT, Lee YH, Tan ZL, Hsu FT, Tu HF. Regorafenib enhances antitumor immune efficacy of anti-PD-L1 immunotherapy on oral squamous cell carcinoma. Biomed Pharmacother 2022; 147:112661. [DOI: 10.1016/j.biopha.2022.112661] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 01/06/2022] [Accepted: 01/19/2022] [Indexed: 12/16/2022] Open
|
79
|
Huang J, Guo Y, Huang W, Hong X, Quan Y, Lin L, Zhou J, Liang L, Zhang Y, Zhou J, Cai M, Zhu K. Regorafenib Combined with PD-1 Blockade Immunotherapy versus Regorafenib as Second-Line Treatment for Advanced Hepatocellular Carcinoma: A Multicenter Retrospective Study. J Hepatocell Carcinoma 2022; 9:157-170. [PMID: 35300208 PMCID: PMC8922463 DOI: 10.2147/jhc.s353956] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 02/25/2022] [Indexed: 12/12/2022] Open
Abstract
Purpose To evaluate the safety and efficacy of regorafenib combined with anti-PD-1 antibody sintilimab (rego-sintilimab) as a second-line treatment for advanced hepatocellular carcinoma (HCC). Methods This multicenter retrospective study evaluated consecutive patients with advanced HCC who received rego-sintilimab (rego-sintilimab group) or regorafenib alone (regorafenib group) as a second-line treatment from January 2019 to December 2020. Adverse events, objective response rate (ORR), progression-free survival (PFS), and overall survival (OS) were compared between the two groups. Uni- and multi-variable analyses of prognostic factors for OS and PFS were performed using Cox proportional hazard regression models. Results In total, 113 patients were included in the study: 58 received rego-sintilimab and 55 received regorafenib. The rego-sintilimab group had higher ORR (36.2% vs 16.4%, P = 0.017), longer PFS (median 5.6 vs 4.0 months; P = 0.045), and better OS (median 13.4 vs 9.9 months; P = 0.023) than the regorafenib group. Regorafenib alone, Child-Pugh B, and neutrophil-to-lymphocyte ratio (NLR) > 3.6 were independent prognostic factors for poor OS. Regorafenib alone, α-fetoprotein level, and NLR > 3.6 were independent prognostic factors for poor PFS. Subgroup analyses showed a survival benefit of rego-sintilimab in patients with NLR ≤ 3.6 (hazard ratio 0.518 [95% CI, 0.257–0.955]) but not in those with NLR > 3.6 (0.852 [0.461–1.572]); P = 0.002 for interaction. The difference in incidence of grade 3/4 adverse events between the two groups was not statistically significant (39.7% vs 30.9%; P = 0.331). Conclusion Rego-sintilimab was tolerated and led to better OS than regorafenib as a second-line treatment for advanced HCC patients, especially in those with NLR ≤ 3.6.
Collapse
Affiliation(s)
- Jingjun Huang
- Department of Minimally Invasive Interventional Radiology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou City, Guangdong Province, People’s Republic of China
| | - Yongjian Guo
- Department of Minimally Invasive Interventional Radiology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou City, Guangdong Province, People’s Republic of China
| | - Wensou Huang
- Department of Minimally Invasive Interventional Radiology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou City, Guangdong Province, People’s Republic of China
| | - Xiaotao Hong
- Department of Interventional Medical Center, Jieyang People’s Hospital, Jieyang City, Guangdong Province, People’s Republic of China
| | - Yi Quan
- Department of Oncology Medical Center, The First People’s Hospital of Zhaoqing, Zhaoqing City, Guangdong Province, People’s Republic of China
| | - Liteng Lin
- Department of Minimally Invasive Interventional Radiology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou City, Guangdong Province, People’s Republic of China
| | - Jingwen Zhou
- Department of Minimally Invasive Interventional Radiology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou City, Guangdong Province, People’s Republic of China
| | - Licong Liang
- Department of Minimally Invasive Interventional Radiology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou City, Guangdong Province, People’s Republic of China
| | - Yaqin Zhang
- Department of Radiology, The Fifth Affiliated Hospital of Sun Yat-Sen University, Zhuhai City, Guangdong Province, People’s Republic of China
| | - Juan Zhou
- Department of Pharmacy, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou City, Guangdong Province, People’s Republic of China
| | - Mingyue Cai
- Department of Minimally Invasive Interventional Radiology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou City, Guangdong Province, People’s Republic of China
| | - Kangshun Zhu
- Department of Minimally Invasive Interventional Radiology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou City, Guangdong Province, People’s Republic of China
- Correspondence: Kangshun Zhu; Mingyue Cai, Department of Minimally Invasive Interventional Radiology, the Second Affiliated Hospital of Guangzhou Medical University, 250 East Changgang Road, Guangzhou City, Guangdong, 510260, People’s Republic of China, Tel +86-20-34156205, Fax +86-20-34153709, Email ;
| |
Collapse
|
80
|
Modulation of the tumour microenvironment in hepatocellular carcinoma by tyrosine kinase inhibitors: from modulation to combination therapy targeting the microenvironment. Cancer Cell Int 2022; 22:73. [PMID: 35148789 PMCID: PMC8840552 DOI: 10.1186/s12935-021-02435-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 12/28/2021] [Indexed: 02/06/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is the third leading cause of cancer deaths worldwide. Tyrosine kinase inhibitors (TKIs) remain the backbone of systematic therapy for advanced hepatocellular carcinoma. Sorafenib and lenvatinib are currently approved as first-line therapeutic drugs, and regorafenib and cabozantinib are applied as second-line treatments. With inhibition of angiogenesis as the main target, TKIs exert a profound effect on the tumour microenvironment (TME). The TME is a complex mixture of cellular and noncellular components surrounding the tumour mass, and is associated with tumour progression partially through the epithelial-mesenchymal transition. Specifically, the TME of HCC is characterized by profound extracellular matrix remodelling and an immunosuppressive microenvironment. The purpose of this review is to provide a summary of TME remodelling mediated by four Food and Drug Administration approved TKIs in HCC and thus summarize the rationale and potential targets for combination therapy. The modulatory effect of TKIs on the TME of HCC was reported to enhance the antitumour effect of TKIs through pyroptosis of macrophages and subsequent natural killer cell activation, T cell activation, regulatory T cell reduction in HCC. Meanwhile, TKIs also induce drug resistance via M2 polarization and accumulation, recruitment of tumour-associated neutrophils, and induction of the epithelial-mesenchymal transition. In conclusion, the effect of TKIs on TME can enhance its antitumour effect, but might also partially contribute to the drug resistance that hinders the progression of TKIs as treatment for HCC. Additionally, the effect of TKIs also provides the rationale for combination therapy, including combining TKIs with immune checkpoint inhibitors, to facilitate increased drug efficacy of TKIs.
Collapse
|
81
|
Xiao Y, Chen J, Zhou H, Zeng X, Ruan Z, Pu Z, Jiang X, Matsui A, Zhu L, Amoozgar Z, Chen DS, Han X, Duda DG, Shi J. Combining p53 mRNA nanotherapy with immune checkpoint blockade reprograms the immune microenvironment for effective cancer therapy. Nat Commun 2022; 13:758. [PMID: 35140208 PMCID: PMC8828745 DOI: 10.1038/s41467-022-28279-8] [Citation(s) in RCA: 117] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Accepted: 01/13/2022] [Indexed: 12/14/2022] Open
Abstract
Immunotherapy with immune checkpoint blockade (ICB) has shown limited benefits in hepatocellular carcinoma (HCC) and other cancers, mediated in part by the immunosuppressive tumor microenvironment (TME). As p53 loss of function may play a role in immunosuppression, we herein examine the effects of restoring p53 expression on the immune TME and ICB efficacy. We develop and optimize a CXCR4-targeted mRNA nanoparticle platform to effectively induce p53 expression in HCC models. Using p53-null orthotopic and ectopic models of murine HCC, we find that combining CXCR4-targeted p53 mRNA nanoparticles with anti-PD-1 therapy effectively induces global reprogramming of cellular and molecular components of the immune TME. This effect results in improved anti-tumor effects compared to anti-PD-1 therapy or therapeutic p53 expression alone. Thus, our findings demonstrate the reversal of immunosuppression in HCC by a p53 mRNA nanomedicine when combined with ICB and support the implementation of this strategy for cancer treatment. The p53 tumor suppressor gene is frequently mutated in liver cancer. Here the authors show that restoration of p53 expression with a mRNA nanoparticle platform elicits anti-tumor immune responses and promotes response to immune checkpoint blockade in preclinical models of p53-null hepatocellular carcinoma.
Collapse
Affiliation(s)
- Yuling Xiao
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Jiang Chen
- Steele Laboratories for Tumor Biology, Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA.,Department of General Surgery, Sir Run-Run Shaw Hospital, Zhejiang University, Hangzhou, China
| | - Hui Zhou
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.,State Key Laboratory of Virology, Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (MOE), Hubei Province Engineering and Technology Research Center for Fluorinated Pharmaceuticals, Wuhan University School of Pharmaceutical Sciences, 430071, Wuhan, China
| | - Xiaodong Zeng
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.,State Key Laboratory of Virology, Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (MOE), Hubei Province Engineering and Technology Research Center for Fluorinated Pharmaceuticals, Wuhan University School of Pharmaceutical Sciences, 430071, Wuhan, China
| | - Zhiping Ruan
- Steele Laboratories for Tumor Biology, Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA.,Department of Medical Oncology, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Zhangya Pu
- Steele Laboratories for Tumor Biology, Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Xingya Jiang
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Aya Matsui
- Steele Laboratories for Tumor Biology, Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Lingling Zhu
- Steele Laboratories for Tumor Biology, Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Zohreh Amoozgar
- Steele Laboratories for Tumor Biology, Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Dean Shuailin Chen
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Xiangfei Han
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Dan G Duda
- Steele Laboratories for Tumor Biology, Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA.
| | - Jinjun Shi
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
82
|
Cammarota A, Zanuso V, D’Alessio A, Pressiani T, Personeni N, Rimassa L. Cabozantinib plus atezolizumab for the treatment of advanced hepatocellular carcinoma: Shedding light on the preclinical rationale and clinical trials. Expert Opin Investig Drugs 2022; 31:401-413. [DOI: 10.1080/13543784.2022.2032641] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Antonella Cammarota
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, 20072 Pieve Emanuele, Milan,Italy
- Medical Oncology and Hematology Unit, Humanitas Cancer Center, IRCCS Humanitas Research Hospital, Via Manzoni 56, 20089 Rozzano, Milan, Italy
| | - Valentina Zanuso
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, 20072 Pieve Emanuele, Milan,Italy
- Medical Oncology and Hematology Unit, Humanitas Cancer Center, IRCCS Humanitas Research Hospital, Via Manzoni 56, 20089 Rozzano, Milan, Italy
| | - Antonio D’Alessio
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, 20072 Pieve Emanuele, Milan,Italy
- Department of Surgery & Cancer, Imperial College London, Hammersmith Hospitalc, London, W120HS, United Kingdom
| | - Tiziana Pressiani
- Medical Oncology and Hematology Unit, Humanitas Cancer Center, IRCCS Humanitas Research Hospital, Via Manzoni 56, 20089 Rozzano, Milan, Italy
| | - Nicola Personeni
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, 20072 Pieve Emanuele, Milan,Italy
- Medical Oncology and Hematology Unit, Humanitas Cancer Center, IRCCS Humanitas Research Hospital, Via Manzoni 56, 20089 Rozzano, Milan, Italy
| | - Lorenza Rimassa
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, 20072 Pieve Emanuele, Milan,Italy
- Medical Oncology and Hematology Unit, Humanitas Cancer Center, IRCCS Humanitas Research Hospital, Via Manzoni 56, 20089 Rozzano, Milan, Italy
| |
Collapse
|
83
|
Constructing a thyroid cancer prognostic risk model based on CD8 + T cell associated genes. Cent Eur J Immunol 2022; 47:234-245. [PMID: 36817266 PMCID: PMC9896991 DOI: 10.5114/ceji.2022.119171] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 04/18/2022] [Indexed: 11/17/2022] Open
Abstract
Thyroid cancer (TC) is a common and curable endocrine tumor occurring in the head and neck characterized by a low mortality rate compared to other malignancies. In this study, the immune microenvironment of TC was investigated to identify biomarkers. The mRNA and clinical data available in this study were accessed from The Cancer Genome Atlas-Thyroid Cancer (TCGA-THCA) dataset. Differences in immune infiltration levels of TC and normal samples were assessed by CIBERSORT. Thyroid cancer samples were classified into high- and low-abundance groups according to the median abundance of immune cell infiltration, and CD8+ T cells were notably correlated with the survival status. Differential expression analysis was conducted on CD8+ T cells to obtain immune-related differentially expressed genes (DEGs). Subsequently, a prognostic risk model was established through Cox regression analysis. According to the median risk score, samples in the training set and validation set were assigned to high- and low-risk groups. The survival and ROC curves demonstrated that the model possesses favorable prognostic prediction ability. Furthermore, the results of gene set enrichment analysis (GSEA) indicated differences between the high- and low-risk groups in terms of ECM receptor interaction and transforming growth factor β (TGF-β) signaling pathways. The tumor microenvironment of TC samples was evaluated by ESTIMATE, which showed that stromal scores were higher in the high-risk group. Finally, simple-sample GSEA (ssGSEA) was performed on TC samples. The results indicated a higher infiltration level of NK cells in the low-risk group, as well as a lower level in the high-risk group. In terms of immune function-related gene sets, genes related to APC co-inhibition, cytolytic activity, HLA and T cell co-inhibition were observed to present higher expression levels in the low-risk group. In general, this study built a 6-gene prognostic risk assessment model based on CD8+ T cells through bioinformatics analysis, which is expected to be a reference for clinicians to judge the prognosis of TC patients.
Collapse
|
84
|
Zhang C, Yang M. Targeting T Cell Subtypes for NAFLD and NAFLD-Related HCC Treatment: An Opinion. Front Med (Lausanne) 2021; 8:789859. [PMID: 34869507 PMCID: PMC8637206 DOI: 10.3389/fmed.2021.789859] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 10/28/2021] [Indexed: 12/12/2022] Open
Affiliation(s)
- Chunye Zhang
- Department of Veterinary Pathobiology, University of Missouri, Columbia, MO, United States
| | - Ming Yang
- Department of Surgery, University of Missouri, Columbia, MO, United States
| |
Collapse
|
85
|
Klein S, Duda DG. Machine Learning for Future Subtyping of the Tumor Microenvironment of Gastro-Esophageal Adenocarcinomas. Cancers (Basel) 2021; 13:4919. [PMID: 34638408 PMCID: PMC8507866 DOI: 10.3390/cancers13194919] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Revised: 09/27/2021] [Accepted: 09/28/2021] [Indexed: 12/11/2022] Open
Abstract
Tumor progression involves an intricate interplay between malignant cells and their surrounding tumor microenvironment (TME) at specific sites. The TME is dynamic and is composed of stromal, parenchymal, and immune cells, which mediate cancer progression and therapy resistance. Evidence from preclinical and clinical studies revealed that TME targeting and reprogramming can be a promising approach to achieve anti-tumor effects in several cancers, including in GEA. Thus, it is of great interest to use modern technology to understand the relevant components of programming the TME. Here, we discuss the approach of machine learning, which recently gained increasing interest recently because of its ability to measure tumor parameters at the cellular level, reveal global features of relevance, and generate prognostic models. In this review, we discuss the relevant stromal composition of the TME in GEAs and discuss how they could be integrated. We also review the current progress in the application of machine learning in different medical disciplines that are relevant for the management and study of GEA.
Collapse
Affiliation(s)
- Sebastian Klein
- Gerhard-Domagk-Institute for Pathology, University Hospital Münster, 48149 Münster, Germany
- Institute for Pathology, Faculty of Medicine, University Hospital Cologne, University of Cologne, 50931 Cologne, Germany
| | - Dan G. Duda
- Edwin L. Steele Laboratories for Tumor Biology, Department of Radiation Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02478, USA
| |
Collapse
|
86
|
Loss of Von Hippel-Lindau ( VHL) Tumor Suppressor Gene Function: VHL-HIF Pathway and Advances in Treatments for Metastatic Renal Cell Carcinoma (RCC). Int J Mol Sci 2021; 22:ijms22189795. [PMID: 34575959 PMCID: PMC8470481 DOI: 10.3390/ijms22189795] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 09/02/2021] [Accepted: 09/07/2021] [Indexed: 12/18/2022] Open
Abstract
Renal cell carcinoma (RCC) is a malignancy of the kidney originating from the tubular epithelium. Inactivation of the von Hippel–Lindau tumor-suppressor gene (VHL) is found in most clear cell renal cell carcinomas (ccRCCs). The VHL–HIF–VEGF/VEGFR pathway, which involves the von Hippel–Lindau tumor suppressor protein (VHL), hypoxia-inducible factor (HIF), vascular endothelial growth factor (VEGF), and its receptor (VEGFR), is a well-studied therapeutic target for metastatic ccRCC. Therefore, over the past decade, anti-angiogenic agents targeting VEGFR have served as the standard treatment for metastatic RCC. Recently, based on the immunomodulatory effect of anti-VEGFR therapy, anti-angiogenic agents and immune checkpoint inhibitor combination strategies have also emerged as therapeutic strategies. These advances were made possible by the improved understanding of the VHL–HIF pathway. In this review, we summarize the historical evolution of ccRCC treatments, with a focus on the involvement of the VHL–HIF pathway.
Collapse
|
87
|
Wang H, Chen X, Calvisi DF. Hepatocellular carcinoma (HCC): the most promising therapeutic targets in the preclinical arena based on tumor biology characteristics. Expert Opin Ther Targets 2021; 25:645-658. [PMID: 34477018 DOI: 10.1080/14728222.2021.1976142] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
INTRODUCTION : Hepatocellular carcinoma (HCC) is a malignant liver tumor characterized by high molecular heterogeneity, which has hampered the development of effective targeted therapies severely. Recent experimental data have unraveled novel promising targets for HCC treatment. AREAS COVERED : Eligible articles were retrieved from PubMed and Web of Science databases up to July 2021. This review summarizes the established targeted therapies for advanced HCC, focusing on the strategies to overcome drug resistance and the search for combinational treatments. In addition, conventional biomarkers holding the promises for HCC treatments and novel therapeutic targets from the research field are discussed. EXPERT OPINION : HCC is a molecularly complex disease, with several and distinct pathways playing critical roles in different tumor subtypes. Experimental models recapitulating the features of each tumor subset would be highly beneficial to design novel and more effective therapies against this disease. Furthermore, a deeper understanding of combinatorial drug synergism and the role of the tumor microenvironment in HCC will lead to improved therapeutic outcomes.
Collapse
Affiliation(s)
- Haichuan Wang
- Liver Transplantation Division, Department of Liver Surgery and Laboratory of Liver Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan, China.,Department of Bioengineering and Therapeutic Sciences and Liver Center, University of California, San Francisco, California, USA
| | - Xin Chen
- Department of Bioengineering and Therapeutic Sciences and Liver Center, University of California, San Francisco, California, USA
| | - Diego F Calvisi
- Institute of Pathology, University of Regensburg, Regensburg, Germany
| |
Collapse
|
88
|
Takahashi A, Umemura A, Yano K, Okishio S, Kataoka S, Okuda K, Seko Y, Yamaguchi K, Moriguchi M, Okanoue T, Itoh Y. Tyrosine Kinase Inhibitors Stimulate HLA Class I Expression by Augmenting the IFNγ/STAT1 Signaling in Hepatocellular Carcinoma Cells. Front Oncol 2021; 11:707473. [PMID: 34458148 PMCID: PMC8385668 DOI: 10.3389/fonc.2021.707473] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 07/27/2021] [Indexed: 01/05/2023] Open
Abstract
Combination treatment with tyrosine kinase inhibitors (TKIs) and immunotherapies has shown efficacy in the treatment of multiple cancers, but the immunomodulatory effect of TKIs on the tumor cell phenotype remains unknown in hepatocellular carcinoma (HCC). Given that human lymphocyte antigen class I (HLA-I) is essential for tumor antigen presentation and subsequent antitumor immunity, we examined the effects of regorafenib, as well as other TKIs (sorafenib, lenvatinib and cabozantinib) on HLA-I expression in HCC cell lines. Regorafenib increased cell surface HLA-I and β2-microglobulin protein expression in the presence of interferon γ (IFNγ). The expressions of various genes associated with the HLA-I antigen processing pathway and its transcriptional regulators were also upregulated by regorafenib. Furthermore, we found that regorafenib had an activating effect on signal transducers and activators of transcription 1 (STAT1), and that regorafenib-induced HLA-I expression was dependent on the augmented IFNγ/STAT1 signaling pathway. Trametinib, an inhibitor of the extracellular signal-regulated kinase (ERK) kinase MEK, also activated IFNγ/STAT1 signaling and increased HLA-I expression, whereas the phosphatidylinositol 3-kinase (PI3K) inhibitor buparlisib did not. Given that regorafenib directly inhibits Raf/MEK/ERK signaling, the downregulation of the MEK/ERK pathway appears to be one of the mechanisms by which regorafenib promotes STAT1 activation. Sorafenib, lenvatinib, and cabozantinib also showed the same effects as regorafenib, while regorafenib had most potent effects on HLA-I expression, possibly dependent on its stronger inhibitory activity against the MEK/ERK pathway. These results support the clinical combination of TKIs with immunotherapy for the treatment of HCC.
Collapse
Affiliation(s)
- Aya Takahashi
- Molecular Gastroenterology and Hepatology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Atsushi Umemura
- Molecular Gastroenterology and Hepatology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Kota Yano
- Molecular Gastroenterology and Hepatology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Shinya Okishio
- Molecular Gastroenterology and Hepatology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Seita Kataoka
- Molecular Gastroenterology and Hepatology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Keiichiro Okuda
- Molecular Gastroenterology and Hepatology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Yuya Seko
- Molecular Gastroenterology and Hepatology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Kanji Yamaguchi
- Molecular Gastroenterology and Hepatology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Michihisa Moriguchi
- Molecular Gastroenterology and Hepatology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Takeshi Okanoue
- Department of Gastroenterology and Hepatology, Saiseikai Suita Hospital, Osaka, Japan
| | - Yoshito Itoh
- Molecular Gastroenterology and Hepatology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| |
Collapse
|
89
|
Hsu C, Rimassa L, Sun HC, Vogel A, Kaseb AO. Immunotherapy in hepatocellular carcinoma: evaluation and management of adverse events associated with atezolizumab plus bevacizumab. Ther Adv Med Oncol 2021; 13:17588359211031141. [PMID: 34377156 PMCID: PMC8327224 DOI: 10.1177/17588359211031141] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 06/21/2021] [Indexed: 12/14/2022] Open
Abstract
In light of positive efficacy and safety findings from the IMbrave150 trial of atezolizumab plus bevacizumab, this novel combination has become the preferred first-line standard of care for patients with unresectable hepatocellular carcinoma (HCC). Several additional trials are ongoing that combine an immune checkpoint inhibitor with another agent such as a multiple kinase inhibitor or antiangiogenic agent. Therefore, the range of first-line treatment options for unresectable HCC is likely to increase, and healthcare providers need succinct information about the use of such combinations, including their efficacy and key aspects of their safety profiles. Here, we review efficacy and safety data on combination immunotherapies and offer guidance on monitoring and managing adverse events, especially those associated with atezolizumab plus bevacizumab. Because of their underlying liver disease and high likelihood of portal hypertension, patients with unresectable HCC are at particular risk of gastrointestinal bleeding, and this risk may be exacerbated by treatments that include antiangiogenic agents. Healthcare providers also need to be alert to the risks of proteinuria and hypertension, colitis, hepatitis, and reactivation of hepatitis B or C virus infection. They should also be aware of the possibility of rarer but potentially life-threatening adverse events such as pneumonitis and cardiovascular events. Awareness of the risks associated with these therapies and knowledge of adverse event monitoring and management will become increasingly important as the therapeutic range broadens in unresectable HCC.
Collapse
Affiliation(s)
- Chiun Hsu
- Graduate Institute of Oncology, National University College of Medicine, National University Hospital, and National University Cancer Center, Taipei
| | - Lorenza Rimassa
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Milan, Italy
| | - Hui-Chuan Sun
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Arndt Vogel
- Department of Gastroenterology, Hepatology and Endocrinology, Medical School Hannover, Carl-Neubergstrasse 1, Hannover, 30625, Germany
| | - Ahmed O Kaseb
- Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Unit 426, Houston, TX 77030, USA
| |
Collapse
|
90
|
Chen W, Shen L, Jiang J, Zhang L, Zhang Z, Pan J, Ni C, Chen Z. Antiangiogenic therapy reverses the immunosuppressive breast cancer microenvironment. Biomark Res 2021; 9:59. [PMID: 34294146 PMCID: PMC8296533 DOI: 10.1186/s40364-021-00312-w] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Accepted: 07/08/2021] [Indexed: 12/11/2022] Open
Abstract
Tumor angiogenesis induces local hypoxia and recruits immunosuppressive cells, whereas hypoxia subsequently promotes tumor angiogenesis. Immunotherapy efficacy depends on the accumulation and activity of tumor-infiltrating immune cells (TIICs). Antangiogenic therapy could improve local perfusion, relieve tumor microenvironment (TME) hypoxia, and reverse the immunosuppressive state. Combining antiangiogenic therapy with immunotherapy might represent a promising option for the treatment of breast cancer. This article discusses the immunosuppressive characteristics of the breast cancer TME and outlines the interaction between the tumor vasculature and the immune system. Combining antiangiogenic therapy with immunotherapy could interrupt abnormal tumor vasculature-immunosuppression crosstalk, increase effector immune cell infiltration, improve immunotherapy effectiveness, and reduce the risk of immune-related adverse events. In addition, we summarize the preclinical research and ongoing clinical research related to the combination of antiangiogenic therapy with immunotherapy, discuss the underlying mechanisms, and provide a view for future developments. The combination of antiangiogenic therapy and immunotherapy could be a potential therapeutic strategy for treatment of breast cancer to promote tumor vasculature normalization and increase the efficiency of immunotherapy.
Collapse
Affiliation(s)
- Wuzhen Chen
- Department of Breast Surgery (Surgical Oncology), Second Affiliated Hospital, Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou, 310000, Zhejiang Province, China.,Key Laboratory of Tumor Microenvironment and Immune Therapy of Zhejiang Province, Hangzhou, China
| | - Lesang Shen
- Department of Breast Surgery (Surgical Oncology), Second Affiliated Hospital, Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou, 310000, Zhejiang Province, China.,Key Laboratory of Tumor Microenvironment and Immune Therapy of Zhejiang Province, Hangzhou, China
| | - Jingxin Jiang
- Department of Breast Surgery (Surgical Oncology), Second Affiliated Hospital, Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou, 310000, Zhejiang Province, China.,Key Laboratory of Tumor Microenvironment and Immune Therapy of Zhejiang Province, Hangzhou, China
| | - Leyi Zhang
- Key Laboratory of Tumor Microenvironment and Immune Therapy of Zhejiang Province, Hangzhou, China
| | - Zhigang Zhang
- Key Laboratory of Tumor Microenvironment and Immune Therapy of Zhejiang Province, Hangzhou, China
| | - Jun Pan
- Key Laboratory of Tumor Microenvironment and Immune Therapy of Zhejiang Province, Hangzhou, China
| | - Chao Ni
- Department of Breast Surgery (Surgical Oncology), Second Affiliated Hospital, Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou, 310000, Zhejiang Province, China. .,Key Laboratory of Tumor Microenvironment and Immune Therapy of Zhejiang Province, Hangzhou, China.
| | - Zhigang Chen
- Department of Breast Surgery (Surgical Oncology), Second Affiliated Hospital, Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou, 310000, Zhejiang Province, China. .,Key Laboratory of Tumor Microenvironment and Immune Therapy of Zhejiang Province, Hangzhou, China.
| |
Collapse
|
91
|
Wang Z, Ao X, Shen Z, Ao L, Wu X, Pu C, Guo W, Xing W, He M, Yuan H, Yu J, Li L, Xu X. TNF-α augments CXCL10/CXCR3 axis activity to induce Epithelial-Mesenchymal Transition in colon cancer cell. Int J Biol Sci 2021; 17:2683-2702. [PMID: 34345201 PMCID: PMC8326125 DOI: 10.7150/ijbs.61350] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 06/13/2021] [Indexed: 12/18/2022] Open
Abstract
Chronic inflammation-induced metastases have long been regarded as one of the significant obstacles in treating cancer. Tumor necrosis factor-α (TNF-α), a main inflammation mediator within tumor microenvironment, affects tumor development by inducing multiple chemokines to establish a complex network. Recent reports have revealed that CXCL10/CXCR3 axis affects cancer cells invasiveness and metastases, and Epithelial-mesenchymal transition (EMT) is the main reason for frequent proliferation and distant organ metastases of colon cancer (CC) cells, However, it is unclear whether TNF-α- mediated chronic inflammation can synergically enhance EMT-mediated CC metastasis through promoting chemokine expression. According to this study, TNF-α activated the PI3K/Akt and p38 MAPK parallel signal transduction pathways, then stimulate downstream NF-κB pathway p65 into the nucleus to activate CXCL10 transcription. CXCL10 enhanced the metastases of CC-cells by triggering small GTPases such as RhoA and cdc42. Furthermore, overexpression of CXCL10 significantly enhanced tumorigenicity and mobility of CC cells in vivo. We further clarified that CXCL10 activated the PI3K/Akt pathway through CXCR3, resulting in suppression of GSK-3β phosphorylation and leading to upregulation of Snail expression, thereby regulating EMT in CC cells. These outcomes lay the foundation for finding new targets to inhibit CC metastases.
Collapse
Affiliation(s)
- Zhengcheng Wang
- Department of Human Anatomy and Histology and Embryology, School of Basic Medical Sciences, Qingdao University, Qingdao 266000, China
| | - Xiang Ao
- Department of Stem Cell & Regenerative Medicine, State Key Laboratory of Trauma, Burn and Combined Injury, Daping Hospital, Army Medical University, Chongqing 400042, China
| | - Zhilin Shen
- Department of Stem Cell & Regenerative Medicine, State Key Laboratory of Trauma, Burn and Combined Injury, Daping Hospital, Army Medical University, Chongqing 400042, China
| | - Luoquan Ao
- Department of Stem Cell & Regenerative Medicine, State Key Laboratory of Trauma, Burn and Combined Injury, Daping Hospital, Army Medical University, Chongqing 400042, China
| | - Xiaofeng Wu
- Department of Stem Cell & Regenerative Medicine, State Key Laboratory of Trauma, Burn and Combined Injury, Daping Hospital, Army Medical University, Chongqing 400042, China
| | - Chengxiu Pu
- Department of Stem Cell & Regenerative Medicine, State Key Laboratory of Trauma, Burn and Combined Injury, Daping Hospital, Army Medical University, Chongqing 400042, China
| | - Wei Guo
- Department of Stem Cell & Regenerative Medicine, State Key Laboratory of Trauma, Burn and Combined Injury, Daping Hospital, Army Medical University, Chongqing 400042, China
| | - Wei Xing
- Department of Stem Cell & Regenerative Medicine, State Key Laboratory of Trauma, Burn and Combined Injury, Daping Hospital, Army Medical University, Chongqing 400042, China
| | - Min He
- Department of Stem Cell & Regenerative Medicine, State Key Laboratory of Trauma, Burn and Combined Injury, Daping Hospital, Army Medical University, Chongqing 400042, China
| | - Hongfeng Yuan
- Department of Ophthalmology, Daping Hospital, Army Medical University, Chongqing 400042, China
| | - Jianhua Yu
- Department of Stem Cell & Regenerative Medicine, State Key Laboratory of Trauma, Burn and Combined Injury, Daping Hospital, Army Medical University, Chongqing 400042, China
| | - Ling Li
- Department of Human Anatomy and Histology and Embryology, School of Basic Medical Sciences, Qingdao University, Qingdao 266000, China
| | - Xiang Xu
- Department of Stem Cell & Regenerative Medicine, State Key Laboratory of Trauma, Burn and Combined Injury, Daping Hospital, Army Medical University, Chongqing 400042, China
| |
Collapse
|
92
|
Ni H, Xue J, Wang F, Sun X, Niu M. Nanomedicine Approach to Immunotherapy of Hepatocellular Carcinoma. J Biomed Nanotechnol 2021; 17:771-792. [PMID: 34082866 DOI: 10.1166/jbn.2021.3055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
In recent years, the growing studies focused on the immunotherapy of hepatocellular carcinoma and proved the preclinical and clinical promises of host antitumor immune response. However, there were still various obstacles in meeting satisfactory clinic need, such as low response rate, primary resistance and secondary resistance to immunotherapy. Tackling these barriers required a deeper understanding of immune underpinnings and a broader understanding of advanced technology. This review described immune microenvironment of liver and HCC which naturally decided the complexity of immunotherapy, and summarized recent immunotherapy focusing on different points. The ever-growing clues indicated that the instant killing of tumor cell and the subsequent relive of immunosuppressive microenvironment were both indis- pensables. The nanotechnology applied in immunotherapy and the combination with intervention technology was also discussed.
Collapse
Affiliation(s)
- Hongbo Ni
- Department of Interventional Radiology, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning, 110000, China
| | - Jian Xue
- Department of Interventional Radiology, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning, 110000, China
| | - Fan Wang
- Department of Interventional Radiology, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning, 110000, China
| | - Xiaohan Sun
- Department of Interventional Radiology, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning, 110000, China
| | - Meng Niu
- Department of Interventional Radiology, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning, 110000, China
| |
Collapse
|
93
|
Granito A, Marinelli S, Forgione A, Renzulli M, Benevento F, Piscaglia F, Tovoli F. Regorafenib Combined with Other Systemic Therapies: Exploring Promising Therapeutic Combinations in HCC. J Hepatocell Carcinoma 2021; 8:477-492. [PMID: 34079777 PMCID: PMC8165211 DOI: 10.2147/jhc.s251729] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Accepted: 03/25/2021] [Indexed: 02/05/2023] Open
Abstract
Regorafenib was the first drug to demonstrate a survival benefit as a second-line agent after sorafenib failure in patients with unresectable hepatocellular carcinoma (HCC). Recent studies have shown that its mechanism of action is not only limited to its very broad spectrum of inhibition of angiogenesis, tumor proliferation, spread, and metastasis, but also to its immunomodulatory properties that have favorable effects on the very intricate role that the tumor microenvironment plays in carcinogenesis and tumor growth. In this review, we discuss rationale and evidence supporting regorafenib efficacy in HCC and that led to its approval as a second-line treatment, after sorafenib failure. We also discuss the evidence from clinical practice studies that confirm the results previously achieved in clinical trials. Finally, we analyze the potential role of regorafenib in emerging combined treatment approach with immunotherapy strategies using immune checkpoint blockade and its potential extension to patient categories not included in the registrative study.
Collapse
Affiliation(s)
- Alessandro Granito
- Division of Internal Medicine, Hepatobiliary and Immunoallergic Diseases, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
- Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| | - Sara Marinelli
- Division of Internal Medicine, Hepatobiliary and Immunoallergic Diseases, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Antonella Forgione
- Division of Internal Medicine, Hepatobiliary and Immunoallergic Diseases, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
- Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| | - Matteo Renzulli
- Radiology Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Francesca Benevento
- Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| | - Fabio Piscaglia
- Division of Internal Medicine, Hepatobiliary and Immunoallergic Diseases, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
- Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| | - Francesco Tovoli
- Division of Internal Medicine, Hepatobiliary and Immunoallergic Diseases, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
- Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| |
Collapse
|
94
|
Granito A, Forgione A, Marinelli S, Renzulli M, Ielasi L, Sansone V, Benevento F, Piscaglia F, Tovoli F. Experience with regorafenib in the treatment of hepatocellular carcinoma. Therap Adv Gastroenterol 2021; 14:17562848211016959. [PMID: 34104211 PMCID: PMC8165525 DOI: 10.1177/17562848211016959] [Citation(s) in RCA: 97] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Accepted: 04/20/2021] [Indexed: 02/06/2023] Open
Abstract
Regorafenib is a diphenylurea oral multikinase inhibitor, structurally comparable to sorafenib, which targets a variety of kinases implicated in angiogenic and tumor growth-promoting pathways. Regorafenib was the first agent to positively show significant survival advantage as a second-line therapy in patients with unresectable hepatocellular carcinoma (HCC) who had previously failed first-line treatment with sorafenib. Recent evidence has shown that its antitumor efficacy is due to a comprehensive spectrum of tumor neo-angiogenesis and proliferation inhibition and immunomodulatory effects on the tumor microenvironment, which plays a crucial role in tumor development. This review addresses the rationale and supporting evidence for regorafenib's efficacy in HCC that led to regorafenib's approval as a second-line therapy. In addition, we review proof from clinical practice studies that validate the RESORCE trial results. We discuss regorafenib's potential role in the newly emerging therapeutic strategy based on combination with immune checkpoint blockade and its possible extensibility to patient categories not enrolled in the registrative study.
Collapse
Affiliation(s)
| | - Antonella Forgione
- Division of Internal Medicine, Hepatobiliary and Immunoallergic Diseases, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
- Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italia
| | - Sara Marinelli
- Division of Internal Medicine, Hepatobiliary and Immunoallergic Diseases, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Matteo Renzulli
- Radiology Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Luca Ielasi
- Division of Internal Medicine, Hepatobiliary and Immunoallergic Diseases, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
- Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italia
| | - Vito Sansone
- Division of Internal Medicine, Hepatobiliary and Immunoallergic Diseases, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
- Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italia
| | - Francesca Benevento
- Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italia
| | - Fabio Piscaglia
- Division of Internal Medicine, Hepatobiliary and Immunoallergic Diseases, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
- Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italia
| | - Francesco Tovoli
- Division of Internal Medicine, Hepatobiliary and Immunoallergic Diseases, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
- Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italia
| |
Collapse
|
95
|
Hsu C. Success is not final, failure is not fatal: The changing landscape of systemic therapy for advanced hepatocellular carcinoma. JOURNAL OF CANCER RESEARCH AND PRACTICE 2021. [DOI: 10.4103/jcrp.jcrp_21_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|