51
|
Aripiprazole inhibits polyI:C-induced microglial activation possibly via TRPM7. Schizophr Res 2016; 178:35-43. [PMID: 27614570 DOI: 10.1016/j.schres.2016.08.022] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Revised: 08/20/2016] [Accepted: 08/20/2016] [Indexed: 12/13/2022]
Abstract
Viral infections during fetal and adolescent periods, as well as during the course of schizophrenia itself have been linked to the onset and/or relapse of a psychosis. We previously reported that the unique antipsychotic aripiprazole, a partial D2 agonist, inhibits the release of tumor necrosis factor (TNF)-α from interferon-γ-activated rodent microglial cells. Polyinosinic-polycytidylic acid (polyI:C) has recently been used as a standard model of viral infections, and recent in vitro studies have shown that microglia are activated by polyI:C. Aripiprazole has been reported to ameliorate behavioral abnormalities in polyI:C-induced mice. To clarify the anti-inflammatory properties of aripiprazole, we investigated the effects of aripiprazole on polyI:C-induced microglial activation in a cellular model of murine microglial cells and possible surrogate cells for human microglia. PolyI:C treatment of murine microglial cells activated the production of TNF-α and enhanced the p38 mitogen-activated protein kinase (MAPK) pathway, whereas aripiprazole inhibited these responses. In addition, polyI:C treatment of possible surrogate cells for human microglia markedly increased TNF-α mRNA expression in cells from three healthy volunteers. Aripiprazole inhibited this increase in cells from two individuals. PolyI:C consistently increased intracellular Ca2+ concentration ([Ca2+]i) in murine microglial cells by influx of extracellular Ca2+. We demonstrated that transient receptor potential in melastatin 7 (TRPM7) channels contributed to this polyI:C-induced increase in [Ca2+]i. Taken together, these data suggest that aripiprazole may be therapeutic for schizophrenia by reducing microglial inflammatory reactions, and TRPM7 may be a novel therapeutic target for schizophrenia. Further studies are needed to validate these findings.
Collapse
|
52
|
Corsini S, Tortora M, Nistri A. Nicotinic receptor activation contrasts pathophysiological bursting and neurodegeneration evoked by glutamate uptake block on rat hypoglossal motoneurons. J Physiol 2016; 594:6777-6798. [PMID: 27374167 PMCID: PMC5108918 DOI: 10.1113/jp272591] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Accepted: 06/21/2016] [Indexed: 12/11/2022] Open
Abstract
KEY POINTS Impaired uptake of glutamate builds up the extracellular level of this excitatory transmitter to trigger rhythmic neuronal bursting and delayed cell death in the brainstem motor nucleus hypoglossus. This process is the expression of the excitotoxicity that underlies motoneuron degeneration in diseases such as amyotrophic lateral sclerosis affecting bulbar motoneurons. In a model of motoneuron excitotoxicity produced by pharmacological block of glutamate uptake in vitro, rhythmic bursting is suppressed by activation of neuronal nicotinic receptors with their conventional agonist nicotine. Emergence of bursting is facilitated by nicotinic receptor antagonists. Following excitotoxicity, nicotinic receptor activity decreases mitochondrial energy dysfunction, endoplasmic reticulum stress and production of toxic radicals. Globally, these phenomena synergize to provide motoneuron protection. Nicotinic receptors may represent a novel target to contrast pathological overactivity of brainstem motoneurons and therefore to prevent their metabolic distress and death. ABSTRACT Excitotoxicity is thought to be one of the early processes in the onset of amyotrophic lateral sclerosis (ALS) because high levels of glutamate have been detected in the cerebrospinal fluid of such patients due to dysfunctional uptake of this transmitter that gradually damages brainstem and spinal motoneurons. To explore potential mechanisms to arrest ALS onset, we used an established in vitro model of rat brainstem slice preparation in which excitotoxicity is induced by the glutamate uptake blocker dl-threo-β-benzyloxyaspartate (TBOA). Because certain brain neurons may be neuroprotected via activation of nicotinic acetylcholine receptors (nAChRs) by nicotine, we investigated if nicotine could arrest excitotoxic damage to highly ALS-vulnerable hypoglossal motoneurons (HMs). On 50% of patch-clamped HMs, TBOA induced intense network bursts that were inhibited by 1-10 μm nicotine, whereas nAChR antagonists facilitated burst emergence in non-burster cells. Furthermore, nicotine inhibited excitatory transmission and enhanced synaptic inhibition. Strong neuroprotection by nicotine prevented the HM loss observed after 4 h of TBOA exposure. This neuroprotective action was due to suppression of downstream effectors of neurotoxicity such as increased intracellular levels of reactive oxygen species, impaired energy metabolism and upregulated genes involved in endoplasmic reticulum (ER) stress. In addition, HMs surviving TBOA toxicity often expressed UDP-glucose glycoprotein glucosyltransferase, a key element in repair of misfolded proteins: this phenomenon was absent after nicotine application, indicative of ER stress prevention. Our results suggest nAChRs to be potential targets for inhibiting excitotoxic damage of motoneurons at an early stage of the neurodegenerative process.
Collapse
Affiliation(s)
- Silvia Corsini
- Department of NeuroscienceInternational School for Advanced Studies (SISSA)TriesteItaly
| | - Maria Tortora
- Department of NeuroscienceInternational School for Advanced Studies (SISSA)TriesteItaly
| | - Andrea Nistri
- Department of NeuroscienceInternational School for Advanced Studies (SISSA)TriesteItaly
| |
Collapse
|
53
|
Abdul Wahid SF, Law ZK, Ismail NA, Azman Ali R, Lai NM. Cell-based therapies for amyotrophic lateral sclerosis/motor neuron disease. Cochrane Database Syst Rev 2016; 11:CD011742. [PMID: 27822919 PMCID: PMC6464737 DOI: 10.1002/14651858.cd011742.pub2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
BACKGROUND Amyotrophic lateral sclerosis (ALS), which is also known as motor neuron disease (MND) is a fatal disease associated with rapidly progressive disability, for which no definitive treatment as yet exists. Current treatment regimens largely focus on relieving symptoms to improve the quality of life of those affected. Based on data from preclinical studies, cell-based therapy is a promising treatment for ALS/MND. OBJECTIVES To assess the effects of cell-based therapy for people with ALS/MND, compared with placebo or no additional treatment. SEARCH METHODS On 21 June 2016, we searched the Cochrane Neuromuscular Specialised Register, CENTRAL, MEDLINE, and Embase. We also searched two clinical trials' registries for ongoing or unpublished studies. SELECTION CRITERIA We planned to include randomised controlled trials (RCTs), quasi-RCTs and cluster RCTs that assigned people with ALS/MND to receive cell-based therapy versus a placebo or no additional treatment. Co-interventions were allowable, provided that they were given to each group equally. DATA COLLECTION AND ANALYSIS We followed standard Cochrane methodology. MAIN RESULTS No studies were eligible for inclusion in the review. We identified four ongoing trials. AUTHORS' CONCLUSIONS Currently, there is a lack of high-quality evidence to guide practice on the use of cell-based therapy to treat ALS/MND.We need large, prospective RCTs to establish the efficacy of cellular therapy and to determine patient-, disease- and cell treatment-related factors that may influence the outcome of cell-based therapy. The major goals of future research should be to determine the appropriate cell source, phenotype, dose, and route of delivery, as these will be key elements in designing an optimal cell-based therapy programme for people with ALS/MND. Future research should also explore novel treatment strategies, including combinations of cellular therapy and standard or novel neuroprotective agents, to find the best possible approach to prevent or reverse the neurological deficit in ALS/MND, and to prolong survival in this debilitating and fatal condition.
Collapse
Affiliation(s)
| | - Zhe Kang Law
- Universiti Kebangsaan Malaysia Medical CentreDepartment of MedicineJalan Yaacob LatifBandar Tun RazakKuala LumpurMalaysia56000
| | - Nor Azimah Ismail
- Universiti Kebangsaan Malaysia Medical CentreCell Therapy CenterJalan Yaacob LatifKuala LumpurMalaysia56000
| | - Raymond Azman Ali
- Universiti Kebangsaan Malaysia Medical CentreNeurology Unit, Department of MedicineJalan Yaacob LatifBandar Tun RazakKuala LumpurMalaysia56000
| | - Nai Ming Lai
- Taylor's UniversitySchool of MedicineSubang JayaMalaysia
| |
Collapse
|
54
|
Abstract
Little is known of the day-to-day experience of living with motor neurone disease from the perspective of those who have it, apart from what can be found in personal accounts such as those published on web pages. In this study, which was informed by phenomenology, seven people living in an urban setting in New Zealand were asked to describe their experiences. This report focuses on the study findings that related specifically to disruption to occupation. It describes how early changes in occupational performance alerted the participants to the fact that something was wrong. The findings also showed the pervasive impact of an awkward and unreliable body on participation in occupations that gave meaning to life, expressed identity and filled time. Issues of how the family's world was changed, the introduction of assistive devices into their homes and the betrayal of trust were also powerfully evident in participants' stories. Although the findings are broadly consistent with those of previous studies, the disruption to occupation and the consequent role losses are new findings. Further research into the impact of the loss of participation in occupation, the ways in which people are perceived when occupations are disrupted and the experience of having occupations taken away prematurely is recommended.
Collapse
|
55
|
Krüger S, Battke F, Sprecher A, Munz M, Synofzik M, Schöls L, Gasser T, Grehl T, Prudlo J, Biskup S. Rare Variants in Neurodegeneration Associated Genes Revealed by Targeted Panel Sequencing in a German ALS Cohort. Front Mol Neurosci 2016; 9:92. [PMID: 27790088 PMCID: PMC5061735 DOI: 10.3389/fnmol.2016.00092] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Accepted: 09/20/2016] [Indexed: 12/11/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a progressive fatal multisystemic neurodegenerative disorder caused by preferential degeneration of upper and lower motor neurons. To further delineate the genetic architecture of the disease, we used comprehensive panel sequencing in a cohort of 80 German ALS patients. The panel covered 39 confirmed ALS genes and candidate genes, as well as 238 genes associated with other entities of the neurodegenerative disease spectrum. In addition, we performed repeat length analysis for C9orf72. Our aim was to (1) identify potentially disease-causing variants, to (2) assess a proposed model of polygenic inheritance in ALS and to (3) connect ALS with other neurodegenerative entities. We identified 79 rare potentially pathogenic variants in 27 ALS associated genes in familial and sporadic cases. Five patients had pathogenic C9orf72 repeat expansions, a further four patients harbored intermediate length repeat expansions. Our findings demonstrate that a genetic background of the disease can actually be found in a large proportion of seemingly sporadic cases and that it is not limited to putative most frequently affected genes such as C9orf72 or SOD1. Assessing the polygenic nature of ALS, we identified 15 patients carrying at least two rare potentially pathogenic variants in ALS associated genes including pathogenic or intermediate C9orf72 repeat expansions. Multiple variants might influence severity or duration of disease or could account for intrafamilial phenotypic variability or reduced penetrance. However, we could not observe a correlation with age of onset in this study. We further detected potentially pathogenic variants in other neurodegeneration associated genes in 12 patients, supporting the hypothesis of common pathways in neurodegenerative diseases and linking ALS to other entities of the neurodegenerative spectrum. Most interestingly we found variants in GBE1 and SPG7 which might represent differential diagnoses. Based on our findings, we recommend two-staged genetic testing for ALS in Germany in patients with familial and sporadic ALS, comprising C9orf72 repeat analysis followed by comprehensive panel sequencing including differential diagnoses that impair motor neuron function to meet the complexity of ALS genetics.
Collapse
Affiliation(s)
- Stefanie Krüger
- CeGaT GmbH, Center for Genomics and Transcriptomics Tübingen, Germany
| | - Florian Battke
- CeGaT GmbH, Center for Genomics and Transcriptomics Tübingen, Germany
| | - Andrea Sprecher
- CeGaT GmbH, Center for Genomics and Transcriptomics Tübingen, Germany
| | - Marita Munz
- CeGaT GmbH, Center for Genomics and TranscriptomicsTübingen, Germany; Department of Neurodegenerative Diseases, Hertie-Institute for Clinical Brain Research, University of TübingenTübingen, Germany
| | - Matthis Synofzik
- Department of Neurodegenerative Diseases, Hertie-Institute for Clinical Brain Research, University of TübingenTübingen, Germany; German Research Center for Neurodegenerative DiseasesTübingen, Germany
| | - Ludger Schöls
- Department of Neurodegenerative Diseases, Hertie-Institute for Clinical Brain Research, University of TübingenTübingen, Germany; German Research Center for Neurodegenerative DiseasesTübingen, Germany
| | - Thomas Gasser
- Department of Neurodegenerative Diseases, Hertie-Institute for Clinical Brain Research, University of TübingenTübingen, Germany; German Research Center for Neurodegenerative DiseasesTübingen, Germany
| | - Torsten Grehl
- Department of Neurology, BG-Kliniken Bergmannsheil GmbH, Ruhr-University Bochum Bochum, Germany
| | - Johannes Prudlo
- Department of Neurology, University of RostockRostock, Germany; German Research Center for Neurodegenerative DiseasesRostock, Germany
| | - Saskia Biskup
- CeGaT GmbH, Center for Genomics and TranscriptomicsTübingen, Germany; Department of Neurodegenerative Diseases, Hertie-Institute for Clinical Brain Research, University of TübingenTübingen, Germany
| |
Collapse
|
56
|
Therapeutic progress in amyotrophic lateral sclerosis-beginning to learning. Eur J Med Chem 2016; 121:903-917. [DOI: 10.1016/j.ejmech.2016.06.017] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Revised: 04/29/2016] [Accepted: 06/10/2016] [Indexed: 12/11/2022]
|
57
|
Grigoriev VV, Efimova AD, Ustyugov AA, Shevchenko VP, Bachurin SO, Myasoedov NF. Glutamate release and uptake processes are altered in a new mouse model of amyotrophic lateral sclerosis. DOKL BIOCHEM BIOPHYS 2016; 468:165-7. [PMID: 27417710 DOI: 10.1134/s1607672916030017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2015] [Indexed: 11/23/2022]
Abstract
In this paper, we showed that in the cortex of mice expressing an abberant form of FUS protein that model amyotrophic lateral sclerosis (ALS), the processes of KCl-induced and basal [(3)H]glutamate release and uptake are altered at the presymptomatic stage as compared to the non-transgenic littermates. The change in these three parameters in transgenic animals causes excitotoxicity, which, in turn, may lead to massive loss of motor neurons and the onset of ALS symptoms.
Collapse
Affiliation(s)
- V V Grigoriev
- Institute of Physiologically Active Compounds, Russian Academy of Sciences, Severnyi proezd 1, Chernogolovka, Moscow oblast, 142432, Russia
| | - A D Efimova
- Institute of Physiologically Active Compounds, Russian Academy of Sciences, Severnyi proezd 1, Chernogolovka, Moscow oblast, 142432, Russia.
| | - A A Ustyugov
- Institute of Physiologically Active Compounds, Russian Academy of Sciences, Severnyi proezd 1, Chernogolovka, Moscow oblast, 142432, Russia
| | - V P Shevchenko
- Institute of Molecular Genetics, Russian Academy of Sciences, pl. Akademika Kurchatova 46, Moscow, 123182, Russia
| | - S O Bachurin
- Institute of Physiologically Active Compounds, Russian Academy of Sciences, Severnyi proezd 1, Chernogolovka, Moscow oblast, 142432, Russia
| | - N F Myasoedov
- Institute of Molecular Genetics, Russian Academy of Sciences, pl. Akademika Kurchatova 46, Moscow, 123182, Russia
| |
Collapse
|
58
|
Blasco H, Vourc'h P, Pradat PF, Gordon PH, Andres CR, Corcia P. Further development of biomarkers in amyotrophic lateral sclerosis. Expert Rev Mol Diagn 2016; 16:853-68. [PMID: 27275785 DOI: 10.1080/14737159.2016.1199277] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
INTRODUCTION Amyotrophic lateral sclerosis (ALS) is an idiopathic neurodegenerative disease usually fatal in less than three years. Even if standard guidelines are available to diagnose ALS, the mean diagnosis delay is more than one year. In this context, biomarker discovery is a priority. Research has to focus on new diagnostic tools, based on combined explorations. AREAS COVERED In this review, we specifically focus on biology and imaging markers. We detail the innovative field of 'omics' approach and imaging and explain their limits to be useful in routine practice. We describe the most relevant biomarkers and suggest some perspectives for biomarker research. Expert commentary: The successive failures of clinical trials in ALS underline the need for new strategy based on innovative tools to stratify patients and to evaluate their responses to treatment. Biomarker data may be useful to improve the designs of clinical trials. Biomarkers are also needed to better investigate disease pathophysiology, to identify new therapeutic targets, and to improve the performance of clinical assessments for diagnosis and prognosis in the clinical setting. A consensus on the best management of neuroimaging and 'omics' methods is necessary and a systematic independent validation of findings may add robustness to future studies.
Collapse
Affiliation(s)
- H Blasco
- a UMR INSERM U930 , Université François-Rabelais de Tours , Tours , France.,b Laboratoire de Biochimie et de Biologie Moléculaire , Hôpital Bretonneau, CHRU de Tours , Tours , France
| | - P Vourc'h
- a UMR INSERM U930 , Université François-Rabelais de Tours , Tours , France.,b Laboratoire de Biochimie et de Biologie Moléculaire , Hôpital Bretonneau, CHRU de Tours , Tours , France
| | - P F Pradat
- c Département des Maladies du Système Nerveux, Assistance Publique-Hôpitaux de Paris , Hôpital de la Salpêtrière , Paris , France.,d Sorbonne Universités, UPMC Université Paris 06, CNRS, INSERM , Laboratoire d'Imagerie Biomédicale , Paris , France
| | - P H Gordon
- e Neurology Unit, Northern Navajo Medical Center , Shiprock , NM , USA
| | - C R Andres
- a UMR INSERM U930 , Université François-Rabelais de Tours , Tours , France.,b Laboratoire de Biochimie et de Biologie Moléculaire , Hôpital Bretonneau, CHRU de Tours , Tours , France
| | - P Corcia
- a UMR INSERM U930 , Université François-Rabelais de Tours , Tours , France.,b Laboratoire de Biochimie et de Biologie Moléculaire , Hôpital Bretonneau, CHRU de Tours , Tours , France.,f Centre SLA , Service de Neurologie et Neurophysiologie Clinique, CHRU de Tours , Tours , France
| |
Collapse
|
59
|
Ahmad L, Zhang SY, Casanova JL, Sancho-Shimizu V. Human TBK1: A Gatekeeper of Neuroinflammation. Trends Mol Med 2016; 22:511-527. [PMID: 27211305 PMCID: PMC4890605 DOI: 10.1016/j.molmed.2016.04.006] [Citation(s) in RCA: 136] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2016] [Revised: 04/18/2016] [Accepted: 04/18/2016] [Indexed: 12/12/2022]
Abstract
The importance of TANK binding kinase-1 (TBK1), a multimeric kinase that modulates inflammation and autophagy, in human health has been highlighted for the first time by the recent discoveries of mutations in TBK1 that underlie amyotrophic lateral sclerosis (ALS), frontotemporal dementia (FTD), normal tension glaucoma (NTG) or childhood herpes simplex encephalitis (HSE). Gain-of-function of TBK1 are associated with NTG, whereas loss-of-function mutations result in ALS/FTD or in HSE. In light of these new findings, we review the role of TBK1 in these seemingly unrelated, yet allelic diseases, and discuss the role of TBK1 in neuroinflammatory diseases. This discovery has the potential to significantly increase our understanding of the molecular basis of these poorly understood diseases.
Collapse
Affiliation(s)
- Liyana Ahmad
- Department of Virology, Division of Medicine, Imperial College London, Norfolk Place, London W2 1 PG, UK
| | - Shen-Ying Zhang
- St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA; Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Paris, France; University of Paris Descartes, Imagine Institute, Paris, France
| | - Jean-Laurent Casanova
- St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA; Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Paris, France; University of Paris Descartes, Imagine Institute, Paris, France; Howard Hughes Medical Institute, New York, NY, USA; Pediatric Hematology and Immunology Unit, Necker Hospital for Sick Children, Paris, France
| | - Vanessa Sancho-Shimizu
- Department of Virology, Division of Medicine, Imperial College London, Norfolk Place, London W2 1 PG, UK; Department of Pediatrics, Division of Medicine, Imperial College London, Norfolk Place, London W2 1 PG, UK.
| |
Collapse
|
60
|
Veyrat-Durebex C, Corcia P, Piver E, Devos D, Dangoumau A, Gouel F, Vourc'h P, Emond P, Laumonnier F, Nadal-Desbarats L, Gordon PH, Andres CR, Blasco H. Disruption of TCA Cycle and Glutamate Metabolism Identified by Metabolomics in an In Vitro Model of Amyotrophic Lateral Sclerosis. Mol Neurobiol 2015; 53:6910-6924. [PMID: 26666663 DOI: 10.1007/s12035-015-9567-6] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2015] [Accepted: 11/29/2015] [Indexed: 12/13/2022]
Abstract
This study aims to develop a cellular metabolomics model that reproduces the pathophysiological conditions found in amyotrophic lateral sclerosis in order to improve knowledge of disease physiology. We used a co-culture model combining the motor neuron-like cell line NSC-34 and the astrocyte clone C8-D1A, with each over-expressing wild-type or G93C mutant human SOD1, to examine amyotrophic lateral sclerosis (ALS) physiology. We focused on the effects of mutant human SOD1 as well as oxidative stress induced by menadione on intracellular metabolism using a metabolomics approach through gas chromatography coupled with mass spectrometry (GC-MS) analysis. Preliminary non-supervised analysis by Principal Component Analysis (PCA) revealed that cell type, genetic environment, and time of culture influenced the metabolomics profiles. Supervised analysis using orthogonal partial least squares discriminant analysis (OPLS-DA) on data from intracellular metabolomics profiles of SOD1G93C co-cultures produced metabolites involved in glutamate metabolism and the tricarboxylic acid cycle (TCA) cycle. This study revealed the feasibility of using a metabolomics approach in a cellular model of ALS. We identified potential disruption of the TCA cycle and glutamate metabolism under oxidative stress, which is consistent with prior research in the disease. Analysis of metabolic alterations in an in vitro model is a novel approach to investigation of disease physiology.
Collapse
Affiliation(s)
- Charlotte Veyrat-Durebex
- UMR INSERM U930, Université François-Rabelais de Tours, Equipe « Neurogénétique et neurométabolomique », 37032, Tours, France. .,CHRU de Tours, Laboratoire de Biochimie et de biologie moléculaire, 37044, Tours, France.
| | - Philippe Corcia
- UMR INSERM U930, Université François-Rabelais de Tours, Equipe « Neurogénétique et neurométabolomique », 37032, Tours, France.,CHRU de Tours, Service de Neurologie, 37044, Tours, France
| | | | - David Devos
- Département de Pharmacologie médicale, INSERM U1171, Université Lille Nord de France, CHRU de Lille, Lille, France
| | - Audrey Dangoumau
- UMR INSERM U930, Université François-Rabelais de Tours, Equipe « Neurogénétique et neurométabolomique », 37032, Tours, France
| | - Flore Gouel
- Département de Pharmacologie médicale, INSERM U1171, Université Lille Nord de France, CHRU de Lille, Lille, France
| | - Patrick Vourc'h
- UMR INSERM U930, Université François-Rabelais de Tours, Equipe « Neurogénétique et neurométabolomique », 37032, Tours, France.,CHRU de Tours, Laboratoire de Biochimie et de biologie moléculaire, 37044, Tours, France
| | - Patrick Emond
- UMR INSERM U930, Université François-Rabelais de Tours, Equipe « Neurogénétique et neurométabolomique », 37032, Tours, France.,PPF-ASB, Université François Rabelais de Tours, Tours, France
| | - Frédéric Laumonnier
- UMR INSERM U930, Université François-Rabelais de Tours, Equipe « Neurogénétique et neurométabolomique », 37032, Tours, France
| | - Lydie Nadal-Desbarats
- UMR INSERM U930, Université François-Rabelais de Tours, Equipe « Neurogénétique et neurométabolomique », 37032, Tours, France.,PPF-ASB, Université François Rabelais de Tours, Tours, France
| | | | - Christian R Andres
- UMR INSERM U930, Université François-Rabelais de Tours, Equipe « Neurogénétique et neurométabolomique », 37032, Tours, France.,CHRU de Tours, Laboratoire de Biochimie et de biologie moléculaire, 37044, Tours, France
| | - Hélène Blasco
- UMR INSERM U930, Université François-Rabelais de Tours, Equipe « Neurogénétique et neurométabolomique », 37032, Tours, France.,CHRU de Tours, Laboratoire de Biochimie et de biologie moléculaire, 37044, Tours, France
| |
Collapse
|
61
|
Old Things New View: Ascorbic Acid Protects the Brain in Neurodegenerative Disorders. Int J Mol Sci 2015; 16:28194-217. [PMID: 26633354 PMCID: PMC4691042 DOI: 10.3390/ijms161226095] [Citation(s) in RCA: 87] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Revised: 09/23/2015] [Accepted: 10/14/2015] [Indexed: 12/13/2022] Open
Abstract
Ascorbic acid is a key antioxidant of the Central Nervous System (CNS). Under brain activity, ascorbic acid is released from glial reservoirs to the synaptic cleft, where it is taken up by neurons. In neurons, ascorbic acid scavenges reactive oxygen species (ROS) generated during synaptic activity and neuronal metabolism where it is then oxidized to dehydroascorbic acid and released into the extracellular space, where it can be recycled by astrocytes. Other intrinsic properties of ascorbic acid, beyond acting as an antioxidant, are important in its role as a key molecule of the CNS. Ascorbic acid can switch neuronal metabolism from glucose consumption to uptake and use of lactate as a metabolic substrate to sustain synaptic activity. Multiple evidence links oxidative stress with neurodegeneration, positioning redox imbalance and ROS as a cause of neurodegeneration. In this review, we focus on ascorbic acid homeostasis, its functions, how it is used by neurons and recycled to ensure antioxidant supply during synaptic activity and how this antioxidant is dysregulated in neurodegenerative disorders.
Collapse
|
62
|
Sábado J, Casanovas A, Rodrigo H, Arqué G, Esquerda JE. Adverse effects of a SOD1-peptide immunotherapy on SOD1 G93A mouse slow model of amyotrophic lateral sclerosis. Neuroscience 2015; 310:38-50. [PMID: 26384962 DOI: 10.1016/j.neuroscience.2015.09.027] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2015] [Revised: 09/07/2015] [Accepted: 09/09/2015] [Indexed: 12/13/2022]
Abstract
Previous reports from our lab had shown that some anti-purinergic receptor P2X4 antibodies cross-reacted with misfolded forms of mutant Cu/Zn superoxide dismutase 1 (SOD1), linked to amyotrophic lateral sclerosis (ALS). Cross-reactivity could be caused by the abnormal exposure of an epitope located in the inner hydrophobic region of SOD1 that shared structural homology with the P2X4-immunizing peptide. We had previously raised antibodies against human SOD1 epitope mimicked by the P2X4 immunizing peptide. One of these antibodies, called AJ10, was able to recognize mutant/misfolded forms of ALS-linked mutant SOD1. Here, we used the AJ10 antigen as a vaccine to target neurotoxic species of mutant SOD1 in a slow mouse model of ALS. However, the obtained results showed no improvement in life span, disease onset or weight loss in treated animals; we observed an increased microglial neuroinflammatory response and high amounts of misfolded SOD1 accumulated within spinal cord neurons after AJ10 immunization. An increase of immunoglobulin G deposits was also found due to the treatment. Finally, a significantly worse clinical evolution was displayed by an impairment on motor function as a consequence of AJ10 peptide immunization.
Collapse
Affiliation(s)
- J Sábado
- Universitat de Lleida, Facultat de Medicina-IRBLLEIDA, Departament de Medicina Experimental, Unitat de Neurobiologia Cel·lular, Avda Rovira Roure 80, 25198 Lleida, Catalonia, Spain
| | - A Casanovas
- Universitat de Lleida, Facultat de Medicina-IRBLLEIDA, Departament de Medicina Experimental, Unitat de Neurobiologia Cel·lular, Avda Rovira Roure 80, 25198 Lleida, Catalonia, Spain
| | - H Rodrigo
- Universitat de Lleida, Facultat de Medicina-IRBLLEIDA, Departament de Medicina Experimental, Unitat de Neurobiologia Cel·lular, Avda Rovira Roure 80, 25198 Lleida, Catalonia, Spain
| | - G Arqué
- Universitat de Lleida, Facultat de Medicina-IRBLLEIDA, Departament de Medicina Experimental, Unitat de Neurobiologia Cel·lular, Avda Rovira Roure 80, 25198 Lleida, Catalonia, Spain
| | - J E Esquerda
- Universitat de Lleida, Facultat de Medicina-IRBLLEIDA, Departament de Medicina Experimental, Unitat de Neurobiologia Cel·lular, Avda Rovira Roure 80, 25198 Lleida, Catalonia, Spain.
| |
Collapse
|
63
|
Abstract
Mutant genes that underlie Mendelian forms of amyotrophic lateral sclerosis (ALS) and biochemical investigations of genetic disease models point to potential driver pathophysiological events involving endoplasmic reticulum (ER) stress and autophagy. Several steps in these cell biological processes are known to be controlled physiologically by small ADP-ribosylation factor (ARF) signaling. Here, we investigated the role of ARF guanine nucleotide exchange factors (GEFs), cytohesins, in models of ALS. Genetic or pharmacological inhibition of cytohesins protects motor neurons in vitro from proteotoxic insults and rescues locomotor defects in a Caenorhabditis elegans model of disease. Cytohesins form a complex with mutant superoxide dismutase 1 (SOD1), a known cause of familial ALS, but this is not associated with a change in GEF activity or ARF activation. ER stress evoked by mutant SOD1 expression is alleviated by antagonism of cytohesin activity. In the setting of mutant SOD1 toxicity, inhibition of cytohesin activity enhances autophagic flux and reduces the burden of misfolded SOD1. These observations suggest that targeting cytohesins may have potential benefits for the treatment of ALS.
Collapse
|
64
|
Mancuso R, Navarro X. Amyotrophic lateral sclerosis: Current perspectives from basic research to the clinic. Prog Neurobiol 2015; 133:1-26. [PMID: 26253783 DOI: 10.1016/j.pneurobio.2015.07.004] [Citation(s) in RCA: 79] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2014] [Revised: 07/30/2015] [Accepted: 07/31/2015] [Indexed: 02/07/2023]
Abstract
Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease characterized by progressive degeneration of upper and lower motoneurons, leading to muscle weakness and paralysis, and finally death. Considerable recent advances have been made in basic research and preclinical therapeutic attempts using experimental models, leading to increasing clinical and translational research in the context of this disease. In this review we aim to summarize the most relevant findings from a variety of aspects about ALS, including evaluation methods, animal models, pathophysiology, and clinical findings, with particular emphasis in understanding the role of every contributing mechanism to the disease for elucidating the causes underlying degeneration of motoneurons and the development of new therapeutic strategies.
Collapse
Affiliation(s)
- Renzo Mancuso
- Institute of Neurosciences and Department of Cell Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, and Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Bellaterra, Spain
| | - Xavier Navarro
- Institute of Neurosciences and Department of Cell Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, and Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Bellaterra, Spain.
| |
Collapse
|
65
|
Abstract
Calcium (Ca2+) and magnesium (Mg2+) ions have been shown to play an important role in regulating various neuronal functions. In the present review we focus on the emerging role of transient potential melastatin-7 (TRPM7) channel in not only regulating Ca2+ and Mg2+ homeostasis necessary for biological functions, but also how alterations in TRPM7 function/expression could induce neurodegeneration. Although eight TRPM channels have been identified, the channel properties, mode of activation, and physiological responses of various TRPM channels are quite distinct. Among the known 8 TRPM channels only TRPM6 and TRPM7 channels are highly permeable to both Ca2+ and Mg2+; however here we will only focus on TRPM7 as unlike TRPM6, TRPM7 channels are abundantly expressed in neuronal cells. Importantly, the discrepancy in TRPM7 channel function and expression leads to various neuronal diseases such as Alzheimer disease (AD) and Parkinson disease (PD). Further, it is emerging as a key factor in anoxic neuronal death and in other neurodegenerative disorders. Thus, by understanding the precise involvement of the TRPM7 channels in different neurodegenerative diseases and by understanding the factors that regulate TRPM7 channels, we could uncover new strategies in the future that could evolve as new drug therapeutic targets for effective treatment of these neurodegenerative diseases.
Collapse
Affiliation(s)
- Yuyang Sun
- a Department of Basic Science ; School of Medicine and Health Sciences, University of North Dakota ; Grand Forks , ND USA
| | - Pramod Sukumaran
- a Department of Basic Science ; School of Medicine and Health Sciences, University of North Dakota ; Grand Forks , ND USA
| | - Anne Schaar
- a Department of Basic Science ; School of Medicine and Health Sciences, University of North Dakota ; Grand Forks , ND USA
| | - Brij B Singh
- a Department of Basic Science ; School of Medicine and Health Sciences, University of North Dakota ; Grand Forks , ND USA
| |
Collapse
|
66
|
Blasco H, Madji Hounoum B, Dufour-Rainfray D, Patin F, Maillot F, Beltran S, Gordon PH, Andres CR, Corcia P. Vitamin D is Not a Protective Factor in ALS. CNS Neurosci Ther 2015; 21:651-6. [PMID: 26096806 DOI: 10.1111/cns.12423] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2015] [Revised: 05/18/2015] [Accepted: 05/22/2015] [Indexed: 12/13/2022] Open
Abstract
AIMS Vitamin D deficiency has been associated with poorer prognosis in ALS. Better understanding of the role of vitamin D in ALS is needed to determine whether trials of systematic supplementation are justified. Our aim was to report vitamin D levels during the course of ALS and to evaluate its relationship with clinical parameters at diagnosis and with disease progression. METHODS We prospectively collected vitamin D serum concentrations from 125 consecutive ALS patients. Cox proportional hazard models analyzed the relationship between vitamin D concentrations, clinical parameters, and survival. RESULTS The mean vitamin D concentration was below our laboratory's lower limit of normal (P < 0.0001) and did not change during the course of the disease. The concentrations were higher in patients with bulbar onset (P = 0.003) and were negatively associated with body mass index (BMI) (P = 0.0095). Models with ALSFRS-R (ALS Functional Rating Scale-Revised) and BMI as a covariates showed that vitamin D concentrations predicted worse prognosis. CONCLUSION The distribution of vitamin D concentrations in our cohort was consistent with previous reports. Surprisingly, we noted a negative effect of higher vitamin D levels on prognosis in ALS. More detailed research is warranted to determine whether manipulation of vitamin D could be beneficial to patients.
Collapse
Affiliation(s)
- Hélène Blasco
- Unité mixte de recherche U930, Institut National de la Santé et de la Recherche Médicale, Université François-Rabelais, Tours, France.,Laboratoire de Biochimie et de Biologie Moléculaire, Hôpital Bretonneau, Centre Hospitalier Régional Universitaire de Tours, Tours, France
| | - Blandine Madji Hounoum
- Unité mixte de recherche U930, Institut National de la Santé et de la Recherche Médicale, Université François-Rabelais, Tours, France
| | - Diane Dufour-Rainfray
- Unité mixte de recherche U930, Institut National de la Santé et de la Recherche Médicale, Université François-Rabelais, Tours, France.,Laboratoire de Médecine Nucléaire in vitro, Hôpital Bretonneau, Centre Hospitalier Régional Universitaire de Tours, Tours, France
| | - Franck Patin
- Unité mixte de recherche U930, Institut National de la Santé et de la Recherche Médicale, Université François-Rabelais, Tours, France
| | - François Maillot
- Service de Médecine Interne, Hôpital Bretonneau, Centre Hospitalier Régional Universitaire de Tours, Tours, France.,INSERM U1069, Tours, France
| | - Stéphane Beltran
- Centre SLA, Service de Neurologie, Centre Hospitalier Régional Universitaire de Tours, Tours, France
| | | | - Christian R Andres
- Unité mixte de recherche U930, Institut National de la Santé et de la Recherche Médicale, Université François-Rabelais, Tours, France.,Laboratoire de Biochimie et de Biologie Moléculaire, Hôpital Bretonneau, Centre Hospitalier Régional Universitaire de Tours, Tours, France
| | - Philippe Corcia
- Unité mixte de recherche U930, Institut National de la Santé et de la Recherche Médicale, Université François-Rabelais, Tours, France.,Centre SLA, Service de Neurologie, Centre Hospitalier Régional Universitaire de Tours, Tours, France
| |
Collapse
|
67
|
Spruill MM, Kuncl RW. Calbindin-D28K is increased in the ventral horn of spinal cord by neuroprotective factors for motor neurons. J Neurosci Res 2015; 93:1184-91. [PMID: 25914366 DOI: 10.1002/jnr.23562] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2014] [Revised: 11/27/2014] [Accepted: 01/01/2015] [Indexed: 02/06/2023]
Abstract
Slow glutamate-mediated neuronal degeneration is implicated in the pathophysiology of motor neuron diseases such as amyotrophic lateral sclerosis (ALS). The calcium-binding proteins calbindin-D28K and parvalbumin have been reported to protect neurons against excitotoxic insults. Expression of calbindin-D28K is low in adult human motor neurons, and vulnerable motor neurons additionally may lack parvalbumin. Thus, it has been speculated that the lack of calcium-binding proteins may, in part, be responsible for early degeneration of the population of motor neurons most vulnerable in ALS. Using a rat organotypic spinal cord slice system, we examined whether the most potent neuroprotective factors for motor neurons can increase the expression of calbindin-D28K or parvalbumin proteins in the postnatal spinal cord. After 4 weeks of incubation of spinal cord slices with 1) glial cell line-derived neurotrophic factor (GDNF), 2) neurturin, 3) insulin-like growth factor I (IGF-I), or 4) pigment epithelium-derived factor (PEDF), the number of calbindin-D28K -immunopositive large neurons (>20 μm) in the ventral horn was higher under the first three conditions, but not after PEDF, compared with untreated controls. Under the same conditions, parvalbumin was not upregulated by any neuroprotective factor. The same calbindin increase was true of IGF-I and GDNF in a parallel glutamate toxicity model of motor neuron degeneration. Taken together with our previous reports from the same model, which showed that all these neurotrophic factors can potently protect motor neurons from slow glutamate injury, the data here suggest that upregulation of calbindin-D28K by some of these factors may be one mechanism by which motor neurons can be protected from glutamate-induced, calcium-mediated excitotoxicity.
Collapse
Affiliation(s)
- Maria M Spruill
- Department of Neurology and Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Ralph W Kuncl
- Department of Neurology and Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| |
Collapse
|
68
|
Aronica E, Baas F, Iyer A, ten Asbroek AL, Morello G, Cavallaro S. Molecular classification of amyotrophic lateral sclerosis by unsupervised clustering of gene expression in motor cortex. Neurobiol Dis 2015; 74:359-76. [DOI: 10.1016/j.nbd.2014.12.002] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2014] [Revised: 11/12/2014] [Accepted: 12/02/2014] [Indexed: 12/15/2022] Open
|
69
|
Al-Sarraj S, King A, Cleveland M, Pradat PF, Corse A, Rothstein JD, Leigh PN, Abila B, Bates S, Wurthner J, Meininger V. Mitochondrial abnormalities and low grade inflammation are present in the skeletal muscle of a minority of patients with amyotrophic lateral sclerosis; an observational myopathology study. Acta Neuropathol Commun 2014; 2:165. [PMID: 25510661 PMCID: PMC4297389 DOI: 10.1186/s40478-014-0165-z] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2014] [Accepted: 11/23/2014] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Amyotrophic lateral sclerosis (ALS) is a primary progressive neurodegenerative disease characterised by neuronal loss of lower motor neurons (in the spinal cord and brainstem) and/or upper motor neurons (in the motor cortex) and subsequent denervation atrophy of skeletal muscle. AIM A comprehensive examination of muscle pathology from a cohort of clinically confirmed ALS patients, including an investigation of inflammation, complement activation, and deposition of abnormal proteins in order to compare them with findings from an age-matched, control group. MATERIAL AND METHODS 31 muscle biopsies from clinically confirmed ALS patients and 20 normal controls underwent a comprehensive protocol of histochemical and immunohistochemical stains, including HLA-ABC, C5b-9, p62, and TDP-43. RESULTS Neurogenic changes were confirmed in 30/31 ALS cases. In one case, no neurogenic changes could be detected. Muscle fibre necrosis was seen in 5/31 cases and chronic mononuclear inflammatory cell infiltration in 5/31 (2 of them overlapped with those showing muscle necrosis). In four biopsies there was an increase in the proportion of cytochrome oxidase (COX) negative fibres (2-3%). p62 faintly stained cytoplasmic bodies in eight cases and none were immunoreactive to TDP-43. CONCLUSION This large series of muscle biopsies from patients with ALS demonstrates neurogenic atrophy is a nearly uniform finding and that mild mitochondrial abnormalities and low-grade inflammation can be seen and do not rule out the diagnosis of ALS. These findings could lend support to the notion that ALS is a complex and heterogeneous disorder.
Collapse
Affiliation(s)
- Safa Al-Sarraj
- Neuropathology, Neuroscience Academic Building, Kings College Hospital, Denmark Hill, London, SE5 9RS, UK.
| | - Andrew King
- Neuropathology, Neuroscience Academic Building, Kings College Hospital, Denmark Hill, London, SE5 9RS, UK.
| | | | - Pierre-François Pradat
- Département des Maladies du Système Nerveux, APHP, Reseau SLA IDF Groupe Hospitalier Pitié-Salpêtrière, Sorbonne Universités, UPMC Univ Paris 06, INSERM, CNRS, Laboratoire d'Imagerie Biomédicale (LIB), Paris, F-75005, France.
| | - Andrea Corse
- Department of Neurology, Johns Hopkins School of Medicine, 1800 Orleans Street, Baltimore, MD, USA.
| | - Jeffrey D Rothstein
- Department of Neurology, Johns Hopkins School of Medicine, 1800 Orleans Street, Baltimore, MD, USA.
| | - Peter Nigel Leigh
- Division of Medicine (Neurology), Brighton and Sussex Medical School, Trafford Centre for biomedical Research, Falmer, Brighton, BN1 9RY, UK.
| | - Bams Abila
- Biopharm Translational Medicine, GSK, Stevenage, UK.
| | - Stewart Bates
- Biopharm Translational Medicine, GSK, Stevenage, UK.
| | - Jens Wurthner
- Novartis Oncology Translational Medicine, Basel, Switzerland.
| | - Vincent Meininger
- Département des Maladies du Système Nerveux, APHP, Reseau SLA IDF Groupe Hospitalier Pitié-Salpêtrière, Sorbonne Universités, UPMC Univ Paris 06, INSERM, CNRS, Laboratoire d'Imagerie Biomédicale (LIB), Paris, F-75005, France.
| |
Collapse
|
70
|
Al-Sarraj S, King A, Cleveland M, Pradat PF, Corse A, Rothstein JD, Leigh PN, Abila B, Bates S, Wurthner J, Meininger V. Mitochondrial abnormalities and low grade inflammation are present in the skeletal muscle of a minority of patients with amyotrophic lateral sclerosis; an observational myopathology study. Acta Neuropathol Commun 2014. [DOI: 10.1186/s40478-014-0165-z s40478-014-0165-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
|
71
|
Williams UE, Philip-Ephraim EE, Oparah SK. Multidisciplinary Interventions in Motor Neuron Disease. JOURNAL OF NEURODEGENERATIVE DISEASES 2014; 2014:435164. [PMID: 26317009 PMCID: PMC4437278 DOI: 10.1155/2014/435164] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 06/20/2014] [Revised: 09/29/2014] [Accepted: 10/28/2014] [Indexed: 12/21/2022]
Abstract
Motor neuron disease is a neurodegenerative disease characterized by loss of upper motor neuron in the motor cortex and lower motor neurons in the brain stem and spinal cord. Death occurs 2-4 years after the onset of the disease. A complex interplay of cellular processes such as mitochondrial dysfunction, oxidative stress, excitotoxicity, and impaired axonal transport are proposed pathogenetic processes underlying neuronal cell loss. Currently evidence exists for the use of riluzole as a disease modifying drug; multidisciplinary team care approach to patient management; noninvasive ventilation for respiratory management; botulinum toxin B for sialorrhoea treatment; palliative care throughout the course of the disease; and Modafinil use for fatigue treatment. Further research is needed in management of dysphagia, bronchial secretion, pseudobulbar affect, spasticity, cramps, insomnia, cognitive impairment, and communication in motor neuron disease.
Collapse
Affiliation(s)
- U. E. Williams
- Internal Medicine Department, University of Calabar, Calabar, Cross River State 540242, Nigeria
| | - E. E. Philip-Ephraim
- Internal Medicine Department, University of Calabar, Calabar, Cross River State 540242, Nigeria
| | - S. K. Oparah
- Internal Medicine Department, University of Calabar, Calabar, Cross River State 540242, Nigeria
| |
Collapse
|
72
|
Jaiswal MK. Selective vulnerability of motoneuron and perturbed mitochondrial calcium homeostasis in amyotrophic lateral sclerosis: implications for motoneurons specific calcium dysregulation. MOLECULAR AND CELLULAR THERAPIES 2014; 2:26. [PMID: 26056593 PMCID: PMC4452055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Subscribe] [Scholar Register] [Received: 01/15/2014] [Accepted: 07/23/2014] [Indexed: 11/21/2023]
Abstract
Amyotrophic lateral sclerosis (ALS) is a lethal neurodegenerative disorder characterized by the selective degeneration of defined subgroups of motoneuron in the brainstem, spinal cord and motor cortex with signature hallmarks of mitochondrial Ca(2+) overload, free radical damage, excitotoxicity and impaired axonal transport. Although intracellular disruptions of cytosolic and mitochondrial calcium, and in particular low cytosolic calcium ([Ca(2+)]c) buffering and a strong interaction between metabolic mechanisms and [Ca(2+)]i have been identified predominantly in motoneuron impairment, the causes of these disruptions are unknown. The existing evidence suggests that the mutant superoxide dismutase1 (mtSOD1)-mediated toxicity in ALS acts through mitochondria, and that alteration in cytosolic and mitochondria-ER microdomain calcium accumulation are critical to the neurodegenerative process. Furthermore, chronic excitotoxcity mediated by Ca(2+)-permeable AMPA and NMDA receptors seems to initiate vicious cycle of intracellular calcium dysregulation which leads to toxic Ca(2+) overload and thereby selective neurodegeneration. Recent advancement in the experimental analysis of calcium signals with high spatiotemporal precision has allowed investigations of calcium regulation in-vivo and in-vitro in different cell types, in particular selectively vulnerable/resistant cell types in different animal models of this motoneuron disease. This review provides an overview of latest advances in this field, and focuses on details of what has been learned about disrupted Ca(2+) homeostasis and mitochondrial degeneration. It further emphasizes the critical role of mitochondria in preventing apoptosis by acting as a Ca(2+) buffers, especially in motoneurons, in pathophysiological conditions such as ALS.
Collapse
Affiliation(s)
- Manoj Kumar Jaiswal
- />Center for Neuroscience and Regenerative Medicine, 4301 Jones Bridge Road, 20814 Bethesda, MD USA
- />Department of Anatomy, Physiology and Genetics, School of Medicine, USUHS, 4301 Jones Bridge Road, 20814 Bethesda, MD USA
| |
Collapse
|
73
|
Jaiswal MK. Selective vulnerability of motoneuron and perturbed mitochondrial calcium homeostasis in amyotrophic lateral sclerosis: implications for motoneurons specific calcium dysregulation. MOLECULAR AND CELLULAR THERAPIES 2014; 2:26. [PMID: 26056593 PMCID: PMC4452055 DOI: 10.1186/2052-8426-2-26] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/15/2014] [Accepted: 07/23/2014] [Indexed: 02/07/2023]
Abstract
Amyotrophic lateral sclerosis (ALS) is a lethal neurodegenerative disorder characterized by the selective degeneration of defined subgroups of motoneuron in the brainstem, spinal cord and motor cortex with signature hallmarks of mitochondrial Ca2+ overload, free radical damage, excitotoxicity and impaired axonal transport. Although intracellular disruptions of cytosolic and mitochondrial calcium, and in particular low cytosolic calcium ([Ca2+]c) buffering and a strong interaction between metabolic mechanisms and [Ca2+]i have been identified predominantly in motoneuron impairment, the causes of these disruptions are unknown. The existing evidence suggests that the mutant superoxide dismutase1 (mtSOD1)-mediated toxicity in ALS acts through mitochondria, and that alteration in cytosolic and mitochondria-ER microdomain calcium accumulation are critical to the neurodegenerative process. Furthermore, chronic excitotoxcity mediated by Ca2+-permeable AMPA and NMDA receptors seems to initiate vicious cycle of intracellular calcium dysregulation which leads to toxic Ca2+ overload and thereby selective neurodegeneration. Recent advancement in the experimental analysis of calcium signals with high spatiotemporal precision has allowed investigations of calcium regulation in-vivo and in-vitro in different cell types, in particular selectively vulnerable/resistant cell types in different animal models of this motoneuron disease. This review provides an overview of latest advances in this field, and focuses on details of what has been learned about disrupted Ca2+ homeostasis and mitochondrial degeneration. It further emphasizes the critical role of mitochondria in preventing apoptosis by acting as a Ca2+ buffers, especially in motoneurons, in pathophysiological conditions such as ALS.
Collapse
Affiliation(s)
- Manoj Kumar Jaiswal
- Center for Neuroscience and Regenerative Medicine, 4301 Jones Bridge Road, 20814 Bethesda, MD USA ; Department of Anatomy, Physiology and Genetics, School of Medicine, USUHS, 4301 Jones Bridge Road, 20814 Bethesda, MD USA
| |
Collapse
|
74
|
Ari C, Poff AM, Held HE, Landon CS, Goldhagen CR, Mavromates N, D’Agostino DP. Metabolic therapy with Deanna Protocol supplementation delays disease progression and extends survival in amyotrophic lateral sclerosis (ALS) mouse model. PLoS One 2014; 9:e103526. [PMID: 25061944 PMCID: PMC4111621 DOI: 10.1371/journal.pone.0103526] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2014] [Accepted: 06/30/2014] [Indexed: 12/12/2022] Open
Abstract
Amyotrophic Lateral Sclerosis (ALS), also known as Lou Gehrig's disease, is a neurodegenerative disorder of motor neurons causing progressive muscle weakness, paralysis, and eventual death from respiratory failure. There is currently no cure or effective treatment for ALS. Besides motor neuron degeneration, ALS is associated with impaired energy metabolism, which is pathophysiologically linked to mitochondrial dysfunction and glutamate excitotoxicity. The Deanna Protocol (DP) is a metabolic therapy that has been reported to alleviate symptoms in patients with ALS. In this study we hypothesized that alternative fuels in the form of TCA cycle intermediates, specifically arginine-alpha-ketoglutarate (AAKG), the main ingredient of the DP, and the ketogenic diet (KD), would increase motor function and survival in a mouse model of ALS (SOD1-G93A). ALS mice were fed standard rodent diet (SD), KD, or either diets containing a metabolic therapy of the primary ingredients of the DP consisting of AAKG, gamma-aminobutyric acid, Coenzyme Q10, and medium chain triglyceride high in caprylic triglyceride. Assessment of ALS-like pathology was performed using a pre-defined criteria for neurological score, accelerated rotarod test, paw grip endurance test, and grip strength test. Blood glucose, blood beta-hydroxybutyrate, and body weight were also monitored. SD+DP-fed mice exhibited improved neurological score from age 116 to 136 days compared to control mice. KD-fed mice exhibited better motor performance on all motor function tests at 15 and 16 weeks of age compared to controls. SD+DP and KD+DP therapies significantly extended survival time of SOD1-G93A mice by 7.5% (p = 0.001) and 4.2% (p = 0.006), respectively. Sixty-three percent of mice in the KD+DP and 72.7% of the SD+DP group lived past 125 days, while only 9% of the control animals survived past that point. Targeting energy metabolism with metabolic therapy produces a therapeutic effect in ALS mice which may prolong survival and quality of life in ALS patients.
Collapse
Affiliation(s)
- Csilla Ari
- Department of Molecular Pharmacology and Physiology, Hyperbaric Biomedical Research Laboratory, Morsani College of Medicine, University of South Florida, Tampa, Florida, United States of America
| | - Angela M. Poff
- Department of Molecular Pharmacology and Physiology, Hyperbaric Biomedical Research Laboratory, Morsani College of Medicine, University of South Florida, Tampa, Florida, United States of America
| | - Heather E. Held
- Department of Molecular Pharmacology and Physiology, Hyperbaric Biomedical Research Laboratory, Morsani College of Medicine, University of South Florida, Tampa, Florida, United States of America
| | - Carol S. Landon
- Department of Molecular Pharmacology and Physiology, Hyperbaric Biomedical Research Laboratory, Morsani College of Medicine, University of South Florida, Tampa, Florida, United States of America
| | - Craig R. Goldhagen
- Department of Molecular Pharmacology and Physiology, Hyperbaric Biomedical Research Laboratory, Morsani College of Medicine, University of South Florida, Tampa, Florida, United States of America
| | - Nicholas Mavromates
- Department of Molecular Pharmacology and Physiology, Hyperbaric Biomedical Research Laboratory, Morsani College of Medicine, University of South Florida, Tampa, Florida, United States of America
| | - Dominic P. D’Agostino
- Department of Molecular Pharmacology and Physiology, Hyperbaric Biomedical Research Laboratory, Morsani College of Medicine, University of South Florida, Tampa, Florida, United States of America
| |
Collapse
|
75
|
Veyrat-Durebex C, Corcia P, Mucha A, Benzimra S, Mallet C, Gendrot C, Moreau C, Devos D, Piver E, Pagès JC, Maillot F, Andres CR, Vourc'h P, Blasco H. Iron metabolism disturbance in a French cohort of ALS patients. BIOMED RESEARCH INTERNATIONAL 2014; 2014:485723. [PMID: 25101285 PMCID: PMC4101961 DOI: 10.1155/2014/485723] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 04/14/2014] [Revised: 06/16/2014] [Accepted: 06/18/2014] [Indexed: 01/01/2023]
Abstract
OBJECTIVE The aim of this study was to assess iron status in a cohort of amyotrophic lateral sclerosis (ALS) patients compared to controls in order to evaluate these parameters as a risk factor or a modifying factor of ALS. METHODS We collected serum iron, ferritin, transferrin, total iron-binding capacity, and transferrin saturation coefficient (TSC) from 104 ALS patients at the time of diagnosis and from 145 controls. We reported phenotypic characteristics and evolution parameters such as ALSFRS-R and forced vital capacity at diagnosis and after one year of follow-up. In a first step we compared iron status between ALS patients and controls, and then we evaluated the relation between iron status and disease evolution of ALS patients using univariate and multivariate analysis. RESULTS We observed increased concentrations of serum iron (P = 0.002) and ferritin (P < 0.0001) and increased TSC (P = 0.017) in ALS patients. We also showed an association between markers of iron status and high body weight loss in ALS patients. The multivariate analysis of survival highlighted a significant relation between ferritin level and disease duration (P = 0.038). CONCLUSION This is the first study showing a higher concentration of serum iron in ALS patients, strengthening the involvement of a deregulation of iron metabolism in ALS.
Collapse
Affiliation(s)
- Charlotte Veyrat-Durebex
- Unité Mixte de Recherche U930, Institut National de la Santé et de la Recherche Médicale, Université François-Rabelais, Equipe “Neurogénétique et Neurométabolomique”, 10 boulevard Tonnellé, 37032 Tours, France
- Laboratoire de Biochimie et de Biologie Moléculaire, Hôpital Bretonneau, Centre Hospitalier Régional Universitaire de Tours, 37044 Tours, France
| | - Philippe Corcia
- Unité Mixte de Recherche U930, Institut National de la Santé et de la Recherche Médicale, Université François-Rabelais, Equipe “Neurogénétique et Neurométabolomique”, 10 boulevard Tonnellé, 37032 Tours, France
- Centre SLA, Service de Neurologie, Centre Hospitalier Régional Universitaire de Tours, 37044 Tours, France
| | - Aleksandra Mucha
- Laboratoire de Biochimie et de Biologie Moléculaire, Hôpital Bretonneau, Centre Hospitalier Régional Universitaire de Tours, 37044 Tours, France
| | - Simon Benzimra
- Laboratoire de Biochimie et de Biologie Moléculaire, Hôpital Bretonneau, Centre Hospitalier Régional Universitaire de Tours, 37044 Tours, France
| | - Cindy Mallet
- Laboratoire de Biochimie et de Biologie Moléculaire, Hôpital Bretonneau, Centre Hospitalier Régional Universitaire de Tours, 37044 Tours, France
| | - Chantal Gendrot
- Laboratoire de Biochimie et de Biologie Moléculaire, Hôpital Bretonneau, Centre Hospitalier Régional Universitaire de Tours, 37044 Tours, France
| | - Caroline Moreau
- Service de Neurologie, Centre Hospitalier Régional Universitaire de Lille, 59037 Lille, France
| | - David Devos
- Service de Neurologie, Centre Hospitalier Régional Universitaire de Lille, 59037 Lille, France
| | - Eric Piver
- Laboratoire de Biochimie, Hôpital Trousseau, Centre Hospitalier Régional Universitaire de Tours, 37044 Tours, France
| | - Jean-Christophe Pagès
- Laboratoire de Biochimie, Hôpital Trousseau, Centre Hospitalier Régional Universitaire de Tours, 37044 Tours, France
| | - François Maillot
- Service de Médecine Interne, Centre Hospitalier Régional Universitaire de Tours, 37044 Tours, France
| | - Christian R. Andres
- Unité Mixte de Recherche U930, Institut National de la Santé et de la Recherche Médicale, Université François-Rabelais, Equipe “Neurogénétique et Neurométabolomique”, 10 boulevard Tonnellé, 37032 Tours, France
- Laboratoire de Biochimie et de Biologie Moléculaire, Hôpital Bretonneau, Centre Hospitalier Régional Universitaire de Tours, 37044 Tours, France
| | - Patrick Vourc'h
- Unité Mixte de Recherche U930, Institut National de la Santé et de la Recherche Médicale, Université François-Rabelais, Equipe “Neurogénétique et Neurométabolomique”, 10 boulevard Tonnellé, 37032 Tours, France
- Laboratoire de Biochimie et de Biologie Moléculaire, Hôpital Bretonneau, Centre Hospitalier Régional Universitaire de Tours, 37044 Tours, France
| | - Hélène Blasco
- Unité Mixte de Recherche U930, Institut National de la Santé et de la Recherche Médicale, Université François-Rabelais, Equipe “Neurogénétique et Neurométabolomique”, 10 boulevard Tonnellé, 37032 Tours, France
- Laboratoire de Biochimie et de Biologie Moléculaire, Hôpital Bretonneau, Centre Hospitalier Régional Universitaire de Tours, 37044 Tours, France
| |
Collapse
|
76
|
Gliotoxicity of the cyanotoxin, β-methyl-amino-L-alanine (BMAA). Sci Rep 2014; 3:1482. [PMID: 23508043 PMCID: PMC3601369 DOI: 10.1038/srep01482] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2012] [Accepted: 02/14/2013] [Indexed: 12/13/2022] Open
Abstract
The amino acid variant β-methyl-amino-L-alanine (BMAA) has long been associated with the increased incidence and progression of the amyotrophic lateral sclerosis/Parkinsonism dementia complex (ALS/PDC). Previous studies have indicated that BMAA damages neurons via excitotoxic mechanisms. We have challenged rat olfactory ensheathing cells (OECs) with exogenous BMAA and found it to be cytotoxic. BMAA also induces a significant increase in Ca2+ influx, enhanced production of reactive oxygen species (ROS), and disrupts mitochondrial activity in OECs. This is the first study investigating BMAA toxicity using pure glial cells. These findings align BMAA with the three proposed mechanisms of degeneration in ALS, those being non-cell autonomous death, excitotoxicity and mitochondrial dysfunction.
Collapse
|
77
|
Mitsumoto H, Factor-Litvak P, Andrews H, Goetz RR, Andrews L, Rabkin JG, McElhiney M, Nieves J, Santella RM, Murphy J, Hupf J, Singleton J, Merle D, Kilty M, Heitzman D, Bedlack RS, Miller RG, Katz JS, Forshew D, Barohn RJ, Sorenson EJ, Oskarsson B, Filho JAMF, Kasarskis EJ, Lomen-Hoerth C, Mozaffar T, Rollins YD, Nations SP, Swenson AJ, Shefner JM, Andrews JA, Koczon-Jaremko BA. ALS Multicenter Cohort Study of Oxidative Stress (ALS COSMOS): study methodology, recruitment, and baseline demographic and disease characteristics. Amyotroph Lateral Scler Frontotemporal Degener 2014; 15:192-203. [PMID: 24564738 PMCID: PMC4310702 DOI: 10.3109/21678421.2013.864312] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Abstract In a multicenter study of newly diagnosed ALS patients without a reported family history of ALS, we are prospectively investigating whether markers of oxidative stress (OS) are associated with disease progression. Methods utilize an extensive structured telephone interview ascertaining environmental, lifestyle, dietary and psychological risk factors associated with OS. Detailed assessments were performed at baseline and at 3-6 month intervals during the ensuing 30 months. Our biorepository includes DNA, plasma, urine, and skin. Three hundred and fifty-five patients were recruited. Subjects were enrolled over a 36-month period at 16 sites. To meet the target number of subjects, the recruitment period was prolonged and additional sites were included. Results showed that demographic and disease characteristics were similar between 477 eligible/non-enrolled and enrolled patients, the only difference being type of health insurance among enrolled patients. Sites were divided into three groups by the number of enrolled subjects. Comparing these three groups, the Columbia site had fewer 'definite ALS' diagnoses. This is the first prospective, interdisciplinary, in-depth, multicenter epidemiological investigation of OS related to ALS progression and has been accomplished by an aggressive recruitment process. The baseline demographic and disease features of the study sample are now fully characterized.
Collapse
Affiliation(s)
- Hiroshi Mitsumoto
- Eleanor and Lou Gehrig MDA/ALS Research Center Department of Neurology Columbia University Medical Center 710 West 168 St, New York, NY 10032
| | - Pam Factor-Litvak
- Department of Epidemiology, Mailman School of Public Health, Columbia University
| | - Howard Andrews
- Data Coordinating Center (DCC), Mailman School of Public Health Biostatistics Department, Columbia University
| | - Raymond R. Goetz
- New York State Psychiatric Institute & Department of Psychiatry, Columbia University
| | - Leslie Andrews
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University
| | - Judith G. Rabkin
- New York State Psychiatric Institute & Department of Psychiatry, Columbia University
| | - Martin McElhiney
- New York State Psychiatric Institute & Department of Psychiatry, Columbia University
| | - Jeri Nieves
- Department of Epidemiology, Mailman School of Public Health, Columbia University
- Clinical Research Center, Helen Hayes
| | - Regina M. Santella
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University
| | - Jennifer Murphy
- Department of Neurology, University of California, San Francisco
| | - Jonathan Hupf
- Eleanor and Lou Gehrig MDA/ALS Research Center Department of Neurology Columbia University Medical Center 710 West 168 St, New York, NY 10032
| | - Jess Singleton
- Eleanor and Lou Gehrig MDA/ALS Research Center Department of Neurology Columbia University Medical Center 710 West 168 St, New York, NY 10032
| | - David Merle
- Data Coordinating Center (DCC), Mailman School of Public Health Biostatistics Department, Columbia University
| | - Mary Kilty
- Department of Epidemiology, Mailman School of Public Health, Columbia University
| | | | | | | | | | - Dallas Forshew
- Forbes Norris ALS Center, California Pacific Medical Center
| | | | | | | | | | | | | | | | | | - Sharon P. Nations
- Department of Neurology and Neurotherapeutics, University of Texas Southwestern
| | | | | | | | | | | |
Collapse
|
78
|
Elf K, Shevchenko G, Nygren I, Larsson L, Bergquist J, Askmark H, Artemenko K. Alterations in muscle proteome of patients diagnosed with amyotrophic lateral sclerosis. J Proteomics 2014; 108:55-64. [PMID: 24846852 DOI: 10.1016/j.jprot.2014.05.004] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2014] [Revised: 04/24/2014] [Accepted: 05/11/2014] [Indexed: 12/13/2022]
Abstract
UNLABELLED Amyotrophic lateral sclerosis (ALS) is a motor neuron disease characterized by progressive muscle paralysis. Currently clinical tools for ALS diagnostics do not perform well enough and their improvement is needed. The objective of this study was to identify specific protein alterations related to the development of ALS using tiny muscle biopsies. We applied a shotgun proteomics and quantitative dimethyl labeling in order to analyze the global changes in human skeletal muscle proteome of ALS versus healthy subjects for the first time. 235 proteins were quantified and 11 proteins were found significantly regulated in ALS muscles. These proteins are involved in muscle development and contraction, metabolic processes, enzyme activity, regulation of apoptosis and transport activity. In order to eliminate a risk to confuse ALS with other denervations, muscle biopsies of patients with postpolio syndrome and Charcot-Marie-Tooth disease (negative controls) were compared to those of ALS and controls. Only few proteins significantly regulated in ALS patients compared to controls were affected differently in negative controls. These proteins (BTB and kelch domain-containing protein 10, myosin light chain 3, glycogen debranching enzyme, transitional endoplasmic reticulum ATPase), individually or as a panel, could be selected for estimation of ALS diagnosis and development. BIOLOGICAL SIGNIFICANCE ALS is a devastating neurodegenerative disease, and luckily, very rare: only one to two people out of 100,000 develop ALS yearly. This fact, however, makes studies of ALS very challenging since it is very difficult to collect the representative set of clinical samples and this may take up to several years. In this study we collected the muscle biopsies from 12 ALS patients and compared the ALS muscle proteome against the one from control subjects. We suggested the efficient method for such comprehensive quantitative analysis by LC-MS and performed it for the first time using human ALS material. This gel- and antibody-free method can be widely applied for muscle proteome studies and has been used by us for revealing of the specific protein alterations associated with ALS.
Collapse
Affiliation(s)
- Kristin Elf
- Department of Neuroscience, Unit of Neurophysiology, Uppsala University, Uppsala, Sweden
| | - Ganna Shevchenko
- Department of Chemistry-BMC, Analytical Chemistry, Uppsala University, Uppsala, Sweden
| | - Ingela Nygren
- Department of Neuroscience, Unit of Neurology, Uppsala University, Uppsala, Sweden
| | - Lars Larsson
- Department of Neuroscience, Unit of Neurophysiology, Uppsala University, Uppsala, Sweden
| | - Jonas Bergquist
- Department of Chemistry-BMC, Analytical Chemistry, Uppsala University, Uppsala, Sweden
| | - Håkan Askmark
- Department of Neuroscience, Unit of Neurology, Uppsala University, Uppsala, Sweden
| | - Konstantin Artemenko
- Department of Chemistry-BMC, Analytical Chemistry, Uppsala University, Uppsala, Sweden.
| |
Collapse
|
79
|
Fatty acids in energy metabolism of the central nervous system. BIOMED RESEARCH INTERNATIONAL 2014; 2014:472459. [PMID: 24883315 PMCID: PMC4026875 DOI: 10.1155/2014/472459] [Citation(s) in RCA: 123] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/02/2014] [Revised: 03/29/2014] [Accepted: 03/29/2014] [Indexed: 12/13/2022]
Abstract
In this review, we analyze the current hypotheses regarding energy metabolism in the neurons and astroglia. Recently, it was shown that up to 20% of the total brain's energy is provided by mitochondrial oxidation of fatty acids. However, the existing hypotheses consider glucose, or its derivative lactate, as the only main energy substrate for the brain. Astroglia metabolically supports the neurons by providing lactate as a substrate for neuronal mitochondria. In addition, a significant amount of neuromediators, glutamate and GABA, is transported into neurons and also serves as substrates for mitochondria. Thus, neuronal mitochondria may simultaneously oxidize several substrates. Astrocytes have to replenish the pool of neuromediators by synthesis de novo, which requires large amounts of energy. In this review, we made an attempt to reconcile β-oxidation of fatty acids by astrocytic mitochondria with the existing hypothesis on regulation of aerobic glycolysis. We suggest that, under condition of neuronal excitation, both metabolic pathways may exist simultaneously. We provide experimental evidence that isolated neuronal mitochondria may oxidize palmitoyl carnitine in the presence of other mitochondrial substrates. We also suggest that variations in the brain mitochondrial metabolic phenotype may be associated with different mtDNA haplogroups.
Collapse
|
80
|
Jiang H, Wang C, Ren M, Yin X, Chi C, Guo L, Ke C, Feng H, Li E. Blood volatile organic compounds as potential biomarkers for amyotrophic lateral sclerosis: an animal study in the SOD1 G93A mouse. J Mol Neurosci 2014; 55:167-173. [PMID: 24715356 DOI: 10.1007/s12031-014-0297-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2014] [Accepted: 03/26/2014] [Indexed: 01/08/2023]
Abstract
Amyotrophic lateral sclerosis (ALS) is a rapid progressive motor neuron disease. Currently, there are no specific or reliable biomarkers for the diagnosis of this disease, and there are no effective medical treatments. The early diagnosis and treatment of this disease has the potential to prolong the survival of ALS patients, but typically, approximately 1 year passes between the onset of symptoms and the diagnosis of this disease. Therefore, there is an urgent need to find specific biomarkers to enable early diagnosis and therapeutic intervention in this disease. Analyzing the volatile organic compounds (VOCs) present in the blood and exhaled breath is a useful and convenient approach for investigating potential biomarkers. In this study, we examined the VOCs present in blood samples from copper zinc superoxide dismutase 1 (SOD1) glycine to alanine mutation at position 93 (G93A) mice to determine whether a specific biomarker pattern exists in these transgenic mice. Blood samples from ALS mice and their age-matched littermates were analyzed using gas chromatography-mass spectrometry. A total of 12 independent compounds associated with oxidative stress were identified at the early stage of disease. The data show that there is a specific pattern of blood VOCs in ALS mice that could potentially be used as biomarkers that could improve the diagnosis of this disease. Furthermore, these compounds could also potentially be used to monitor the response to neuroprotective agents and to help us better understand the underlying mechanisms of ALS.
Collapse
Affiliation(s)
- Hongquan Jiang
- Department of Neurology, the First Affiliated Hospital of Harbin Medical University, Harbin, 150001, Heilongjiang, China
| | - Changsong Wang
- Department of Anesthesiology, the First Affiliated Hospital of Harbin Medical University, Harbin, 150001, Heilongjiang, China
| | - Ming Ren
- Department of Neurology, the Affiliated Hospital of Weifang Medical University, Weifang, 150001, Shandong, China
| | - Xiang Yin
- Department of Neurology, the First Affiliated Hospital of Harbin Medical University, Harbin, 150001, Heilongjiang, China
| | - Chunjie Chi
- Department of Anesthesiology, the First Affiliated Hospital of Harbin Medical University, Harbin, 150001, Heilongjiang, China
| | - Lei Guo
- Department of Anesthesiology, the First Affiliated Hospital of Harbin Medical University, Harbin, 150001, Heilongjiang, China
| | - Chaofu Ke
- Department of Biostatistics, School of Public Health, Harbin Medical University, Harbin, 150086, Heilongjiang, China
| | - Honglin Feng
- Department of Neurology, the First Affiliated Hospital of Harbin Medical University, Harbin, 150001, Heilongjiang, China.
| | - Enyou Li
- Department of Anesthesiology, the First Affiliated Hospital of Harbin Medical University, Harbin, 150001, Heilongjiang, China.
| |
Collapse
|
81
|
Park HS, Hong C, Kim BJ, So I. The Pathophysiologic Roles of TRPM7 Channel. THE KOREAN JOURNAL OF PHYSIOLOGY & PHARMACOLOGY : OFFICIAL JOURNAL OF THE KOREAN PHYSIOLOGICAL SOCIETY AND THE KOREAN SOCIETY OF PHARMACOLOGY 2014; 18:15-23. [PMID: 24634592 PMCID: PMC3951819 DOI: 10.4196/kjpp.2014.18.1.15] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/20/2013] [Revised: 11/08/2013] [Accepted: 11/18/2013] [Indexed: 02/07/2023]
Abstract
Transient receptor potential melastatin 7 (TRPM7) is a member of the melastatin-related subfamily and contains a channel and a kinase domain. TRPM7 is known to be associated with cell proliferation, survival, and development. It is ubiquitously expressed, highly permeable to Mg2+ and Ca2+, and its channel activity is negatively regulated by free Mg2+ and Mg-complexed nucleotides. Recent studies have investigated the relationships between TRPM7 and a number of diseases. TRPM7 regulates cell proliferation in several cancers, and is associated with ischemic cell death and vascular smooth muscle cell (VSMC) function. This review discusses the physiologic and pathophysiologic functions and significance of TRPM7 in several diseases.
Collapse
Affiliation(s)
- Hyun Soo Park
- Division of Longevity and Biofunctional Medicine, Pusan National University School of Korean Medicine, Yangsan 626-870, Korea
| | - Chansik Hong
- Department of Physiology, Seoul National University College of Medicine, Seoul 110-799, Korea
| | - Byung Joo Kim
- Division of Longevity and Biofunctional Medicine, Pusan National University School of Korean Medicine, Yangsan 626-870, Korea
| | - Insuk So
- Department of Physiology, Seoul National University College of Medicine, Seoul 110-799, Korea
| |
Collapse
|
82
|
New N-substituted derivatives of the drug riluzol. Russ Chem Bull 2014. [DOI: 10.1007/s11172-014-0426-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
83
|
Linden Junior E, Becker J, Schestatsky P, Rotta FT, Marrone CD, Gomes I. Prevalence of amyotrophic lateral sclerosis in the city of Porto Alegre, in Southern Brazil. ARQUIVOS DE NEURO-PSIQUIATRIA 2013; 71:959-62. [DOI: 10.1590/0004-282x20130177] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2013] [Accepted: 07/07/2013] [Indexed: 12/11/2022]
Abstract
Objective : To determine the prevalence of amyotrophic lateral sclerosis (ALS) in the city of Porto Alegre, Brazil. Method : We conducted an extensive investigation in clinics and hospitals that provide specialized assistance to these patients, contacted neurologists and the regional association of people with ALS. Results : On July 31, 2010, 70 patients were alive and diagnosed with amyotrophic lateral sclerosis. Considering the population living in the city in the same period (1,409,351), the estimated prevalence was 5.0 cases per 100,000 people (95% CI, 3.9-6.2), being higher for men (5.2/100,000 95% CI, 3.6-7.2) than for women (4.8/100,000 95% CI, 3.4-6.5). The prevalence increased with age peaking in the age group 70-79 years in both genders. Conclusion : The prevalence of ALS in the city of Porto Alegre is similar to that reported in other parts of the world.
Collapse
Affiliation(s)
| | | | | | | | | | - Irenio Gomes
- Pontificia Universidade Catolica do Rio Grande do Sul, Brazil
| |
Collapse
|
84
|
D’Amico E, Factor-Litvak P, Santella RM, Mitsumoto H. Clinical perspective on oxidative stress in sporadic amyotrophic lateral sclerosis. Free Radic Biol Med 2013; 65:509-527. [PMID: 23797033 PMCID: PMC3859834 DOI: 10.1016/j.freeradbiomed.2013.06.029] [Citation(s) in RCA: 224] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2013] [Revised: 06/14/2013] [Accepted: 06/14/2013] [Indexed: 12/12/2022]
Abstract
Sporadic amyotrophic lateral sclerosis (ALS) is one of the most devastating neurological diseases; most patients die within 3 to 4 years after symptom onset. Oxidative stress is a disturbance in the pro-oxidative/antioxidative balance favoring the pro-oxidative state. Autopsy and laboratory studies in ALS indicate that oxidative stress plays a major role in motor neuron degeneration and astrocyte dysfunction. Oxidative stress biomarkers in cerebrospinal fluid, plasma, and urine are elevated, suggesting that abnormal oxidative stress is generated outside of the central nervous system. Our review indicates that agricultural chemicals, heavy metals, military service, professional sports, excessive physical exertion, chronic head trauma, and certain foods might be modestly associated with ALS risk, with a stronger association between risk and smoking. At the cellular level, these factors are all involved in generating oxidative stress. Experimental studies indicate that a combination of insults that induce modest oxidative stress can exert additive deleterious effects on motor neurons, suggesting that multiple exposures in real-world environments are important. As the disease progresses, nutritional deficiency, cachexia, psychological stress, and impending respiratory failure may further increase oxidative stress. Moreover, accumulating evidence suggests that ALS is possibly a systemic disease. Laboratory, pathologic, and epidemiologic evidence clearly supports the hypothesis that oxidative stress is central in the pathogenic process, particularly in genetically susceptive individuals. If we are to improve ALS treatment, well-designed biochemical and genetic epidemiological studies, combined with a multidisciplinary research approach, are needed and will provide knowledge crucial to our understanding of ALS etiology, pathophysiology, and prognosis.
Collapse
Affiliation(s)
- Emanuele D’Amico
- Eleanor and Lou Gehrig MDA/ALS Research Center, The Neurological Institute of New York, Columbia University Medical Center, 710 West 168th Street (NI-9), New York, NY 10032, ;
| | - Pam Factor-Litvak
- Department of Epidemiology, Mailman School of Public Health, Columbia University Medical Center, 722 West 168th Street, New York, NY 10032,
| | - Regina M. Santella
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University Medical Center, 722 West 168th Street, New York, NY 10032,
| | - Hiroshi Mitsumoto
- Eleanor and Lou Gehrig MDA/ALS Research Center, The Neurological Institute of New York, Columbia University Medical Center, 710 West 168th Street (NI-9), New York, NY 10032
| |
Collapse
|
85
|
Ghavami S, Shojaei S, Yeganeh B, Ande SR, Jangamreddy JR, Mehrpour M, Christoffersson J, Chaabane W, Moghadam AR, Kashani HH, Hashemi M, Owji AA, Łos MJ. Autophagy and apoptosis dysfunction in neurodegenerative disorders. Prog Neurobiol 2013; 112:24-49. [PMID: 24211851 DOI: 10.1016/j.pneurobio.2013.10.004] [Citation(s) in RCA: 722] [Impact Index Per Article: 65.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2012] [Revised: 10/08/2013] [Accepted: 10/15/2013] [Indexed: 12/12/2022]
Abstract
Autophagy and apoptosis are basic physiologic processes contributing to the maintenance of cellular homeostasis. Autophagy encompasses pathways that target long-lived cytosolic proteins and damaged organelles. It involves a sequential set of events including double membrane formation, elongation, vesicle maturation and finally delivery of the targeted materials to the lysosome. Apoptotic cell death is best described through its morphology. It is characterized by cell rounding, membrane blebbing, cytoskeletal collapse, cytoplasmic condensation, and fragmentation, nuclear pyknosis, chromatin condensation/fragmentation, and formation of membrane-enveloped apoptotic bodies, that are rapidly phagocytosed by macrophages or neighboring cells. Neurodegenerative disorders are becoming increasingly prevalent, especially in the Western societies, with larger percentage of members living to an older age. They have to be seen not only as a health problem, but since they are care-intensive, they also carry a significant economic burden. Deregulation of autophagy plays a pivotal role in the etiology and/or progress of many of these diseases. Herein, we briefly review the latest findings that indicate the involvement of autophagy in neurodegenerative diseases. We provide a brief introduction to autophagy and apoptosis pathways focusing on the role of mitochondria and lysosomes. We then briefly highlight pathophysiology of common neurodegenerative disorders like Alzheimer's diseases, Parkinson's disease, Huntington's disease and Amyotrophic lateral sclerosis. Then, we describe functions of autophagy and apoptosis in brain homeostasis, especially in the context of the aforementioned disorders. Finally, we discuss different ways that autophagy and apoptosis modulation may be employed for therapeutic intervention during the maintenance of neurodegenerative disorders.
Collapse
Affiliation(s)
- Saeid Ghavami
- Department of Human Anatomy and Cell Science, University of Manitoba, Winnipeg, Canada; Manitoba Institute of Child Health, Department of Physiology, University of Manitoba, Winnipeg, Canada; St. Boniface Research Centre, University of Manitoba, Winnipeg, Canada
| | - Shahla Shojaei
- Department of Biochemistry, Recombinant Protein Laboratory, Medical School, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Behzad Yeganeh
- Manitoba Institute of Child Health, Department of Physiology, University of Manitoba, Winnipeg, Canada; Hospital for Sick Children Research Institute, Department of Physiology and Experimental Medicine, University of Toronto, Canada
| | - Sudharsana R Ande
- Department of Internal Medicine, University of Manitoba, Winnipeg, Canada
| | - Jaganmohan R Jangamreddy
- Department of Clinical and Experimental Medicine (IKE), Integrative Regenerative Medicine Center (IGEN), Division of Cell Biology, Linkoping University, Linkoping, Sweden
| | - Maryam Mehrpour
- INSERM U845, Research Center "Growth & Signaling" Paris Descartes University Medical School, France
| | - Jonas Christoffersson
- Department of Clinical and Experimental Medicine (IKE), Integrative Regenerative Medicine Center (IGEN), Division of Cell Biology, Linkoping University, Linkoping, Sweden
| | - Wiem Chaabane
- Department of Clinical and Experimental Medicine (IKE), Integrative Regenerative Medicine Center (IGEN), Division of Cell Biology, Linkoping University, Linkoping, Sweden; Department of Biology, Faculty of Sciences, Tunis University, Tunis, Tunisia
| | | | - Hessam H Kashani
- Department of Human Anatomy and Cell Science, University of Manitoba, Winnipeg, Canada; Manitoba Institute of Child Health, Department of Physiology, University of Manitoba, Winnipeg, Canada
| | - Mohammad Hashemi
- Department of Clinical Biochemistry, School of Medicine, Zahedan University of Medical Sciences, Zahedan, Iran; Cellular and Molecular Biology Research Center, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Ali A Owji
- Department of Biochemistry, Recombinant Protein Laboratory, Medical School, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Marek J Łos
- Department of Clinical and Experimental Medicine (IKE), Integrative Regenerative Medicine Center (IGEN), Division of Cell Biology, Linkoping University, Linkoping, Sweden.
| |
Collapse
|
86
|
Blasco H, Corcia P, Gordon PH, Pradat PF. Biological and neuroimaging biomarkers for amyotrophic lateral sclerosis: 2013 and beyond. Neurodegener Dis Manag 2013. [DOI: 10.2217/nmt.13.43] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
SUMMARY Amyotrophic lateral sclerosis is an idiopathic, incurable neurodegenerative disease that is fatal for most patients in less than 3 years from the time weakness first appears. Alongside identification of etiologies and stronger neuroprotective agents, the development of biomarkers is a main research priority. Since the original description, diagnosis and progression measurement in amyotrophic lateral sclerosis has been clinical. The time from symptom onset to diagnosis is usually more than a year, and clinical research studies utilize clinical end points that have low sensitivity. Few eligible patients and inefficient trials mean that just one or a few new therapies can be tested each year. Biological markers are needed not only to improve the sensitivity of clinical assessments, but also to better examine disease pathophysiology in vivo.
Collapse
Affiliation(s)
- Hélène Blasco
- UMR INSERM U930, Université François-Rabelais de Tours, Tours, France
- Laboratoire de Biochimie & de Biologie Moléculaire, Hôpital Bretonneau, CHRU de Tours, France
| | - Philippe Corcia
- Centre SLA, Service de Neurologie & Neurophysiologie Clinique, CHRU de Tours, France
| | - Paul H Gordon
- Départment des Maladies du Système Nerveux, Assistance Publique-Hôpitaux de Paris, Hôpital de la Salpêtrière, 75013, Paris, France
| | - Pierre-François Pradat
- Départment des Maladies du Système Nerveux, Assistance Publique-Hôpitaux de Paris, Hôpital de la Salpêtrière, 75013, Paris, France
- UMR-678, INSERM-UPMC, Hôpital de la Salpêtrière, 75013, Paris, France
| |
Collapse
|
87
|
Blasco H, Corcia P, Pradat PF, Bocca C, Gordon PH, Veyrat-Durebex C, Mavel S, Nadal-Desbarats L, Moreau C, Devos D, Andres CR, Emond P. Metabolomics in cerebrospinal fluid of patients with amyotrophic lateral sclerosis: an untargeted approach via high-resolution mass spectrometry. J Proteome Res 2013; 12:3746-54. [PMID: 23859630 DOI: 10.1021/pr400376e] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Amyotrophic lateral sclerosis (ALS) is characterized by the absence of reliable diagnostic biomarkers. The aim of the study was to (i) devise an untargeted metabolomics methodology that reliably compares cerebrospinal fluid (CSF) from ALS patients and controls by liquid chromatography coupled to high-resolution mass spectrometry (LC-HRMS); (ii) ascertain a metabolic signature of ALS by use of the LC-HRMS platform; (iii) identify metabolites for use as diagnostic or pathophysiologic markers. We developed a method to analyze CSF components by UPLC coupled with a Q-Exactive mass spectrometer that uses electrospray ionization. Metabolomic profiles were created from the CSF obtained at diagnosis from ALS patients and patients with other neurological conditions. We performed multivariate analyses (OPLS-DA) and univariate analyses to assess the contribution of individual metabolites as well as compounds identified in other studies. Sixty-six CSF samples from ALS patients and 128 from controls were analyzed. Metabolome analysis correctly predicted the diagnosis of ALS in more than 80% of cases. OPLS-DA identified four features that discriminated diagnostic group (p < 0.004). Our data demonstrate that untargeted metabolomics with LC-HRMS is a robust procedure to generate a specific metabolic profile for ALS from CSF and could be an important aid to the development of biomarkers for the disease.
Collapse
Affiliation(s)
- Hélène Blasco
- Unité 930, Institut National de la Santé et de la Recherche Médicale, 37044 Tours, France.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
88
|
α -Synuclein Modification in an ALS Animal Model. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2013; 2013:259381. [PMID: 23762114 PMCID: PMC3666397 DOI: 10.1155/2013/259381] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/02/2012] [Revised: 02/11/2013] [Accepted: 02/28/2013] [Indexed: 12/13/2022]
Abstract
Amyotrophic lateral sclerosis (ALS) is a progressively paralytic neurodegenerative disease that can be caused by mutations in Cu/Zn-superoxide dismutase 1 (SOD1). Transgenic mice that overexpress mutant SOD1 develop paralysis and accumulate aggregates of mutant protein in the brainstem and spinal cord. Bee venom (BV), which is also known as apitoxin, is extracted from honeybees and is commonly used in oriental medicine for the treatment of chronic rheumatoid arthritis and osteoarthritis. The purpose of the present study was to determine whether BV affects misfolded protein aggregates such as alpha-synuclein, which is a known pathological marker in Parkinson disease, and ubiquitin-proteasomal activity in hSOD1G93A mutant mice. BV was bilaterally administered into a 98-day-old hSOD1G93A animal model. We found that BV-treated hSOD1G93A transgenic mice showed reduced detergent-insoluble polymerization and phosphorylation of α-synuclein. Furthermore, phosphorylated or nitrated α-synuclein was significantly reduced in the spinal cords and brainstems of BV-treated hSOD1G93A mice and reduced proteasomal activity was revealed in the brainstems of BV-treated symptomatic hSOD1G93A. From these findings, we suggest that BV treatment attenuates the dysfunction of the ubiquitin-proteasomal system in a symptomatic hSOD1G93A ALS model and may help to slow motor neuron loss caused by misfolded protein aggregates in ALS models.
Collapse
|
89
|
Cardona-Rossinyol A, Mir M, Caraballo-Miralles V, Lladó J, Olmos G. Neuroprotective effects of estradiol on motoneurons in a model of rat spinal cord embryonic explants. Cell Mol Neurobiol 2013; 33:421-32. [PMID: 23322321 DOI: 10.1007/s10571-013-9908-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2012] [Accepted: 01/05/2013] [Indexed: 12/12/2022]
Abstract
Amyotrophic lateral sclerosis (ALS) is an adult-onset degenerative disorder characterized by motoneuron death. Clinical and experimental studies in animal models of ALS have found gender differences in the incidence and onset of disease, suggesting that female hormones may play a beneficial role. Cumulative evidence indicates that 17β-estradiol (17βE2) has a neuroprotective role in the central nervous system. We have previously developed a new culture system by using rat spinal cord embryonic explants in which motoneurons have the singularity of migrating outside the spinal cord, growing as a monolayer in the presence of glial cells. In this study, we have validated this new culture system as a useful model for studying neuroprotection by estrogens on spinal cord motoneurons. We show for the first time that spinal cord motoneurons express classical estrogen receptors and that 17βE2 activates, specifically in these cells, the Akt anti-apoptotic signaling pathway and two of their downstream effectors: GSK-3β and Bcl-2. To further validate our system, we demonstrated neuroprotective effects of 17βE2 on spinal cord motoneurons when exposed to the proinflammatory cytokines TNF-α and IFN-γ. These effects of 17βE2 were fully reverted in the presence of the estrogen receptor antagonist ICI 182,780. Our new culture model and the results presented here may provide the basis for further studies on the effects of estrogens, and selective estrogen receptor modulators, on spinal cord motoneurons in the context of ALS or other motoneuron diseases.
Collapse
Affiliation(s)
- Andrea Cardona-Rossinyol
- Grup de Neurobiologia Cel·lular, Institut Universitari d'Investigacions en Ciències de la Salut, IUNICS and Departament de Biologia, Universitat de les Illes Balears, Ctra. de Valldemossa km 7.5, Palma de Mallorca, 07122, Spain
| | | | | | | | | |
Collapse
|
90
|
Ciesler J, Sari Y. Neurotrophic Peptides: Potential Drugs for Treatment of Amyotrophic Lateral Sclerosis and Alzheimer's disease. ACTA ACUST UNITED AC 2013; 3. [PMID: 23795307 DOI: 10.13055/ojns_3_1_2.130408] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Neurodegenerative diseases are characterized by the progressive loss of neurons and glial cells in the central nervous system correlated to their symptoms. Among these neurodegenerative diseases are Alzheimer's disease (AD) and amyotrophic lateral sclerosis (ALS). Neurodegeneration is mostly restricted to specific neuronal populations: cholinergic neurons in AD and motoneurons in ALS. The demonstration that the onset and progression of neurodegenerative diseases in models of transgenic mice, in particular, is delayed or improved by the application of neurotrophic factors and derived peptides from neurotrophic factors has emphasized their importance in neurorestoration. A range of neurotrophic factors and growth peptide factors derived from activity-dependent neurotrophic factor/activity-dependent neuroprotective protein has been suggested to restore neuronal function, improve behavioral deficits and prolong the survival in animal models. In this review article, we focus on the role of trophic peptides in the improvement of AD and ALS. An understanding of the molecular pathways involved with trophic peptides in these neurodegenerative diseases may shed light on potential therapies.
Collapse
Affiliation(s)
- Jessica Ciesler
- University of Toledo, College of Pharmacy and Pharmaceutical Sciences, Department of Pharmacology, Toledo, OH 43614, USA
| | | |
Collapse
|
91
|
Figueroa-Romero C, Hur J, Bender DE, Delaney CE, Cataldo MD, Smith AL, Yung R, Ruden DM, Callaghan BC, Feldman EL. Identification of epigenetically altered genes in sporadic amyotrophic lateral sclerosis. PLoS One 2012; 7:e52672. [PMID: 23300739 PMCID: PMC3530456 DOI: 10.1371/journal.pone.0052672] [Citation(s) in RCA: 118] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2012] [Accepted: 11/19/2012] [Indexed: 12/12/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a terminal disease involving the progressive degeneration of motor neurons within the motor cortex, brainstem and spinal cord. Most cases are sporadic (sALS) with unknown causes suggesting that the etiology of sALS may not be limited to the genotype of patients, but may be influenced by exposure to environmental factors. Alterations in epigenetic modifications are likely to play a role in disease onset and progression in ALS, as aberrant epigenetic patterns may be acquired throughout life. The aim of this study was to identify epigenetic marks associated with sALS. We hypothesize that epigenetic modifications may alter the expression of pathogenesis-related genes leading to the onset and progression of sALS. Using ELISA assays, we observed alterations in global methylation (5 mC) and hydroxymethylation (5 HmC) in postmortem sALS spinal cord but not in whole blood. Loci-specific differentially methylated and expressed genes in sALS spinal cord were identified by genome-wide 5mC and expression profiling using high-throughput microarrays. Concordant direction, hyper- or hypo-5mC with parallel changes in gene expression (under- or over-expression), was observed in 112 genes highly associated with biological functions related to immune and inflammation response. Furthermore, literature-based analysis identified potential associations among the epigenes. Integration of methylomics and transcriptomics data successfully revealed methylation changes in sALS spinal cord. This study represents an initial identification of epigenetic regulatory mechanisms in sALS which may improve our understanding of sALS pathogenesis for the identification of biomarkers and new therapeutic targets.
Collapse
Affiliation(s)
- Claudia Figueroa-Romero
- Department of Neurology, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Junguk Hur
- Department of Neurology, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Diane E. Bender
- Department of Neurology, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Colin E. Delaney
- Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Michael D. Cataldo
- Department of Neurology, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Andrea L. Smith
- Department of Neurology, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Raymond Yung
- Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Douglas M. Ruden
- Institute of Environmental Health Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, Michigan, United States of America
| | - Brian C. Callaghan
- Department of Neurology, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Eva L. Feldman
- Department of Neurology, University of Michigan, Ann Arbor, Michigan, United States of America
- National Center for Integrative Biomedical Informatics, University of Michigan, Ann Arbor, Michigan, United States of America
- * E-mail:
| |
Collapse
|
92
|
Amyotrophic lateral sclerosis and frontotemporal lobar degeneration in association with CADASIL. Neurologist 2012; 18:92-5. [PMID: 22367839 DOI: 10.1097/nrl.0b013e318247bb2d] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Amyotrophic lateral sclerosis (ALS) can present with heterogeneous symptoms resulting from the involvement of multiple brain systems including extramotor cortical areas. Involvement of other brain areas can cause diverse clinical symptoms including cognitive impairment and extrapyramidal symptoms. We report the case of a 50-year-old woman with bulbar onset ALS and frontotemporal lobar degeneration (FTLD), confirmed as cerebral autosomal-dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL). The patient and her first-degree relatives harbored a mutation (R75P) in the NOTCH3 gene, indicative of vascular deficits. The details of this case add plausibility to the idea that ALS, FTLD, and CADASIL are different aspects of a spectrum of disorders with overlapping pathologic mechanisms.
Collapse
|
93
|
Regulation of FMO and PON detoxication systems in ALS human tissues. Neurotox Res 2012; 23:370-7. [PMID: 23073612 DOI: 10.1007/s12640-012-9356-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2012] [Revised: 10/03/2012] [Accepted: 10/05/2012] [Indexed: 02/06/2023]
Abstract
Amyotrophic lateral sclerosis (ALS) is an adult-onset, progressive, and fatal neurodegenerative disease with unknown etiology. Recent evidence suggests an association between the exposure to toxic environmental factors and sporadic ALS. The flavin-containing monooxygenases (FMOs) and paraoxonase (PONs) genes encode enzymes involved in xenobiotic detoxication and are associated with ALS. FMO and PON gene expression has been examined in the human central nervous system including human brain subregions defined as the spinal cord, medulla, and cerebral cortex and in the peripheral tissues (lymphocytes, fibroblasts) in ALS patients and normal control subjects. FMO expression was generally higher in tissues from ALS subjects than in control tissues, with the largest increases in FMO expression detected in the spinal cord. In peripheral tissues, the FMO mRNA level was found to be lower compared with FMO expression in brain tissue, and no differences were detected between ALS patients and the control tissue. FMO and PON gene expression was low in peripheral tissues. In contrast to FMO5 expression, the PON2 gene was down-regulated in ALS patients compared to the controls. Because FMO and PON are involved in the detoxication processes and their functional activity to bioactivate chemicals to toxins has been documented, the data herein suggest that environmental toxin exposure may play a role in a subset of individuals who contract ALS by altering FMO and PON gene expression. Although the precise pathogenic link is presently unknown, these findings suggest a role at FMO and PON genes in the development of ALS.
Collapse
|
94
|
Jedynak BM, Lang A, Liu B, Katz E, Zhang Y, Wyman BT, Raunig D, Jedynak CP, Caffo B, Prince JL. A computational neurodegenerative disease progression score: method and results with the Alzheimer's disease Neuroimaging Initiative cohort. Neuroimage 2012; 63:1478-86. [PMID: 22885136 DOI: 10.1016/j.neuroimage.2012.07.059] [Citation(s) in RCA: 148] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2012] [Revised: 07/04/2012] [Accepted: 07/29/2012] [Indexed: 12/13/2022] Open
Abstract
While neurodegenerative diseases are characterized by steady degeneration over relatively long timelines, it is widely believed that the early stages are the most promising for therapeutic intervention, before irreversible neuronal loss occurs. Developing a therapeutic response requires a precise measure of disease progression. However, since the early stages are for the most part asymptomatic, obtaining accurate measures of disease progression is difficult. Longitudinal databases of hundreds of subjects observed during several years with tens of validated biomarkers are becoming available, allowing the use of computational methods. We propose a widely applicable statistical methodology for creating a disease progression score (DPS), using multiple biomarkers, for subjects with a neurodegenerative disease. The proposed methodology was evaluated for Alzheimer's disease (AD) using the publicly available AD Neuroimaging Initiative (ADNI) database, yielding an Alzheimer's DPS or ADPS score for each subject and each time-point in the database. In addition, a common description of biomarker changes was produced allowing for an ordering of the biomarkers. The Rey Auditory Verbal Learning Test delayed recall was found to be the earliest biomarker to become abnormal. The group of biomarkers comprising the volume of the hippocampus and the protein concentration amyloid beta and Tau were next in the timeline, and these were followed by three cognitive biomarkers. The proposed methodology thus has potential to stage individuals according to their state of disease progression relative to a population and to deduce common behaviors of biomarkers in the disease itself.
Collapse
Affiliation(s)
- Bruno M Jedynak
- Department of Applied Math and Statistics, Johns Hopkins University, Baltimore, MD 21218, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
95
|
Wu LS, Cheng WC, Shen CKJ. Targeted depletion of TDP-43 expression in the spinal cord motor neurons leads to the development of amyotrophic lateral sclerosis-like phenotypes in mice. J Biol Chem 2012; 287:27335-44. [PMID: 22718760 DOI: 10.1074/jbc.m112.359000] [Citation(s) in RCA: 126] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
ALS, or amyotrophic lateral sclerosis, is a progressive and fatal motor neuron disease with no effective medicine. Importantly, the majority of the ALS cases are with TDP-43 proteinopathies characterized with TDP-43-positive, ubiquitin-positive inclusions (UBIs) in the cytosol. However, the role of the mismetabolism of TDP-43 in the pathogenesis of ALS with TDP-43 proteinopathies is unclear. Using the conditional mouse gene targeting approach, we show that mice with inactivation of the Tardbp gene in the spinal cord motor neurons (HB9:Cre-Tardbp(lx/-)) exhibit progressive and male-dominant development of ALS-related phenotypes including kyphosis, motor dysfunctions, muscle weakness/atrophy, motor neuron loss, and astrocytosis in the spinal cord. Significantly, ubiquitinated proteins accumulate in the TDP-43-depleted motor neurons of the spinal cords of HB9:Cre-Tardbp(lx/-) mice with the ALS phenotypes. This study not only establishes an important role of TDP-43 in the long term survival and functioning of the mammalian spinal cord motor neurons, but also establishes that loss of TDP-43 function could be one major cause for neurodegeneration in ALS with TDP-43 proteinopathies.
Collapse
Affiliation(s)
- Lien-Szu Wu
- Institute of Molecular Biology, Academia Sinica, Taipei 11574, Taiwan
| | | | | |
Collapse
|
96
|
Paratore S, Pezzino S, Cavallaro S. Identification of pharmacological targets in amyotrophic lateral sclerosis through genomic analysis of deregulated genes and pathways. Curr Genomics 2012; 13:321-33. [PMID: 23204922 PMCID: PMC3394120 DOI: 10.2174/138920212800793366] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2012] [Revised: 03/30/2012] [Accepted: 04/04/2012] [Indexed: 12/11/2022] Open
Abstract
Amyotrophic Lateral Sclerosis (ALS) is a progressive and disabling neurodegenerative disorder characterized by upper and lower motor neuron loss, leading to respiratory insufficiency and death after 3-5 years. Riluzole is currently the only FDA approved drug for ALS, but it has only modest effects on survival. The majority of ALS cases are sporadic and probably associated to a multifactorial etiology. With the completion of genome sequencing in humans and model organisms, together with the advent of DNA microarray technology, the transcriptional cascades and networks underlying neurodegeneration in ALS are being elucidated providing new potential pharmacological targets. The main challenge now is the effective screening of the myriad of targets to identify those with the most therapeutic utility. The present review will illustrate how the identification, prioritization and validation of preclinical therapeutics can be achieved through genomic analysis of critical pathways and networks deregulated in ALS pathology.
Collapse
Affiliation(s)
- Sabrina Paratore
- Functional Genomics Center, Institute of Neurological Sciences, Italian National Research Council, Catania, Italy
- Policlinico-Vittorio Emanuele, University Hospital, Catania, Italy
| | - Salvatore Pezzino
- Functional Genomics Center, Institute of Neurological Sciences, Italian National Research Council, Catania, Italy
| | - Sebastiano Cavallaro
- Functional Genomics Center, Institute of Neurological Sciences, Italian National Research Council, Catania, Italy
- Policlinico-Vittorio Emanuele, University Hospital, Catania, Italy
| |
Collapse
|
97
|
UBQLN2 mutations are rare in French and French-Canadian amyotrophic lateral sclerosis. Neurobiol Aging 2012; 33:2230.e1-2230.e5. [PMID: 22560112 DOI: 10.1016/j.neurobiolaging.2012.03.015] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2012] [Revised: 03/30/2012] [Accepted: 03/31/2012] [Indexed: 11/27/2022]
Abstract
Mutations in the UBQLN2 gene, which encodes a member of the ubiquitin-like protein family (ubiquilin-2), have been recently identified in patients with dominant X-linked amyotrophic lateral sclerosis (ALS) and ALS with dementia. We report here the sequencing of the UBQLN2 gene in 590 ALS patients of French and French-Canadian ancestry. We identified two novel missense mutations (p.S155N and p.P189T) in two individuals with sporadic ALS. Bioinformatic analysis predicts that these missense mutations affect the normal protein's function. Importantly, these findings further highlight the importance of the proline residues located in the conserved domains of the ubiquilin-2 protein, suggesting that mutations affecting these residues are particularly relevant to the development of ALS. Our findings further support a causative role of the UBQLN2 gene in the pathogenesis of ALS and suggest that UBQLN2 mutations are rare in the French and French-Canadian population.
Collapse
|
98
|
Bim links ER stress and apoptosis in cells expressing mutant SOD1 associated with amyotrophic lateral sclerosis. PLoS One 2012; 7:e35413. [PMID: 22523592 PMCID: PMC3327676 DOI: 10.1371/journal.pone.0035413] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2011] [Accepted: 03/15/2012] [Indexed: 12/11/2022] Open
Abstract
Endoplasmic reticulum (ER) stress is an important pathway to cell death in amyotrophic lateral sclerosis (ALS). We previously demonstrated that ER stress is linked to neurotoxicity associated with formation of inclusions of mutant Cu,Zn-superoxide dismutase 1 (SOD1). Cells bearing mutant inclusions undergo mitochondrial apoptotic signalling. Here, we demonstrate that the BH3-only protein, Bim, is a direct link between ER stress and mitochondrial apoptosis. In the murine neuroblastoma cell line, Neuro2a, bearing mutant SOD1 inclusions, indicators of both ER stress and apoptosis are expressed. Bim knockdown by siRNA significantly reduced nuclear apoptotic features in these inclusion-bearing cells (but did not affect the proportion of cells overall that bear inclusions). Further, both Bax recruitment to mitochondria and cytochrome c redistribution were also decreased under Bim-depletion conditions. However, upregulation of CHOP, a marker of ER stress, was not reduced by Bim knockdown. Significantly, knockdown of CHOP by siRNA reduced the extent of apoptosis in cells bearing mutant SOD1 inclusions. These sequential links between ER stress, CHOP upregulation, and Bim activation of mitochondrial apoptotic signalling indicate a clear pathway to cell death mediated by mutant SOD1.
Collapse
|
99
|
Lactate dyscrasia: a novel explanation for amyotrophic lateral sclerosis. Neurobiol Aging 2012; 33:569-81. [DOI: 10.1016/j.neurobiolaging.2010.04.012] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2009] [Revised: 04/09/2010] [Accepted: 04/13/2010] [Indexed: 12/11/2022]
|
100
|
Padhi AK, Kumar H, Vasaikar SV, Jayaram B, Gomes J. Mechanisms of loss of functions of human angiogenin variants implicated in amyotrophic lateral sclerosis. PLoS One 2012; 7:e32479. [PMID: 22384259 PMCID: PMC3288110 DOI: 10.1371/journal.pone.0032479] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2011] [Accepted: 01/31/2012] [Indexed: 12/11/2022] Open
Abstract
Background Mutations in the coding region of angiogenin (ANG) gene have been found in patients suffering from Amyotrophic Lateral Sclerosis (ALS). Neurodegeneration results from the loss of angiogenic ability of ANG (protein coded by ANG). In this work, we performed extensive molecular dynamics (MD) simulations of wild-type ANG and disease associated ANG variants to elucidate the mechanism behind the loss of ribonucleolytic activity and nuclear translocation activity, functions needed for angiogenesis. Methodology/Principal Findings MD simulations were carried out to study the structural and dynamic differences in the catalytic site and nuclear localization signal residues between WT-ANG (Wild-type ANG) and six mutants. Variants K17I, S28N, P112L and V113I have confirmed association with ALS, while T195C and A238G single nucleotide polymorphisms (SNPs) encoding L35P and K60E mutants respectively, have not been associated with ALS. Our results show that loss of ribonucleolytic activity in K17I is caused by conformational switching of the catalytic residue His114 by 99°. The loss of nuclear translocation activity of S28N and P112L is caused by changes in the folding of the residues 31RRR33 that result in the reduction in solvent accessible surface area (SASA). Consequently, we predict that V113I will exhibit loss of angiogenic properties by loss of nuclear translocation activity and L35P by loss of both ribonucleolytic activity and nuclear translocation activity. No functional loss was inferred for K60E. The MD simulation results were supported by hydrogen bond interaction analyses and molecular docking studies. Conclusions/Significance Conformational switching of catalytic residue His114 seems to be the mechanism causing loss of ribonucleolytic activity and reduction in SASA of nuclear localization signal residues 31RRR33 results in loss of nuclear translocation activity in ANG mutants. Therefore, we predict that L35P mutant, would exhibit loss of angiogenic functions, and hence would correlate with ALS while K60E would not show any loss.
Collapse
Affiliation(s)
- Aditya K Padhi
- School of Biological Sciences, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, India
| | | | | | | | | |
Collapse
|