51
|
Jeyakumar N, Hilmer SN, Teixeira-Pinto A, Loy CT. Frailty and Associated Environmental Factors Only Have Small Effects on Age of Onset in Huntington's Disease. J Huntingtons Dis 2023; 12:355-361. [PMID: 38007671 DOI: 10.3233/jhd-230572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2023]
Abstract
BACKGROUND Over one third of age of onset variation in Huntington's disease is unexplained by CAG repeat length. In Alzheimer's disease, frailty partly modulates the relationship between neuropathology and dementia. OBJECTIVE We investigated whether a multi-domain frailty index, reflecting non-genetic factors in Huntington's disease, similarly modulates the relationship between CAG repeat length and age of onset. METHODS We created a frailty index assessing comorbidities, substance abuse, polypharmacy, and education. We applied multiple linear regression models to 2,741 subjects with manifest Huntington's disease from the Enroll-HD cohort study, including 729 subjects with late-onset (post-60 years) disease, using frailty index or constituent item scores and CAG repeat length as independent variables. We used actual and "residual" ages of onset (difference between actual and CAG-based predicted onset) as dependent variables, the latter offsetting the increased time available to accumulate comorbidities in older subjects. RESULTS Higher frailty index scores were associated with significantly lower residual ages of onset in the late-onset subgroup (p = 0.03), though the effect was small (R2 = 0.27 with frailty as a predictor vs. 0.26 without). Number of comorbidities was also associated with significantly lower residual ages of onset in the late-onset subgroup (p = 0.04). Drug abuse and smoking were associated with significantly earlier ages of onset in the whole cohort (p < 0.01, p = 0.02) and late-onset subgroup (p < 0.01, p = 0.03). CONCLUSIONS The impact of non-genetic factors on age of onset, assessed using a frailty index or separately, in Huntington's disease is limited.
Collapse
Affiliation(s)
| | - Sarah N Hilmer
- The Kolling Institute, The University of Sydney, Sydney, Australia
| | | | - Clement T Loy
- Macquarie Medical School, Macquarie University, Sydney, Australia
| |
Collapse
|
52
|
Caligiuri M, Culbert B, Prasad N, Snell C, Hall A, Smirnova A, Churchill E, Corey-Bloom J. Graphomotor Dysfluency as a Predictor of Disease Progression in Premanifest Huntington's Disease. J Huntingtons Dis 2023; 12:283-292. [PMID: 37182891 DOI: 10.3233/jhd-230562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
BACKGROUND Prior studies have relied on conventional observer-based severity ratings such as the Unified Huntington's Disease Rating Scale (UHDRS) to identify early motor markers of decline in Huntington's disease (HD). OBJECTIVE The present study examined the predictive utility of graphomotor measures handwriting and drawing movements. METHODS Seventeen gene-positive premanifest HD subjects underwent comprehensive clinical, cognitive, motor, and graphomotor assessments at baseline and at follow-up intervals ranging from 9-36 months. Baseline graphomotor assessments were subjected to linear multiple regression procedures to identify factors associated with change on the comprehensive UHDRS index. RESULTS Subjects were followed for an average of 21.2 months. Three multivariate regression models based on graphomotor variables derived from a complex loop task, a maximum speed circle drawing task and a combined task returned adjusted R2 coefficients of 0.76, 0.71, and 0.80 respectively accounting for a significant portion of the variability in cUHDRS change score. The best-fit model based on the combined tasks indicated that greater decline on the cUHDRS was associated with increased pen movement dysfluency and stroke-stroke variability at baseline. CONCLUSION Performance on multiple measures of graphomotor dysfluency assessed during the premanifest or prodromal stage in at-risk HD individuals was associated with decline on a multidimensional index of HD morbidity preceding an HD diagnosis.
Collapse
Affiliation(s)
| | - Braden Culbert
- Department of Neurosciences, UC San Diego, La Jolla, CA, USA
| | - Nikita Prasad
- Department of Neurosciences, UC San Diego, La Jolla, CA, USA
| | - Chase Snell
- Department of Neurosciences, UC San Diego, La Jolla, CA, USA
| | - Andrew Hall
- Department of Neurosciences, UC San Diego, La Jolla, CA, USA
| | - Anna Smirnova
- Department of Neurosciences, UC San Diego, La Jolla, CA, USA
| | - Emma Churchill
- Department of Neurosciences, UC San Diego, La Jolla, CA, USA
- Department of Psychology, San Diego State University, San Diego, CA, USA
| | | |
Collapse
|
53
|
Rodriguez Santana I, Frank S, Doherty M, Willock R, Hamilton J, Hubberstey H, Stanley C, Vetter L, Winkelmann M, Dolmetsch RE, Li N, Ratsch S, Ali TM. Humanistic Burden of Huntington Disease: Evidence From the Huntington Disease Burden of Illness Study. Neurol Clin Pract 2022; 12:e172-e180. [PMID: 36540140 PMCID: PMC9757103 DOI: 10.1212/cpj.0000000000200095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 09/13/2022] [Indexed: 11/15/2022]
Abstract
Background and Objectives Huntington disease (HD) is a rare, inherited, and highly complex neurodegenerative disorder with no currently approved disease-modifying treatments. We investigated the effect of HD on health-related quality of life and other patient-reported outcomes in the Huntington's Disease Burden of Illness (HDBOI) study. Methods The HDBOI study is a retrospective, cross-sectional study conducted between September 2020 and May 2021 in France, Germany, Italy, Spain, the United Kingdom, and the United States. People with symptomatic onset HD (PwHD) were recruited by their HD-treating physicians and categorized as early (ES), mid (MS), or advanced stage (AS) HD. Physicians provided sociodemographic and clinical information from the participant's medical records in electronic case report forms (eCRF); participants or their proxies completed online Patient Public Involvement Engagement questionnaires (PPIE-P). Patient-reported outcomes included the 5-level EQ-5D version (EQ-5D-5L), Short-Form-(SF)-36 v2 (and SF-6-Dimension [SF-6D] utility), Huntington Quality of Life Instrument (H-QoL-I), and the Work Productivity and Activity Impairment Specific Health Problem. All outcomes were summarized using descriptive statistics, and differences between disease stages were assessed by Kruskal-Wallis tests. Results A total of 2,094 PwHD were enrolled with completed eCRFs (100%) and PPIE-P forms (n = 482, 23%). Participants' mean age was 47.3 years; they were generally evenly distributed across countries, with the majority being ES (40%) followed by MS (33%) and LS (26%). The mean EQ-5D-5L (n = 336) utility score was 0.59 (SD, 0.27), with the highest mean utility scores [SD] in ES (0.72 [0.22]) followed by MS (0.62 [0.18]) and AS (0.37 [0.30]), p < 0.001. The mean SF-6D score (n = 482) was 0.57 (SD, 0.10), with mean values decreasing with advanced disease (ES, 0.61; MS, 0.56; AS, 0.50, p < 0.001). H-QoL-I mean scores (n = 482) also worsened with more advanced disease, from 0.58 for ES to 0.49 for MS and 0.37 for AS, p < 0.001. Impairment in daily activities and in work productivity also increased with more advanced disease. Overall proxy respondents reported on average worse outcomes than PwHD (self-reported) across all outcomes and disease stages suggesting a possible unawareness of deficits by PwHD. Discussion The HDBOI study provides new insights into the characteristics and humanistic burden of PwHD and offers a meaningful contribution to this underserved research area.
Collapse
Affiliation(s)
- Idaira Rodriguez Santana
- HCD Economics (IRS, MD, RW); Harvard Medical School/Beth Israel Deaconess Medical Center (SF); CHDI Foundation (JH); Huntington's Disease Youth Organization (HDYO) (HH); Huntington's Disease Association (CS); Huntington's Disease Society of America (LV); Deutsche Huntington-Hilfe e.V (MW); and UniQure (RED, NL, SR, TMA), Inc, Lexington, MA
| | - Samuel Frank
- HCD Economics (IRS, MD, RW); Harvard Medical School/Beth Israel Deaconess Medical Center (SF); CHDI Foundation (JH); Huntington's Disease Youth Organization (HDYO) (HH); Huntington's Disease Association (CS); Huntington's Disease Society of America (LV); Deutsche Huntington-Hilfe e.V (MW); and UniQure (RED, NL, SR, TMA), Inc, Lexington, MA
| | - Maria Doherty
- HCD Economics (IRS, MD, RW); Harvard Medical School/Beth Israel Deaconess Medical Center (SF); CHDI Foundation (JH); Huntington's Disease Youth Organization (HDYO) (HH); Huntington's Disease Association (CS); Huntington's Disease Society of America (LV); Deutsche Huntington-Hilfe e.V (MW); and UniQure (RED, NL, SR, TMA), Inc, Lexington, MA
| | - Rosa Willock
- HCD Economics (IRS, MD, RW); Harvard Medical School/Beth Israel Deaconess Medical Center (SF); CHDI Foundation (JH); Huntington's Disease Youth Organization (HDYO) (HH); Huntington's Disease Association (CS); Huntington's Disease Society of America (LV); Deutsche Huntington-Hilfe e.V (MW); and UniQure (RED, NL, SR, TMA), Inc, Lexington, MA
| | - Jamie Hamilton
- HCD Economics (IRS, MD, RW); Harvard Medical School/Beth Israel Deaconess Medical Center (SF); CHDI Foundation (JH); Huntington's Disease Youth Organization (HDYO) (HH); Huntington's Disease Association (CS); Huntington's Disease Society of America (LV); Deutsche Huntington-Hilfe e.V (MW); and UniQure (RED, NL, SR, TMA), Inc, Lexington, MA
| | - Hayley Hubberstey
- HCD Economics (IRS, MD, RW); Harvard Medical School/Beth Israel Deaconess Medical Center (SF); CHDI Foundation (JH); Huntington's Disease Youth Organization (HDYO) (HH); Huntington's Disease Association (CS); Huntington's Disease Society of America (LV); Deutsche Huntington-Hilfe e.V (MW); and UniQure (RED, NL, SR, TMA), Inc, Lexington, MA
| | - Cath Stanley
- HCD Economics (IRS, MD, RW); Harvard Medical School/Beth Israel Deaconess Medical Center (SF); CHDI Foundation (JH); Huntington's Disease Youth Organization (HDYO) (HH); Huntington's Disease Association (CS); Huntington's Disease Society of America (LV); Deutsche Huntington-Hilfe e.V (MW); and UniQure (RED, NL, SR, TMA), Inc, Lexington, MA
| | - Louise Vetter
- HCD Economics (IRS, MD, RW); Harvard Medical School/Beth Israel Deaconess Medical Center (SF); CHDI Foundation (JH); Huntington's Disease Youth Organization (HDYO) (HH); Huntington's Disease Association (CS); Huntington's Disease Society of America (LV); Deutsche Huntington-Hilfe e.V (MW); and UniQure (RED, NL, SR, TMA), Inc, Lexington, MA
| | - Michaela Winkelmann
- HCD Economics (IRS, MD, RW); Harvard Medical School/Beth Israel Deaconess Medical Center (SF); CHDI Foundation (JH); Huntington's Disease Youth Organization (HDYO) (HH); Huntington's Disease Association (CS); Huntington's Disease Society of America (LV); Deutsche Huntington-Hilfe e.V (MW); and UniQure (RED, NL, SR, TMA), Inc, Lexington, MA
| | - Ricardo E Dolmetsch
- HCD Economics (IRS, MD, RW); Harvard Medical School/Beth Israel Deaconess Medical Center (SF); CHDI Foundation (JH); Huntington's Disease Youth Organization (HDYO) (HH); Huntington's Disease Association (CS); Huntington's Disease Society of America (LV); Deutsche Huntington-Hilfe e.V (MW); and UniQure (RED, NL, SR, TMA), Inc, Lexington, MA
| | - Nanxin Li
- HCD Economics (IRS, MD, RW); Harvard Medical School/Beth Israel Deaconess Medical Center (SF); CHDI Foundation (JH); Huntington's Disease Youth Organization (HDYO) (HH); Huntington's Disease Association (CS); Huntington's Disease Society of America (LV); Deutsche Huntington-Hilfe e.V (MW); and UniQure (RED, NL, SR, TMA), Inc, Lexington, MA
| | - Sarah Ratsch
- HCD Economics (IRS, MD, RW); Harvard Medical School/Beth Israel Deaconess Medical Center (SF); CHDI Foundation (JH); Huntington's Disease Youth Organization (HDYO) (HH); Huntington's Disease Association (CS); Huntington's Disease Society of America (LV); Deutsche Huntington-Hilfe e.V (MW); and UniQure (RED, NL, SR, TMA), Inc, Lexington, MA
| | - Talaha M Ali
- HCD Economics (IRS, MD, RW); Harvard Medical School/Beth Israel Deaconess Medical Center (SF); CHDI Foundation (JH); Huntington's Disease Youth Organization (HDYO) (HH); Huntington's Disease Association (CS); Huntington's Disease Society of America (LV); Deutsche Huntington-Hilfe e.V (MW); and UniQure (RED, NL, SR, TMA), Inc, Lexington, MA
| |
Collapse
|
54
|
Pérot JB, Célestine M, Palombo M, Dhenain M, Humbert S, Brouillet E, Flament J. Longitudinal multimodal MRI characterization of a knock-in mouse model of Huntington's disease reveals early gray and white matter alterations. Hum Mol Genet 2022; 31:3581-3596. [PMID: 35147158 PMCID: PMC9616570 DOI: 10.1093/hmg/ddac036] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 01/19/2022] [Accepted: 01/31/2022] [Indexed: 11/24/2022] Open
Abstract
Pathogenesis of the inherited neurodegenerative disorder Huntington's disease (HD) is progressive with a long presymptomatic phase in which subtle changes occur up to 15 years before the onset of symptoms. Thus, there is a need for early, functional biomarker to better understand disease progression and to evaluate treatment efficacy far from onset. Recent studies have shown that white matter may be affected early in mutant HTT gene carriers. A previous study performed on 12 months old Ki140CAG mice showed reduced glutamate level measured by Chemical Exchange Saturation Transfer of glutamate (gluCEST), especially in the corpus callosum. In this study, we scanned longitudinally Ki140CAG mice with structural MRI, diffusion tensor imaging, gluCEST and magnetization transfer imaging, in order to assess white matter integrity over the life of this mouse model characterized by slow progression of symptoms. Our results show early defects of diffusion properties in the anterior part of the corpus callosum at 5 months of age, preceding gluCEST defects in the same region at 8 and 12 months that spread to adjacent regions. At 12 months, frontal and piriform cortices showed reduced gluCEST, as well as the pallidum. MT imaging showed reduced signal in the septum at 12 months. Cortical and striatal atrophy then appear at 18 months. Vulnerability of the striatum and motor cortex, combined with alterations of anterior corpus callosum, seems to point out the potential role of white matter in the brain dysfunction that characterizes HD and the pertinence of gluCEST and DTI as biomarkers in HD.
Collapse
Affiliation(s)
- Jean-Baptiste Pérot
- Laboratoire des Maladies Neurodégénératives, Molecular Imaging Research Center (MIRCen), Université Paris-Saclay, Commissariat à l’Energie Atomique et aux Energies Alternatives (CEA), Centre National de la Recherche Scientifique (CNRS), Fontenay -aux-Roses 92260, France
| | - Marina Célestine
- Laboratoire des Maladies Neurodégénératives, Molecular Imaging Research Center (MIRCen), Université Paris-Saclay, Commissariat à l’Energie Atomique et aux Energies Alternatives (CEA), Centre National de la Recherche Scientifique (CNRS), Fontenay -aux-Roses 92260, France
| | - Marco Palombo
- Department of Computer Science, Centre for Medical Image Computing, University College London, London WC1E 6BT, UK
| | - Marc Dhenain
- Laboratoire des Maladies Neurodégénératives, Molecular Imaging Research Center (MIRCen), Université Paris-Saclay, Commissariat à l’Energie Atomique et aux Energies Alternatives (CEA), Centre National de la Recherche Scientifique (CNRS), Fontenay -aux-Roses 92260, France
| | - Sandrine Humbert
- Université Grenoble Alpes, INSERM, U1216, Grenoble Institut Neurosciences, Grenoble 38000 , France
| | - Emmanuel Brouillet
- Laboratoire des Maladies Neurodégénératives, Molecular Imaging Research Center (MIRCen), Université Paris-Saclay, Commissariat à l’Energie Atomique et aux Energies Alternatives (CEA), Centre National de la Recherche Scientifique (CNRS), Fontenay -aux-Roses 92260, France
| | - Julien Flament
- Laboratoire des Maladies Neurodégénératives, Molecular Imaging Research Center (MIRCen), Université Paris-Saclay, Commissariat à l’Energie Atomique et aux Energies Alternatives (CEA), Centre National de la Recherche Scientifique (CNRS), Fontenay -aux-Roses 92260, France
| |
Collapse
|
55
|
Bergh S, Cheong RY, Petersén Å, Gabery S. Oxytocin in Huntington’s disease and the spectrum of amyotrophic lateral sclerosis-frontotemporal dementia. Front Mol Neurosci 2022; 15:984317. [PMID: 36187357 PMCID: PMC9515306 DOI: 10.3389/fnmol.2022.984317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 08/19/2022] [Indexed: 11/13/2022] Open
Abstract
Neurodegenerative disorders (NDDs) such as Huntington’s disease (HD) and the spectrum of amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) are characterized by progressive loss of selectively vulnerable populations of neurons. Although often associated with motor impairments, these NDDs share several commonalities in early symptoms and signs that extend beyond motor dysfunction. These include impairments in social cognition and psychiatric symptoms. Oxytocin (OXT) is a neuropeptide known to play a pivotal role in the regulation of social cognition as well as in emotional behaviors such as anxiety and depression. Here, we present an overview of key results implicating OXT in the pathology of HD, ALS and FTD and seek to identify commonalities across these NDDs. OXT is produced in the hypothalamus, a region in the brain that during the past decade has been shown to be affected in HD, ALS, and FTD. Several studies using human post-mortem neuropathological analyses, measurements of cerebrospinal fluid, experimental treatments with OXT as well as genetic animal models have collectively implicated an important role of central OXT in the development of altered social cognition and psychiatric features across these diseases. Understanding central OXT signaling may unveil the underlying mechanisms of early signs of the social cognitive impairment and the psychiatric features in NDDs. It is therefore possible that OXT might have potential therapeutic value for early disease intervention and better symptomatic treatment in NDDs.
Collapse
|
56
|
Lobanov SV, McAllister B, McDade-Kumar M, Landwehrmeyer GB, Orth M, Rosser AE, Paulsen JS, Lee JM, MacDonald ME, Gusella JF, Long JD, Ryten M, Williams NM, Holmans P, Massey TH, Jones L. Huntington's disease age at motor onset is modified by the tandem hexamer repeat in TCERG1. NPJ Genom Med 2022; 7:53. [PMID: 36064847 PMCID: PMC9445028 DOI: 10.1038/s41525-022-00317-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 07/15/2022] [Indexed: 01/29/2023] Open
Abstract
Huntington's disease is caused by an expanded CAG tract in HTT. The length of the CAG tract accounts for over half the variance in age at onset of disease, and is influenced by other genetic factors, mostly implicating the DNA maintenance machinery. We examined a single nucleotide variant, rs79727797, on chromosome 5 in the TCERG1 gene, previously reported to be associated with Huntington's disease and a quasi-tandem repeat (QTR) hexamer in exon 4 of TCERG1 with a central pure repeat. We developed a method for calling perfect and imperfect repeats from exome-sequencing data, and tested association between the QTR in TCERG1 and residual age at motor onset (after correcting for the effects of CAG length in the HTT gene) in 610 individuals with Huntington's disease via regression analysis. We found a significant association between age at onset and the sum of the repeat lengths from both alleles of the QTR (p = 2.1 × 10-9), with each added repeat hexamer reducing age at onset by one year (95% confidence interval [0.7, 1.4]). This association explained that previously observed with rs79727797. The association with age at onset in the genome-wide association study is due to a QTR hexamer in TCERG1, translated to a glutamine/alanine tract in the protein. We could not distinguish whether this was due to cis-effects of the hexamer repeat on gene expression or of the encoded glutamine/alanine tract in the protein. These results motivate further study of the mechanisms by which TCERG1 modifies onset of HD.
Collapse
Affiliation(s)
- Sergey V Lobanov
- Medical Research Council Centre for Neuropsychiatric Genetics and Genomics, Cardiff University, Cardiff, UK
| | - Branduff McAllister
- Medical Research Council Centre for Neuropsychiatric Genetics and Genomics, Cardiff University, Cardiff, UK
| | - Mia McDade-Kumar
- Medical Research Council Centre for Neuropsychiatric Genetics and Genomics, Cardiff University, Cardiff, UK
| | | | - Michael Orth
- Department of Old Age Psychiatry and Psychotherapy, Bern University, Bern, Switzerland
- Swiss Huntington's Disease Centre, Siloah, Gümligen, Switzerland
| | - Anne E Rosser
- Medical Research Council Centre for Neuropsychiatric Genetics and Genomics, Cardiff University, Cardiff, UK
- School of Biosciences, Cardiff University, Cardiff, CF10 3AX, UK
| | - Jane S Paulsen
- Department of Neurology, University of Wisconsin, Madison, WI53705, USA
| | - Jong-Min Lee
- Molecular Neurogenetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, 02114, USA
- Department of Neurology, Harvard Medical School, Boston, MA, 02115, USA
- Medical and Population Genetics Program, Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
| | - Marcy E MacDonald
- Molecular Neurogenetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, 02114, USA
- Department of Neurology, Harvard Medical School, Boston, MA, 02115, USA
- Medical and Population Genetics Program, Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
| | - James F Gusella
- Molecular Neurogenetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, 02114, USA
- Medical and Population Genetics Program, Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA, 02115, USA
| | - Jeffrey D Long
- Departments of Psychiatry and Biostatistics, University of Iowa, Iowa City, IA, USA
| | - Mina Ryten
- Great Ormond Street Institute of Child Health, Genetics and Genomic Medicine, University, College London, London, UK
- NIHR Great Ormond Street Hospital Biomedical Research Centre, University College London, London, UK
| | - Nigel M Williams
- Medical Research Council Centre for Neuropsychiatric Genetics and Genomics, Cardiff University, Cardiff, UK
| | - Peter Holmans
- Medical Research Council Centre for Neuropsychiatric Genetics and Genomics, Cardiff University, Cardiff, UK
| | - Thomas H Massey
- Medical Research Council Centre for Neuropsychiatric Genetics and Genomics, Cardiff University, Cardiff, UK.
| | - Lesley Jones
- Medical Research Council Centre for Neuropsychiatric Genetics and Genomics, Cardiff University, Cardiff, UK
- UK Dementia Research Institute at Cardiff, Cardiff University, Cardiff, UK
| |
Collapse
|
57
|
Morais RDVS, Sogorb-González M, Bar C, Timmer NC, Van der Bent ML, Wartel M, Vallès A. Functional Intercellular Transmission of miHTT via Extracellular Vesicles: An In Vitro Proof-of-Mechanism Study. Cells 2022; 11:2748. [PMID: 36078156 PMCID: PMC9455173 DOI: 10.3390/cells11172748] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 08/11/2022] [Accepted: 08/31/2022] [Indexed: 11/16/2022] Open
Abstract
Huntington's disease (HD) is a fatal neurodegenerative disorder caused by GAG expansion in exon 1 of the huntingtin (HTT) gene. AAV5-miHTT is an adeno-associated virus serotype 5-based vector expressing an engineered HTT-targeting microRNA (miHTT). Preclinical studies demonstrate the brain-wide spread of AAV5-miHTT following a single intrastriatal injection, which is partly mediated by neuronal transport. miHTT has been previously associated with extracellular vesicles (EVs), but whether EVs mediate the intercellular transmission of miHTT remains unknown. A contactless culture system was used to evaluate the transport of miHTT, either from a donor cell line overexpressing miHTT or AAV5-miHTT transduced neurons. Transfer of miHTT to recipient (HEK-293T, HeLa, and HD patient-derived neurons) cells was observed, which significantly reduced HTT mRNA levels. miHTT was present in EV-enriched fractions isolated from culture media. Immunocytochemical and in situ hybridization experiments showed that the signal for miHTT and EV markers co-localized, confirming the transport of miHTT within EVs. In summary, we provide evidence that an engineered miRNA-miHTT-is loaded into EVs, transported across extracellular space, and taken up by neighboring cells, and importantly, that miHTT is active in recipient cells downregulating HTT expression. This represents an additional mechanism contributing to the widespread biodistribution of AAV5-miHTT.
Collapse
Affiliation(s)
- Roberto D. V. S. Morais
- Department of Research and Development, uniQure Biopharma B.V., 1105 BP Amsterdam, The Netherlands
| | - Marina Sogorb-González
- Department of Gastroenterology and Hepatology, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
| | - Citlali Bar
- Department of Research and Development, uniQure Biopharma B.V., 1105 BP Amsterdam, The Netherlands
| | - Nikki C. Timmer
- Department of Research and Development, uniQure Biopharma B.V., 1105 BP Amsterdam, The Netherlands
| | - M. Leontien Van der Bent
- Department of Research and Development, uniQure Biopharma B.V., 1105 BP Amsterdam, The Netherlands
| | - Morgane Wartel
- Department of Research and Development, uniQure Biopharma B.V., 1105 BP Amsterdam, The Netherlands
| | - Astrid Vallès
- Department of Research and Development, uniQure Biopharma B.V., 1105 BP Amsterdam, The Netherlands
| |
Collapse
|
58
|
Shin JW, Hong EP, Park SS, Choi DE, Zeng S, Chen RZ, Lee JM. PAM-altering SNP-based allele-specific CRISPR-Cas9 therapeutic strategies for Huntington’s disease. Mol Ther Methods Clin Dev 2022; 26:547-561. [PMID: 36092363 PMCID: PMC9450073 DOI: 10.1016/j.omtm.2022.08.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 08/12/2022] [Indexed: 11/30/2022]
Affiliation(s)
- Jun Wan Shin
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA 02114, USA
- Department of Neurology, Harvard Medical School, Boston, MA 02115, USA
| | - Eun Pyo Hong
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA 02114, USA
- Department of Neurology, Harvard Medical School, Boston, MA 02115, USA
| | - Seri S. Park
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Doo Eun Choi
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA 02114, USA
- Department of Neurology, Harvard Medical School, Boston, MA 02115, USA
| | - Sophia Zeng
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA 02114, USA
| | | | - Jong-Min Lee
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA 02114, USA
- Department of Neurology, Harvard Medical School, Boston, MA 02115, USA
- Medical and Population Genetics Program, the Broad Institute of M.I.T. and Harvard, Cambridge, MA 02142, USA
- Corresponding author Jong-Min Lee, Molecular Neurogenetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA 02114, USA.
| |
Collapse
|
59
|
Singh A, Agrawal N. Metabolism in Huntington's disease: a major contributor to pathology. Metab Brain Dis 2022; 37:1757-1771. [PMID: 34704220 DOI: 10.1007/s11011-021-00844-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 09/15/2021] [Indexed: 01/01/2023]
Abstract
Huntington's disease (HD) is a progressively debilitating neurodegenerative disease exhibiting autosomal-dominant inheritance. It is caused by an unstable expansion in the CAG repeat tract of HD gene, which transforms the disease-specific Huntingtin protein (HTT) to a mutant form (mHTT). The profound neuronal death in cortico-striatal circuits led to its identification and characterisation as a neurodegenerative disease. However, equally disturbing are the concomitant whole-body manifestations affecting nearly every organ of the diseased individuals, at varying extents. Altered central and peripheral metabolism of energy, proteins, nucleic acids, lipids and carbohydrates encompass the gross pathology of the disease. Intense fluctuation of body weight, glucose homeostasis and organ-specific subcellular abnormalities are being increasingly recognised in HD. Many of these metabolic abnormalities exist years before the neuropathological manifestations such as chorea, cognitive decline and behavioural abnormalities develop, and prove to be reliable predictors of the disease progression. In this review, we provide a consolidated overview of the central and peripheral metabolic abnormalities associated with HD, as evidenced from clinical and experimental studies. Additionally, we have discussed the potential of metabolic biomolecules to translate into efficient biomarkers for the disease onset as well as progression. Finally, we provide a brief outlook on the efficacy of existing therapies targeting metabolic remediation. While it is clear that components of altered metabolic pathways can mark many aspects of the disease, it is only conceivable that combinatorial therapies aiming for neuronal protection in consort with metabolic upliftment will prove to be more efficient than the existing symptomatic treatment options.
Collapse
Affiliation(s)
- Akanksha Singh
- Department of Zoology, University of Delhi, New Delhi, 110007, India
| | - Namita Agrawal
- Department of Zoology, University of Delhi, New Delhi, 110007, India.
| |
Collapse
|
60
|
Casella C, Chamberland M, Laguna PL, Parker GD, Rosser AE, Coulthard E, Rickards H, Berry SC, Jones DK, Metzler‐Baddeley C. Mutation-related magnetization-transfer, not axon density, drives white matter differences in premanifest Huntington disease: Evidence from in vivo ultra-strong gradient MRI. Hum Brain Mapp 2022; 43:3439-3460. [PMID: 35396899 PMCID: PMC9248323 DOI: 10.1002/hbm.25859] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 03/07/2022] [Accepted: 03/27/2022] [Indexed: 11/10/2022] Open
Abstract
White matter (WM) alterations have been observed in Huntington disease (HD) but their role in the disease-pathophysiology remains unknown. We assessed WM changes in premanifest HD by exploiting ultra-strong-gradient magnetic resonance imaging (MRI). This allowed to separately quantify magnetization transfer ratio (MTR) and hindered and restricted diffusion-weighted signal fractions, and assess how they drove WM microstructure differences between patients and controls. We used tractometry to investigate region-specific alterations across callosal segments with well-characterized early- and late-myelinating axon populations, while brain-wise differences were explored with tract-based cluster analysis (TBCA). Behavioral measures were included to explore disease-associated brain-function relationships. We detected lower MTR in patients' callosal rostrum (tractometry: p = .03; TBCA: p = .03), but higher MTR in their splenium (tractometry: p = .02). Importantly, patients' mutation-size and MTR were positively correlated (all p-values < .01), indicating that MTR alterations may directly result from the mutation. Further, MTR was higher in younger, but lower in older patients relative to controls (p = .003), suggesting that MTR increases are detrimental later in the disease. Finally, patients showed higher restricted diffusion signal fraction (FR) from the composite hindered and restricted model of diffusion (CHARMED) in the cortico-spinal tract (p = .03), which correlated positively with MTR in the posterior callosum (p = .033), potentially reflecting compensatory mechanisms. In summary, this first comprehensive, ultra-strong gradient MRI study in HD provides novel evidence of mutation-driven MTR alterations at the premanifest disease stage which may reflect neurodevelopmental changes in iron, myelin, or a combination of these.
Collapse
Affiliation(s)
- Chiara Casella
- Cardiff University Brain Research Imaging Centre (CUBRIC), School of PsychologyCardiff UniversityCardiffUK
- Department of Perinatal Imaging and Health, School of Biomedical Engineering & Imaging SciencesKing's College London, St Thomas' HospitalLondonUK
| | - Maxime Chamberland
- Cardiff University Brain Research Imaging Centre (CUBRIC), School of PsychologyCardiff UniversityCardiffUK
- Donders Institute for Brain, Cognition and BehaviorRadboud UniversityNijmegenThe Netherlands
| | - Pedro L. Laguna
- Cardiff University Brain Research Imaging Centre (CUBRIC), School of PsychologyCardiff UniversityCardiffUK
| | - Greg D. Parker
- Cardiff University Brain Research Imaging Centre (CUBRIC), School of PsychologyCardiff UniversityCardiffUK
| | - Anne E. Rosser
- Department of Neurology and Psychological MedicineHayden Ellis BuildingCardiffUK
- School of BiosciencesCardiff UniversityCardiffUK
| | | | - Hugh Rickards
- Birmingham and Solihull Mental Health NHS Foundation TrustBirminghamUK
- Institute of Clinical Sciences, College of Medical and Dental SciencesUniversity of BirminghamBirminghamUK
| | - Samuel C. Berry
- Cardiff University Brain Research Imaging Centre (CUBRIC), School of PsychologyCardiff UniversityCardiffUK
| | - Derek K. Jones
- Cardiff University Brain Research Imaging Centre (CUBRIC), School of PsychologyCardiff UniversityCardiffUK
| | - Claudia Metzler‐Baddeley
- Cardiff University Brain Research Imaging Centre (CUBRIC), School of PsychologyCardiff UniversityCardiffUK
| |
Collapse
|
61
|
Using a Clinical Formulation to Understand Psychological Distress in People Affected by Huntington’s Disease: A Descriptive, Evidence-Based Model. J Pers Med 2022; 12:jpm12081222. [PMID: 35893316 PMCID: PMC9332789 DOI: 10.3390/jpm12081222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 07/19/2022] [Accepted: 07/19/2022] [Indexed: 11/17/2022] Open
Abstract
Huntington’s disease (HD) is an inherited, life-limiting neurodegenerative condition. People with HD experience changes in cognitive, motor and emotional functioning, and can also, mainly at later stages, exhibit behaviours that professionals and carers might find distressing such as hitting others, throwing objects, swearing or making inappropriate comments. While clinical formulation (an individualised approach used by mental health professionals to describe an individual’s difficulties) is a helpful tool to conceptualise patients’ wellbeing, a specific formulation framework has not yet been developed for HD. However, evidence has shown that formulation can help guide clinical interventions and increase consistency of approach across multi-disciplinary teams, refine risk management, and improve staff or carers’ empathic skills and understanding of complex presentations. As a consequence, this paper proposes a new clinical formulation model for understanding distress among people with HD, based on a biopsychosocial framework. More specifically, this includes key elements centring on an individual’s past experience and personal narratives, as well as anticipatory cognitions and emotions about the future. In-depth discussions regarding the components of the model and their importance in HD formulations are included, and a fictional yet representative case example is presented to illustrate their application within the context of personalised care.
Collapse
|
62
|
Pupak A, Singh A, Sancho-Balsells A, Alcalá-Vida R, Espina M, Giralt A, Martí E, Ørom UAV, Ginés S, Brito V. Altered m6A RNA methylation contributes to hippocampal memory deficits in Huntington's disease mice. Cell Mol Life Sci 2022; 79:416. [PMID: 35819730 PMCID: PMC9276730 DOI: 10.1007/s00018-022-04444-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 06/07/2022] [Accepted: 06/22/2022] [Indexed: 11/30/2022]
Abstract
N6-methyladenosine (m6A) regulates many aspects of RNA metabolism and is involved in learning and memory processes. Yet, the impact of a dysregulation of post-transcriptional m6A editing on synaptic impairments in neurodegenerative disorders remains unknown. Here we investigated the m6A methylation pattern in the hippocampus of Huntington’s disease (HD) mice and the potential role of the m6A RNA modification in HD cognitive symptomatology. m6A modifications were evaluated in HD mice subjected to a hippocampal cognitive training task through m6A immunoprecipitation sequencing (MeRIP-seq) and the relative levels of m6A-modifying proteins (FTO and METTL14) by subcellular fractionation and Western blot analysis. Stereotaxic CA1 hippocampal delivery of AAV-shFTO was performed to investigate the effect of RNA m6A dysregulation in HD memory deficits. Our results reveal a m6A hypermethylation in relevant HD and synaptic related genes in the hippocampal transcriptome of Hdh+/Q111 mice. Conversely, m6A is aberrantly regulated in an experience-dependent manner in the HD hippocampus leading to demethylation of important components of synapse organization. Notably, the levels of RNA demethylase (FTO) and methyltransferase (METTL14) were modulated after training in the hippocampus of WT mice but not in Hdh+/Q111 mice. Finally, inhibition of FTO expression in the hippocampal CA1 region restored memory disturbances in symptomatic Hdh+/Q111 mice. Altogether, our results suggest that a differential RNA methylation landscape contributes to HD cognitive symptoms and uncover a role of m6A as a novel hallmark of HD.
Collapse
Affiliation(s)
- Anika Pupak
- Departament de Biomedicina, Facultat de Medicina, Institut de Neurosciències, Universitat de Barcelona, Casanova 143, 08036, Barcelona, Spain.,Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain.,Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Ankita Singh
- Department for Molecular Biology and Genetics, Aarhus University, Aarhus C, Denmark
| | - Anna Sancho-Balsells
- Departament de Biomedicina, Facultat de Medicina, Institut de Neurosciències, Universitat de Barcelona, Casanova 143, 08036, Barcelona, Spain.,Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain.,Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Rafael Alcalá-Vida
- Laboratoire de Neurosciences Cognitives et Adaptatives (LNCA), University of Strasbourg, Strasbourg, France
| | - Marc Espina
- Departament de Biomedicina, Facultat de Medicina, Institut de Neurosciències, Universitat de Barcelona, Casanova 143, 08036, Barcelona, Spain.,Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain.,Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Albert Giralt
- Departament de Biomedicina, Facultat de Medicina, Institut de Neurosciències, Universitat de Barcelona, Casanova 143, 08036, Barcelona, Spain.,Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain.,Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Eulàlia Martí
- Departament de Biomedicina, Facultat de Medicina, Institut de Neurosciències, Universitat de Barcelona, Casanova 143, 08036, Barcelona, Spain.,Centro de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | | | - Silvia Ginés
- Departament de Biomedicina, Facultat de Medicina, Institut de Neurosciències, Universitat de Barcelona, Casanova 143, 08036, Barcelona, Spain. .,Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain. .,Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain.
| | - Verónica Brito
- Departament de Biomedicina, Facultat de Medicina, Institut de Neurosciències, Universitat de Barcelona, Casanova 143, 08036, Barcelona, Spain. .,Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain. .,Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain.
| |
Collapse
|
63
|
Tabrizi SJ, Estevez-Fraga C, van Roon-Mom WMC, Flower MD, Scahill RI, Wild EJ, Muñoz-Sanjuan I, Sampaio C, Rosser AE, Leavitt BR. Potential disease-modifying therapies for Huntington's disease: lessons learned and future opportunities. Lancet Neurol 2022; 21:645-658. [PMID: 35716694 PMCID: PMC7613206 DOI: 10.1016/s1474-4422(22)00121-1] [Citation(s) in RCA: 116] [Impact Index Per Article: 58.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 02/18/2022] [Accepted: 03/04/2022] [Indexed: 01/03/2023]
Abstract
Huntington's disease is the most frequent autosomal dominant neurodegenerative disorder; however, no disease-modifying interventions are available for patients with this disease. The molecular pathogenesis of Huntington's disease is complex, with toxicity that arises from full-length expanded huntingtin and N-terminal fragments of huntingtin, which are both prone to misfolding due to proteolysis; aberrant intron-1 splicing of the HTT gene; and somatic expansion of the CAG repeat in the HTT gene. Potential interventions for Huntington's disease include therapies targeting huntingtin DNA and RNA, clearance of huntingtin protein, DNA repair pathways, and other treatment strategies targeting inflammation and cell replacement. The early termination of trials of the antisense oligonucleotide tominersen suggest that it is time to reflect on lessons learned, where the field stands now, and the challenges and opportunities for the future.
Collapse
Affiliation(s)
- Sarah J Tabrizi
- Huntington's Disease Centre, UCL Queen Square Institute of Neurology, University College London, London, UK.
| | - Carlos Estevez-Fraga
- Huntington's Disease Centre, UCL Queen Square Institute of Neurology, University College London, London, UK
| | | | - Michael D Flower
- Huntington's Disease Centre, UCL Queen Square Institute of Neurology, University College London, London, UK
| | - Rachael I Scahill
- Huntington's Disease Centre, UCL Queen Square Institute of Neurology, University College London, London, UK
| | - Edward J Wild
- Huntington's Disease Centre, UCL Queen Square Institute of Neurology, University College London, London, UK
| | | | - Cristina Sampaio
- CHDI Management, CHDI Foundation Los Angeles, CA, USA; Laboratory of Clinical Pharmacology, Faculdade de Medicina de Lisboa, Lisbon, Portugal
| | - Anne E Rosser
- BRAIN unit, Division of Psychological Medicine and Clinical Neurosciences, School of Medicine, Cardiff University, Cardiff, UK
| | - Blair R Leavitt
- Centre for Huntington's disease, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
64
|
Tabrizi SJ, Schobel S, Gantman EC, Mansbach A, Borowsky B, Konstantinova P, Mestre TA, Panagoulias J, Ross CA, Zauderer M, Mullin AP, Romero K, Sivakumaran S, Turner EC, Long JD, Sampaio C. A biological classification of Huntington's disease: the Integrated Staging System. Lancet Neurol 2022; 21:632-644. [PMID: 35716693 DOI: 10.1016/s1474-4422(22)00120-x] [Citation(s) in RCA: 101] [Impact Index Per Article: 50.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 02/11/2022] [Accepted: 03/11/2022] [Indexed: 12/24/2022]
Abstract
The current research paradigm for Huntington's disease is based on participants with overt clinical phenotypes and does not address its pathophysiology nor the biomarker changes that can precede by decades the functional decline. We have generated a new research framework to standardise clinical research and enable interventional studies earlier in the disease course. The Huntington's Disease Integrated Staging System (HD-ISS) comprises a biological research definition and evidence-based staging centred on biological, clinical, and functional assessments. We used a formal consensus method that involved representatives from academia, industry, and non-profit organisations. The HD-ISS characterises individuals for research purposes from birth, starting at Stage 0 (ie, individuals with the Huntington's disease genetic mutation without any detectable pathological change) by using a genetic definition of Huntington's disease. Huntington's disease progression is then marked by measurable indicators of underlying pathophysiology (Stage 1), a detectable clinical phenotype (Stage 2), and then decline in function (Stage 3). Individuals can be precisely classified into stages based on thresholds of stage-specific landmark assessments. We also demonstrated the internal validity of this system. The adoption of the HD-ISS could facilitate the design of clinical trials targeting populations before clinical motor diagnosis and enable data standardisation across ongoing and future studies.
Collapse
Affiliation(s)
- Sarah J Tabrizi
- UCL Huntington's Disease Centre, Department of Neurodegenerative Diseases, UCL Queen Square Institute of Neurology, UK Dementia Research Institute, University College London, UK.
| | - Scott Schobel
- Product Development Neuroscience, F Hoffmann-La Roche, Basel, Switzerland
| | | | | | | | | | - Tiago A Mestre
- Parkinson's Disease and Movement Disorders Centre, Division of Neurology, Department of Medicine, The Ottawa Hospital Research Institute, University of Ottawa Brain and Mind Research Institute, Ottawa, ON, Canada
| | | | - Christopher A Ross
- Division of Neurobiology, Department of Psychiatry, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Departments of Neurology, Neuroscience, and Pharmacology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | | | | | - Klaus Romero
- Critical Path Institute, Tucson, Arizona 85718, USA
| | | | | | - Jeffrey D Long
- Department of Psychiatry, Department of Biostatistics, University of Iowa, Iowa City, IA, USA
| | - Cristina Sampaio
- CHDI Management/CHDI Foundation, Princeton, NJ, USA; Clinical Pharmacology Laboratory, Faculdade de Medicina de Lisboa, University of Lisbon, Lisbon, Portugal.
| |
Collapse
|
65
|
Shin JW, Shin A, Park SS, Lee JM. Haplotype-specific insertion-deletion variations for allele-specific targeting in Huntington's disease. Mol Ther Methods Clin Dev 2022; 25:84-95. [PMID: 35356757 PMCID: PMC8933729 DOI: 10.1016/j.omtm.2022.03.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 03/01/2022] [Indexed: 11/25/2022]
Abstract
Huntington's disease (HD) is a dominantly inherited neurodegenerative disease caused by an expanded CAG repeat in huntingtin (HTT). Given an important role for HTT in development and significant neurodegeneration at the time of clinical manifestation in HD, early treatment of allele-specific drugs represents a promising strategy. The feasibility of an allele-specific antisense oligonucleotide (ASO) targeting single-nucleotide polymorphisms (SNPs) has been demonstrated in models of HD. Here, we constructed a map of haplotype-specific insertion-deletion variations (indels) to develop alternative mutant-HTT-specific strategies. We mapped indels annotated in the 1000 Genomes Project data on common HTT haplotypes, revealing candidate indels for mutant-specific HTT targeting. Subsequent sequencing of an HD family confirmed candidate sites and revealed additional allele-specific indels. Interestingly, the most common normal HTT haplotype carries indels of big allele length differences at many sites, further uncovering promising haplotype-specific targets. When patient-derived cells carrying the most common HTT diplotype were treated with ASOs targeting the mutant alleles of candidate indels (rs772629195 or rs72239206), complete mutant specificity was observed. In summary, our map of haplotype-specific indels permits the identification of allele-specific targets in HD subjects, potentially contributing to the development of safe HTT-lowering therapeutics that are suitable for early treatment in HD.
Collapse
Affiliation(s)
- Jun Wan Shin
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA 02114, USA.,Department of Neurology, Harvard Medical School, Boston, MA 02115, USA
| | - Aram Shin
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Seri S Park
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Jong-Min Lee
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA 02114, USA.,Department of Neurology, Harvard Medical School, Boston, MA 02115, USA.,Medical and Population Genetics Program, Broad Institute of M.I.T. and Harvard, Cambridge, MA 02142, USA
| |
Collapse
|
66
|
Schmid RD, Remlinger J, Abegg M, Hoepner R, Hoffmann R, Lukas C, Saft C, Salmen A. No optical coherence tomography changes in premanifest Huntington's disease mutation carriers far from disease onset. Brain Behav 2022; 12:e2592. [PMID: 35511084 PMCID: PMC9226796 DOI: 10.1002/brb3.2592] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 03/01/2022] [Accepted: 04/04/2022] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Spectral-domain optical coherence tomography (OCT) may detect retinal changes as a biomarker in neurodegenerative diseases like manifest Huntington's disease (HD). We investigate macular retinal layer thicknesses in a premanifest HD (pre-HD) cohort and healthy controls (HC). METHODS Pre-HD mutation carriers underwent standardized ratings and a preset macular OCT scan. Thickness values were determined for each sector of all macular retinal layers, the mean of all sectors and the mean of the inner ring (IR, 3 mm) after segmentation (Heyex segmentation batch). HC were retrospectively included from an existing database. The IR thickness of the ganglion cell layer (GCL), retinal nerve fiber layer (RNFL), GCL + inner plexiform layer (GCIPL), and total retina were included in the exploratory correlation analyses with paraclinical ratings and compared to HC. RESULTS The analyses comprised n = 24 pre-HD participants (n = 10 male, n = 14 female) and n = 38 HC (n = 14 male, n = 24 female). Retinal layer parameters did not correlate with paraclinical ratings. Expected correlations between established HD biomarkers were robust. The IR thicknesses of the GCL, GCIPL, and total retina did not differ between pre-HD and HC. The IR thickness of the RNFL was significantly higher in pre-HD participants (pre-HD: 23.22 μm (standard deviation 2.91), HC: 21.26 μm (1.90), p = .002). DISCUSSION In this cross-sectional cohort of genetically determined pre-HD participants, neurodegenerative features were not detected with retinal layer segmentation. Since our pre-HD collective was more than 16 years before disease onset, OCT may not be sensitive enough to detect early changes.
Collapse
Affiliation(s)
- Rahel Dominique Schmid
- Department of Ophthalmology, Inselspital, Bern University Hospital and University of Bern, Bern, Switzerland.,Department of Neurology, Inselspital, Bern University Hospital and University of Bern, Bern, Switzerland
| | - Jana Remlinger
- Department of Neurology, Inselspital, Bern University Hospital and University of Bern, Bern, Switzerland.,Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland
| | - Mathias Abegg
- Department of Ophthalmology, Inselspital, Bern University Hospital and University of Bern, Bern, Switzerland
| | - Robert Hoepner
- Department of Neurology, Inselspital, Bern University Hospital and University of Bern, Bern, Switzerland
| | - Rainer Hoffmann
- Department of Neurology, St. Josef-Hospital, Ruhr-University Bochum, Huntington Center NRW, Bochum, Germany.,Department of Neuropsychiatry, Huntington Center South, kbo-Isar-Amper-Klinikum, Taufkirchen (Vils), Germany
| | - Carsten Lukas
- Institute of Neuroradiology, St. Josef-Hospital, Ruhr-University Bochum, Bochum, Germany
| | - Carsten Saft
- Department of Neurology, St. Josef-Hospital, Ruhr-University Bochum, Huntington Center NRW, Bochum, Germany
| | - Anke Salmen
- Department of Neurology, Inselspital, Bern University Hospital and University of Bern, Bern, Switzerland.,Department of Neurology, St. Josef-Hospital, Ruhr-University Bochum, Huntington Center NRW, Bochum, Germany
| |
Collapse
|
67
|
Delussi M, Sciruicchio V, Taurisano P, Morgante F, Salvatore E, Ferrara IP, Clemente L, Sorbera C, de Tommaso M. Lower Prevalence of Chronic Pain in Manifest Huntington's Disease: A Pilot Observational Study. Brain Sci 2022; 12:676. [PMID: 35625062 PMCID: PMC9139182 DOI: 10.3390/brainsci12050676] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Revised: 05/13/2022] [Accepted: 05/19/2022] [Indexed: 12/04/2022] Open
Abstract
Pain is a minor problem compared with other Huntington Disease (HD) symptoms. Nevertheless, in HD it is poorly recognized and underestimated. So far, no study evaluated the presence of chronic pain in HD. The aim of this pilot study was to evaluate the presence and features of chronic pain in a cohort of HD gene carriers. An observational cross-sectional study was conducted in a cohort of HD gene carriers compared to not gene carriers (n.134 HD subjects, n.74 not gene mutation carriers). A specific pain interview, alongside a neurological, cognitive and behavioural examination, was performed in order to classify the type of pain, subjective intensity. A significant prevalence of "no Pain" in HD was found, which tended to increase with HD progression and a reduced frequency of pain in the last 3 months. A clear difference was found between manifest and premanifest HD in terms of intensity of pain, which did not change significantly with HD progression; however, a tendency emerges to a progressive reduction. No significant group difference was present in analgesic use, type and the site of pain. These findings could support a lower prevalence of chronic pain in manifest HD. Prevalence and intensity of chronic pain seem directly influenced by the process of neurodegeneration rather than by an incorrect cognitive and emotional functioning.
Collapse
Affiliation(s)
- Marianna Delussi
- AOU Policlinico, Applied Neurophysiology and Pain Unit, Basic Medical Sciences, Neurosciences and Sense Organs Department, Aldo Moro University, 70124 Bari, Italy; (P.T.); (L.C.); (M.d.T.)
| | - Vittorio Sciruicchio
- Children Epilepsy and EEG Center, PO, San Paolo ASL (Azienda Sanitaria Locale), 70019 Bari, Italy;
| | - Paolo Taurisano
- AOU Policlinico, Applied Neurophysiology and Pain Unit, Basic Medical Sciences, Neurosciences and Sense Organs Department, Aldo Moro University, 70124 Bari, Italy; (P.T.); (L.C.); (M.d.T.)
| | - Francesca Morgante
- Neurosciences Research Centre, Molecular and Clinical Sciences Research Institute, St George’s University of London, London SW17 0RE, UK;
- Department of Experimental and Clinical Medicine, University of Messina, 98951 Messina, Italy
| | - Elena Salvatore
- AOU Federico II, Department of Advanced Biomedical Sciences, Università di Napoli, 80138 Napoli, Italy; (E.S.); (I.P.F.)
| | - Isabella Pia Ferrara
- AOU Federico II, Department of Advanced Biomedical Sciences, Università di Napoli, 80138 Napoli, Italy; (E.S.); (I.P.F.)
| | - Livio Clemente
- AOU Policlinico, Applied Neurophysiology and Pain Unit, Basic Medical Sciences, Neurosciences and Sense Organs Department, Aldo Moro University, 70124 Bari, Italy; (P.T.); (L.C.); (M.d.T.)
| | - Chiara Sorbera
- IRCCS Centro Neurolesi Bonino Pulejo, 98124 Messina, Italy;
| | - Marina de Tommaso
- AOU Policlinico, Applied Neurophysiology and Pain Unit, Basic Medical Sciences, Neurosciences and Sense Organs Department, Aldo Moro University, 70124 Bari, Italy; (P.T.); (L.C.); (M.d.T.)
| |
Collapse
|
68
|
Classification of Huntington's Disease Stage with Features Derived from Structural and Diffusion-Weighted Imaging. J Pers Med 2022; 12:jpm12050704. [PMID: 35629126 PMCID: PMC9143912 DOI: 10.3390/jpm12050704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 04/24/2022] [Accepted: 04/25/2022] [Indexed: 11/22/2022] Open
Abstract
The purpose of this study was to classify Huntington’s disease (HD) stage using support vector machines and measures derived from T1- and diffusion-weighted imaging. The effects of feature selection approach and combination of imaging modalities are assessed. Fourteen premanifest-HD individuals (Pre-HD; on average > 20 years from estimated disease onset), eleven early-manifest HD (Early-HD) patients, and eighteen healthy controls (HC) participated in the study. We compared three feature selection approaches: (i) whole-brain segmented grey matter (GM; voxel-based measure) or fractional anisotropy (FA) values; (ii) GM or FA values from subcortical regions-of-interest (caudate, putamen, pallidum); and (iii) automated selection of GM or FA values with the algorithm Relief-F. We assessed single- and multi-kernel approaches to classify combined GM and FA measures. Significant classifications were achieved between Early-HD and Pre-HD or HC individuals (accuracy: generally, 85% to 95%), and between Pre-HD and controls for the feature FA of the caudate ROI (74% accuracy). The combination of GM and FA measures did not result in higher performances. We demonstrate evidence on the high sensitivity of FA for the classification of the earliest Pre-HD stages, and successful distinction between HD stages.
Collapse
|
69
|
Zhang S, Shen L, Jiao B. Cognitive Dysfunction in Repeat Expansion Diseases: A Review. Front Aging Neurosci 2022; 14:841711. [PMID: 35478698 PMCID: PMC9036481 DOI: 10.3389/fnagi.2022.841711] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 02/24/2022] [Indexed: 11/16/2022] Open
Abstract
With the development of the sequencing technique, more than 40 repeat expansion diseases (REDs) have been identified during the past two decades. Moreover, the clinical features of these diseases show some commonality, and the nervous system, especially the cognitive function was affected in part by these diseases. However, the specific cognitive domains impaired in different diseases were inconsistent. Here, we survey literature on the cognitive consequences of the following disorders presenting cognitive dysfunction and summarizing the pathogenic genes, epidemiology, and different domains affected by these diseases. We found that the cognitive domains affected in neuronal intranuclear inclusion disease (NIID) were widespread including the executive function, memory, information processing speed, attention, visuospatial function, and language. Patients with C9ORF72-frontotemporal dementia (FTD) showed impairment in executive function, memory, language, and visuospatial function. While in Huntington's disease (HD), the executive function, memory, and information processing speed were affected, in the fragile X-associated tremor/ataxia syndrome (FXTAS), executive function, memory, information processing speed, and attention were impaired. Moreover, the spinocerebellar ataxias showed broad damage in almost all the cognitive domains except for the relatively intact language ability. Some other diseases with relatively rare clinical data also indicated cognitive dysfunction, such as myotonic dystrophy type 1 (DM1), progressive myoclonus epilepsy (PME), Friedreich ataxia (FRDA), Huntington disease like-2 (HDL2), and cerebellar ataxia, neuropathy, vestibular areflexia syndrome (CANVAS). We drew a cognitive function landscape of the related REDs that might provide an aspect for differential diagnosis through cognitive domains and effective non-specific interventions for these diseases.
Collapse
Affiliation(s)
- Sizhe Zhang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Lu Shen
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Central South University, Changsha, China
- Engineering Research Center of Hunan Province in Cognitive Impairment Disorders, Central South University, Changsha, China
- Hunan International Scientific and Technological Cooperation Base of Neurodegenerative and Neurogenetic Diseases, Changsha, China
- Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, China
| | - Bin Jiao
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Central South University, Changsha, China
- Engineering Research Center of Hunan Province in Cognitive Impairment Disorders, Central South University, Changsha, China
- Hunan International Scientific and Technological Cooperation Base of Neurodegenerative and Neurogenetic Diseases, Changsha, China
- Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, China
- *Correspondence: Bin Jiao
| |
Collapse
|
70
|
Exome sequencing of individuals with Huntington's disease implicates FAN1 nuclease activity in slowing CAG expansion and disease onset. Nat Neurosci 2022; 25:446-457. [PMID: 35379994 PMCID: PMC8986535 DOI: 10.1038/s41593-022-01033-5] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 02/11/2022] [Indexed: 12/13/2022]
Abstract
The age at onset of motor symptoms in Huntington's disease (HD) is driven by HTT CAG repeat length but modified by other genes. In this study, we used exome sequencing of 683 patients with HD with extremes of onset or phenotype relative to CAG length to identify rare variants associated with clinical effect. We discovered damaging coding variants in candidate modifier genes identified in previous genome-wide association studies associated with altered HD onset or severity. Variants in FAN1 clustered in its DNA-binding and nuclease domains and were associated predominantly with earlier-onset HD. Nuclease activities of purified variants in vitro correlated with residual age at motor onset of HD. Mutating endogenous FAN1 to a nuclease-inactive form in an induced pluripotent stem cell model of HD led to rates of CAG expansion similar to those observed with complete FAN1 knockout. Together, these data implicate FAN1 nuclease activity in slowing somatic repeat expansion and hence onset of HD.
Collapse
|
71
|
Benatar M, Wuu J, McHutchison C, Postuma RB, Boeve BF, Petersen R, Ross CA, Rosen H, Arias JJ, Fradette S, McDermott MP, Shefner J, Stanislaw C, Abrahams S, Cosentino S, Andersen PM, Finkel RS, Granit V, Grignon AL, Rohrer JD, McMillan CT, Grossman M, Al-Chalabi A, Turner MR. Preventing amyotrophic lateral sclerosis: insights from pre-symptomatic neurodegenerative diseases. Brain 2022; 145:27-44. [PMID: 34677606 PMCID: PMC8967095 DOI: 10.1093/brain/awab404] [Citation(s) in RCA: 50] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 09/16/2021] [Accepted: 10/08/2021] [Indexed: 11/12/2022] Open
Abstract
Significant progress has been made in understanding the pre-symptomatic phase of amyotrophic lateral sclerosis. While much is still unknown, advances in other neurodegenerative diseases offer valuable insights. Indeed, it is increasingly clear that the well-recognized clinical syndromes of Alzheimer's disease, Parkinson's disease, Huntington's disease, spinal muscular atrophy and frontotemporal dementia are also each preceded by a pre-symptomatic or prodromal period of varying duration, during which the underlying disease process unfolds, with associated compensatory changes and loss of inherent system redundancy. Key insights from these diseases highlight opportunities for discovery in amyotrophic lateral sclerosis. The development of biomarkers reflecting amyloid and tau has led to a shift in defining Alzheimer's disease based on inferred underlying histopathology. Parkinson's disease is unique among neurodegenerative diseases in the number and diversity of non-genetic biomarkers of pre-symptomatic disease, most notably REM sleep behaviour disorder. Huntington's disease benefits from an ability to predict the likely timing of clinically manifest disease based on age and CAG-repeat length alongside reliable neuroimaging markers of atrophy. Spinal muscular atrophy clinical trials have highlighted the transformational value of early therapeutic intervention, and studies in frontotemporal dementia illustrate the differential role of biomarkers based on genotype. Similar advances in amyotrophic lateral sclerosis would transform our understanding of key events in pathogenesis, thereby dramatically accelerating progress towards disease prevention. Deciphering the biology of pre-symptomatic amyotrophic lateral sclerosis relies on a clear conceptual framework for defining the earliest stages of disease. Clinically manifest amyotrophic lateral sclerosis may emerge abruptly, especially among those who harbour genetic mutations associated with rapidly progressive amyotrophic lateral sclerosis. However, the disease may also evolve more gradually, revealing a prodromal period of mild motor impairment preceding phenoconversion to clinically manifest disease. Similarly, cognitive and behavioural impairment, when present, may emerge gradually, evolving through a prodromal period of mild cognitive impairment or mild behavioural impairment before progression to amyotrophic lateral sclerosis. Biomarkers are critically important to studying pre-symptomatic amyotrophic lateral sclerosis and essential to efforts to intervene therapeutically before clinically manifest disease emerges. The use of non-genetic biomarkers, however, presents challenges related to counselling, informed consent, communication of results and limited protections afforded by existing legislation. Experiences from pre-symptomatic genetic testing and counselling, and the legal protections against discrimination based on genetic data, may serve as a guide. Building on what we have learned-more broadly from other pre-symptomatic neurodegenerative diseases and specifically from amyotrophic lateral sclerosis gene mutation carriers-we present a road map to early intervention, and perhaps even disease prevention, for all forms of amyotrophic lateral sclerosis.
Collapse
Affiliation(s)
- Michael Benatar
- Department of Neurology, University of Miami, Miami, FL, USA
| | - Joanne Wuu
- Department of Neurology, University of Miami, Miami, FL, USA
| | - Caroline McHutchison
- Human Cognitive Neuroscience, Department of Psychology, University of Edinburgh, Edinburgh, UK
- Euan MacDonald Centre for MND Research, University of Edinburgh, Edinburgh, UK
| | - Ronald B Postuma
- Department of Neurology, Montreal Neurological Institute, McGill University, Montreal, Canada
| | | | | | - Christopher A Ross
- Division of Neurobiology, Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Howard Rosen
- Department of Neurology, University of California San Francisco, CA, USA
| | - Jalayne J Arias
- Department of Neurology, University of California San Francisco, CA, USA
| | | | - Michael P McDermott
- Department of Biostatistics and Computational Biology, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
- Department of Neurology, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| | - Jeremy Shefner
- Department of Neurology, Barrow Neurological Institute, Phoenix, AZ, USA
| | | | - Sharon Abrahams
- Human Cognitive Neuroscience, Department of Psychology, University of Edinburgh, Edinburgh, UK
- Euan MacDonald Centre for MND Research, University of Edinburgh, Edinburgh, UK
| | | | - Peter M Andersen
- Department of Clinical Science, Neurosciences, Umeå University, Sweden
| | - Richard S Finkel
- Department of Pediatric Medicine, Center for Experimental Neurotherapeutics, St. Jude Children’s Research Hospital, Memphis, TN, USA
| | - Volkan Granit
- Department of Neurology, University of Miami, Miami, FL, USA
| | | | - Jonathan D Rohrer
- Department of Neurodegenerative Disease, Dementia Research Centre, UCL Institute of Neurology, Queen Square, London, UK
| | - Corey T McMillan
- Department of Neurology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Murray Grossman
- Department of Neurology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Ammar Al-Chalabi
- Department of Basic and Clinical Neuroscience, Maurice Wohl Clinical Neuroscience Institute, King’s College London, London, UK
- Department of Neurology, King's College Hospital, London, UK
| | - Martin R Turner
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| |
Collapse
|
72
|
Mestre TA. Using Big Data in Movement Disorders: Disease States and Progression in Huntington's Disease. Mov Disord 2022; 37:441-443. [PMID: 35315555 DOI: 10.1002/mds.28943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 01/06/2022] [Indexed: 11/11/2022] Open
Affiliation(s)
- Tiago A Mestre
- University of Ottawa Brain and Mind Research Institute, Ottawa, Ontario, Canada.,Ottawa Hospital Research Institute, Ottawa, Ontario, Canada.,Division of Neurology, Department of Medicine, University of Ottawa, The Ottawa Hospital Ottawa, Ottawa, Ontario, Canada
| |
Collapse
|
73
|
Weerasinghe-Mudiyanselage PDE, Ang MJ, Kang S, Kim JS, Moon C. Structural Plasticity of the Hippocampus in Neurodegenerative Diseases. Int J Mol Sci 2022; 23:3349. [PMID: 35328770 PMCID: PMC8955928 DOI: 10.3390/ijms23063349] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 03/17/2022] [Accepted: 03/18/2022] [Indexed: 12/10/2022] Open
Abstract
Neuroplasticity is the capacity of neural networks in the brain to alter through development and rearrangement. It can be classified as structural and functional plasticity. The hippocampus is more susceptible to neuroplasticity as compared to other brain regions. Structural modifications in the hippocampus underpin several neurodegenerative diseases that exhibit cognitive and emotional dysregulation. This article reviews the findings of several preclinical and clinical studies about the role of structural plasticity in the hippocampus in neurodegenerative diseases, including Alzheimer's disease, Parkinson's disease, Huntington's disease, and multiple sclerosis. In this study, literature was surveyed using Google Scholar, PubMed, Web of Science, and Scopus, to review the mechanisms that underlie the alterations in the structural plasticity of the hippocampus in neurodegenerative diseases. This review summarizes the role of structural plasticity in the hippocampus for the etiopathogenesis of neurodegenerative diseases and identifies the current focus and gaps in knowledge about hippocampal dysfunctions. Ultimately, this information will be useful to propel future mechanistic and therapeutic research in neurodegenerative diseases.
Collapse
Affiliation(s)
- Poornima D. E. Weerasinghe-Mudiyanselage
- Department of Veterinary Anatomy and Animal Behavior, College of Veterinary Medicine and BK21 FOUR Program, Chonnam National University, Gwangju 61186, Korea; (P.D.E.W.-M.); (M.J.A.); (S.K.); (J.-S.K.)
| | - Mary Jasmin Ang
- Department of Veterinary Anatomy and Animal Behavior, College of Veterinary Medicine and BK21 FOUR Program, Chonnam National University, Gwangju 61186, Korea; (P.D.E.W.-M.); (M.J.A.); (S.K.); (J.-S.K.)
- College of Veterinary Medicine, University of the Philippines Los Baños, Los Baños 4031, Philippines
| | - Sohi Kang
- Department of Veterinary Anatomy and Animal Behavior, College of Veterinary Medicine and BK21 FOUR Program, Chonnam National University, Gwangju 61186, Korea; (P.D.E.W.-M.); (M.J.A.); (S.K.); (J.-S.K.)
| | - Joong-Sun Kim
- Department of Veterinary Anatomy and Animal Behavior, College of Veterinary Medicine and BK21 FOUR Program, Chonnam National University, Gwangju 61186, Korea; (P.D.E.W.-M.); (M.J.A.); (S.K.); (J.-S.K.)
| | - Changjong Moon
- Department of Veterinary Anatomy and Animal Behavior, College of Veterinary Medicine and BK21 FOUR Program, Chonnam National University, Gwangju 61186, Korea; (P.D.E.W.-M.); (M.J.A.); (S.K.); (J.-S.K.)
| |
Collapse
|
74
|
Rook ME, Southwell AL. Antisense Oligonucleotide Therapy: From Design to the Huntington Disease Clinic. BioDrugs 2022; 36:105-119. [PMID: 35254632 PMCID: PMC8899000 DOI: 10.1007/s40259-022-00519-9] [Citation(s) in RCA: 43] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/08/2022] [Indexed: 12/14/2022]
Abstract
Huntington disease (HD) is a fatal progressive neurodegenerative disorder caused by an inherited mutation in the huntingtin (HTT) gene, which encodes mutant HTT protein. Though HD remains incurable, various preclinical studies have reported a favorable response to HTT suppression, emphasizing HTT lowering strategies as prospective disease-modifying treatments. Antisense oligonucleotides (ASOs) lower HTT by targeting transcripts and are well suited for treating neurodegenerative disorders as they distribute broadly throughout the central nervous system (CNS) and are freely taken up by neurons, glia, and ependymal cells. With the FDA approval of an ASO therapy for another disease of the CNS, spinal muscular atrophy, ASOs have become a particularly attractive therapeutic option for HD. However, two types of ASOs were recently assessed in human clinical trials for the treatment of HD, and both were halted early. In this review, we will explore the differences in chemistry, targeting, and specificity of these HTT ASOs as well as preliminary clinical findings and potential reasons for and implications of these halted trials.
Collapse
Affiliation(s)
- Morgan E Rook
- Burnett School of Biomedical Sciences, University of Central Florida, Orlando, FL, 32827, USA.
| | - Amber L Southwell
- Burnett School of Biomedical Sciences, University of Central Florida, Orlando, FL, 32827, USA
| |
Collapse
|
75
|
Abstract
OBJECTIVE Discrepancies exist in reports of social cognition deficits in individuals with premanifest Huntington's disease (HD); however, the reason for this variability has not been investigated. The aims of this study were to (1) evaluate group- and individual-level social cognitive performance and (2) examine intra-individual variability (dispersion) across social cognitive domains in individuals with premanifest HD. METHOD Theory of mind (ToM), social perception, empathy, and social connectedness were evaluated in 35 individuals with premanifest HD and 29 healthy controls. Cut-off values beneath the median and 1.5 × the interquartile range below the 25th percentile (P25 - 1.5 × IQR) of healthy controls for each variable were established for a profiling method. Dispersion between social cognitive domains was also calculated. RESULTS Compared to healthy controls, individuals with premanifest HD performed worse on all social cognitive domains except empathy. Application of the profiling method revealed a large proportion of people with premanifest HD fell below healthy control median values across ToM (>80%), social perception (>57%), empathy (>54%), and social behaviour (>40%), with a percentage of these individuals displaying more pronounced impairments in empathy (20%) and ToM (22%). Social cognition dispersion did not differ between groups. No significant correlations were found between social cognitive domains and mood, sleep, and neurocognitive outcomes. CONCLUSIONS Significant group-level social cognition deficits were observed in the premanifest HD cohort. However, our profiling method showed that only a small percentage of these individuals experienced marked difficulties in social cognition, indicating the importance of individual-level assessments, particularly regarding future personalised treatments.
Collapse
|
76
|
Chen JF, Wang F, Huang NX, Xiao L, Mei F. Oligodendrocytes and Myelin: Active players in Neurodegenerative brains? Dev Neurobiol 2022; 82:160-174. [PMID: 35081276 DOI: 10.1002/dneu.22867] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 01/18/2022] [Accepted: 01/19/2022] [Indexed: 11/10/2022]
Abstract
Oligodendrocytes (OLs) are a major type of glial cells in the central nervous system that generate multiple myelin sheaths to wrap axons. Myelin ensures fast and efficient propagation of action potentials along axons and supports neurons with nourishment. The decay of OLs and myelin has been implicated in age-related neurodegenerative diseases and these changes are generally considered as an inevitable result of neuron loss and axon degeneration. Noticeably, OLs and myelin undergo dynamic changes in healthy adult brains, that is, newly formed OLs are continuously added throughout life from the differentiation of oligodendrocyte precursor cells (OPCs) and the pre-existing myelin sheaths may undergo degeneration or remodeling. Increasing evidence has shown that changes in OLs and myelin are present in the early stages of neurodegenerative diseases, and even prior to significant neuronal loss and functional deficits. More importantly, oligodendroglia-specific manipulation, by either deletion of the disease gene or enhancement of myelin renewal, can alleviate functional impairments in neurodegenerative animal models. These findings underscore the possibility that OLs and myelin are not passively but actively involved in neurodegenerative diseases and may play an important role in modulating neuronal function and survival. In this review, we summarize recent work characterizing OL and myelin changes in both healthy and neurodegenerative brains and discuss the potential of targeting oligodendroglial cells in treating neurodegenerative diseases. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Jing-Fei Chen
- Brain and Intelligence Research Key Laboratory of Chongqing Education Commission, Department of Histology and Embryology, Third Military Medical University, Chongqing, 400038, China
| | - Fei Wang
- Brain and Intelligence Research Key Laboratory of Chongqing Education Commission, Department of Histology and Embryology, Third Military Medical University, Chongqing, 400038, China
| | - Nan-Xing Huang
- Brain and Intelligence Research Key Laboratory of Chongqing Education Commission, Department of Histology and Embryology, Third Military Medical University, Chongqing, 400038, China
| | - Lan Xiao
- Brain and Intelligence Research Key Laboratory of Chongqing Education Commission, Department of Histology and Embryology, Third Military Medical University, Chongqing, 400038, China
| | - Feng Mei
- Brain and Intelligence Research Key Laboratory of Chongqing Education Commission, Department of Histology and Embryology, Third Military Medical University, Chongqing, 400038, China
| |
Collapse
|
77
|
Serranilla M, Woodin MA. Striatal Chloride Dysregulation and Impaired GABAergic Signaling Due to Cation-Chloride Cotransporter Dysfunction in Huntington’s Disease. Front Cell Neurosci 2022; 15:817013. [PMID: 35095429 PMCID: PMC8795088 DOI: 10.3389/fncel.2021.817013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 12/24/2021] [Indexed: 11/13/2022] Open
Abstract
Intracellular chloride (Cl–) levels in mature neurons must be tightly regulated for the maintenance of fast synaptic inhibition. In the mature central nervous system (CNS), synaptic inhibition is primarily mediated by gamma-amino butyric acid (GABA), which binds to Cl– permeable GABAA receptors (GABAARs). The intracellular Cl– concentration is primarily maintained by the antagonistic actions of two cation-chloride cotransporters (CCCs): Cl–-importing Na+-K+-Cl– co-transporter-1 (NKCC1) and Cl– -exporting K+-Cl– co-transporter-2 (KCC2). In mature neurons in the healthy brain, KCC2 expression is higher than NKCC1, leading to lower levels of intracellular Cl–, and Cl– influx upon GABAAR activation. However, in neurons of the immature brain or in neurological disorders such as epilepsy and traumatic brain injury, impaired KCC2 function and/or enhanced NKCC1 expression lead to intracellular Cl– accumulation and GABA-mediated excitation. In Huntington’s disease (HD), KCC2- and NKCC1-mediated Cl–-regulation are also altered, which leads to GABA-mediated excitation and contributes to the development of cognitive and motor impairments. This review summarizes the role of Cl– (dys)regulation in the healthy and HD brain, with a focus on the basal ganglia (BG) circuitry and CCCs as potential therapeutic targets in the treatment of HD.
Collapse
|
78
|
Langbehn DR. Longer CAG repeat length is associated with shorter survival after disease onset in Huntington disease. Am J Hum Genet 2022; 109:172-179. [PMID: 34942093 DOI: 10.1016/j.ajhg.2021.12.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 12/03/2021] [Indexed: 01/10/2023] Open
Abstract
It is well known that the length of the CAG trinucleotide expansion of the huntingtin gene is associated with many aspects of Huntington disease progression. These include age of clinical onset and rate of initial progression of disease severity. The relationship between CAG length and survival in Huntington disease is less studied. To address this, we obtained the complete Registry HD database from the European Huntington Disease Network and reanalyzed the time from reported age of disease onset until death. We conducted semiparametric proportional hazards modeling of 8,422 participants who had experienced onset of clinical Huntington disease, either retrospectively or prospectively. Of these, 826 had a recorded age of death. To avoid biased model estimates, retrospective onset ages were represented by left truncation at study entry. After controlling for onset age, which tends to be younger in those with longer CAG repeat lengths, we found that CAG length had a substantial and highly significant influence upon survival time after disease onset. For a fixed age of onset, longer CAG expansions were predictive of shorter survival. This is consistent with other known relationships between CAG length and disease severity. We also show that older onset age predicts shorter lifespan after controlling for CAG length and that the influence of CAG on survival length is substantially greater in women. We demonstrate that apparent contradictions between these and previous analyses of the same data are primarily due to the question of whether to control for clinical onset age in the analysis of time until death.
Collapse
Affiliation(s)
- Douglas R Langbehn
- Departments of Psychiatry and Biostatistics, The University of Iowa, Iowa City, IA 52242, USA.
| |
Collapse
|
79
|
Drew CJG, Busse M. Considerations for clinical trial design and conduct in the evaluation of novel advanced therapeutics in neurodegenerative disease. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2022; 166:235-279. [PMID: 36424094 DOI: 10.1016/bs.irn.2022.09.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The recent advances in the development of potentially disease modifying cell and gene therapies for neurodegenerative disease has resulted in the production of a number of promising novel therapies which are now moving forward to clinical evaluation. The robust evaluation of these therapies pose a significant number of challenges when compared to more traditional evaluations of pharmacotherapy, which is the current mainstay of neurodegenerative disease symptom management. Indeed, there is an inherent complexity in the design and conduct of these trials at multiple levels. Here we discuss specific aspects requiring consideration in the context of investigating novel cell and gene therapies for neurodegenerative disease. This extends to overarching trial designs that could be employed and the factors that underpin design choices such outcome assessments, participant selection and methods for delivery of cell and gene therapies. We explore methods of data collection that may improve efficiency in trials of cell and gene therapy to maximize data sharing and collaboration. Lastly, we explore some of the additional context beyond efficacy evaluations that should be considered to ensure implementation across relevant healthcare settings.
Collapse
Affiliation(s)
- Cheney J G Drew
- Centre For Trials Research, Cardiff University, Cardiff, United Kingdom; Brain Repair and Intracranial Neurotherapeutics Unit (BRAIN), College of Biomedical and Life Sciences, Cardiff University, Cardiff, United Kingdom.
| | - Monica Busse
- Centre For Trials Research, Cardiff University, Cardiff, United Kingdom; Brain Repair and Intracranial Neurotherapeutics Unit (BRAIN), College of Biomedical and Life Sciences, Cardiff University, Cardiff, United Kingdom
| |
Collapse
|
80
|
Barry J, Bui MTN, Levine MS, Cepeda C. Synaptic pathology in Huntington's disease: Beyond the corticostriatal pathway. Neurobiol Dis 2022; 162:105574. [PMID: 34848336 PMCID: PMC9328779 DOI: 10.1016/j.nbd.2021.105574] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 11/22/2021] [Accepted: 11/26/2021] [Indexed: 12/12/2022] Open
Abstract
Huntington's disease (HD) is a heritable, fatal neurodegenerative disorder caused by a mutation in the Huntingtin gene. It is characterized by chorea, as well as cognitive and psychiatric symptoms. Histopathologically, there is a massive loss of striatal projection neurons and less but significant loss in other areas throughout the cortico-basal ganglia-thalamocortical (CBGTC) loop. The mutant huntingtin protein has been implicated in numerous functions, including an important role in synaptic transmission. Most studies on anatomical and physiological alterations in HD have focused on striatum and cerebral cortex. However, based on recent CBGTC projectome evidence, the need to study other pathways has become increasingly clear. In this review, we examine the current status of our knowledge of morphological and electrophysiological alterations of those pathways in animal models of HD. Based on recent studies, there is accumulating evidence that synaptic disconnection, particularly along excitatory pathways, is pervasive and almost universal in HD, thus supporting a critical role of the huntingtin protein in synaptic transmission.
Collapse
Affiliation(s)
- Joshua Barry
- IDDRC, Jane and Terry Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Minh T N Bui
- IDDRC, Jane and Terry Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Michael S Levine
- IDDRC, Jane and Terry Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Carlos Cepeda
- IDDRC, Jane and Terry Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA.
| |
Collapse
|
81
|
Komatsu H. Innovative Therapeutic Approaches for Huntington's Disease: From Nucleic Acids to GPCR-Targeting Small Molecules. Front Cell Neurosci 2021; 15:785703. [PMID: 34899193 PMCID: PMC8662694 DOI: 10.3389/fncel.2021.785703] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 11/08/2021] [Indexed: 12/02/2022] Open
Abstract
Huntington’s disease (HD) is a fatal neurodegenerative disorder due to an extraordinarily expanded CAG repeat in the huntingtin gene that confers a gain-of-toxic function in the mutant protein. There is currently no effective cure that attenuates progression and severity of the disease. Since HD is an inherited monogenic disorder, lowering the mutant huntingtin (mHTT) represents a promising therapeutic strategy. Huntingtin lowering strategies mostly focus on nucleic acid approaches, such as small interfering RNAs (siRNAs) and antisense oligonucleotides (ASOs). While these approaches seem to be effective, the drug delivery to the brain poses a great challenge and requires direct injection into the central nervous system (CNS) that results in substantial burden for patients. This review discusses the topics on Huntingtin lowering strategies with clinical trials in patients already underway and introduce an innovative approach that has the potential to deter the disease progression through the inhibition of GPR52, a striatal-enriched class A orphan G protein-coupled receptor (GPCR) that represents a promising therapeutic target for psychiatric disorders. Chemically simple, potent, and selective GPR52 antagonists have been discovered through high-throughput screening and subsequent structure-activity relationship studies. These small molecule antagonists not only diminish both soluble and aggregated mHTT in the striatum, but also ameliorate HD-like defects in HD mice. This therapeutic approach offers great promise as a novel strategy for HD therapy, while nucleic acid delivery still faces considerable challenges.
Collapse
Affiliation(s)
- Hidetoshi Komatsu
- Business Strategy, Kyowa Pharmaceutical Industry Co., Ltd., Osaka, Japan.,Department of Biological Science, Graduate School of Science, Nagoya University, Nagoya, Japan
| |
Collapse
|
82
|
C57BL/6 Background Attenuates mHTT Toxicity in the Striatum of YAC128 Mice. Int J Mol Sci 2021; 22:ijms222312664. [PMID: 34884469 PMCID: PMC8657915 DOI: 10.3390/ijms222312664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 11/19/2021] [Accepted: 11/20/2021] [Indexed: 12/05/2022] Open
Abstract
Mouse models are frequently used to study Huntington’s disease (HD). The onset and severity of neuronal and behavioral pathologies vary greatly between HD mouse models, which results from different huntingtin expression levels and different CAG repeat length. HD pathology appears to depend also on the strain background of mouse models. Thus, behavioral deficits of HD mice are more severe in the FVB than in the C57BL/6 background. Alterations in medium spiny neuron (MSN) morphology and function have been well documented in young YAC128 mice in the FVB background. Here, we tested the relevance of strain background for mutant huntingtin (mHTT) toxicity on the cellular level by investigating HD pathologies in YAC128 mice in the C57BL/6 background (YAC128/BL6). Morphology, spine density, synapse function and membrane properties were not or only subtly altered in MSNs of 12-month-old YAC128/BL6 mice. Despite the mild cellular phenotype, YAC128/BL6 mice showed deficits in motor performance. More pronounced alterations in MSN function were found in the HdhQ150 mouse model in the C57BL/6 background (HdhQ150/BL6). Consistent with the differences in HD pathology, the number of inclusion bodies was considerably lower in YAC128/BL6 mice than HdhQ150/BL6 mice. This study highlights the relevance of strain background for mHTT toxicity in HD mouse models.
Collapse
|
83
|
Galgoczi S, Ruzo A, Markopoulos C, Yoney A, Phan-Everson T, Li S, Haremaki T, Metzger JJ, Etoc F, Brivanlou AH. Huntingtin CAG expansion impairs germ layer patterning in synthetic human 2D gastruloids through polarity defects. Development 2021; 148:272380. [PMID: 34608934 PMCID: PMC8513611 DOI: 10.1242/dev.199513] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 08/20/2021] [Indexed: 11/20/2022]
Abstract
Huntington's disease (HD) is a fatal neurodegenerative disorder caused by an expansion of the CAG repeats in the huntingtin gene (HTT). Although HD has been shown to have a developmental component, how early during human embryogenesis the HTT-CAG expansion can cause embryonic defects remains unknown. Here, we demonstrate a specific and highly reproducible CAG length-dependent phenotypic signature in a synthetic model for human gastrulation derived from human embryonic stem cells (hESCs). Specifically, we observed a reduction in the extension of the ectodermal compartment that is associated with enhanced activin signaling. Surprisingly, rather than a cell-autonomous effect, tracking the dynamics of TGFβ signaling demonstrated that HTT-CAG expansion perturbs the spatial restriction of activin response. This is due to defects in the apicobasal polarization in the context of the polarized epithelium of the 2D gastruloid, leading to ectopic subcellular localization of TGFβ receptors. This work refines the earliest developmental window for the prodromal phase of HD to the first 2 weeks of human development, as modeled by our 2D gastruloids. Summary: 2D gastruloids of isogenic human embryonic stem cells modeling Huntington's Disease reveal that huntingtin CAG expansion perturbs the spatial restriction of the activin response in the context of the polarized epithelium.
Collapse
Affiliation(s)
- Szilvia Galgoczi
- Laboratory of Stem Cell Biology and Molecular Embryology, The Rockefeller University, New York, NY 10065, USA
| | - Albert Ruzo
- Laboratory of Stem Cell Biology and Molecular Embryology, The Rockefeller University, New York, NY 10065, USA
| | - Christian Markopoulos
- Laboratory of Stem Cell Biology and Molecular Embryology, The Rockefeller University, New York, NY 10065, USA
| | - Anna Yoney
- Laboratory of Stem Cell Biology and Molecular Embryology, The Rockefeller University, New York, NY 10065, USA.,Laboratory of condensed matter physics, The Rockefeller University, New York, NY 10065, USA
| | - Tien Phan-Everson
- Laboratory of Stem Cell Biology and Molecular Embryology, The Rockefeller University, New York, NY 10065, USA.,Laboratory of condensed matter physics, The Rockefeller University, New York, NY 10065, USA
| | - Shu Li
- Laboratory of Stem Cell Biology and Molecular Embryology, The Rockefeller University, New York, NY 10065, USA
| | - Tomomi Haremaki
- Laboratory of Stem Cell Biology and Molecular Embryology, The Rockefeller University, New York, NY 10065, USA
| | - Jakob J Metzger
- Laboratory of Stem Cell Biology and Molecular Embryology, The Rockefeller University, New York, NY 10065, USA.,Laboratory of condensed matter physics, The Rockefeller University, New York, NY 10065, USA
| | - Fred Etoc
- Laboratory of Stem Cell Biology and Molecular Embryology, The Rockefeller University, New York, NY 10065, USA.,Laboratory of condensed matter physics, The Rockefeller University, New York, NY 10065, USA
| | - Ali H Brivanlou
- Laboratory of Stem Cell Biology and Molecular Embryology, The Rockefeller University, New York, NY 10065, USA
| |
Collapse
|
84
|
Wijeratne PA, Garbarino S, Gregory S, Johnson EB, Scahill RI, Paulsen JS, Tabrizi SJ, Lorenzi M, Alexander DC. Revealing the Timeline of Structural MRI Changes in Premanifest to Manifest Huntington Disease. Neurol Genet 2021; 7:e617. [PMID: 34660889 PMCID: PMC8515202 DOI: 10.1212/nxg.0000000000000617] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 07/06/2021] [Indexed: 01/18/2023]
Abstract
BACKGROUND AND OBJECTIVES Longitudinal measurements of brain atrophy using structural MRI (sMRI) can provide powerful markers for tracking disease progression in neurodegenerative diseases. In this study, we use a disease progression model to learn individual-level disease times and hence reveal a new timeline of sMRI changes in Huntington disease (HD). METHODS We use data from the 2 largest cohort imaging studies in HD-284 participants from TRACK-HD (100 control, 104 premanifest, and 80 manifest) and 159 participants from PREDICT-HD (36 control and 128 premanifest)-to train and test the model. We longitudinally register T1-weighted sMRI scans from 3 consecutive time points to reduce intraindividual variability and calculate regional brain volumes using an automated segmentation tool with rigorous manual quality control. RESULTS Our model reveals, for the first time, the relative magnitude and timescale of subcortical and cortical atrophy changes in HD. We find that the largest (∼20% average change in magnitude) and earliest (∼2 years before average abnormality) changes occur in the subcortex (pallidum, putamen, and caudate), followed by a cascade of changes across other subcortical and cortical regions over a period of ∼11 years. We also show that sMRI, when combined with our disease progression model, provides improved prediction of onset over the current best method (root mean square error = 4.5 years and maximum error = 7.9 years vs root mean square error = 6.6 years and maximum error = 18.2 years). DISCUSSION Our findings support the use of disease progression modeling to reveal new information from sMRI, which can potentially inform imaging marker selection for clinical trials.
Collapse
Affiliation(s)
- Peter A. Wijeratne
- From the Centre for Medical Image Computing (P.A.W., D.C.A.), Department of Computer Science, University College London, Gower Street; Huntington's Disease Research Centre (P.A.W., S. Gregory, E.B.J., R.I.S., S.J.T.), Department of Neurodegenerative Disease, University College London, Queen Square Institute of Neurology, London, United Kingdom; Dipartimento di Matematica (S. Garbarino), UNIGE, DIMA, Genova, Italy; Departments of Neurology and Psychiatry (J.S.P.), Carver College of Medicine, University of Iowa; and Université Côte d’Azur (M.L.), Inria, Epione Research Project, Valbonne, France
| | - Sara Garbarino
- From the Centre for Medical Image Computing (P.A.W., D.C.A.), Department of Computer Science, University College London, Gower Street; Huntington's Disease Research Centre (P.A.W., S. Gregory, E.B.J., R.I.S., S.J.T.), Department of Neurodegenerative Disease, University College London, Queen Square Institute of Neurology, London, United Kingdom; Dipartimento di Matematica (S. Garbarino), UNIGE, DIMA, Genova, Italy; Departments of Neurology and Psychiatry (J.S.P.), Carver College of Medicine, University of Iowa; and Université Côte d’Azur (M.L.), Inria, Epione Research Project, Valbonne, France
| | - Sarah Gregory
- From the Centre for Medical Image Computing (P.A.W., D.C.A.), Department of Computer Science, University College London, Gower Street; Huntington's Disease Research Centre (P.A.W., S. Gregory, E.B.J., R.I.S., S.J.T.), Department of Neurodegenerative Disease, University College London, Queen Square Institute of Neurology, London, United Kingdom; Dipartimento di Matematica (S. Garbarino), UNIGE, DIMA, Genova, Italy; Departments of Neurology and Psychiatry (J.S.P.), Carver College of Medicine, University of Iowa; and Université Côte d’Azur (M.L.), Inria, Epione Research Project, Valbonne, France
| | - Eileanoir B. Johnson
- From the Centre for Medical Image Computing (P.A.W., D.C.A.), Department of Computer Science, University College London, Gower Street; Huntington's Disease Research Centre (P.A.W., S. Gregory, E.B.J., R.I.S., S.J.T.), Department of Neurodegenerative Disease, University College London, Queen Square Institute of Neurology, London, United Kingdom; Dipartimento di Matematica (S. Garbarino), UNIGE, DIMA, Genova, Italy; Departments of Neurology and Psychiatry (J.S.P.), Carver College of Medicine, University of Iowa; and Université Côte d’Azur (M.L.), Inria, Epione Research Project, Valbonne, France
| | - Rachael I. Scahill
- From the Centre for Medical Image Computing (P.A.W., D.C.A.), Department of Computer Science, University College London, Gower Street; Huntington's Disease Research Centre (P.A.W., S. Gregory, E.B.J., R.I.S., S.J.T.), Department of Neurodegenerative Disease, University College London, Queen Square Institute of Neurology, London, United Kingdom; Dipartimento di Matematica (S. Garbarino), UNIGE, DIMA, Genova, Italy; Departments of Neurology and Psychiatry (J.S.P.), Carver College of Medicine, University of Iowa; and Université Côte d’Azur (M.L.), Inria, Epione Research Project, Valbonne, France
| | - Jane S. Paulsen
- From the Centre for Medical Image Computing (P.A.W., D.C.A.), Department of Computer Science, University College London, Gower Street; Huntington's Disease Research Centre (P.A.W., S. Gregory, E.B.J., R.I.S., S.J.T.), Department of Neurodegenerative Disease, University College London, Queen Square Institute of Neurology, London, United Kingdom; Dipartimento di Matematica (S. Garbarino), UNIGE, DIMA, Genova, Italy; Departments of Neurology and Psychiatry (J.S.P.), Carver College of Medicine, University of Iowa; and Université Côte d’Azur (M.L.), Inria, Epione Research Project, Valbonne, France
| | - Sarah J. Tabrizi
- From the Centre for Medical Image Computing (P.A.W., D.C.A.), Department of Computer Science, University College London, Gower Street; Huntington's Disease Research Centre (P.A.W., S. Gregory, E.B.J., R.I.S., S.J.T.), Department of Neurodegenerative Disease, University College London, Queen Square Institute of Neurology, London, United Kingdom; Dipartimento di Matematica (S. Garbarino), UNIGE, DIMA, Genova, Italy; Departments of Neurology and Psychiatry (J.S.P.), Carver College of Medicine, University of Iowa; and Université Côte d’Azur (M.L.), Inria, Epione Research Project, Valbonne, France
| | | | | |
Collapse
|
85
|
Oh SL, Chen CM, Wu YR, Valdes Hernandez M, Tsai CC, Cheng JS, Chen YL, Wu YM, Lin YC, Wang JJ. Fixel-Based Analysis Effectively Identifies White Matter Tract Degeneration in Huntington's Disease. Front Neurosci 2021; 15:711651. [PMID: 34588947 PMCID: PMC8473742 DOI: 10.3389/fnins.2021.711651] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Accepted: 08/23/2021] [Indexed: 11/13/2022] Open
Abstract
Microstructure damage in white matter might be linked to regional and global atrophy in Huntington's Disease (HD). We hypothesize that degeneration of subcortical regions, including the basal ganglia, is associated with damage of white matter tracts linking these affected regions. We aim to use fixel-based analysis to identify microstructural changes in the white matter tracts. To further assess the associated gray matter damage, diffusion tensor-derived indices were measured from regions of interest located in the basal ganglia. Diffusion weighted images were acquired from 12 patients with HD and 12 healthy unrelated controls using a 3 Tesla scanner. Reductions in fixel-derived metrics occurs in major white matter tracts, noticeably in corpus callosum, internal capsule, and the corticospinal tract, which were closely co-localized with the regions of increased diffusivity in basal ganglia. These changes in diffusion can be attributed to potential axonal degeneration. Fixel-based analysis is effective in studying white matter tractography and fiber changes in HD.
Collapse
Affiliation(s)
- Sher Li Oh
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
| | - Chiung-Mei Chen
- Department of Neurology, Chang Gung Memorial Hospital, Linkou, Taoyuan, Taiwan.,College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Yih-Ru Wu
- Department of Neurology, Chang Gung Memorial Hospital, Linkou, Taoyuan, Taiwan.,College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Maria Valdes Hernandez
- Row Fogo Centre for Research into Ageing and the Brain, Department of Neuroimaging Sciences, The University of Edinburgh, Edinburgh, United Kingdom.,Centre for Clinical Brain Sciences, The University of Edinburgh, Edinburgh, United Kingdom
| | - Chih-Chien Tsai
- Healthy Aging Research Center, Chang Gung University, Taoyuan, Taiwan
| | - Jur-Shan Cheng
- Clinical Informatics and Medical Statistics Research Center, College of Medicine, Chang Gung University, Taoyuan, Taiwan.,Department of Emergency Medicine, Chang Gung Memorial Hospital, Keelung, Taiwan
| | - Yao-Liang Chen
- Department of Medical Imaging and Intervention, Chang Gung Memorial Hospital, Linkou, Taoyuan, Taiwan.,Department of Diagnostic Radiology, Chang Gung Memorial Hospital, Keelung, Taiwan
| | - Yi-Ming Wu
- Department of Medical Imaging and Intervention, Chang Gung Memorial Hospital, Linkou, Taoyuan, Taiwan.,Department of Medical Imaging and Radiological Sciences, Chang Gung University, Taoyuan, Taiwan
| | - Yu-Chun Lin
- Department of Medical Imaging and Intervention, Chang Gung Memorial Hospital, Linkou, Taoyuan, Taiwan.,Department of Medical Imaging and Radiological Sciences, Chang Gung University, Taoyuan, Taiwan
| | - Jiun-Jie Wang
- Healthy Aging Research Center, Chang Gung University, Taoyuan, Taiwan.,Department of Diagnostic Radiology, Chang Gung Memorial Hospital, Keelung, Taiwan.,Department of Medical Imaging and Radiological Sciences, Chang Gung University, Taoyuan, Taiwan.,Medical Imaging Research Center, Institute for Radiological Research, Linkou Chang Gung Memorial Hospital, Chang Gung University, Taoyuan, Taiwan
| |
Collapse
|
86
|
Sathe S, Ware J, Levey J, Neacy E, Blumenstein R, Noble S, Mühlbäck A, Rosser A, Landwehrmeyer GB, Sampaio C. Enroll-HD: An Integrated Clinical Research Platform and Worldwide Observational Study for Huntington's Disease. Front Neurol 2021; 12:667420. [PMID: 34484094 PMCID: PMC8416308 DOI: 10.3389/fneur.2021.667420] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Accepted: 06/21/2021] [Indexed: 12/20/2022] Open
Abstract
Established in July 2012, Enroll-HD is both an integrated clinical research platform and a worldwide observational study designed to meet the clinical research requirements necessary to develop therapeutics for Huntington's disease (HD). The platform offers participants a low-burden entry into HD research, providing a large, well-characterized, research-engaged cohort with associated clinical data and biosamples that facilitates recruitment into interventional trials and other research studies. Additional studies that use Enroll-HD data and/or biosamples are built into the platform to further research on biomarkers and outcome measures. Enroll-HD is now operating worldwide in 21 countries at 159 clinical sites across four continents—Europe, North America, Latin America, and Australasia—and has recruited almost 25,000 participants, generating a large, rich clinical database with associated biosamples to expedite HD research; any researcher at a verifiable research organization can access the clinical datasets and biosamples from Enroll-HD and nested studies. Important operational features of Enroll-HD include a strong emphasis on standardization, data quality, and protecting participant identity, a single worldwide study protocol, a flexible EDC system capable of integrating multiple studies, a comprehensive monitoring infrastructure, an online portal to train and certify site personnel, and standardized study documents including informed consent forms and contractual agreements.
Collapse
Affiliation(s)
- Swati Sathe
- CHDI Management/CHDI Foundation, Princeton, NJ, United States
| | - Jen Ware
- CHDI Management/CHDI Foundation, Princeton, NJ, United States
| | - Jamie Levey
- CHDI Management/CHDI Foundation, Princeton, NJ, United States
| | - Eileen Neacy
- CHDI Management/CHDI Foundation, Princeton, NJ, United States
| | | | - Simon Noble
- CHDI Management/CHDI Foundation, Princeton, NJ, United States
| | | | - Anne Rosser
- Brain Repair Group, School of Biosciences, Cardiff University, Cardiff, United Kingdom.,Division of Psychological Medicine and Clinical Neurosciences, MRC Centre for Neuropsychiatric Genetics and Genomics, School of Medicine, Cardiff University, Cardiff, United Kingdom.,Brain Research and Intracranial Neurotherapeutics Unit, Cardiff University, Cardiff, United Kingdom
| | | | | |
Collapse
|
87
|
Shobe JL, Donzis EJ, Lee K, Chopra S, Masmanidis SC, Cepeda C, Levine MS. Early impairment of thalamocortical circuit activity and coherence in a mouse model of Huntington's disease. Neurobiol Dis 2021; 157:105447. [PMID: 34274461 PMCID: PMC8591983 DOI: 10.1016/j.nbd.2021.105447] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 06/22/2021] [Accepted: 07/13/2021] [Indexed: 10/20/2022] Open
Abstract
Huntington's disease (HD) is a progressive, fatal neurodegenerative disorder characterized by motor, cognitive, and psychiatric disturbances. There is no known cure for HD, but its progressive nature allows for early therapeutic intervention. Currently, much of the research has focused on the striatum, however, there is evidence suggesting that disruption of thalamocortical circuits could underlie some of the early symptoms of HD. Loss of both cortical pyramidal neurons (CPNs) and thalamic neurons occurs in HD patients, and cognitive, somatosensory, and attention deficits precede motor abnormalities. However, the role of thalamocortical pathways in HD progression has been understudied. Here, we measured single unit activity and local field potentials (LFPs) from electrode arrays implanted in the thalamus and primary motor cortex of 4-5 month-old male and female Q175 mice. We assessed neuronal activity under baseline conditions as well as during presentation of rewards delivered via actuation of an audible solenoid valve. HD mice showed a significantly delayed licking response to the reward stimulus. At the same time, neuronal activation to the reward was delayed in thalamic neurons, CPNs and fast-spiking cortical interneurons (FSIs) of HD mice. In addition, thalamocortical coherence increased at lower frequencies in HD relative to wildtype mice. Together, these data provide evidence that impaired cortical and thalamic responses to reward stimuli, and impaired thalamocortical coherence, may play an important early role in motor, cognitive, and learning deficits in HD patients.
Collapse
Affiliation(s)
- Justin L Shobe
- Department of Neurobiology and Behavior, University of California, Irvine, Irvine, CA, USA
| | - Elissa J Donzis
- Intellectual and Developmental Disabilities Research Center, Jane and Terry Semel Institute for Neuroscience & Human Behavior, University of California Los Angeles, Los Angeles, CA, USA
| | - Kwang Lee
- Department of Brain and Cognitive Sciences, Daegu Gyeongbuk Institute of Science and Technology, South Korea
| | - Samiksha Chopra
- Intellectual and Developmental Disabilities Research Center, Jane and Terry Semel Institute for Neuroscience & Human Behavior, University of California Los Angeles, Los Angeles, CA, USA
| | - Sotiris C Masmanidis
- Department of Neurobiology, University of California Los Angeles, Los Angeles, CA, USA
| | - Carlos Cepeda
- Intellectual and Developmental Disabilities Research Center, Jane and Terry Semel Institute for Neuroscience & Human Behavior, University of California Los Angeles, Los Angeles, CA, USA
| | - Michael S Levine
- Intellectual and Developmental Disabilities Research Center, Jane and Terry Semel Institute for Neuroscience & Human Behavior, University of California Los Angeles, Los Angeles, CA, USA.
| |
Collapse
|
88
|
Wijeratne PA, Johnson EB, Gregory S, Georgiou-Karistianis N, Paulsen JS, Scahill RI, Tabrizi SJ, Alexander DC. A Multi-Study Model-Based Evaluation of the Sequence of Imaging and Clinical Biomarker Changes in Huntington's Disease. Front Big Data 2021; 4:662200. [PMID: 34423286 PMCID: PMC8374237 DOI: 10.3389/fdata.2021.662200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Accepted: 07/07/2021] [Indexed: 11/25/2022] Open
Abstract
Understanding the order and progression of change in biomarkers of neurodegeneration is essential to detect the effects of pharmacological interventions on these biomarkers. In Huntington’s disease (HD), motor, cognitive and MRI biomarkers are currently used in clinical trials of drug efficacy. Here for the first time we use directly compare data from three large observational studies of HD (total N = 532) using a probabilistic event-based model (EBM) to characterise the order in which motor, cognitive and MRI biomarkers become abnormal. We also investigate the impact of the genetic cause of HD, cytosine-adenine-guanine (CAG) repeat length, on progression through these stages. We find that EBM uncovers a broadly consistent order of events across all three studies; that EBM stage reflects clinical stage; and that EBM stage is related to age and genetic burden. Our findings indicate that measures of subcortical and white matter volume become abnormal prior to clinical and cognitive biomarkers. Importantly, CAG repeat length has a large impact on the timing of onset of each stage and progression through the stages, with a longer repeat length resulting in earlier onset and faster progression. Our results can be used to help design clinical trials of treatments for Huntington’s disease, influencing the choice of biomarkers and the recruitment of participants.
Collapse
Affiliation(s)
- Peter A Wijeratne
- Centre for Medical Image Computing, Department of Computer Science, University College London, London, United Kingdom.,Huntington's Disease Research Centre, Department of Neurodegenerative Disease, University College London, Queen Square Institute of Neurology, London, United Kingdom
| | - Eileanoir B Johnson
- Huntington's Disease Research Centre, Department of Neurodegenerative Disease, University College London, Queen Square Institute of Neurology, London, United Kingdom
| | - Sarah Gregory
- Huntington's Disease Research Centre, Department of Neurodegenerative Disease, University College London, Queen Square Institute of Neurology, London, United Kingdom
| | - Nellie Georgiou-Karistianis
- Monash Institute of Cognitive and Clinical Neurosciences, School of Psychological Sciences, Faculty of Nursing, Medicine, and Health Sciences, Monash University Clayton Campus, Clayton, VIC, Australia
| | - Jane S Paulsen
- Departments of Neurology and Psychiatry, Carver College of Medicine, University of Iowa, Iowa City, IA, United States
| | - Rachael I Scahill
- Huntington's Disease Research Centre, Department of Neurodegenerative Disease, University College London, Queen Square Institute of Neurology, London, United Kingdom
| | - Sarah J Tabrizi
- Huntington's Disease Research Centre, Department of Neurodegenerative Disease, University College London, Queen Square Institute of Neurology, London, United Kingdom
| | - Daniel C Alexander
- Centre for Medical Image Computing, Department of Computer Science, University College London, London, United Kingdom
| |
Collapse
|
89
|
Sokol LL, Bega D, Yeh C, Kluger BM, Lum HD. Disparities in Palliative Care Utilization Among Hospitalized People With Huntington Disease: A National Cross-Sectional Study. Am J Hosp Palliat Care 2021; 39:516-522. [PMID: 34291654 DOI: 10.1177/10499091211034419] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND People with Huntington's disease (HD) often become institutionalized and more frequently die away from the home setting. The reasons behind differences in end-of-life care are poorly understood. Less than 5% of people with HD report utilization of palliative care (PC) or hospice services, regardless of the lack of curative therapies for this neurodegenerative disease. It is unknown what factors are associated with in-patient specialty PC consultation in this population and how PC might be related to discharge disposition. OBJECTIVES To determine what HD-specific (e.g., psychosis) and serious illness-specific factors (e.g., resuscitation preferences) are associated with PC encounters in people with HD and explore how PC encounters are associated with discharge disposition. DESIGN We analyzed factors associated with PC consultation for people with HD using discharge data from the National Inpatient Sample and the Nationwide Inpatient Sample (NIS), Healthcare Cost and Utilization Project (HCUP), Agency for Healthcare Research and Quality. An anonymized, cross-sectional, and stratified sample of 20% of United States hospitalizations from 2007 through 2014 were included using ICD-9 codes. RESULTS 8521 patients with HD were admitted to the hospital. Of those, 321 (3.8%) received specialty PC. Payer type, (specifically private insurer or other insurer as compared to Medicare), income, (specifically the top quartile as compared to the bottom quartile), mortality risk, D.N.R., aspiration pneumonia, and depression were significantly associated with PC in a multivariate model. Among those who received PC, the odds ratio (OR) of discharge to a facility was 0.43 (95% CI, 0.32-0.58), whereas the OR of discharge to home with services was 2.25 (95% CI 1.57-3.23), even after adjusting for possible confounders. CONCLUSIONS Among patients with HD, economic factors, depression, and serious illness-specific factors were associated with PC, and PC was associated with discharge disposition. These findings have implications for the adaptation of inpatient PC models to meet the needs of persons with HD.
Collapse
Affiliation(s)
- Leonard L Sokol
- The Ken and Ruth Davee Department of Neurology, 12244Northwestern University Feinberg School of Medicine, Chicago, IL, USA.,McGaw Bioethics Scholars Program, Center for Bioethics and Humanities, 12244Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Danny Bega
- The Ken and Ruth Davee Department of Neurology, 12244Northwestern University Feinberg School of Medicine, Chicago, IL, USA.,Division of Movement Disorders, The Ken and Ruth Davee Department of Neurology, 12244Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Chen Yeh
- Department of Preventive Medicine, 12244Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Benzi M Kluger
- Department of Neurology, University of Rochester Medical Center, Rochester, NY, USA.,Department of Medicine, University of Rochester Medical Center, Rochester, NY, USA
| | - Hillary D Lum
- Eastern Colorado VA Geriatric Research Education and Clinical Center, Rocky Mountain Regional VA Medical Center, Aurora, CO, USA.,Division of Geriatric Medicine, University of Colorado School of Medicine, Aurora, CO, USA
| |
Collapse
|
90
|
Sokol LL, Troost JP, Kluger BM, Applebaum AJ, Paulsen JS, Bega D, Frank S, Hauser JM, Boileau NR, Depp CA, Cella D, Carlozzi NE. Meaning and purpose in Huntington's disease: a longitudinal study of its impact on quality of life. Ann Clin Transl Neurol 2021; 8:1668-1679. [PMID: 34288600 PMCID: PMC8351386 DOI: 10.1002/acn3.51424] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 06/14/2021] [Accepted: 06/15/2021] [Indexed: 12/31/2022] Open
Abstract
Objective Previous work in Huntington’s disease (HD) has shown that a sense of meaning and purpose (M&P) is positively associated with positive affect and well‐being (PAW); however, it was unknown whether HD‐validated patient‐reported outcomes (PROs) influence this association and how M&P impacts PROs in the future. Our study was designed to examine if HD‐validated PROs moderate the relationship between M&P and PAW and to evaluate if baseline M&P predicts 12‐ and 24‐month changes in HD‐validated PROs. Methods This was a longitudinal, multicenter study to develop several PROs (e.g., specific for the physical, emotional, cognitive, and social domains) for people with HD (HDQLIFE). The sample consisted of 322 people with HD (n = 50 prodromal, n = 171 early‐stage manifest, and n = 101 late‐stage manifest HD). A single, multivariate linear mixed‐effects model was performed with PAW as the outcome predicted by main effects for M&P and several moderators (i.e., an HD‐validated PRO) and interactions between M&P and a given PRO. Linear‐mixed models were also used to assess if baseline M&P predicted HD‐validated PROs at 12 and 24 months. Results Higher M&P was positively associated with higher PAW regardless of the magnitude of symptom burden, as represented by HD‐validated PROs, and independent of disease stage. In our primary analysis, baseline M&P predicted increased PAW and decreased depression, anxiety, anger, emotional/behavioral disruptions, and cognitive decline at 12 and 24 months across all disease stages. Interpretation These findings parallel those seen in the oncology population and have implications for adapting and developing psychotherapeutic and palliative HD interventions.
Collapse
Affiliation(s)
- Leonard L Sokol
- The Ken and Ruth Davee Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA.,Center for Bioethics and Humanities, McGaw Bioethics Scholars Program, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Jonathan P Troost
- Michigan Institute for Clinical and Health Research, University of Michigan, Ann Arbor, Michigan, USA
| | - Benzi M Kluger
- Departments of Neurology and Medicine, University of Rochester Medical Center, Rochester, New York, USA
| | - Allison J Applebaum
- Department of Psychiatry & Behavioral Sciences, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Jane S Paulsen
- Department of Neurology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Danny Bega
- The Ken and Ruth Davee Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Samuel Frank
- Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Joshua M Hauser
- Department of Medicine, Feinberg School of Medicine and Palliative Care Service, Jesse Brown VA Medical Center, Chicago, Illinois, USA
| | - Nicholas R Boileau
- Department of Physical Medicine and Rehabilitation, University of Michigan, Ann Arbor, Michigan, USA
| | - Colin A Depp
- Department of Psychiatry, University of California, San Diego, California, USA
| | - David Cella
- The Ken and Ruth Davee Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA.,Department of Medical Social Sciences, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Noelle E Carlozzi
- Department of Physical Medicine and Rehabilitation, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
91
|
Abreu D, Ware J, Georgiou-Karistianis N, Leavitt BR, Fitzer-Attas CJ, Lobo R, Fernandes AR, Handley O, Anderson KE, Stout JC, Sampaio C. Utility of Huntington's Disease Assessments by Disease Stage: Floor/Ceiling Effects. Front Neurol 2021; 12:595679. [PMID: 34335433 PMCID: PMC8320772 DOI: 10.3389/fneur.2021.595679] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Accepted: 06/10/2021] [Indexed: 11/23/2022] Open
Abstract
Introduction: An understanding of the clinimetric properties of clinical assessments, including their constraints, is critical to sound clinical study and trial design. Utilizing data from Enroll-HD—a global, prospective HD observational study and clinical research platform—we examined several well-established HD clinical assessments across all stages of disease for evidence of instrument constraints, specifically floor/ceiling effects, to inform selection of appropriate instruments for use in future studies/trials and identify gaps in instrument utility over the life-course of the disease. Material and Methods: Analyzing publicly available data from 6,614 HD gene-expansion carriers (HDGECs), we grouped participants into deciles based on baseline CAP score, which ranged from 26 to 229. We used descriptive statistics to characterize data distribution for 25 outcome measures (encompassing motor, function, cognition, and psychiatric/behavioral domains) in each CAP decile. A skewness statistic threshold of ±2 was defined a priori to indicate floor/ceiling effects. Results: We found evidence of floor/ceiling effects in the early premanifest stages of disease for most motor and function assessments (e.g., TMS, TFC) and select cognitive tasks (MMSE, Trail Making tests). Other cognitive assessments, and the HADS-SIS scales, performed well ubiquitously, with no evidence of floor/ceiling effects at any disease stage. Floor/ceiling effects were evident at every disease stage for certain assessments, including PBA-s measures. Ceiling effects were apparent for DCL from onset stages onwards, as expected. Discussion: Developing instruments sensitive to subtle differences in performance at the earlier stages of the disease spectrum, particularly in motor and function domains, is warranted.
Collapse
Affiliation(s)
- Daisy Abreu
- Associação para Investigação e Desenvolvimento da Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | - Jennifer Ware
- CHDI Management/CHDI Foundation, Princeton, NJ, United States
| | - Nellie Georgiou-Karistianis
- Turner Institute of Brain and Mental Health, School of Psychological Sciences, Monash University, Melbourne, VIC, Australia
| | - Blair R Leavitt
- Centre for Molecular Medicine and Therapeutics, Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada
| | | | - Raquel Lobo
- Associação para Investigação e Desenvolvimento da Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | - Ana Raquel Fernandes
- Associação para Investigação e Desenvolvimento da Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | - Olivia Handley
- School of Biosciences, Cardiff University, Cardiff, United Kingdom
| | - Karen E Anderson
- Department of Psychiatry and Department of Neurology, Georgetown University, Washington, DC, United States
| | - Julie C Stout
- Turner Institute of Brain and Mental Health, School of Psychological Sciences, Monash University, Melbourne, VIC, Australia
| | | |
Collapse
|
92
|
Zhang Y, Zhou J, Gehl CR, Long JD, Johnson H, Magnotta VA, Sewell D, Shannon K, Paulsen JS. Mild Cognitive Impairment as an Early Landmark in Huntington's Disease. Front Neurol 2021; 12:678652. [PMID: 34305789 PMCID: PMC8292715 DOI: 10.3389/fneur.2021.678652] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 05/24/2021] [Indexed: 11/26/2022] Open
Abstract
As one of the clinical triad in Huntington's disease (HD), cognitive impairment has not been widely accepted as a disease stage indicator in HD literature. This work aims to study cognitive impairment thoroughly for prodromal HD individuals with the data from a 12-year observational study to determine whether Mild Cognitive Impairment (MCI) in HD gene-mutation carriers is a defensible indicator of early disease. Prodromal HD gene-mutation carriers evaluated annually at one of 32 worldwide sites from September 2002 to April 2014 were evaluated for MCI in six cognitive domains. Linear mixed-effects models were used to determine age-, education-, and retest-adjusted cut-off values in cognitive assessment for MCI, and then the concurrent and predictive validity of MCI was assessed. Accelerated failure time (AFT) models were used to determine the timing of MCI (single-, two-, and multiple-domain), and dementia, which was defined as MCI plus functional loss. Seven hundred and sixty-eight prodromal HD participants had completed all six cognitive tasks, had MRI, and underwent longitudinal assessments. Over half (i.e., 54%) of the participants had MCI at study entry, and half of these had single-domain MCI. Compared to participants with intact cognitive performances, prodromal HD with MCI had higher genetic burden, worsened motor impairment, greater brain atrophy, and a higher likelihood of estimated HD onset. Prospective longitudinal study of those without MCI at baseline showed that 48% had MCI in subsequent visits and data visualization suggested that single-domain MCI, two-domain MCI, and dementia represent appropriate cognitive impairment staging for HD gene-mutation carriers. Findings suggest that MCI represents an early landmark of HD and may be a sensitive enrichment variable or endpoint for prodromal clinical trials of disease modifying therapeutics.
Collapse
Affiliation(s)
- Ying Zhang
- Department of Biostatistics, College of Public Health, University of Nebraska Medical Center, Omaha, NE, United States
| | - Junyi Zhou
- Department of Biostatistics, Indiana University Fairbanks School of Public Health, Indianapolis, IN, United States
| | - Carissa R Gehl
- Department of Psychiatry, College of Medicine, University of Iowa, Iowa City, IA, United States
| | - Jeffrey D Long
- Department of Psychiatry, College of Medicine, University of Iowa, Iowa City, IA, United States.,Department of Biostatistics, College of Public Health, University of Iowa, Iowa City, IA, United States
| | - Hans Johnson
- Department of Psychiatry, College of Medicine, University of Iowa, Iowa City, IA, United States.,Department of Electrical and Computer Engineering, University of Iowa, Iowa City, IA, United States
| | - Vincent A Magnotta
- Department of Psychiatry, College of Medicine, University of Iowa, Iowa City, IA, United States.,Department of Radiology, College of Medicine, University of Iowa, Iowa, City, IA, United States
| | - Daniel Sewell
- Department of Biostatistics, College of Public Health, University of Iowa, Iowa City, IA, United States
| | - Kathleen Shannon
- Department of Neurology, University of Wisconsin, Madison, WI, United States
| | - Jane S Paulsen
- Department of Neurology, University of Wisconsin, Madison, WI, United States
| |
Collapse
|
93
|
Claassen DO, DeCourcy J, Mellor J, Johnston C, Iyer RG. Impact of Chorea on Self-care Activity, Employment, and Health-care Resource Use in Patients with Huntington's Disease. JOURNAL OF HEALTH ECONOMICS AND OUTCOMES RESEARCH 2021; 8:99-105. [PMID: 34183975 PMCID: PMC8216765 DOI: 10.36469/001c.24620] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 05/17/2021] [Indexed: 05/30/2023]
Abstract
Background: Chorea is recognized as a prototypic motor feature of Huntington's disease (HD), but its effect on health-related quality of life (HRQoL) has not been fully explored. This study describes the impact of chorea on HRQoL in patients with HD. Objective: To determine the impact of HD-related chorea on employment, self-care activities, activities of daily living, and health-care resource utilization (HCRU). Methods: Data were drawn from the Adelphi HD Disease Specific Programme, a real-world point-in-time survey of 144 neurologists and 427 patients in the United States between July and October 2017. HD patients with and without chorea were identified and examined for differences in employment status, reasons for employment changes, self-care activities, and modifications to cope with involuntary movements. Bivariate tests and inverse probability weighted regression adjustment methods were used to determine differences in outcomes between patients with and without chorea. Results: HD patients with (n=287) and without (n=140) chorea were identified. Patients with chorea were less likely to be employed full-time (16.7% vs 25.7%; P<0.04) and more likely to be on long-term sick leave (17.4% vs 5.0%; P<0.01). The onset of motor symptoms in HD-related chorea patients coincided with a change in employment status (42.7% vs 20.8%; P<0.01). Among those still working (n=145), more than two-fifths of patients with chorea required changes to their workplace and required these changes more frequently (45% vs 17%; P<0.001). HD patients with chorea required aid to help them get around significantly more frequently than those without chorea (55% vs 34%; P<0.001). Discussion: These results demonstrate that HD patients with chorea experienced greater negative impact to employment, self-care activities, and HCRU than patients without chorea experienced. These patients were more likely to stop working due to motor, cognitive, and behavioral symptoms; require modifications in the home and workplace; and need more assistance from caregivers than patients without chorea. Conclusions: Patients with HD-related chorea have greater detriments to emotional, interpersonal, and professional functioning that could be improved by reducing chorea.
Collapse
|
94
|
Grosso Jasutkar H, Yamamoto A. Do Changes in Synaptic Autophagy Underlie the Cognitive Impairments in Huntington's Disease? J Huntingtons Dis 2021; 10:227-238. [PMID: 33780373 PMCID: PMC8293641 DOI: 10.3233/jhd-200466] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Although Huntington's disease (HD) is classically considered from the perspective of the motor syndrome, the cognitive changes in HD are prominent and often an early manifestation of disease. As such, investigating the underlying pathophysiology of cognitive changes may give insight into important and early neurodegenerative events. In this review, we first discuss evidence from both HD patients and animal models that cognitive changes correlate with early pathological changes at the synapse, an observation that is similarly made in other neurodegenerative conditions that primarily affect cognition. We then describe how autophagy plays a critical role supporting synaptic maintenance in the healthy brain, and how autophagy dysfunction in HD may thereby lead to impaired synaptic maintenance and thus early manifestations of disease.
Collapse
Affiliation(s)
| | - Ai Yamamoto
- Department of Neurology, Columbia University, New York, NY, USA.,Department of Pathology and Cell Biology, Columbia University, New York, NY, USA
| |
Collapse
|
95
|
Paz-Rodríguez F, Chávez-Oliveros M, Bernal-Pérez A, Ochoa-Morales A, Martínez-Ruano L, Camacho-Molina A, Rodríguez-Agudelo Y. Neuropsychological performance and disease burden in individuals at risk of developing Huntington disease. Neurologia 2021; 39:S0213-4853(21)00087-6. [PMID: 34090718 DOI: 10.1016/j.nrl.2021.04.015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 03/31/2021] [Accepted: 04/06/2021] [Indexed: 10/21/2022] Open
Abstract
INTRODUCTION Huntington disease (HD) is a hereditary neurodegenerative disorder. Thanks to predictive diagnosis, incipient clinical characteristics have been described in the prodromal phase. OBJECTIVE To compare performance in cognitive tasks of carriers (HDC) and non-carriers (non-HDC) of the huntingtin gene and to analyse the variability in performance as a function of disease burden and proximity to the manifest stage (age of symptom onset). METHOD A sample of 146 participants in a predictive diagnosis of HD programme were divided into the HDC (41.1%) and non-HDC groups (58.9%). Mathematical formulae were used to calculate disease burden and proximity to the manifest stage in the HDC group; these parameters were correlated with neuropsychological performance. RESULTS Significant differences were observed between groups in performance on the Mini-Mental State Examination (MMSE), Stroop-B, Symbol-Digit Modalities Test (SDMT), and phonological fluency. In the HDC group, correlations were observed between disease burden and performance on the MMSE, Stroop-B, and SDMT. The group of patients close to the manifest stage scored lowest on the MMSE, Stroop-B, Stroop-C, SDMT, and semantic verbal fluency. According to the multivariate analysis of covariance, the MMSE effect shows statistically significant differences in disease burden and proximity to onset of symptoms. CONCLUSIONS Members of the HDC group close to the manifest phase performed more poorly on tests assessing information processing speed and attention. Prefrontal cognitive dysfunction appears early, several years before the motor diagnosis of HD.
Collapse
Affiliation(s)
- F Paz-Rodríguez
- Laboratorio de Neuropsicología, Instituto Nacional de Neurología y Neurocirugía Manuel Velasco Suárez, Ciudad de México, México
| | - M Chávez-Oliveros
- Laboratorio de Neuropsicología, Instituto Nacional de Neurología y Neurocirugía Manuel Velasco Suárez, Ciudad de México, México
| | - A Bernal-Pérez
- Laboratorio de Neuropsicología, Instituto Nacional de Neurología y Neurocirugía Manuel Velasco Suárez, Ciudad de México, México
| | - A Ochoa-Morales
- Departamento de Genética, Instituto Nacional de Neurología y Neurocirugía Manuel Velasco Suárez, Ciudad de México, México
| | - L Martínez-Ruano
- Departamento de Genética, Instituto Nacional de Neurología y Neurocirugía Manuel Velasco Suárez, Ciudad de México, México
| | - A Camacho-Molina
- Departamento de Genética, Instituto Nacional de Neurología y Neurocirugía Manuel Velasco Suárez, Ciudad de México, México
| | - Y Rodríguez-Agudelo
- Laboratorio de Neuropsicología, Instituto Nacional de Neurología y Neurocirugía Manuel Velasco Suárez, Ciudad de México, México.
| |
Collapse
|
96
|
de Armas-Rillo S, Fumagallo-Reading F, Luis-Ravelo D, Abdul-Jalbar B, González-Hernández T, Lahoz F. Random Lasing Detection of Mutant Huntingtin Expression in Cells. SENSORS (BASEL, SWITZERLAND) 2021; 21:3825. [PMID: 34073127 PMCID: PMC8198928 DOI: 10.3390/s21113825] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 05/24/2021] [Accepted: 05/26/2021] [Indexed: 11/24/2022]
Abstract
Huntington's disease (HD) is an autosomal dominant, incurable neurodegenerative disease caused by mutation in the huntingtin gene (HTT). HTT mutation leads to protein misfolding and aggregation, which affect cells' functions and structural features. Because these changes might modify the scattering strength of affected cells, we propose that random lasing (RL) is an appropriate technique for detecting cells that express mutated HTT. To explore this hypothesis, we used a cell model of HD based on the expression of two different forms-pathogenic and non-pathogenic-of HTT. The RL signals from both cell profiles were compared. A multivariate statistical analysis of the RL signals based on the principal component analysis (PCA) and linear discriminant analysis (LDA) techniques revealed substantial differences between cells that expressed the pathogenic and the non-pathogenic forms of HTT.
Collapse
Affiliation(s)
- Sergio de Armas-Rillo
- Departamento de Física, Instituto Universitario de Estudios Avanzados en Física Atómica, Molecular y Fotónica (IUdEA), Universidad de La Laguna, 38206 Santa Cruz de Tenerife, Spain;
| | - Felipe Fumagallo-Reading
- Departamento de Ciencias Médicas Básicas, Instituto de Tecnologías Biomédicas (ITB), Universidad de La Laguna, 38320 Santa Cruz de Tenerife, Spain; (F.F.-R.); (D.L.-R.); (T.G.-H.)
| | - Diego Luis-Ravelo
- Departamento de Ciencias Médicas Básicas, Instituto de Tecnologías Biomédicas (ITB), Universidad de La Laguna, 38320 Santa Cruz de Tenerife, Spain; (F.F.-R.); (D.L.-R.); (T.G.-H.)
| | - Beatriz Abdul-Jalbar
- Departamento de Matemáticas, Estadística e Investigación Operativa, Universidad de La Laguna, 38206 Santa Cruz de Tenerife, Spain;
| | - Tomás González-Hernández
- Departamento de Ciencias Médicas Básicas, Instituto de Tecnologías Biomédicas (ITB), Universidad de La Laguna, 38320 Santa Cruz de Tenerife, Spain; (F.F.-R.); (D.L.-R.); (T.G.-H.)
| | - Fernando Lahoz
- Departamento de Física, Instituto Universitario de Estudios Avanzados en Física Atómica, Molecular y Fotónica (IUdEA), Universidad de La Laguna, 38206 Santa Cruz de Tenerife, Spain;
| |
Collapse
|
97
|
Abeyasinghe PM, Long JD, Razi A, Pustina D, Paulsen JS, Tabrizi SJ, Poudel GR, Georgiou-Karistianis N. Tracking Huntington's Disease Progression Using Motor, Functional, Cognitive, and Imaging Markers. Mov Disord 2021; 36:2282-2292. [PMID: 34014005 DOI: 10.1002/mds.28650] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 04/25/2021] [Accepted: 04/27/2021] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Potential therapeutic targets and clinical trials for Huntington's disease have grown immensely in the last decade. However, to improve clinical trial outcomes, there is a need to better characterize profiles of signs and symptoms across different epochs of the disease to improve selection of participants. OBJECTIVE The objective of the present study was to best distinguish longitudinal trajectories across different Huntington's disease progression groups. METHODS Clinical and morphometric imaging data from 1082 participants across IMAGE-HD, TRACK-HD, and PREDICT-HD studies were combined, with longitudinal times ranging between 1 and 10 years. Participants were classified into 4 groups using CAG and age product. Using multivariate linear mixed modeling, 63 combinations of markers were tested for their sensitivity in differentiating CAG and age product groups. Next, multivariate linear mixed modeling was applied to define the best combination of markers to track progression across individual CAG and age product groups. RESULTS Putamen and caudate volumes, individually and/or combined, were identified as the best variables to both differentiate CAG and age product groups and track progression within them. The model using only caudate volume best described advanced disease progression in the combined data set. Contrary to expectations, combining clinical markers and volumetric measures did not improve tracking longitudinal progression. CONCLUSIONS Monitoring volumetric changes throughout a trial (alongside primary and secondary clinical end points) may provide a more comprehensive understanding of improvements in functional outcomes and help to improve the design of clinical trials. Alternatively, our results suggest that imaging deserves consideration as an end point in clinical trials because of the prospect of greater sensitivity. © 2021 International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Pubu M Abeyasinghe
- School of Psychological Sciences and Turner Institute for Brain and Mental Health, Monash University, Melbourne, Victoria, Australia
| | - Jeffrey D Long
- Department of Psychiatry, Carver Collage of Medicine, The University of Iowa, Iowa City, Iowa, USA.,Department of Biostatistics, College of Public Health, The University of Iowa, Iowa City, Iowa, USA
| | - Adeel Razi
- School of Psychological Sciences and Turner Institute for Brain and Mental Health, Monash University, Melbourne, Victoria, Australia.,Monash Biomedical Imaging, Monash University, Clayton, Victoria, Australia.,Wellcome Centre for Human Neuroimaging, UCL, London, United Kingdom
| | - Dorian Pustina
- CHDI Management/CHDI Foundation, Princeton, New Jersey, USA
| | - Jane S Paulsen
- Department of Neurology, University of Wisconsin, Madison, Wisconsin, USA
| | - Sarah J Tabrizi
- UCL Department of Neurodegenerative Disease and Huntington's Disease Centre, UCL Queen Square Institute of Neurology, Dementia Research Institute at UCL, London, United Kingdom
| | - Govinda R Poudel
- Mary MacKillop Institute for Health Research, Australian Catholic University, Melbourne, Victoria, Australia
| | - Nellie Georgiou-Karistianis
- School of Psychological Sciences and Turner Institute for Brain and Mental Health, Monash University, Melbourne, Victoria, Australia
| |
Collapse
|
98
|
Goh AMY, You E, Perin S, Lautenschlager NT, Clay FJ, Loi SM, Chong T, Ames D, Chiu E, Ellis KA. Alcohol Use, Mental Health, and Functional Capacity as Predictors of Workplace Disability in a Cohort With Manifest Huntington's Disease. J Neuropsychiatry Clin Neurosci 2021; 32:235-243. [PMID: 32102602 DOI: 10.1176/appi.neuropsych.19090199] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
OBJECTIVE Huntington's disease (HD) is an inherited neurodegenerative disease involving motor, cognitive, psychiatric, and behavioral impairments that eventually affect work-role functioning. There is limited research regarding predictors of workplace disability in HD. The authors examined predictors of work impairment and disability in a cross-sectional cohort of employed persons with symptomatic HD participating in the worldwide Enroll-HD study. METHODS The study sample (N=316) comprised individuals with manifest HD and a CAG repeat length range between 39 and 60 and were currently engaged in paid full- or part-time employment. Univariate and multivariate logistic regression analyses identified predictors and the effect of all predictors in a fully adjusted model. RESULTS Of the sample, 20.3% reported missing work due to HD, 60.1% reported experiencing impairment while working due to HD, 79.1% reported having work-related activity impairment due to HD, and 60.8% reported impairment in overall work productivity due to HD. Individuals had 25% higher odds of missing work time if they had a higher level of functional impairment (odds ratio=0.76, 95% CI=0.64, 0.91) and had three times greater odds of missing work if they were current alcohol drinkers, compared with nondrinkers (odds ratio=2.86, 95% CI=1.62, 5.03). Individuals with lower self-perceived mental health were also 5% more likely to experience impairment at work due to HD. Motor impairment was not a strong predictor of workplace disability. CONCLUSIONS These findings provide important new knowledge that can inform the development of strategies or targeted intervention trials to support persons with symptomatic HD to maintain their work roles.
Collapse
Affiliation(s)
- Anita M Y Goh
- Department of Psychiatry, Academic Unit for Psychiatry of Old Age, University of Melbourne, Melbourne (Goh, You, Perin, Lautenschlager, Chong, Ames, Chiu, Ellis); Neuropsychiatry Unit, Melbourne Neuropsychiatry Centre, Royal Melbourne Hospital, Melbourne (Goh, Loi); Department of Psychiatry, University of Melbourne, Melbourne (Goh, Lautenschlager, Clay, Ellis); NorthWestern Mental Health, Melbourne Health, Melbourne (Goh, Lautenschlager, Ellis); National Ageing Research Institute, Parkville, Australia (Goh); Department of Psychiatry, St. Vincent's Hospital, University of Melbourne, Melbourne (Chong); School of Psychological Sciences, University of Melbourne, Melbourne (Ellis); Florey Institute of Neuroscience and Mental Health, University of Melbourne, Melbourne (Ellis)
| | - Emily You
- Department of Psychiatry, Academic Unit for Psychiatry of Old Age, University of Melbourne, Melbourne (Goh, You, Perin, Lautenschlager, Chong, Ames, Chiu, Ellis); Neuropsychiatry Unit, Melbourne Neuropsychiatry Centre, Royal Melbourne Hospital, Melbourne (Goh, Loi); Department of Psychiatry, University of Melbourne, Melbourne (Goh, Lautenschlager, Clay, Ellis); NorthWestern Mental Health, Melbourne Health, Melbourne (Goh, Lautenschlager, Ellis); National Ageing Research Institute, Parkville, Australia (Goh); Department of Psychiatry, St. Vincent's Hospital, University of Melbourne, Melbourne (Chong); School of Psychological Sciences, University of Melbourne, Melbourne (Ellis); Florey Institute of Neuroscience and Mental Health, University of Melbourne, Melbourne (Ellis)
| | - Stephanie Perin
- Department of Psychiatry, Academic Unit for Psychiatry of Old Age, University of Melbourne, Melbourne (Goh, You, Perin, Lautenschlager, Chong, Ames, Chiu, Ellis); Neuropsychiatry Unit, Melbourne Neuropsychiatry Centre, Royal Melbourne Hospital, Melbourne (Goh, Loi); Department of Psychiatry, University of Melbourne, Melbourne (Goh, Lautenschlager, Clay, Ellis); NorthWestern Mental Health, Melbourne Health, Melbourne (Goh, Lautenschlager, Ellis); National Ageing Research Institute, Parkville, Australia (Goh); Department of Psychiatry, St. Vincent's Hospital, University of Melbourne, Melbourne (Chong); School of Psychological Sciences, University of Melbourne, Melbourne (Ellis); Florey Institute of Neuroscience and Mental Health, University of Melbourne, Melbourne (Ellis)
| | - Nicola T Lautenschlager
- Department of Psychiatry, Academic Unit for Psychiatry of Old Age, University of Melbourne, Melbourne (Goh, You, Perin, Lautenschlager, Chong, Ames, Chiu, Ellis); Neuropsychiatry Unit, Melbourne Neuropsychiatry Centre, Royal Melbourne Hospital, Melbourne (Goh, Loi); Department of Psychiatry, University of Melbourne, Melbourne (Goh, Lautenschlager, Clay, Ellis); NorthWestern Mental Health, Melbourne Health, Melbourne (Goh, Lautenschlager, Ellis); National Ageing Research Institute, Parkville, Australia (Goh); Department of Psychiatry, St. Vincent's Hospital, University of Melbourne, Melbourne (Chong); School of Psychological Sciences, University of Melbourne, Melbourne (Ellis); Florey Institute of Neuroscience and Mental Health, University of Melbourne, Melbourne (Ellis)
| | - Fiona J Clay
- Department of Psychiatry, Academic Unit for Psychiatry of Old Age, University of Melbourne, Melbourne (Goh, You, Perin, Lautenschlager, Chong, Ames, Chiu, Ellis); Neuropsychiatry Unit, Melbourne Neuropsychiatry Centre, Royal Melbourne Hospital, Melbourne (Goh, Loi); Department of Psychiatry, University of Melbourne, Melbourne (Goh, Lautenschlager, Clay, Ellis); NorthWestern Mental Health, Melbourne Health, Melbourne (Goh, Lautenschlager, Ellis); National Ageing Research Institute, Parkville, Australia (Goh); Department of Psychiatry, St. Vincent's Hospital, University of Melbourne, Melbourne (Chong); School of Psychological Sciences, University of Melbourne, Melbourne (Ellis); Florey Institute of Neuroscience and Mental Health, University of Melbourne, Melbourne (Ellis)
| | - Samantha M Loi
- Department of Psychiatry, Academic Unit for Psychiatry of Old Age, University of Melbourne, Melbourne (Goh, You, Perin, Lautenschlager, Chong, Ames, Chiu, Ellis); Neuropsychiatry Unit, Melbourne Neuropsychiatry Centre, Royal Melbourne Hospital, Melbourne (Goh, Loi); Department of Psychiatry, University of Melbourne, Melbourne (Goh, Lautenschlager, Clay, Ellis); NorthWestern Mental Health, Melbourne Health, Melbourne (Goh, Lautenschlager, Ellis); National Ageing Research Institute, Parkville, Australia (Goh); Department of Psychiatry, St. Vincent's Hospital, University of Melbourne, Melbourne (Chong); School of Psychological Sciences, University of Melbourne, Melbourne (Ellis); Florey Institute of Neuroscience and Mental Health, University of Melbourne, Melbourne (Ellis)
| | - Terence Chong
- Department of Psychiatry, Academic Unit for Psychiatry of Old Age, University of Melbourne, Melbourne (Goh, You, Perin, Lautenschlager, Chong, Ames, Chiu, Ellis); Neuropsychiatry Unit, Melbourne Neuropsychiatry Centre, Royal Melbourne Hospital, Melbourne (Goh, Loi); Department of Psychiatry, University of Melbourne, Melbourne (Goh, Lautenschlager, Clay, Ellis); NorthWestern Mental Health, Melbourne Health, Melbourne (Goh, Lautenschlager, Ellis); National Ageing Research Institute, Parkville, Australia (Goh); Department of Psychiatry, St. Vincent's Hospital, University of Melbourne, Melbourne (Chong); School of Psychological Sciences, University of Melbourne, Melbourne (Ellis); Florey Institute of Neuroscience and Mental Health, University of Melbourne, Melbourne (Ellis)
| | - David Ames
- Department of Psychiatry, Academic Unit for Psychiatry of Old Age, University of Melbourne, Melbourne (Goh, You, Perin, Lautenschlager, Chong, Ames, Chiu, Ellis); Neuropsychiatry Unit, Melbourne Neuropsychiatry Centre, Royal Melbourne Hospital, Melbourne (Goh, Loi); Department of Psychiatry, University of Melbourne, Melbourne (Goh, Lautenschlager, Clay, Ellis); NorthWestern Mental Health, Melbourne Health, Melbourne (Goh, Lautenschlager, Ellis); National Ageing Research Institute, Parkville, Australia (Goh); Department of Psychiatry, St. Vincent's Hospital, University of Melbourne, Melbourne (Chong); School of Psychological Sciences, University of Melbourne, Melbourne (Ellis); Florey Institute of Neuroscience and Mental Health, University of Melbourne, Melbourne (Ellis)
| | - Edmond Chiu
- Department of Psychiatry, Academic Unit for Psychiatry of Old Age, University of Melbourne, Melbourne (Goh, You, Perin, Lautenschlager, Chong, Ames, Chiu, Ellis); Neuropsychiatry Unit, Melbourne Neuropsychiatry Centre, Royal Melbourne Hospital, Melbourne (Goh, Loi); Department of Psychiatry, University of Melbourne, Melbourne (Goh, Lautenschlager, Clay, Ellis); NorthWestern Mental Health, Melbourne Health, Melbourne (Goh, Lautenschlager, Ellis); National Ageing Research Institute, Parkville, Australia (Goh); Department of Psychiatry, St. Vincent's Hospital, University of Melbourne, Melbourne (Chong); School of Psychological Sciences, University of Melbourne, Melbourne (Ellis); Florey Institute of Neuroscience and Mental Health, University of Melbourne, Melbourne (Ellis)
| | - Kathryn A Ellis
- Department of Psychiatry, Academic Unit for Psychiatry of Old Age, University of Melbourne, Melbourne (Goh, You, Perin, Lautenschlager, Chong, Ames, Chiu, Ellis); Neuropsychiatry Unit, Melbourne Neuropsychiatry Centre, Royal Melbourne Hospital, Melbourne (Goh, Loi); Department of Psychiatry, University of Melbourne, Melbourne (Goh, Lautenschlager, Clay, Ellis); NorthWestern Mental Health, Melbourne Health, Melbourne (Goh, Lautenschlager, Ellis); National Ageing Research Institute, Parkville, Australia (Goh); Department of Psychiatry, St. Vincent's Hospital, University of Melbourne, Melbourne (Chong); School of Psychological Sciences, University of Melbourne, Melbourne (Ellis); Florey Institute of Neuroscience and Mental Health, University of Melbourne, Melbourne (Ellis)
| |
Collapse
|
99
|
Tăuţan AM, Ionescu B, Santarnecchi E. Artificial intelligence in neurodegenerative diseases: A review of available tools with a focus on machine learning techniques. Artif Intell Med 2021; 117:102081. [PMID: 34127244 DOI: 10.1016/j.artmed.2021.102081] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 02/21/2021] [Accepted: 04/26/2021] [Indexed: 10/21/2022]
Abstract
Neurodegenerative diseases have shown an increasing incidence in the older population in recent years. A significant amount of research has been conducted to characterize these diseases. Computational methods, and particularly machine learning techniques, are now very useful tools in helping and improving the diagnosis as well as the disease monitoring process. In this paper, we provide an in-depth review on existing computational approaches used in the whole neurodegenerative spectrum, namely for Alzheimer's, Parkinson's, and Huntington's Diseases, Amyotrophic Lateral Sclerosis, and Multiple System Atrophy. We propose a taxonomy of the specific clinical features, and of the existing computational methods. We provide a detailed analysis of the various modalities and decision systems employed for each disease. We identify and present the sleep disorders which are present in various diseases and which represent an important asset for onset detection. We overview the existing data set resources and evaluation metrics. Finally, we identify current remaining open challenges and discuss future perspectives.
Collapse
Affiliation(s)
- Alexandra-Maria Tăuţan
- University "Politehnica" of Bucharest, Splaiul Independenţei 313, 060042 Bucharest, Romania.
| | - Bogdan Ionescu
- University "Politehnica" of Bucharest, Splaiul Independenţei 313, 060042 Bucharest, Romania.
| | - Emiliano Santarnecchi
- Berenson-Allen Center for Noninvasive Brain Stimulation, Harvard Medical School, 330 Brookline Avenue, Boston, United States.
| |
Collapse
|
100
|
Melis M, Haehner A, Mastinu M, Hummel T, Tomassini Barbarossa I. Molecular and Genetic Factors Involved in Olfactory and Gustatory Deficits and Associations with Microbiota in Parkinson's Disease. Int J Mol Sci 2021; 22:ijms22084286. [PMID: 33924222 PMCID: PMC8074606 DOI: 10.3390/ijms22084286] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 04/14/2021] [Accepted: 04/17/2021] [Indexed: 12/11/2022] Open
Abstract
Deficits in olfaction and taste are among the most frequent non-motor manifestations in Parkinson’s disease (PD) that start very early and frequently precede the PD motor symptoms. The limited data available suggest that the basis of the olfactory and gustatory dysfunction related to PD are likely multifactorial and may include the same determinants responsible for other non-motor symptoms of PD. This review describes the most relevant molecular and genetic factors involved in the PD-related smell and taste impairments, and their associations with the microbiota, which also may represent risk factors associated with the disease.
Collapse
Affiliation(s)
- Melania Melis
- Department of Biomedical Sciences, University of Cagliari, Monserrato, 09042 Cagliari, Italy; (M.M.); (M.M.)
| | - Antje Haehner
- Smell and Taste Clinic, Department of Otorhinolaryngology, Technical University of Dresden, 01307 Dresden, Germany; (A.H.); (T.H.)
| | - Mariano Mastinu
- Department of Biomedical Sciences, University of Cagliari, Monserrato, 09042 Cagliari, Italy; (M.M.); (M.M.)
| | - Thomas Hummel
- Smell and Taste Clinic, Department of Otorhinolaryngology, Technical University of Dresden, 01307 Dresden, Germany; (A.H.); (T.H.)
| | - Iole Tomassini Barbarossa
- Department of Biomedical Sciences, University of Cagliari, Monserrato, 09042 Cagliari, Italy; (M.M.); (M.M.)
- Correspondence: ; Tel.: +39-070-675-4144
| |
Collapse
|