51
|
Feldman MJ, Paul RE, Banan D, Barrett JF, Sebastian J, Yee MC, Jiang H, Lipka AE, Brutnell TP, Dinneny JR, Leakey ADB, Baxter I. Time dependent genetic analysis links field and controlled environment phenotypes in the model C4 grass Setaria. PLoS Genet 2017. [PMID: 28644860 PMCID: PMC5507400 DOI: 10.1371/journal.pgen.1006841] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Vertical growth of plants is a dynamic process that is influenced by genetic and environmental factors and has a pronounced effect on overall plant architecture and biomass composition. We have performed six controlled growth trials of an interspecific Setaria italica x Setaria viridis recombinant inbred line population to assess how the genetic architecture of plant height is influenced by developmental queues, water availability and planting density. The non-destructive nature of plant height measurements has enabled us to monitor height throughout the plant life cycle in both field and controlled environments. We find that plant height is reduced under water limitation and high density planting and affected by growth environment (field vs. growth chamber). The results support a model where plant height is a heritable, polygenic trait and that the major genetic loci that influence plant height function independent of growth environment. The identity and contribution of loci that influence height changes dynamically throughout development and the reduction of growth observed in water limited environments is a consequence of delayed progression through the genetic program which establishes plant height in Setaria. In this population, alleles inherited from the weedy S. viridis parent act to increase plant height early, whereas a larger number of small effect alleles inherited from the domesticated S. italica parent collectively act to increase plant height later in development. Growth is a dynamic process that responds to a changing environment. Most of the methods that we have for measuring are static and collecting information throughout an organisms lifecycle is labor and cost prohibitive. Advances in imaging and robotics technology have enabled novel approaches to understanding how plants adapt to the environment. Using the model grass Setaria and new methods for measuring parameters from images, we investigate the genetic architecture of plant height in response to water availability and planting density. Height is one of the most influential components of plant architecture, determining tradeoffs between competition and resource allocation and is an important trait for boosting yields. The non-destructive nature of plant height measurements has enabled us to monitor growth throughout the plant life cycle in both field and controlled environments. We identified several loci controlling height in a population derived from a wild strain of Setaria viridis and its domesticated relative Setaria italica, as well as the developmental time in which these loci act. In this population, alleles inherited from the wild parent act to increase plant height early, whereas a larger number of small effect alleles inherited from the domesticated parent collectively act to increase plant height later in development.
Collapse
Affiliation(s)
- Max J. Feldman
- Donald Danforth Plant Science Center, St. Louis, Missouri, United States of America
| | - Rachel E. Paul
- Department of Plant Biology and Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
| | - Darshi Banan
- Department of Plant Biology and Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
| | - Jennifer F. Barrett
- Donald Danforth Plant Science Center, St. Louis, Missouri, United States of America
| | - Jose Sebastian
- Carnegie Institution for Science, Department of Plant Biology, Stanford, California, United States of America
| | - Muh-Ching Yee
- Carnegie Institution for Science, Department of Plant Biology, Stanford, California, United States of America
| | - Hui Jiang
- Donald Danforth Plant Science Center, St. Louis, Missouri, United States of America
| | - Alexander E. Lipka
- Department of Crop Sciences, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
| | - Thomas P. Brutnell
- Donald Danforth Plant Science Center, St. Louis, Missouri, United States of America
| | - José R. Dinneny
- Carnegie Institution for Science, Department of Plant Biology, Stanford, California, United States of America
| | - Andrew D. B. Leakey
- Department of Plant Biology and Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
| | - Ivan Baxter
- Donald Danforth Plant Science Center, St. Louis, Missouri, United States of America
- USDA-ARS, Plant Genetics Research Unit, St. Louis, Missouri, United States of America
- * E-mail:
| |
Collapse
|
52
|
Establishment of a vernalization requirement in Brachypodium distachyon requires REPRESSOR OF VERNALIZATION1. Proc Natl Acad Sci U S A 2017; 114:6623-6628. [PMID: 28584114 DOI: 10.1073/pnas.1700536114] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
A requirement for vernalization, the process by which prolonged cold exposure provides competence to flower, is an important adaptation to temperate climates that ensures flowering does not occur before the onset of winter. In temperate grasses, vernalization results in the up-regulation of VERNALIZATION1 (VRN1) to establish competence to flower; however, little is known about the mechanism underlying repression of VRN1 in the fall season, which is necessary to establish a vernalization requirement. Here, we report that a plant-specific gene containing a bromo-adjacent homology and transcriptional elongation factor S-II domain, which we named REPRESSOR OF VERNALIZATION1 (RVR1), represses VRN1 before vernalization in Brachypodium distachyon That RVR1 is upstream of VRN1 is supported by the observations that VRN1 is precociously elevated in an rvr1 mutant, resulting in rapid flowering without cold exposure, and the rapid-flowering rvr1 phenotype is dependent on VRN1 The precocious VRN1 expression in rvr1 is associated with reduced levels of the repressive chromatin modification H3K27me3 at VRN1, which is similar to the reduced VRN1 H3K27me3 in vernalized plants. Furthermore, the transcriptome of vernalized wild-type plants overlaps with that of nonvernalized rvr1 plants, indicating loss of rvr1 is similar to the vernalized state at a molecular level. However, loss of rvr1 results in more differentially expressed genes than does vernalization, indicating that RVR1 may be involved in processes other than vernalization despite a lack of any obvious pleiotropy in the rvr1 mutant. This study provides an example of a role for this class of plant-specific genes.
Collapse
|
53
|
Huang P, Jiang H, Zhu C, Barry K, Jenkins J, Sandor L, Schmutz J, Box MS, Kellogg EA, Brutnell TP. Sparse panicle1 is required for inflorescence development in Setaria viridis and maize. NATURE PLANTS 2017; 3:17054. [PMID: 28418381 DOI: 10.1038/nplants.2017.54] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Accepted: 03/20/2017] [Indexed: 05/06/2023]
Abstract
Setaria viridis is a rapid-life-cycle model panicoid grass. To identify genes that may contribute to inflorescence architecture and thus have the potential to influence grain yield in related crops such as maize, we conducted an N-nitroso-N-methylurea (NMU) mutagenesis of S. viridis and screened for visible inflorescence mutant phenotypes. Of the approximately 2,700 M2 families screened, we identified four recessive sparse panicle mutants (spp1-spp4) characterized by reduced and uneven branching of the inflorescence. To identify the gene underlying the sparse panicle1 (spp1) phenotype, we performed bulked segregant analysis and deep sequencing to fine map it to an approximately 1 Mb interval. Within this interval, we identified disruptive mutations in two genes. Complementation tests between spp1 and spp3 revealed they were allelic, and deep sequencing of spp3 identified an independent disruptive mutation in SvAUX1 (AUXIN1), one of the two genes in the ∼1 Mb interval and the only gene disruption shared between spp1 and spp3. SvAUX1 was found to affect both inflorescence development and root gravitropism in S. viridis. A search for orthologous mutant alleles in maize confirmed a very similar role of ZmAUX1 in maize, which highlights the utility of S. viridis in accelerating functional genomic studies in maize.
Collapse
Affiliation(s)
- Pu Huang
- Donald Danforth Plant Science Center, 975 N Warson Road, St. Louis, Missouri 63132, USA
| | - Hui Jiang
- Donald Danforth Plant Science Center, 975 N Warson Road, St. Louis, Missouri 63132, USA
| | - Chuanmei Zhu
- Donald Danforth Plant Science Center, 975 N Warson Road, St. Louis, Missouri 63132, USA
| | - Kerrie Barry
- Department of Energy Joint Genome Institute, Walnut Creek, California 94598, USA
| | - Jerry Jenkins
- HudsonAlpha Institute for Biotechnology, Huntsville, Alabama 35806, USA
| | - Laura Sandor
- Department of Energy Joint Genome Institute, Walnut Creek, California 94598, USA
| | - Jeremy Schmutz
- Department of Energy Joint Genome Institute, Walnut Creek, California 94598, USA
- HudsonAlpha Institute for Biotechnology, Huntsville, Alabama 35806, USA
| | - Mathew S Box
- Donald Danforth Plant Science Center, 975 N Warson Road, St. Louis, Missouri 63132, USA
| | - Elizabeth A Kellogg
- Donald Danforth Plant Science Center, 975 N Warson Road, St. Louis, Missouri 63132, USA
| | - Thomas P Brutnell
- Donald Danforth Plant Science Center, 975 N Warson Road, St. Louis, Missouri 63132, USA
| |
Collapse
|
54
|
Des Marais DL, Lasky JR, Verslues PE, Chang TZ, Juenger TE. Interactive effects of water limitation and elevated temperature on the physiology, development and fitness of diverse accessions of Brachypodium distachyon. THE NEW PHYTOLOGIST 2017; 214:132-144. [PMID: 27864966 DOI: 10.1111/nph.14316] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Accepted: 10/03/2016] [Indexed: 05/21/2023]
Abstract
An enduring question in plant physiology and evolution is how single genotypes of plants optimize performance in diverse, often highly variable, environments. We grew 35 natural accessions of the grass Brachypodium distachyon in four environments in the glasshouse, contrasting soil water deficit, elevated temperature and their interaction. We modeled treatment, genotype and interactive effects on leaf-level and whole-plant traits, including fecundity. We also assessed the relationship between glasshouse-measured traits and parameters related to climate at the place of origin. We found abundant genetic variation in both constitutive and induced traits related to plant-water relations. Most traits showed strong interaction between temperature and water availability, and we observed genotype-by-environment interaction for several traits. Notably, leaf free proline abundance showed a strong effect of genotype × temperature × water. We found strong associations between phenology, biomass and water use efficiency (WUE) with parameters describing climate of origin. Plants respond to multiple stressors in ways not directly predictable from single stressors, underscoring the complex and trait-specific mechanisms of environmental response. Climate-trait correlations support a role for WUE and phenology in local adaptation to climate in B. distachyon.
Collapse
Affiliation(s)
- David L Des Marais
- Department of Integrative Biology and Institute for Cell and Molecular Biology, The University of Texas at Austin, Austin, TX, 78712, USA
| | - Jesse R Lasky
- Department of Biology, Pennsylvania State University, University Park, PA, 16802, USA
| | - Paul E Verslues
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, 11529, Taiwan
| | - Trent Z Chang
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, 11529, Taiwan
| | - Thomas E Juenger
- Department of Integrative Biology and Institute for Cell and Molecular Biology, The University of Texas at Austin, Austin, TX, 78712, USA
| |
Collapse
|
55
|
Affiliation(s)
- Richard Sibout
- Institut Jean-Pierre Bourgin, UMR1318 INRA-AgroParisTech, CNRS, Université Paris-Saclay, 78026 Versailles, France
| |
Collapse
|
56
|
Chen ZH, Chen G, Dai F, Wang Y, Hills A, Ruan YL, Zhang G, Franks PJ, Nevo E, Blatt MR. Molecular Evolution of Grass Stomata. TRENDS IN PLANT SCIENCE 2017; 22:124-139. [PMID: 27776931 DOI: 10.1016/j.tplants.2016.09.005] [Citation(s) in RCA: 141] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Revised: 09/29/2016] [Accepted: 09/30/2016] [Indexed: 05/18/2023]
Abstract
Grasses began to diversify in the late Cretaceous Period and now dominate more than one third of global land area, including three-quarters of agricultural land. We hypothesize that their success is likely attributed to the evolution of highly responsive stomata capable of maximizing productivity in rapidly changing environments. Grass stomata harness the active turgor control mechanisms present in stomata of more ancient plant lineages, maximizing several morphological and developmental features to ensure rapid responses to environmental inputs. The evolutionary development of grass stomata appears to have been a gradual progression. Therefore, understanding the complex structures, developmental events, regulatory networks, and combinations of ion transporters necessary to drive rapid stomatal movement may inform future efforts towards breeding new crop varieties.
Collapse
Affiliation(s)
- Zhong-Hua Chen
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China; School of Science and Health, Western Sydney University, Penrith, NSW 2751, Australia.
| | - Guang Chen
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Fei Dai
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Yizhou Wang
- Laboratory of Plant Physiology and Biophysics, University of Glasgow, Glasgow G12 8QQ, United Kingdom
| | - Adrian Hills
- Laboratory of Plant Physiology and Biophysics, University of Glasgow, Glasgow G12 8QQ, United Kingdom
| | - Yong-Ling Ruan
- School of Environmental and Life Sciences, University of Newcastle, Callaghan, NSW 2308, Australia
| | - Guoping Zhang
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Peter J Franks
- Faculty of Agriculture and Environment, The University of Sydney, Sydney, NSW 2006, Australia
| | - Eviatar Nevo
- Institute of Evolution, University of Haifa, Mount Carmel, Haifa 31905, Israel
| | - Michael R Blatt
- Laboratory of Plant Physiology and Biophysics, University of Glasgow, Glasgow G12 8QQ, United Kingdom
| |
Collapse
|
57
|
Gombos M, Zombori Z, Szécsényi M, Sándor G, Kovács H, Györgyey J. Characterization of the LBD gene family in Brachypodium: a phylogenetic and transcriptional study. PLANT CELL REPORTS 2017; 36:61-79. [PMID: 27686461 DOI: 10.1007/s00299-016-2057-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Accepted: 09/07/2016] [Indexed: 05/20/2023]
Abstract
An unambiguous nomenclature is proposed for the twenty-eight-member LOB domain transcription factor family in Brachypodium . Expression analysis provides unique transcript patterns that are characteristic of a wide range of organs and plant parts. LOB (lateral organ boundaries)-domain proteins define a family of plant-specific transcription factors involved in developmental processes from embryogenesis to seed production. They play a crucial role in shaping the plant architecture through coordinating cell fate at meristem to organ boundaries. Despite their high potential importance, our knowledge of them is limited, especially in the case of monocots. In this study, we characterized LOB domain protein coding genes (LBDs) of Brachypodium distachyon, a model plant for grasses, and present their phylogenetic relationships and an overall spatial expression study. In the Brachypodium genome database, 28 LBDs were found and then classified based on the presence of highly conserved LOB domain motif. Their transcript amounts were measured via quantitative real-time RT-PCR in 37 different plant parts from root tip to generative organs. Comprehensive phylogenetic analysis suggests that there are neither Brachypodium- nor monocot-specific lineages among LBDs, but there are differences in terms of complexity of subclasses between monocots and dicots. Although LBDs in Brachypodium have wide variation of tissue-specific expression and relative transcript levels, overall expression patterns show similarity to their counterparts in other species. The varying transcript profiles we observed support the hypothesis that Brachypodium LBDs have diverse but conserved functions in plant organogenesis.
Collapse
Affiliation(s)
- Magdolna Gombos
- Institute of Plant Biology, Biological Research Centre, Temesvári krt. 62, Szeged, 6726, Hungary
| | - Zoltán Zombori
- Institute of Plant Biology, Biological Research Centre, Temesvári krt. 62, Szeged, 6726, Hungary
| | - Mária Szécsényi
- Institute of Plant Biology, Biological Research Centre, Temesvári krt. 62, Szeged, 6726, Hungary
| | - Györgyi Sándor
- Institute of Plant Biology, Biological Research Centre, Temesvári krt. 62, Szeged, 6726, Hungary
| | - Hajnalka Kovács
- Institute of Plant Biology, Biological Research Centre, Temesvári krt. 62, Szeged, 6726, Hungary
| | - János Györgyey
- Institute of Plant Biology, Biological Research Centre, Temesvári krt. 62, Szeged, 6726, Hungary.
| |
Collapse
|
58
|
|
59
|
Genetic Diversity and Geographic Distribution of North American Setaria viridis Populations. GENETICS AND GENOMICS OF SETARIA 2017. [DOI: 10.1007/978-3-319-45105-3_3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
60
|
Pant SR, Irigoyen S, Doust AN, Scholthof KBG, Mandadi KK. Setaria: A Food Crop and Translational Research Model for C 4 Grasses. FRONTIERS IN PLANT SCIENCE 2016; 7:1885. [PMID: 28018413 PMCID: PMC5156725 DOI: 10.3389/fpls.2016.01885] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Accepted: 11/29/2016] [Indexed: 05/23/2023]
Affiliation(s)
- Shankar R. Pant
- Texas A&M AgriLife Research and Extension Center, Texas A&M University SystemWeslaco, TX, USA
| | - Sonia Irigoyen
- Texas A&M AgriLife Research and Extension Center, Texas A&M University SystemWeslaco, TX, USA
| | - Andrew N. Doust
- Department of Plant Biology, Ecology, and Evolution, Oklahoma State UniversityStillwater, OK, USA
| | - Karen-Beth G. Scholthof
- Department of Plant Pathology and Microbiology, Texas A&M UniversityCollege Station, TX, USA
| | - Kranthi K. Mandadi
- Texas A&M AgriLife Research and Extension Center, Texas A&M University SystemWeslaco, TX, USA
- Department of Plant Pathology and Microbiology, Texas A&M UniversityCollege Station, TX, USA
| |
Collapse
|
61
|
McGaughey SA, Osborn HL, Chen L, Pegler JL, Tyerman SD, Furbank RT, Byrt CS, Grof CPL. Roles of Aquaporins in Setaria viridis Stem Development and Sugar Storage. FRONTIERS IN PLANT SCIENCE 2016; 7:1815. [PMID: 28018372 PMCID: PMC5147461 DOI: 10.3389/fpls.2016.01815] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Accepted: 11/17/2016] [Indexed: 05/29/2023]
Abstract
Setaria viridis is a C4 grass used as a model for bioenergy feedstocks. The elongating internodes in developing S. viridis stems grow from an intercalary meristem at the base, and progress acropetally toward fully expanded cells that store sugar. During stem development and maturation, water flow is a driver of cell expansion and sugar delivery. As aquaporin proteins are implicated in regulating water flow, we analyzed elongating and mature internode transcriptomes to identify putative aquaporin encoding genes that had particularly high transcript levels during the distinct stages of internode cell expansion and maturation. We observed that SvPIP2;1 was highly expressed in internode regions undergoing cell expansion, and SvNIP2;2 was highly expressed in mature sugar accumulating regions. Gene co-expression analysis revealed SvNIP2;2 expression was highly correlated with the expression of five putative sugar transporters expressed in the S. viridis internode. To explore the function of the proteins encoded by SvPIP2;1 and SvNIP2;2, we expressed them in Xenopus laevis oocytes and tested their permeability to water. SvPIP2;1 and SvNIP2;2 functioned as water channels in X. laevis oocytes and their permeability was gated by pH. Our results indicate that SvPIP2;1 may function as a water channel in developing stems undergoing cell expansion and SvNIP2;2 is a candidate for retrieving water and possibly a yet to be determined solute from mature internodes. Future research will investigate whether changing the function of these proteins influences stem growth and sugar yield in S. viridis.
Collapse
Affiliation(s)
- Samantha A. McGaughey
- Centre for Plant Science, School of Environmental and Life Sciences, University of Newcastle, CallaghanNSW, Australia
- Australian Research Council Centre of Excellence in Plant Energy Biology, Waite Research Institute and School of Agriculture, Food and Wine, University of Adelaide, Glen OsmondSA, Australia
| | - Hannah L. Osborn
- Australian Research Council Centre of Excellence for Translational Photosynthesis, College of Medicine, Biology and Environment, Australian National University, CanberraACT, Australia
| | - Lily Chen
- Centre for Plant Science, School of Environmental and Life Sciences, University of Newcastle, CallaghanNSW, Australia
- Australian Research Council Centre of Excellence for Translational Photosynthesis, College of Medicine, Biology and Environment, Australian National University, CanberraACT, Australia
| | - Joseph L. Pegler
- Centre for Plant Science, School of Environmental and Life Sciences, University of Newcastle, CallaghanNSW, Australia
| | - Stephen D. Tyerman
- Australian Research Council Centre of Excellence in Plant Energy Biology, Waite Research Institute and School of Agriculture, Food and Wine, University of Adelaide, Glen OsmondSA, Australia
| | - Robert T. Furbank
- Australian Research Council Centre of Excellence for Translational Photosynthesis, College of Medicine, Biology and Environment, Australian National University, CanberraACT, Australia
| | - Caitlin S. Byrt
- Australian Research Council Centre of Excellence in Plant Energy Biology, Waite Research Institute and School of Agriculture, Food and Wine, University of Adelaide, Glen OsmondSA, Australia
| | - Christopher P. L. Grof
- Centre for Plant Science, School of Environmental and Life Sciences, University of Newcastle, CallaghanNSW, Australia
| |
Collapse
|
62
|
Borrego EJ, Kolomiets MV. Synthesis and Functions of Jasmonates in Maize. PLANTS (BASEL, SWITZERLAND) 2016; 5:E41. [PMID: 27916835 PMCID: PMC5198101 DOI: 10.3390/plants5040041] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/29/2016] [Revised: 11/16/2016] [Accepted: 11/22/2016] [Indexed: 02/02/2023]
Abstract
Of the over 600 oxylipins present in all plants, the phytohormone jasmonic acid (JA) remains the best understood in terms of its biosynthesis, function and signaling. Much like their eicosanoid analogues in mammalian system, evidence is growing for the role of the other oxylipins in diverse physiological processes. JA serves as the model plant oxylipin species and regulates defense and development. For several decades, the biology of JA has been characterized in a few dicot species, yet the function of JA in monocots has only recently begun to be elucidated. In this work, the synthesis and function of JA in maize is presented from the perspective of oxylipin biology. The maize genes responsible for catalyzing the reactions in the JA biosynthesis are clarified and described. Recent studies into the function of JA in maize defense against insect herbivory, pathogens and its role in growth and development are highlighted. Additionally, a list of JA-responsive genes is presented for use as biological markers for improving future investigations into JA signaling in maize.
Collapse
Affiliation(s)
- Eli J Borrego
- Department of Plant Pathology and Microbiology, Texas A&M University, College Station, TX 77843, USA.
| | - Michael V Kolomiets
- Department of Plant Pathology and Microbiology, Texas A&M University, College Station, TX 77843, USA.
| |
Collapse
|
63
|
Missihoun TD, Kotchoni SO, Bartels D. Active Sites of Reduced Epidermal Fluorescence1 (REF1) Isoforms Contain Amino Acid Substitutions That Are Different between Monocots and Dicots. PLoS One 2016; 11:e0165867. [PMID: 27798665 PMCID: PMC5087895 DOI: 10.1371/journal.pone.0165867] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2016] [Accepted: 10/19/2016] [Indexed: 11/22/2022] Open
Abstract
Plant aldehyde dehydrogenases (ALDHs) play important roles in cell wall biosynthesis, growth, development, and tolerance to biotic and abiotic stresses. The Reduced Epidermal Fluorescence1 is encoded by the subfamily 2C of ALDHs and was shown to oxidise coniferaldehyde and sinapaldehyde to ferulic acid and sinapic acid in the phenylpropanoid pathway, respectively. This knowledge has been gained from works in the dicotyledon model species Arabidopsis thaliana then used to functionally annotate ALDH2C isoforms in other species, based on the orthology principle. However, the extent to which the ALDH isoforms differ between monocotyledons and dicotyledons has rarely been accessed side-by-side. In this study, we used a phylogenetic approach to address this question. We have analysed the ALDH genes in Brachypodium distachyon, alongside those of other sequenced monocotyledon and dicotyledon species to examine traits supporting either a convergent or divergent evolution of the ALDH2C/REF1-type proteins. We found that B. distachyon, like other grasses, contains more ALDH2C/REF1 isoforms than A. thaliana and other dicotyledon species. Some amino acid residues in ALDH2C/REF1 isoforms were found as being conserved in dicotyledons but substituted by non-equivalent residues in monocotyledons. One example of those substitutions concerns a conserved phenylalanine and a conserved tyrosine in monocotyledons and dicotyledons, respectively. Protein structure modelling suggests that the presence of tyrosine would widen the substrate-binding pocket in the dicotyledons, and thereby influence substrate specificity. We discussed the importance of these findings as new hints to investigate why ferulic acid contents and cell wall digestibility differ between the dicotyledon and monocotyledon species.
Collapse
Affiliation(s)
- Tagnon D. Missihoun
- Department of Biology, Rutgers University, Camden, New Jersey, United States of America
- * E-mail: (SOK); (TDM)
| | - Simeon O. Kotchoni
- Department of Biology, Rutgers University, Camden, New Jersey, United States of America
- Center for Computational and Integrative Biology, Rutgers University, Camden, New Jersey, United States of America
- * E-mail: (SOK); (TDM)
| | - Dorothea Bartels
- Institute of Molecular Physiology and Biotechnology of Plants (IMBIO), University of Bonn, Bonn, Germany
| |
Collapse
|
64
|
Abe K, Ichikawa H. Gene Overexpression Resources in Cereals for Functional Genomics and Discovery of Useful Genes. FRONTIERS IN PLANT SCIENCE 2016; 7:1359. [PMID: 27708649 PMCID: PMC5030214 DOI: 10.3389/fpls.2016.01359] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Accepted: 08/26/2016] [Indexed: 05/12/2023]
Abstract
Identification and elucidation of functions of plant genes is valuable for both basic and applied research. In addition to natural variation in model plants, numerous loss-of-function resources have been produced by mutagenesis with chemicals, irradiation, or insertions of transposable elements or T-DNA. However, we may be unable to observe loss-of-function phenotypes for genes with functionally redundant homologs and for those essential for growth and development. To offset such disadvantages, gain-of-function transgenic resources have been exploited. Activation-tagged lines have been generated using obligatory overexpression of endogenous genes by random insertion of an enhancer. Recent progress in DNA sequencing technology and bioinformatics has enabled the preparation of genomewide collections of full-length cDNAs (fl-cDNAs) in some model species. Using the fl-cDNA clones, a novel gain-of-function strategy, Fl-cDNA OvereXpressor gene (FOX)-hunting system, has been developed. A mutant phenotype in a FOX line can be directly attributed to the overexpressed fl-cDNA. Investigating a large population of FOX lines could reveal important genes conferring favorable phenotypes for crop breeding. Alternatively, a unique loss-of-function approach Chimeric REpressor gene Silencing Technology (CRES-T) has been developed. In CRES-T, overexpression of a chimeric repressor, composed of the coding sequence of a transcription factor (TF) and short peptide designated as the repression domain, could interfere with the action of endogenous TF in plants. Although plant TFs usually consist of gene families, CRES-T is effective, in principle, even for the TFs with functional redundancy. In this review, we focus on the current status of the gene-overexpression strategies and resources for identifying and elucidating novel functions of cereal genes. We discuss the potential of these research tools for identifying useful genes and phenotypes for application in crop breeding.
Collapse
Affiliation(s)
| | - Hiroaki Ichikawa
- Institute of Agrobiological Sciences, National Agriculture and Food Research OrganizationTsukuba, Japan
| |
Collapse
|
65
|
Abstract
Many important crops are members of the Poaceae family, which develop root systems characterized by a high degree of root initiation from the belowground basal nodes of the shoot, termed the crown. Although this postembryonic shoot-borne root system represents the major conduit for water uptake, little is known about the effect of water availability on its development. Here we demonstrate that in the model C4 grass Setaria viridis, the crown locally senses water availability and suppresses postemergence crown root growth under a water deficit. This response was observed in field and growth room environments and in all grass species tested. Luminescence-based imaging of root systems grown in soil-like media revealed a shift in root growth from crown-derived to primary root-derived branches, suggesting that primary root-dominated architecture can be induced in S. viridis under certain stress conditions. Crown roots of Zea mays and Setaria italica, domesticated relatives of teosinte and S. viridis, respectively, show reduced sensitivity to water deficit, suggesting that this response might have been influenced by human selection. Enhanced water status of maize mutants lacking crown roots suggests that under a water deficit, stronger suppression of crown roots actually may benefit crop productivity.
Collapse
|
66
|
Hartwell J, Dever LV, Boxall SF. Emerging model systems for functional genomics analysis of Crassulacean acid metabolism. CURRENT OPINION IN PLANT BIOLOGY 2016; 31:100-8. [PMID: 27082281 DOI: 10.1016/j.pbi.2016.03.019] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2016] [Revised: 03/23/2016] [Accepted: 03/28/2016] [Indexed: 05/25/2023]
Abstract
Crassulacean acid metabolism (CAM) is one of three main pathways of photosynthetic carbon dioxide fixation found in higher plants. It stands out for its ability to underpin dramatic improvements in plant water use efficiency, which in turn has led to a recent renaissance in CAM research. The current ease with which candidate CAM-associated genes and proteins can be identified through high-throughput sequencing has opened up a new horizon for the development of diverse model CAM species that are amenable to genetic manipulations. The adoption of these model CAM species is underpinning rapid advances in our understanding of the complete gene set for CAM. We highlight recent breakthroughs in the functional characterisation of CAM genes that have been achieved through transgenic approaches.
Collapse
Affiliation(s)
- James Hartwell
- Institute of Integrative Biology, University of Liverpool, Liverpool L69 7ZB, UK.
| | - Louisa V Dever
- Institute of Integrative Biology, University of Liverpool, Liverpool L69 7ZB, UK
| | - Susanna F Boxall
- Institute of Integrative Biology, University of Liverpool, Liverpool L69 7ZB, UK
| |
Collapse
|
67
|
Huang P, Brutnell TP. A synthesis of transcriptomic surveys to dissect the genetic basis of C4 photosynthesis. CURRENT OPINION IN PLANT BIOLOGY 2016; 31:91-9. [PMID: 27078208 DOI: 10.1016/j.pbi.2016.03.014] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Revised: 03/17/2016] [Accepted: 03/22/2016] [Indexed: 05/23/2023]
Abstract
C4 photosynthesis is used by only three percent of all flowering plants, but explains a quarter of global primary production, including some of the worlds' most important cereals and bioenergy grasses. Recent advances in our understanding of C4 development can be attributed to the application of comparative transcriptomics approaches that has been fueled by high throughput sequencing. Global surveys of gene expression conducted between different developmental stages or on phylogenetically closely related C3 and C4 species are providing new insights into C4 function, development and evolution. Importantly, through co-expression analysis and comparative genomics, these studies help define novel candidate genes that transcend traditional genetic screens. In this review, we briefly summarize the major findings from recent transcriptomic studies, compare and contrast these studies to summarize emerging consensus, and suggest new approaches to exploit the data. Finally, we suggest using Setaria viridis as a model system to relieve a major bottleneck in genetic studies of C4 photosynthesis, and discuss the challenges and new opportunities for future comparative transcriptomic studies.
Collapse
Affiliation(s)
- Pu Huang
- Donald Danforth Plant Science Center, 975 N. Warson Rd, St Louis, MO 63132, USA
| | - Thomas P Brutnell
- Donald Danforth Plant Science Center, 975 N. Warson Rd, St Louis, MO 63132, USA.
| |
Collapse
|
68
|
Willis JD, Mazarei M, Stewart CN. Transgenic Plant-Produced Hydrolytic Enzymes and the Potential of Insect Gut-Derived Hydrolases for Biofuels. FRONTIERS IN PLANT SCIENCE 2016; 7:675. [PMID: 27303411 PMCID: PMC4885837 DOI: 10.3389/fpls.2016.00675] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Accepted: 05/02/2016] [Indexed: 05/25/2023]
Abstract
Various perennial C4 grass species have tremendous potential for use as lignocellulosic biofuel feedstocks. Currently available grasses require costly pre-treatment and exogenous hydrolytic enzyme application to break down complex cell wall polymers into sugars that can then be fermented into ethanol. It has long been hypothesized that engineered feedstock production of cell wall degrading (CWD) enzymes would be an efficient production platform for of exogenous hydrolytic enzymes. Most research has focused on plant overexpression of CWD enzyme-coding genes from free-living bacteria and fungi that naturally break down plant cell walls. Recently, it has been found that insect digestive tracts harbor novel sources of lignocellulolytic biocatalysts that might be exploited for biofuel production. These CWD enzyme genes can be located in the insect genomes or in symbiotic microbes. When CWD genes are transformed into plants, negative pleiotropic effects are possible such as unintended cell wall digestion. The use of codon optimization along with organelle and tissue specific targeting improves CWD enzyme yields. The literature teaches several important lessons on strategic deployment of CWD genes in transgenic plants, which is the focus of this review.
Collapse
Affiliation(s)
- Jonathan D. Willis
- Department of Plant Sciences, University of TennesseeKnoxville, TN, USA
- Oak Ridge National Laboratory, BioEnergy Science CenterOak Ridge, TN, USA
| | - Mitra Mazarei
- Department of Plant Sciences, University of TennesseeKnoxville, TN, USA
- Oak Ridge National Laboratory, BioEnergy Science CenterOak Ridge, TN, USA
| | - C. Neal Stewart
- Department of Plant Sciences, University of TennesseeKnoxville, TN, USA
- Oak Ridge National Laboratory, BioEnergy Science CenterOak Ridge, TN, USA
| |
Collapse
|
69
|
Saha P, Blumwald E. Spike-dip transformation of Setaria viridis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2016; 86:89-101. [PMID: 26932666 DOI: 10.1111/tpj.13148] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Revised: 02/09/2016] [Accepted: 02/15/2016] [Indexed: 05/05/2023]
Abstract
Traditional method of Agrobacterium-mediated transformation through the generation of tissue culture had limited success for Setaria viridis, an emerging C4 monocot model. Here we present an efficient in planta method for Agrobacterium-mediated genetic transformation of S. viridis using spike dip. Pre-anthesis developing spikes were dipped into a solution of Agrobacterium tumefaciens strain AGL1 harboring the β-glucuronidase (GUS) reporter gene driven by the cauliflower mosaic virus 35S (CaMV35S) promoter to standardize and optimize conditions for transient as well as stable transformations. A transformation efficiency of 0.8 ± 0.1% was obtained after dipping of 5-day-old S3 spikes for 20 min in Agrobacterium cultures containing S. viridis spike-dip medium supplemented with 0.025% Silwet L-77 and 200 μm acetosyringone. Reproducibility of this method was demonstrated by generating stable transgenic lines expressing β-glucuronidase plus (GUSplus), green fluorescent protein (GFP) and Discosoma sp. red fluorescent protein (DsRed) reporter genes driven by either CaMV35S or intron-interrupted maize ubiquitin (Ubi) promoters from three S. viridis genotypes. Expression of these reporter genes in transient assays as well as in T1 stable transformed plants was monitored using histochemical, fluorometric GUS activity and fluorescence microscopy. Molecular analysis of transgenic lines revealed stable integration of transgenes into the genome, and inherited transgenes expressed in the subsequent generations. This approach provides opportunities for the high-throughput transformation and potentially facilitates translational research in a monocot model plant.
Collapse
Affiliation(s)
- Prasenjit Saha
- Department of Plant Sciences, University of California, One Shields Avenue, Davis, CA, 95616, USA
| | - Eduardo Blumwald
- Department of Plant Sciences, University of California, One Shields Avenue, Davis, CA, 95616, USA
| |
Collapse
|
70
|
do Amaral FP, Pankievicz VCS, Arisi ACM, de Souza EM, Pedrosa F, Stacey G. Differential growth responses of Brachypodium distachyon genotypes to inoculation with plant growth promoting rhizobacteria. PLANT MOLECULAR BIOLOGY 2016; 90:689-697. [PMID: 26873699 DOI: 10.1007/s11103-016-0449-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2015] [Accepted: 02/05/2016] [Indexed: 06/05/2023]
Abstract
Plant growth promoting rhizobacteria (PGPR) can associate and enhance the growth of important crop grasses. However, in most cases, the molecular mechanisms responsible for growth promotion are not known. Such research could benefit by the adoption of a grass model species that showed a positive response to bacterial inoculation and was amenable to genetic and molecular research methods. In this work we inoculated different genotypes of the model grass Brachypodium distachyon with two, well-characterized PGPR bacteria, Azospirillum brasilense and Herbaspirillum seropedicae, and evaluated the growth response. Plants were grown in soil under no nitrogen or with low nitrogen (i.e., 0.5 mM KNO3). A variety of growth parameters (e.g., shoot height, root length, number of lateral roots, fresh and dry weight) were measured 35 days after inoculation. The data indicate that plant genotype plays a very important role in determining the plant response to PGPR inoculation. A positive growth response was observed with only four genotypes grown under no nitrogen and three genotypes tested under low nitrogen. However, in contrast, relatively good root colonization was seen with most genotypes, as measured by drop plate counting and direct, microscopic examination of roots. In particular, the endophytic bacteria H. seropedicae showed strong epiphytic and endophytic colonization of roots.
Collapse
Affiliation(s)
- Fernanda P do Amaral
- Divisions of Plant Science and Biochemistry, C. S. Bond Life Science Center, University of Missouri, Columbia, MO, 65211, USA
| | - Vânia C S Pankievicz
- Department of Biochemistry and Molecular Biology, Federal University of Paraná, Curitiba, 81531-980, Brazil
| | - Ana Carolina M Arisi
- Department of Food Science and Technology, Federal University of Santa Catarina, Florianópolis, 88034-001, Brazil
| | - Emanuel M de Souza
- Department of Biochemistry and Molecular Biology, Federal University of Paraná, Curitiba, 81531-980, Brazil
| | - Fabio Pedrosa
- Department of Biochemistry and Molecular Biology, Federal University of Paraná, Curitiba, 81531-980, Brazil
| | - Gary Stacey
- Divisions of Plant Science and Biochemistry, C. S. Bond Life Science Center, University of Missouri, Columbia, MO, 65211, USA.
| |
Collapse
|
71
|
Mauro-Herrera M, Doust AN. Development and Genetic Control of Plant Architecture and Biomass in the Panicoid Grass, Setaria. PLoS One 2016; 11:e0151346. [PMID: 26985990 PMCID: PMC4795695 DOI: 10.1371/journal.pone.0151346] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Accepted: 02/05/2016] [Indexed: 01/12/2023] Open
Abstract
The architecture of a plant affects its ability to compete for light and to respond to environmental stresses, thus affecting overall fitness and productivity. Two components of architecture, branching and height, were studied in 182 F7 recombinant inbred lines (RILs) at the vegetative, flowering and mature developmental stages in the panicoid C4 model grass system, Setaria. The RIL population was derived from a cross between domesticated S. italica (foxtail millet) and its wild relative S. viridis (green foxtail). In both field and greenhouse trials the wild parent was taller initially, started branching earlier, and flowered earlier, while the domesticated parent was shorter initially, but flowered later, producing a robust tall plant architecture with more nodes and leaves on the main culm and few or no branches. Biomass was highly correlated with height of the plant and number of nodes on the main culm, and generally showed a negative relationship with branch number. However, several of the RILs with the highest biomass in both trials were significantly more branched than the domesticated parent of the cross. Quantitative trait loci (QTL) analyses indicate that both height and branching are controlled by multiple genetic regions, often with QTL for both traits colocalizing in the same genomic regions. Genomic positions of several QTL colocalize with QTL in syntenic regions in other species and contain genes known to control branching and height in sorghum, maize, and switchgrass. Included in these is the ortholog of the rice SD-1 semi-dwarfing gene, which underlies one of the major Setaria height QTL. Understanding the relationships between height and branching patterns in Setaria, and their genetic control, is an important step to gaining a comprehensive knowledge of the development and genetic regulation of panicoid grass architecture.
Collapse
Affiliation(s)
- Margarita Mauro-Herrera
- Department of Plant Biology, Ecology, and Evolution, Oklahoma State University, Stillwater, OK 74078, United States of America
| | - Andrew N. Doust
- Department of Plant Biology, Ecology, and Evolution, Oklahoma State University, Stillwater, OK 74078, United States of America
| |
Collapse
|
72
|
Martin AP, Palmer WM, Brown C, Abel C, Lunn JE, Furbank RT, Grof CPL. A developing Setaria viridis internode: an experimental system for the study of biomass generation in a C4 model species. BIOTECHNOLOGY FOR BIOFUELS 2016; 9:45. [PMID: 26918029 PMCID: PMC4766645 DOI: 10.1186/s13068-016-0457-6] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Accepted: 02/09/2016] [Indexed: 05/02/2023]
Abstract
BACKGROUND Recently, there has been interest in establishing a monocot C4 model species with a small genome, short lifecycle, and capacity for genetic transformation. Setaria viridis has been adopted to fill this role, since reports of Agrobacterium-mediated transformation in 2010, and sequencing of its genome in 2012. To date, S. viridis has primarily been used to further our understanding of C4 photosynthesis, but is also an ideal system for the study of biomass crops, which are almost exclusively C4 panicoid grasses. Biogenesis of stem tissue, its cell wall composition, and soluble sugar content are important determinants of bioenergy crop yields. Here we show that a developing S. viridis internode is a valuable experimental system for gene discovery in relation to these important bioenergy feedstock traits. RESULTS The rate of maximal stem biomass accumulation in S. viridis A10 under long day growth was at the half-head emergence developmental stage. At this stage of development, internode 5 (of 7) was found to be rapidly expanding with an active meristem, a zone of cell expansion (primary cell walls), a transitional zone where cell expansion ceased and secondary cell wall deposition was initiated, and a mature zone that was actively accumulating soluble sugars. A simple method for identifying these zones was established allowing rapid dissection and snap-freezing for RNAseq analysis. A transcriptome profile was generated for each zone showing a transition from cell division and nucleic acid synthesis/processing in the meristem, to metabolism, energy synthesis, and primary cell wall synthesis in the cell expansion zone, to secondary cell wall synthesis in the transitional zone, to sugar transport, and photosynthesis in the mature zone. CONCLUSION The identification of these zones has provided a valuable experimental system for investigating key bioenergy traits, including meristematic activity, cell wall biosynthesis, and soluble sugar accumulation, in a C4 panicoid grass that has genetic resources, a short life cycle, and small stature allowing controlled experimental conditions in growth cabinets. Here we have presented a comprehensive map of gene expression and metabolites in this experimental system to facilitate gene discovery and controlled hypothesis testing for bioenergy research in S. viridis.
Collapse
Affiliation(s)
- Antony P. Martin
- />School of Environmental and Life Sciences, University of Newcastle, University Drive, Callaghan, NSW 2308 Australia
| | - William M. Palmer
- />School of Environmental and Life Sciences, University of Newcastle, University Drive, Callaghan, NSW 2308 Australia
| | - Christopher Brown
- />School of Environmental and Life Sciences, University of Newcastle, University Drive, Callaghan, NSW 2308 Australia
| | - Christin Abel
- />Department of Metabolic Networks, Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam, Germany
| | - John E. Lunn
- />Department of Metabolic Networks, Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam, Germany
| | - Robert T. Furbank
- />ARC Centre of Excellence for Translational Photosynthesis, Research School of Biology, Australian National University, Canberra, ACT 2601 Australia
- />CSIRO Agriculture Flagship High Resolution Plant Phenomics Centre, GPO Box 1600, Canberra, ACT 2601 Australia
| | - Christopher P. L. Grof
- />School of Environmental and Life Sciences, University of Newcastle, University Drive, Callaghan, NSW 2308 Australia
| |
Collapse
|
73
|
Lewis MW, Hake S. Keep on growing: building and patterning leaves in the grasses. CURRENT OPINION IN PLANT BIOLOGY 2016; 29:80-6. [PMID: 26751036 DOI: 10.1016/j.pbi.2015.11.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2015] [Revised: 11/17/2015] [Accepted: 11/18/2015] [Indexed: 05/08/2023]
Abstract
Monocot leaves have unique features that arise early in their development. Maturing leaves protectively enclose younger leaves and the meristem, the pool of founder cells from which a leaf emerges. Through the maturation process, proximal sheath and distal blade tissues differentiate and are separated by the ligule and auricle structures. Here we review current research focusing on the contribution of gene regulatory factors and phytohormones on the patterning and differentiation of monocot leaves primarily focusing on research in the grasses (Poaceae). The 10000 members of the grasses include the true grain cereals (wheat, rice, maize, etc.), biofuel crops such as sugarcane, pasture grasses, and bamboo. They are the most studied of the monocots due to their tremendous agricultural and agronomic importance.
Collapse
Affiliation(s)
- Michael W Lewis
- Plant Gene Expression Center, USDA-ARS and University of California, Berkeley, United States.
| | - Sarah Hake
- Plant Gene Expression Center, USDA-ARS and University of California, Berkeley, United States
| |
Collapse
|
74
|
Huang P, Shyu C, Coelho CP, Cao Y, Brutnell TP. Setaria viridis as a Model System to Advance Millet Genetics and Genomics. FRONTIERS IN PLANT SCIENCE 2016; 7:1781. [PMID: 27965689 PMCID: PMC5124564 DOI: 10.3389/fpls.2016.01781] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Accepted: 11/11/2016] [Indexed: 05/18/2023]
Abstract
Millet is a common name for a group of polyphyletic, small-seeded cereal crops that include pearl, finger and foxtail millet. Millet species are an important source of calories for many societies, often in developing countries. Compared to major cereal crops such as rice and maize, millets are generally better adapted to dry and hot environments. Despite their food security value, the genetic architecture of agronomically important traits in millets, including both morphological traits and climate resilience remains poorly studied. These complex traits have been challenging to dissect in large part because of the lack of sufficient genetic tools and resources. In this article, we review the phylogenetic relationship among various millet species and discuss the value of a genetic model system for millet research. We propose that a broader adoption of green foxtail (Setaria viridis) as a model system for millets could greatly accelerate the pace of gene discovery in the millets, and summarize available and emerging resources in S. viridis and its domesticated relative S. italica. These resources have value in forward genetics, reverse genetics and high throughput phenotyping. We describe methods and strategies to best utilize these resources to facilitate the genetic dissection of complex traits. We envision that coupling cutting-edge technologies and the use of S. viridis for gene discovery will accelerate genetic research in millets in general. This will enable strategies and provide opportunities to increase productivity, especially in the semi-arid tropics of Asia and Africa where millets are staple food crops.
Collapse
|
75
|
Muthamilarasan M, Bonthala VS, Khandelwal R, Jaishankar J, Shweta S, Nawaz K, Prasad M. Global analysis of WRKY transcription factor superfamily in Setaria identifies potential candidates involved in abiotic stress signaling. FRONTIERS IN PLANT SCIENCE 2015; 6:910. [PMID: 26635818 PMCID: PMC4654423 DOI: 10.3389/fpls.2015.00910] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Accepted: 10/12/2015] [Indexed: 05/18/2023]
Abstract
Transcription factors (TFs) are major players in stress signaling and constitute an integral part of signaling networks. Among the major TFs, WRKY proteins play pivotal roles in regulation of transcriptional reprogramming associated with stress responses. In view of this, genome- and transcriptome-wide identification of WRKY TF family was performed in the C4model plants, Setaria italica (SiWRKY) and S. viridis (SvWRKY), respectively. The study identified 105 SiWRKY and 44 SvWRKY proteins that were computationally analyzed for their physicochemical properties. Sequence alignment and phylogenetic analysis classified these proteins into three major groups, namely I, II, and III with majority of WRKY proteins belonging to group II (53 SiWRKY and 23 SvWRKY), followed by group III (39 SiWRKY and 11 SvWRKY) and group I (10 SiWRKY and 6 SvWRKY). Group II proteins were further classified into 5 subgroups (IIa to IIe) based on their phylogeny. Domain analysis showed the presence of WRKY motif and zinc finger-like structures in these proteins along with additional domains in a few proteins. All SiWRKY genes were physically mapped on the S. italica genome and their duplication analysis revealed that 10 and 8 gene pairs underwent tandem and segmental duplications, respectively. Comparative mapping of SiWRKY and SvWRKY genes in related C4 panicoid genomes demonstrated the orthologous relationships between these genomes. In silico expression analysis of SiWRKY and SvWRKY genes showed their differential expression patterns in different tissues and stress conditions. Expression profiling of candidate SiWRKY genes in response to stress (dehydration and salinity) and hormone treatments (abscisic acid, salicylic acid, and methyl jasmonate) suggested the putative involvement of SiWRKY066 and SiWRKY082 in stress and hormone signaling. These genes could be potential candidates for further characterization to delineate their functional roles in abiotic stress signaling.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Manoj Prasad
- National Institute of Plant Genome ResearchNew Delhi, India
| |
Collapse
|
76
|
|
77
|
Chemical and Radiation Mutagenesis: Induction and Detection by Whole Genome Sequencing. GENETICS AND GENOMICS OF BRACHYPODIUM 2015. [DOI: 10.1007/7397_2015_20] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
78
|
Brutnell TP, Wang L, Swartwood K, Goldschmidt A, Jackson D, Zhu XG, Kellogg E, Van Eck J. Setaria viridis: a model for C4 photosynthesis. THE PLANT CELL 2010; 22:2537-2544. [PMID: 20693355 DOI: 10.1007/978-3-319-45105-3_17] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
C(4) photosynthesis drives productivity in several major food crops and bioenergy grasses, including maize (Zea mays), sugarcane (Saccharum officinarum), sorghum (Sorghum bicolor), Miscanthus x giganteus, and switchgrass (Panicum virgatum). Gains in productivity associated with C(4) photosynthesis include improved water and nitrogen use efficiencies. Thus, engineering C(4) traits into C(3) crops is an attractive target for crop improvement. However, the lack of a small, rapid cycling genetic model system to study C(4) photosynthesis has limited progress in dissecting the regulatory networks underlying the C(4) syndrome. Setaria viridis is a member of the Panicoideae clade and is a close relative of several major feed, fuel, and bioenergy grasses. It is a true diploid with a relatively small genome of ~510 Mb. Its short stature, simple growth requirements, and rapid life cycle will greatly facilitate genetic studies of the C(4) grasses. Importantly, S. viridis uses an NADP-malic enzyme subtype C(4) photosynthetic system to fix carbon and therefore is a potentially powerful model system for dissecting C(4) photosynthesis. Here, we summarize some of the recent advances that promise greatly to accelerate the use of S. viridis as a genetic system. These include our recent successful efforts at regenerating plants from seed callus, establishing a transient transformation system, and developing stable transformation.
Collapse
Affiliation(s)
- Thomas P Brutnell
- Boyce Thompson Institute, Cornell University, Ithaca, New York 14853, USA.
| | | | | | | | | | | | | | | |
Collapse
|