51
|
Recent Advances in the Study of Gas Vesicle Proteins and Application of Gas Vesicles in Biomedical Research. Life (Basel) 2022; 12:life12091455. [PMID: 36143491 PMCID: PMC9501494 DOI: 10.3390/life12091455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 09/14/2022] [Accepted: 09/15/2022] [Indexed: 12/01/2022] Open
Abstract
The formation of gas vesicles has been investigated in bacteria and haloarchaea for more than 50 years. These air-filled nanostructures allow cells to stay at a certain height optimal for growth in their watery environment. Several gvp genes are involved and have been studied in Halobacterium salinarum, cyanobacteria, Bacillus megaterium, and Serratia sp. ATCC39006 in more detail. GvpA and GvpC form the gas vesicle shell, and additional Gvp are required as minor structural proteins, chaperones, an ATP-hydrolyzing enzyme, or as gene regulators. We analyzed the Gvp proteins of Hbt. salinarum with respect to their protein–protein interactions, and developed a model for the formation of these nanostructures. Gas vesicles are also used in biomedical research. Since they scatter waves and produce ultrasound contrast, they could serve as novel contrast agent for ultrasound or magnetic resonance imaging. Additionally, gas vesicles were engineered as acoustic biosensors to determine enzyme activities in cells. These applications are based on modifications of the surface protein GvpC that alter the mechanical properties of the gas vesicles. In addition, gas vesicles have been decorated with GvpC proteins fused to peptides of bacterial or viral pathogens and are used as tools for vaccine development.
Collapse
|
52
|
Furusawa Y, Kondo T, Tachibana K, Feril LB. Ultrasound-Induced DNA Damage and Cellular Response: Historical Review, Mechanisms Analysis, and Therapeutic Implications. Radiat Res 2022; 197:662-672. [PMID: 35275998 DOI: 10.1667/rade-21-00140.1.s1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 02/22/2022] [Indexed: 11/03/2022]
Abstract
The biological effects of ultrasound may be classified into thermal and nonthermal mechanisms. The nonthermal effects may be further classified into cavitational and noncavitational mechanisms. DNA damage induced by ultrasound is considered to be related to nonthermal cavitations. For this aspect, many in vitro studies on DNA have been conducted for evaluating the safety of diagnostic ultrasound, particularly in fetal imaging. Technological advancement in detecting DNA damage both in vitro and in vivo have elucidated the mechanism of DNA damage formation and their cellular response. Damage to DNA, and the residual damages after DNA repair are implicated in the biological effects. Here, we discuss the historical evidence of ultrasound on DNA damage and the mechanism of DNA damage formation both in vitro and in vivo, compared with those induced by ionizing radiation. We also offer a commentary on the safety of ultrasound over X-ray-based imaging. Also, understanding the various mechanisms involved in the bioeffects of ultrasound will lead us to alternative strategies for use of ultrasound for therapy.
Collapse
Affiliation(s)
- Yukihiro Furusawa
- Department of Liberal Arts and Sciences, Toyama Prefecture University, Toyama 939-0398, Japan
| | - Takashi Kondo
- Department of Radiological Sciences Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan
| | - Katsuro Tachibana
- Department of Anatomy. Fukuoka University School of Medicine, Fukuoka 814-0180, Japan
| | - Loreto B Feril
- Department of Anatomy. Fukuoka University School of Medicine, Fukuoka 814-0180, Japan
| |
Collapse
|
53
|
Athanassiadis AG, Ma Z, Moreno-Gomez N, Melde K, Choi E, Goyal R, Fischer P. Ultrasound-Responsive Systems as Components for Smart Materials. Chem Rev 2022; 122:5165-5208. [PMID: 34767350 PMCID: PMC8915171 DOI: 10.1021/acs.chemrev.1c00622] [Citation(s) in RCA: 75] [Impact Index Per Article: 37.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Indexed: 02/06/2023]
Abstract
Smart materials can respond to stimuli and adapt their responses based on external cues from their environments. Such behavior requires a way to transport energy efficiently and then convert it for use in applications such as actuation, sensing, or signaling. Ultrasound can carry energy safely and with low losses through complex and opaque media. It can be localized to small regions of space and couple to systems over a wide range of time scales. However, the same characteristics that allow ultrasound to propagate efficiently through materials make it difficult to convert acoustic energy into other useful forms. Recent work across diverse fields has begun to address this challenge, demonstrating ultrasonic effects that provide control over physical and chemical systems with surprisingly high specificity. Here, we review recent progress in ultrasound-matter interactions, focusing on effects that can be incorporated as components in smart materials. These techniques build on fundamental phenomena such as cavitation, microstreaming, scattering, and acoustic radiation forces to enable capabilities such as actuation, sensing, payload delivery, and the initiation of chemical or biological processes. The diversity of emerging techniques holds great promise for a wide range of smart capabilities supported by ultrasound and poses interesting questions for further investigations.
Collapse
Affiliation(s)
- Athanasios G. Athanassiadis
- Micro,
Nano, and Molecular Systems Group, Max Planck
Institute for Intelligent Systems, Heisenbergstrasse 3, 70569 Stuttgart, Germany
| | - Zhichao Ma
- Micro,
Nano, and Molecular Systems Group, Max Planck
Institute for Intelligent Systems, Heisenbergstrasse 3, 70569 Stuttgart, Germany
| | - Nicolas Moreno-Gomez
- Micro,
Nano, and Molecular Systems Group, Max Planck
Institute for Intelligent Systems, Heisenbergstrasse 3, 70569 Stuttgart, Germany
- Institute
of Physical Chemistry, University of Stuttgart, Pfaffenwaldring 55, 70569 Stuttgart, Germany
| | - Kai Melde
- Micro,
Nano, and Molecular Systems Group, Max Planck
Institute for Intelligent Systems, Heisenbergstrasse 3, 70569 Stuttgart, Germany
| | - Eunjin Choi
- Micro,
Nano, and Molecular Systems Group, Max Planck
Institute for Intelligent Systems, Heisenbergstrasse 3, 70569 Stuttgart, Germany
- Institute
of Physical Chemistry, University of Stuttgart, Pfaffenwaldring 55, 70569 Stuttgart, Germany
| | - Rahul Goyal
- Micro,
Nano, and Molecular Systems Group, Max Planck
Institute for Intelligent Systems, Heisenbergstrasse 3, 70569 Stuttgart, Germany
| | - Peer Fischer
- Micro,
Nano, and Molecular Systems Group, Max Planck
Institute for Intelligent Systems, Heisenbergstrasse 3, 70569 Stuttgart, Germany
- Institute
of Physical Chemistry, University of Stuttgart, Pfaffenwaldring 55, 70569 Stuttgart, Germany
| |
Collapse
|
54
|
Zhang X, Zeng Z, Liu H, Xu L, Sun X, Xu J, Song G. Recent development of a magneto-optical nanoplatform for multimodality imaging of pancreatic ductal adenocarcinoma. NANOSCALE 2022; 14:3306-3323. [PMID: 35170601 DOI: 10.1039/d1nr08394e] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is the most common type of pancreatic cancer. Given its inconspicuous and atypical early symptoms and hidden location, most patients have already reached the terminal stage before diagnosis. At present, the diagnosis of PDAC mainly depends on serological and imaging examinations. However, serum tests cannot identify specific tumor locations and each imaging technology has its own defects, bringing great challenges to the early diagnosis of PDAC. Therefore, it is of great significance to find new strategies for the early and accurate diagnosis of PDAC. In recent years, a magneto-optical nanoplatform integrating near infrared fluorescence, photoacoustic, magnetic resonance imaging, etc. has attracted widespread attention, giving full play to the complementary advantages of each imaging modality. Herein, we summarize the recent advances of imaging modalities in the diagnosis of pancreatic cancer, and then discuss in detail the construction and modification of magneto or/and optical probes for multimodal imaging, and advances in early diagnosis using the combination of various imaging modalities, which can provide potential tools for the early diagnosis or even intraoperative navigation and post-treatment follow-up of PDAC patients.
Collapse
Affiliation(s)
- Xuan Zhang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. China.
- Department of Ophthalmology and Otolaryngology, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, P. R. China.
| | - Zhiming Zeng
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. China.
- Department of Ophthalmology and Otolaryngology, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, P. R. China.
| | - Huiyi Liu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. China.
| | - Li Xu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. China.
| | - Xin Sun
- College of Mechanical and Electrical Engineering, Central South University, Changsha 410083, P. R. China
| | - Jing Xu
- Department of Ophthalmology and Otolaryngology, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, P. R. China.
| | - Guosheng Song
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. China.
| |
Collapse
|
55
|
Wan Y, Zong C, Li X, Wang A, Li Y, Yang T, Bao Q, Dubow M, Yang M, Rodrigo LA, Mao C. New Insights for Biosensing: Lessons from Microbial Defense Systems. Chem Rev 2022; 122:8126-8180. [PMID: 35234463 DOI: 10.1021/acs.chemrev.1c01063] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Microorganisms have gained defense systems during the lengthy process of evolution over millions of years. Such defense systems can protect them from being attacked by invading species (e.g., CRISPR-Cas for establishing adaptive immune systems and nanopore-forming toxins as virulence factors) or enable them to adapt to different conditions (e.g., gas vesicles for achieving buoyancy control). These microorganism defense systems (MDS) have inspired the development of biosensors that have received much attention in a wide range of fields including life science research, food safety, and medical diagnosis. This Review comprehensively analyzes biosensing platforms originating from MDS for sensing and imaging biological analytes. We first describe a basic overview of MDS and MDS-inspired biosensing platforms (e.g., CRISPR-Cas systems, nanopore-forming proteins, and gas vesicles), followed by a critical discussion of their functions and properties. We then discuss several transduction mechanisms (optical, acoustic, magnetic, and electrical) involved in MDS-inspired biosensing. We further detail the applications of the MDS-inspired biosensors to detect a variety of analytes (nucleic acids, peptides, proteins, pathogens, cells, small molecules, and metal ions). In the end, we propose the key challenges and future perspectives in seeking new and improved MDS tools that can potentially lead to breakthrough discoveries in developing a new generation of biosensors with a combination of low cost; high sensitivity, accuracy, and precision; and fast detection. Overall, this Review gives a historical review of MDS, elucidates the principles of emulating MDS to develop biosensors, and analyzes the recent advancements, current challenges, and future trends in this field. It provides a unique critical analysis of emulating MDS to develop robust biosensors and discusses the design of such biosensors using elements found in MDS, showing that emulating MDS is a promising approach to conceptually advancing the design of biosensors.
Collapse
Affiliation(s)
- Yi Wan
- State Key Laboratory of Marine Resource Utilization in the South China Sea, School of Pharmaceutical Sciences, Marine College, Hainan University, Haikou 570228, P. R. China
| | - Chengli Zong
- State Key Laboratory of Marine Resource Utilization in the South China Sea, School of Pharmaceutical Sciences, Marine College, Hainan University, Haikou 570228, P. R. China
| | - Xiangpeng Li
- Department of Bioengineering and Therapeutic Sciences, Schools of Medicine and Pharmacy, University of California, San Francisco, 1700 Fourth Street, Byers Hall 303C, San Francisco, California 94158, United States
| | - Aimin Wang
- State Key Laboratory of Marine Resource Utilization in the South China Sea, School of Pharmaceutical Sciences, Marine College, Hainan University, Haikou 570228, P. R. China
| | - Yan Li
- College of Animal Science, Zhejiang University, Hangzhou, Zhejiang 310058, P. R. China
| | - Tao Yang
- School of Materials Science and Engineering, Zhejiang University, Hangzhou, Zhejiang 310058, P. R. China
| | - Qing Bao
- School of Materials Science and Engineering, Zhejiang University, Hangzhou, Zhejiang 310058, P. R. China
| | - Michael Dubow
- Institute for Integrative Biology of the Cell (I2BC), UMR 9198 CNRS, CEA, Université Paris-Saclay, Campus C.N.R.S, Bâtiment 12, Avenue de la Terrasse, 91190 Gif-sur-Yvette, France
| | - Mingying Yang
- College of Animal Science, Zhejiang University, Hangzhou, Zhejiang 310058, P. R. China
| | - Ledesma-Amaro Rodrigo
- Imperial College Centre for Synthetic Biology, Department of Bioengineering, Imperial College London, London SW7 2AZ, United Kingdom
| | - Chuanbin Mao
- Department of Chemistry & Biochemistry, Stephenson Life Science Research Center, University of Oklahoma, 101 Stephenson Parkway, Norman, Oklahoma 73019, United States.,School of Materials Science and Engineering, Zhejiang University, Hangzhou, Zhejiang 310058, P. R. China
| |
Collapse
|
56
|
Yoo S, Mittelstein DR, Hurt RC, Lacroix J, Shapiro MG. Focused ultrasound excites cortical neurons via mechanosensitive calcium accumulation and ion channel amplification. Nat Commun 2022; 13:493. [PMID: 35078979 PMCID: PMC8789820 DOI: 10.1038/s41467-022-28040-1] [Citation(s) in RCA: 183] [Impact Index Per Article: 91.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 01/05/2022] [Indexed: 12/16/2022] Open
Abstract
Ultrasonic neuromodulation has the unique potential to provide non-invasive control of neural activity in deep brain regions with high spatial precision and without chemical or genetic modification. However, the biomolecular and cellular mechanisms by which focused ultrasound excites mammalian neurons have remained unclear, posing significant challenges for the use of this technology in research and potential clinical applications. Here, we show that focused ultrasound excites primary murine cortical neurons in culture through a primarily mechanical mechanism mediated by specific calcium-selective mechanosensitive ion channels. The activation of these channels results in a gradual build-up of calcium, which is amplified by calcium- and voltage-gated channels, generating a burst firing response. Cavitation, temperature changes, large-scale deformation, and synaptic transmission are not required for this excitation to occur. Pharmacological and genetic inhibition of specific ion channels leads to reduced responses to ultrasound, while over-expressing these channels results in stronger ultrasonic stimulation. These findings provide a mechanistic explanation for the effect of ultrasound on neurons to facilitate the further development of ultrasonic neuromodulation and sonogenetics as tools for neuroscience research.
Collapse
Affiliation(s)
- Sangjin Yoo
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA, 91125, USA
| | - David R Mittelstein
- Division of Engineering and Applied Science, California Institute of Technology, Pasadena, CA, 91125, USA
| | - Robert C Hurt
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, 91125, USA
| | - Jerome Lacroix
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA, 91125, USA
- Graduate College of Biomedical Sciences, Western University of Health Sciences, Pomona, CA, 91766, USA
| | - Mikhail G Shapiro
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA, 91125, USA.
| |
Collapse
|
57
|
Lee D, Kwon HB. Current and future techniques for detecting oxytocin: Focusing on genetically-encoded GPCR sensors. J Neurosci Methods 2022; 366:109407. [PMID: 34763021 DOI: 10.1016/j.jneumeth.2021.109407] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 10/12/2021] [Accepted: 11/03/2021] [Indexed: 10/19/2022]
Abstract
Oxytocin is a neuropituitary hormone that is involved in a wide range of psychosocial behaviors. Despite its psychophysiological importance as a neuromodulator in the CNS, effective techniques capable of monitoring oxytocin dynamics or testing related behavioral consequences are limited. Along with an explosive advancement in synthetic biology, high-performance genetically-encoded neuromodulator sensors are being developed. Here we comprehensively review the current methodologies available for detecting oxytocin in neuroscience. Their strengths and weaknesses are discussed, and a graphical summary is plotted for better comparison of techniques. We also suggest future directions for next generation oxytocin sensor development and their working principles.
Collapse
Affiliation(s)
- Dongmin Lee
- Department of Anatomy, Korea University College of Medicine, Seoul, Republic of Korea; BK21 Graduate Program, Department of Biomedical Sciences, Korea University College of Medicine, Seoul, Republic of Korea
| | - Hyung-Bae Kwon
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, 733N Broadway, Baltimore, MD 21205, USA.
| |
Collapse
|
58
|
Chee WKD, Yeoh JW, Dao VL, Poh CL. Thermogenetics: Applications come of age. Biotechnol Adv 2022; 55:107907. [PMID: 35041863 DOI: 10.1016/j.biotechadv.2022.107907] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 12/13/2021] [Accepted: 01/09/2022] [Indexed: 12/20/2022]
Abstract
Temperature is a ubiquitous physical cue that is non-invasive, penetrative and easy to apply. In the growing field of thermogenetics, through beneficial repurposing of natural thermosensing mechanisms, synthetic biology is bringing new opportunities to design and build robust temperature-sensitive (TS) sensors which forms a thermogenetic toolbox of well characterised biological parts. Recent advancements in technological platforms available have expedited the discovery of novel or de novo thermosensors which are increasingly deployed in many practical temperature-dependent biomedical, industrial and biosafety applications. In all, the review aims to convey both the exhilarating recent technological developments underlying the advancement of thermosensors and the exciting opportunities the nascent thermogenetic field holds for biomedical and biotechnology applications.
Collapse
Affiliation(s)
- Wai Kit David Chee
- Department of Biomedical Engineering, Faculty of Engineering, National University of Singapore, 4 Engineering Drive 3, Singapore 117583, Singapore; NUS Synthetic Biology for Clinical and Technological Innovation (SynCTI), Life Sciences Institute, National University of Singapore, 28 Medical Drive, Singapore 117456, Singapore
| | - Jing Wui Yeoh
- Department of Biomedical Engineering, Faculty of Engineering, National University of Singapore, 4 Engineering Drive 3, Singapore 117583, Singapore; NUS Synthetic Biology for Clinical and Technological Innovation (SynCTI), Life Sciences Institute, National University of Singapore, 28 Medical Drive, Singapore 117456, Singapore
| | - Viet Linh Dao
- Department of Biomedical Engineering, Faculty of Engineering, National University of Singapore, 4 Engineering Drive 3, Singapore 117583, Singapore; NUS Synthetic Biology for Clinical and Technological Innovation (SynCTI), Life Sciences Institute, National University of Singapore, 28 Medical Drive, Singapore 117456, Singapore
| | - Chueh Loo Poh
- Department of Biomedical Engineering, Faculty of Engineering, National University of Singapore, 4 Engineering Drive 3, Singapore 117583, Singapore; NUS Synthetic Biology for Clinical and Technological Innovation (SynCTI), Life Sciences Institute, National University of Singapore, 28 Medical Drive, Singapore 117456, Singapore.
| |
Collapse
|
59
|
Papež P, Praprotnik M. Dissipative Particle Dynamics Simulation of Ultrasound Propagation through Liquid Water. J Chem Theory Comput 2022; 18:1227-1240. [PMID: 35001631 PMCID: PMC8830050 DOI: 10.1021/acs.jctc.1c01020] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
![]()
Ultrasound is widely
used as a noninvasive method in therapeutic
and diagnostic applications. These can be further optimized by computational
approaches, as they allow for controlled testing and rational optimization
of the ultrasound parameters, such as frequency and amplitude. Usually,
continuum numerical methods are used to simulate ultrasound propagating
through different tissue types. In contrast, ultrasound simulations
using particle description are less common, as the implementation
is challenging. In this work, a dissipative particle dynamics model
is used to perform ultrasound simulations in liquid water. The effects
of frequency and thermostat parameters are studied and discussed.
We show that frequency and thermostat parameters affect not only the
attenuation but also the computed speed of sound. The present study
paves the way for development and optimization of a virtual ultrasound
machine for large-scale biomolecular simulations.
Collapse
Affiliation(s)
- Petra Papež
- Laboratory for Molecular Modeling, National Institute of Chemistry, Hajdrihova 19, Ljubljana, SI-1001, Slovenia.,Department of Physics, Faculty of Mathematics and Physics, University of Ljubljana, Jadranska 19, Ljubljana, SI-1000, Slovenia
| | - Matej Praprotnik
- Laboratory for Molecular Modeling, National Institute of Chemistry, Hajdrihova 19, Ljubljana, SI-1001, Slovenia.,Department of Physics, Faculty of Mathematics and Physics, University of Ljubljana, Jadranska 19, Ljubljana, SI-1000, Slovenia
| |
Collapse
|
60
|
Rich J, Tian Z, Huang TJ. Sonoporation: Past, Present, and Future. ADVANCED MATERIALS TECHNOLOGIES 2022; 7:2100885. [PMID: 35399914 PMCID: PMC8992730 DOI: 10.1002/admt.202100885] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Indexed: 05/09/2023]
Abstract
A surge of research in intracellular delivery technologies is underway with the increased innovations in cell-based therapies and cell reprogramming. Particularly, physical cell membrane permeabilization techniques are highlighted as the leading technologies because of their unique features, including versatility, independence of cargo properties, and high-throughput delivery that is critical for providing the desired cell quantity for cell-based therapies. Amongst the physical permeabilization methods, sonoporation holds great promise and has been demonstrated for delivering a variety of functional cargos, such as biomolecular drugs, proteins, and plasmids, to various cells including cancer, immune, and stem cells. However, traditional bubble-based sonoporation methods usually require special contrast agents. Bubble-based sonoporation methods also have high chances of inducing irreversible damage to critical cell components, lowering the cell viability, and reducing the effectiveness of delivered cargos. To overcome these limitations, several novel non-bubble-based sonoporation mechanisms are under development. This review will cover both the bubble-based and non-bubble-based sonoporation mechanisms being employed for intracellular delivery, the technologies being investigated to overcome the limitations of traditional platforms, as well as perspectives on the future sonoporation mechanisms, technologies, and applications.
Collapse
Affiliation(s)
- Joseph Rich
- Department of Biomedical Engineering, Duke University, Durham, NC, 27708, USA
| | - Zhenhua Tian
- Department of Aerospace Engineering, Mississippi State University, Mississippi State, MS, 39762, USA
| | - Tony Jun Huang
- Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC, 27708, USA
| |
Collapse
|
61
|
Highlights in ultrasound-targeted microbubble destruction-mediated gene/drug delivery strategy for treatment of malignancies. Int J Pharm 2021; 613:121412. [PMID: 34942327 DOI: 10.1016/j.ijpharm.2021.121412] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 12/06/2021] [Accepted: 12/17/2021] [Indexed: 01/05/2023]
Abstract
Ultrasound is one of the safest and most advanced medical imaging technologies that is widely used in clinical practice. Ultrasound microbubbles, traditionally used for contrast-enhanced imaging, are increasingly applied in Ultrasound-targeted Microbubble Destruction (UTMD) technology which enhances tissue and cell membrane permeability through cavitation and sonoporation, to result in a promising therapeutic gene/drug delivery strategy. Here, we review recent developments in the application of UTMD-mediated gene and drug delivery in the diagnosis and treatment of tumors, including the concept, mechanism of action, clinical application status, and advantages of UTMD. Furthermore, the future perspectives that should be paid more attention to in this field are prospected.
Collapse
|
62
|
Park Y, Chung TS, Lee G, Rogers JA. Materials Chemistry of Neural Interface Technologies and Recent Advances in Three-Dimensional Systems. Chem Rev 2021; 122:5277-5316. [PMID: 34739219 DOI: 10.1021/acs.chemrev.1c00639] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Advances in materials chemistry and engineering serve as the basis for multifunctional neural interfaces that span length scales from individual neurons to neural networks, neural tissues, and complete neural systems. Such technologies exploit electrical, electrochemical, optical, and/or pharmacological modalities in sensing and neuromodulation for fundamental studies in neuroscience research, with additional potential to serve as routes for monitoring and treating neurodegenerative diseases and for rehabilitating patients. This review summarizes the essential role of chemistry in this field of research, with an emphasis on recently published results and developing trends. The focus is on enabling materials in diverse device constructs, including their latest utilization in 3D bioelectronic frameworks formed by 3D printing, self-folding, and mechanically guided assembly. A concluding section highlights key challenges and future directions.
Collapse
Affiliation(s)
- Yoonseok Park
- Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, Illinois 60208, United States
| | - Ted S Chung
- Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, Illinois 60208, United States.,Department of Biomedical Engineering, Northwestern University, Evanston, Illinois 60208, United States
| | - Geumbee Lee
- Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, Illinois 60208, United States
| | - John A Rogers
- Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, Illinois 60208, United States.,Department of Biomedical Engineering, Northwestern University, Evanston, Illinois 60208, United States.,Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208, United States.,Department of Electrical Engineering and Computer Science, Northwestern University, Evanston, Illinois 60208, United States.,Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States.,Department of Mechanical Engineering, Northwestern University, Evanston, Illinois 60208, United States.,Department of Neurological Surgery, Northwestern University, Evanston, Illinois 60208, United States
| |
Collapse
|
63
|
The Role of Ultrasound as a Diagnostic and Therapeutic Tool in Experimental Animal Models of Stroke: A Review. Biomedicines 2021; 9:biomedicines9111609. [PMID: 34829837 PMCID: PMC8615437 DOI: 10.3390/biomedicines9111609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 10/25/2021] [Accepted: 11/01/2021] [Indexed: 11/18/2022] Open
Abstract
Ultrasound is a noninvasive technique that provides real-time imaging with excellent resolution, and several studies demonstrated the potential of ultrasound in acute ischemic stroke monitoring. However, only a few studies were performed using animal models, of which many showed ultrasound to be a safe and effective tool also in therapeutic applications. The full potential of ultrasound application in experimental stroke is yet to be explored to further determine the limitations of this technique and to ensure the accuracy of translational research. This review covers the current status of ultrasound applied to monitoring and treatment in experimental animal models of stroke and examines the safety, limitations, and future perspectives.
Collapse
|
64
|
Bacteria-Based Microdevices for the Oral Delivery of Macromolecules. Pharmaceutics 2021; 13:pharmaceutics13101610. [PMID: 34683903 PMCID: PMC8537518 DOI: 10.3390/pharmaceutics13101610] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 09/21/2021] [Accepted: 09/23/2021] [Indexed: 12/13/2022] Open
Abstract
The oral delivery of macromolecules is quite challenging due to environmental insults and biological barriers encountered along the gastrointestinal (GI) tract. Benefiting from their living characteristics, diverse bacterial species have been engineered as intelligent platforms to deliver various therapeutics. To tackle difficulties in oral delivery, innovative bacteria-based microdevices have been developed by virtue of advancements in synthetic biology and nanotechnology, with aims to overcome the instability and short half-life of macromolecules in the GI tract. In this review, we summarize the main classes of macromolecules that are produced and delivered through the oral ingestion of bacteria and bacterial derivatives. Furtherly, we discuss the engineering strategies and biomedical applications of these living microdevices in disease diagnosis, bioimaging, and treatment. Finally, we highlight the advantages as well as the limitations of these engineered bacteria used as platforms for the oral delivery of macromolecules and also propose their potential for clinical translation. The results summarized in this review article would contribute to the invention of next-generation bacteria-based systems for the oral delivery of macromolecules.
Collapse
|
65
|
Li H, Shi S, Wu M, Shen W, Ren J, Mei Z, Ran H, Wang Z, Tian Y, Gao J, Zhao H. iRGD Peptide-Mediated Liposomal Nanoparticles with Photoacoustic/Ultrasound Dual-Modality Imaging for Precision Theranostics Against Hepatocellular Carcinoma. Int J Nanomedicine 2021; 16:6455-6475. [PMID: 34584411 PMCID: PMC8464346 DOI: 10.2147/ijn.s325891] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 09/11/2021] [Indexed: 12/29/2022] Open
Abstract
Purpose Prepare a multifunctional ultrasound molecular probe, cell-penetrating peptide-modified 10-hydroxycamptothecin-loaded phase-transformation lipid nanoparticles (iRGD-ICG-10-HCPT-PFP-NPs), and to combine iRGD-ICG-10-HCPT-PFP -NPs with low-intensity focused ultrasound (LIFU) for precision theranostics against hepatocellular carcinoma (HCC). Materials and Methods The morphology of nanoparticles (NPs) and iRGD-ICG-10-HCPT-PFP-NPs was detected. In vitro, we examined targeting ability by flow cytometry and confocal laser scanning microscopy (CLSM), assessed penetration ability into hepatoma cells, and assessed killing ability. In vivo, we examined the targeting ability of the NPs with a photoacoustic (PA) imager and fluorometer (FL), while LIFU irradiation was used to trigger the release of chemotherapeutic drugs, which had a therapeutic effect on tumors. Results The particle size of iRGD-ICG-10-HCPT-PFP-NPs was 298.4 ± 10.42 nm. In vitro, iRGD-ICG-10-HCPT-PFP-NPs bound more to SK-Hep1 cells than ICG-10-HCPT-PFP-NPs. iRGD-ICG-10-HCPT-PFP-NPs could achieve PA/ultrasound imaging. The percentage of antiproliferative and apoptotic cells in the iRGD-ICG-10-HCPT-PFP-NPs+LIFU group was significantly higher. In vivo, iRGD-ICG-10-HCPT-PFP-NPs can target tumor sites and achieve PA/ultrasound imaging. The tumor volume in the iRGD-ICG-10-HCPT-PFP-NPs+LIFU group was significantly smaller, and the antiproliferative and proapoptotic effects were higher. Conclusion We successfully prepared a novel molecular probe that has good targeting, can perform ultrasound/PA dual-modality imaging, and can penetrate deep into tumors to achieve better therapeutic tumor effects, providing a new idea and method for theranostics of HCC.
Collapse
Affiliation(s)
- Huipu Li
- Department of Gastroenterology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, People's Republic of China
| | - Shasha Shi
- Department of Gastroenterology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, People's Republic of China
| | - Meng Wu
- Department of Ultrasound, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, People's Republic of China
| | - Wei Shen
- Department of Gastroenterology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, People's Republic of China
| | - Jianli Ren
- Chongqing Key Laboratory of Ultrasound Molecular Imaging, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, People's Republic of China
| | - Zhechuan Mei
- Department of Gastroenterology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, People's Republic of China
| | - Haitao Ran
- Chongqing Key Laboratory of Ultrasound Molecular Imaging, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, People's Republic of China
| | - Zhigang Wang
- Chongqing Key Laboratory of Ultrasound Molecular Imaging, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, People's Republic of China
| | - Yi Tian
- Department of Plastic Surgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, People's Republic of China
| | - Jian Gao
- Department of Gastroenterology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, People's Republic of China
| | - Hongyun Zhao
- Department of Gastroenterology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, People's Republic of China.,Chongqing Key Laboratory of Ultrasound Molecular Imaging, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, People's Republic of China
| |
Collapse
|
66
|
Wang Y, Cong H, Wang S, Yu B, Shen Y. Development and application of ultrasound contrast agents in biomedicine. J Mater Chem B 2021; 9:7633-7661. [PMID: 34586124 DOI: 10.1039/d1tb00850a] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
With the rapid development of molecular imaging, ultrasound (US) medicine has evolved from traditional imaging diagnosis to integrated diagnosis and treatment at the molecular level. Ultrasound contrast agents (UCAs) play a crucial role in the integration of US diagnosis and treatment. As the micro-bubbles (MBs) in UCAs can enhance the cavitation effect and promote the biological effect of US, UCAs have also been studied in the fields of US thrombolysis, mediated gene transfer, drug delivery, and high intensity focused US. The application range of UCAs is expanding, and the value of their applications is improving. This paper reviews the development and application of UCAs in biomedicine in recent years, and the existing problems and prospects are pointed out.
Collapse
Affiliation(s)
- Yu Wang
- Institute of Biomedical Materials and Engineering, College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Affiliated Hospital of Qingdao University, Qingdao University, Building D, Science Park, Qingdao 266071, China.
| | - Hailin Cong
- Institute of Biomedical Materials and Engineering, College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Affiliated Hospital of Qingdao University, Qingdao University, Building D, Science Park, Qingdao 266071, China. .,State Key Laboratory of Bio-Fibers and Eco-Textiles, Qingdao University, Qingdao 266071, China
| | - Song Wang
- Institute of Biomedical Materials and Engineering, College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Affiliated Hospital of Qingdao University, Qingdao University, Building D, Science Park, Qingdao 266071, China.
| | - Bing Yu
- Institute of Biomedical Materials and Engineering, College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Affiliated Hospital of Qingdao University, Qingdao University, Building D, Science Park, Qingdao 266071, China. .,State Key Laboratory of Bio-Fibers and Eco-Textiles, Qingdao University, Qingdao 266071, China
| | - Youqing Shen
- Institute of Biomedical Materials and Engineering, College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Affiliated Hospital of Qingdao University, Qingdao University, Building D, Science Park, Qingdao 266071, China. .,Center for Bionanoengineering and Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
| |
Collapse
|
67
|
Ultrasensitive ultrasound imaging of gene expression with signal unmixing. Nat Methods 2021; 18:945-952. [PMID: 34354290 PMCID: PMC8363212 DOI: 10.1038/s41592-021-01229-w] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 06/30/2021] [Indexed: 12/28/2022]
Abstract
Acoustic reporter genes (ARGs) encoding air-filled gas vesicles enable ultrasound-based imaging of gene expression in genetically modified bacteria and mammalian cells, facilitating the study of cellular function in deep tissues. Despite the promise of this technology for biological research and potential clinical applications, the sensitivity with which ARG-expressing cells can be visualized is currently limited. Here we present BURST – an ARG imaging paradigm that improves the cellular detection limit by more than 1000-fold compared to conventional methods. BURST takes advantage of the unique temporal signal pattern produced by gas vesicles as they collapse under acoustic pressure above a threshold defined by the ARG. By extracting the unique pattern of this signal from total scattering, BURST boosts the sensitivity of ultrasound to image ARG-expressing cells, as demonstrated in vitro and in vivo in the mouse gastrointestinal tract and liver. Furthermore, in dilute cell suspensions, BURST imaging enables the detection of gene expression in individual bacteria and mammalian cells. The resulting capabilities expand the potential utility of ultrasound for non-invasive imaging of cellular function.
Collapse
|
68
|
Steele LM, Kotsch TJ, Legge CA, Smith DJ. Establishing C. elegans as a Model for Studying the Bioeffects of Therapeutic Ultrasound. ULTRASOUND IN MEDICINE & BIOLOGY 2021; 47:2346-2359. [PMID: 34006439 DOI: 10.1016/j.ultrasmedbio.2021.04.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 03/16/2021] [Accepted: 04/08/2021] [Indexed: 06/12/2023]
Abstract
Ultrasound is widely used in diagnostic and therapeutic medical procedures and it is becoming an important tool in biomedical research. During exposure, as an ultrasound beam interacts with the tissues in its path, changes known as "bioeffects" can result. Animal studies have suggested that these changes can alter survival, movement, reproduction, development and learning in various species. Additional studies in animals could provide valuable information about the mechanisms of therapeutic ultrasound and may contribute to the development of additional exciting laboratory techniques. Therefore, we developed methods for exposing C. elegans nematode worms to ultrasound and observed that they exhibited exposure-dependent reductions in movement, fecundity and survival. These effects were prevented by polyvinyl alcohol, which suggested that cavitation was the main mechanism of damage. This work provides a foundation for capitalizing on the advantages of C. elegans as a model to thoroughly characterize ultrasound's bioeffects at the cellular and molecular levels.
Collapse
Affiliation(s)
- Louise M Steele
- Department of Biological Sciences, Kent State University at Salem, Salem, OH, USA.
| | - Troy J Kotsch
- Department of Biological Sciences, Kent State University at Salem, Salem, OH, USA
| | - Catherine A Legge
- Radiologic & Imaging Sciences Program, Kent State University at Salem, Salem, OH, USA
| | - Delores J Smith
- College of Nursing, Kent State University at Salem, Salem, OH, USA
| |
Collapse
|
69
|
Wang R, Zhang L, Xie M, Wang L, Jin Q, Chen Y, Xie Y, He M, Zhu Y, Xu L, Han Z, Chen D. Biogenic Gas Vesicles for Ultrasound Imaging and Targeted Therapeutics. Curr Med Chem 2021; 29:1316-1330. [PMID: 34225604 DOI: 10.2174/0929867328666210705145642] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 05/01/2021] [Accepted: 05/15/2021] [Indexed: 11/22/2022]
Abstract
Ultrasound is not only the most widely used medical imaging mode for diagnostics owing to its real-time, non-radiation, portable, and low-cost merits, but also a promising targeted drug/gene delivery technique by exhibiting a series of powerful bioeffects. The development of micron-sized or nanometer-sized ultrasound agents or delivery carriers further makes ultrasound a distinctive modality in accurate diagnosis and effective treatment. In this review, we introduce one kind of unique biogenic gas-filled protein nanostructures called gas vesicles, presenting some unique characteristics than the conventional microbubbles. Gas vesicles can not only serve as ultrasound contrast agents with innovative imaging methods such as cross-amplitude modulation harmonic imaging but also can further be adjusted and optimized via genetic engineering techniques. Moreover, they could not only serve as acoustic gene reporters, acoustic biosensors to monitor the cell metabolism, but also serve as cavitation nuclei and drug carriers for therapeutic purposes. In this study, we focus on the latest development and applications in the area of ultrasound imaging and targeted therapeutics, and also provide a brief introduction of the corresponding mechanisms. In summary, these biogenic gas vesicles show some advantages over conventional MBs that deserve more efforts to promote their development.
Collapse
Affiliation(s)
- Rui Wang
- Department of Ultrasound, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Li Zhang
- Department of Ultrasound, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Mingxing Xie
- Department of Ultrasound, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Lufang Wang
- Department of Ultrasound, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qiaofeng Jin
- Department of Ultrasound, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yihan Chen
- Department of Ultrasound, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yuji Xie
- Department of Ultrasound, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Mengrong He
- Department of Ultrasound, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ye Zhu
- Department of Ultrasound, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Lingling Xu
- Department of Ultrasound, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhengyang Han
- Department of Ultrasound, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Dandan Chen
- Department of Ultrasound, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
70
|
Madderson O, Teixeira AP, Fussenegger M. Emerging mammalian gene switches for controlling implantable cell therapies. Curr Opin Chem Biol 2021; 64:98-105. [PMID: 34216875 DOI: 10.1016/j.cbpa.2021.05.012] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 05/20/2021] [Accepted: 05/24/2021] [Indexed: 12/25/2022]
Abstract
Engineered cell-based therapies have emerged as a new paradigm in modern medicine, with several engineered T cell therapies currently approved to treat blood cancers and many more in clinical development. Tremendous progress in synthetic biology over the past two decades has allowed us to program cells with sophisticated sense-and-response modules that can effectively control therapeutic functions. In this review, we highlight recent advances in mammalian synthetic gene switches, focusing on devices designed for therapeutic applications. Although many gene switches responding to endogenous or exogenous molecular signals have been developed, the focus is shifting towards achieving remote-controlled production of therapeutic effectors by stimulating implanted engineered cells with traceless physical signals, such as light, electrical signals, magnetic fields, heat or ultrasound.
Collapse
Affiliation(s)
- Oliver Madderson
- ETH Zürich, Department of Biosystems Science and Engineering, Mattenstrasse 26, 4058, Basel, Switzerland
| | - Ana Palma Teixeira
- ETH Zürich, Department of Biosystems Science and Engineering, Mattenstrasse 26, 4058, Basel, Switzerland
| | - Martin Fussenegger
- ETH Zürich, Department of Biosystems Science and Engineering, Mattenstrasse 26, 4058, Basel, Switzerland; University of Basel, Faculty of Life Science, Basel, Switzerland.
| |
Collapse
|
71
|
Zhao P, Huo S, Fan J, Chen J, Kiessling F, Boersma AJ, Göstl R, Herrmann A. Activation of the Catalytic Activity of Thrombin for Fibrin Formation by Ultrasound. Angew Chem Int Ed Engl 2021; 60:14707-14714. [PMID: 33939872 PMCID: PMC8252103 DOI: 10.1002/anie.202105404] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Indexed: 12/11/2022]
Abstract
The regulation of enzyme activity is a method to control biological function. We report two systems enabling the ultrasound-induced activation of thrombin, which is vital for secondary hemostasis. First, we designed polyaptamers, which can specifically bind to thrombin, inhibiting its catalytic activity. With ultrasound generating inertial cavitation and therapeutic medical focused ultrasound, the interactions between polyaptamer and enzyme are cleaved, restoring the activity to catalyze the conversion of fibrinogen into fibrin. Second, we used split aptamers conjugated to the surface of gold nanoparticles (AuNPs). In the presence of thrombin, these assemble into an aptamer tertiary structure, induce AuNP aggregation, and deactivate the enzyme. By ultrasonication, the AuNP aggregates reversibly disassemble releasing and activating the enzyme. We envision that this approach will be a blueprint to control the function of other proteins by mechanical stimuli in the sonogenetics field.
Collapse
Affiliation(s)
- Pengkun Zhao
- Zernike Institute for Advanced MaterialsUniversity of GroningenNijenborgh 49747 AGGroningenThe Netherlands
- DWI—Leibniz Institute for Interactive MaterialsForckenbeckstr. 5052056AachenGermany
| | - Shuaidong Huo
- Zernike Institute for Advanced MaterialsUniversity of GroningenNijenborgh 49747 AGGroningenThe Netherlands
- DWI—Leibniz Institute for Interactive MaterialsForckenbeckstr. 5052056AachenGermany
- Institute of Technical and Macromolecular ChemistryRWTH Aachen UniversityWorringerweg 152074AachenGermany
- Fujian Provincial Key Laboratory of Innovative Drug Target ResearchSchool of Pharmaceutical ScienceXiamen University361102XiamenChina
| | - Jilin Fan
- DWI—Leibniz Institute for Interactive MaterialsForckenbeckstr. 5052056AachenGermany
| | - Junlin Chen
- Institute for Experimental Molecular ImagingUniversity Hospital AachenForckenbeckstr. 5552074AachenGermany
| | - Fabian Kiessling
- Institute for Experimental Molecular ImagingUniversity Hospital AachenForckenbeckstr. 5552074AachenGermany
| | - Arnold J. Boersma
- DWI—Leibniz Institute for Interactive MaterialsForckenbeckstr. 5052056AachenGermany
| | - Robert Göstl
- DWI—Leibniz Institute for Interactive MaterialsForckenbeckstr. 5052056AachenGermany
| | - Andreas Herrmann
- Zernike Institute for Advanced MaterialsUniversity of GroningenNijenborgh 49747 AGGroningenThe Netherlands
- DWI—Leibniz Institute for Interactive MaterialsForckenbeckstr. 5052056AachenGermany
- Institute of Technical and Macromolecular ChemistryRWTH Aachen UniversityWorringerweg 152074AachenGermany
| |
Collapse
|
72
|
Zhao P, Huo S, Fan J, Chen J, Kiessling F, Boersma AJ, Göstl R, Herrmann A. Aktivierung der katalytischen Aktivität von Thrombin für die Bildung von Fibrin durch Ultraschall. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202105404] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Pengkun Zhao
- Zernike Institute for Advanced Materials University of Groningen Nijenborgh 4 9747 AG Groningen Niederlande
- DWI – Leibniz-Institut für Interaktive Materialien Forckenbeckstr. 50 52056 Aachen Deutschland
| | - Shuaidong Huo
- Zernike Institute for Advanced Materials University of Groningen Nijenborgh 4 9747 AG Groningen Niederlande
- DWI – Leibniz-Institut für Interaktive Materialien Forckenbeckstr. 50 52056 Aachen Deutschland
- Institut für Technische und Makromolekulare Chemie RWTH Aachen Worringerweg 1 52074 Aachen Deutschland
- Fujian Provincial Key Laboratory of Innovative Drug Target Research School of Pharmaceutical Science Xiamen University 361102 Xiamen China
| | - Jilin Fan
- DWI – Leibniz-Institut für Interaktive Materialien Forckenbeckstr. 50 52056 Aachen Deutschland
| | - Junlin Chen
- Institut für Experimentelle Molekulare Bildgebung Uniklinik Aachen Forckenbeckstr. 55 52074 Aachen Deutschland
| | - Fabian Kiessling
- Institut für Experimentelle Molekulare Bildgebung Uniklinik Aachen Forckenbeckstr. 55 52074 Aachen Deutschland
| | - Arnold J. Boersma
- DWI – Leibniz-Institut für Interaktive Materialien Forckenbeckstr. 50 52056 Aachen Deutschland
| | - Robert Göstl
- DWI – Leibniz-Institut für Interaktive Materialien Forckenbeckstr. 50 52056 Aachen Deutschland
| | - Andreas Herrmann
- Zernike Institute for Advanced Materials University of Groningen Nijenborgh 4 9747 AG Groningen Niederlande
- DWI – Leibniz-Institut für Interaktive Materialien Forckenbeckstr. 50 52056 Aachen Deutschland
- Institut für Technische und Makromolekulare Chemie RWTH Aachen Worringerweg 1 52074 Aachen Deutschland
| |
Collapse
|
73
|
Bodea SV, Westmeyer GG. Photoacoustic Neuroimaging - Perspectives on a Maturing Imaging Technique and its Applications in Neuroscience. Front Neurosci 2021; 15:655247. [PMID: 34220420 PMCID: PMC8253050 DOI: 10.3389/fnins.2021.655247] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 03/08/2021] [Indexed: 11/13/2022] Open
Abstract
A prominent goal of neuroscience is to improve our understanding of how brain structure and activity interact to produce perception, emotion, behavior, and cognition. The brain's network activity is inherently organized in distinct spatiotemporal patterns that span scales from nanometer-sized synapses to meter-long nerve fibers and millisecond intervals between electrical signals to decades of memory storage. There is currently no single imaging method that alone can provide all the relevant information, but intelligent combinations of complementary techniques can be effective. Here, we thus present the latest advances in biomedical and biological engineering on photoacoustic neuroimaging in the context of complementary imaging techniques. A particular focus is placed on recent advances in whole-brain photoacoustic imaging in rodent models and its influential role in bridging the gap between fluorescence microscopy and more non-invasive techniques such as magnetic resonance imaging (MRI). We consider current strategies to address persistent challenges, particularly in developing molecular contrast agents, and conclude with an overview of potential future directions for photoacoustic neuroimaging to provide deeper insights into healthy and pathological brain processes.
Collapse
Affiliation(s)
- Silviu-Vasile Bodea
- Department of Chemistry and School of Medicine, Technical University of Munich (TUM), Munich, Germany
- Institute for Synthetic Biomedicine, Helmholtz Center Munich, Munich, Germany
| | - Gil Gregor Westmeyer
- Department of Chemistry and School of Medicine, Technical University of Munich (TUM), Munich, Germany
- Institute for Synthetic Biomedicine, Helmholtz Center Munich, Munich, Germany
| |
Collapse
|
74
|
Edelman BJ, Macé E. Functional ultrasound brain imaging: Bridging networks, neurons, and behavior. CURRENT OPINION IN BIOMEDICAL ENGINEERING 2021. [DOI: 10.1016/j.cobme.2021.100286] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
75
|
Xian Q, Qiu Z, Kala S, Wong KF, Guo J, Sun L. Behavioral and Functional Assessment of Ultrasound Neuromodulation on Caenorhabditis Elegans. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2021; 68:2150-2154. [PMID: 33556006 DOI: 10.1109/tuffc.2021.3057873] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Ultrasound brain stimulation is a promising modality for probing brain function and treating brain diseases. However, its mechanism is as yet unclear, and in vivo effects are not well-understood. Here, we present a top-down strategy for assessing ultrasound bioeffects in vivo, using Caenorhabditis elegans. Behavioral and functional changes of single worms and of large populations upon ultrasound stimulation were studied. Worms were observed to significantly increase their average speed upon ultrasound stimulation, adapting to it upon continued treatment. Worms also generated more reversal turns when ultrasound was ON, and within a minute post-stimulation, they performed significantly more reversal and omega turns than prior to ultrasound. In addition, in vivo calcium imaging showed that the neural activity in the worms' heads and tails was increased significantly by ultrasound stimulation. In all, we conclude that ultrasound can directly activate the neurons of worms in vivo, in both of their major neuronal ganglia, and modify their behavior.
Collapse
|
76
|
Farhadi A, Sigmund F, Westmeyer GG, Shapiro MG. Genetically encodable materials for non-invasive biological imaging. NATURE MATERIALS 2021; 20:585-592. [PMID: 33526879 PMCID: PMC8606175 DOI: 10.1038/s41563-020-00883-3] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Accepted: 11/18/2020] [Indexed: 05/04/2023]
Abstract
Many questions in basic biology and medicine require the ability to visualize the function of specific cells and molecules inside living organisms. In this context, technologies such as ultrasound, optoacoustics and magnetic resonance provide non-invasive imaging access to deep-tissue regions, as used in many laboratories and clinics to visualize anatomy and physiology. In addition, recent work has enabled these technologies to image the location and function of specific cells and molecules inside the body by coupling the physics of sound waves, nuclear spins and light absorption to unique protein-based materials. These materials, which include air-filled gas vesicles, capsid-like nanocompartments, pigment-producing enzymes and transmembrane transporters, enable new forms of biomolecular and cellular contrast. The ability of these protein-based contrast agents to be genetically encoded and produced by cells creates opportunities for unprecedented in vivo studies of cellular function, while their amenability to genetic engineering enables atomic-level design of their physical, chemical and biological properties.
Collapse
Affiliation(s)
- Arash Farhadi
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
- Synthetic Biology Center, Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Felix Sigmund
- Department of Chemistry and TUM School of Medicine, Technical University of Munich, Munich, Germany
- Institute for Synthetic Biomedicine, Helmholtz Zentrum Muenchen, Neuherberg, Germany
| | - Gil Gregor Westmeyer
- Department of Chemistry and TUM School of Medicine, Technical University of Munich, Munich, Germany.
- Institute for Synthetic Biomedicine, Helmholtz Zentrum Muenchen, Neuherberg, Germany.
| | - Mikhail G Shapiro
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA, USA.
| |
Collapse
|
77
|
Heiles B, Terwiel D, Maresca D. The Advent of Biomolecular Ultrasound Imaging. Neuroscience 2021; 474:122-133. [PMID: 33727074 DOI: 10.1016/j.neuroscience.2021.03.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 03/04/2021] [Accepted: 03/05/2021] [Indexed: 12/23/2022]
Abstract
Ultrasound imaging is one of the most widely used modalities in clinical practice, revealing human prenatal development but also arterial function in the adult brain. Ultrasound waves travel deep within soft biological tissues and provide information about the motion and mechanical properties of internal organs. A drawback of ultrasound imaging is its limited ability to detect molecular targets due to a lack of cell-type specific acoustic contrast. To date, this limitation has been addressed by targeting synthetic ultrasound contrast agents to molecular targets. This molecular ultrasound imaging approach has proved to be successful but is restricted to the vascular space. Here, we introduce the nascent field of biomolecular ultrasound imaging, a molecular imaging approach that relies on genetically encoded acoustic biomolecules to interface ultrasound waves with cellular processes. We review ultrasound imaging applications bridging wave physics and chemical engineering with potential for deep brain imaging.
Collapse
Affiliation(s)
- Baptiste Heiles
- Department of Imaging Physics, Delft University of Technology, Delft, The Netherlands
| | - Dion Terwiel
- Department of Imaging Physics, Delft University of Technology, Delft, The Netherlands
| | - David Maresca
- Department of Imaging Physics, Delft University of Technology, Delft, The Netherlands.
| |
Collapse
|
78
|
Abstract
Ultrasound modulates the electrical activity of excitable cells and offers advantages over other neuromodulatory techniques; for example, it can be noninvasively transmitted through the skull and focused to deep brain regions. However, the fundamental cellular, molecular, and mechanistic bases of ultrasonic neuromodulation are largely unknown. Here, we demonstrate ultrasound activation of the mechanosensitive K+ channel TRAAK with submillisecond kinetics to an extent comparable to canonical mechanical activation. Single-channel recordings reveal a common basis for ultrasonic and mechanical activation with stimulus-graded destabilization of long-duration closures and promotion of full conductance openings. Ultrasonic energy is transduced to TRAAK through the membrane in the absence of other cellular components, likely increasing membrane tension to promote channel opening. We further demonstrate ultrasonic modulation of neuronally expressed TRAAK. These results suggest mechanosensitive channels underlie physiological responses to ultrasound and could serve as sonogenetic actuators for acoustic neuromodulation of genetically targeted cells.
Collapse
|
79
|
Paez Segala MG, Looger LL. Optogenetics. Mol Imaging 2021. [DOI: 10.1016/b978-0-12-816386-3.00092-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
80
|
Azadeh SS, Lordifard P, Soheilifar MH, Esmaeeli Djavid G, Keshmiri Neghab H. Ultrasound and Sonogenetics: A New Perspective for Controlling Cells with Sound. IRANIAN JOURNAL OF PHARMACEUTICAL RESEARCH : IJPR 2021; 20:151-160. [PMID: 34903978 PMCID: PMC8653683 DOI: 10.22037/ijpr.2021.114868.15079] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
An important challenge in neurobiology is to stimulate a single neuron, especially in deep areas of the brain. The optogenetics methods need a surgical operation to convey light sources to targeted cells. Nowadays, non-invasive tools such as sonogenetics with the ability to modulate and visualizing cellular and molecular processes have attracted much attention. The study of the biological functions of living organisms always requires tools for monitoring and imaging dynamically. Current sonogenetic approaches use ultrasound as a non-invasive tool to precisely control cellular function. In general, sonogenetics includes the development of mechano-sensitive proteins, approaches for introducing their genes to specific cells, targeted stimulation, and finally, reading the outcome. Hence, to prepare a short review of emerging technology sonogenetics, we summarized the introduction of sound waves, the mechano-sensitive proteins commonly used in sonogenetics, and potential therapeutic applications of sonogenetics for biological research and medicine. This short review would beneficiate in the translation of sonogenetics from present in-vitro and in-vivo investigations to clinical therapies.
Collapse
Affiliation(s)
- Seyedeh Sara Azadeh
- Department of Biology, Sciences and Research Branch, Islamic Azad University, Tehran, Iran.
| | - Parinaz Lordifard
- Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran.
| | | | - Gholamreza Esmaeeli Djavid
- Department of Photo Healing and Regeneration, Medical Laser Research Center, Yara Institute, ACECR, Tehran, Iran.
| | - Hoda Keshmiri Neghab
- Department of Photo Healing and Regeneration, Medical Laser Research Center, Yara Institute, ACECR, Tehran, Iran.
| |
Collapse
|
81
|
Shapiro MG. Reporter Genes for Ultrasound and MRI. Mol Imaging 2021. [DOI: 10.1016/b978-0-12-816386-3.00051-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
|
82
|
Gómez-de Frutos MC, García-Suárez I, Laso-García F, Diekhorst L, Otero-Ortega L, Alonso-López E, Díez-Tejedor E, Gutiérrez-Fernández M, Ruiz-Ares G. Identification of brain structures and blood vessels by conventional ultrasound in rats. J Neurosci Methods 2020; 346:108935. [PMID: 32916202 DOI: 10.1016/j.jneumeth.2020.108935] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 07/16/2020] [Accepted: 09/02/2020] [Indexed: 11/15/2022]
Abstract
BACKGROUND Ultrasound is a safe, non-invasive and affordable imaging technique for the visualization of internal structures and the measurement of blood velocity using Doppler imaging. However, despite all these advantages, no study has identified the structures of the rat brain using conventional ultrasound. METHODS A 13 MHz high frequency transducer was used to identify brain structures in the rat. The enlargement of the transcranial window was performed gradually using the ultrasound directly on the skin of the animal, then against the skull, then through a delimited craniotomy and finally through a complete craniotomy. RESULTS Our results showed that ultrasound allowed the identification of cerebral ventricles and subarachnoid cisterns, as well as the analysis of real-time monitoring of cerebral blood flow in the main brain arteries of the rat. COMPARISON WITH EXISTING METHODS Ultrasound is a tool with the potential to identify brain structures and blood vessels. In contrast to MRI, transcranial ultrasound is a fast, non-invasive, well tolerated and low-cost method and can be done at the bedside. CONCLUSION In the present study, we described an atlas of the main brain structures as well as the main vasculature in the rat using ultrasound. This technique could be applied in animal models of various neurological diseases.
Collapse
Affiliation(s)
- Mari Carmen Gómez-de Frutos
- Neurological Sciences and Cerebrovascular Research Laboratory, Department of Neurology and Stroke Center, La Paz University Hospital, Neuroscience Area of IdiPAZ Health Research Institute, Universidad Autónoma de Madrid, Madrid, Spain
| | - Iván García-Suárez
- Emergency Service, San Agustín University Hospital, Avilés, Asturias, Spain
| | - Fernando Laso-García
- Neurological Sciences and Cerebrovascular Research Laboratory, Department of Neurology and Stroke Center, La Paz University Hospital, Neuroscience Area of IdiPAZ Health Research Institute, Universidad Autónoma de Madrid, Madrid, Spain
| | - Luke Diekhorst
- Neurological Sciences and Cerebrovascular Research Laboratory, Department of Neurology and Stroke Center, La Paz University Hospital, Neuroscience Area of IdiPAZ Health Research Institute, Universidad Autónoma de Madrid, Madrid, Spain
| | - Laura Otero-Ortega
- Neurological Sciences and Cerebrovascular Research Laboratory, Department of Neurology and Stroke Center, La Paz University Hospital, Neuroscience Area of IdiPAZ Health Research Institute, Universidad Autónoma de Madrid, Madrid, Spain
| | - Elisa Alonso-López
- Neurological Sciences and Cerebrovascular Research Laboratory, Department of Neurology and Stroke Center, La Paz University Hospital, Neuroscience Area of IdiPAZ Health Research Institute, Universidad Autónoma de Madrid, Madrid, Spain
| | - Exuperio Díez-Tejedor
- Neurological Sciences and Cerebrovascular Research Laboratory, Department of Neurology and Stroke Center, La Paz University Hospital, Neuroscience Area of IdiPAZ Health Research Institute, Universidad Autónoma de Madrid, Madrid, Spain
| | - María Gutiérrez-Fernández
- Neurological Sciences and Cerebrovascular Research Laboratory, Department of Neurology and Stroke Center, La Paz University Hospital, Neuroscience Area of IdiPAZ Health Research Institute, Universidad Autónoma de Madrid, Madrid, Spain.
| | - Gerardo Ruiz-Ares
- Neurological Sciences and Cerebrovascular Research Laboratory, Department of Neurology and Stroke Center, La Paz University Hospital, Neuroscience Area of IdiPAZ Health Research Institute, Universidad Autónoma de Madrid, Madrid, Spain.
| |
Collapse
|
83
|
Recent Advances on Ultrasound Contrast Agents for Blood-Brain Barrier Opening with Focused Ultrasound. Pharmaceutics 2020; 12:pharmaceutics12111125. [PMID: 33233374 PMCID: PMC7700476 DOI: 10.3390/pharmaceutics12111125] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 11/16/2020] [Accepted: 11/17/2020] [Indexed: 12/14/2022] Open
Abstract
The blood-brain barrier is the primary obstacle to efficient intracerebral drug delivery. Focused ultrasound, in conjunction with microbubbles, is a targeted and non-invasive way to disrupt the blood-brain barrier. Many commercially available ultrasound contrast agents and agents specifically designed for therapeutic purposes have been investigated in ultrasound-mediated blood-brain barrier opening studies. The new generation of sono-sensitive agents, such as liquid-core droplets, can also potentially disrupt the blood-brain barrier after their ultrasound-induced vaporization. In this review, we describe the different compositions of agents used for ultrasound-mediated blood-brain barrier opening in recent studies, and we discuss the challenges of the past five years related to the optimal formulation of agents.
Collapse
|
84
|
Rabut C, Yoo S, Hurt RC, Jin Z, Li H, Guo H, Ling B, Shapiro MG. Ultrasound Technologies for Imaging and Modulating Neural Activity. Neuron 2020; 108:93-110. [PMID: 33058769 PMCID: PMC7577369 DOI: 10.1016/j.neuron.2020.09.003] [Citation(s) in RCA: 123] [Impact Index Per Article: 30.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 08/25/2020] [Accepted: 09/01/2020] [Indexed: 02/06/2023]
Abstract
Visualizing and perturbing neural activity on a brain-wide scale in model animals and humans is a major goal of neuroscience technology development. Established electrical and optical techniques typically break down at this scale due to inherent physical limitations. In contrast, ultrasound readily permeates the brain, and in some cases the skull, and interacts with tissue with a fundamental resolution on the order of 100 μm and 1 ms. This basic ability has motivated major efforts to harness ultrasound as a modality for large-scale brain imaging and modulation. These efforts have resulted in already-useful neuroscience tools, including high-resolution hemodynamic functional imaging, focused ultrasound neuromodulation, and local drug delivery. Furthermore, recent breakthroughs promise to connect ultrasound to neurons at the genetic level for biomolecular imaging and sonogenetic control. In this article, we review the state of the art and ongoing developments in ultrasonic neurotechnology, building from fundamental principles to current utility, open questions, and future potential.
Collapse
Affiliation(s)
- Claire Rabut
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Sangjin Yoo
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Robert C Hurt
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Zhiyang Jin
- Division of Engineering and Applied Science, California Institute of Technology, Pasadena, CA, USA
| | - Hongyi Li
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Hongsun Guo
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Bill Ling
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Mikhail G Shapiro
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA, USA.
| |
Collapse
|
85
|
Ling B, Lee J, Maresca D, Lee-Gosselin A, Malounda D, Swift MB, Shapiro MG. Biomolecular Ultrasound Imaging of Phagolysosomal Function. ACS NANO 2020; 14:12210-12221. [PMID: 32902951 PMCID: PMC7685203 DOI: 10.1021/acsnano.0c05912] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Phagocytic clearance and lysosomal processing of pathogens and debris are essential functions of the innate immune system. However, the assessment of these functions in vivo is challenging because most nanoscale contrast agents compatible with noninvasive imaging techniques are made from nonbiodegradable synthetic materials that do not undergo regular lysosomal degradation. To overcome this challenge, we describe the use of an all-protein contrast agent to directly visualize and quantify phagocytic and lysosomal activities in vivo by ultrasound imaging. This contrast agent is based on gas vesicles (GVs), a class of air-filled protein nanostructures naturally expressed by buoyant microbes. Using a combination of ultrasound imaging, pharmacology, immunohistology, and live-cell optical microscopy, we show that after intravenous injection, GVs are cleared from circulation by liver-resident macrophages. Once internalized, the GVs undergo lysosomal degradation, resulting in the elimination of their ultrasound contrast. By noninvasively monitoring the temporal dynamics of GV-generated ultrasound signal in circulation and in the liver and fitting them with a pharmacokinetic model, we can quantify the rates of phagocytosis and lysosomal degradation in living animals. We demonstrate the utility of this method by showing how these rates are perturbed in two models of liver dysfunction: phagocyte deficiency and nonalcoholic fatty liver disease. The combination of proteolytically degradable nanoscale contrast agents and quantitative ultrasound imaging thus enables noninvasive functional imaging of cellular degradative processes.
Collapse
Affiliation(s)
- Bill Ling
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California, 91125, United States
| | - Justin Lee
- Division of Biology and Bioengineering, California Institute of Technology, Pasadena, California, 91125, United States
| | - David Maresca
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California, 91125, United States
| | - Audrey Lee-Gosselin
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California, 91125, United States
| | - Dina Malounda
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California, 91125, United States
| | - Margaret B. Swift
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California, 91125, United States
| | - Mikhail G. Shapiro
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California, 91125, United States
| |
Collapse
|
86
|
Lakshmanan A, Jin Z, Nety SP, Sawyer DP, Lee-Gosselin A, Malounda D, Swift MB, Maresca D, Shapiro MG. Acoustic biosensors for ultrasound imaging of enzyme activity. Nat Chem Biol 2020; 16:988-996. [PMID: 32661379 PMCID: PMC7713704 DOI: 10.1038/s41589-020-0591-0] [Citation(s) in RCA: 77] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2019] [Accepted: 06/12/2020] [Indexed: 12/19/2022]
Abstract
Visualizing biomolecular and cellular processes inside intact living organisms is a major goal of chemical biology. However, existing molecular biosensors, based primarily on fluorescent emission, have limited utility in this context due to the scattering of light by tissue. In contrast, ultrasound can easily image deep tissue with high spatiotemporal resolution, but lacks the biosensors needed to connect its contrast to the activity of specific biomolecules such as enzymes. To overcome this limitation, we introduce the first genetically encodable acoustic biosensors-molecules that 'light up' in ultrasound imaging in response to protease activity. These biosensors are based on a unique class of air-filled protein nanostructures called gas vesicles, which we engineered to produce nonlinear ultrasound signals in response to the activity of three different protease enzymes. We demonstrate the ability of these biosensors to be imaged in vitro, inside engineered probiotic bacteria, and in vivo in the mouse gastrointestinal tract.
Collapse
Affiliation(s)
- Anupama Lakshmanan
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Zhiyang Jin
- Division of Engineering and Applied Sciences, California Institute of Technology, Pasadena, CA, USA
| | - Suchita P Nety
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Daniel P Sawyer
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Audrey Lee-Gosselin
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Dina Malounda
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Mararet B Swift
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA, USA
| | - David Maresca
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA, USA
- Department of Imaging Physics, Delft University of Technology, Delft, Netherlands
| | - Mikhail G Shapiro
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA, USA.
| |
Collapse
|
87
|
Todd N, McDannold N, Borsook D. Targeted manipulation of pain neural networks: The potential of focused ultrasound for treatment of chronic pain. Neurosci Biobehav Rev 2020; 115:238-250. [PMID: 32534900 PMCID: PMC7483565 DOI: 10.1016/j.neubiorev.2020.06.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 04/24/2020] [Accepted: 06/04/2020] [Indexed: 12/29/2022]
Abstract
Focused ultrasound (FUS) is a promising technology for facilitating treatment of brain diseases including chronic pain. Focused ultrasound is a unique modality for delivering therapeutic levels of energy into the body, including the central nervous system (CNS). It is non-invasive and can target spatially localized effects through the intact skull to cortical or subcortical regions of the brain. FUS can achieve three different mechanisms of action in the brain that are relevant for chronic pain treatment: (1) localized thermal ablation of neural tissue; (2) localized and transient disruption of the blood-brain barrier for targeted drug delivery to CNS structures; and (3) inhibition or stimulation of neuronal activity in targeted regions. This review provides an in-depth look at the technology of FUS with emphasis placed on applications to CNS-based treatments of chronic pain. While still in the early stages of clinical translation and with some technical challenges remaining, we suggest that FUS has great potential as a novel approach for manipulating CNS networks involved in pain treatment.
Collapse
Affiliation(s)
- Nick Todd
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States; Center for Pain and the Brain, 1 Autumn Street, Boston Children's Hospital, Boston, MA, 02115, United States.
| | - Nathan McDannold
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
| | - David Borsook
- Center for Pain and the Brain, 1 Autumn Street, Boston Children's Hospital, Boston, MA, 02115, United States; Department of Anesthesia, Perioperative, and Pain Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA, 02115, United States
| |
Collapse
|
88
|
Wang S, Meng W, Ren Z, Li B, Zhu T, Chen H, Wang Z, He B, Zhao D, Jiang H. Ultrasonic Neuromodulation and Sonogenetics: A New Era for Neural Modulation. Front Physiol 2020; 11:787. [PMID: 32765294 PMCID: PMC7378787 DOI: 10.3389/fphys.2020.00787] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Accepted: 06/15/2020] [Indexed: 12/19/2022] Open
Abstract
Non-invasive ultrasonic neural modulation (UNM), a non-invasive technique with enhanced spatial focus compared to conventional electrical neural modulation, has attracted much attention in recent decades and might become the mainstream regimen for neurological disorders. However, as ultrasonic bioeffects and its adjustments are still unclear, it remains difficult to be extensively applied for therapeutic purpose, much less in the setting of human skull. Hence to comprehensively understand the way ultrasound exerts bioeffects, we explored UNM from a basic perspective by illustrating the parameter settings and the underlying mechanisms. In addition, although the spatial resolution and precision of UNM are considerable, UNM is relatively non-specific to tissue or cell type and shows very low specificity at the molecular level. Surprisingly, Ibsen et al. (2015) first proposed the concept of sonogenetics, which combined UNM and mechanosensitive (MS) channel protein. This emerging approach is a valuable improvement, as it may markedly increase the precision and spatial resolution of UNM. It seemed to be an inspiring tool with high accuracy and specificity, however, little information about sonogenetics is currently available. Thus, in order to provide an overview of sonogenetics and prompt the researches on UNM, we summarized the potential mechanisms from a molecular level.
Collapse
Affiliation(s)
- Songyun Wang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Weilun Meng
- Department of Cardiology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China.,Medical Department, Nanjing Medical University, Nanjing, China
| | - Zhongyuan Ren
- Department of Cardiology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China.,Medical Department, Soochow University Medical College, Suzhou, China
| | - Binxun Li
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Tongjian Zhu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Hui Chen
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Zhen Wang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Bo He
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Dongdong Zhao
- Department of Cardiology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Hong Jiang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
89
|
Cai J, Nash WT, Okusa MD. Ultrasound for the treatment of acute kidney injury and other inflammatory conditions: a promising path toward noninvasive neuroimmune regulation. Am J Physiol Renal Physiol 2020; 319:F125-F138. [PMID: 32508112 PMCID: PMC7468827 DOI: 10.1152/ajprenal.00145.2020] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 05/25/2020] [Accepted: 06/01/2020] [Indexed: 02/08/2023] Open
Abstract
Acute kidney injury (AKI) is an important clinical disorder with high prevalence, serious consequences, and limited therapeutic options. Modulation of neuroimmune interaction by nonpharmacological methods is emerging as a novel strategy for treating inflammatory diseases, including AKI. Recently, pulsed ultrasound (US) treatment was shown to protect from AKI by stimulating the cholinergic anti-inflammatory pathway. Because of the relatively simple, portable, and noninvasive nature of US procedures, US stimulation may be a valuable therapeutic option for treating inflammatory conditions. This review discusses potential impacts of US bioeffects on the nervous system and how this may generate feedback onto the immune system. We also discuss recent evidence supporting the use of US as a means to treat AKI and other inflammatory diseases.
Collapse
Affiliation(s)
- Jieru Cai
- Division of Nephrology and Center for Immunity, Inflammation, and Regenerative Medicine, University of Virginia, Charlottesville, Virgnia
| | - William T Nash
- Division of Nephrology and Center for Immunity, Inflammation, and Regenerative Medicine, University of Virginia, Charlottesville, Virgnia
| | - Mark D Okusa
- Division of Nephrology and Center for Immunity, Inflammation, and Regenerative Medicine, University of Virginia, Charlottesville, Virgnia
| |
Collapse
|
90
|
Lee NS, Yoon CW, Wang Q, Moon S, Koo KM, Jung H, Chen R, Jiang L, Lu G, Fernandez A, Chow RH, Weitz AC, Salvaterra PM, Pinaud F, Shung KK. Focused Ultrasound Stimulates ER Localized Mechanosensitive PANNEXIN-1 to Mediate Intracellular Calcium Release in Invasive Cancer Cells. Front Cell Dev Biol 2020; 8:504. [PMID: 32656213 PMCID: PMC7325310 DOI: 10.3389/fcell.2020.00504] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Accepted: 05/27/2020] [Indexed: 12/18/2022] Open
Abstract
Focused ultrasound (FUS) is a rapidly developing stimulus technology with the potential to uncover novel mechanosensory dependent cellular processes. Since it is non-invasive, it holds great promise for future therapeutic applications in patients used either alone or as a complement to boost existing treatments. For example, FUS stimulation causes invasive but not non-invasive cancer cell lines to exhibit marked activation of calcium signaling pathways. Here, we identify the membrane channel PANNEXIN1 (PANX1) as a mediator for activation of calcium signaling in invasive cancer cells. Knockdown of PANX1 decreases calcium signaling in invasive cells, while PANX1 overexpression enhances calcium elevations in non-invasive cancer cells. We demonstrate that FUS may directly stimulate mechanosensory PANX1 localized in endoplasmic reticulum to evoke calcium release from internal stores. This process does not depend on mechanosensory stimulus transduction through an intact cytoskeleton and does not depend on plasma membrane localized PANX1. Plasma membrane localized PANX1, however, plays a different role in mediating the spread of intercellular calcium waves via ATP release. Additionally, we show that FUS stimulation evokes cytokine/chemokine release from invasive cancer cells, suggesting that FUS could be an important new adjuvant treatment to improve cancer immunotherapy.
Collapse
Affiliation(s)
- Nan Sook Lee
- Ultrasonic Transducer Resource Center, Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, United States
| | - Chi Woo Yoon
- Ultrasonic Transducer Resource Center, Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, United States
| | - Qing Wang
- Guangdong Provincial Key Laboratory of Medical Image Processing, School of Biomedical Engineering, Southern Medical University, Guangzhou, China
| | - Sunho Moon
- Ultrasonic Transducer Resource Center, Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, United States
| | - Kweon Mo Koo
- Ultrasonic Transducer Resource Center, Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, United States
| | - Hayong Jung
- Ultrasonic Transducer Resource Center, Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, United States
| | - Ruimin Chen
- Ultrasonic Transducer Resource Center, Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, United States
| | - Laiming Jiang
- Ultrasonic Transducer Resource Center, Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, United States
| | - Gengxi Lu
- Ultrasonic Transducer Resource Center, Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, United States
| | - Antony Fernandez
- Department of Biological Sciences, University of Southern California, Los Angeles, CA, United States
| | - Robert H Chow
- Zilkha Neurogenetic Institute, University of Southern California, Los Angeles, CA, United States
| | - Andrew C Weitz
- Ultrasonic Transducer Resource Center, Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, United States
| | - Paul M Salvaterra
- Department of Developmental and Stem Cell Biology, Beckman Research Institute of City of Hope, Duarte, CA, United States
| | - Fabien Pinaud
- Department of Biological Sciences, Chemistry and Physics & Astronomy, University of Southern California, Los Angeles, CA, United States
| | - K Kirk Shung
- Ultrasonic Transducer Resource Center, Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, United States
| |
Collapse
|
91
|
Song L, Wang G, Hou X, Kala S, Qiu Z, Wong KF, Cao F, Sun L. Biogenic nanobubbles for effective oxygen delivery and enhanced photodynamic therapy of cancer. Acta Biomater 2020; 108:313-325. [PMID: 32268236 DOI: 10.1016/j.actbio.2020.03.034] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 03/21/2020] [Accepted: 03/24/2020] [Indexed: 02/07/2023]
Abstract
Tumor hypoxia is believed to be a factor limiting successful outcomes of oxygen-consuming cancer therapy, thereby reducing patient survival. A key strategy to overcome tumor hypoxia is to increase the prevalence of oxygen at the tumor site. Oxygen-containing microbubbles/nanobubbles have been developed to supply oxygen and enhance the effects of therapies such as radiotherapy and photodynamic therapy. However, the application of these bubbles is constrained by their poor stability, requiring major workarounds to increase their half-lives. In this study, we explore the potential of biogenic gas vesicles (GVs) as a new kind of oxygen carrier to alleviate tumor hypoxia. GVs, which are naturally formed, gas-filled, protein-shelled compartments, were modified on the surface of their protein shells by a layer of liposome. A substantial improvement of oxygen concentration was observed in hypoxic solution, in hypoxic cells, as well as in subcutaneous tumors when lipid-GVs(O2) were added/tail-injected. Significant enhancement of tumor cell apoptosis and necrosis was also observed during photodynamic therapy (PDT) in the presence of lipid-GVs(O2) both in vitro and in vivo. Lipid-GVs(O2) alone induced no obvious change in cell viability in vitro or any apparent pathological abnormalities after mice were tail-injected with them. In all, lipid-GVs exhibited promising performance for intravenous gas delivery, enhanced PDT efficacy and low toxicity, a quality that may be applied to alleviate hypoxia in cancers, as well as hypoxia-related clinical treatments. STATEMENT OF SIGNIFICANCE: The development of stable oxygen-filled micro/nanobubbles capable of delivering oxygen to tumor sites is a major hurdle to enhancing the efficacy of cancer therapy. Currently, micro/nanobubbles are limited by their instability when oxygen is encapsulated, creating a large pressure gradient and surface tension. To improve stability, we modified the surfaces of GVs, a biogenic stable nanoscale hollow structure, as a new class of oxygen carriers. Lipid-coated GVs were found to be stable in solution and effective O2 carriers. This will overcome the limitations of coalescence, short circulation time of synthetic bubbles during application. Our surface-modified GVs demonstrated low toxicity in vitro cell in vivo, while also being able to overcome hypoxia-associated therapy resistance when combined with photodynamic therapy.
Collapse
|
92
|
Maresca D, Payen T, Lee-Gosselin A, Ling B, Malounda D, Demené C, Tanter M, Shapiro MG. Acoustic biomolecules enhance hemodynamic functional ultrasound imaging of neural activity. Neuroimage 2020; 209:116467. [PMID: 31846757 PMCID: PMC6955150 DOI: 10.1016/j.neuroimage.2019.116467] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 11/19/2019] [Accepted: 12/13/2019] [Indexed: 11/16/2022] Open
Abstract
Hemodynamic functional ultrasound imaging (fUS) of neural activity provides a unique combination of spatial coverage, spatiotemporal resolution and compatibility with freely moving animals. However, deep and transcranial monitoring of brain activity and the imaging of dynamics in slow-flowing blood vessels remains challenging. To enhance fUS capabilities, we introduce biomolecular hemodynamic enhancers based on gas vesicles (GVs), genetically encodable ultrasound contrast agents derived from buoyant photosynthetic microorganisms. We show that intravenously infused GVs enhance ultrafast Doppler ultrasound contrast and visually-evoked hemodynamic contrast in transcranial fUS of the mouse brain. This hemodynamic contrast enhancement is smoother than that provided by conventional microbubbles, allowing GVs to more reliably amplify neuroimaging signals.
Collapse
Affiliation(s)
- David Maresca
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Thomas Payen
- Physics for Medicine Paris, INSERM, CNRS, ESPCI, Paris, France
| | - Audrey Lee-Gosselin
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Bill Ling
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Dina Malounda
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Charlie Demené
- Physics for Medicine Paris, INSERM, CNRS, ESPCI, Paris, France
| | - Mickaël Tanter
- Physics for Medicine Paris, INSERM, CNRS, ESPCI, Paris, France
| | - Mikhail G Shapiro
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA, USA.
| |
Collapse
|
93
|
Huang YS, Fan CH, Hsu N, Chiu NH, Wu CY, Chang CY, Wu BH, Hong SR, Chang YC, Yan-Tang Wu A, Guo V, Chiang YC, Hsu WC, Chen L, Pin-Kuang Lai C, Yeh CK, Lin YC. Sonogenetic Modulation of Cellular Activities Using an Engineered Auditory-Sensing Protein. NANO LETTERS 2020; 20:1089-1100. [PMID: 31884787 DOI: 10.1021/acs.nanolett.9b04373] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Biomolecules that respond to different external stimuli enable the remote control of genetically modified cells. We report herein a sonogenetic approach that can manipulate target cell activities by focused ultrasound stimulation. This system requires an ultrasound-responsive protein derived from an engineered auditory-sensing protein prestin. Heterologous expression of mouse prestin containing two parallel amino acid substitutions, N7T and N308S, that frequently exist in prestins from echolocating species endowed transfected mammalian cells with the ability to sense ultrasound. An ultrasound pulse of low frequency and low pressure efficiently evoked cellular calcium responses after transfecting with prestin(N7T, N308S). Moreover, pulsed ultrasound can also noninvasively stimulate target neurons expressing prestin(N7T, N308S) in deep regions of mouse brains. Our study delineates how an engineered auditory-sensing protein can cause mammalian cells to sense ultrasound stimulation. Moreover, our sonogenetic tools will serve as new strategies for noninvasive therapy in deep tissues.
Collapse
Affiliation(s)
- Yao-Shen Huang
- Institute of Molecular Medicine , National Tsing Hua University , Hsinchu 300 , Taiwan
| | - Ching-Hsiang Fan
- Department of Biomedical Engineering and Environmental Sciences , National Tsing Hua University , Hsinchu 300 , Taiwan
| | - Ning Hsu
- Institute of Molecular Medicine , National Tsing Hua University , Hsinchu 300 , Taiwan
| | - Nai-Hua Chiu
- Department of Biomedical Engineering and Environmental Sciences , National Tsing Hua University , Hsinchu 300 , Taiwan
| | - Chun-Yao Wu
- Department of Biomedical Engineering and Environmental Sciences , National Tsing Hua University , Hsinchu 300 , Taiwan
| | - Chu-Yuan Chang
- Institute of Molecular Medicine , National Tsing Hua University , Hsinchu 300 , Taiwan
| | - Bing-Huan Wu
- Institute of Molecular Medicine , National Tsing Hua University , Hsinchu 300 , Taiwan
| | - Shi-Rong Hong
- Institute of Molecular Medicine , National Tsing Hua University , Hsinchu 300 , Taiwan
| | - Ya-Chu Chang
- Institute of Molecular Medicine , National Tsing Hua University , Hsinchu 300 , Taiwan
| | - Anthony Yan-Tang Wu
- Institute of Atomic and Molecular Sciences , Academia Sinica , Taipei 106 , Taiwan
- Chemical Biology and Molecular Biophysics Program, Taiwan International Graduate Program , Academia Sinica , Taipei 106 , Taiwan
- Department and Graduate Institute of Pharmacology , National Taiwan University , Taipei 106 , Taiwan
| | - Vanessa Guo
- Institute of Atomic and Molecular Sciences , Academia Sinica , Taipei 106 , Taiwan
| | - Yueh-Chen Chiang
- Institute of Molecular Medicine , National Tsing Hua University , Hsinchu 300 , Taiwan
| | - Wei-Chia Hsu
- Institute of Molecular Medicine , National Tsing Hua University , Hsinchu 300 , Taiwan
| | - Linyi Chen
- Institute of Molecular Medicine , National Tsing Hua University , Hsinchu 300 , Taiwan
- Department of Medical Science , National Tsing Hua University , Hsinchu 300 , Taiwan
| | - Charles Pin-Kuang Lai
- Institute of Atomic and Molecular Sciences , Academia Sinica , Taipei 106 , Taiwan
- Chemical Biology and Molecular Biophysics Program, Taiwan International Graduate Program , Academia Sinica , Taipei 106 , Taiwan
- Genome and Systems Biology Degree Program , National Taiwan University and Academia Sinica , Taipei 106 , Taiwan
| | - Chih-Kuang Yeh
- Department of Biomedical Engineering and Environmental Sciences , National Tsing Hua University , Hsinchu 300 , Taiwan
| | - Yu-Chun Lin
- Institute of Molecular Medicine , National Tsing Hua University , Hsinchu 300 , Taiwan
- Department of Medical Science , National Tsing Hua University , Hsinchu 300 , Taiwan
| |
Collapse
|
94
|
Wu X, Zhu X, Chong P, Liu J, Andre LN, Ong KS, Brinson K, Mahdi AI, Li J, Fenno LE, Wang H, Hong G. Sono-optogenetics facilitated by a circulation-delivered rechargeable light source for minimally invasive optogenetics. Proc Natl Acad Sci U S A 2019; 116:26332-26342. [PMID: 31811026 PMCID: PMC6936518 DOI: 10.1073/pnas.1914387116] [Citation(s) in RCA: 82] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Optogenetics, which uses visible light to control the cells genetically modified with light-gated ion channels, is a powerful tool for precise deconstruction of neural circuitry with neuron-subtype specificity. However, due to limited tissue penetration of visible light, invasive craniotomy and intracranial implantation of tethered optical fibers are usually required for in vivo optogenetic modulation. Here we report mechanoluminescent nanoparticles that can act as local light sources in the brain when triggered by brain-penetrant focused ultrasound (FUS) through intact scalp and skull. Mechanoluminescent nanoparticles can be delivered into the blood circulation via i.v. injection, recharged by 400-nm photoexcitation light in superficial blood vessels during circulation, and turned on by FUS to emit 470-nm light repetitively in the intact brain for optogenetic stimulation. Unlike the conventional "outside-in" approaches of optogenetics with fiber implantation, our method provides an "inside-out" approach to deliver nanoscopic light emitters via the intrinsic circulatory system and switch them on and off at any time and location of interest in the brain without extravasation through a minimally invasive ultrasound interface.
Collapse
Affiliation(s)
- Xiang Wu
- Department of Materials Science and Engineering, Stanford University, Stanford, CA 94305
- Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA 94305
| | - Xingjun Zhu
- Department of Materials Science and Engineering, Stanford University, Stanford, CA 94305
- Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA 94305
| | - Paul Chong
- Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA 94305
- Department of Chemistry, Stanford University, Stanford, CA 94305
| | - Junlang Liu
- Department of Materials Science and Engineering, Stanford University, Stanford, CA 94305
- Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA 94305
| | - Louis N. Andre
- Department of Materials Science and Engineering, Stanford University, Stanford, CA 94305
- Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA 94305
| | - Kyrstyn S. Ong
- Department of Materials Science and Engineering, Stanford University, Stanford, CA 94305
- Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA 94305
| | - Kenneth Brinson
- Department of Materials Science and Engineering, Stanford University, Stanford, CA 94305
- Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA 94305
| | - Ali I. Mahdi
- Department of Materials Science and Engineering, Stanford University, Stanford, CA 94305
- Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA 94305
| | - Jiachen Li
- Department of Materials Science and Engineering, Stanford University, Stanford, CA 94305
| | - Lief E. Fenno
- Department of Bioengineering, Stanford University, Stanford, CA 94305
- Department of Psychiatry, Stanford University, Stanford, CA 94305
| | - Huiliang Wang
- Department of Bioengineering, Stanford University, Stanford, CA 94305
- Department of Psychiatry, Stanford University, Stanford, CA 94305
| | - Guosong Hong
- Department of Materials Science and Engineering, Stanford University, Stanford, CA 94305
- Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA 94305
| |
Collapse
|
95
|
Abstract
Protein-protein interactions and protein localization are essential mechanisms of cellular signal transduction. The ability to externally control such interactions using chemical and optogenetic methods has facilitated biological research and provided components for the engineering of cell-based therapies and materials. However, chemical and optical methods are limited in their ability to provide spatiotemporal specificity in light-scattering tissues. To overcome these limitations, we present "thermomers", modular protein dimerization domains controlled with temperature-a form of energy that can be delivered to cells both globally and locally in a wide variety of in vitro and in vivo contexts. Thermomers are based on a sharply thermolabile coiled-coil protein, which we engineered to heterodimerize at a tunable transition temperature within the biocompatible range of 37-42 °C. When fused to other proteins, thermomers can reversibly control their association, as demonstrated via membrane localization in mammalian cells. This technology enables remote control of intracellular protein-protein interactions with a form of energy that can be delivered with spatiotemporal precision in a wide range of biological, therapeutic, and living material scenarios.
Collapse
|
96
|
Farhadi A, Ho GH, Sawyer DP, Bourdeau RW, Shapiro MG. Ultrasound imaging of gene expression in mammalian cells. Science 2019; 365:1469-1475. [PMID: 31604277 PMCID: PMC6860372 DOI: 10.1126/science.aax4804] [Citation(s) in RCA: 133] [Impact Index Per Article: 26.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Accepted: 08/30/2019] [Indexed: 12/14/2022]
Abstract
The study of cellular processes occurring inside intact organisms requires methods to visualize cellular functions such as gene expression in deep tissues. Ultrasound is a widely used biomedical technology enabling noninvasive imaging with high spatial and temporal resolution. However, no genetically encoded molecular reporters are available to connect ultrasound contrast to gene expression in mammalian cells. To address this limitation, we introduce mammalian acoustic reporter genes. Starting with a gene cluster derived from bacteria, we engineered a eukaryotic genetic program whose introduction into mammalian cells results in the expression of intracellular air-filled protein nanostructures called gas vesicles, which produce ultrasound contrast. Mammalian acoustic reporter genes allow cells to be visualized at volumetric densities below 0.5% and permit high-resolution imaging of gene expression in living animals.
Collapse
Affiliation(s)
- Arash Farhadi
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Gabrielle H Ho
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Daniel P Sawyer
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Raymond W Bourdeau
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Mikhail G Shapiro
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA, USA.
| |
Collapse
|
97
|
Szablowski JO, Bar-Zion A, Shapiro MG. Achieving Spatial and Molecular Specificity with Ultrasound-Targeted Biomolecular Nanotherapeutics. Acc Chem Res 2019; 52:2427-2434. [PMID: 31397992 PMCID: PMC7462121 DOI: 10.1021/acs.accounts.9b00277] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The precise targeting of cells in deep tissues is one of the primary goals of nanomedicine. However, targeting a specific cellular population within an entire organism is challenging due to off-target effects and the need for deep tissue delivery. Focused ultrasound can reduce off-targeted effects by spatially restricting the delivery or action of molecular constructs to specific anatomical sites. Ultrasound can also increase the efficiency of nanotherapeutic delivery into deep tissues by enhancing the permeability of tissue boundaries, promoting convection, or depositing energy to actuate cellular activity. In this review we focus on the interface between biomolecular engineering and focused ultrasound and describe the applications of this intersection in neuroscience, oncology, and synthetic biology. Ultrasound can be used to trigger the transport of therapeutic payloads into a range of tissues, including specific regions of the brain, where it can be targeted with millimeter precision through intact skull. Locally delivered molecular constructs can then control specific cells and molecular pathways within the targeted region. When combined with viral vectors and engineered neural receptors, this technique enables noninvasive control of specific circuits and behaviors. The penetrant energy of ultrasound can also be used to more directly actuate micro- and nanotherapeutic constructs, including microbubbles, vaporizable nanodroplets, and polymeric nanocups, which nucleate cavitation upon ultrasound exposure, leading to local mechanical effects. In addition, it was recently discovered that a unique class of acoustic biomolecules-genetically encodable nanoscale protein structures called gas vesicles-can be acoustically "detonated" as sources of inertial cavitation. This enables the targeted disruption of selected cells within the area of insonation by gas vesicles that are engineered to bind cell surface receptors. It also facilitates ultrasound-triggered release of molecular payloads from engineered therapeutic cells heterologously expressing intracellular gas vesicles. Finally, focused ultrasound energy can be used to locally elevate tissue temperature and activate temperature-sensitive proteins and pathways. The elevation of temperature allows noninvasive control of gene expression in vivo in cells engineered to express thermal bioswitches. Overall, the intersection of biomolecular engineering, nanomaterials and focused ultrasound can provide unparalleled specificity in controlling, modulating, and treating physiological processes in deep tissues.
Collapse
Affiliation(s)
- Jerzy O. Szablowski
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Avinoam Bar-Zion
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Mikhail G. Shapiro
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA, USA
| |
Collapse
|
98
|
Maresca D, Sawyer DP, Renaud G, Lee-Gosselin A, Shapiro MG. Nonlinear X-wave ultrasound imaging of acoustic biomolecules. PHYSICAL REVIEW. X 2018; 8:041002. [PMID: 34040818 PMCID: PMC8147876 DOI: 10.1103/physrevx.8.041002] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
The basic physics of sound waves enables ultrasound to visualize biological tissues with high spatial and temporal resolution. Recently, this capability was enhanced with the development of acoustic biomolecules - proteins with physical properties enabling them to scatter sound. The expression of these unique air-filled proteins, known as gas vesicles (GVs), in cells allows ultrasound to image cellular functions such as gene expression in vivo, providing ultrasound with its analog of optical fluorescent proteins. Acoustical methods for the in vivo detection of GVs are now required to maximize the impact of this technology in biology and medicine. We previously engineered GVs exhibiting a nonlinear scattering behavior in response to acoustic pressures above 300 kPa, and showed that amplitude-modulated (AM) ultrasound pulse sequences that both excite the linear and nonlinear GV scattering regimes were highly effective at distinguishing GVs from linear scatterers like soft biological tissues. Unfortunately, the in vivo specificity of AM ultrasound imaging is systematically compromised by the nonlinearity added by the GVs to propagating waves, resulting in strong image artifacts from linear scatterers downstream of GV inclusions. To address this issue, we present an imaging paradigm, cross-amplitude modulation (xAM), which relies on cross-propagating plane-wave transmissions of finite aperture X-waves to achieve quasi artifact-free in vivo imaging of GVs. The xAM method derives from counter-propagating wave interaction theory which predicts that, in media exhibiting quadratic elastic nonlinearity like biological tissue, the nonlinear interaction of counter-propagating acoustic waves is inefficient. By transmitting cross-propagating plane-waves, we minimize cumulative nonlinear interaction effects due to collinear wave propagation, while generating a transient wave-amplitude modulation at the two plane-waves' intersection. We show in both simulations and experiments that residual xAM nonlinearity due to wave propagation decreases as the plane-wave cross-propagation angle increases. We demonstrate in tissue-mimicking phantoms that imaging artifacts distal to GV inclusions decrease as the plane-wave cross-propagation angle opens, nearing complete extinction at angles above 16.5 degrees. Finally, we demonstrate that xAM enables highly specific in vivo imaging of GVs located in the gastrointestinal tract, a target of prime interest for future cellular imaging. These results advance the physical facet of the emerging field of biomolecular ultrasound, and are also relevant to synthetic ultrasound contrast agents.
Collapse
Affiliation(s)
- David Maresca
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California, 91125, USA
- Correspondence should be addressed to: DM () or MGS (), Phone: 626-395-8588, 1200 E. California Blvd, MC 210-41, Pasadena, CA 91125
| | - Daniel P. Sawyer
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California, 91125, USA
| | - Guillaume Renaud
- Laboratoire d’Imagerie Biomédicale, Sorbonne Université - CNRS UMR7371 - INSERM U1146, Paris, 75006, France
| | - Audrey Lee-Gosselin
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California, 91125, USA
| | - Mikhail G. Shapiro
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California, 91125, USA
- Correspondence should be addressed to: DM () or MGS (), Phone: 626-395-8588, 1200 E. California Blvd, MC 210-41, Pasadena, CA 91125
| |
Collapse
|