51
|
Isolation, stability, and characteristics of high-pressure superdormant Bacillus subtilis spores. Int J Food Microbiol 2021; 343:109088. [PMID: 33621831 DOI: 10.1016/j.ijfoodmicro.2021.109088] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 11/15/2020] [Accepted: 01/30/2021] [Indexed: 12/26/2022]
Abstract
Bacterial spores are a major challenge in industrial decontamination processes owing to their extreme resistance. High-pressure (HP) of 150 MPa at 37 °C can trigger the germination of spores, making them lose their extreme resistance. Once their resistance is lost, germinated spores can easily be inactivated by a mild decontamination step. The implementation of this gentle germination-inactivation strategy is hindered by the presence of a subpopulation of so-called high-pressure superdormant (HPSD) spores, which resist germination or germinate only very slowly in response to HP. It is essential to understand the properties of HPSD spores and the underlying causes of superdormancy to tackle superdormant spores and further develop germination-inactivation strategies involving HP. This study investigated factors influencing the prevalence of HPSD spores and successfully isolated them by combining buoyant density centrifugation and fluorescence-activated cell sorting, which allowed further characterisation of HPSD spores for the first time. The prevalence of HPSD spores was shown to be strongly dependent on the HP dwell time, with increasing treatment times reducing their prevalence. Spore mutants lacking major germinant receptors further showed a highly increased prevalence of HPSD spores; 93% of the spores remained dormant even after a prolonged HP dwell time of 40 min. In contrast to nutrient germination, sublethal heat treatment of 75 °C for 30 min prior to pressure treatment did not induce spore activation and increase germination. The isolated HPSD spores did not show visible structural differences compared to the initial dormant spores when investigated with transmission electron microscopy. Re-sporulated HPSD spores showed similar germination capacity compared to the initial dormant spores, indicating that HPSD spores are most likely not genetically different from the rest of the population. Moreover, the majority of HPSD spores germinated when exposed a second time to the same germination treatment; however, the germination capacity was lower than that of the initial population. The fact that the majority of spores lost superdormancy when exposed a second time to the same trigger makes it unlikely that there is one factor that determines whether a spore germinates with a certain HP treatment or not. Instead, it seems possible that there are other reversible or cumulative causes. This study investigated the factors influencing spore HP superdormancy to improve the understanding of HPSD spores with regard to their stability, germination capacity, and potential underlying causes of spore HP superdormancy. This knowledge will contribute to the development of HP-based germination-inactivation strategies for gentle but effective spore control.
Collapse
|
52
|
Gao R, Liao X, Zhao X, Liu D, Ding T. The diagnostic tools for viable but nonculturable pathogens in the food industry: Current status and future prospects. Compr Rev Food Sci Food Saf 2021; 20:2146-2175. [PMID: 33484068 DOI: 10.1111/1541-4337.12695] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 12/21/2020] [Accepted: 12/28/2020] [Indexed: 12/21/2022]
Abstract
Viable but nonculturable (VBNC) microorganisms have been recognized as pathogenic contaminants in foods and environments. The failure of VBNC cells to form the visible colonies hinders the ability to use conventional media for their detection. Efficient and rapid detection of pathogens in the VBNC state is a prerequisite to ensure the food safety and public health. Despite their nonculturability, VBNC cells have distinct characteristics, such as morphology, metabolism, chemical composition, and gene and protein expression, that have been used as the basis for the development of abundant diagnostic tools. This review covers the current status and advances in various approaches for examining microorganisms in the VBNC state, including but not limited to the methodological aspects, advantages, and drawbacks of each technique. Existing methods, such as direct viable count, SYTO/PI dual staining, and propidium monoazide quantitative polymerase chain reaction (PCR), as well as some techniques with potential to be applied in the future, such as digital PCR, enhanced-surface Raman spectroscopy, and impedance-based techniques, are summarized in depth. Finally, future prospects for the one-step detection of VBNC bacteria are proposed and discussed. We believe that this review can provide more optional methods for researchers and promote the development of rapid, accurate detecting methods, and for inspectors, the diagnostic tools can provide data to undertake risk analysis of VBNC cells.
Collapse
Affiliation(s)
- Rui Gao
- Key Laboratory for Agro-Products Postharvest Handling of Ministry of Agriculture, Zhejiang Key Laboratory for Agro-Food Processing, Department of Food Science and Nutrition, Zhejiang University, Hangzhou, Zhejiang, China
| | - Xinyu Liao
- Key Laboratory for Agro-Products Postharvest Handling of Ministry of Agriculture, Zhejiang Key Laboratory for Agro-Food Processing, Department of Food Science and Nutrition, Zhejiang University, Hangzhou, Zhejiang, China
| | - Xihong Zhao
- Research Center for Environmental Ecology and Engineering, Key Laboratory for Green Chemical Process of Ministry of Education, Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, School of Environmental Ecology and Biological Engineering, Wuhan Institute of Technology, Wuhan, China
| | - Donghong Liu
- Key Laboratory for Agro-Products Postharvest Handling of Ministry of Agriculture, Zhejiang Key Laboratory for Agro-Food Processing, Department of Food Science and Nutrition, Zhejiang University, Hangzhou, Zhejiang, China
| | - Tian Ding
- Key Laboratory for Agro-Products Postharvest Handling of Ministry of Agriculture, Zhejiang Key Laboratory for Agro-Food Processing, Department of Food Science and Nutrition, Zhejiang University, Hangzhou, Zhejiang, China
| |
Collapse
|
53
|
Kim TD, Begyn K, Khanal S, Taghlaoui F, Heyndrickx M, Rajkovic A, Devlieghere F, Michiels C, Aertsen A. Bacillus weihenstephanensis can readily evolve for increased endospore heat resistance without compromising its thermotype. Int J Food Microbiol 2021; 341:109072. [PMID: 33524880 DOI: 10.1016/j.ijfoodmicro.2021.109072] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 11/21/2020] [Accepted: 01/13/2021] [Indexed: 11/25/2022]
Abstract
Proper elimination of bacterial endospores in foods and food processing environment is challenging because of their extreme resistance to various stresses. Often, sporicidal treatments prove insufficient to eradicate the contaminating endospore population as a whole, and might therefore serve as a selection pressure for enhanced endospore resistance. In the sporeforming Bacillus cereus group, Bacillus weihenstephanensis is an important food spoilage organism and potential cereulide producing pathogen, due to its psychrotolerant growth ability at 7 °C. Although the endospores of B. weihenstephanensis are generally less heat resistant compared to their mesophilic or thermotolerant relatives, our data now show that non-emetic B. weihenstephanensis strain LMG 18989T can readily and reproducibly evolve to acquire much enhanced endospore heat resistance. In fact, one of the B. weihenstephanensis mutants from directed evolution by wet heat in this study yielded endospores displaying a > 4-fold increase in D-value at 91 °C compared to the parental strain. Moreover, these mutant endospores retained their superior heat resistance even when sporulation was performed at 10 °C. Interestingly, increased endospore heat resistance did not negatively affect the vegetative growth capacities of the evolved mutants at lower (7 °C) and upper (37 °C) growth temperature boundaries, indicating that the correlation between cardinal growth temperatures and endospore heat resistance which is observed among bacterial sporeformers is not necessarily causal.
Collapse
Affiliation(s)
- Tom Dongmin Kim
- Laboratory of Food Microbiology, Department of Microbial and Molecular Systems (M(2)S), Faculty of Bioscience Engineering, KU Leuven, Leuven, Belgium
| | - Katrien Begyn
- Research Unit Food Microbiology and Food Preservation (FMFP-UGent), Department of Food Technology, Safety and Health, Part of Food2Know, Faculty Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Sadhana Khanal
- Laboratory of Food Microbiology, Department of Microbial and Molecular Systems (M(2)S), Faculty of Bioscience Engineering, KU Leuven, Leuven, Belgium
| | - Fatima Taghlaoui
- Research Unit Food Microbiology and Food Preservation (FMFP-UGent), Department of Food Technology, Safety and Health, Part of Food2Know, Faculty Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Marc Heyndrickx
- ILVO - Flanders Research Institute for Agriculture, Fisheries and Food, Technology and Food Science, Unit - Food Safety, Melle, Belgium; Department of Pathology, Bacteriology and Avian Diseases, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Andreja Rajkovic
- Research Unit Food Microbiology and Food Preservation (FMFP-UGent), Department of Food Technology, Safety and Health, Part of Food2Know, Faculty Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Frank Devlieghere
- Research Unit Food Microbiology and Food Preservation (FMFP-UGent), Department of Food Technology, Safety and Health, Part of Food2Know, Faculty Bioscience Engineering, Ghent University, Ghent, Belgium.
| | - Chris Michiels
- Laboratory of Food Microbiology, Department of Microbial and Molecular Systems (M(2)S), Faculty of Bioscience Engineering, KU Leuven, Leuven, Belgium; Leuven Food Science and Nutrition Research Centre (LFoRCe), Department of Microbial and Molecular Systems (M2S), Faculty of Bioscience Engineering, KU Leuven, Leuven, Belgium
| | - Abram Aertsen
- Laboratory of Food Microbiology, Department of Microbial and Molecular Systems (M(2)S), Faculty of Bioscience Engineering, KU Leuven, Leuven, Belgium.
| |
Collapse
|
54
|
Combined high pressure and heat treatment effectively disintegrates spore membranes and inactivates Alicyclobacillus acidoterrestris spores in acidic fruit juice beverage. INNOV FOOD SCI EMERG 2020. [DOI: 10.1016/j.ifset.2020.102523] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
55
|
Secaira-Morocho H, Castillo JA, Driks A. Diversity and evolutionary dynamics of spore-coat proteins in spore-forming species of Bacillales. Microb Genom 2020; 6. [PMID: 33052805 PMCID: PMC7725329 DOI: 10.1099/mgen.0.000451] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Among members of the Bacillales order, there are several species capable of forming a structure called an endospore. Endospores enable bacteria to survive under unfavourable growth conditions and germinate when environmental conditions are favourable again. Spore-coat proteins are found in a multilayered proteinaceous structure encasing the spore core and the cortex. They are involved in coat assembly, cortex synthesis and germination. Here, we aimed to determine the diversity and evolutionary processes that have influenced spore-coat genes in various spore-forming species of Bacillales using an in silico approach. For this, we used sequence similarity searching algorithms to determine the diversity of coat genes across 161 genomes of Bacillales. The results suggest that among Bacillales, there is a well-conserved core genome, composed mainly by morphogenetic coat proteins and spore-coat proteins involved in germination. However, some spore-coat proteins are taxa-specific. The best-conserved genes among different species may promote adaptation to changeable environmental conditions. Because most of the Bacillus species harbour complete or almost complete sets of spore-coat genes, we focused on this genus in greater depth. Phylogenetic reconstruction revealed eight monophyletic groups in the Bacillus genus, of which three are newly discovered. We estimated the selection pressures acting over spore-coat genes in these monophyletic groups using classical and modern approaches and detected horizontal gene transfer (HGT) events, which have been further confirmed by scanning the genomes to find traces of insertion sequences. Although most of the genes are under purifying selection, there are several cases with individual sites evolving under positive selection. Finally, the HGT results confirm that sporulation is an ancestral feature in Bacillus.
Collapse
Affiliation(s)
- Henry Secaira-Morocho
- School of Biological Sciences and Engineering, Yachay Tech University, San Miguel de Urcuquí, Imbabura, Ecuador
| | - José A Castillo
- School of Biological Sciences and Engineering, Yachay Tech University, San Miguel de Urcuquí, Imbabura, Ecuador
| | - Adam Driks
- Department of Microbiology and Immunology, Loyola University Chicago, Chicago, IL, USA
| |
Collapse
|
56
|
Nawrot-Esposito MP, Babin A, Pasco M, Poirié M, Gatti JL, Gallet A. Bacillus thuringiensis Bioinsecticides Induce Developmental Defects in Non-Target Drosophila melanogaster Larvae. INSECTS 2020; 11:E697. [PMID: 33066180 PMCID: PMC7601982 DOI: 10.3390/insects11100697] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 10/06/2020] [Accepted: 10/09/2020] [Indexed: 12/12/2022]
Abstract
Bioinsecticides made from the bacterium Bacillus thuringiensis (Bt) are the bestselling bioinsecticide worldwide. Among Bt bioinsecticides, those based on the strain Bt subsp. kurstaki (Btk) are widely used in farming to specifically control pest lepidopteran larvae. Although there is much evidence of the lack of acute lethality of Btk products for non-target animals, only scarce data are available on their potential non-lethal developmental adverse effects. Using a concentration that could be reached in the field upon sprayings, we show that Btk products impair growth and developmental time of the non-target dipteran Drosophila melanogaster. We demonstrate that these effects are mediated by the synergy between Btk bacteria and Btk insecticidal toxins. We further show that Btk bioinsecticides trigger intestinal cell death and alter protein digestion without modifying the food intake and feeding behavior of the larvae. Interestingly, these harmful effects can be mitigated by a protein-rich diet or by adding the probiotic bacterium Lactobacillus plantarum into the food. Finally, we unravel two new cellular mechanisms allowing the larval midgut to maintain its integrity upon Btk aggression: First the flattening of surviving enterocytes and second, the generation of new immature cells arising from the adult midgut precursor cells. Together, these mechanisms participate to quickly fill in the holes left by the dying enterocytes.
Collapse
Affiliation(s)
| | | | | | | | | | - Armel Gallet
- Université Côte d’Azur, CNRS, INRAE, ISA, UMR CNRS 7254/INRAE 1355/UCA, 400 route des Chappes, BP 167, 06903 Sophia Antipolis CEDEX, France; (M.-P.N.-E.); (A.B.); (M.P.); (M.P.); (J.-L.G.)
| |
Collapse
|
57
|
Francés-Monerris A, Hognon C, Douki T, Monari A. Photoinduced DNA Lesions in Dormant Bacteria: The Peculiar Route Leading to Spore Photoproducts Characterized by Multiscale Molecular Dynamics*. Chemistry 2020; 26:14236-14241. [PMID: 32597544 DOI: 10.1002/chem.202002484] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Indexed: 11/07/2022]
Abstract
Some bacterial species enter a dormant state in the form of spores to resist to unfavorable external conditions. Spores are resistant to a wide series of stress agents, including UV radiation, and can last for tens to hundreds of years. Due to the suspension of biological functions, such as DNA repair, they accumulate DNA damage upon exposure to UV radiation. Differently from active organisms, the most common DNA photoproducts in spores are not cyclobutane pyrimidine dimers, but rather the so-called spore photoproducts. This noncanonical photochemistry results from the dry state of DNA and its binding to small, acid-soluble proteins that drastically modify the structure and photoreactivity of the nucleic acid. Herein, multiscale molecular dynamics simulations, including extended classical molecular dynamics and quantum mechanics/molecular mechanics based dynamics, are used to elucidate the coupling of electronic and structural factors that lead to this photochemical outcome. In particular, the well-described impact of the peculiar DNA environment found in spores on the favored formation of the spore photoproduct, given the small free energy barrier found for this path, is rationalized. Meanwhile, the specific organization of spore DNA precludes the photochemical path that leads to cyclobutane pyrimidine dimer formation.
Collapse
Affiliation(s)
- Antonio Francés-Monerris
- Université de Lorraine and CNRS, LPCT UMR 7019, 54000, Nancy, France
- Departament de Química Física, Universitat de València, 46100, Burjassot, Spain
| | - Cécilia Hognon
- Université de Lorraine and CNRS, LPCT UMR 7019, 54000, Nancy, France
- Université de Lorraine and CNRS, CRAN UMR 7039, 54000, Nancy, France
| | - Thierry Douki
- SyMMES, CEA, CNRS, IRIG, University Grenoble Alpes, 38000, Grenoble, France
| | - Antonio Monari
- Université de Lorraine and CNRS, LPCT UMR 7019, 54000, Nancy, France
| |
Collapse
|
58
|
Eijlander RT, Breitenwieser F, de Groot R, Hoornstra E, Kamphuis H, Kokken M, Kuijpers A, de Mello IIG, de Rijdt GV, Vadier CÉ, Wells-Bennik MHJ. Enumeration and Identification of Bacterial Spores in Cocoa Powders. J Food Prot 2020; 83:1530-1539. [PMID: 32338739 DOI: 10.4315/jfp-20-071] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Accepted: 04/25/2020] [Indexed: 11/11/2022]
Abstract
ABSTRACT The presence of bacterial spores in cocoa powders is inevitable due to the cocoa bean fermentation process, during which members of the genera Bacillus and Geobacillus are typically present. Spores are a concern in heat-treated foods when they survive heat treatments and the finished product supports germination, growth, and potentially toxin production. In this study, available methods for the enumeration of total mesophilic and thermophilic spores (TMS and TTS, respectively) were evaluated, leading to the recommendation of one global method specifically for cocoa powders. The proposed method was validated during a ring test on seven selected cocoa powders and applied during routine analyses on commercial powders. The method includes dilution of cocoa powder using buffered peptone water, heating at 80°C for 10 min for TMS and TTS counts, and heating at 100°C for 30 min for a heat-resistant (HR) spore count. Tryptic soy agar is used as a recovery medium with a maximal concentration of cocoa powder of 2.5 mg/mL (to prevent growth inhibition) and a nonnutrient agar overlay to prevent swarming of bacteria. Plates are incubated for at least 72 h at 30°C for recovery of mesophilic bacteria and 55°C for thermophilic bacteria. Suitable alternatives to specific method parameters are provided. Median values of total spore concentrations are low (<400 CFU/g for TMS and <75 CFU/g for TTS), and concentrations of HR spores are very low (<5 CFU/g). Importantly, the relation between concentrations of HR spores in cocoa powder and incidence of spoilage of heat-treated beverages containing cocoa is currently unclear. In the powders included in this study, Bacillus subtilis and Bacillus licheniformis were the predominant spore-forming species identified (49 and 39%, respectively). Both species are known for high variability in spore heat resistance. The development of reliable and sensitive molecular methods is therefore required to assess the risk of spoilage caused by spores present in cocoa powders. HIGHLIGHTS
Collapse
Affiliation(s)
- Robyn T Eijlander
- NIZO Food Research, Kernhemseweg 2, 6718 ZB Ede, The Netherlands.,(ORCID: https://orcid.org/0000-0002-4408-6526 [R.T.E.])
| | | | - Rosanne de Groot
- Olam Cocoa BV, Stationsstraat 76, 1541 LJ Koog aan de Zaan, The Netherlands
| | - Erik Hoornstra
- FrieslandCampina, Stationsplein 4, 3818 LE Amersfoort, The Netherlands
| | - Henri Kamphuis
- Cargill Cocoa and Chocolate, Eenhoornweg 12, 1531 ME Wormer, The Netherlands
| | - Michiel Kokken
- Olam Cocoa BV, Stationsstraat 76, 1541 LJ Koog aan de Zaan, The Netherlands
| | | | | | | | - CÉcile Vadier
- Barry Callebaut France, rue de la mécanique, 27400 Louviers, France
| | | |
Collapse
|
59
|
Aldrete-Tapia JA, Torres JA. Enhancing the Inactivation of Bacterial Spores during Pressure-Assisted Thermal Processing. FOOD ENGINEERING REVIEWS 2020. [DOI: 10.1007/s12393-020-09252-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
60
|
Investigating Synthesis of the MalS Malic Enzyme during Bacillus subtilis Spore Germination and Outgrowth and the Influence of Spore Maturation and Sporulation Conditions. mSphere 2020; 5:5/4/e00464-20. [PMID: 32759333 PMCID: PMC7407067 DOI: 10.1128/msphere.00464-20] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The spores formed by Bacillus subtilis remain in a quiescent state for extended periods due to their dormancy and resistance features. Dormancy is linked to a very low level of core water content and a phase-bright state of spores. The present report, focusing on proteins MalS and PdhD (pyruvate dehydrogenase subunit D) and complementary to our companion report published in this issue, aims to shed light on a major dilemma in the field, i.e., whether protein synthesis, in particular that of MalS, takes place in phase-bright spores. Clustered MalS-GFP in dormant spores diffuses throughout the spore as germination proceeds. However, fluorescence intensity measurements, supported by Western blot analysis and SILAC proteomics, confirm that there is no new MalS protein synthesis in bright-phase dormant spores. Spore-forming bacteria of the orders Bacillales and Clostridiales play a major role in food spoilage and foodborne diseases. When environmental conditions become favorable, these spores can germinate as the germinant receptors located on the spore’s inner membrane are activated via germinant binding. This leads to the formation of vegetative cells via germination and subsequent outgrowth and potential deleterious effects on foods. The present report focuses on analysis of the synthesis of the MalS (malic enzyme) protein during Bacillus subtilis spore germination by investigating the dynamics of the presence and fluorescence level of a MalS-GFP (MalS-green fluorescent protein) fusion protein using time-lapse fluorescence microscopy. Our results show an initial increase in MalS-GFP fluorescence intensity within the first 15 min of germination, followed by a discernible drop and stabilization of the fluorescence throughout spore outgrowth as reported previously (L. Sinai, A. Rosenberg, Y. Smith, E. Segev, and S. Ben-Yehuda, Mol Cell 57:695–707, 2015, https://doi.org/10.1016/j.molcel.2014.12.019). However, in contrast to the earlier report, both Western blotting and SILAC (stable isotopic labeling of amino acids in cell culture) analysis showed there was no increase in MalS-GFP levels during the 15 min after the addition of germinants and that MalS synthesis did not begin until more than 90 min after germinant addition. Thus, the increase in MalS-GFP fluorescence early in germination is not due to new protein synthesis but is perhaps due to a change in the physical environment of the spore cores. Our findings also show that different sporulation conditions and spore maturation times affect expression of MalS-GFP and the germination behavior of the spores, albeit to a minor extent, but still result in no changes in MalS-GFP levels early in spore germination. IMPORTANCE The spores formed by Bacillus subtilis remain in a quiescent state for extended periods due to their dormancy and resistance features. Dormancy is linked to a very low level of core water content and a phase-bright state of spores. The present report, focusing on proteins MalS and PdhD (pyruvate dehydrogenase subunit D) and complementary to our companion report published in this issue, aims to shed light on a major dilemma in the field, i.e., whether protein synthesis, in particular that of MalS, takes place in phase-bright spores. Clustered MalS-GFP in dormant spores diffuses throughout the spore as germination proceeds. However, fluorescence intensity measurements, supported by Western blot analysis and SILAC proteomics, confirm that there is no new MalS protein synthesis in bright-phase dormant spores.
Collapse
|
61
|
Swinscoe I, Oliver DM, Ørnsrud R, Quilliam RS. The microbial safety of seaweed as a feed component for black soldier fly (Hermetia illucens) larvae. Food Microbiol 2020; 91:103535. [PMID: 32539946 DOI: 10.1016/j.fm.2020.103535] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 03/23/2020] [Accepted: 04/23/2020] [Indexed: 01/12/2023]
Abstract
Farmed insects can offer an environmentally sustainable aquafeed or livestock feed ingredient. The value of black soldier fly (Hermetia illucens) (BSF) larvae could be improved by enrichment in omega-3 through the dietary inclusion of seaweed. However, the industry practice of drying seaweed at low temperatures to retain nutritional properties may benefit the survival of human pathogenic bacteria, particularly if the seaweed has been harvested from contaminated water. Here we have demonstrated that E. coli and E. coli O157:H7 died-off in seaweed dried at 50 °C, although both were detected in the dried powder following 72 h storage. V. parahaemolyticus fell below the level of detection in stored seaweed after drying at ≥ 50 °C, but L. monocytogenes remained detectable, and continued to grow in seaweed dried at ≤60 °C. Therefore, drying seaweed at low temperatures risks pathogen carry-over into insects destined for animal feed. BSF larvae reared on an artificially contaminated seaweed-supplemented diet also became contaminated by all four bacteria present in the supplement. Water quality at seaweed harvesting sites, seaweed desiccation, and insect rearing practices, represent critical points where development of regulatory standards could achieve targeted control of pathogenic hazards.
Collapse
Affiliation(s)
- Isobel Swinscoe
- Biological and Environmental Sciences, Faculty of Natural Sciences, University of Stirling, Stirling, FK9 4LA, UK.
| | - David M Oliver
- Biological and Environmental Sciences, Faculty of Natural Sciences, University of Stirling, Stirling, FK9 4LA, UK
| | - Robin Ørnsrud
- Institute of Marine Research, P.O. box 1870 Nordnes, NO-5817, Bergen, Norway
| | - Richard S Quilliam
- Biological and Environmental Sciences, Faculty of Natural Sciences, University of Stirling, Stirling, FK9 4LA, UK
| |
Collapse
|
62
|
Reineke K, Mathys A. Endospore Inactivation by Emerging Technologies: A Review of Target Structures and Inactivation Mechanisms. Annu Rev Food Sci Technol 2020; 11:255-274. [DOI: 10.1146/annurev-food-032519-051632] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Recent developments in preservation technologies allow for the delivery of food with nutritional value and superior taste. Of special interest are low-acid, shelf-stable foods in which the complete control or inactivation of bacterial endospores is the crucial step to ensure consumer safety. Relevant preservation methods can be classified into physicochemical or physical hurdles, and the latter can be subclassified into thermal and nonthermal processes. The underlying inactivation mechanisms for each of these physicochemical or physical processes impact different morphological or molecular structures essential for spore germination and integrity in the dormant state. This review provides an overview of distinct endospore defense mechanisms that affect emerging physical hurdles as well as which technologies address these mechanisms. The physical spore-inactivation technologies considered include thermal, dynamic, and isostatic high pressure and electromagnetic technologies, such as pulsed electric fields, UV light, cold atmospheric pressure plasma, and high- or low-energy electron beam.
Collapse
Affiliation(s)
| | - Alexander Mathys
- Sustainable Food Processing Laboratory, Department of Health Science and Technology, ETH Zurich, CH-8092 Zurich, Switzerland
| |
Collapse
|
63
|
Lv R, Muhammad AI, Zou M, Yu Y, Fan L, Zhou J, Ding T, Ye X, Guo M, Liu D. Hurdle enhancement of acidic electrolyzed water antimicrobial efficacy on Bacillus cereus spores using ultrasonication. Appl Microbiol Biotechnol 2020; 104:4505-4513. [PMID: 32215708 DOI: 10.1007/s00253-020-10393-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 12/30/2019] [Accepted: 01/19/2020] [Indexed: 12/20/2022]
Abstract
This study evaluated the inactivation effect of ultrasonic treatment combined with acidic electrolyzed water (AEW) on Bacillus cereus spores. AEW treatment reduced the spores by 1.05-1.37 log CFU/mL while the sporicidal effect of ultrasound was minor. More strikingly, simultaneous ultrasonic and AEW treatments for 30 min led to 2.29 log CFU/mL reduction and thus, considered a synergistic effect. Flow cytometry combined with SYTO/PI staining analysis revealed that ultrasound hydrolyzed the cortex while the AEW partially damaged the integrity of the inner membrane. Scanning and transmission electron microscopies were used to characterize the ultrastructural changes. The detachment of the exosporium induced by ultrasound was the most apparent difference compared with the control group, and the electron density of spores appeared to be heterogeneous after treatment with AEW. These results indicated that combining ultrasound with AEW is a promising decontamination technology with potential uses in the food industry and environmental remediation.
Collapse
Affiliation(s)
- Ruiling Lv
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang R & D Center for Food Technology and Equipment, Zhejiang University, Hangzhou, 310058, China
| | - Aliyu Idris Muhammad
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang R & D Center for Food Technology and Equipment, Zhejiang University, Hangzhou, 310058, China
- Department of Agricultural and Environmental Engineering, Faculty of Engineering, Bayero University, Kano, Nigeria
| | - Mingming Zou
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang R & D Center for Food Technology and Equipment, Zhejiang University, Hangzhou, 310058, China
| | - Yue Yu
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang R & D Center for Food Technology and Equipment, Zhejiang University, Hangzhou, 310058, China
| | - Lihua Fan
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang R & D Center for Food Technology and Equipment, Zhejiang University, Hangzhou, 310058, China
| | - Jianwei Zhou
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang R & D Center for Food Technology and Equipment, Zhejiang University, Hangzhou, 310058, China
- Ningbo Institute of Technology, Zhejiang University, Ningbo, 315100, China
| | - Tian Ding
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang R & D Center for Food Technology and Equipment, Zhejiang University, Hangzhou, 310058, China
| | - Xingqian Ye
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang R & D Center for Food Technology and Equipment, Zhejiang University, Hangzhou, 310058, China
| | - Mingming Guo
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang R & D Center for Food Technology and Equipment, Zhejiang University, Hangzhou, 310058, China
| | - Donghong Liu
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang R & D Center for Food Technology and Equipment, Zhejiang University, Hangzhou, 310058, China.
- Ningbo Institute of Technology, Zhejiang University, Ningbo, 315100, China.
| |
Collapse
|
64
|
Trunet C, Mtimet N, Mathot AG, Postollec F, Leguerinel I, Couvert O, Broussolle V, Carlin F, Coroller L. Suboptimal Bacillus licheniformis and Bacillus weihenstephanensis Spore Incubation Conditions Increase Heterogeneity of Spore Outgrowth Time. Appl Environ Microbiol 2020; 86:e02061-19. [PMID: 31900309 PMCID: PMC7054099 DOI: 10.1128/aem.02061-19] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Accepted: 12/14/2019] [Indexed: 11/20/2022] Open
Abstract
Changes with time of a population of Bacillus weihenstephanensis KBAB4 and Bacillus licheniformis AD978 dormant spores into germinated spores and vegetative cells were followed by flow cytometry, at pH ranges of 4.7 to 7.4 and temperatures of 10°C to 37°C for B. weihenstephanensis and 18°C to 59°C for B. licheniformis Incubation conditions lower than optimal temperatures or pH led to lower proportions of dormant spores able to germinate and extended time of germination, a lower proportion of germinated spores able to outgrow, an extension of their times of outgrowth, and an increase of the heterogeneity of spore outgrowth time. A model based on the strain growth limits was proposed to quantify the impact of incubation temperature and pH on the passage through each physiological stage. The heat treatment temperature or time acted independently on spore recovery. Indeed, a treatment at 85°C for 12 min or at 95°C for 2 min did not have the same impact on spore germination and outgrowth kinetics of B. weihenstephanensis despite the fact that they both led to a 10-fold reduction of the population. Moreover, acidic sporulation pH increased the time of outgrowth 1.2-fold and lowered the proportion of spores able to germinate and outgrow 1.4-fold. Interestingly, we showed by proteomic analysis that some proteins involved in germination and outgrowth were detected at a lower abundance in spores produced at pH 5.5 than in those produced at pH 7.0, maybe at the origin of germination and outgrowth behavior of spores produced at suboptimal pH.IMPORTANCE Sporulation and incubation conditions have an impact on the numbers of spores able to recover after exposure to sublethal heat treatment. Using flow cytometry, we were able to follow at a single-cell level the changes in the physiological states of heat-stressed spores of Bacillus spp. and to discriminate between dormant spores, germinated spores, and outgrowing vegetative cells. We developed original mathematical models that describe (i) the changes with time of the proportion of cells in their different states during germination and outgrowth and (ii) the influence of temperature and pH on the kinetics of spore recovery using the growth limits of the tested strains as model parameters. We think that these models better predict spore recovery after a sublethal heat treatment, a common situation in food processing and a concern for food preservation and safety.
Collapse
Affiliation(s)
- C Trunet
- Univ Brest, Laboratoire Universitaire de Biodiversité et Ecologie Microbienne, UMT ACTIA 19.03 ALTER'iX, Quimper, France
- ADRIA Food Expertise, UMT ACTIA 19.03 ALTER'iX, Quimper, France
| | - N Mtimet
- Univ Brest, Laboratoire Universitaire de Biodiversité et Ecologie Microbienne, UMT ACTIA 19.03 ALTER'iX, Quimper, France
| | - A-G Mathot
- Univ Brest, Laboratoire Universitaire de Biodiversité et Ecologie Microbienne, UMT ACTIA 19.03 ALTER'iX, Quimper, France
| | - F Postollec
- ADRIA Food Expertise, UMT ACTIA 19.03 ALTER'iX, Quimper, France
| | - I Leguerinel
- Univ Brest, Laboratoire Universitaire de Biodiversité et Ecologie Microbienne, UMT ACTIA 19.03 ALTER'iX, Quimper, France
| | - O Couvert
- Univ Brest, Laboratoire Universitaire de Biodiversité et Ecologie Microbienne, UMT ACTIA 19.03 ALTER'iX, Quimper, France
| | - V Broussolle
- INRAE, Avignon Université, UMR SQPOV, Avignon, France
| | - F Carlin
- INRAE, Avignon Université, UMR SQPOV, Avignon, France
| | - L Coroller
- Univ Brest, Laboratoire Universitaire de Biodiversité et Ecologie Microbienne, UMT ACTIA 19.03 ALTER'iX, Quimper, France
| |
Collapse
|
65
|
Cai HL, Yang S, Jin L, Chen ZG. A cost-effective method for wet potato starch preservation based on hurdle technology. Lebensm Wiss Technol 2020. [DOI: 10.1016/j.lwt.2019.108958] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
66
|
Rao L, Wang Y, Chen F, Hu X, Liao X, Zhao L. High pressure CO2 reduces the wet heat resistance of Bacillus subtilis spores by perturbing the inner membrane. INNOV FOOD SCI EMERG 2020. [DOI: 10.1016/j.ifset.2020.102291] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
67
|
Zhang Y, Delbrück AI, Off CL, Benke S, Mathys A. Flow Cytometry Combined With Single Cell Sorting to Study Heterogeneous Germination of Bacillus Spores Under High Pressure. Front Microbiol 2020; 10:3118. [PMID: 32038559 PMCID: PMC6985370 DOI: 10.3389/fmicb.2019.03118] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Accepted: 12/24/2019] [Indexed: 01/27/2023] Open
Abstract
Isostatic high pressure (HP) of 150 MPa can trigger the germination of bacterial spores, making them lose their extreme resistance to stress factors, and increasing their susceptibility to milder inactivation strategies. However, germination response of spores within a population is very heterogeneous, and tools are needed to study this heterogeneity. Here, classical methods were combined with more recent and powerful techniques such as flow cytometry (FCM) and fluorescence activated cell sorting (FACS) to investigate spore germination behavior under HP. Bacillus subtilis spores were treated with HP at 150 MPa and 37°C, stained with SYTO16 and PI, and analyzed via FCM. Four sub-populations were detected. These sub-populations were for the first time isolated on single cell level using FACS and characterized in terms of their heat resistance (80°C, 10 min) and cultivability in a nutrient-rich environment. The four isolated sub-populations were found to include (1) heat-resistant and mostly cultivable superdormant spores, i.e., spores that remained dormant after this specific HP treatment, (2) heat-sensitive and cultivable germinated spores, (3) heat-sensitive and partially-cultivable germinated spores, and (4) membrane-compromised cells with barely detectable cultivability. Of particular interest was the physiological state of the third sub-population, which was previously referred to as "unknown". Moreover, the kinetic transitions between different physiological states were characterized. After less than 10 min of HP treatment, the majority of spores germinated and ended up in a sublethally damaged stage. HP treatment at 150 MPa and 37°C did not cause inactivation of all geminated spores, suggesting that subsequent inactivation strategies such as mild heat inactivation or other inactivation techniques are necessary to control spores in food. This study validated FCM as a powerful technique to investigate the heterogeneous behavior of spores under HP, and provided a pipeline using FACS for isolation of different sub-populations and subsequent characterization to understand their physiological states.
Collapse
Affiliation(s)
- Yifan Zhang
- Sustainable Food Processing Laboratory, Institute of Food, Nutrition and Health, Department of Health Science and Technology, ETH Zürich, Zurich, Switzerland
| | - Alessia I. Delbrück
- Sustainable Food Processing Laboratory, Institute of Food, Nutrition and Health, Department of Health Science and Technology, ETH Zürich, Zurich, Switzerland
| | - Cosima L. Off
- Sustainable Food Processing Laboratory, Institute of Food, Nutrition and Health, Department of Health Science and Technology, ETH Zürich, Zurich, Switzerland
| | - Stephan Benke
- Cytometry Facility, University of Zurich, Zurich, Switzerland
| | - Alexander Mathys
- Sustainable Food Processing Laboratory, Institute of Food, Nutrition and Health, Department of Health Science and Technology, ETH Zürich, Zurich, Switzerland
| |
Collapse
|
68
|
Intracellular Energy Variability Modulates Cellular Decision-Making Capacity. Sci Rep 2019; 9:20196. [PMID: 31882965 PMCID: PMC6934696 DOI: 10.1038/s41598-019-56587-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Accepted: 12/12/2019] [Indexed: 12/14/2022] Open
Abstract
Cells generate phenotypic diversity both during development and in response to stressful and changing environments, aiding survival. Functionally vital cell fate decisions from a range of phenotypic choices are made by regulatory networks, the dynamics of which rely on gene expression and hence depend on the cellular energy budget (and particularly ATP levels). However, despite pronounced cell-to-cell ATP differences observed across biological systems, the influence of energy availability on regulatory network dynamics is often overlooked as a cellular decision-making modulator, limiting our knowledge of how energy budgets affect cell behaviour. Here, we consider a mathematical model of a highly generalisable, ATP-dependent, decision-making regulatory network, and show that cell-to-cell ATP variability changes the sets of decisions a cell can make. Our model shows that increasing intracellular energy levels can increase the number of supported stable phenotypes, corresponding to increased decision-making capacity. Model cells with sub-threshold intracellular energy are limited to a singular phenotype, forcing the adoption of a specific cell fate. We suggest that energetic differences between cells may be an important consideration to help explain observed variability in cellular decision-making across biological systems.
Collapse
|
69
|
Begyn K, Kim TD, Heyndrickx M, Michiels C, Aertsen A, Rajkovic A, Devlieghere F. Directed evolution by UV-C treatment of Bacillus cereus spores. Int J Food Microbiol 2019; 317:108424. [PMID: 31790956 DOI: 10.1016/j.ijfoodmicro.2019.108424] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Revised: 09/02/2019] [Accepted: 11/03/2019] [Indexed: 12/23/2022]
Abstract
Bacterial endospores are exposed to a broad variety of sublethal and lethal stresses in the food production chain. Generally, these stresses will not completely eliminate the existing spore populations, and thus constitute a selection pressure on the spores. One stress that is frequently used in the food production chains to disinfect (food) contact surfaces is UV-C. At a wavelength of 254 nm, UV-C has germicidal properties. The aim of this research is to investigate the impact of UV-C stress on the evolution of endospore recalcitrance and germination in B. cereus. A directed evolution experiment was set up in which B. cereus was repeatedly subjected to a cycle of sporulation, sporicidal UV-C treatment, germination and outgrowth. We show here that three independent lineages of UV-C cycled B. cereus spores reproducibly acquired a 30-fold or higher increase in UV-C resistance at 164 mJ/cm2. Surprisingly, the UV-C resistant spores of the clones isolated from each of the lineages also became significantly more sensitive to wet heat as a normally non-lethal heat treatment at 70 °C for 15 min resulted in an average 1.8 log cfu/mL reduction. From time-lapse phase contrast microscopy analysis, UV-C resistant mutant spores also showed a distinctive heterogeneity in refractility and a severe germination defect compared to the wild type. However, UV-C resistance of the corresponding vegetative cells was not altered. In conclusion, this work shows that UV-C resistance of endospores is an adaptive trait that can readily be improved, although at an apparent cost for heat resistance and germination efficiency. As such, these results provide novel insights in the evolvability of, and correlation between, some endospore properties.
Collapse
Affiliation(s)
- Katrien Begyn
- Research Unit Food Microbiology and Food Preservation (FMFP-UGent), Department of Food Technology, Safety and Health, Part of Food2Know, Faculty Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Tom Dongmin Kim
- Laboratory of Food Microbiology, Department of Microbial and Molecular systems (M(2)S), Faculty of Bioscience Engineering, KU Leuven, Leuven, Belgium
| | - Marc Heyndrickx
- ILVO - Flanders Research Institute for Agriculture, Fisheries and Food, Technology and Food Science, Unit - Food Safety, Melle, Belgium; Department of Pathology, Bacteriology and Avian Diseases, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Chris Michiels
- Laboratory of Food Microbiology, Department of Microbial and Molecular systems (M(2)S), Faculty of Bioscience Engineering, KU Leuven, Leuven, Belgium; Leuven Food Science and Nutrition Research Centre (LFoRCe), KU Leuven, Leuven, Belgium
| | - Abram Aertsen
- Laboratory of Food Microbiology, Department of Microbial and Molecular systems (M(2)S), Faculty of Bioscience Engineering, KU Leuven, Leuven, Belgium.
| | - Andreja Rajkovic
- Research Unit Food Microbiology and Food Preservation (FMFP-UGent), Department of Food Technology, Safety and Health, Part of Food2Know, Faculty Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Frank Devlieghere
- Research Unit Food Microbiology and Food Preservation (FMFP-UGent), Department of Food Technology, Safety and Health, Part of Food2Know, Faculty Bioscience Engineering, Ghent University, Ghent, Belgium.
| |
Collapse
|
70
|
Pereira APM, Stelari HA, Carlin F, Sant’Ana AS. Inactivation kinetics of Bacillus cereus and Geobacillus stearothermophilus spores through roasting of cocoa beans and nibs. Lebensm Wiss Technol 2019. [DOI: 10.1016/j.lwt.2019.05.063] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
71
|
Modugno C, Kmiha S, Simonin H, Aouadhi C, Diosdado Cañizares E, Lang E, André S, Mejri S, Maaroufi A, Perrier-Cornet JM. High pressure sensitization of heat-resistant and pathogenic foodborne spores to nisin. Food Microbiol 2019; 84:103244. [PMID: 31421772 DOI: 10.1016/j.fm.2019.103244] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Revised: 04/09/2019] [Accepted: 06/16/2019] [Indexed: 10/26/2022]
Abstract
Today, there is no effective non-thermal method to inactivate unwanted bacterial spores in foods. High-Pressure (HP) process has been shown to act synergistically with moderate heating and the bacteriocin nisin to inactivate spores but the mechanisms have not been elucidated. The purpose of the present work was to investigate in depth the synergy of HP and nisin on various foodborne spore species and to bring new elements of understandings. For this purpose, spores of Bacillus pumilus, B. sporothermodurans, B. licheniformis, B. weihenstephanensis, and Clostridium sp. were suspended in MES buffer, in skim milk or in a liquid medium simulating cooked ham brine and treated by HP at 500 MPa for 10 min at 50 °C or 20 °C. Nisin (20 or 50 IU/mL) was added at three different points during treatment: during HP, during and or in the plating medium of enumeration. In the latter two cases, a high synergy was observed with the inhibition of the spores of Bacillus spp. The evaluation of the germinated fraction of Bacillus spp. spores after HP revealed that this synergy was likely due to the action of nisin on HP-sensitized spores, rather than on HP-germinated spores. Thus, the combination of nisin and HP can lead to Bacillus spp. spore inhibition at 20 °C. And Nisin can act on HP-treated spores, even if they are not germinated. This paper provides new information about the inhibition of spores by the combination of HP and nisin. The high synergy observed at low temperature has not been reported yet and could allow food preservation without the use of any thermal process.
Collapse
Affiliation(s)
- Chloé Modugno
- Univ. Bourgogne Franche-Comté, AgroSup Dijon, PAM UMR A 02.102, F-21000, Dijon, France
| | - Souhir Kmiha
- Laboratory of Epidemiology and Veterinary Microbiology, Group of Bacteriology and Biotechnology, Pasteur Institute of Tunisia (IPT), Tunisia, BP 74, 13 Place Pasteur, Belvédère, 1002, Tunis, University Tunis El Manar, Tunisia
| | - Hélène Simonin
- Univ. Bourgogne Franche-Comté, AgroSup Dijon, PAM UMR A 02.102, F-21000, Dijon, France.
| | - Chedia Aouadhi
- Laboratory of Epidemiology and Veterinary Microbiology, Group of Bacteriology and Biotechnology, Pasteur Institute of Tunisia (IPT), Tunisia, BP 74, 13 Place Pasteur, Belvédère, 1002, Tunis, University Tunis El Manar, Tunisia
| | | | - Emilie Lang
- Univ. Bourgogne Franche-Comté, AgroSup Dijon, PAM UMR A 02.102, F-21000, Dijon, France
| | - Stéphane André
- Centre Technique pour La Conservation des Produits Agricoles (CTCPA), Unité EMaiRIT'S, 449 Avenue Clément Ader, 84911, Avignon, France
| | - Slah Mejri
- Laboratory of Animal Resources and Food, National Institute of Agronomy, Tunis (INAT) Tunisia, 43, Rue Charles Nicole, Cité Mahrajène, Le Belvédère, 1082, Tunis, University of Carthage, Tunisia
| | - Abderrazak Maaroufi
- Laboratory of Epidemiology and Veterinary Microbiology, Group of Bacteriology and Biotechnology, Pasteur Institute of Tunisia (IPT), Tunisia, BP 74, 13 Place Pasteur, Belvédère, 1002, Tunis, University Tunis El Manar, Tunisia
| | | |
Collapse
|
72
|
|
73
|
Villarreal-Lara R, Rodríguez-Sánchez DG, Díaz De La Garza RI, García-Cruz MI, Castillo A, Pacheco A, Hernández-Brenes C. Purified avocado seed acetogenins: Antimicrobial spectrum and complete inhibition of Listeria monocytogenes in a refrigerated food matrix. CYTA - JOURNAL OF FOOD 2019. [DOI: 10.1080/19476337.2019.1575908] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
- Raúl Villarreal-Lara
- Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias, Monterrey, N.L., México
| | | | | | | | - Alejandro Castillo
- Department of Animal Science, Texas A&M University, College Station, TX, USA
| | - Adriana Pacheco
- Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias, Monterrey, N.L., México
| | | |
Collapse
|
74
|
Wynants E, Frooninckx L, Crauwels S, Verreth C, De Smet J, Sandrock C, Wohlfahrt J, Van Schelt J, Depraetere S, Lievens B, Van Miert S, Claes J, Van Campenhout L. Assessing the Microbiota of Black Soldier Fly Larvae (Hermetia illucens) Reared on Organic Waste Streams on Four Different Locations at Laboratory and Large Scale. MICROBIAL ECOLOGY 2019; 77:913-930. [PMID: 30430196 DOI: 10.1007/s00248-018-1286-x] [Citation(s) in RCA: 89] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Accepted: 11/02/2018] [Indexed: 06/09/2023]
Abstract
This study aimed to gain insight into the microbial quality, safety and bacterial community composition of black soldier fly larvae (Hermetia illucens) reared at different facilities on a variety of organic waste streams. For seven rearing cycles, both on laboratory-scale and in large-scale facilities at several locations, the microbiota of the larvae was studied. Also samples of the substrate used and the residue (= leftover substrate after rearing, existing of non-consumed substrate, exuviae and faeces) were investigated. Depending on the sample, it was subjected to plate counting, Illumina Miseq sequencing and/or detection of specific food pathogens. The results revealed that the substrates applied at the various locations differed substantially in microbial numbers as well as in the bacterial community composition. Furthermore, little similarity was observed between the microbiota of the substrate and that of the larvae reared on that substrate. Despite substantial differences between the microbiota of larvae reared at several locations, 48 species-level operational taxonomic units (OTUs) were shared by all larvae, among which most belonged to the phyla Firmicutes and Proteobacteria. Although the substrate is assumed to be an important source of bacteria, our results suggest that a variety of supposedly interacting factors-both abiotic and biotic-are likely to affect the microbiota in the larvae. In some larvae and/or residue samples, potential foodborne pathogens such as Salmonella and Bacillus cereus were detected, emphasising that decontamination technologies are required when the larvae are used in feed, just as for other feed ingredients, or eventually in food.
Collapse
Affiliation(s)
- E Wynants
- Department of Microbial and Molecular Systems (M2S), Lab4Food, KU Leuven, Campus Geel, Kleinhoefstraat 4, 2440, Geel, Belgium.
| | - L Frooninckx
- Thomas More University of Applied Sciences, RADIUS, Campus Geel, 2440, Geel, Belgium
| | - S Crauwels
- Department of Microbial and Molecular Systems (M2S), Laboratory for Process Microbial Ecology and Bioinspirational Management (PME&BIM), KU Leuven, Campus De Nayer, 2860, Sint-Katelijne-Waver, Belgium
| | - C Verreth
- Department of Microbial and Molecular Systems (M2S), Laboratory for Process Microbial Ecology and Bioinspirational Management (PME&BIM), KU Leuven, Campus De Nayer, 2860, Sint-Katelijne-Waver, Belgium
| | - J De Smet
- Department of Microbial and Molecular Systems (M2S), Lab4Food, KU Leuven, Campus Geel, Kleinhoefstraat 4, 2440, Geel, Belgium
| | - C Sandrock
- Research Institute of Organic Agriculture (FiBL), 5070, Frick, Switzerland
| | - J Wohlfahrt
- Research Institute of Organic Agriculture (FiBL), 5070, Frick, Switzerland
| | - J Van Schelt
- Koppert Biological Systems, Berkel en Rodenrijs, 2650, AD, The Netherlands
| | | | - B Lievens
- Department of Microbial and Molecular Systems (M2S), Laboratory for Process Microbial Ecology and Bioinspirational Management (PME&BIM), KU Leuven, Campus De Nayer, 2860, Sint-Katelijne-Waver, Belgium
| | - S Van Miert
- Thomas More University of Applied Sciences, RADIUS, Campus Geel, 2440, Geel, Belgium
| | - J Claes
- Department of Microbial and Molecular Systems (M2S), Lab4Food, KU Leuven, Campus Geel, Kleinhoefstraat 4, 2440, Geel, Belgium
| | - L Van Campenhout
- Department of Microbial and Molecular Systems (M2S), Lab4Food, KU Leuven, Campus Geel, Kleinhoefstraat 4, 2440, Geel, Belgium
| |
Collapse
|
75
|
Eijlander RT, van Hekezen R, Bienvenue A, Girard V, Hoornstra E, Johnson NB, Meyer R, Wagendorp A, Walker DC, Wells‐Bennik MHJ. Spores in dairy – new insights in detection, enumeration and risk assessment. INT J DAIRY TECHNOL 2019. [DOI: 10.1111/1471-0307.12586] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
| | | | | | | | - Erik Hoornstra
- Laboratory & Quality Services FrieslandCampina Leeuwarden The Netherlands
| | | | - Rolf Meyer
- Nestec Ltd. Nestlé Research & Development Konolfingen 3510 Switzerland
| | | | | | | |
Collapse
|
76
|
Heat resistance of spores of 18 strains of Geobacillus stearothermophilus and impact of culturing conditions. Int J Food Microbiol 2019; 291:161-172. [DOI: 10.1016/j.ijfoodmicro.2018.11.005] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Revised: 10/14/2018] [Accepted: 11/06/2018] [Indexed: 11/24/2022]
|
77
|
Rao L, Zhao L, Wang Y, Chen F, Hu X, Setlow P, Liao X. Mechanism of inactivation of Bacillus subtilis spores by high pressure CO 2 at high temperature. Food Microbiol 2019; 82:36-45. [PMID: 31027794 DOI: 10.1016/j.fm.2019.01.014] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Revised: 01/25/2019] [Accepted: 01/25/2019] [Indexed: 11/26/2022]
Abstract
Spores of wild-type Bacillus subtilis and some isogenic mutant strains were treated by high pressure CO2 (HPCD) at high temperature (HT) (HPCD + HT) at 20 MPa and 84-86 °C for 0-60 min, and centrifuged on a high density solution to obtain pelleted spores that retained CaDPA and light spores that lost CaDPA. All treated spores were analyzed for viability, and tested for germination, outgrowth, core protein damage, mutagenesis and inner membrane (IM) properties. The results showed that (i) with HPCD + HT treated spores, most pelleted spores and all light spores were dead; ii) a significant amount of dead HPCD + HT-treated spores that retained CaDPA germinated, but outgrowth was blocked; (iii) minimal mutants were generated in survivors of HPCD + HT treatment; (iv) the GFP fluorescence decrease in HPCD + HT-treated spores with high GFP levels was slower than spore inactivation; (v) the IM of HPCD + HT-treated spores that retained CaDPA lost its ability to retain CaDPA at 85 °C, and almost all of these spores' outgrowth in high salt was blocked; and (vi) HPCD + HT-treated spores that retained CaDPA germinated with l-valine or AGFK were almost all stained with propidium iodide. These results indicated that HPCD + HT inactivated B. subtilis spores by damaging spores' IM, thus blocking spore outgrowth after germination.
Collapse
Affiliation(s)
- Lei Rao
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China; Beijing Key Laboratory for Food Nonthermal Processing, National Engineering Research Center for Fruit & Vegetable Processing, Beijing, 100083, China; Key Laboratory of Fruit & Vegetable Processing, Ministry of Agriculture, Beijing, 100083, China
| | - Liang Zhao
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China; Beijing Key Laboratory for Food Nonthermal Processing, National Engineering Research Center for Fruit & Vegetable Processing, Beijing, 100083, China; Key Laboratory of Fruit & Vegetable Processing, Ministry of Agriculture, Beijing, 100083, China
| | - Yongtao Wang
- Beijing Key Laboratory for Food Nonthermal Processing, National Engineering Research Center for Fruit & Vegetable Processing, Beijing, 100083, China; Key Laboratory of Fruit & Vegetable Processing, Ministry of Agriculture, Beijing, 100083, China
| | - Fang Chen
- Beijing Key Laboratory for Food Nonthermal Processing, National Engineering Research Center for Fruit & Vegetable Processing, Beijing, 100083, China; Key Laboratory of Fruit & Vegetable Processing, Ministry of Agriculture, Beijing, 100083, China
| | - Xiaosong Hu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China; Beijing Key Laboratory for Food Nonthermal Processing, National Engineering Research Center for Fruit & Vegetable Processing, Beijing, 100083, China; Key Laboratory of Fruit & Vegetable Processing, Ministry of Agriculture, Beijing, 100083, China
| | - Peter Setlow
- Department of Molecular Biology and Biophysics, UConn Health, Farmington, CT, 06030-3305, USA
| | - Xiaojun Liao
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China; Beijing Key Laboratory for Food Nonthermal Processing, National Engineering Research Center for Fruit & Vegetable Processing, Beijing, 100083, China; Key Laboratory of Fruit & Vegetable Processing, Ministry of Agriculture, Beijing, 100083, China.
| |
Collapse
|
78
|
Pia AKR, Pereira APM, Costa RA, Alvarenga VO, Freire L, Carlin F, Sant'Ana AS. The fate of Bacillus cereus and Geobacillus stearothermophilus during alkalization of cocoa as affected by alkali concentration and use of pre-roasted nibs. Food Microbiol 2019; 82:99-106. [PMID: 31027825 DOI: 10.1016/j.fm.2019.01.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Revised: 01/20/2019] [Accepted: 01/21/2019] [Indexed: 11/26/2022]
Abstract
Alkalization is a step of cocoa processing and consists of the use of alkali and high temperature to improve the sensorial and technological qualities of cocoa. Intense food processing can select spores, which can compromise safety and quality of the final product. Thus, the aim of this study was to evaluate the fate of B. cereus and G. stearothermophilus spores during the alkalization of pre-roasted (Pr) nibs (held at 120 °C) and unroasted (Ur) nibs (held at 90 °C) using potassium carbonate (0, 2, 4 and 6% w/w). In all conditions, log-linear inactivation kinetics with a tail was observed. The inactivation rate (kmax) for B. cereus varied from 0.065 to 1.67 min-1, whereas the kmax for G. stearothermophilus varied from 0.012 to 0.063 min-1. For both microorganisms, the lowest kmax values were observed during Ur nibs alkalization. The carbonate concentration increase promoted kmax values reduction. The highest tail values were observed for G. stearothermophilus in Ur nibs alkalization, reaching 3.04 log spores/g. Tail formation and low kmax values indicated that cocoa alkalization does not cause significant reductions on bacterial spore population. Therefore, the microbiological control should be primarily ensured by the raw material quality and by avoiding recontamination in the cocoa chain.
Collapse
Affiliation(s)
- Arthur K R Pia
- Department of Food Science, Faculty of Food Engineering, University of Campinas, Campinas, Brazil
| | - Ana P M Pereira
- Department of Food Science, Faculty of Food Engineering, University of Campinas, Campinas, Brazil
| | - Ramon A Costa
- Department of Food Science, Faculty of Food Engineering, University of Campinas, Campinas, Brazil
| | - Verônica O Alvarenga
- Department of Food Science, Faculty of Food Engineering, University of Campinas, Campinas, Brazil
| | - Luisa Freire
- Department of Food Science, Faculty of Food Engineering, University of Campinas, Campinas, Brazil
| | - Frédéric Carlin
- UMR408 SQPOV "Sécurité et Qualité des Produits d'Origine Végétale", INRA Avignon Université, 84000, Avignon, France
| | - Anderson S Sant'Ana
- Department of Food Science, Faculty of Food Engineering, University of Campinas, Campinas, Brazil.
| |
Collapse
|
79
|
Zhang Y, Mathys A. Superdormant Spores as a Hurdle for Gentle Germination-Inactivation Based Spore Control Strategies. Front Microbiol 2019; 9:3163. [PMID: 30662433 PMCID: PMC6328458 DOI: 10.3389/fmicb.2018.03163] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Accepted: 12/06/2018] [Indexed: 02/04/2023] Open
Abstract
Bacterial spore control strategies based on the germination-inactivation principle can lower the thermal load needed to inactivate bacterial spores and thus preserve food quality better. However, the success of this strategy highly depends on the germination of spores, and a subpopulation of spores that fail to germinate or germinate extremely slowly hinders the application of this strategy. This subpopulation of spores is termed 'superdormant (SD) spores.' Depending on the source of the germination stimulus, SD spores are categorized as nutrient-SD spores, Ca2+-dipicolinic acid SD spores, dodecylamine-SD spores, and high pressure SD spores. In recent decades, research has been done to isolate these different groups of SD spores and unravel the cause of their germination deficiency as well as their germination capacities. This review summarizes the challenges caused by SD spores, their isolation and characterization, the underlying mechanisms of their germination deficiency, and the future research directions needed to tackle this topic in further depth.
Collapse
Affiliation(s)
| | - Alexander Mathys
- Sustainable Food Processing Laboratory, Institute of Food, Nutrition and Health, Department of Health Science and Technology, ETH Zurich, Zurich, Switzerland
| |
Collapse
|
80
|
Feng W, McCarthy DT, Henry R, Zhang X, Zhang K, Deletic A. Electrochemical oxidation for stormwater disinfection: How does real stormwater chemistry impact on pathogen removal and disinfection by-products level? CHEMOSPHERE 2018; 213:226-234. [PMID: 30223127 DOI: 10.1016/j.chemosphere.2018.09.038] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Revised: 09/05/2018] [Accepted: 09/06/2018] [Indexed: 06/08/2023]
Abstract
Preliminary laboratory work has shown that electrochemical oxidation (ECO) is a promising technology for disinfection of harvested stormwater. This paper focuses on understanding how stormwater chemistry (e.g. pH, chloride, bicarbonate, ammonia and total organic carbon - that can vary substantially between sites) impacts the disinfection performance of ECO. Real stormwater samples from four different urban catchments were collected and tested for ECO performance in disinfecting stormwater pathogens using a boron doped diamond anode under the current density of 4.2 mA/cm2. Results showed that total disinfection of indigenous Escherichia coli (E. coli), as well as three different stormwater pathogens (Enterococci, Campylobacter and C. perfringens) was achievable for all four tested stormwater within 30 min. Compared to the synthetic stormwater, lower disinfection rates were observed in real stormwater which has more complex chemistry. Stormwater chloride concentration was the only tested parameter that had significant impact on the treatment performance, with higher initial stormwater chloride concentration leading to an increased disinfection rate. Disinfection by-products in the treated stormwater were well below the Australian Drinking Water Guideline value for health, with its production level positively correlated to the pH values of stormwater.
Collapse
Affiliation(s)
- Wenjun Feng
- Environmental and Public Health Microbiology Laboratory (EPHM Lab), Monash Infrastructure Research Institute, Department of Civil Engineering, Monash University, VIC, 3800, Australia
| | - David T McCarthy
- Environmental and Public Health Microbiology Laboratory (EPHM Lab), Monash Infrastructure Research Institute, Department of Civil Engineering, Monash University, VIC, 3800, Australia
| | - Rebekah Henry
- Environmental and Public Health Microbiology Laboratory (EPHM Lab), Monash Infrastructure Research Institute, Department of Civil Engineering, Monash University, VIC, 3800, Australia
| | - Xiwang Zhang
- Department of Chemical Engineering, Monash University, VIC, 3800, Australia
| | - Kefeng Zhang
- UNSW Water Research Centre, School of Civil and Environmental Engineering, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Ana Deletic
- Environmental and Public Health Microbiology Laboratory (EPHM Lab), Monash Infrastructure Research Institute, Department of Civil Engineering, Monash University, VIC, 3800, Australia; UNSW Water Research Centre, School of Civil and Environmental Engineering, University of New South Wales, Sydney, NSW, 2052, Australia.
| |
Collapse
|
81
|
Omardien S, Drijfhout JW, Zaat SA, Brul S. Cationic Amphipathic Antimicrobial Peptides Perturb the Inner Membrane of Germinated Spores Thus Inhibiting Their Outgrowth. Front Microbiol 2018; 9:2277. [PMID: 30319583 PMCID: PMC6168669 DOI: 10.3389/fmicb.2018.02277] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Accepted: 09/06/2018] [Indexed: 11/13/2022] Open
Abstract
The mode of action of four cationic amphipathic antimicrobial peptides (AMPs) was evaluated against the non-pathogenic, Gram-positive, spore-forming bacterium, Bacillus subtilis. The AMPs were TC19, TC84, BP2, and the lantibiotic Nisin A. TC19 and TC84 were derived from the human thrombocidin-1. Bactericidal peptide 2 (BP2) was derived from the human bactericidal permeability increasing protein (BPI). We employed structured illumination microscopy (SIM), fluorescence microscopy, Alexa 488-labeled TC84, B. subtilis mutants producing proteins fused to the green fluorescent protein (GFP) and single-cell live imaging to determine the effects of the peptides against spores. TC19, TC84, BP2, and Nisin A showed to be bactericidal against germinated spores by perturbing the inner membrane, thus preventing outgrowth to vegetative cells. Single cell live imaging showed that the AMPs do not affect the germination process, but the burst time and subsequent generation time of vegetative cells. Alexa 488-labeled TC84 suggested that the TC84 might be binding to the dormant spore-coat. Therefore, dormant spores were also pre-coated with the AMPs and cultured on AMP-free culture medium during single-cell live imaging. Pre-coating of the spores with TC19, TC84, and BP2 had no effect on the germination process, and variably affected the burst time and generation time. However, the percentage of spores that burst and grew out into vegetative cells was drastically lower when pre-coated with Nisin A, suggesting a novel application potential of this lantibiotic peptide against spores. Our findings contribute to the understanding of AMPs and show the potential of AMPs as eventual therapeutic agents against spore-forming bacteria.
Collapse
Affiliation(s)
- Soraya Omardien
- Swammerdam Institute for Life Sciences, Department of Molecular Biology and Microbial Food Safety, University of Amsterdam, Amsterdam, Netherlands
| | | | - Sebastian A Zaat
- Department of Medical Microbiology, Centre for Infection and Immunity Amsterdam (CINIMA), Academic Medical Centre, University of Amsterdam, Amsterdam, Netherlands
| | - Stanley Brul
- Swammerdam Institute for Life Sciences, Department of Molecular Biology and Microbial Food Safety, University of Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
82
|
Trunet C, Mtimet N, Mathot AG, Postollec F, Leguérinel I, Couvert O, Carlin F, Coroller L. Effect of incubation temperature and pH on the recovery of Bacillus weihenstephanensis spores after exposure to a peracetic acid-based disinfectant or to pulsed light. Int J Food Microbiol 2018; 278:81-87. [DOI: 10.1016/j.ijfoodmicro.2018.04.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Revised: 02/16/2018] [Accepted: 04/10/2018] [Indexed: 12/01/2022]
|
83
|
Pereira APM, Sant’Ana AS. Diversity and fate of spore forming bacteria in cocoa powder, milk powder, starch and sugar during processing: A review. Trends Food Sci Technol 2018. [DOI: 10.1016/j.tifs.2018.04.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
84
|
Lins P. Production of Clostridium perfringensspores and their recovery from artificially spiked spices and herbs. J Food Saf 2018. [DOI: 10.1111/jfs.12453] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Philipp Lins
- AGES - Austrian Agency for Health and Food Safety; Institute for Food Safety Innsbruck, Focus on Plant-based Foods; Innsbruck Austria
| |
Collapse
|
85
|
Sakanoue H, Yasugi M, Miyake M. Effect of sublethal heat treatment on the later stage of germination-to-outgrowth of Clostridium perfringens spores. Microbiol Immunol 2018; 62:418-424. [PMID: 29727026 DOI: 10.1111/1348-0421.12598] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Revised: 04/24/2018] [Accepted: 04/26/2018] [Indexed: 01/06/2023]
Abstract
Sublethal heating of spores has long been known to stimulate or activate germination; however, the underlying mechanisms are not yet fully understood. In this study, the entire germination-to-outgrowth process of spores from Clostridium perfringens, an anaerobic sporeformer, was visualized at single-cell resolution. Quantitative analysis revealed that sublethal heating significantly reduces the time from completion of germination to the beginning of the first cell division, indicating that sublethal heating of C. perfringens spores not only sensitizes the responsiveness of germinant receptors but also directly or indirectly facilitates multiple steps during the bacterial regrowth process.
Collapse
Affiliation(s)
- Hideyo Sakanoue
- Department of Veterinary Science, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, 1-58 Rinku Ourai Kita, Izumisano, Osaka 598-8531, Japan
| | - Mayo Yasugi
- Department of Veterinary Science, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, 1-58 Rinku Ourai Kita, Izumisano, Osaka 598-8531, Japan
| | - Masami Miyake
- Department of Veterinary Science, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, 1-58 Rinku Ourai Kita, Izumisano, Osaka 598-8531, Japan
| |
Collapse
|
86
|
Thermal treatment of skim milk concentrates in a novel shear-heating device: Reduction of thermophilic spores and physical properties. Food Res Int 2018; 107:19-26. [DOI: 10.1016/j.foodres.2018.02.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Revised: 02/01/2018] [Accepted: 02/01/2018] [Indexed: 11/23/2022]
|
87
|
Liao X, Muhammad AI, Chen S, Hu Y, Ye X, Liu D, Ding T. Bacterial spore inactivation induced by cold plasma. Crit Rev Food Sci Nutr 2018; 59:2562-2572. [PMID: 29621402 DOI: 10.1080/10408398.2018.1460797] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Cold plasma has emerged as a non-thermal technology for microbial inactivation in the food industry over the last decade. Spore-forming microorganisms pose challenges for microbiological safety and for the prevention of food spoilage. Inactivation of spores induced by cold plasma has been reported by several studies. However, the exact mechanism of spore deactivation by cold plasma is poorly understood; therefore, it is difficult to control this process and to optimize cold plasma processing for efficient spore inactivation. In this review, we summarize the factors that affect the resistance of spores to cold plasma, including processing parameters, environmental elements, and spore properties. We then describe possible inactivation targets in spore cells (e.g., outer structure, DNA, and metabolic proteins) that associated with inactivation by cold plasma according to previous studies. Kinetic models of the sporicidal activity of cold plasma have also been described here. A better understanding of the interaction between spores and cold plasma is essential for the development and optimization of cold plasma technology in food the industry.
Collapse
Affiliation(s)
- Xinyu Liao
- Department of Food Science and Nutrition, National Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang University , Hangzhou , Zhejiang , China.,Key Laboratory for Agro-Products Postharvest Handling of Ministry of Agriculture, Zhejiang Key Laboratory for Agro-Food Processing , Hangzhou , Zhejiang , China.,Fuli Institute of Food Science, Zhejiang University , Hangzhou , China
| | - Aliyu Idris Muhammad
- Department of Food Science and Nutrition, National Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang University , Hangzhou , Zhejiang , China.,Key Laboratory for Agro-Products Postharvest Handling of Ministry of Agriculture, Zhejiang Key Laboratory for Agro-Food Processing , Hangzhou , Zhejiang , China.,Department of Agricultural and Environmental Engineering, Faculty of Engineering, Bayero University Kano , Kano , Nigeria
| | - Shiguo Chen
- Department of Food Science and Nutrition, National Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang University , Hangzhou , Zhejiang , China.,Key Laboratory for Agro-Products Postharvest Handling of Ministry of Agriculture, Zhejiang Key Laboratory for Agro-Food Processing , Hangzhou , Zhejiang , China
| | - Yaqin Hu
- Department of Food Science and Nutrition, National Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang University , Hangzhou , Zhejiang , China.,Key Laboratory for Agro-Products Postharvest Handling of Ministry of Agriculture, Zhejiang Key Laboratory for Agro-Food Processing , Hangzhou , Zhejiang , China
| | - Xingqian Ye
- Department of Food Science and Nutrition, National Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang University , Hangzhou , Zhejiang , China.,Key Laboratory for Agro-Products Postharvest Handling of Ministry of Agriculture, Zhejiang Key Laboratory for Agro-Food Processing , Hangzhou , Zhejiang , China
| | - Donghong Liu
- Department of Food Science and Nutrition, National Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang University , Hangzhou , Zhejiang , China.,Key Laboratory for Agro-Products Postharvest Handling of Ministry of Agriculture, Zhejiang Key Laboratory for Agro-Food Processing , Hangzhou , Zhejiang , China.,Fuli Institute of Food Science, Zhejiang University , Hangzhou , China
| | - Tian Ding
- Department of Food Science and Nutrition, National Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang University , Hangzhou , Zhejiang , China.,Key Laboratory for Agro-Products Postharvest Handling of Ministry of Agriculture, Zhejiang Key Laboratory for Agro-Food Processing , Hangzhou , Zhejiang , China.,Fuli Institute of Food Science, Zhejiang University , Hangzhou , China
| |
Collapse
|
88
|
den Besten HM, Wells-Bennik MH, Zwietering MH. Natural Diversity in Heat Resistance of Bacteria and Bacterial Spores: Impact on Food Safety and Quality. Annu Rev Food Sci Technol 2018; 9:383-410. [DOI: 10.1146/annurev-food-030117-012808] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Heidy M.W. den Besten
- Laboratory of Food Microbiology, Wageningen University, 6700 AA Wageningen, The Netherlands
- Top Institute Food and Nutrition, 6709 PA, Wageningen, The Netherlands
| | - Marjon H.J. Wells-Bennik
- NIZO Food Research B.V., 6718 ZB, Ede, The Netherlands
- Top Institute Food and Nutrition, 6709 PA, Wageningen, The Netherlands
| | - Marcel H. Zwietering
- Laboratory of Food Microbiology, Wageningen University, 6700 AA Wageningen, The Netherlands
- Top Institute Food and Nutrition, 6709 PA, Wageningen, The Netherlands
| |
Collapse
|
89
|
Abhyankar WR, Wen J, Swarge BN, Tu Z, de Boer R, Smelt JPPM, de Koning LJ, Manders E, de Koster CG, Brul S. Proteomics and microscopy tools for the study of antimicrobial resistance and germination mechanisms of bacterial spores. Food Microbiol 2018; 81:89-96. [PMID: 30910091 DOI: 10.1016/j.fm.2018.03.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Revised: 02/21/2018] [Accepted: 03/13/2018] [Indexed: 10/17/2022]
Abstract
Bacterial spores are ubiquitous in nature and can withstand both chemical and physical stresses. Spores can survive food preservation processes and upon outgrowth cause food spoilage as well as safety risks. The heterogeneous germination and outgrowth behavior of isogenic spore populations exacerbates this risk. A major unknown factor of spores is likely to be the inherently heterogeneous spore protein composition. The proteomics methods discussed here help in broadening the knowledge about spore structure and identification of putative target proteins from spores of different spore formers. Approaches to synchronize Bacillus subtilis spore formation, and to analyze spore proteins as well as the physiology of spore germination and outgrowth are also discussed. Live-imaging and fluorescence microscopy techniques discussed here allow analysis, at single cell level, of the 'germinosome', the process of spore germination itself, spore outgrowth and the spore intracellular pH dynamics. For the latter, a recently published improved pHluorin (IpHluorin) under control of the ptsG promoter is applicable. While the data obtained from such tools offers novel insight in the mechanisms of bacterial spore awakening, it may also be used to probe candidate antimicrobial compounds for inhibitory effects on spore germination and strengthen microbial risk assessment.
Collapse
Affiliation(s)
- W R Abhyankar
- Department of Molecular Biology and Microbial Food Safety, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands; Department of Mass Spectrometry of Bio-macromolecules, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| | - J Wen
- Department of Molecular Biology and Microbial Food Safety, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands; Van Leeuwenhoek Centre for Advanced Microscopy, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| | - B N Swarge
- Department of Molecular Biology and Microbial Food Safety, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands; Department of Mass Spectrometry of Bio-macromolecules, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| | - Z Tu
- Department of Molecular Biology and Microbial Food Safety, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands; Department of Mass Spectrometry of Bio-macromolecules, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| | - R de Boer
- Department of Molecular Biology and Microbial Food Safety, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| | - J P P M Smelt
- Department of Molecular Biology and Microbial Food Safety, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| | - L J de Koning
- Department of Mass Spectrometry of Bio-macromolecules, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| | - E Manders
- Van Leeuwenhoek Centre for Advanced Microscopy, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| | - C G de Koster
- Department of Mass Spectrometry of Bio-macromolecules, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| | - S Brul
- Department of Molecular Biology and Microbial Food Safety, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands.
| |
Collapse
|
90
|
Miyake M, Kohda T, Yasugi M, Sakanoue H, Hirata S. Spores of Anaerobic Bacteria: Characteristics and Behaviors during Restoration from Damaged Status. J JPN SOC FOOD SCI 2018. [DOI: 10.3136/nskkk.65.142] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- Masami Miyake
- Graduate School of Life and Environmental Sciences, Osaka Prefecture University
| | - Tomoko Kohda
- Graduate School of Life and Environmental Sciences, Osaka Prefecture University
| | - Mayo Yasugi
- Graduate School of Life and Environmental Sciences, Osaka Prefecture University
| | - Hideyo Sakanoue
- Graduate School of Life and Environmental Sciences, Osaka Prefecture University
| | - Shotaro Hirata
- Graduate School of Life and Environmental Sciences, Osaka Prefecture University
| |
Collapse
|
91
|
Zhao Y, Kumar M, Caspers MPM, Nierop Groot MN, van der Vossen JMBM, Abee T. Short communication: Growth of dairy isolates of Geobacillus thermoglucosidans in skim milk depends on lactose degradation products supplied by Anoxybacillus flavithermus as secondary species. J Dairy Sci 2017; 101:1013-1019. [PMID: 29153522 DOI: 10.3168/jds.2017-13372] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Accepted: 09/20/2017] [Indexed: 01/17/2023]
Abstract
Thermophilic bacilli such as Anoxybacillus and Geobacillus are important contaminants in dairy powder products. Remarkably, one of the common contaminants, Geobacillus thermoglucosidans, showed poor growth in skim milk, whereas significant growth of G. thermoglucosidans was observed in the presence of an Anoxybacillus flavithermus dairy isolate. In the present study, we investigated the underlying reason for this growth dependence of G. thermoglucosidans. Whole-genome sequences of 4 A. flavithermus strains and 4 G. thermoglucosidans strains were acquired, with special attention given to carbohydrate utilization clusters and proteolytic enzymes. Focusing on traits relevant for dairy environments, comparative genomic analysis revealed that all G. thermoglucosidans strains lacked the genes necessary for lactose transport and metabolism, showed poor growth in skim milk, and produced white colonies on X-gal plates, indicating the lack of β-galactosidase activity. The A. flavithermus isolates scored positive in these tests, consistent with the presence of a putative lactose utilization gene cluster. All tested isolates from both species showed proteolytic activity on milk plate count agar plates. Adding glucose or galactose to liquid skim milk supported growth of G. thermoglucosidans isolates, in line with the presence of the respective monosaccharide utilization gene clusters in the genomes. Analysis by HPLC of A. flavithermus TNO-09.006 culture filtrate indicated that the previously described growth dependence of G. thermoglucosidans in skim milk was based on the supply of glucose and galactose by A. flavithermus TNO-09.006.
Collapse
Affiliation(s)
- Y Zhao
- TNO Microbiology and Systems Biology, Postbus 360, 3700 AJ Zeist, the Netherlands; Laboratory of Food Microbiology, PO Box 17, 6700 AA Wageningen, the Netherlands; Top Institute Food and Nutrition, PO Box 557, 6700 AN Wageningen, the Netherlands
| | - M Kumar
- TNO Microbiology and Systems Biology, Postbus 360, 3700 AJ Zeist, the Netherlands
| | - M P M Caspers
- TNO Microbiology and Systems Biology, Postbus 360, 3700 AJ Zeist, the Netherlands
| | - M N Nierop Groot
- Top Institute Food and Nutrition, PO Box 557, 6700 AN Wageningen, the Netherlands; Wageningen Food and Biobased Research, PO Box 17, 6700 AA Wageningen, the Netherlands
| | | | - T Abee
- Laboratory of Food Microbiology, PO Box 17, 6700 AA Wageningen, the Netherlands; Top Institute Food and Nutrition, PO Box 557, 6700 AN Wageningen, the Netherlands.
| |
Collapse
|
92
|
Kohler LJ, Quirk AV, Welkos SL, Cote CK. Incorporating germination-induction into decontamination strategies for bacterial spores. J Appl Microbiol 2017; 124:2-14. [PMID: 28980459 DOI: 10.1111/jam.13600] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Revised: 09/28/2017] [Accepted: 09/29/2017] [Indexed: 01/05/2023]
Abstract
Bacterial spores resist environmental extremes and protect key spore macromolecules until more supportive conditions arise. Spores germinate upon sensing specific molecules, such as nutrients. Germination is regulated by specialized mechanisms or structural features of the spore that limit contact with germinants and enzymes that regulate germination. Importantly, germination renders spores more susceptible to inactivating processes such as heat, desiccation, and ultraviolet radiation, to which they are normally refractory. Thus, germination can be intentionally induced through a process called germination-induction and subsequent treatment of these germinated spores with common disinfectants or gentle heat will inactivate them. However, while the principle of germination-induction has been shown effective in the laboratory, this strategy has not yet been fully implemented in real-word scenarios. Here, we briefly review the mechanisms of bacterial spore germination and discuss the evolution of germination-induction as a decontamination strategy. Finally, we examine progress towards implementing germination-induction in three contexts: biodefense, hospital settings and food manufacture. SIGNIFICANCE AND IMPACT This article reviews implementation of germination-induction as part of a decontamination strategy for the cleanup of bacterial spores. To our knowledge this is the first time that germination-induction studies have been reviewed in this context. This article will provide a resource which summarizes the mechanisms of germination in Clostridia and Bacillus species, challenges and successes in germination-induction, and potential areas where this strategy may be implemented.
Collapse
Affiliation(s)
- L J Kohler
- Bacteriology Division, United States Army Medical Research Institute of Infectious Diseases (USAMRIID), Frederick, MD, USA
| | - A V Quirk
- Bacteriology Division, United States Army Medical Research Institute of Infectious Diseases (USAMRIID), Frederick, MD, USA
| | - S L Welkos
- Bacteriology Division, United States Army Medical Research Institute of Infectious Diseases (USAMRIID), Frederick, MD, USA
| | - C K Cote
- Bacteriology Division, United States Army Medical Research Institute of Infectious Diseases (USAMRIID), Frederick, MD, USA
| |
Collapse
|
93
|
Sporeforming bacteria in beer: Occurrence, diversity, presence of hop resistance genes and fate in alcohol-free and lager beers. Food Control 2017. [DOI: 10.1016/j.foodcont.2017.06.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
94
|
Two complementary approaches to quantify variability in heat resistance of spores of Bacillus subtilis. Int J Food Microbiol 2017; 253:48-53. [DOI: 10.1016/j.ijfoodmicro.2017.04.014] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Revised: 03/10/2017] [Accepted: 04/23/2017] [Indexed: 11/20/2022]
|
95
|
Bernardeau M, Lehtinen MJ, Forssten SD, Nurminen P. Importance of the gastrointestinal life cycle of Bacillus for probiotic functionality. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2017; 54:2570-2584. [PMID: 28740315 PMCID: PMC5502041 DOI: 10.1007/s13197-017-2688-3] [Citation(s) in RCA: 81] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 03/18/2017] [Accepted: 05/12/2017] [Indexed: 12/17/2022]
Abstract
Bacillus spp. are widely used in animal production for their probiotic properties. In many animal species, feed supplementation with specific Bacillus strains can provide numerous benefits including improvement in digestibility, the gut microbiota and immune modulation, and growth performance. Bacilli are fed to animals as spores that can sustain the harsh feed processing and long storage. However, the spores are metabolically quiescent and it is widely accepted that probiotics should be in a metabolically active state to perform certain probiotic functions like secretion of antimicrobial compounds and enzymes, synthesis of short chain fatty acids, and competition for essential nutrients. These functions should become active in the host gastrointestinal tract (GIT) soon after digestion of spores in order to contribute to microbiota and host metabolism. Considering that bacterial spores are metabolically dormant and many health benefits are provided by vegetative cells, it is of particular interest to discuss the life cycle of Bacillus in animal GIT. This review aims to capture the main characteristics of spores and vegetative cells and to discuss the latest knowledge in the life cycle of beneficial Bacillus in various intestinal environments. Furthermore, we review how the life cycle may influence probiotic functions of Bacillus and their benefits for human and animal health.
Collapse
Affiliation(s)
- M. Bernardeau
- DuPont-Danisco, Industrial Biosciences, Animal Nutrition, Marlborough, UK
- Normandy University, ABTE, 14032 Caen, France
| | | | | | - P. Nurminen
- DuPont Nutrition and Health, Kantvik, Finland
| |
Collapse
|
96
|
Trunet C, Carlin F, Coroller L. Investigating germination and outgrowth of bacterial spores at several scales. Trends Food Sci Technol 2017. [DOI: 10.1016/j.tifs.2017.03.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
97
|
Warda AK, Xiao Y, Boekhorst J, Wells-Bennik MHJ, Nierop Groot MN, Abee T. Analysis of Germination Capacity and Germinant Receptor (Sub)clusters of Genome-Sequenced Bacillus cereus Environmental Isolates and Model Strains. Appl Environ Microbiol 2017; 83:e02490-16. [PMID: 27881417 PMCID: PMC5288832 DOI: 10.1128/aem.02490-16] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2016] [Accepted: 11/17/2016] [Indexed: 12/28/2022] Open
Abstract
Spore germination of 17 Bacillus cereus food isolates and reference strains was evaluated using flow cytometry analysis in combination with fluorescent staining at a single-spore level. This approach allowed for rapid collection of germination data under more than 20 conditions, including heat activation of spores, germination in complex media (brain heart infusion [BHI] and tryptone soy broth [TSB]), and exposure to saturating concentrations of single amino acids and the combination of alanine and inosine. Whole-genome sequence comparison revealed a total of 11 clusters of operons encoding germinant receptors (GRs): GerK, GerI, and GerL were present in all strains, whereas GerR, GerS, GerG, GerQ, GerX, GerF, GerW, and GerZ (sub)clusters showed a more diverse presence/absence in different strains. The spores of tested strains displayed high diversity with regard to their sensitivity and responsiveness to selected germinants and heat activation. The two laboratory strains, B. cereus ATCC 14579 and ATCC 10987, and 11 food isolates showed a good germination response under a range of conditions, whereas four other strains (B. cereus B4085, B4086, B4116, and B4153) belonging to phylogenetic group IIIA showed a very weak germination response even in BHI and TSB media. Germination responses could not be linked to specific (combinations of) GRs, but it was noted that the four group IIIA strains contained pseudogenes or variants of subunit C in their gerL cluster. Additionally, two of those strains (B4086 and B4153) carried pseudogenes in the gerK and gerRI (sub)clusters that possibly affected the functionality of these GRs. IMPORTANCE Germination of bacterial spores is a critical step before vegetative growth can resume. Food products may contain nutrient germinants that trigger germination and outgrowth of Bacillus species spores, possibly leading to food spoilage or foodborne illness. Prediction of spore germination behavior is, however, very challenging, especially for spores of natural isolates that tend to show more diverse germination responses than laboratory strains. The approach used has provided information on the genetic diversity in GRs and corresponding subclusters encoded by B. cereus strains, as well as their germination behavior and possible associations with GRs, and it provides a basis for further extension of knowledge on the role of GRs in B. cereus (group member) ecology and transmission to the host.
Collapse
Affiliation(s)
- Alicja K Warda
- TI Food and Nutrition, Wageningen, The Netherlands
- Laboratory of Food Microbiology, Wageningen University & Research, Wageningen, The Netherlands
- Wageningen Food and Biobased Research, Wageningen, The Netherlands
| | - Yinghua Xiao
- TI Food and Nutrition, Wageningen, The Netherlands
- Laboratory of Food Microbiology, Wageningen University & Research, Wageningen, The Netherlands
| | - Jos Boekhorst
- TI Food and Nutrition, Wageningen, The Netherlands
- NIZO Food Research B.V., Ede, The Netherlands
| | - Marjon H J Wells-Bennik
- TI Food and Nutrition, Wageningen, The Netherlands
- NIZO Food Research B.V., Ede, The Netherlands
| | - Masja N Nierop Groot
- TI Food and Nutrition, Wageningen, The Netherlands
- Wageningen Food and Biobased Research, Wageningen, The Netherlands
| | - Tjakko Abee
- TI Food and Nutrition, Wageningen, The Netherlands
- Laboratory of Food Microbiology, Wageningen University & Research, Wageningen, The Netherlands
| |
Collapse
|
98
|
McHugh AJ, Feehily C, Hill C, Cotter PD. Detection and Enumeration of Spore-Forming Bacteria in Powdered Dairy Products. Front Microbiol 2017; 8:109. [PMID: 28197144 PMCID: PMC5281614 DOI: 10.3389/fmicb.2017.00109] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Accepted: 01/16/2017] [Indexed: 01/28/2023] Open
Abstract
With the abolition of milk quotas in the European Union in 2015, several member states including Ireland, Luxembourg, and Belgium have seen year on year bi-monthly milk deliveries to dairies increase by up to 35%. Milk production has also increased outside of Europe in the past number of years. Unsurprisingly, there has been a corresponding increased focus on the production of dried milk products for improved shelf life. These powders are used in a wide variety of products, including confectionery, infant formula, sports dietary supplements and supplements for health recovery. To ensure quality and safety standards in the dairy sector, strict controls are in place with respect to the acceptable quantity and species of microorganisms present in these products. A particular emphasis on spore-forming bacteria is necessary due to their inherent ability to survive extreme processing conditions. Traditional microbiological detection methods used in industry have limitations in terms of time, efficiency, accuracy, and sensitivity. The following review will explore the common spore-forming bacterial contaminants of milk powders, will review the guidelines with respect to the acceptable limits of these microorganisms and will provide an insight into recent advances in methods for detecting these microbes. The various advantages and limitations with respect to the application of these diagnostics approaches for dairy food will be provided. It is anticipated that the optimization and application of these methods in appropriate ways can ensure that the enhanced pressures associated with increased production will not result in any lessening of safety and quality standards.
Collapse
Affiliation(s)
- Aoife J McHugh
- Food Bioscience Department, Teagasc Food Research CentreCork, Ireland; School of Microbiology, University College CorkCork, Ireland
| | - Conor Feehily
- Food Bioscience Department, Teagasc Food Research CentreCork, Ireland; APC Microbiome InstituteCork, Ireland
| | - Colin Hill
- School of Microbiology, University College CorkCork, Ireland; APC Microbiome InstituteCork, Ireland
| | - Paul D Cotter
- Food Bioscience Department, Teagasc Food Research CentreCork, Ireland; APC Microbiome InstituteCork, Ireland
| |
Collapse
|
99
|
‘Omics’ for microbial food stability: Proteomics for the development of predictive models for bacterial spore stress survival and outgrowth. Int J Food Microbiol 2017; 240:11-18. [DOI: 10.1016/j.ijfoodmicro.2016.05.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Revised: 05/03/2016] [Accepted: 05/06/2016] [Indexed: 12/25/2022]
|
100
|
Berendsen EM, Koning RA, Boekhorst J, de Jong A, Kuipers OP, Wells-Bennik MHJ. High-Level Heat Resistance of Spores of Bacillus amyloliquefaciens and Bacillus licheniformis Results from the Presence of a spoVA Operon in a Tn 1546 Transposon. Front Microbiol 2016; 7:1912. [PMID: 27994575 PMCID: PMC5133452 DOI: 10.3389/fmicb.2016.01912] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Accepted: 11/15/2016] [Indexed: 11/19/2022] Open
Abstract
Bacterial endospore formers can produce spores that are resistant to many food processing conditions, including heat. Some spores may survive heating processes aimed at production of commercially sterile foods. Recently, it was shown that a spoVA operon, designated spoVA2mob, present on a Tn1546 transposon in Bacillus subtilis, leads to profoundly increased wet heat resistance of B. subtilis spores. Such Tn1546 transposon elements including the spoVA2mob operon were also found in several strains of Bacillus amyloliquefaciens and Bacillus licheniformis, and these strains were shown to produce spores with significantly higher resistances to wet heat than their counterparts lacking this transposon. In this study, the locations and compositions of Tn1546 transposons encompassing the spoVA2mob operons in B. amyloliquefaciens and B. licheniformis were analyzed. Introduction of these spoVA2mob operons into B. subtilis 168 (producing spores that are not highly heat resistant) rendered mutant 168 strains that produced high-level heat resistant spores, demonstrating that these elements in B. amyloliquefaciens and B. licheniformis are responsible for high level heat resistance of spores. Assessment of growth of the nine strains of each species between 5.2°C and 57.7°C showed some differences between strains, especially at lower temperatures, but all strains were able to grow at 57.7°C. Strains of B. amyloliquefaciens and B. licheniformis that contain the Tn1546 elements (and produce high-level heat resistant spores) grew at temperatures similar to those of their Tn1546-negative counterparts that produce low-level heat resistant spores. The findings presented in this study allow for detection of B. amyloliquefaciens and B. licheniformis strains that produce highly heat resistant spores in the food chain.
Collapse
Affiliation(s)
- Erwin M Berendsen
- Top Institute Food and NutritionWageningen, Netherlands; Laboratory of Molecular Genetics, University of GroningenGroningen, Netherlands; NIZO Food ResearchEde, Netherlands
| | - Rosella A Koning
- Top Institute Food and NutritionWageningen, Netherlands; NIZO Food ResearchEde, Netherlands
| | - Jos Boekhorst
- Top Institute Food and NutritionWageningen, Netherlands; NIZO Food ResearchEde, Netherlands
| | - Anne de Jong
- Top Institute Food and NutritionWageningen, Netherlands; Laboratory of Molecular Genetics, University of GroningenGroningen, Netherlands
| | - Oscar P Kuipers
- Top Institute Food and NutritionWageningen, Netherlands; Laboratory of Molecular Genetics, University of GroningenGroningen, Netherlands
| | | |
Collapse
|