51
|
Liu L, Bulley A, Irish M. Subjective Time in Dementia: A Critical Review. Brain Sci 2021; 11:1502. [PMID: 34827501 PMCID: PMC8616021 DOI: 10.3390/brainsci11111502] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 11/04/2021] [Accepted: 11/09/2021] [Indexed: 12/31/2022] Open
Abstract
The capacity for subjective time in humans encompasses the perception of time's unfolding from moment to moment, as well as the ability to traverse larger temporal expanses of past- and future-oriented thought via mental time travel. Disruption in time perception can result in maladaptive outcomes-from the innocuous lapse in timing that leads to a burnt piece of toast, to the grievous miscalculation that produces a traffic accident-while disruption to mental time travel can impact core functions from planning appointments to making long-term decisions. Mounting evidence suggests that disturbances to both time perception and mental time travel are prominent in dementia syndromes. Given that such disruptions can have severe consequences for independent functioning in everyday life, here we aim to provide a comprehensive exposition of subjective timing dysfunction in dementia, with a view to informing the management of such disturbances. We consider the neurocognitive mechanisms underpinning changes to both time perception and mental time travel across different dementia disorders. Moreover, we explicate the functional implications of altered subjective timing by reference to two key and representative adaptive capacities: prospective memory and intertemporal decision-making. Overall, our review sheds light on the transdiagnostic implications of subjective timing disturbances in dementia and highlights the high variability in performance across clinical syndromes and functional domains.
Collapse
Affiliation(s)
- Lulu Liu
- School of Psychology, The University of Sydney, Sydney, NSW 2006, Australia; (L.L.); (A.B.)
- Brain and Mind Centre, The University of Sydney, Sydney, NSW 2050, Australia
| | - Adam Bulley
- School of Psychology, The University of Sydney, Sydney, NSW 2006, Australia; (L.L.); (A.B.)
- Brain and Mind Centre, The University of Sydney, Sydney, NSW 2050, Australia
- Department of Psychology, Harvard University, Boston, MA 02138, USA
| | - Muireann Irish
- School of Psychology, The University of Sydney, Sydney, NSW 2006, Australia; (L.L.); (A.B.)
- Brain and Mind Centre, The University of Sydney, Sydney, NSW 2050, Australia
| |
Collapse
|
52
|
The impact of cognitive load on prospective and retrospective time estimates at long durations: An investigation using a visual and memory search paradigm. Mem Cognit 2021; 50:837-851. [PMID: 34655029 DOI: 10.3758/s13421-021-01241-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/12/2021] [Indexed: 11/08/2022]
Abstract
As human beings, we are bound by time. It is essential for daily functioning, and yet our ability to keep track of time is influenced by a myriad of factors (Block & Zakay, 1997, Psychonomic Bulletin & Review, 4[2], 184-197). First and foremost, time estimation has been found to depend on whether participants estimate the time prospectively or retrospectively (Hicks et al., 1976, The American Journal of Psychology, 89[4], 719-730). However, there is a paucity of research investigating differences between these two conditions in tasks over two minutes (Tobin et al., 2010, PLOS ONE, 5[2], Article e9271). Moreover, estimates have also been shown to be influenced by cognitive load. We thus investigated participants' ability to keep track of time during a visual and memory search task and manipulated its difficulty and duration. Two hundred and ninety-two participants performed the task for 8 or 58 minutes. Participants in the prospective time judgment condition were forewarned of an impending time estimate, whereas participants in the retrospective condition were not. Cognitive load was manipulated and assessed by altering the task's difficulty. The results revealed a higher overestimation of time in the prospective condition compared with the retrospective condition. However, this was found in the 8-minute task only. Overall, participants significantly overestimated the duration of the 8-minute task and underestimated the 58-minute task. Finally, cognitive load had no effect on participants' time estimates. Thus, the well-known cross-over interaction between cognitive load and estimation paradigm (Block et al., 2010, Acta Psychologica, 134[3], 330-343) did not extend to a longer duration in this experiment.
Collapse
|
53
|
Scurry AN, Lemus DM, Jiang F. Temporal Alignment but not Complexity of Audiovisual Stimuli Influences Crossmodal Duration Percepts. Multisens Res 2021; 35:1-19. [PMID: 34638103 DOI: 10.1163/22134808-bja10062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 08/26/2021] [Indexed: 11/19/2022]
Abstract
Reliable duration perception is an integral aspect of daily life that impacts everyday perception, motor coordination, and subjective passage of time. The Scalar Expectancy Theory (SET) is a common model that explains how an internal pacemaker, gated by an external stimulus-driven switch, accumulates pulses during sensory events and compares these accumulated pulses to a reference memory duration for subsequent duration estimation. Second-order mechanisms, such as multisensory integration (MSI) and attention, can influence this model and affect duration perception. For instance, diverting attention away from temporal features could delay the switch closure or temporarily open the accumulator, altering pulse accumulation and distorting duration perception. In crossmodal duration perception, auditory signals of unequal duration can induce perceptual compression and expansion of durations of visual stimuli, presumably via auditory influence on the visual clock. The current project aimed to investigate the role of temporal (stimulus alignment) and nontemporal (stimulus complexity) features on crossmodal, specifically auditory over visual, duration perception. While temporal alignment revealed a larger impact on the strength of crossmodal duration percepts compared to stimulus complexity, both features showcase auditory dominance in processing visual duration.
Collapse
Affiliation(s)
- Alexandra N Scurry
- Department of Psychology, University of Nevada, Reno, 1664 N. Virginia St., Reno, NV 89557, USA
| | - Daniela M Lemus
- Department of Psychology, University of Nevada, Reno, 1664 N. Virginia St., Reno, NV 89557, USA
| | - Fang Jiang
- Department of Psychology, University of Nevada, Reno, 1664 N. Virginia St., Reno, NV 89557, USA
| |
Collapse
|
54
|
Tsushima Y, Nishino Y, Ando H. Olfactory Stimulation Modulates Visual Perception Without Training. Front Neurosci 2021; 15:642584. [PMID: 34408620 PMCID: PMC8364961 DOI: 10.3389/fnins.2021.642584] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 07/06/2021] [Indexed: 11/13/2022] Open
Abstract
Considerable research shows that olfactory stimulations affect other modalities in high-level cognitive functions such as emotion. However, little known fact is that olfaction modulates low-level perception of other sensory modalities. Although some studies showed that olfaction had influenced on the other low-level perception, all of them required specific experiences like perceptual training. To test the possibility that olfaction modulates low-level perception without training, we conducted a series of psychophysical and neuroimaging experiments. From the results of a visual task in which participants reported the speed of moving dots, we found that participants perceived the slower motions with a lemon smell and the faster motions with a vanilla smell, without any specific training. In functional magnetic resonance imaging (fMRI) studies, brain activities in the visual cortices [V1 and human middle temporal area (hMT)] changed based on the type of olfactory stimulation. Our findings provide us with the first direct evidence that olfaction modulates low-level visual perception without training, thereby indicating that olfactory-visual effect is not an acquired behavior but an innate behavior. The present results show us with a new crossmodal effect between olfaction and vision, and bring a unique opportunity to reconsider some fundamental roles of olfactory function.
Collapse
Affiliation(s)
- Yoshiaki Tsushima
- National Institute of Information and Communications Technology, Center for Information and Neural Networks, Osaka, Japan
| | - Yurie Nishino
- National Institute of Information and Communications Technology, Center for Information and Neural Networks, Osaka, Japan
| | - Hiroshi Ando
- National Institute of Information and Communications Technology, Universal Communication Research Institute, Kyoto, Japan
| |
Collapse
|
55
|
Heinrich T, Lappe A, Hanke FD. Beyond the classic sensory systems: Characteristics of the sense of time of harbor seals (Phoca vitulina) assessed in a visual temporal discrimination and a bisection task. Anat Rec (Hoboken) 2021; 305:704-714. [PMID: 34268905 DOI: 10.1002/ar.24715] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 04/23/2021] [Accepted: 06/05/2021] [Indexed: 11/06/2022]
Abstract
Beyond the classic sensory systems, the sense of time is most likely involved from foraging to navigation. As a prerequisite for assessing the role time is playing in different behavioral contexts, we further characterized the sense of time of a harbor seal in this study. Supra-second time intervals were presented to the seal in a temporal discrimination and a temporal bisection task. During temporal discrimination, the seal needed to discriminate between a standard time interval (STI) and a longer comparison interval. In the bisection task, the seal learnt to discriminate two STIs. Subsequently, it indicated its subjective perception of test time intervals as resembling either the short or long STI more. The seal, although unexperienced regarding timing experiments, learnt both tasks fast. Depending on task, time interval or duration ratio, it achieved a high temporal sensitivity with Weber fractions ranging from 0.11 to 0.26. In the bisection task, the prerequisites for the Scalar Expectancy Theory including a constant Weber fraction, the bisection point lying close to the geometric mean of the STIs, and no significant influence of the STI pair condition on the probability of a long response were met for STIs with a ratio of 1:2, but not with a ratio of 1:4. In conclusion, the harbor seal's sense of time allows precise and complex judgments of time intervals. Cross-species comparisons suggest that principles commonly found to govern timing performance can also be discerned in harbor seals.
Collapse
Affiliation(s)
- Tamara Heinrich
- Neuroethology, University of Rostock, Institute for Biosciences, Rostock, Germany
| | - Alexander Lappe
- Faculty of Mathematics and Computer Science, University of Münster, Münster, Germany
| | - Frederike D Hanke
- Neuroethology, University of Rostock, Institute for Biosciences, Rostock, Germany
| |
Collapse
|
56
|
von Sobbe L, Maienborn C, Reiber F, Scheifele E, Ulrich R. Speed or duration? Effects of implicit stimulus attributes on perceived duration. JOURNAL OF COGNITIVE PSYCHOLOGY 2021. [DOI: 10.1080/20445911.2021.1950736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Linda von Sobbe
- Collaborative Research Center 833, University of Tübingen, Tübingen, Germany
| | | | - Fabiola Reiber
- Department of Psychology, University of Tübingen, Tübingen, Germany
| | - Edith Scheifele
- Collaborative Research Center 833, University of Tübingen, Tübingen, Germany
| | - Rolf Ulrich
- Department of Psychology, University of Tübingen, Tübingen, Germany
| |
Collapse
|
57
|
Nazari MA, Sabaghypour S, Pezhmanfard M, Azizi K, Vahedi S. The influence of children's mathematical competence on performance in mental number line, time knowledge and time perception. PSYCHOLOGICAL RESEARCH 2021; 85:2023-2035. [PMID: 32623512 DOI: 10.1007/s00426-020-01380-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2019] [Accepted: 06/26/2020] [Indexed: 11/28/2022]
Abstract
A growing body of research suggests that space, time and number are represented within a common system. Other studies have shown this relationship is related to the mathematical competency. Here we examined the influence of the mathematical capacities of 8-12 years old children, grouped into high (n = 63) and low (n = 58) on performance in mental number line, time knowledge and time perception. The results revealed that mathematical competency influences mental number line and time knowledge, but with regard to time perception the effects were only observed in time production task. In addition, the results of correlation analysis revealed interaction between time knowledge, time production (but not reproduction) and mental number line. Finally, the findings are discussed within the framework of the recent theories regarding representation of space, time and number.
Collapse
Affiliation(s)
- Mohammad Ali Nazari
- Department of Neuroscience, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Shahid Hemmat Exp. way, Tehran, Iran.
- Division of Cognitive Neuroscience, University of Tabriz, Tabriz, Iran.
| | - Saied Sabaghypour
- Division of Cognitive Neuroscience, University of Tabriz, Tabriz, Iran
| | - Mina Pezhmanfard
- Department of Educational Psychology, University of Tabriz, Tabriz, Iran
| | - Kiana Azizi
- Department of Psychology, University of Tabriz, Tabriz, Iran
| | - Shahram Vahedi
- Department of Educational Psychology, University of Tabriz, Tabriz, Iran
| |
Collapse
|
58
|
Hammerschmidt D, Frieler K, Wöllner C. Spontaneous Motor Tempo: Investigating Psychological, Chronobiological, and Demographic Factors in a Large-Scale Online Tapping Experiment. Front Psychol 2021; 12:677201. [PMID: 34248776 PMCID: PMC8262453 DOI: 10.3389/fpsyg.2021.677201] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Accepted: 05/24/2021] [Indexed: 11/13/2022] Open
Abstract
The spontaneous motor tempo (SMT) describes the pace of regular and repeated movements such as hand clapping or walking. It is typically measured by letting people tap with their index finger at a pace that feels most natural and comfortable to them. A number of factors have been suggested to influence the SMT, such as age, time of the day, arousal, and potentially musical experience. This study aimed at investigating the effects of these factors in a combined and out-of-the-lab context by implementing the finger-tapping paradigm in an online experiment using a self-developed web application. Due to statistical multimodality in the distribution of participants' SMT (N = 3,576), showing peaks at modes of around 250 ms, a Gaussian mixture model was applied that grouped participants into six clusters, ranging from Very Fast (M = 265 ms, SD = 74) to Very Slow (M = 1,757 ms, SD = 166). These SMT clusters differed in terms of age, suggesting that older participants had a slower SMT, and time of the day, showing that the earlier it was, the slower participants' SMT. While arousal did not differ between the SMT clusters, more aroused participants showed faster SMTs across all normalized SMT clusters. Effects of musical experience were inconclusive. With a large international sample, these results provide insights into factors influencing the SMT irrespective of cultural background, which can be seen as a window into human timing processes.
Collapse
Affiliation(s)
- David Hammerschmidt
- Institute for Systematic Musicology, University of Hamburg, Hamburg, Germany
| | - Klaus Frieler
- Max Planck Institute for Empirical Aesthetics, Frankfurt, Germany
| | - Clemens Wöllner
- Institute for Systematic Musicology, University of Hamburg, Hamburg, Germany
| |
Collapse
|
59
|
Timing and Intertemporal Choice Behavior in the Valproic Acid Rat Model of Autism Spectrum Disorder. J Autism Dev Disord 2021; 52:2414-2429. [DOI: 10.1007/s10803-021-05129-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/01/2021] [Indexed: 12/16/2022]
|
60
|
Farrugia N, Lamouroux A, Rocher C, Bouvet J, Lioi G. Beta and Theta Oscillations Correlate With Subjective Time During Musical Improvisation in Ecological and Controlled Settings: A Single Subject Study. Front Neurosci 2021; 15:626723. [PMID: 34177443 PMCID: PMC8222590 DOI: 10.3389/fnins.2021.626723] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 05/13/2021] [Indexed: 11/13/2022] Open
Abstract
In this paper, we describe the results of a single subject study attempting at a better understanding of the subjective mental state during musical improvisation. In a first experiment, we setup an ecological paradigm measuring EEG on a musician in free improvised concerts with an audience, followed by retrospective rating of the mental state of the improviser. We introduce Subjective Temporal Resolution (STR), a retrospective rating assessing the instantaneous quantization of subjective timing of the improviser. We identified high and low STR states using Hidden Markov Models in two performances, and were able to decode those states using supervised learning on instantaneous EEG power spectrum, showing increases in theta and alpha power with high STR values. In a second experiment, we found an increase of theta and beta power when experimentally manipulating STR in a musical improvisation imagery experiment. These results are interpreted with respect to previous research on flow state in creativity, as well as with the temporal processing literature. We suggest that a component of the subjective state of musical improvisation may be reflected in an underlying mechanism related to the subjective quantization of time. We also demonstrate the feasibility of single case studies of musical improvisation using brain activity measurements and retrospective reports, by obtaining consistent results across multiple sessions.
Collapse
Affiliation(s)
| | | | | | - Jules Bouvet
- IMT Atlantique, Lab-STICC, UMR CNRS 6285, Brest, France
| | - Giulia Lioi
- IMT Atlantique, Lab-STICC, UMR CNRS 6285, Brest, France
| |
Collapse
|
61
|
Miyamoto T, Numasawa K, Hirata Y, Katoh A, Miura K, Ono S. Effects of smooth pursuit and second-order stimuli on visual motion prediction. Physiol Rep 2021; 9:e14833. [PMID: 33991449 PMCID: PMC8123564 DOI: 10.14814/phy2.14833] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 02/23/2021] [Accepted: 03/11/2021] [Indexed: 01/01/2023] Open
Abstract
The purpose of this study was to determine whether smooth pursuit eye movements affect visual motion prediction using a time‐to‐contact task where observers anticipate the exact instant that a partially occluded target would coincide with a stationary object. Moreover, we attempted to clarify the influence of second‐order motion on visual motion prediction during smooth pursuit. One target object moved to another stationary object (6 deg apart) at constant velocity of 3, 4, and 5 deg/s, and then the two objects disappeared 500 ms after the onset of target motion. The observers estimated the moment the moving object would overlap the stationary object and pressed a button. For the pursuit condition, both a Gaussian window and a random dots texture moved in the same direction at the same speed for the first‐order motion, whereas a Gaussian window moved over a static background composed of random dots texture for the second‐order motion. The results showed that the constant error of the time‐to‐contact shifted to a later response for the pursuit condition compared to the fixation condition, regardless of the object velocity. In addition, during smooth pursuit, the constant error for the second‐order motion shifted to an earlier response compared to the first‐order motion when the object velocity was 3 deg/s, whereas no significant difference was found at 4 and 5 deg/s. Therefore, our results suggest that visual motion prediction using a time‐to‐contact task is affected by both eye movements and motion configuration such as second‐order motion.
Collapse
Affiliation(s)
- Takeshi Miyamoto
- Graduate School of Comprehensive Human Sciences, University of Tsukuba, Ibaraki, Japan
| | - Kosuke Numasawa
- Graduate School of Comprehensive Human Sciences, University of Tsukuba, Ibaraki, Japan
| | - Yutaka Hirata
- Department of Robotic Science and Technology, Chubu University College of Engineering, Kasugai, Japan
| | - Akira Katoh
- Department of Physiology, Tokai University School of Medicine, Kanagawa, Japan
| | - Kenichiro Miura
- Department of Pathology of Mental Diseases, National Institute of Mental Health, National Center of Neurology and Psychiatry, Tokyo, Japan.,Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Seiji Ono
- Faculty of Health and Sport Sciences, University of Tsukuba, Ibaraki, Japan
| |
Collapse
|
62
|
De Kock R, Zhou W, Joiner WM, Wiener M. Slowing the body slows down time perception. eLife 2021; 10:e63607. [PMID: 33830016 PMCID: PMC8051945 DOI: 10.7554/elife.63607] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 04/07/2021] [Indexed: 12/25/2022] Open
Abstract
Interval timing is a fundamental component of action and is susceptible to motor-related temporal distortions. Previous studies have shown that concurrent movement biases temporal estimates, but have primarily considered self-modulated movement only. However, real-world encounters often include situations in which movement is restricted or perturbed by environmental factors. In the following experiments, we introduced viscous movement environments to externally modulate movement and investigated the resulting effects on temporal perception. In two separate tasks, participants timed auditory intervals while moving a robotic arm that randomly applied four levels of viscosity. Results demonstrated that higher viscosity led to shorter perceived durations. Using a drift-diffusion model and a Bayesian observer model, we confirmed these biasing effects arose from perceptual mechanisms, instead of biases in decision making. These findings suggest that environmental perturbations are an important factor in movement-related temporal distortions, and enhance the current understanding of the interactions of motor activity and cognitive processes.
Collapse
Affiliation(s)
- Rose De Kock
- University of California, DavisDavisUnited States
| | - Weiwei Zhou
- University of California, DavisDavisUnited States
| | | | | |
Collapse
|
63
|
Disentangling the effects of modality, interval length and task difficulty on the accuracy and precision of older adults in a rhythmic reproduction task. PLoS One 2021; 16:e0248295. [PMID: 33730049 PMCID: PMC7968708 DOI: 10.1371/journal.pone.0248295] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 02/23/2021] [Indexed: 11/19/2022] Open
Abstract
Studies on the functional quality of the internal clock that governs the temporal processing of older adults have demonstrated mixed results as to whether they perceive and produce time slower, faster, or equally well as younger adults. These mixed results are due to a multitude of methodologies applied to study temporal processing: many tasks demand different levels of cognitive ability. To investigate the temporal accuracy and precision of older adults, in Experiment 1, we explored the age-related differences in rhythmic continuation task taking into consideration the effects of attentional resources required by the stimulus (auditory vs. visual; length of intervals). In Experiment 2, we added a dual task to explore the effect of attentional resources required by the task. Our findings indicate that (1) even in an inherently automatic rhythmic task, where older and younger adult’s general accuracy is comparable, accuracy but not precision is altered by the stimulus properties and (2) an increase in task load can magnify age-related differences in both accuracy and precision.
Collapse
|
64
|
Zokaei N, Gillebert CR, Chauvin JJ, Gresch D, Board AG, Rolinski M, Hu MT, Nobre AC. Temporal orienting in Parkinson's disease. Eur J Neurosci 2021; 53:2713-2725. [PMID: 33450082 PMCID: PMC8290223 DOI: 10.1111/ejn.15114] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 12/29/2020] [Accepted: 12/30/2020] [Indexed: 12/18/2022]
Abstract
Temporal orienting of attention can affect multiple stages of processing to guide adaptive behaviour. We tested whether temporal expectation in different task contexts is compromised in individuals with Parkinson's disease (PD). In Experiment 1 two temporal-orienting tasks were used: a speeded task emphasizing motor preparation and a non-speeded task emphasizing perceptual discrimination using rapid serial visual presentation. In both tasks, auditory cues indicated the likelihood of a target appearing after a short or long interval. In the speeded-response task, participants used the cues to anticipate an easily detectable target stimulus. In the non-speeded perceptual-discrimination task, participants used the cues to help discriminate a target letter embedded in a stream of letters. Relative to healthy participants, participants with PD did not show altered temporal orienting effects in the speeded-response task. However, they were impaired in using temporal cues to improve perceptual discrimination. In Experiment 2, we tested whether the temporal-orienting deficits in the perceptual-discrimination task depended on the requirement to ignore temporally distracting stimuli. We replicated the impaired temporal orienting for perceptual discrimination in an independent group of individuals with PD, and showed the impairment was abolished when individuals were on their dopaminergic medication. In a task without any distracting letters, however, patients off or on medication benefited normally from temporal orienting cues. Our findings suggest that deficits in temporal orienting in individuals with PD interact with specific task demands, such as the requirement to select target from temporally competing distractors.
Collapse
Affiliation(s)
- Nahid Zokaei
- Oxford Centre for Human Brain Activity, Wellcome Centre for Integrative Neuroimaging, Department of Psychiatry, University of Oxford, Oxford, UK.,Department of Experimental Psychology, University of Oxford, Oxford, UK
| | - Celine R Gillebert
- Department of Experimental Psychology, University of Oxford, Oxford, UK.,Department of Brain and Cognition, KU Leuven, Leuven, Belgium
| | - Joshua J Chauvin
- Oxford Centre for Human Brain Activity, Wellcome Centre for Integrative Neuroimaging, Department of Psychiatry, University of Oxford, Oxford, UK.,Department of Experimental Psychology, University of Oxford, Oxford, UK
| | - Daniela Gresch
- Oxford Centre for Human Brain Activity, Wellcome Centre for Integrative Neuroimaging, Department of Psychiatry, University of Oxford, Oxford, UK.,Department of Experimental Psychology, University of Oxford, Oxford, UK
| | - Alexander G Board
- Oxford Centre for Human Brain Activity, Wellcome Centre for Integrative Neuroimaging, Department of Psychiatry, University of Oxford, Oxford, UK.,Department of Experimental Psychology, University of Oxford, Oxford, UK
| | - Michal Rolinski
- Translational Health Sciences, University of Bristol, Bristol, UK
| | - Michele T Hu
- Department of Neurology, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Anna Christina Nobre
- Oxford Centre for Human Brain Activity, Wellcome Centre for Integrative Neuroimaging, Department of Psychiatry, University of Oxford, Oxford, UK.,Department of Experimental Psychology, University of Oxford, Oxford, UK
| |
Collapse
|
65
|
Machado A, Guilhardi P, Caetano MS, Silva FJ. Rules of Conduct for Behavior Analysts in the Presence of Hypothetical Constructs: A Commentary on Eckard and Lattal (2020). Perspect Behav Sci 2021; 43:791-802. [PMID: 33381689 DOI: 10.1007/s40614-020-00272-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/04/2020] [Indexed: 11/25/2022] Open
Abstract
Eckard and Lattal (2020) summarized the behavioristic view of hypothetical constructs and theories, and then, in a novel and timely manner, applied this view to a critique of internal clock models of temporal control. In our three-part commentary, we aim to contribute to the authors' discussion by first expanding upon their view of the positive contributions afforded by constructs and theories. We then refine and question their view of the perils of reifying constructs and assigning them causal properties. Finally, we suggest to behavior analysts four rules of conduct for dealing with mediational theories: tolerate constructs proposed with sufficient reason; consider them seriously, both empirically and conceptually; develop alternative, behavior-analytic models with overlapping empirical domains; and contrast the various models. Through variation and selection, behavioral science will evolve.
Collapse
|
66
|
Robinson EM, Wiener M. Dissociable neural indices for time and space estimates during virtual distance reproduction. Neuroimage 2020; 226:117607. [PMID: 33290808 DOI: 10.1016/j.neuroimage.2020.117607] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 11/23/2020] [Accepted: 11/25/2020] [Indexed: 10/22/2022] Open
Abstract
The perception and measurement of spatial and temporal dimensions have been widely studied. Yet, whether these two dimensions are processed independently is still being debated. Additionally, whether EEG components are uniquely associated with time or space, or whether they reflect a more general measure of magnitude quantity remains unknown. While undergoing EEG, subjects performed a virtual distance reproduction task, in which they were required to first walk forward for an unknown distance or time, and then reproduce that distance or time. Walking speed was varied between estimation and reproduction phases, to prevent interference between distance or time in each estimate. Behaviorally, subject performance was more variable when reproducing time than when reproducing distance, but with similar patterns of accuracy. During estimation, EEG data revealed the contingent negative variation (CNV), a measure previously associated with timing and expectation, tracked the probability of the upcoming interval, for both time and distance. However, during reproduction, the CNV exclusively oriented to the upcoming temporal interval at the start of reproduction, with no change across spatial distances. Our findings indicate that time and space are neurally separable dimensions, with the CNV both serving a supramodal role in temporal and spatial expectation, yet an exclusive role in preparing duration reproduction.
Collapse
Affiliation(s)
- Eva Marie Robinson
- Department of Psychology, University of Arizona, Tuscon, AZ 85721, United States; Department of Psychology, George Mason University, 4400 University Drive, 3F5, Fairfax, VA 22030, United States
| | - Martin Wiener
- Department of Psychology, George Mason University, 4400 University Drive, 3F5, Fairfax, VA 22030, United States.
| |
Collapse
|
67
|
Temporal bisection is influenced by ensemble statistics of the stimulus set. Atten Percept Psychophys 2020; 83:1201-1214. [PMID: 33244734 PMCID: PMC8049899 DOI: 10.3758/s13414-020-02202-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/01/2020] [Indexed: 11/08/2022]
Abstract
Although humans are well capable of precise time measurement, their duration judgments are nevertheless susceptible to temporal context. Previous research on temporal bisection has shown that duration comparisons are influenced by both stimulus spacing and ensemble statistics. However, theories proposed to account for bisection performance lack a plausible justification of how the effects of stimulus spacing and ensemble statistics are actually combined in temporal judgments. To explain the various contextual effects in temporal bisection, we develop a unified ensemble-distribution account (EDA), which assumes that the mean and variance of the duration set serve as a reference, rather than the short and long standards, in duration comparison. To validate this account, we conducted three experiments that varied the stimulus spacing (Experiment 1), the frequency of the probed durations (Experiment 2), and the variability of the probed durations (Experiment 3). The results revealed significant shifts of the bisection point in Experiments 1 and 2, and a change of the sensitivity of temporal judgments in Experiment 3-which were all well predicted by EDA. In fact, comparison of EDA to the extant prior accounts showed that using ensemble statistics can parsimoniously explain various stimulus set-related factors (e.g., spacing, frequency, variance) that influence temporal judgments.
Collapse
|
68
|
Coorevits E, Maes PJ, Six J, Leman M. The influence of performing gesture type on interpersonal musical timing, and the role of visual contact and tempo. Acta Psychol (Amst) 2020; 210:103166. [PMID: 32919094 DOI: 10.1016/j.actpsy.2020.103166] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 06/08/2020] [Accepted: 08/14/2020] [Indexed: 11/25/2022] Open
Abstract
Bodily gestures play an important role in the communication of expressive intentions between humans. Music ensemble performance, as an outstanding example of nonverbal human communication, offers an exemplary context to study and understand the gestural control and communication of these expressive intentions. An important mechanism in music ensemble performance is the anticipation and control of interpersonal timing. When performing, musicians are involved in a complex system of mutual adaptation which is not completely understood so far. In this study, we investigated the role of performers' gestures in the mediation process of interpersonal timing in a dyad performance. Therefore, we designed an experiment in which we controlled for the use of hand and arm movements in a musical task, in which dyads were asked to synchronously tap out a melody. Next to their comfortable/natural way of tapping, we instructed participants to either perform pronounced expressive hand and arm gestures in between successive taps, or to restrict from any overt body movement. In addition, we looked at effects of visual contact (yes/no) and tempo (slow: 50 beats per minute; fast: 100 beats per minute). The results show that performers' gestures improve interpersonal musical timing, in terms of the consistency and accuracy of onset asynchronies, and of the variability of produced inter-onset intervals. Interestingly, we found that the use of expressive gestures, in regard to comfortable/natural movements, add to these positive timing effects, but only when there is visual contact and at the slow tempo. In addition, we found that the type of gestures employed by musicians may modulate leader-follower dynamics. Together, these findings are explained by human anticipation mechanisms facilitated by gesturing, shedding new light on the principles underlying human communication of expressive intentions, through music.
Collapse
|
69
|
Heys JG, Wu Z, Allegra Mascaro AL, Dombeck DA. Inactivation of the Medial Entorhinal Cortex Selectively Disrupts Learning of Interval Timing. Cell Rep 2020; 32:108163. [PMID: 32966784 PMCID: PMC8719477 DOI: 10.1016/j.celrep.2020.108163] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 03/06/2020] [Accepted: 08/26/2020] [Indexed: 11/25/2022] Open
Abstract
The entorhinal-hippocampal circuit can encode features of elapsed time, but nearly all previous research focused on neural encoding of "implicit time." Recent research has revealed encoding of "explicit time" in the medial entorhinal cortex (MEC) as mice are actively engaged in an interval timing task. However, it is unclear whether the MEC is required for temporal perception and/or learning during such explicit timing tasks. We therefore optogenetically inactivated the MEC as mice learned an interval timing "door stop" task that engaged mice in immobile interval timing behavior and locomotion-dependent navigation behavior. We find that the MEC is critically involved in learning of interval timing but not necessary for estimating temporal duration after learning. Together with our previous research, these results suggest that activity of a subcircuit in the MEC that encodes elapsed time during immobility is necessary for learning interval timing behaviors.
Collapse
Affiliation(s)
- James G Heys
- Department of Neurobiology, Northwestern University, Evanston, IL, USA
| | - Zihan Wu
- Department of Neurobiology, Northwestern University, Evanston, IL, USA
| | | | - Daniel A Dombeck
- Department of Neurobiology, Northwestern University, Evanston, IL, USA.
| |
Collapse
|
70
|
Tallot L, Doyère V. Neural encoding of time in the animal brain. Neurosci Biobehav Rev 2020; 115:146-163. [DOI: 10.1016/j.neubiorev.2019.12.033] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Revised: 10/23/2019] [Accepted: 12/03/2019] [Indexed: 01/25/2023]
|
71
|
Behm DG, Carter TB. Effect of Exercise-Related Factors on the Perception of Time. Front Physiol 2020; 11:770. [PMID: 32733275 PMCID: PMC7357302 DOI: 10.3389/fphys.2020.00770] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Accepted: 06/11/2020] [Indexed: 01/25/2023] Open
Abstract
The concept of time whether considered through the lenses of physics or physiology is a relative measure. Alterations in time perception can have serious implications in sport, fitness and work. Accurate perception of time is an important skill with many time constrained sports (i.e., basketball, North American football, tennis, gymnastics, figure skating, ice hockey, and others), and work environments (i.e., workers who need to synchronize their actions such as police and military). In addition, time distortions may play a role in exercise adherence. Individuals may be disinclined to continue with healthy, exercise activities that seem protracted (time dilation). Two predominant theories (scalar expectancy theory and striatal beat frequency model) emphasize the perception of the number of events in a period and the role of neurotransmitters in activating and coordinating cortical structures, respectively. A number of factors including age, sex, body temperature, state of health and fitness, mental concentration and exercise intensity level have been examined for their effect on time perception. However, with the importance of time perception for work, sport and exercise, there is limited research on this area. Since work, sports, and exercise can involve an integration of many of these aforementioned factors, they are interventions that need further investigations. The multiplicity of variables involved with work, sport, and exercise offer an underdeveloped but fruitful field for future research. Thus, the objective of this review was to examine physiological and psychological factors affecting human perception of time and the mechanisms underlying time perception and distortion with activity.
Collapse
Affiliation(s)
- David G Behm
- School of Human Kinetics and Recreation, Memorial University of Newfoundland, St. John's, NL, Canada
| | - Tori B Carter
- School of Human Kinetics and Recreation, Memorial University of Newfoundland, St. John's, NL, Canada
| |
Collapse
|
72
|
Kliger Amrani A, Zion Golumbic E. Spontaneous and stimulus-driven rhythmic behaviors in ADHD adults and controls. Neuropsychologia 2020; 146:107544. [PMID: 32598965 DOI: 10.1016/j.neuropsychologia.2020.107544] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Revised: 05/27/2020] [Accepted: 06/21/2020] [Indexed: 10/24/2022]
Abstract
Many aspects of human behavior are inherently rhythmic, requiring production of rhythmic motor actions as well as synchronizing to rhythms in the environment. It is well-established that individuals with ADHD exhibit deficits in temporal estimation and timing functions, which may impact their ability to accurately produce and interact with rhythmic stimuli. In the current study we seek to understand the specific aspects of rhythmic behavior that are implicated in ADHD. We specifically ask whether they are attributed to imprecision in the internal generation of rhythms or to reduced acuity in rhythm perception. We also test key predictions of the Preferred Period Hypothesis, which suggests that both perceptual and motor rhythmic behaviors are biased towards a specific personal 'default' tempo. To this end, we tested several aspects of rhythmic behavior and the correspondence between them, including spontaneous motor tempo (SMT), preferred auditory perceptual tempo (PPT) and synchronization-continuations tapping in a broad range of rhythms, from sub-second to supra-second intervals. Moreover, we evaluate the intra-subject consistency of rhythmic preferences, as a means for testing the reality and reliability of personal 'default-rhythms'. We used a modified operational definition for assessing SMT and PPT, instructing participants to tap or calibrate the rhythms most comfortable for them to count along with, to avoid subjective interpretations of the task. Our results shed new light on the specific aspect of rhythmic deficits implicated in ADHD adults. We find that individuals with ADHD are primarily challenged in producing and maintaining isochronous self-generated motor rhythms, during both spontaneous and memory-paced tapping. However, they nonetheless exhibit good flexibility for synchronizing to a broad range of external rhythms, suggesting that auditory-motor entrainment for simple rhythms is preserved in ADHD, and that the presence of an external pacer allows overcoming their inherent difficulty in self-generating isochronous motor rhythms. In addition, both groups showed optimal memory-paced tapping for rhythms near their 'counting-based' SMT and PPT, which were slightly faster in the ADHD group. This is in line with the predictions of the Preferred Period Hypothesis, indicating that at least for this well-defined rhythmic behavior (i.e., counting), individuals tend to prefer similar time-scales in both motor production and perceptual evaluation.
Collapse
|
73
|
Li L, Ito S, Yotsumoto Y. Effect of change saliency and neural entrainment on flicker-induced time dilation. J Vis 2020; 20:15. [PMID: 32574359 PMCID: PMC7416891 DOI: 10.1167/jov.20.6.15] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
When a visual stimulus flickers periodically and rhythmically, the perceived duration tends to exceed its physical duration in the peri-second range. Although flicker-induced time dilation is a robust time illusion, its underlying neural mechanisms remain inconclusive. The neural entrainment account proposes that neural entrainment of the exogenous visual stimulus, marked by steady-state visual evoked potentials (SSVEPs) over the visual cortex, is the cause of time dilation. By contrast, the saliency account argues that the conscious perception of flicker changes is indispensable. In the current study, we examined these two accounts separately. The first two experiments manipulated the level of saliency around the critical fusion threshold (CFF) in a duration discrimination task to probe the effect of change saliency. The amount of dilation correlated with the level of change saliency. The next two experiments investigated whether neural entrainment alone could also induce perceived dilation. To preclude change saliency, we utilized a combination of two high-frequency flickers above the CFF, whereas their beat frequency still theoretically aroused neural entrainment at a low frequency. Results revealed a moderate time dilation induced by combinative high-frequency flickers. Although behavioral results suggested neural entrainment engagement, electroencephalography showed neither larger power nor inter-trial coherence (ITC) at the beat. In summary, change saliency was the most critical factor determining the perception and strength of time dilation, whereas neural entrainment had a moderate influence. These results highlight the influence of higher-level visual processing on time perception.
Collapse
|
74
|
Cubillas CP, Landáburu Í, Matute H. Methodological Factors Involved in the Study of Temporal Binding Using the Open Source Software Labclock Web. Front Psychol 2020; 11:1040. [PMID: 32528382 PMCID: PMC7266961 DOI: 10.3389/fpsyg.2020.01040] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 04/27/2020] [Indexed: 11/25/2022] Open
Abstract
Temporal binding occurs when an action and an outcome that follows it after a short period of time are judged as occurring closer to each other in time than they actually are. This effect has often been studied using Libet's clock methodology. Garaizar et al. (2016) presented Labclock Web, a free HTML5 open source software that allows researchers to conduct temporal binding and other experiments using Libet's clock through the Internet. The purpose of the three experiments presented here was to test how certain methodological modifications in the Labclock Web task could impact the temporal binding effect. In comparison with the original study, we aimed to: (a) reduce the interval between action and outcome in the delayed condition to 100 ms, instead of 500, (b) present the two types of trials, immediate and delayed, in two separate consecutive blocks, instead of intermixed, (c) use a visual, rather than auditory, outcome following the action, and (d) reduce the number of trials. In addition to its potential theoretical implications, the results confirm that Labclock Web is a useful and reliable tool for conducting temporal binding experiments and that it is well suited to measure temporal binding effects in a broad range of situations.
Collapse
Affiliation(s)
| | - Íñigo Landáburu
- Facultad de Ciencias de la Salud y de la Educación, Universidad a Distancia de Madrid, Madrid, Spain
| | - Helena Matute
- Facultad de Psicología y Educación, Universidad de Deusto, Bilbao, Spain
| |
Collapse
|
75
|
Turning the body into a clock: Accurate timing is facilitated by simple stereotyped interactions with the environment. Proc Natl Acad Sci U S A 2020; 117:13084-13093. [PMID: 32434909 DOI: 10.1073/pnas.1921226117] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
How animals adapt their behavior according to regular time intervals between events is not well understood, especially when intervals last several seconds. One possibility is that animals use disembodied internal neuronal representations of time to decide when to initiate a given action at the end of an interval. However, animals rarely remain immobile during time intervals but tend to perform stereotyped behaviors, raising the possibility that motor routines improve timing accuracy. To test this possibility, we used a task in which rats, freely moving on a motorized treadmill, could obtain a reward if they approached it after a fixed interval. Most animals took advantage of the treadmill length and its moving direction to develop, by trial-and-error, the same motor routine whose execution resulted in the precise timing of their reward approaches. Noticeably, when proficient animals did not follow this routine, their temporal accuracy decreased. Then, naïve animals were trained in modified versions of the task designed to prevent the development of this routine. Compared to rats trained in the first protocol, these animals didn't reach a comparable level of timing accuracy. Altogether, our results indicate that timing accuracy in rats is improved when the environment affords cues that animals can incorporate into motor routines.
Collapse
|
76
|
Abstract
Perceiving, maintaining, and using time intervals in working memory are crucial for animals to anticipate or act correctly at the right time in the ever-changing world. Here, we systematically study the underlying neural mechanisms by training recurrent neural networks to perform temporal tasks or complex tasks in combination with spatial information processing and decision making. We found that neural networks perceive time through state evolution along stereotypical trajectories and produce time intervals by scaling evolution speed. Temporal and nontemporal information is jointly coded in a way that facilitates decoding generalizability. We also provided potential sources for the temporal signals observed in nontiming tasks. Our study revealed the computational principles of a number of experimental phenomena and provided several predictions. To maximize future rewards in this ever-changing world, animals must be able to discover the temporal structure of stimuli and then anticipate or act correctly at the right time. How do animals perceive, maintain, and use time intervals ranging from hundreds of milliseconds to multiseconds in working memory? How is temporal information processed concurrently with spatial information and decision making? Why are there strong neuronal temporal signals in tasks in which temporal information is not required? A systematic understanding of the underlying neural mechanisms is still lacking. Here, we addressed these problems using supervised training of recurrent neural network models. We revealed that neural networks perceive elapsed time through state evolution along stereotypical trajectory, maintain time intervals in working memory in the monotonic increase or decrease of the firing rates of interval-tuned neurons, and compare or produce time intervals by scaling state evolution speed. Temporal and nontemporal information is coded in subspaces orthogonal with each other, and the state trajectories with time at different nontemporal information are quasiparallel and isomorphic. Such coding geometry facilitates the decoding generalizability of temporal and nontemporal information across each other. The network structure exhibits multiple feedforward sequences that mutually excite or inhibit depending on whether their preferences of nontemporal information are similar or not. We identified four factors that facilitate strong temporal signals in nontiming tasks, including the anticipation of coming events. Our work discloses fundamental computational principles of temporal processing, and it is supported by and gives predictions to a number of experimental phenomena.
Collapse
|
77
|
Agostino PV, Lusk NA, Meck WH, Golombek DA, Peryer G. Daily and seasonal fluctuation in Tawny Owl vocalization timing. PLoS One 2020; 15:e0231591. [PMID: 32294116 PMCID: PMC7159226 DOI: 10.1371/journal.pone.0231591] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Accepted: 03/26/2020] [Indexed: 12/01/2022] Open
Abstract
A robust adaptation to environmental changes is vital for survival. Almost all living organisms have a circadian timing system that allows adjusting their physiology to cyclic variations in the surrounding environment. Among vertebrates, many birds are also seasonal species, adapting their physiology to annual changes in photoperiod (amplitude, length and duration). Tawny Owls (Strix aluco) are nocturnal birds of prey that use vocalization as their principal mechanism of communication. Diurnal and seasonal changes in vocalization have been described for several vocal species, including songbirds. Comparable studies are lacking for owls. In the present work, we show that male Tawny Owls present a periodic vocalization pattern in the seconds-to-minutes range that is subject to both daily (early vs. late night) and seasonal (spring vs. summer) rhythmicity. These novel theory-generating findings appear to extend the role of the circadian system in regulating temporal events in the seconds-to-minutes range to other species.
Collapse
Affiliation(s)
- Patricia V. Agostino
- Department of Science and Technology, National University of Quilmes/CONICET, Buenos Aires, Argentina
| | - Nicholas A. Lusk
- Department of Psychology and Neuroscience, Duke University, Durham, NC, United States of America
| | - Warren H. Meck
- Department of Psychology and Neuroscience, Duke University, Durham, NC, United States of America
| | - Diego A. Golombek
- Department of Science and Technology, National University of Quilmes/CONICET, Buenos Aires, Argentina
| | - Guy Peryer
- School of Health Sciences, University of East Anglia, Norwich, England, United Kingdom
- * E-mail:
| |
Collapse
|
78
|
Panfil K, Bailey C, Davis I, Mains A, Kirkpatrick K. A time-based intervention to treat impulsivity in male and female rats. Behav Brain Res 2020; 379:112316. [PMID: 31655096 DOI: 10.1016/j.bbr.2019.112316] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 09/27/2019] [Accepted: 10/18/2019] [Indexed: 01/19/2023]
Abstract
Time-based interventions have emerged as promising treatments for disorders associated with impulsivity. These interventions can be implemented to test their efficacy in preventing or treating impulsive choice in animal models of diseases related to impulsivity such as drug abuse. Impulsive choice is typically defined as choosing a smaller-sooner (SS) reward over a larger-later (LL) reward when the LL is relatively more optimal. Previous research has shown that these interventions promote LL choices in males and females, but sex differences have not been assessed. Because sex differences can complicate the application of therapies, it is critical to compare the effects of the intervention in males and females. The intervention group received exposure to 10-s and 30-s interval schedules, and the control rats received no delay to reward. Different impulsive choice tasks were used to assess the intervention efficacy across the two experiments. Following the intervention, reductions in impulsive choice were found in male and female rats, but the degree of improvement was inconsistent across sex and task. Bayesian analyses that combined the results revealed robust evidence of an overall intervention effect with the intervention group showing greater self-control, but there was no evidence for the intervention affecting males and females differently. Taken together, these results suggest that time-based interventions are effective tools to treat impulsivity in both males and females and offer promising translational capability to humans.
Collapse
Affiliation(s)
- Kelsey Panfil
- Department of Psychological Sciences, Kansas State University, Manhattan, KS, 66506, United States.
| | - Carrie Bailey
- Department of Psychological Sciences, Kansas State University, Manhattan, KS, 66506, United States; University of Missouri, KS, United States
| | - Ian Davis
- Department of Psychology, University of Maryland, College Park, MD, 20742, United States
| | - Anne Mains
- Department of Psychological Sciences, Kansas State University, Manhattan, KS, 66506, United States
| | - Kimberly Kirkpatrick
- Department of Psychological Sciences, Kansas State University, Manhattan, KS, 66506, United States
| |
Collapse
|
79
|
Yousefzadeh SA, Hesslow G, Shumyatsky GP, Meck WH. Internal Clocks, mGluR7 and Microtubules: A Primer for the Molecular Encoding of Target Durations in Cerebellar Purkinje Cells and Striatal Medium Spiny Neurons. Front Mol Neurosci 2020; 12:321. [PMID: 31998074 PMCID: PMC6965020 DOI: 10.3389/fnmol.2019.00321] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Accepted: 12/16/2019] [Indexed: 12/16/2022] Open
Abstract
The majority of studies in the field of timing and time perception have generally focused on sub- and supra-second time scales, specific behavioral processes, and/or discrete neuronal circuits. In an attempt to find common elements of interval timing from a broader perspective, we review the literature and highlight the need for cell and molecular studies that can delineate the neural mechanisms underlying temporal processing. Moreover, given the recent attention to the function of microtubule proteins and their potential contributions to learning and memory consolidation/re-consolidation, we propose that these proteins play key roles in coding temporal information in cerebellar Purkinje cells (PCs) and striatal medium spiny neurons (MSNs). The presence of microtubules at relevant neuronal sites, as well as their adaptability, dynamic structure, and longevity, makes them a suitable candidate for neural plasticity at both intra- and inter-cellular levels. As a consequence, microtubules appear capable of maintaining a temporal code or engram and thereby regulate the firing patterns of PCs and MSNs known to be involved in interval timing. This proposed mechanism would control the storage of temporal information triggered by postsynaptic activation of mGluR7. This, in turn, leads to alterations in microtubule dynamics through a "read-write" memory process involving alterations in microtubule dynamics and their hexagonal lattice structures involved in the molecular basis of temporal memory.
Collapse
Affiliation(s)
- S. Aryana Yousefzadeh
- Department of Psychology and Neuroscience, Duke University, Durham, NC, United States
| | - Germund Hesslow
- Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Gleb P. Shumyatsky
- Department of Genetics, Rutgers University, Piscataway, NJ, United States
| | - Warren H. Meck
- Department of Psychology and Neuroscience, Duke University, Durham, NC, United States
| |
Collapse
|
80
|
Lee ACH, Thavabalasingam S, Alushaj D, Çavdaroğlu B, Ito R. The hippocampus contributes to temporal duration memory in the context of event sequences: A cross-species perspective. Neuropsychologia 2019; 137:107300. [PMID: 31836410 DOI: 10.1016/j.neuropsychologia.2019.107300] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 12/04/2019] [Accepted: 12/06/2019] [Indexed: 01/04/2023]
Abstract
Although a large body of research has implicated the hippocampus in the processing of memory for temporal duration, there is an exigent degree of inconsistency across studies that obfuscates the precise contributions of this structure. To shed light on this issue, the present review article surveys both historical and recent cross-species evidence emanating from a wide variety of experimental paradigms, identifying areas of convergence and divergence. We suggest that while factors such as time-scale (e.g. the length of durations involved) and the nature of memory processing (e.g. prospective vs. retrospective memory) are very helpful in the interpretation of existing data, an additional important consideration is the context in which the duration information is experienced and processed, with the hippocampus being preferentially involved in memory for durations that are embedded within a sequence of events. We consider the mechanisms that may underpin temporal duration memory and how the same mechanisms may contribute to memory for other aspects of event sequences such as temporal order.
Collapse
Affiliation(s)
- Andy C H Lee
- Department of Psychology (Scarborough), University of Toronto, Toronto, M1C 1A4, Canada; Rotman Research Institute, Baycrest Centre, Toronto, M6A 2E1, Canada.
| | | | - Denada Alushaj
- Department of Psychology (Scarborough), University of Toronto, Toronto, M1C 1A4, Canada
| | - Bilgehan Çavdaroğlu
- Department of Psychology (Scarborough), University of Toronto, Toronto, M1C 1A4, Canada
| | - Rutsuko Ito
- Department of Psychology (Scarborough), University of Toronto, Toronto, M1C 1A4, Canada; Department of Cell and Systems Biology, University of Toronto, M5S 3G5, Canada
| |
Collapse
|
81
|
Vigran HJ, Kapral AG, Tytell ED, Kao MH. Manipulating the perception of time affects voluntary breath-holding duration. Physiol Rep 2019; 7:e14309. [PMID: 31833235 PMCID: PMC6908740 DOI: 10.14814/phy2.14309] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
In this study, we examined how time perception, a psychological factor, impacts the physiological response to prolonged, voluntary breath holding. Participants (n = 26) held their breath while watching a distorted timer that made it appear as though time was moving up to 40% faster or slower than real time. We monitored total breath-holding duration under different time manipulation conditions as well as the onset of involuntary breathing movements. This physiological breaking point marks the end of the "easy-going" phase of apnea and the start of the "struggle" phase. Based on prior work showing that psychological factors, such as attention and motivation, can influence the length of the struggle phase, we hypothesized that manipulating the perception of time would affect overall breath-holding duration by changing the duration of the struggle phase, but not the easy-going phase. We found that time perception can be successfully manipulated using a distorted timekeeper, and total breath-holding duration correlated with perceived time, not actual time. Contrary to our hypothesis, this effect was attributable to changes in the onset of the physiological breaking point, not changes in the length of the struggle phase. These results demonstrate that unconscious psychological factors and cognitive processes can significantly influence fundamental physiological processes.
Collapse
Affiliation(s)
| | - Anna G. Kapral
- Department of BiologyTufts UniversityMedfordMassachusetts
| | - Eric D. Tytell
- Department of BiologyTufts UniversityMedfordMassachusetts
| | - Mimi H. Kao
- Department of BiologyTufts UniversityMedfordMassachusetts
| |
Collapse
|
82
|
van Rijn H. Towards Ecologically Valid Interval Timing. Trends Cogn Sci 2019; 22:850-852. [PMID: 30266145 DOI: 10.1016/j.tics.2018.07.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 07/13/2018] [Accepted: 07/13/2018] [Indexed: 11/29/2022]
Abstract
Research on interval timing has provided significant insight into how intervals are perceived and produced in well-controlled laboratory settings. However, for timing theories to explain real-world performance, it is imperative that they provide better quantitative predictions and be applicable to timing tasks that are relevant in ecologically valid settings.
Collapse
Affiliation(s)
- Hedderik van Rijn
- Experimental Psychology, University of Groningen, Groningen, The Netherlands.
| |
Collapse
|
83
|
Petter EA, Gershman SJ, Meck WH. Integrating Models of Interval Timing and Reinforcement Learning. Trends Cogn Sci 2019; 22:911-922. [PMID: 30266150 DOI: 10.1016/j.tics.2018.08.004] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Revised: 07/23/2018] [Accepted: 08/13/2018] [Indexed: 10/28/2022]
Abstract
We present an integrated view of interval timing and reinforcement learning (RL) in the brain. The computational goal of RL is to maximize future rewards, and this depends crucially on a representation of time. Different RL systems in the brain process time in distinct ways. A model-based system learns 'what happens when', employing this internal model to generate action plans, while a model-free system learns to predict reward directly from a set of temporal basis functions. We describe how these systems are subserved by a computational division of labor between several brain regions, with a focus on the basal ganglia and the hippocampus, as well as how these regions are influenced by the neuromodulator dopamine.
Collapse
Affiliation(s)
- Elijah A Petter
- Department of Psychology and Neuroscience, Duke University, Durham, NC, USA
| | - Samuel J Gershman
- Department of Psychology and Center for Brain Science, Harvard University, Cambridge, MA, USA
| | - Warren H Meck
- Department of Psychology and Neuroscience, Duke University, Durham, NC, USA.
| |
Collapse
|
84
|
Kale EH, Üstün S, Çiçek M. Amygdala-prefrontal cortex connectivity increased during face discrimination but not time perception. Eur J Neurosci 2019; 50:3873-3888. [PMID: 31376287 DOI: 10.1111/ejn.14537] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Revised: 07/24/2019] [Accepted: 07/29/2019] [Indexed: 01/01/2023]
Abstract
Time sensitivity is affected by emotional stimuli such as fearful faces. The effect of threatening stimuli on time perception depends on numerous factors, including task type and duration range. We applied a two-interval forced-choice task using face stimuli to healthy volunteers to evaluate time perception and emotion interaction using functional magnetic resonance imaging. We conducted finite impulse response analysis to examine time series for the significantly activated brain areas and psycho-physical interaction to investigate the connectivity between selected regions. Time perception engaged a right-lateralised frontoparietal network, while a face discrimination task activated the amygdala and fusiform face area (FFA). No voxels were active with regard to the effect of expression (fearful versus neutral). In parallel with this, our behavioural results showed that attending to the fearful faces did not cause duration overestimation. Finally, connectivity of the amygdala and FFA to the middle frontal gyrus increased during the face processing condition compared to the timing task. Overall, our results suggest that the prefrontal-amygdala connectivity might be required for the emotional processing of facial stimuli. On the other hand, attentional load, task type and task difficulty are discussed as possible factors that influence the effects of emotion on time perception.
Collapse
Affiliation(s)
- Emre H Kale
- Brain Research Centre, Ankara University, Ankara, Turkey.,Department of Interdisciplinary Neuroscience, Health Science Institute, Ankara University, Ankara, Turkey
| | - Sertaç Üstün
- Department of Physiology, School of Medicine, Ankara University, Ankara, Turkey
| | - Metehan Çiçek
- Brain Research Centre, Ankara University, Ankara, Turkey.,Department of Interdisciplinary Neuroscience, Health Science Institute, Ankara University, Ankara, Turkey.,Department of Physiology, School of Medicine, Ankara University, Ankara, Turkey
| |
Collapse
|
85
|
Abstract
Prepotent response inhibition and temporal perception abilities were explored in a sample of individuals with cerebral palsy relative to typically developing peers. The extent to which inhibitory control difficulties might affect temporal processing was also investigated. For this purpose, two inhibitory control tasks and two duration estimation tasks were given to the groups of cerebral palsy and typically developing children. Results showed inhibition and temporal perception problems in the group with cerebral palsy. A relationship was found between inhibition and temporal estimation performances, which indicates that inhibitory control contributes, at least partially, to acquisition of the temporal processing ability.
Collapse
Affiliation(s)
- Mercedes Cabezas
- BOBATH Foundation.,National Distance Education University (UNED)
| | | |
Collapse
|
86
|
Tobia V, Bonifacci P, Bernabini L, Marzocchi GM. Teachers, not parents, are able to predict time processing skills in preschoolers. BRITISH JOURNAL OF DEVELOPMENTAL PSYCHOLOGY 2019; 37:519-534. [PMID: 31264234 DOI: 10.1111/bjdp.12294] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Revised: 04/30/2019] [Indexed: 11/30/2022]
Abstract
Time processing difficulties are associated with developmental disorders. Questionnaires for assessing children's sense of time are available from primary school, but we lack valid proxy-report tools for younger children, who are not able to complete self-reports. This study aimed to assess the criterion validity of a questionnaire investigating preschoolers' sense of time from the points of view of their parents and teachers. One hundred seventy preschoolers were included in the sample. Their parents and teachers completed the Sense of Time Questionnaire, and the children were administered time reproduction and time discrimination tasks, both concurrently and 7 months later. The assessment of preschoolers' sense of time reported by teachers, but not by parents, predicted the children's time processing skills both concurrently and longitudinally. The teacher version of the Sense of Time Questionnaire constitutes a valid instrument for assessing and predicting preschoolers' time processing skills and can be used for clinical and research purposes STATEMENT OF CONTRIBUTION: What is already known on this subject? Time processing difficulties are associated with developmental disorders such as ADHD and dyscalculia. Early assessment of time processing skills is important for clinical (e.g., screening) and research purposes. We do not have valid questionnaires for assessing sense of time in young children. What the present study adds? The sense of time ability reported by teachers predicts preschoolers' time processing skills. The sense of time ability reported by parents does not predicts preschoolers' time processing skills. The Sense of Time Questionnaire is a valid instrument for investigating time processing skills of 4-6 aged children.
Collapse
Affiliation(s)
- Valentina Tobia
- Department of Psychology, Vita-Salute San Raffaele University, Milan, Italy
| | | | | | | |
Collapse
|
87
|
Efrat-Treister D, Cheshin A, Harari D, Rafaeli A, Agasi S, Moriah H, Admi H. How psychology might alleviate violence in queues: Perceived future wait and perceived load moderate violence against service providers. PLoS One 2019; 14:e0218184. [PMID: 31233514 PMCID: PMC6590795 DOI: 10.1371/journal.pone.0218184] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2018] [Accepted: 05/28/2019] [Indexed: 11/18/2022] Open
Abstract
INTRODUCTION Queues are inherent to service encounters, as it is not always possible to provide service to all clients at the exact moment they request service. Queues involve waiting for a service in a specific place that might also be crowded, they obstruct the client's' goal of receiving service, and at times lead clients to mistreat service providers and in extreme cases even attack them violently. We show, in a hospital setting, that perceived predicted future wait and load can buffer the causes of violence towards service staff. METHODS We combine objective data on crowdedness, reports of violence, and durations of time people waited, with psychological measures of perceived load and perceived future wait, collected from 226 people in the Emergency Department (ED) of a large hospital. Visitors to the ED were recruited as they waited for service. They indicated their perceived load in the ED and their perceived remaining wait for service. This data was then triangulated with objective operational data regarding the actual number of people waiting for service (i.e., crowdedness) and objective data regarding staff calls to security to stop violent accounts. RESULTS We find that with increased crowdedness, there are more calls to security reporting violence. However, this relationship is moderated by two factors: when people perceive the future wait to be short and when they perceive the load on the system to be high. Moreover, a three-way interaction shows that crowdedness is associated with more incidents of violence, however high perceived load and low perceived future wait are associated with fewer violent incidents. CONCLUSIONS This paper demonstrates the relationship between crowded queues and violence towards service staff, and suggests two psychological mechanisms for buffering such violence: reducing perceived future wait and elevating perceived load.
Collapse
Affiliation(s)
- Dorit Efrat-Treister
- Department of Management, Ben-Gurion University of the Negev, Beersheba, Israel
- * E-mail:
| | - Arik Cheshin
- Department of Human Services, University of Haifa, Haifa, Israel
| | - Dana Harari
- Scheller College of Business, Georgia Institute of Technology, Atlanta, Georgia, United States of America
| | - Anat Rafaeli
- Faculty of Industrial Engineering and Management, Technion-Israel Institute of Technology, Haifa, Israel
| | - Shira Agasi
- Faculty of Industrial Engineering and Management, Technion-Israel Institute of Technology, Haifa, Israel
| | - Hadar Moriah
- Faculty of Industrial Engineering and Management, Technion-Israel Institute of Technology, Haifa, Israel
| | - Hanna Admi
- Department of Nursing, The Max Stern Yezreel Valley College, Yezreel Valley, Israel
| |
Collapse
|
88
|
Symbolism overshadows the effect of physical size in supra-second temporal illusions. Atten Percept Psychophys 2019; 81:2902-2916. [DOI: 10.3758/s13414-019-01748-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
89
|
Shapiro Z, Huang-Pollock C. A diffusion-model analysis of timing deficits among children with ADHD. Neuropsychology 2019; 33:883-892. [PMID: 31094550 DOI: 10.1037/neu0000562] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
OBJECTIVE Deficits in the ability to perceive time have been proposed as an etiologic mechanism in the development of the cognitive and behavioral characteristics associated with ADHD. However, previous studies testing the presence of timing deficits have produced idiosyncratic results. This is in large part due to the underutilization of insights from basic timing research, and from the inherent difficulty that arises when a single index of performance (i.e., reaction time [RT] or accuracy) is used to index the health of what is essentially a multiple-component process. The current article utilizes a diffusion model approach to isolate the component processes involved in timing (i.e., internal clock speed, decision-making speed, speed/accuracy trade-off strategies, and nondecision time) using a well-validated timing task. METHOD Fifty children with ADHD and 32 non-ADHD controls aged 8-12 completed a temporal bisection procedure. RESULTS Diffusion model parameters indicated that both the internal clock and decision-making speeds were slower among children with ADHD. However, the strength of evidence for slowed decision making far outweighed evidence for a slower internal clock. CONCLUSIONS Slower evidence accumulation during decision making is domain-general deficit in ADHD. Such slowing is consistent with adaptive-gain theories, which posit that a suboptimal ratio of neural signal-to-noise is characteristic of children with ADHD. (PsycINFO Database Record (c) 2019 APA, all rights reserved).
Collapse
|
90
|
Mikhael JG, Gershman SJ. Adapting the flow of time with dopamine. J Neurophysiol 2019; 121:1748-1760. [PMID: 30864882 PMCID: PMC6589719 DOI: 10.1152/jn.00817.2018] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Revised: 02/04/2019] [Accepted: 02/20/2019] [Indexed: 01/25/2023] Open
Abstract
The modulation of interval timing by dopamine (DA) has been well established over decades of research. The nature of this modulation, however, has remained controversial: Although the pharmacological evidence has largely suggested that time intervals are overestimated with higher DA levels, more recent optogenetic work has shown the opposite effect. In addition, a large body of work has asserted DA's role as a "reward prediction error" (RPE), or a teaching signal that allows the basal ganglia to learn to predict future rewards in reinforcement learning tasks. Whether these two seemingly disparate accounts of DA may be related has remained an open question. By taking a reinforcement learning-based approach to interval timing, we show here that the RPE interpretation of DA naturally extends to its role as a modulator of timekeeping and furthermore that this view reconciles the seemingly conflicting observations. We derive a biologically plausible, DA-dependent plasticity rule that can modulate the rate of timekeeping in either direction and whose effect depends on the timing of the DA signal itself. This bidirectional update rule can account for the results from pharmacology and optogenetics as well as the behavioral effects of reward rate on interval timing and the temporal selectivity of striatal neurons. Hence, by adopting a single RPE interpretation of DA, our results take a step toward unifying computational theories of reinforcement learning and interval timing. NEW & NOTEWORTHY How does dopamine (DA) influence interval timing? A large body of pharmacological evidence has suggested that DA accelerates timekeeping mechanisms. However, recent optogenetic work has shown exactly the opposite effect. In this article, we relate DA's role in timekeeping to its most established role, as a critical component of reinforcement learning. This allows us to derive a neurobiologically plausible framework that reconciles a large body of DA's temporal effects, including pharmacological, behavioral, electrophysiological, and optogenetic.
Collapse
Affiliation(s)
- John G Mikhael
- Program in Neuroscience and MD-PhD Program, Harvard Medical School , Boston, Massachusetts
| | - Samuel J Gershman
- Center for Brain Science and Department of Psychology, Harvard University , Cambridge, Massachusetts
| |
Collapse
|
91
|
Gür E, Fertan E, Alkins K, Wong AA, Brown RE, Balcı F. Interval timing is disrupted in female 5xFAD mice: An indication of altered memory processes. J Neurosci Res 2019; 97:817-827. [PMID: 30973189 DOI: 10.1002/jnr.24418] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Revised: 03/08/2019] [Accepted: 03/08/2019] [Indexed: 12/23/2022]
Abstract
Temporal information processing in the seconds-to-minutes range is disrupted in patients with Alzheimer's disease (AD). In this study, we investigated the timing behavior of the 5xFAD mouse model of AD in the peak interval (PI) procedure. Nine-month-old female mice were trained with sucrose solution reinforcement for their first response after a fixed-interval (FI) and tested in the inter-mixed non-reinforced PI trials that lasted longer than FI. Timing performance indices were estimated from steady-state timed anticipatory nose-poking responses in the PI trials. We found that the time of maximal reward expectancy (peak time) of the 5xFAD mice was significantly earlier than that of the wild-type (WT) controls with no differences in other indices of timing performance. These behavioral differences corroborate the findings of previous studies on the disruption of temporal associative memory abilities of 5xFAD mice and can be accounted for by the scalar timing theory based on altered long-term memory consolidation of temporal information in the 5xFAD mice. This is the first study to directly show an interval timing phenotype in a genetic mouse model of AD.
Collapse
Affiliation(s)
- Ezgi Gür
- Timing and Decision Making Laboratory, Psychology Department, Koç University, Istanbul, Turkey.,Research Center for Translational Medicine, Koç University, Istanbul, Turkey
| | - Emre Fertan
- Department of Psychology and Neuroscience, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Kindree Alkins
- Department of Psychology and Neuroscience, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Aimée A Wong
- Department of Psychology and Neuroscience, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Richard E Brown
- Department of Psychology and Neuroscience, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Fuat Balcı
- Timing and Decision Making Laboratory, Psychology Department, Koç University, Istanbul, Turkey.,Research Center for Translational Medicine, Koç University, Istanbul, Turkey
| |
Collapse
|
92
|
Gámez J, Mendoza G, Prado L, Betancourt A, Merchant H. The amplitude in periodic neural state trajectories underlies the tempo of rhythmic tapping. PLoS Biol 2019; 17:e3000054. [PMID: 30958818 PMCID: PMC6472824 DOI: 10.1371/journal.pbio.3000054] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Revised: 04/18/2019] [Accepted: 03/19/2019] [Indexed: 01/03/2023] Open
Abstract
Our motor commands can be exquisitely timed according to the demands of the environment, and the ability to generate rhythms of different tempos is a hallmark of musical cognition. Yet, the neuronal underpinnings behind rhythmic tapping remain elusive. Here, we found that the activity of hundreds of primate medial premotor cortices (MPCs; pre-supplementary motor area [preSMA] and supplementary motor area [SMA]) neurons show a strong periodic pattern that becomes evident when their responses are projected into a state space using dimensionality reduction analysis. We show that different tapping tempos are encoded by circular trajectories that travelled at a constant speed but with different radii, and that this neuronal code is highly resilient to the number of participating neurons. Crucially, the changes in the amplitude of the oscillatory dynamics in neuronal state space are a signature of duration encoding during rhythmic timing, regardless of whether it is guided by an external metronome or is internally controlled and is not the result of repetitive motor commands. This dynamic state signal predicted the duration of the rhythmically produced intervals on a trial-by-trial basis. Furthermore, the increase in variability of the neural trajectories accounted for the scalar property, a hallmark feature of temporal processing across tasks and species. Finally, we found that the interval-dependent increments in the radius of periodic neural trajectories are the result of a larger number of neurons engaged in the production of longer intervals. Our results support the notion that rhythmic timing during tapping behaviors is encoded in the radial curvature of periodic MPC neural population trajectories.
Collapse
Affiliation(s)
- Jorge Gámez
- Instituto de Neurobiología, Universidad Nacional Autónoma de México, Campus Juriquilla, Querétaro, México
| | - Germán Mendoza
- Instituto de Neurobiología, Universidad Nacional Autónoma de México, Campus Juriquilla, Querétaro, México
| | - Luis Prado
- Instituto de Neurobiología, Universidad Nacional Autónoma de México, Campus Juriquilla, Querétaro, México
| | - Abraham Betancourt
- Instituto de Neurobiología, Universidad Nacional Autónoma de México, Campus Juriquilla, Querétaro, México
| | - Hugo Merchant
- Instituto de Neurobiología, Universidad Nacional Autónoma de México, Campus Juriquilla, Querétaro, México
- * E-mail:
| |
Collapse
|
93
|
Bareš M, Apps R, Avanzino L, Breska A, D'Angelo E, Filip P, Gerwig M, Ivry RB, Lawrenson CL, Louis ED, Lusk NA, Manto M, Meck WH, Mitoma H, Petter EA. Consensus paper: Decoding the Contributions of the Cerebellum as a Time Machine. From Neurons to Clinical Applications. CEREBELLUM (LONDON, ENGLAND) 2019; 18:266-286. [PMID: 30259343 DOI: 10.1007/s12311-018-0979-5] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Time perception is an essential element of conscious and subconscious experience, coordinating our perception and interaction with the surrounding environment. In recent years, major technological advances in the field of neuroscience have helped foster new insights into the processing of temporal information, including extending our knowledge of the role of the cerebellum as one of the key nodes in the brain for this function. This consensus paper provides a state-of-the-art picture from the experts in the field of the cerebellar research on a variety of crucial issues related to temporal processing, drawing on recent anatomical, neurophysiological, behavioral, and clinical research.The cerebellar granular layer appears especially well-suited for timing operations required to confer millisecond precision for cerebellar computations. This may be most evident in the manner the cerebellum controls the duration of the timing of agonist-antagonist EMG bursts associated with fast goal-directed voluntary movements. In concert with adaptive processes, interactions within the cerebellar cortex are sufficient to support sub-second timing. However, supra-second timing seems to require cortical and basal ganglia networks, perhaps operating in concert with cerebellum. Additionally, sensory information such as an unexpected stimulus can be forwarded to the cerebellum via the climbing fiber system, providing a temporally constrained mechanism to adjust ongoing behavior and modify future processing. Patients with cerebellar disorders exhibit impairments on a range of tasks that require precise timing, and recent evidence suggest that timing problems observed in other neurological conditions such as Parkinson's disease, essential tremor, and dystonia may reflect disrupted interactions between the basal ganglia and cerebellum.The complex concepts emerging from this consensus paper should provide a foundation for further discussion, helping identify basic research questions required to understand how the brain represents and utilizes time, as well as delineating ways in which this knowledge can help improve the lives of those with neurological conditions that disrupt this most elemental sense. The panel of experts agrees that timing control in the brain is a complex concept in whom cerebellar circuitry is deeply involved. The concept of a timing machine has now expanded to clinical disorders.
Collapse
Affiliation(s)
- Martin Bareš
- First Department of Neurology, St. Anne's University Hospital and Faculty of Medicine, Masaryk University, Brno, Czech Republic.
- Department of Neurology, School of Medicine, University of Minnesota, Minneapolis, USA.
| | - Richard Apps
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, UK
| | - Laura Avanzino
- Department of Experimental Medicine, Section of Human Physiology and Centro Polifunzionale di Scienze Motorie, University of Genoa, Genoa, Italy
- Centre for Parkinson's Disease and Movement Disorders, Ospedale Policlinico San Martino, Genoa, Italy
| | - Assaf Breska
- Department of Psychology and Helen Wills Neuroscience Institute, University of California, Berkeley, USA
| | - Egidio D'Angelo
- Neurophysiology Unit, Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
- Brain Connectivity Center, Fondazione Istituto Neurologico Nazionale Casimiro Mondino (IRCCS), Pavia, Italy
| | - Pavel Filip
- First Department of Neurology, St. Anne's University Hospital and Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Marcus Gerwig
- Department of Neurology, University of Duisburg-Essen, Duisburg, Germany
| | - Richard B Ivry
- Department of Psychology and Helen Wills Neuroscience Institute, University of California, Berkeley, USA
| | - Charlotte L Lawrenson
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, UK
| | - Elan D Louis
- Department of Neurology, Yale School of Medicine, Yale University, New Haven, CT, USA
- Department of Chronic Disease Epidemiology, Yale School of Public Health, Yale University, New Haven, CT, USA
| | - Nicholas A Lusk
- Department of Psychology and Neuroscience, Duke University, Durham, NC, USA
| | - Mario Manto
- Department of Neurology, CHU-Charleroi, Charleroi, Belgium -Service des Neurosciences, UMons, Mons, Belgium
| | - Warren H Meck
- Department of Psychology and Neuroscience, Duke University, Durham, NC, USA
| | - Hiroshi Mitoma
- Medical Education Promotion Center, Tokyo Medical University, Tokyo, Japan
| | - Elijah A Petter
- Department of Psychology and Neuroscience, Duke University, Durham, NC, USA
| |
Collapse
|
94
|
Yanakieva S, Polychroni N, Family N, Williams LTJ, Luke DP, Terhune DB. The effects of microdose LSD on time perception: a randomised, double-blind, placebo-controlled trial. Psychopharmacology (Berl) 2019; 236:1159-1170. [PMID: 30478716 PMCID: PMC6591199 DOI: 10.1007/s00213-018-5119-x] [Citation(s) in RCA: 80] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Accepted: 11/09/2018] [Indexed: 12/11/2022]
Abstract
RATIONALE Previous research demonstrating that lysergic acid diethylamide (LSD) produces alterations in time perception has implications for its impact on conscious states and a range of psychological functions that necessitate precise interval timing. However, interpretation of this research is hindered by methodological limitations and an inability to dissociate direct neurochemical effects on interval timing from indirect effects attributable to altered states of consciousness. METHODS We conducted a randomised, double-blind, placebo-controlled study contrasting oral administration of placebo with three microdoses of LSD (5, 10, and 20 μg) in older adults. Subjective drug effects were regularly recorded and interval timing was assessed using a temporal reproduction task spanning subsecond and suprasecond intervals. RESULTS LSD conditions were not associated with any robust changes in self-report indices of perception, mentation, or concentration. LSD reliably produced over-reproduction of temporal intervals of 2000 ms and longer with these effects most pronounced in the 10 μg dose condition. Hierarchical regression analyses indicated that LSD-mediated over-reproduction was independent of marginal differences in self-reported drug effects across conditions. CONCLUSIONS These results suggest that microdose LSD produces temporal dilation of suprasecond intervals in the absence of subjective alterations of consciousness.
Collapse
Affiliation(s)
- Steliana Yanakieva
- Department of Psychology, Goldsmiths, University of London, 8 Lewisham Way, New Cross, London, SE14 6NW, UK
| | - Naya Polychroni
- Department of Psychology, Goldsmiths, University of London, 8 Lewisham Way, New Cross, London, SE14 6NW, UK
| | | | - Luke T J Williams
- Eleusis Pharmaceuticals Ltd, London, UK
- Centre for Psychiatry, Division of Brain Sciences, Imperial College London, London, UK
| | - David P Luke
- Department of Psychology, Social Work, & Counselling, University of Greenwich, London, UK
| | - Devin B Terhune
- Department of Psychology, Goldsmiths, University of London, 8 Lewisham Way, New Cross, London, SE14 6NW, UK.
- Department of Experimental Psychology, University of Oxford, Oxford, UK.
| |
Collapse
|
95
|
Hansen EA, Bak S, Knudsen L, Seiferheld BE, Stevenson AJT, Emanuelsen A. Contralateral Transfer of the Phenomenon of Repeated Bout Rate Enhancement in Unilateral Index Finger Tapping. J Mot Behav 2019; 52:89-96. [PMID: 30924400 DOI: 10.1080/00222895.2019.1592101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
These hypotheses were tested: (1) Freely chosen frequency in unilateral index finger tapping is correlated between the two index fingers, and (2) A 3-min bout of unilateral index finger tapping followed by 10 min rest results in an increase of the freely chosen tapping frequency performed by the contralateral index finger in a second bout. Thirty-two adults participated. Freely chosen tapping frequencies from first bouts were 167.2 ± 79.0 and 161.5 ± 69.4 taps/min for the dominant and non-dominant hand, respectively (p=.434). These variables correlated (R=.86, p<.001). When bout one and two were performed with the dominant and non-dominant hand, respectively, the frequency increased by 8.1%±17.2% in bout two (p=.011). In opposite order, the frequency increased by 14.1%±17.5% (p<.001), which was not different from the ∼8% (p=.157).
Collapse
Affiliation(s)
- Ernst A Hansen
- Sport Sciences, Department of Health Science and Technology, Aalborg University, Aalborg, Denmark
| | - Søren Bak
- Sport Sciences, Department of Health Science and Technology, Aalborg University, Aalborg, Denmark
| | - Lasse Knudsen
- Sport Sciences, Department of Health Science and Technology, Aalborg University, Aalborg, Denmark
| | - Bo E Seiferheld
- Sport Sciences, Department of Health Science and Technology, Aalborg University, Aalborg, Denmark
| | - Andrew J T Stevenson
- Sport Sciences, Department of Health Science and Technology, Aalborg University, Aalborg, Denmark
| | - Anders Emanuelsen
- Sport Sciences, Department of Health Science and Technology, Aalborg University, Aalborg, Denmark
| |
Collapse
|
96
|
Marinho V, Pinto GR, Bandeira J, Oliveira T, Carvalho V, Rocha K, Magalhães F, de Sousa VG, Bastos VH, Gupta D, Orsini M, Teixeira S. Impaired decision-making and time perception in individuals with stroke: Behavioral and neural correlates. Rev Neurol (Paris) 2019; 175:367-376. [PMID: 30922589 DOI: 10.1016/j.neurol.2018.10.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Revised: 10/09/2018] [Accepted: 10/09/2018] [Indexed: 01/03/2023]
Abstract
Several studies have demonstrated that stroke subjects present impairment of functions related to decision-making and timing, involving the information processing in the neural circuits of the cerebellum in association with the prefrontal cortex. This review is aimed to identify the gaps, and demonstrate a better understanding of decision-making and timing functions in the patients with stroke. Electronic literature database was searched and the findings of relevant studies were used to explore the mechanisms of decision-making and timing in patients with stroke, as well as the circuit connections in timing mediated by prefrontal cortex and cerebellum. A literature review was conducted with 65 studies that synthesized findings on decision-making and time perception in individuals with stroke. Types of neurobiological modalities in this study included: Relationships among decision-making, time perception, related cognitive aspects (such as discrimination tasks, verbal estimation, bisection tasks, time production and motor reproduction), and motor control. We demonstrate that the timing processes are important for the performance in cognitive tasks and that the cerebellum and prefrontal cortex are involved in decision-making and time perception. In the context, the decision-making is impaired in stroke patients has a great impact on executive functions, and this seems to be important in determining neurobiological aspects relevant to the time interval interpretation.
Collapse
Affiliation(s)
- V Marinho
- Neuro-innovation Technology & Brain Mapping Laboratory, Federal University of Piauí, Parnaíba, Brazil; Genetics and Molecular Biology Laboratory, Federal University of Piauí, Parnaíba-PI, Brazil; The Northeast Biotechnology Network, Federal University of Piauí, Teresina-PI, Brazil.
| | - G R Pinto
- Genetics and Molecular Biology Laboratory, Federal University of Piauí, Parnaíba-PI, Brazil; The Northeast Biotechnology Network, Federal University of Piauí, Teresina-PI, Brazil
| | - J Bandeira
- Teresina Unified Education Center - CEUT, Teresina-PI, Brazil
| | - T Oliveira
- Neuro-innovation Technology & Brain Mapping Laboratory, Federal University of Piauí, Parnaíba, Brazil; Genetics and Molecular Biology Laboratory, Federal University of Piauí, Parnaíba-PI, Brazil; The Northeast Biotechnology Network, Federal University of Piauí, Teresina-PI, Brazil
| | - V Carvalho
- Neuro-innovation Technology & Brain Mapping Laboratory, Federal University of Piauí, Parnaíba, Brazil; The Northeast Biotechnology Network, Federal University of Piauí, Teresina-PI, Brazil
| | - K Rocha
- Neuro-innovation Technology & Brain Mapping Laboratory, Federal University of Piauí, Parnaíba, Brazil; The Northeast Biotechnology Network, Federal University of Piauí, Teresina-PI, Brazil
| | - F Magalhães
- Neuro-innovation Technology & Brain Mapping Laboratory, Federal University of Piauí, Parnaíba, Brazil; The Northeast Biotechnology Network, Federal University of Piauí, Teresina-PI, Brazil
| | - V G de Sousa
- Genetics and Molecular Biology Laboratory, Federal University of Piauí, Parnaíba-PI, Brazil
| | - V H Bastos
- The Northeast Biotechnology Network, Federal University of Piauí, Teresina-PI, Brazil; Brain Mapping and Functionality Laboratory, Federal University of Piauí, Parnaíba-PI, Brazil
| | - D Gupta
- Department of Biology, Camden County College, Blackwood, NJ, USA
| | - M Orsini
- Master's Program in Local Development Program, University Center Augusto Motta - UNISUAM, Rio de Janeiro, Brazil
| | - S Teixeira
- Neuro-innovation Technology & Brain Mapping Laboratory, Federal University of Piauí, Parnaíba, Brazil; The Northeast Biotechnology Network, Federal University of Piauí, Teresina-PI, Brazil
| |
Collapse
|
97
|
Ciria A, López F, Lara B. Perceived Duration: The Interplay of Top-Down Attention and Task-Relevant Information. Front Psychol 2019; 10:490. [PMID: 30894834 PMCID: PMC6415616 DOI: 10.3389/fpsyg.2019.00490] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Accepted: 02/19/2019] [Indexed: 11/25/2022] Open
Abstract
Perception of time is susceptible to distortions; among other factors, it has been suggested that the perceived duration of a stimulus is affected by the observer’s expectations. It has been hypothesized that the duration of an oddball stimulus is overestimated because it is unexpected, whereas repeated stimuli have a shorter perceived duration because they are expected. However, recent findings suggest instead that fulfilled expectations about a stimulus elicit an increase in perceived duration, and that the oddball effect occurs because the oddball is a target stimulus, not because it is unexpected. Therefore, it has been suggested that top-down attention is sometimes sufficient to explain this effect, and sometimes only necessary, with an additional contribution from saliency. However, how the expectedness of a target stimulus and its salient features affect its perceived duration is still an open question. In the present study, participants’ expectations about and the saliency of target stimuli were orthogonally manipulated with stimuli presented on a short (Experiment 1) or long (Experiment 2) temporal scale. Four repetitive standard stimuli preceded each target stimulus in a task in which participants judged whether the target was longer or shorter in duration than the standards. Engagement of top-down attention to target stimuli increased their perceived duration to the same extent irrespective of their expectedness. A small but significant additional contribution to this effect from the saliency of target stimuli was dependent on the temporal scale of stimulus presentation. In Experiment 1, saliency only significantly increased perceived duration in the case of expected target stimuli. In contrast, in Experiment 2, saliency exerted a significant effect on the overestimation elicited by unexpected target stimuli, but the contribution of this variable was eliminated in the case of expected target stimuli. These findings point to top-down attention as the primary cognitive mechanism underlying the perceptual extraction and processing of task-relevant information, which may be strongly correlated with perceived duration. Furthermore, the scalar properties of timing were observed, favoring the pacemaker-accumulator model of timing as the underlying timing mechanism.
Collapse
Affiliation(s)
- Alejandra Ciria
- Facultad de Psicología, Universidad Nacional Autónoma de México, Mexico City, Mexico
- *Correspondence: Alejandra Ciria,
| | - Florente López
- Facultad de Psicología, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Bruno Lara
- Laboratorio de Robótica Cognitiva, Centro de Investigación en Ciencias, Universidad Autónoma del Estado de Morelos, Cuernavaca, Mexico
| |
Collapse
|
98
|
Kent L, van Doorn G, Hohwy J, Klein B. Bayes, time perception, and relativity: The central role of hopelessness. Conscious Cogn 2019; 69:70-80. [DOI: 10.1016/j.concog.2019.01.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Revised: 01/13/2019] [Accepted: 01/20/2019] [Indexed: 11/28/2022]
|
99
|
Kent L, Van Doorn G, Klein B. Time dilation and acceleration in depression. Acta Psychol (Amst) 2019; 194:77-86. [PMID: 30798221 DOI: 10.1016/j.actpsy.2019.02.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2018] [Revised: 02/11/2019] [Accepted: 02/14/2019] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND A recent meta-analysis left open a significant question regarding altered time perception in depression: Why do depressed people overproduce short durations and under-produce longer durations if their present experience is that time flows slowly? Experience and judgement of time do not seem to accord with one another. ANALYSIS By excluding two of the six studies on methodological grounds from a previous meta-analysis of medium-length interval productions, and re-analysing the remaining four studies, the present paper finds that subjective time accelerates from initial dilation within present experience (approximately 1 s duration) to subsequent acceleration within working memory (approximately 30 s duration) when depressed. PROPOSALS It is proposed that depressive time dilation and acceleration refer to the default mode and central executive networks, respectively. The acceleration effect is suggested to occur due to mood congruency between long intervals, boredom, and depression. This mood congruency leads to the automatic recall of intrusive, negative, and non-specific autobiographical long-term memories used to judge intervals from previous experience. Acceleration in working memory then occurs according to the contextual change model of duration estimation. LIMITATIONS The meta-analysis is limited to four studies only, but provides a potential link between time experience and judgement within the same explanatory model. CONCLUSIONS Similarities between psychological time dilation/acceleration and physical time dilation/acceleration are discussed.
Collapse
|
100
|
Modulating Subjective Time Perception with Transcranial Random Noise Stimulation (tRNS). JOURNAL OF COGNITIVE ENHANCEMENT 2019. [DOI: 10.1007/s41465-019-00128-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|