51
|
Brasil SNR, Kelemen EP, Rehan SM. Historic DNA uncovers genetic effects of climate change and landscape alteration in two wild bee species. CONSERV GENET 2022. [DOI: 10.1007/s10592-022-01488-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
52
|
Mendoza Y, Santos E, Clavijo-Baquett S, Invernizzi C. A Reciprocal Transplant Experiment Confirmed Mite-Resistance in a Honey Bee Population from Uruguay. Vet Sci 2022; 9:vetsci9110596. [PMID: 36356073 PMCID: PMC9694040 DOI: 10.3390/vetsci9110596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 10/19/2022] [Accepted: 10/25/2022] [Indexed: 12/03/2022] Open
Abstract
Simple Summary In Uruguay, as in many countries around the world, the Varroa destructor mite is the main biotic threat to honey bees (Apis mellifera). Most beekeepers regularly apply acaricides to their colonies to have good honey harvests and avoid large losses, with the exception of beekeepers in the east of the country where bees coexist with V. destructor without suffering significant damage. To unravel the different A. mellifera–V. destructor relationships found in the country, a reciprocal transplant experiment was performed between the mite-resistant bee colonies and the mite-susceptible bee colonies from the east and the west of the country, respectively. The differences between the two groups of bees in the control of V. destructor were maintained in the two environments. No mite-susceptible colonies survived the winter. The behavioral resistance of bees (hygienic behavior) and reproductive aspects of V. destructor (phoretic mites/reproductive mites and mites in drone cells/mites in worker cells ratio) could explain the results obtained. Abstract In the past few years there has been an increasing interest for the study of honey bee populations that are naturally resistant to the ectoparasitic mite Varroa destructor, aiming to identify the mechanisms that allow the bees to limit the reproduction of the mite. In eastern Uruguay there are still bees resistant to mites that survive without acaricides. In order to determine if the differential resistance to V. destructor was maintained in other environments, a reciprocal transplant experiment was performed between the mite-resistant bee colonies and the mite-susceptible bee colonies from the east and the west of the country, respectively, infesting bees with local mites. In both regions, the mite-resistant colonies expressed a higher hygienic behavior and presented a higher phoretic mites/reproductive mites and mites in drone cells/mites in worker cells ratio than the mite-susceptible colonies. All the mite-susceptible colonies died during fall–winter, while a considerable number of mite-resistant colonies survived until spring, especially in the east of the country. This study shows that the bees in the east of the country maintain in good measure the resistance to V. destructor in other regions and leaves open the possibility that the mites of the two populations have biases in the reproductive behavior.
Collapse
Affiliation(s)
- Yamandú Mendoza
- Sección Apicultura, Programa de Producción Familiar, Instituto Nacional de Investigación Agropecuaria La Estanzuela, Ruta 50 km 11, Colonia 70002, Uruguay
| | - Estela Santos
- Sección Etología, Facultad de Ciencias, Universidad de la República, Iguá 4225, Montevideo 11400, Uruguay
| | - Sabrina Clavijo-Baquett
- Sección Etología, Facultad de Ciencias, Universidad de la República, Iguá 4225, Montevideo 11400, Uruguay
- Programa de Desarrollo de las Ciencias Básicas (PEDECIBA), Isidoro de María 1614, Montevideo 11800, Uruguay
| | - Ciro Invernizzi
- Sección Etología, Facultad de Ciencias, Universidad de la República, Iguá 4225, Montevideo 11400, Uruguay
- Programa de Desarrollo de las Ciencias Básicas (PEDECIBA), Isidoro de María 1614, Montevideo 11800, Uruguay
- Correspondence:
| |
Collapse
|
53
|
Penn HJ, Simone-Finstrom MD, de Guzman LI, Tokarz PG, Dickens R. Viral species differentially influence macronutrient preferences based on honey bee genotype. Biol Open 2022; 11:bio059039. [PMID: 36082847 PMCID: PMC9548382 DOI: 10.1242/bio.059039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 09/05/2022] [Indexed: 11/30/2022] Open
Abstract
Food quantity and macronutrients contribute to honey bee health and colony survival by mediating immune responses. We determined if this held true for bees injected with chronic bee paralysis virus (CBPV) and deformed wing virus (DWV), two common honey bee ssRNA viruses. Pollen-substitute diet and syrup consumption rates and macronutrient preferences of two Varroa-resistant stocks (Pol-Line and Russian bees) were compared to Varroa-susceptible Italian bees. Bee stocks varied in consumption, where Italian bees consumed more than Pol-Line and Russian bees. However, the protein: lipid (P:L) ratios of diet consumed by the Italian and Russian bees was greater than that of the Pol-Line bees. Treatment had different effects on consumption based on the virus injected. CBPV was positively correlated with syrup consumption, while DWV was not correlated with consumption. P:L ratios of consumed diet were significantly impacted by the interaction of bee stock and treatment, with the trends differing between CBPV and DWV. Variation in macronutrient preferences based on viral species may indicate differences in energetic costs associated with immune responses to infections impacting different systems. Further, virus species interacted with bee genotype, indicating different mechanisms of viral resistance or tolerance among honey bee genotypes.
Collapse
Affiliation(s)
- Hannah J. Penn
- USDA ARS Sugarcane Research Unit, 5883 Usda Rd., Houma, LA, USA70360-5578
| | - Michael D. Simone-Finstrom
- USDA ARS Honey Bee Breeding, Genetics and Physiology Laboratory, 1157 Ben Hur Rd., Baton Rouge, LA, USA70820-5502
| | - Lilia I. de Guzman
- USDA ARS Honey Bee Breeding, Genetics and Physiology Laboratory, 1157 Ben Hur Rd., Baton Rouge, LA, USA70820-5502
| | - Philip G. Tokarz
- USDA ARS Honey Bee Breeding, Genetics and Physiology Laboratory, 1157 Ben Hur Rd., Baton Rouge, LA, USA70820-5502
| | - Rachel Dickens
- USDA ARS Honey Bee Breeding, Genetics and Physiology Laboratory, 1157 Ben Hur Rd., Baton Rouge, LA, USA70820-5502
| |
Collapse
|
54
|
Vieira JJ, Johnson CL, Varkonyi EM, Ginsberg HS, Picard KL, Kiesewetter MK, Alm SR. Using Surrogate Insects in Acid Bioassays for Development of New Controls for Varroa destructor (Arachnida: Varroidae). JOURNAL OF ECONOMIC ENTOMOLOGY 2022; 115:1417-1422. [PMID: 35980393 DOI: 10.1093/jee/toac120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Indexed: 06/15/2023]
Abstract
Resistance to traditional synthetic compounds by Varroa destructor Anderson and Trueman and shortcomings of the organic acid class of acaracides commonly used in varroa management requires continual development of new controls. V. destructor, however, are difficult to obtain for use in control bioassays because they are obligate parasites that cannot be easily reared outside of a honey bee colony. We conducted bioassays using other, more easily obtainable species to find organisms that could be used as surrogates for V. destructor when testing new potential controls. We compared the toxicities of acetic acid, lactic acid, formic acid, and oxalic acid at 0.005%, 0.05%, 0.5%, 5%, and 50% (20% oxalic acid only) concentrations based on natural volatility (nonheated) for the control of two beetle species, Oryzaephilus surinamensis L. and Alphitobius diaperinus Panzer, greater wax moth larvae, Galleria mellonella L., and V. destructor. The assay results were consistent across all species with formic acid and acetic acid showing 100% mortality of all four test species at 50% concentration. The assays also provided insight into the method of application (vaporization or contact) needed to cause mortality. Our results show that other organisms can be used in place of V. destructor for initial testing of acids and possibly other chemicals for control of the ectoparasite.
Collapse
Affiliation(s)
- Julia J Vieira
- Department of Plant Sciences and Entomology, University of Rhode Island, Kingston, RI 02881, USA
| | - Casey L Johnson
- Department of Plant Sciences and Entomology, University of Rhode Island, Kingston, RI 02881, USA
| | - Elizabeth M Varkonyi
- Department of Plant Sciences and Entomology, University of Rhode Island, Kingston, RI 02881, USA
| | - Howard S Ginsberg
- Department of Plant Sciences and Entomology, University of Rhode Island, Kingston, RI 02881, USA
- U.S. Geological Survey, Eastern Ecological Science Center, Rhode Island Field Station, University of Rhode Island, Kingston, RI 02881, USA
| | - Kassie L Picard
- Department of Chemistry, University of Rhode Island, Kingston, RI 02881, USA
| | | | - Steven R Alm
- Department of Plant Sciences and Entomology, University of Rhode Island, Kingston, RI 02881, USA
| |
Collapse
|
55
|
Transmission of deformed wing virus between Varroa destructor foundresses, mite offspring and infested honey bees. Parasit Vectors 2022; 15:333. [PMID: 36151583 PMCID: PMC9502634 DOI: 10.1186/s13071-022-05463-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 08/22/2022] [Indexed: 11/16/2022] Open
Abstract
Background Varroa destructor is the major ectoparasite of the western honey bee (Apis mellifera). Through both its parasitic life-cycle and its role as a vector of viral pathogens, it can cause major damage to honey bee colonies. The deformed wing virus (DWV) is the most common virus transmitted by this ectoparasite, and the mite is correlated to increased viral prevalence and viral loads in infested colonies. DWV variants A and B (DWV-A and DWV-B, respectively) are the two major DWV variants, and they differ both in their virulence and transmission dynamics. Methods We studied the transmission of DWV between bees, parasitic mites and their offspring by quantifying DWV loads in bees and mites collected in in vitro and in situ environments. In vitro, we artificially transmitted DWV-A to mites and quantified both DWV-A and DWV-B in mites and bees. In situ, we measured the natural presence of DWV-B in bees, mites and mites’ offspring. Results Bee and mite viral loads were correlated, and mites carrying both variants were associated with higher mortality of the infected host. Mite infestation increased the DWV-B loads and decreased the DWV-A loads in our laboratory conditions. In situ, viral quantification in the mite offspring showed that, after an initially non-infected egg stage, the DWV-B loads were more closely correlated with the foundress (mother) mites than with the bee hosts. Conclusions The association between mites and DWV-B was highlighted in this study. The parasitic history of a mite directly impacts its DWV infection potential during the rest of its life-cycle (in terms of variant and viral loads). Regarding the mite’s progeny, we hypothesize that the route of contamination is likely through the feeding site rather than by vertical transmission, although further studies are needed to confirm this hypothesis. Graphical Abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s13071-022-05463-9.
Collapse
|
56
|
Ryabov EV, Posada-Florez F, Rogers C, Lamas ZS, Evans JD, Chen Y, Cook SC. The vectoring competence of the mite Varroa destructor for deformed wing virus of honey bees is dynamic and affects survival of the mite. FRONTIERS IN INSECT SCIENCE 2022; 2:931352. [PMID: 38468796 PMCID: PMC10926515 DOI: 10.3389/finsc.2022.931352] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 09/12/2022] [Indexed: 03/13/2024]
Abstract
The ectoparasitic mite, Varroa destructor and the viruses it vectors, including types A and B of Deformed wing virus (DWV), pose a major threat to honey bees, Apis mellifera. Analysis of 256 mites collected from the same set of field colonies on five occasions from May to October 2021 showed that less than a half of them, 39.8% (95% confidence interval (CI): 34.0 - 46.0%), were able to induce a high (overt) level DWV infection with more than 109 viral genomes per bee in the pupa after 6 days of feeding, with both DWV-A and DWV-B being vectored at similar rates. To investigate the effect of the phoretic (or dispersal) stage on adult bees on the mites' ability to vector DWV, the mites from two collection events were divided into two groups, one of which was tested immediately for their infectiveness, and the other was kept with adult worker bees in cages for 12 days prior to testing their infectiveness. We found that while 39.2% (95% CI: 30.0 - 49.1%) of the immediately tested mites induced overt-level infections, 12-day passage on adult bees significantly increased the infectiousness to 89.8% (95% CI: 79.2 - 95.6%). It is likely that Varroa mites that survive brood interruptions in field colonies are increasingly infectious. The mite lifespan was affected by the DWV type it transmitted to pupae. The mites, which induced high DWV-B but not DWV-A infection had an average lifespan of 15.5 days (95% CI: 11.8 - 19.2 days), which was significantly shorter than those of the mites which induced high DWV-A but not DWV-B infection, with an average lifespan of 24.3 days (95% CI: 20.2 - 28.5), or the mites which did not induce high levels of DWV-A or DWV-B, with an average survival of 21.2 days (95% CI: 19.0 - 23.5 days). The mites which transmitted high levels of both DWV-A and DWV-B had an intermediate average survival of 20.5 days (95% CI: 15.1 - 25.9 days). The negative impact of DWV-B on mite survival could be a consequence of the ability of DWV-B, but not DWV-A to replicate in Varroa.
Collapse
Affiliation(s)
- Eugene V. Ryabov
- United States Department of Agriculture - Agricultural Research Service, Bee Research Laboratory, Beltsville, MD, United States
- Department of Entomology, University of Maryland, College Park, MD, United States
| | - Francisco Posada-Florez
- United States Department of Agriculture - Agricultural Research Service, Bee Research Laboratory, Beltsville, MD, United States
| | - Curtis Rogers
- United States Department of Agriculture - Agricultural Research Service, Bee Research Laboratory, Beltsville, MD, United States
| | - Zachary S. Lamas
- Department of Entomology, University of Maryland, College Park, MD, United States
| | - Jay D. Evans
- United States Department of Agriculture - Agricultural Research Service, Bee Research Laboratory, Beltsville, MD, United States
| | - Yanping Chen
- United States Department of Agriculture - Agricultural Research Service, Bee Research Laboratory, Beltsville, MD, United States
| | - Steven C. Cook
- United States Department of Agriculture - Agricultural Research Service, Bee Research Laboratory, Beltsville, MD, United States
| |
Collapse
|
57
|
Cilia G, Tafi E, Zavatta L, Caringi V, Nanetti A. The Epidemiological Situation of the Managed Honey Bee (Apis mellifera) Colonies in the Italian Region Emilia-Romagna. Vet Sci 2022; 9:vetsci9080437. [PMID: 36006352 PMCID: PMC9412502 DOI: 10.3390/vetsci9080437] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 08/10/2022] [Accepted: 08/12/2022] [Indexed: 11/16/2022] Open
Abstract
The recent decades witnessed the collapse of honey bee colonies at a global level. The major drivers of this collapse include both individual and synergic pathogen actions, threatening the colonies’ survival. The need to define the epidemiological pattern of the pathogens that are involved has led to the establishment of monitoring programs in many countries, Italy included. In this framework, the health status of managed honey bees in the Emilia–Romagna region (northern Italy) was assessed, throughout the year 2021, on workers from 31 apiaries to investigate the presence of major known and emerging honey bee pathogens. The prevalence and abundance of DWV, KBV, ABPV, CBPV, Nosema ceranae, and trypanosomatids (Lotmaria passim, Crithidia mellificae, Crithidia bombi) were assessed by molecular methods. The most prevalent pathogen was DWV, followed by CBPV and N. ceranae. Trypanosomatids were not found in any of the samples. Pathogens had different peaks in abundance over the months, showing seasonal trends that were related to the dynamics of both bee colonies and Varroa destructor infestation. For some of the pathogens, a weak but significant correlation was observed between abundance and geographical longitude. The information obtained in this study increases our understanding of the epidemiological situation of bee colonies in Emilia–Romagna and helps us to implement better disease prevention and improved territorial management of honey bee health.
Collapse
|
58
|
Paxton RJ, Schäfer MO, Nazzi F, Zanni V, Annoscia D, Marroni F, Bigot D, Laws-Quinn ER, Panziera D, Jenkins C, Shafiey H. Epidemiology of a major honey bee pathogen, deformed wing virus: potential worldwide replacement of genotype A by genotype B. Int J Parasitol Parasites Wildl 2022; 18:157-171. [PMID: 35592272 PMCID: PMC9112108 DOI: 10.1016/j.ijppaw.2022.04.013] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 04/16/2022] [Accepted: 04/29/2022] [Indexed: 01/10/2023]
Abstract
The western honey bee (Apis mellifera) is of major economic and ecological importance, with elevated rates of colony losses in temperate regions over the last two decades thought to be largely caused by the exotic ectoparasitic mite Varroa destructor and deformed wing virus (DWV), which the mite transmits. DWV currently exists as two main genotypes: the formerly widespread DWV-A and the more recently described and rapidly expanding DWV-B. It is an excellent system to understand viral evolution and the replacement of one viral variant by another. Here we synthesise published results on the distribution and prevalence of DWV-A and -B over the period 2008-2021 and present novel data for Germany, Italy and the UK to suggest that (i) DWV-B has rapidly expanded worldwide since its first description in 2004 and (ii) that it is potentially replacing DWV-A. Both genotypes are also found in wild bee species. Based on a simple mathematical model, we suggest that interference between viral genotypes when co-infecting the same host is key to understanding their epidemiology. We finally discuss the consequences of genotype replacement for beekeeping and for wild pollinator species.
Collapse
Affiliation(s)
- Robert J. Paxton
- General Zoology, Institute for Biology, Martin Luther University Halle-Wittenberg, Hoher Weg 8, 06120, Halle (Saale), Germany
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Puschstrasse 4, 04103, Leipzig, Germany
| | - Marc O. Schäfer
- Institute of Infectology Medicine, Federal Research Institute for Animal Health, Friedrich-Loeffler-Institut, Südufer 10, 17493, Greifswald, Insel Riems, Germany
| | - Francesco Nazzi
- Dipartimento di Scienze AgroAlimentari, Ambientali e Animali, Università degli Studi di Udine, Via delle Scienze 206, 33100, Udine, Italy
| | - Virginia Zanni
- Dipartimento di Scienze AgroAlimentari, Ambientali e Animali, Università degli Studi di Udine, Via delle Scienze 206, 33100, Udine, Italy
| | - Desiderato Annoscia
- Dipartimento di Scienze AgroAlimentari, Ambientali e Animali, Università degli Studi di Udine, Via delle Scienze 206, 33100, Udine, Italy
| | - Fabio Marroni
- Dipartimento di Scienze AgroAlimentari, Ambientali e Animali, Università degli Studi di Udine, Via delle Scienze 206, 33100, Udine, Italy
| | - Diane Bigot
- General Zoology, Institute for Biology, Martin Luther University Halle-Wittenberg, Hoher Weg 8, 06120, Halle (Saale), Germany
| | - Eoin R. Laws-Quinn
- General Zoology, Institute for Biology, Martin Luther University Halle-Wittenberg, Hoher Weg 8, 06120, Halle (Saale), Germany
| | - Delphine Panziera
- General Zoology, Institute for Biology, Martin Luther University Halle-Wittenberg, Hoher Weg 8, 06120, Halle (Saale), Germany
| | - Christina Jenkins
- General Zoology, Institute for Biology, Martin Luther University Halle-Wittenberg, Hoher Weg 8, 06120, Halle (Saale), Germany
| | - Hassan Shafiey
- General Zoology, Institute for Biology, Martin Luther University Halle-Wittenberg, Hoher Weg 8, 06120, Halle (Saale), Germany
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Puschstrasse 4, 04103, Leipzig, Germany
| |
Collapse
|
59
|
Penn HJ, Simone-Finstrom MD, Chen Y, Healy KB. Honey Bee Genetic Stock Determines Deformed Wing Virus Symptom Severity but not Viral Load or Dissemination Following Pupal Exposure. Front Genet 2022; 13:909392. [PMID: 35719388 PMCID: PMC9204523 DOI: 10.3389/fgene.2022.909392] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 04/22/2022] [Indexed: 12/15/2022] Open
Abstract
Honey bees exposed to Varroa mites incur substantial physical damage in addition to potential exposure to vectored viruses such as Deformed wing virus (DWV) that exists as three master variants (DWV-A, DWV-B, and DWV-C) and recombinants. Although mite-resistant bees have been primarily bred to mitigate the impacts of Varroa mites, mite resistance may be associated with increased tolerance or resistance to the vectored viruses. The goal of our study is to determine if five honey bee stocks (Carniolan, Italian, Pol-Line, Russian, and Saskatraz) differ in their resistance or tolerance to DWV based on prior breeding for mite resistance. We injected white-eyed pupae with a sublethal dose (105) of DWV or exposed them to mites and then evaluated DWV levels and dissemination and morphological symptoms upon adult emergence. While we found no evidence of DWV resistance across stocks (i.e., similar rates of viral replication and dissemination), we observed that some stocks exhibited reduced symptom severity suggestive of differential tolerance. However, DWV tolerance was not consistent across mite-resistant stocks as Russian bees were most tolerant, while Pol-Line exhibited the most severe symptoms. DWV variants A and B exhibited differential dissemination patterns that interacted significantly with the treatment group but not bee stock. Furthermore, elevated DWV-B levels reduced adult emergence time, while both DWV variants were associated with symptom likelihood and severity. These data indicate that the genetic differences underlying bee resistance to Varroa mites are not necessarily correlated with DWV tolerance and may interact differentially with DWV variants, highlighting the need for further work on mechanisms of tolerance and bee stock-specific physiological interactions with pathogen variants.
Collapse
Affiliation(s)
- Hannah J. Penn
- United States Department of Agriculture, Agricultural Research Service, Sugarcane Research Unit, Houma, LA, United States
| | - Michael D. Simone-Finstrom
- United States Department of Agriculture, Agricultural Research Service, Honey Bee Breeding, Genetics and Physiology Research Unit, Baton Rouge, LA, United States
| | - Yanping Chen
- United States Department of Agriculture, Agricultural Research Service, Bee Research Laboratory, Beltsville, MD, United States
| | - Kristen B. Healy
- Department of Entomology, Louisiana State University and AgCenter, Baton Rouge, LA, United States
| |
Collapse
|
60
|
Lester PJ, Felden A, Baty JW, Bulgarella M, Haywood J, Mortensen AN, Remnant EJ, Smeele ZE. Viral communities in the parasite Varroa destructor and in colonies of their honey bee host (Apis mellifera) in New Zealand. Sci Rep 2022; 12:8809. [PMID: 35614309 PMCID: PMC9133037 DOI: 10.1038/s41598-022-12888-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 05/11/2022] [Indexed: 11/11/2022] Open
Abstract
The parasitic mite Varroa destructor is a leading cause of mortality for Western honey bee (Apis mellifera) colonies around the globe. We sought to confirm the presence and likely introduction of only one V. destructor haplotype in New Zealand, and describe the viral community within both V. destructor mites and the bees that they parasitise. A 1232 bp fragment from mitochondrial gene regions suggests the likely introduction of only one V. destructor haplotype to New Zealand. Seventeen viruses were found in bees. The most prevalent and abundant was the Deformed wing virus A (DWV-A) strain, which explained 95.0% of the variation in the viral community of bees. Black queen cell virus, Sacbrood virus, and Varroa destructor virus 2 (VDV-2) played secondary roles. DWV-B and the Israeli acute paralysis virus appeared absent from New Zealand. Ten viruses were observed in V. destructor, with > 99.9% of viral reads from DWV-A and VDV-2. Substantially more variation in viral loads was observed in bees compared to mites. Where high levels of VDV-2 occurred in mites, reduced DWV-A occurred in both the mites and the bees co-occurring within the same hive. Where there were high loads of DWV-A in mites, there were typically high viral loads in bees.
Collapse
Affiliation(s)
- Philip J Lester
- Centre for Biodiversity and Restoration Ecology, School of Biological Sciences, Victoria University of Wellington, PO Box 600, Wellington, 6012, New Zealand.
| | - Antoine Felden
- Centre for Biodiversity and Restoration Ecology, School of Biological Sciences, Victoria University of Wellington, PO Box 600, Wellington, 6012, New Zealand
| | - James W Baty
- Centre for Biodiversity and Restoration Ecology, School of Biological Sciences, Victoria University of Wellington, PO Box 600, Wellington, 6012, New Zealand
| | - Mariana Bulgarella
- Centre for Biodiversity and Restoration Ecology, School of Biological Sciences, Victoria University of Wellington, PO Box 600, Wellington, 6012, New Zealand
| | - John Haywood
- School of Mathematics and Statistics, Victoria University of Wellington, PO Box 600, Wellington, 6012, New Zealand
| | - Ashley N Mortensen
- The New Zealand Institute for Plant and Food Research Limited, Private Bag 3230, Waikato Mail Centre, Hamilton, 3240, New Zealand
| | - Emily J Remnant
- Behaviour, Ecology and Evolution Laboratory, School of Life and Environmental Sciences, University of Sydney, Science Road, Sydney, NSW, 2006, Australia
| | - Zoe E Smeele
- Centre for Biodiversity and Restoration Ecology, School of Biological Sciences, Victoria University of Wellington, PO Box 600, Wellington, 6012, New Zealand
| |
Collapse
|
61
|
The Virome of Healthy Honey Bee Colonies: Ubiquitous Occurrence of Known and New Viruses in Bee Populations. mSystems 2022; 7:e0007222. [PMID: 35532210 PMCID: PMC9239248 DOI: 10.1128/msystems.00072-22] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The Western honey bee,
Apis mellifera
, is a vital part of our ecosystem as well as cultural heritage. Annual colony losses endanger beekeeping.
Collapse
|
62
|
Power K, Altamura G, Martano M, Maiolino P. Detection of Honeybee Viruses in Vespa orientalis. Front Cell Infect Microbiol 2022; 12:896932. [PMID: 35601108 PMCID: PMC9114811 DOI: 10.3389/fcimb.2022.896932] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 04/05/2022] [Indexed: 11/13/2022] Open
Abstract
The Oriental hornet (Vespa orientalis) is spreading across the Italian territory threatening the health and wellbeing of honeybees by feeding on adult individuals and larvae and by plundering hive resources. Considering the capacity of other hornets in harboring honeybee viruses, the aim of this study was to identify the possible role of the Oriental hornet as a vector for honeybee viruses. Adult hornets were subjected to macroscopical examination to identify the presence of lesions, and to biomolecular investigation to detect the presence of six honeybee viruses: Acute Bee Paralysis Virus (ABPV), Black Queen Cell Virus (BQCV), Chronic Bee Paralysis Virus (CBPV), Deformed Wing Virus (DWV), Kashmir Bee Virus (KBV), Sac Brood Virus (SBV). No macroscopical alterations were found while biomolecular results showed that DWV was the most detected virus (25/30), followed by ABPV (19/30), BQCV (13/30), KBV (1/30) and SBV (1/30). No sample was found positive for CBPV. In 20/30 samples several co-infections were identified. The most frequent (17/30) was the association between DWV and ABPV, often associated to BQCV (9/17). One sample (1/30) showed the presence of four different viruses namely DWV, ABPV, BQCV and KBV. The detected viruses are the most widespread in apiaries across the Italian territory suggesting the possible passage from honeybees to V. orientalis, by predation of infected adult honeybees and larvae, and cannibalization of their carcasses. However, to date, it is still not clear if these viruses are replicative but we can suggest a role as mechanical vector of V. orientalis in spreading these viruses.
Collapse
Affiliation(s)
- Karen Power
- Department of Veterinary Medicine and Animal Productions, University of Naples “Federico II”, Naples, Italy
| | | | | | | |
Collapse
|
63
|
Molecular Detection and Differentiation of Arthropod, Fungal, Protozoan, Bacterial and Viral Pathogens of Honeybees. Vet Sci 2022; 9:vetsci9050221. [PMID: 35622749 PMCID: PMC9145064 DOI: 10.3390/vetsci9050221] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 04/26/2022] [Accepted: 04/27/2022] [Indexed: 02/01/2023] Open
Abstract
The honeybee Apis mellifera is highly appreciated worldwide because of its products, but also as it is a pollinator of crops and wild plants. The beehive is vulnerable to infections due to arthropods, fungi, protozoa, bacteria and/or viruses that manage to by-pass the individual and social immune mechanisms of bees. Due to the close proximity of bees in the beehive and their foraging habits, infections easily spread within and between beehives. Moreover, international trade of bees has caused the global spread of infections, several of which result in significant losses for apiculture. Only in a few cases can infections be diagnosed with the naked eye, by direct observation of the pathogen in the case of some arthropods, or by pathogen-associated distinctive traits. Development of molecular methods based on the amplification and analysis of one or more genes or genomic segments has brought significant progress to the study of bee pathogens, allowing for: (i) the precise and sensitive identification of the infectious agent; (ii) the analysis of co-infections; (iii) the description of novel species; (iv) associations between geno- and pheno-types and (v) population structure studies. Sequencing of bee pathogen genomes has allowed for the identification of new molecular targets and the development of specific genotypification strategies.
Collapse
|
64
|
Tehel A, Streicher T, Tragust S, Paxton RJ. Experimental cross species transmission of a major viral pathogen in bees is predominantly from honeybees to bumblebees. Proc Biol Sci 2022; 289:20212255. [PMID: 35168401 PMCID: PMC8848241 DOI: 10.1098/rspb.2021.2255] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Cross-species transmission of a pathogen from a reservoir to a recipient host species, spillover, can have major impacts on biodiversity, domestic species and human health. Deformed wing virus (DWV) is a panzootic RNA virus in honeybees that is causal in their elevated colony losses, and several correlative field studies have suggested spillover of DWV from managed honeybees to wild bee species such as bumblebees. Yet unequivocal demonstration of DWV spillover is lacking, while spillback, the transmission of DWV from a recipient back to the reservoir host, is rarely considered. Here, we show in fully crossed laboratory experiments that the transmission of DWV (genotype A) from honeybees to bumblebees occurs readily, yet we neither detected viral transmission from bumblebees to honeybees nor onward transmission from experimentally infected to uninoculated bumblebees. Our results support the potential for viral spillover from honeybees to other bee species in the field when robbing resources from heterospecific nests or when visiting the same flowers. They also underscore the importance of studies on the virulence of DWV in wild bee species so as to evaluate viral impact on individual and population fitness as well as viral adaption to new host species.
Collapse
Affiliation(s)
- Anja Tehel
- General Zoology, Institute for Biology, Martin Luther University Halle-Wittenberg, Hoher Weg 8, 06120 Halle (Saale), Germany
| | - Tabea Streicher
- General Zoology, Institute for Biology, Martin Luther University Halle-Wittenberg, Hoher Weg 8, 06120 Halle (Saale), Germany
| | - Simon Tragust
- General Zoology, Institute for Biology, Martin Luther University Halle-Wittenberg, Hoher Weg 8, 06120 Halle (Saale), Germany
| | - Robert J. Paxton
- General Zoology, Institute for Biology, Martin Luther University Halle-Wittenberg, Hoher Weg 8, 06120 Halle (Saale), Germany,German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Puschstrasse 4, 04103 Leipzig, Germany
| |
Collapse
|
65
|
Virome Analysis Reveals Diverse and Divergent RNA Viruses in Wild Insect Pollinators in Beijing, China. Viruses 2022; 14:v14020227. [PMID: 35215821 PMCID: PMC8877953 DOI: 10.3390/v14020227] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 01/16/2022] [Accepted: 01/19/2022] [Indexed: 12/04/2022] Open
Abstract
Insect pollinators provide major pollination services for wild plants and crops. Honeybee viruses can cause serious damage to honeybee colonies. However, viruses of other wild pollinating insects have yet to be fully explored. In the present study, we used RNA sequencing to investigate the viral diversity of 50 species of wild pollinating insects. A total of 3 pathogenic honeybee viruses, 8 previously reported viruses, and 26 novel viruses were identified in sequenced samples. Among these, 7 novel viruses were shown to be closely related to honeybee pathogenic viruses, and 4 were determined to have potential pathogenicity for their hosts. The viruses detected in wild insect pollinators were mainly from the order Picornavirales and the families Orthomyxoviridae, Sinhaliviridae, Rhabdoviridae, and Flaviviridae. Our study expanded the species range of known insect pollinator viruses, contributing to future efforts to protect economic honeybees and wild pollinating insects.
Collapse
|
66
|
Honey bee pathogenesis posing threat to its global population: a short review. PROCEEDINGS OF THE INDIAN NATIONAL SCIENCE ACADEMY 2022. [DOI: 10.1007/s43538-022-00062-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
67
|
de Miranda JR, Brettell LE, Chejanovsky N, Childers AK, Dalmon A, Deboutte W, de Graaf DC, Doublet V, Gebremedhn H, Genersch E, Gisder S, Granberg F, Haddad NJ, Kaden R, Manley R, Matthijnssens J, Meeus I, Migdadi H, Milbrath MO, Mondet F, Remnant EJ, Roberts JMK, Ryabov EV, Sela N, Smagghe G, Somanathan H, Wilfert L, Wright ON, Martin SJ, Ball BV. Cold case: The disappearance of Egypt bee virus, a fourth distinct master strain of deformed wing virus linked to honeybee mortality in 1970's Egypt. Virol J 2022; 19:12. [PMID: 35033134 PMCID: PMC8760790 DOI: 10.1186/s12985-022-01740-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 12/31/2021] [Indexed: 01/11/2023] Open
Abstract
In 1977, a sample of diseased adult honeybees (Apis mellifera) from Egypt was found to contain large amounts of a previously unknown virus, Egypt bee virus, which was subsequently shown to be serologically related to deformed wing virus (DWV). By sequencing the original isolate, we demonstrate that Egypt bee virus is in fact a fourth unique, major variant of DWV (DWV-D): more closely related to DWV-C than to either DWV-A or DWV-B. DWV-A and DWV-B are the most common DWV variants worldwide due to their close relationship and transmission by Varroa destructor. However, we could not find any trace of DWV-D in several hundred RNA sequencing libraries from a worldwide selection of honeybee, varroa and bumblebee samples. This means that DWV-D has either become extinct, been replaced by other DWV variants better adapted to varroa-mediated transmission, or persists only in a narrow geographic or host range, isolated from common bee and beekeeping trade routes.
Collapse
Affiliation(s)
- Joachim R de Miranda
- Department of Ecology, Swedish University of Agricultural Sciences, 750-07, Uppsala, Sweden.
| | - Laura E Brettell
- Hawkesbury Institute for the Environment, Western Sydney University, Locked Bag 1797, Renrith, NSW, 2751, Australia.,School of Environment and Life Sciences, University of Salford, Manchester, M5 4WT, UK.,Department of Vector Biology, Liverpool School of Tropical Medicine, Liverpool, L3 5QA, UK
| | - Nor Chejanovsky
- Institute of Plant Protection, The Volcani Center, PO Box 15159, 7528809, Rishon Lezion, Israel
| | - Anna K Childers
- Bee Research Laboratory, Beltsville Agricultural Research Center, USDA, Beltsville, MD, 20705, USA
| | - Anne Dalmon
- Abeilles et Environnement, INRAE, 84914, Avignon, France
| | - Ward Deboutte
- Department of Microbiology, Immunology and Transplantation, Rega Institute, Laboratory for Clinical and Epidemiological Virology, University of Leuven, 3000, Leuven, Belgium.,Max Planck Institute of Immunobiology and Epigenetics, Stübeweg 51, 79108, Freiburg, Germany
| | - Dirk C de Graaf
- Laboratory of Molecular Entomology and Bee Pathology, Ghent University, 9000, Ghent, Belgium
| | - Vincent Doublet
- College of Life and Environmental Sciences, University of Exeter, Penryn, TR10 9FE, UK.,Institute of Evolutionary Ecology and Conservation Genomics, University of Ulm, Albert-Einstein-Allee 11, 89081, Ulm, Germany
| | - Haftom Gebremedhn
- Laboratory of Molecular Entomology and Bee Pathology, Ghent University, 9000, Ghent, Belgium.,Tigray Agricultural Research Institute, P.O. Box 492, Mekelle, Ethiopia
| | - Elke Genersch
- Institut Für Mikrobiologie Und Tierseuchen, Fachbereich Veterinärmedizin, Freie Universität Berlin, Berlin, Germany.,Department of Molecular Microbiology and Bee Diseases, Institute for Bee Research, Hohen Neuendorf, Germany
| | - Sebastian Gisder
- Department of Molecular Microbiology and Bee Diseases, Institute for Bee Research, Hohen Neuendorf, Germany
| | - Fredrik Granberg
- Department of Biomedical Sciences and Veterinary Public Health, Swedish University of Agricultural Sciences, 750-07, Uppsala, Sweden
| | - Nizar J Haddad
- Bee Research Department, National Agricultural Research Center, Baq'a, Jordan
| | - Rene Kaden
- Department of Ecology, Swedish University of Agricultural Sciences, 750-07, Uppsala, Sweden.,Clinical Microbiology, Department of Medical Sciences, Uppsala University, 753 09, Uppsala, Sweden
| | - Robyn Manley
- College of Life and Environmental Sciences, University of Exeter, Penryn, TR10 9FE, UK
| | - Jelle Matthijnssens
- Department of Microbiology, Immunology and Transplantation, Rega Institute, Laboratory for Clinical and Epidemiological Virology, University of Leuven, 3000, Leuven, Belgium
| | - Ivan Meeus
- Laboratory of Agrozoology, Department of Plants and Crops, Ghent University, Coupure Links 653, 9000, Ghent, Belgium
| | - Hussein Migdadi
- Bee Research Department, National Agricultural Research Center, Baq'a, Jordan
| | - Meghan O Milbrath
- Department of Ecology, Swedish University of Agricultural Sciences, 750-07, Uppsala, Sweden
| | - Fanny Mondet
- Abeilles et Environnement, INRAE, 84914, Avignon, France
| | - Emily J Remnant
- Behaviour, Ecology and Evolution (BEE) Lab, School of Life and Environmental Sciences, The University of Sydney, Camperdown, 2006, Australia
| | - John M K Roberts
- Commonwealth Scientific and Industrial Research Organisation, Canberra, 2601, Australia
| | - Eugene V Ryabov
- Bee Research Laboratory, Beltsville Agricultural Research Center, USDA, Beltsville, MD, 20705, USA
| | - Noa Sela
- Institute of Plant Protection, The Volcani Center, PO Box 15159, 7528809, Rishon Lezion, Israel
| | - Guy Smagghe
- Laboratory of Agrozoology, Department of Plants and Crops, Ghent University, Coupure Links 653, 9000, Ghent, Belgium
| | - Hema Somanathan
- School of Biology, Indian Institute of Science Education and Research, Thiruvananthapuram, Kerala, 695551, India
| | - Lena Wilfert
- College of Life and Environmental Sciences, University of Exeter, Penryn, TR10 9FE, UK.,Institute of Evolutionary Ecology and Conservation Genomics, University of Ulm, Albert-Einstein-Allee 11, 89081, Ulm, Germany
| | - Owen N Wright
- Centre for Research in Animal Behaviour, College of Life and Environmental Sciences, University of Exeter, Exeter, EX4 4QG, UK
| | - Stephen J Martin
- School of Environment and Life Sciences, University of Salford, Manchester, M5 4WT, UK.,Rothamsted Research, Harpenden, Hertfordshire, AL5 2JQ, UK
| | - Brenda V Ball
- Rothamsted Research, Harpenden, Hertfordshire, AL5 2JQ, UK
| |
Collapse
|
68
|
Thaduri S, Marupakula S, Terenius O, Onorati P, Tellgren-Roth C, Locke B, de Miranda JR. Global similarity, and some key differences, in the metagenomes of Swedish varroa-surviving and varroa-susceptible honeybees. Sci Rep 2021; 11:23214. [PMID: 34853367 PMCID: PMC8636477 DOI: 10.1038/s41598-021-02652-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 11/12/2021] [Indexed: 11/08/2022] Open
Abstract
There is increasing evidence that honeybees (Apis mellifera L.) can adapt naturally to survive Varroa destructor, the primary cause of colony mortality world-wide. Most of the adaptive traits of naturally varroa-surviving honeybees concern varroa reproduction. Here we investigate whether factors in the honeybee metagenome also contribute to this survival. The quantitative and qualitative composition of the bacterial and viral metagenome fluctuated greatly during the active season, but with little overall difference between varroa-surviving and varroa-susceptible colonies. The main exceptions were Bartonella apis and sacbrood virus, particularly during early spring and autumn. Bombella apis was also strongly associated with early and late season, though equally for all colonies. All three affect colony protein management and metabolism. Lake Sinai virus was more abundant in varroa-surviving colonies during the summer. Lake Sinai virus and deformed wing virus also showed a tendency towards seasonal genetic change, but without any distinction between varroa-surviving and varroa-susceptible colonies. Whether the changes in these taxa contribute to survival or reflect demographic differences between the colonies (or both) remains unclear.
Collapse
Affiliation(s)
- Srinivas Thaduri
- Department of Ecology, Swedish University of Agricultural Sciences, 750-07, Uppsala, Sweden
| | - Srisailam Marupakula
- Department of Forestry Mycology and Plant Pathology, Swedish University of Agricultural Sciences, 750-07, Uppsala, Sweden
| | - Olle Terenius
- Department of Cellular and Molecular Biology, BioMedical Centre, Uppsala University, Husargatan 3, 751-24, Uppsala, Sweden
| | - Piero Onorati
- Department of Ecology, Swedish University of Agricultural Sciences, 750-07, Uppsala, Sweden
| | | | - Barbara Locke
- Department of Ecology, Swedish University of Agricultural Sciences, 750-07, Uppsala, Sweden
| | - Joachim R de Miranda
- Department of Ecology, Swedish University of Agricultural Sciences, 750-07, Uppsala, Sweden.
| |
Collapse
|
69
|
Penn HJ, Simone-Finstrom M, Lang S, Chen J, Healy K. Host Genotype and Tissue Type Determine DWV Infection Intensity. FRONTIERS IN INSECT SCIENCE 2021; 1:756690. [PMID: 38468897 PMCID: PMC10926404 DOI: 10.3389/finsc.2021.756690] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 10/12/2021] [Indexed: 03/13/2024]
Abstract
Varroa mite-vectored viruses such as Deformed wing virus (DWV) are of great concern for honey bee health as they can cause disease in individuals and increase colony mortality. Two genotypes of DWV (A and B) are prevalent in the United States and may have differential virulence and pathogenicity. Honey bee genetic stocks bred to resist Varroa mites also exhibit differential infection responses to the Varroa mite-vectored viruses. The goal of this project was to determine if interactions between host genotype could influence the overall infection levels and dissemination of DWV within honey bees. To do this, we injected DWV isolated from symptomatic adult bees into mite-free, newly emerged adult bees from five genetic stocks with varying levels of resistance to Varroa mites. We measured DWV-A and DWV-B dissemination among tissues chosen based on relevance to general health outcomes for 10 days. Injury from sham injections did not increase DWV-A levels but did increase DWV-B infections. DWV injection increased both DWV-A and DWV-B levels over time with significant host stock interactions. While we did not observe any differences in viral dissemination among host stocks, we found differences in virus genotype dissemination to different body parts. DWV-A exhibited the highest initial levels in heads and legs while the highest initial levels of DWV-B were found in heads and abdomens. These interactions underscore the need to evaluate viral genotype and tissue specificity in conjunction with host genotype, particularly when the host has been selected for traits relative to virus-vector and virus resistance.
Collapse
Affiliation(s)
- Hannah J. Penn
- United States Department of Agriculture (USDA) Agricultural Research Service (ARS), Sugarcane Research Unit, Houma, LA, United States
| | - Michael Simone-Finstrom
- United States Department of Agriculture (USDA) Agricultural Research Service (ARS), Honey Bee Breeding, Genetics and Physiology Research Laboratory, Baton Rouge, LA, United States
| | - Sarah Lang
- United States Department of Agriculture (USDA) Agricultural Research Service (ARS), Honey Bee Breeding, Genetics and Physiology Research Laboratory, Baton Rouge, LA, United States
| | - Judy Chen
- United States Department of Agriculture (USDA) Agricultural Research Service (ARS), Bee Research Laboratory, Beltsville, MD, United States
| | - Kristen Healy
- Department of Entomology, Louisiana State University Agriculture Center, Baton Rouge, LA, United States
| |
Collapse
|
70
|
Schläppi D, Kettler N, Glauser G, Straub L, Yañez O, Neumann P. Varying impact of neonicotinoid insecticide and acute bee paralysis virus across castes and colonies of black garden ants, Lasius niger (Hymenoptera: Formicidae). Sci Rep 2021; 11:20500. [PMID: 34654848 PMCID: PMC8519937 DOI: 10.1038/s41598-021-98406-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Accepted: 09/07/2021] [Indexed: 11/09/2022] Open
Abstract
Pesticides and pathogens are known drivers of declines in global entomofauna. However, interactions between pesticides and viruses, which could range from antagonistic, over additive to synergistic, are poorly understood in ants. Here, we show that in ants the impact of single and combined pesticide and virus stressors can vary across castes and at the colony level. A fully-crossed laboratory assay was used to evaluate interactions between a sublethal dose of the neonicotinoid thiamethoxam and Acute bee paralysis virus (ABPV) in black garden ants, Lasius niger. After monitoring colonies over 64 weeks, body mass, neonicotinoid residues and virus titres of workers and queens, as well as worker behavioural activity were measured. ABPV, but not thiamethoxam, reduced activity of workers. Neonicotinoid exposure resulted in reduced body mass of workers, but not of queens. Further, thiamethoxam facilitated ABPV infections in queens, but not in workers. Overall, virus exposure did not compromise detoxification and body mass, but one colony showed high virus titres and worker mortality. Although the data suggest additive effects at the level of individuals and castes, co-exposure with both stressors elicited antagonistic effects on colony size. Our results create demand for long-term holistic risk assessment of individual stressors and their interactions to protect biodiversity.
Collapse
Affiliation(s)
- Daniel Schläppi
- Institute of Bee Health, Vetsuisse Faculty, University of Bern, Bern, Switzerland. .,School of Biological Sciences, University of Bristol, Bristol, UK.
| | - Nina Kettler
- Institute of Bee Health, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Gaétan Glauser
- Neuchâtel Platform of Analytical Chemistry, University of Neuchâtel, Neuchâtel, Switzerland
| | - Lars Straub
- Institute of Bee Health, Vetsuisse Faculty, University of Bern, Bern, Switzerland.,Swiss Bee Research Centre, Bern, Switzerland
| | - Orlando Yañez
- Institute of Bee Health, Vetsuisse Faculty, University of Bern, Bern, Switzerland.,Swiss Bee Research Centre, Bern, Switzerland
| | - Peter Neumann
- Institute of Bee Health, Vetsuisse Faculty, University of Bern, Bern, Switzerland.,Swiss Bee Research Centre, Bern, Switzerland
| |
Collapse
|
71
|
Wilfert L. Viral adaptations to vector-borne transmission can result in complex host-vector-pathogen interactions. J Anim Ecol 2021; 90:2230-2233. [PMID: 34609752 DOI: 10.1111/1365-2656.13570] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Accepted: 07/20/2021] [Indexed: 01/04/2023]
Abstract
Research Highlight: Norton, A. M., Remnant, E. J., Tom, J., Buchmann, G., Blacquiere, T., & Beekman, M. (2021). Adaptation to vector-based transmission in a honeybee virus. Journal of Animal Ecology, 90, https://besjournals.onlinelibrary.wiley.com/doi/10.1111/1365-2656.13493. In their paper on the adaptation to vector-based transmission via the mite Varroa destructor in a honeybee virus, Norton et al. study how high versus low levels of a viral vector affect viral load and potential competition between two strains of Deformed Wing Virus, an important highly virulent bee virus with the potential to spill-over into other pollinators and bee-associated insect species. This paper addresses two very timely issues, on the one hand on viral evolutionary ecology in response to vector-borne transmission, and on the other hand providing much needed information on an important honey bee pathogen. Using a complex natural system, this study shows that vector-borne transmission, and the control of the vector, can select for complex host-pathogen-vector interactions and that adaptations to changing transmission landscapes in fast evolving pathogens can create conditions for emerging pathogens to transition to endemic diseases.
Collapse
Affiliation(s)
- Lena Wilfert
- Institute of Evolutionary Ecology and Conservation Genomics, University of Ulm, Ulm, Germany
| |
Collapse
|
72
|
Silva D, Ceballos R, Arismendi N, Dalmon A, Vargas M. Variant A of the Deformed Wings Virus Alters the Olfactory Sensitivity and the Expression of Odorant Binding Proteins on Antennas of Apis mellifera. INSECTS 2021; 12:insects12100895. [PMID: 34680665 PMCID: PMC8541218 DOI: 10.3390/insects12100895] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 09/07/2021] [Accepted: 09/23/2021] [Indexed: 01/24/2023]
Abstract
Simple Summary Honey bees, Apis melllifera, are the most commonly managed bee in the world for pollination services. However, worldwide continuous colony losses have been reported for almost a decade. One factor of these losses is associated to pathogens being the virus one of the most important problems in honey bee health. One of the known viruses that affect the honey bee population is deformed wing virus (DWV). DWV causes physical malformation and behavioral disturbances, but also, this virus can be found in the antenna affecting the anatomical integrity of infected areas, which could compromise normal antennal functioning associated to aroma perception. Thus, we evaluate olfactory sensitivity and the expression of antenna-specific odorant-binding proteins (OBP) genes in honey bees inoculated with variant A of the DWV. We performed olfactory sensitivity analysis using the essential oils Eucalyptus globulus and Mentha piperita, but also, and molecular analysis of gene expression of nine OBPs. We found that the high level of replication of DWV-A in the antennae decreased the olfactory sensitivity and led to a down-regulation of some OBPs in middle- and forager-age worker bees. Thus, DWV-A infection in adults of honey bees could compromise volatile compound recognition inside the hive and outside the hive. Abstract Insects have a highly sensitive sense of smell, allowing them to perform complex behaviors, such as foraging and peer recognition. Their sense of smell is based on the recognition of ligands and is mainly coordinated by odorant-binding proteins (OBPs). In Apis mellifera, behavior can be affected by different pathogens, including deformed wing virus (DWV) and its variants. In particular, it has been shown that variant A of DWV (DWV-A) is capable of altering the ultra-cellular structure associated with olfactory activity. In this study was evaluated olfactory sensitivity and the expression of OBP genes in honey bees inoculated with DWV-A. Electroantennographic analyses (EAG) were carried out to determine the olfactory sensitivity to the essential oils Eucalyptus globulus and Mentha piperita. The expression of nine antenna-specific OBP genes and DWV-A load in inoculated bees was also quantified by qPCR. We observed an inverse relationship between viral load and olfactory sensitivity and the expression of some OBP proteins. Thus, high viral loads reduced olfactory sensitivity to essential oils and the gene expression of the OBP2, OBP5, OBP11, and OBP12 proteins on the antennas of middle- and forager-age bees. These results suggest that DWV-A could have negative effects on the processes of aroma perception by worker bees, affecting their performance in tasks carried out in and outside the colony.
Collapse
Affiliation(s)
- Diego Silva
- Laboratorios de Virología y Patologías en Abejas, Facultad de Agronomía, Universidad de Concepción, Av. Vicente Méndez 595, Chillán 3780000, Chile;
| | - Ricardo Ceballos
- Laboratorio de Ecología Química, Instituto de Investigaciones Agropecuarias, INIA Quilamapu, Av. Vicente Méndez 515, Chillán 3780000, Chile;
| | - Nolberto Arismendi
- Centro de Investigación Austral Biotech, Facultad de Ciencias, Universidad Santo Tomás, Av. Picarte 1130–1160, Valdivia 5090000, Chile;
| | - Anne Dalmon
- Unité de Recherche Abeilles et Environnement, INRAE, F-84000 Avignon, France;
| | - Marisol Vargas
- Laboratorios de Virología y Patologías en Abejas, Facultad de Agronomía, Universidad de Concepción, Av. Vicente Méndez 595, Chillán 3780000, Chile;
- Correspondence:
| |
Collapse
|
73
|
Jones LJ, Ford RP, Schilder RJ, López-Uribe MM. Honey bee viruses are highly prevalent but at low intensities in wild pollinators of cucurbit agroecosystems. J Invertebr Pathol 2021; 185:107667. [PMID: 34560106 DOI: 10.1016/j.jip.2021.107667] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 08/29/2021] [Accepted: 09/14/2021] [Indexed: 12/26/2022]
Abstract
Managed and wild bee populations are in decline around the globe due to several biotic and abiotic stressors. Pathogenic viruses associated with the Western honey bee (Apis mellifera) have been identified as key contributors to losses of managed honey bee colonies, and are known to be transmitted to wild bee populations through shared floral resources. However, little is known about the prevalence and intensity of these viruses in wild bee populations, or how bee visitation to flowers impacts viral transmission in agroecosystems. This study surveyed honey bee, bumble bee (Bombus impatiens) and wild squash bee (Eucera (Peponapis) pruinosa) populations in Cucurbita agroecosystems across Pennsylvania (USA) for the prevalence and intensity of five honey bee viruses: acute bee paralysis virus (ABPV), deformed wing virus (DWV), Israeli acute paralysis virus (IAPV), Kashmir bee virus (KBV), and slow bee paralysis virus (SBPV). We investigated the potential role of bee visitation rate to flowers on DWV intensity among species in the pollinator community, with the expectation that increased bee visitation to flowers would increase the opportunity for transmission events between host species. We found that honey bee viruses are highly prevalent but in lower titers in wild E. pruinosa and B. impatiens than in A. mellifera populations throughout Pennsylvania (USA). DWV was detected in 88% of B. impatiens, 48% of E. pruinosa, and 95% of A. mellifera. IAPV was detected in 5% of B. impatiens and 4% of E. pruinosa, compared to 9% in A. mellifera. KBV was detected in 1% of B. impatiens and 5% of E. pruinosa, compared to 32% in A. mellifera. Our results indicate that DWV titers are not correlated with bee visitation in Cucurbita fields. The potential fitness impacts of these low viral titers detected in E. pruinosa remain to be investigated.
Collapse
Affiliation(s)
- Laura J Jones
- Intercollege Graduate Degree Program in Ecology, The Pennsylvania State University, University Park, PA 16802, USA; Department of Entomology, Center for Pollinator Research, The Pennsylvania State University, University Park, PA, 16802, USA.
| | - Ryan P Ford
- Department of Entomology, Center for Pollinator Research, The Pennsylvania State University, University Park, PA, 16802, USA; Department of Plant Science, The Pennsylvania State University, University Park, PA 16802, USA
| | - Rudolf J Schilder
- Intercollege Graduate Degree Program in Ecology, The Pennsylvania State University, University Park, PA 16802, USA; Department of Entomology, Center for Pollinator Research, The Pennsylvania State University, University Park, PA, 16802, USA; Department of Biology, The Pennsylvania State University, University Park, PA 16802, USA
| | - Margarita M López-Uribe
- Intercollege Graduate Degree Program in Ecology, The Pennsylvania State University, University Park, PA 16802, USA; Department of Entomology, Center for Pollinator Research, The Pennsylvania State University, University Park, PA, 16802, USA.
| |
Collapse
|
74
|
Brettell LE, Martin SJ, Riegler M, Cook JM. Vulnerability of island insect pollinator communities to pathogens. J Invertebr Pathol 2021; 186:107670. [PMID: 34560107 DOI: 10.1016/j.jip.2021.107670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 07/26/2021] [Accepted: 09/14/2021] [Indexed: 10/20/2022]
Abstract
Island ecosystems, which often contain undescribed insects and small populations of single island endemics, are at risk from diverse threats. The spread of pathogens is a major factor affecting not just pollinator species themselves, but also posing significant knock-on effects to often fragile island ecosystems through disruption of pollination networks. Insects are vulnerable to diverse pathogens and these can be introduced to islands in a number of ways, e.g. via the introduction of infected managed pollinator hosts (e.g. honey bees and their viruses, in particular Deformed wing virus), long-range migrants (e.g. monarch butterflies and their protozoan parasite, Ophryocystit elektroscirrha) and invasive species (e.g. social wasps are common invaders and are frequently infected with multi-host viruses such as Kashmir bee virus and Moku virus). Furthermore, these introductions can negatively affect island ecosystems through outcompeting native taxa for resources. As such, the greatest threat to island pollinator communities is not one particular pathogen, but the combination of pathogens and introduced and invasive insects that will likely carry them.
Collapse
Affiliation(s)
- Laura E Brettell
- Hawkesbury Institute for the Environment, Western Sydney University, Locked Bag 1797, Penrith, NSW 2751, Australia; Department of Vector Biology, Liverpool School of Tropical Medicine, Pembroke Place L3 5QA, UK.
| | - Stephen J Martin
- School of Environment and life Sciences, University of Salford, Manchester M5 4WT, UK
| | - Markus Riegler
- Hawkesbury Institute for the Environment, Western Sydney University, Locked Bag 1797, Penrith, NSW 2751, Australia
| | - James M Cook
- Hawkesbury Institute for the Environment, Western Sydney University, Locked Bag 1797, Penrith, NSW 2751, Australia
| |
Collapse
|
75
|
Vilarem C, Piou V, Vogelweith F, Vétillard A. Varroa destructor from the Laboratory to the Field: Control, Biocontrol and IPM Perspectives-A Review. INSECTS 2021; 12:800. [PMID: 34564240 PMCID: PMC8465918 DOI: 10.3390/insects12090800] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 08/30/2021] [Accepted: 09/02/2021] [Indexed: 12/13/2022]
Abstract
Varroa destructor is a real challenger for beekeepers and scientists: fragile out of the hive, tenacious inside a bee colony. From all the research done on the topic, we have learned that a better understanding of this organism in its relationship with the bee but also for itself is necessary. Its biology relies mostly on semiochemicals for reproduction, nutrition, or orientation. Many treatments have been developed over the years based on hard or soft acaricides or even on biocontrol techniques. To date, no real sustainable solution exists to reduce the pressure of the mite without creating resistances or harming honeybees. Consequently, the development of alternative disruptive tools against the parasitic life cycle remains open. It requires the combination of both laboratory and field results through a holistic approach based on health biomarkers. Here, we advocate for a more integrative vision of V. destructor research, where in vitro and field studies are more systematically compared and compiled. Therefore, after a brief state-of-the-art about the mite's life cycle, we discuss what has been done and what can be done from the laboratory to the field against V. destructor through an integrative approach.
Collapse
Affiliation(s)
- Caroline Vilarem
- Laboratoire Evolution et Diversité Biologique, UMR5174, CNRS-Université de Toulouse III-IRD, INU Jean-François Champollion, Université Paul Sabatier, 31077 Toulouse, France; (C.V.); (V.P.)
- M2i Biocontrol–Entreprise SAS, 46140 Parnac, France;
| | - Vincent Piou
- Laboratoire Evolution et Diversité Biologique, UMR5174, CNRS-Université de Toulouse III-IRD, INU Jean-François Champollion, Université Paul Sabatier, 31077 Toulouse, France; (C.V.); (V.P.)
| | | | - Angélique Vétillard
- Laboratoire Evolution et Diversité Biologique, UMR5174, CNRS-Université de Toulouse III-IRD, INU Jean-François Champollion, Université Paul Sabatier, 31077 Toulouse, France; (C.V.); (V.P.)
| |
Collapse
|
76
|
Tauber JP, McMahon D, Ryabov EV, Kunat M, Ptaszyńska AA, Evans JD. Honeybee intestines retain low yeast titers, but no bacterial mutualists, at emergence. Yeast 2021; 39:95-107. [PMID: 34437725 DOI: 10.1002/yea.3665] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 07/08/2021] [Accepted: 08/20/2021] [Indexed: 12/13/2022] Open
Abstract
Honeybee symbionts, predominantly bacteria, play important roles in honeybee health, nutrition, and pathogen protection, thereby supporting colony health. On the other hand, fungi are often considered indicators of poor bee health, and honeybee microbiome studies generally exclude fungi and yeasts. We hypothesized that yeasts may be an important aspect of early honeybee biology, and if yeasts provide a mutual benefit to their hosts, then honeybees could provide a refuge during metamorphosis to ensure the presence of yeasts at emergence. We surveyed for yeast and fungi during pupal development and metamorphosis in worker bees using fungal-specific quantitative polymerase chain reaction (qPCR), next-generation sequencing, and standard microbiological culturing. On the basis of yeast presence in three distinct apiaries and multiple developmental stages, we conclude that yeasts can survive through metamorphosis and in naïve worker bees, albeit at relatively low levels. In comparison, known bacterial mutualists, like Gilliamella and Snodgrassella, were generally not found in pre-eclosed adult bees. Whether yeasts are actively retained as an important part of the bee microbiota or are passively propagating in the colony remains unknown. Our demonstration of the constancy of yeasts throughout development provides a framework to further understand the honeybee microbiota.
Collapse
Affiliation(s)
- James P Tauber
- Bee Research Laboratory, Beltsville Agricultural Research Center, US Department of Agriculture, Beltsville, Maryland, USA.,Department for Materials and the Environment, BAM Federal Institute for Materials Research and Testing, Berlin, Germany
| | - Dino McMahon
- Department for Materials and the Environment, BAM Federal Institute for Materials Research and Testing, Berlin, Germany.,Institute for Biology, Free University of Berlin, Berlin, Germany
| | - Eugene V Ryabov
- Bee Research Laboratory, Beltsville Agricultural Research Center, US Department of Agriculture, Beltsville, Maryland, USA
| | - Magdalena Kunat
- Department of Immunobiology, Institute of Biological Sciences, Faculty of Biology and Biotechnology, Maria Curie-Skłodowska University, Lublin, Poland
| | - Aneta A Ptaszyńska
- Department of Immunobiology, Institute of Biological Sciences, Faculty of Biology and Biotechnology, Maria Curie-Skłodowska University, Lublin, Poland
| | - Jay D Evans
- Bee Research Laboratory, Beltsville Agricultural Research Center, US Department of Agriculture, Beltsville, Maryland, USA
| |
Collapse
|
77
|
Nanetti A, Bortolotti L, Cilia G. Pathogens Spillover from Honey Bees to Other Arthropods. Pathogens 2021; 10:1044. [PMID: 34451508 PMCID: PMC8400633 DOI: 10.3390/pathogens10081044] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 08/09/2021] [Accepted: 08/12/2021] [Indexed: 11/16/2022] Open
Abstract
Honey bees, and pollinators in general, play a major role in the health of ecosystems. There is a consensus about the steady decrease in pollinator populations, which raises global ecological concern. Several drivers are implicated in this threat. Among them, honey bee pathogens are transmitted to other arthropods populations, including wild and managed pollinators. The western honey bee, Apis mellifera, is quasi-globally spread. This successful species acted as and, in some cases, became a maintenance host for pathogens. This systematic review collects and summarizes spillover cases having in common Apis mellifera as the mainteinance host and some of its pathogens. The reports are grouped by final host species and condition, year, and geographic area of detection and the co-occurrence in the same host. A total of eighty-one articles in the time frame 1960-2021 were included. The reported spillover cases cover a wide range of hymenopteran host species, generally living in close contact with or sharing the same environmental resources as the honey bees. They also involve non-hymenopteran arthropods, like spiders and roaches, which are either likely or unlikely to live in close proximity to honey bees. Specific studies should consider host-dependent pathogen modifications and effects on involved host species. Both the plasticity of bee pathogens and the ecological consequences of spillover suggest a holistic approach to bee health and the implementation of a One Health approach.
Collapse
Affiliation(s)
| | - Laura Bortolotti
- Council for Agricultural Research and Agricultural Economics Analysis, Centre for Agriculture and Environment Research (CREA-AA), Via di Saliceto 80, 40128 Bologna, Italy; (A.N.); (G.C.)
| | | |
Collapse
|
78
|
Residual Tau-Fluvalinate in Honey Bee Colonies Is Coupled with Evidence for Selection for Varroa destructor Resistance to Pyrethroids. INSECTS 2021; 12:insects12080731. [PMID: 34442297 PMCID: PMC8397018 DOI: 10.3390/insects12080731] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 08/09/2021] [Accepted: 08/10/2021] [Indexed: 11/17/2022]
Abstract
Varroa destructor is considered one of the most devastating parasites of the honey bee, Apis mellifera, and a major problem for the beekeeping industry. Currently, the main method to control Varroa mites is the application of drugs that contain different acaricides as active ingredients. The pyrethroid tau-fluvalinate is one of the acaricides most widely used in beekeeping due to its efficacy and low toxicity to bees. However, the intensive and repetitive application of this compound produces a selective pressure that, when maintained over time, contributes to the emergence of resistant mites in the honey bee colonies, compromising the acaricidal treatments efficacy. Here we studied the presence of tau-fluvalinate residues in hives and the evolution of genetic resistance to this acaricide in Varroa mites from honey bee colonies that received no pyrethroid treatment in the previous four years. Our data revealed the widespread and persistent tau-fluvalinate contamination of beeswax and beebread in hives, an overall increase of the pyrethroid resistance allele frequency and a generalized excess of resistant mites relative to Hardy-Weinberg equilibrium expectations. These results suggest that tau-fluvalinate contamination in the hives may seriously compromise the efficacy of pyrethroid-based mite control methods.
Collapse
|
79
|
Grindrod I, Martin SJ. Parallel evolution of Varroa resistance in honey bees: a common mechanism across continents? Proc Biol Sci 2021; 288:20211375. [PMID: 34344183 PMCID: PMC8334839 DOI: 10.1098/rspb.2021.1375] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 07/12/2021] [Indexed: 12/17/2022] Open
Abstract
The near-globally distributed ecto-parasitic mite of the Apis mellifera honeybee, Varroa destructor, has formed a lethal association with Deformed wing virus, a once rare and benign RNA virus. In concert, the two have killed millions of wild and managed colonies, particularly across the Northern Hemisphere, forcing the need for regular acaricide application to ensure colony survival. However, despite the short association (in evolutionary terms), a small but increasing number of A. mellifera populations across the globe have been surviving many years without any mite control methods. This long-term survival, or Varroa resistance, is consistently associated with the same suite of traits (recapping, brood removal and reduced mite reproduction) irrespective of location. Here we conduct an analysis of data extracted from 60 papers to illustrate how these traits connect together to explain decades of mite resistance data. We have potentially a unified understanding of natural Varroa resistance that will help the global industry achieve widespread miticide-free beekeeping and indicate how different honeybee populations across four continents have resolved a recent threat using the same suite of behaviours.
Collapse
Affiliation(s)
- Isobel Grindrod
- School of Environment and Life Sciences, University of Salford, Manchester M5 4WT, UK
| | - Stephen J. Martin
- School of Environment and Life Sciences, University of Salford, Manchester M5 4WT, UK
| |
Collapse
|
80
|
Rothman JA, Loope KJ, McFrederick QS, Wilson Rankin EE. Microbiome of the wasp Vespula pensylvanica in native and invasive populations, and associations with Moku virus. PLoS One 2021; 16:e0255463. [PMID: 34324610 PMCID: PMC8321129 DOI: 10.1371/journal.pone.0255463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 07/16/2021] [Indexed: 11/19/2022] Open
Abstract
Invasive species present a worldwide concern as competition and pathogen reservoirs for native species. Specifically, the invasive social wasp, Vespula pensylvanica, is native to western North America and has become naturalized in Hawaii, where it exerts pressures on native arthropod communities as a competitor and predator. As invasive species may alter the microbial and disease ecology of their introduced ranges, there is a need to understand the microbiomes and virology of social wasps. We used 16S rRNA gene sequencing to characterize the microbiome of V. pensylvanica samples pooled by colony across two geographically distinct ranges and found that wasps generally associate with taxa within the bacterial genera Fructobacillus, Fructilactobacillus, Lactococcus, Leuconostoc, and Zymobacter, and likely associate with environmentally-acquired bacteria. Furthermore, V. pensylvanica harbors-and in some cases were dominated by-many endosymbionts including Wolbachia, Sodalis, Arsenophonus, and Rickettsia, and were found to contain bee-associated taxa, likely due to scavenging on or predation upon honey bees. Next, we used reverse-transcriptase quantitative PCR to assay colony-level infection intensity for Moku virus (family: Iflaviridae), a recently-described disease that is known to infect multiple Hymenopteran species. While Moku virus was prevalent and in high titer, it did not associate with microbial diversity, indicating that the microbiome may not directly interact with Moku virus in V. pensylvanica in meaningful ways. Collectively, our results suggest that the invasive social wasp V. pensylvanica associates with a simple microbiome, may be infected with putative endosymbionts, likely acquires bacterial taxa from the environment and diet, and is often infected with Moku virus. Our results suggest that V. pensylvanica, like other invasive social insects, has the potential to act as a reservoir for bacteria pathogenic to other pollinators, though this requires experimental demonstration.
Collapse
Affiliation(s)
- Jason A. Rothman
- Department of Molecular Biology and Biochemistry, University of California: Irvine, Irvine, CA, United States of America
| | - Kevin J. Loope
- Department of Biology, Georgia Southern University, Statesboro, GA, United States of America
| | - Quinn S. McFrederick
- Department of Entomology, University of California: Riverside, Riverside, CA, United States of America
| | - Erin E. Wilson Rankin
- Department of Entomology, University of California: Riverside, Riverside, CA, United States of America
| |
Collapse
|
81
|
Remnant EJ, Baty JW, Bulgarella M, Dobelmann J, Quinn O, Gruber MAM, Lester PJ. A Diverse Viral Community from Predatory Wasps in Their Native and Invaded Range, with a New Virus Infectious to Honey Bees. Viruses 2021; 13:1431. [PMID: 34452301 PMCID: PMC8402789 DOI: 10.3390/v13081431] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 07/20/2021] [Accepted: 07/21/2021] [Indexed: 12/15/2022] Open
Abstract
Wasps of the genus Vespula are social insects that have become major pests and predators in their introduced range. Viruses present in these wasps have been studied in the context of spillover from honey bees, yet we lack an understanding of the endogenous virome of wasps as potential reservoirs of novel emerging infectious diseases. We describe the characterization of 68 novel and nine previously identified virus sequences found in transcriptomes of Vespula vulgaris in colonies sampled from their native range (Belgium) and an invasive range (New Zealand). Many viruses present in the samples were from the Picorna-like virus family (38%). We identified one Luteo-like virus, Vespula vulgaris Luteo-like virus 1, present in the three life stages examined in all colonies from both locations, suggesting this virus is a highly prevalent and persistent infection in wasp colonies. Additionally, we identified a novel Iflavirus with similarity to a recently identified Moku virus, a known wasp and honey bee pathogen. Experimental infection of honey bees with this novel Vespula vulgaris Moku-like virus resulted in an active infection. The high viral diversity present in these invasive wasps is a likely indication that their polyphagous diet is a rich source of viral infections.
Collapse
Affiliation(s)
- Emily J. Remnant
- Behaviour, Ecology and Evolution Laboratory, School of Life and Environmental Sciences, Science Road, University of Sydney, Sydney, NSW 2006, Australia
| | - James W. Baty
- School of Biological Sciences, Victoria University of Wellington, P.O. Box 600, Wellington 6140, New Zealand; (J.W.B.); (M.B.); (J.D.); (O.Q.); (M.A.M.G.); (P.J.L.)
| | - Mariana Bulgarella
- School of Biological Sciences, Victoria University of Wellington, P.O. Box 600, Wellington 6140, New Zealand; (J.W.B.); (M.B.); (J.D.); (O.Q.); (M.A.M.G.); (P.J.L.)
| | - Jana Dobelmann
- School of Biological Sciences, Victoria University of Wellington, P.O. Box 600, Wellington 6140, New Zealand; (J.W.B.); (M.B.); (J.D.); (O.Q.); (M.A.M.G.); (P.J.L.)
- Institute of Evolutionary Ecology and Conservation Genomics, Department of Biology, University of Ulm, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| | - Oliver Quinn
- School of Biological Sciences, Victoria University of Wellington, P.O. Box 600, Wellington 6140, New Zealand; (J.W.B.); (M.B.); (J.D.); (O.Q.); (M.A.M.G.); (P.J.L.)
- Bacteriology and Aquatic Animal Diseases, Ministry for Primary Industries, P.O. Box 2526, Wellington 6140, New Zealand
| | - Monica A. M. Gruber
- School of Biological Sciences, Victoria University of Wellington, P.O. Box 600, Wellington 6140, New Zealand; (J.W.B.); (M.B.); (J.D.); (O.Q.); (M.A.M.G.); (P.J.L.)
| | - Philip J. Lester
- School of Biological Sciences, Victoria University of Wellington, P.O. Box 600, Wellington 6140, New Zealand; (J.W.B.); (M.B.); (J.D.); (O.Q.); (M.A.M.G.); (P.J.L.)
| |
Collapse
|
82
|
Deformed wing virus variant shift from 2010 to 2016 in managed and feral UK honey bee colonies. Arch Virol 2021; 166:2693-2702. [PMID: 34275024 PMCID: PMC8421296 DOI: 10.1007/s00705-021-05162-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 05/18/2021] [Indexed: 11/13/2022]
Abstract
Deformed wing virus (DWV) has been linked to the global decline of honey bees. DWV exists as three master variants (DWV-A, DWV-B, and DWV-C), each with differing outcomes for the honey bee host. Research in the USA showed a shift from DWV-A to DWV-B between 2010 to 2016 in honey bee colonies. Likewise, in the UK, a small study in 2007 found only DWV-A, whereas in 2016, DWV-B was the most prevalent variant. This suggests a shift from DWV-A to DWV-B might have occurred in the UK between 2007 and 2016. To investigate this further, data from samples collected in 2009/10 (n = 46) were compared to existing data from 2016 (n = 42). These samples also allowed a comparison of DWV variants between Varroa-untreated (feral) and Varroa-treated (managed) colonies. The results revealed that, in the UK, DWV-A was far more prevalent in 2009/10 (87%) than in 2016 (43%). In contrast, DWV-B was less prevalent in 2009/10 (76%) than in 2016 (93%). Regardless if colonies had been treated for Varroa (managed) or not (feral), the same trend from DWV-A to DWV-B occurred. Overall, the results reveal a decrease in DWV-A and an increase in DWV-B in UK colonies.
Collapse
|
83
|
Power K, Martano M, Altamura G, Piscopo N, Maiolino P. Histopathological Features of Symptomatic and Asymptomatic Honeybees Naturally Infected by Deformed Wing Virus. Pathogens 2021; 10:pathogens10070874. [PMID: 34358025 PMCID: PMC8308782 DOI: 10.3390/pathogens10070874] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 07/07/2021] [Accepted: 07/08/2021] [Indexed: 12/20/2022] Open
Abstract
Deformed wing virus (DWV) is capable of infecting honeybees at every stage of development causing symptomatic and asymptomatic infections. To date, very little is known about the histopathological lesions caused by the virus. Therefore, 40 honeybee samples were randomly collected from a naturally DWV infected hive and subjected to anatomopathological examination to discriminate between symptomatic (29) and asymptomatic (11) honeybees. Subsequently, 15 honeybee samples were frozen at -80° and analyzed by PCR and RTqPCR to determinate the presence/absence of the virus and the relative viral load, while 25 honeybee samples were analyzed by histopathological techniques. Biomolecular results showed a fragment of the expected size (69bp) of DWV in all samples and the viral load was higher in symptomatic honeybees compared to the asymptomatic group. Histopathological results showed degenerative alterations of the hypopharyngeal glands (19/25) and flight muscles (6/25) in symptomatic samples while 4/25 asymptomatic samples showed an inflammatory response in the midgut and the hemocele. Results suggest a possible pathogenic action of DWV in both symptomatic and asymptomatic honeybees, and a role of the immune response in keeping under control the virus in asymptomatic individuals.
Collapse
|
84
|
Locke B, Thaduri S, Stephan JG, Low M, Blacquière T, Dahle B, Le Conte Y, Neumann P, de Miranda JR. Adapted tolerance to virus infections in four geographically distinct Varroa destructor-resistant honeybee populations. Sci Rep 2021; 11:12359. [PMID: 34117296 PMCID: PMC8196020 DOI: 10.1038/s41598-021-91686-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 05/28/2021] [Indexed: 11/22/2022] Open
Abstract
The ectoparasitic mite, Varroa destructor, is unarguably the leading cause of honeybee (Apis mellifera) mortality worldwide through its role as a vector for lethal viruses, in particular, strains of the Deformed wing virus (DWV) and Acute bee paralysis virus (ABPV) complexes. Several honeybee populations across Europe have well-documented adaptations of mite-resistant traits but little is known about host adaptations towards the virus infections vectored by the mite. The aim of this study was to assess and compare the possible contribution of adapted virus tolerance and/or resistance to the enhanced survival of four well-documented mite-resistant honeybee populations from Norway, Sweden, The Netherlands and France, in relation to unselected mite-susceptible honeybees. Caged adult bees and laboratory reared larvae, from colonies of these four populations, were inoculated with DWV and ABPV in a series of feeding infection experiments, while control groups received virus-free food. Virus infections were monitored using RT-qPCR assays in individuals sampled over a time course. In both adults and larvae the DWV and ABPV infection dynamics were nearly identical in all groups, but all mite-resistant honeybee populations had significantly higher survival rates compared to the mite-susceptible honeybees. These results suggest that adapted virus tolerance is an important component of survival mechanisms.
Collapse
Affiliation(s)
- Barbara Locke
- Department of Ecology, Swedish Species Information Centre, Swedish University of Agricultural Sciences, Uppsala, Sweden.
| | - Srinivas Thaduri
- Department of Ecology, Swedish Species Information Centre, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Jörg G Stephan
- Department of Ecology, Swedish Species Information Centre, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Matthew Low
- Department of Ecology, Swedish Species Information Centre, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Tjeerd Blacquière
- Bio-Interaction and Plant Health, Wageningen University and Research, Wageningen, The Netherlands
| | - Bjørn Dahle
- Department of Animal and Aquacultural Sciences, Norwegian University of Sciences, Kløfta, Ås, Norway
| | - Yves Le Conte
- Abeilles et Environnement, French National Institute for Agricultural Research, Avignon, France
| | - Peter Neumann
- Vetsuisse Faculty, University of Bern, Bern, Switzerland
- Agroscope, Swiss Bee Research Center, Bern, Switzerland
| | - Joachim R de Miranda
- Department of Ecology, Swedish Species Information Centre, Swedish University of Agricultural Sciences, Uppsala, Sweden
| |
Collapse
|
85
|
Posada-Florez F, Lamas ZS, Hawthorne DJ, Chen Y, Evans JD, Ryabov EV. Pupal cannibalism by worker honey bees contributes to the spread of deformed wing virus. Sci Rep 2021; 11:8989. [PMID: 33903723 PMCID: PMC8076318 DOI: 10.1038/s41598-021-88649-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Accepted: 04/12/2021] [Indexed: 11/30/2022] Open
Abstract
Transmission routes impact pathogen virulence and genetics, therefore comprehensive knowledge of these routes and their contribution to pathogen circulation is essential for understanding host-pathogen interactions and designing control strategies. Deformed wing virus (DWV), a principal viral pathogen of honey bees associated with increased honey bee mortality and colony losses, became highly virulent with the spread of its vector, the ectoparasitic mite Varroa destructor. Reproduction of Varroa mites occurs in capped brood cells and mite-infested pupae from these cells usually have high levels of DWV. The removal of mite-infested pupae by worker bees, Varroa Sensitive Hygiene (VSH), leads to cannibalization of pupae with high DWV loads, thereby offering an alternative route for virus transmission. We used genetically tagged DWV to investigate virus transmission to and between worker bees following pupal cannibalisation under experimental conditions. We demonstrated that cannibalization of DWV-infected pupae resulted in high levels of this virus in worker bees and that the acquired virus was then transmitted between bees via trophallaxis, allowing circulation of Varroa-vectored DWV variants without the mites. Despite the known benefits of hygienic behaviour, it is possible that higher levels of VSH activity may result in increased transmission of DWV via cannibalism and trophallaxis.
Collapse
Affiliation(s)
- Francisco Posada-Florez
- USDA, Agricultural Research Service, Bee Research Lab, BARC-East Bldg. 306, 10300 Baltimore Ave., Beltsville, MD, 20705, USA.
| | - Zachary S Lamas
- USDA, Agricultural Research Service, Bee Research Lab, BARC-East Bldg. 306, 10300 Baltimore Ave., Beltsville, MD, 20705, USA
- Department of Entomology, University of Maryland, College Park, MD, USA
| | - David J Hawthorne
- Department of Entomology, University of Maryland, College Park, MD, USA
| | - Yanping Chen
- USDA, Agricultural Research Service, Bee Research Lab, BARC-East Bldg. 306, 10300 Baltimore Ave., Beltsville, MD, 20705, USA
| | - Jay D Evans
- USDA, Agricultural Research Service, Bee Research Lab, BARC-East Bldg. 306, 10300 Baltimore Ave., Beltsville, MD, 20705, USA.
| | - Eugene V Ryabov
- USDA, Agricultural Research Service, Bee Research Lab, BARC-East Bldg. 306, 10300 Baltimore Ave., Beltsville, MD, 20705, USA.
| |
Collapse
|
86
|
The Gut Microbiota Can Provide Viral Tolerance in the Honey Bee. Microorganisms 2021; 9:microorganisms9040871. [PMID: 33920692 PMCID: PMC8072606 DOI: 10.3390/microorganisms9040871] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 04/14/2021] [Accepted: 04/16/2021] [Indexed: 01/26/2023] Open
Abstract
Adult honey bees host a remarkably consistent gut microbial community that is thought to benefit host health and provide protection against parasites and pathogens. Currently, however, we lack experimental evidence for the causal role of the gut microbiota in protecting the Western honey bees (Apis mellifera) against their viral pathogens. Here we set out to fill this knowledge gap by investigating how the gut microbiota modulates the virulence of a major honey bee viral pathogen, deformed wing virus (DWV). We found that, upon oral virus exposure, honey bee survival was significantly increased in bees with an experimentally established normal gut microbiota compared to control bees with a perturbed (dysbiotic) gut microbiota. Interestingly, viral titers were similar in bees with normal gut microbiota and dysbiotic bees, pointing to higher viral tolerance in bees with normal gut microbiota. Taken together, our results provide evidence for a positive role of the gut microbiota for honey bee fitness upon viral infection. We hypothesize that environmental stressors altering honey bee gut microbiota composition, e.g., antibiotics in beekeeping or pesticides in modern agriculture, could interact synergistically with pathogens, leading to negative effects on honey bee health and the epidemiology and impact of their viruses.
Collapse
|
87
|
Chen G, Wang S, Jia S, Feng Y, Hu F, Chen Y, Zheng H. A New Strain of Virus Discovered in China Specific to the Parasitic Mite Varroa destructor Poses a Potential Threat to Honey Bees. Viruses 2021; 13:679. [PMID: 33920919 PMCID: PMC8071286 DOI: 10.3390/v13040679] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 03/25/2021] [Accepted: 04/08/2021] [Indexed: 11/17/2022] Open
Abstract
The ectoparasitic mite, Varroa destructor, feeds directly on honey bees and serves as a vector for transmitting viruses among them. The Varroa mite causes relatively little damage to its natural host, the Eastern honey bee (Apis cerana) but it is the most devastating pest for the Western honey bee (Apis mellifera). Using Illumina HiSeq sequencing technology, we conducted a metatranscriptome analysis of the microbial community associated with Varroa mites. This study led to the identification of a new Chinese strain of Varroa destructor virus-2 (VDV-2), which is a member of the Iflaviridae family and was previously reported to be specific to Varroa mites. A subsequent epidemiological investigation of Chinese strain of VDV-2 (VDV-2-China) showed that the virus was highly prevalent among Varroa populations and was not identified in any of the adult workers from both A. mellifera and A.cerana colonies distributed in six provinces in China, clearly indicating that VDV-2-China is predominantly a Varroa-adapted virus. While A. mellifera worker pupae exposed to less than two Varroa mites tested negative for VDV-2-China, VDV-2-China was detected in 12.5% of the A. mellifera worker pupae that were parasitized by more than 10 Varroa mites, bringing into play the possibility of a new scenario where VDV-2 could be transmitted to the honey bees during heavy Varroa infestations. Bioassay for the VDV-2-China infectivity showed that A. cerana was not a permissive host for VDV-2-China, yet A. mellifera could be a biological host that supports VDV-2-China's replication. The different replication dynamics of the virus between the two host species reflect their variation in terms of susceptibility to the virus infection, posing a potential threat to the health of the Western honey bee. The information gained from this study contributes to the knowledge concerning genetic variabilities and evolutionary dynamics of Varroa-borne viruses, thereby enhancing our understanding of underlying molecular mechanisms governing honey bee Varroosis.
Collapse
Affiliation(s)
- Gongwen Chen
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China; (G.C.); (S.W.); (S.J.); (F.H.)
| | - Shuai Wang
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China; (G.C.); (S.W.); (S.J.); (F.H.)
| | - Shuo Jia
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China; (G.C.); (S.W.); (S.J.); (F.H.)
| | - Ye Feng
- Insitutute for Translational Medicine, Zhejiang University School of Medicine, Hangzhou 310058, China;
| | - Fuliang Hu
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China; (G.C.); (S.W.); (S.J.); (F.H.)
| | - Yanping Chen
- USDA-ARS Bee Research Laboratory, Beltsville, MD 20705, USA
| | - Huoqing Zheng
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China; (G.C.); (S.W.); (S.J.); (F.H.)
| |
Collapse
|
88
|
Norton AM, Remnant EJ, Tom J, Buchmann G, Blacquiere T, Beekman M. Adaptation to vector-based transmission in a honeybee virus. J Anim Ecol 2021; 90:2254-2267. [PMID: 33844844 DOI: 10.1111/1365-2656.13493] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 04/06/2021] [Indexed: 11/27/2022]
Abstract
Global pollinator declines as a result of emerging infectious diseases are of major concern. Managed honeybees Apis mellifera are susceptible to numerous parasites and pathogens, many of which appear to be transmissible to sympatric non-Apis taxa. The ectoparasitic mite Varroa destructor is considered to be the most significant threat to honeybees due to its role in vectoring RNA viruses, particularly Deformed wing virus (DWV). Vector transmission of DWV has resulted in the accumulation of high viral loads in honeybees and is often associated with colony death. DWV has two main genotypes, A and B. DWV-A was more prevalent during the initial phase of V. destructor establishment. In recent years, the global prevalence of DWV-B has increased, suggesting that DWV-B is better adapted to vector transmission than DWV-A. We aimed to determine the role vector transmission plays in DWV genotype prevalence at a colony level. We experimentally increased or decreased the number of V. destructor mites in honeybee colonies, and tracked DWV-A and DWV-B loads over a period of 10 months. Our results show that the two DWV genotypes differ in their response to mite numbers. DWV-A accumulation in honeybees was positively correlated with mite numbers yet DWV-A was largely undetected in the absence of the mite. In contrast, colonies had high loads of DWV-B even when mite numbers were low. DWV-B loads persisted in miticide-treated colonies, indicating that this genotype has a competitive advantage over DWV-A irrespective of mite numbers. Our findings suggest that the global increase in DWV-B prevalence is not driven by selective pressure by the vector. Rather, DWV-B is able to persist in colonies at higher viral loads relative to DWV-A in the presence and absence of V. destructor. The interplay between V. destructor and DWV genotypes within honeybee colonies may have broad consequences upon viral diversity in sympatric taxa as a result of spillover.
Collapse
Affiliation(s)
- Amanda M Norton
- Behaviour, Ecology and Evolution (BEE) Laboratory, School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW, Australia
| | - Emily J Remnant
- Behaviour, Ecology and Evolution (BEE) Laboratory, School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW, Australia
| | - Jolanda Tom
- Wageningen University and Research, Wageningen, The Netherlands
| | - Gabriele Buchmann
- Behaviour, Ecology and Evolution (BEE) Laboratory, School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW, Australia
| | | | - Madeleine Beekman
- Behaviour, Ecology and Evolution (BEE) Laboratory, School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW, Australia.,Wissenschaftskolleg zu Berlin, Berlin, Germany
| |
Collapse
|
89
|
Leponiemi M, Amdam GV, Freitak D. Exposure to Inactivated Deformed Wing Virus Leads to Trans-Generational Costs but Not Immune Priming in Honeybees (Apis mellifera). Front Ecol Evol 2021. [DOI: 10.3389/fevo.2021.626670] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Pathogens are identified as one of the major drivers behind the honeybee colony losses, as well as one of the reasons for the reported declines in terrestrial insect abundances in recent decades. To fight infections, animals rely on their immune system. The immune system of many invertebrates can be primed by exposure to a pathogen, so that upon further exposure the animal is better protected. The protective priming effect can even extend to the next generation, but the species capable of priming the immune system of their offspring are still being investigated. Here we studied whether honeybees could prime their offspring against a viral pathogen, by challenging honeybee queens orally with an inactivated deformed wing virus (DWV), one of the most devastating honeybee viruses. The offspring were then infected by viral injection. The effects of immune priming were assayed by measuring viral loads and two typical symptoms of the virus, pupal mortality, and abnormal wing phenotype. We saw a low amount of wing deformities and low pupal mortality. While no clear priming effect against the virus was seen, we found that the maternal immune challenge, when combined with the stress caused by an injection during development, manifested in costs in the offspring, leading to an increased number of deformed wings.
Collapse
|
90
|
Virus Prospecting in Crickets-Discovery and Strain Divergence of a Novel Iflavirus in Wild and Cultivated Acheta domesticus. Viruses 2021; 13:v13030364. [PMID: 33669085 PMCID: PMC7996529 DOI: 10.3390/v13030364] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 02/18/2021] [Accepted: 02/22/2021] [Indexed: 12/19/2022] Open
Abstract
Orthopteran insects have high reproductive rates leading to boom-bust population dynamics with high local densities that are ideal for short, episodic disease epidemics. Viruses are particularly well suited for such host population dynamics, due to their supreme ability to adapt to changing transmission criteria. However, very little is known about the viruses of Orthopteran insects. Since Orthopterans are increasingly reared commercially, for animal feed and human consumption, there is a risk that viruses naturally associated with these insects can adapt to commercial rearing conditions, and cause disease. We therefore explored the virome of the house cricket Acheta domesticus, which is both part of the natural Swedish landscape and reared commercially for the pet feed market. Only 1% of the faecal RNA and DNA from wild-caught A. domesticus consisted of viruses. These included both known and novel viruses associated with crickets/insects, their bacterial-fungal microbiome, or their plant food. Relatively abundant among these viral Operational Taxonomic Units (OTUs) was a novel Iflavirus, tentatively named Acheta domesticus Iflavirus (AdIV). Quantitative analyses showed that AdIV was also abundant in frass and insect samples from commercially reared crickets. Interestingly, the wild and commercial AdIV strains had short, extremely divergent variation hotspots throughout the genome, which may indicate specific adaptation to their hosts’ distinct rearing environments.
Collapse
|
91
|
Daughenbaugh KF, Kahnonitch I, Carey CC, McMenamin AJ, Wiegand T, Erez T, Arkin N, Ross B, Wiedenheft B, Sadeh A, Chejanovsky N, Mandelik Y, Flenniken ML. Metatranscriptome Analysis of Sympatric Bee Species Identifies Bee Virus Variants and a New Virus, Andrena-Associated Bee Virus-1. Viruses 2021; 13:291. [PMID: 33673324 PMCID: PMC7917660 DOI: 10.3390/v13020291] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 01/22/2021] [Accepted: 02/03/2021] [Indexed: 12/11/2022] Open
Abstract
Bees are important plant pollinators in agricultural and natural ecosystems. High average annual losses of honey bee (Apis mellifera) colonies in some parts of the world, and regional population declines of some mining bee species (Andrena spp.), are attributed to multiple factors including habitat loss, lack of quality forage, insecticide exposure, and pathogens, including viruses. While research has primarily focused on viruses in honey bees, many of these viruses have a broad host range. It is therefore important to apply a community level approach in studying the epidemiology of bee viruses. We utilized high-throughput sequencing to evaluate viral diversity and viral sharing in sympatric, co-foraging bees in the context of habitat type. Variants of four common viruses (i.e., black queen cell virus, deformed wing virus, Lake Sinai virus 2, and Lake Sinai virus NE) were identified in honey bee and mining bee samples, and the high degree of nucleotide identity in the virus consensus sequences obtained from both taxa indicates virus sharing. We discovered a unique bipartite + ssRNA Tombo-like virus, Andrena-associated bee virus-1 (AnBV-1). AnBV-1 infects mining bees, honey bees, and primary honey bee pupal cells maintained in culture. AnBV-1 prevalence and abundance was greater in mining bees than in honey bees. Statistical modeling that examined the roles of ecological factors, including floral diversity and abundance, indicated that AnBV-1 infection prevalence in honey bees was greater in habitats with low floral diversity and abundance, and that interspecific virus transmission is strongly modulated by the floral community in the habitat. These results suggest that land management strategies that aim to enhance floral diversity and abundance may reduce AnBV-1 spread between co-foraging bees.
Collapse
Affiliation(s)
- Katie F. Daughenbaugh
- Department of Plant Sciences and Plant Pathology, Montana State University, Bozeman, MT 59717, USA; (K.F.D.); (B.R.)
- Pollinator Health Center, Montana State University, Bozeman, MT 59717, USA; (C.C.C.); (A.J.M.); (T.W.)
| | - Idan Kahnonitch
- The Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot 5290002, Israel; (I.K.); (Y.M.)
- Agroecology Lab, Newe Ya’ar Research Center, ARO, Ramat Yishay 30095, Israel; (N.A.); (A.S.)
| | - Charles C. Carey
- Pollinator Health Center, Montana State University, Bozeman, MT 59717, USA; (C.C.C.); (A.J.M.); (T.W.)
| | - Alexander J. McMenamin
- Pollinator Health Center, Montana State University, Bozeman, MT 59717, USA; (C.C.C.); (A.J.M.); (T.W.)
- Department of Microbiology and Immunology, Montana State University, Bozeman, MT 59717, USA;
| | - Tanner Wiegand
- Pollinator Health Center, Montana State University, Bozeman, MT 59717, USA; (C.C.C.); (A.J.M.); (T.W.)
| | - Tal Erez
- Entomology Department, ARO, The Volcani Center, Rishon Lezion 7528809, Israel; (T.E.); (N.C.)
| | - Naama Arkin
- Agroecology Lab, Newe Ya’ar Research Center, ARO, Ramat Yishay 30095, Israel; (N.A.); (A.S.)
- The Mina & Everard Goodman Faculty of Life Sciences, Bar Ilan University, Ramat Gan 5290002, Israel
| | - Brian Ross
- Department of Plant Sciences and Plant Pathology, Montana State University, Bozeman, MT 59717, USA; (K.F.D.); (B.R.)
- Pollinator Health Center, Montana State University, Bozeman, MT 59717, USA; (C.C.C.); (A.J.M.); (T.W.)
| | - Blake Wiedenheft
- Department of Microbiology and Immunology, Montana State University, Bozeman, MT 59717, USA;
| | - Asaf Sadeh
- Agroecology Lab, Newe Ya’ar Research Center, ARO, Ramat Yishay 30095, Israel; (N.A.); (A.S.)
| | - Nor Chejanovsky
- Entomology Department, ARO, The Volcani Center, Rishon Lezion 7528809, Israel; (T.E.); (N.C.)
| | - Yael Mandelik
- The Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot 5290002, Israel; (I.K.); (Y.M.)
| | - Michelle L. Flenniken
- Department of Plant Sciences and Plant Pathology, Montana State University, Bozeman, MT 59717, USA; (K.F.D.); (B.R.)
- Pollinator Health Center, Montana State University, Bozeman, MT 59717, USA; (C.C.C.); (A.J.M.); (T.W.)
- Department of Microbiology and Immunology, Montana State University, Bozeman, MT 59717, USA;
| |
Collapse
|
92
|
Transcriptomic Responses of the Honey Bee Brain to Infection with Deformed Wing Virus. Viruses 2021; 13:v13020287. [PMID: 33673139 PMCID: PMC7918736 DOI: 10.3390/v13020287] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 02/05/2021] [Accepted: 02/07/2021] [Indexed: 12/13/2022] Open
Abstract
Managed colonies of European honey bees (Apis mellifera) are under threat from Varroa destructor mite infestation and infection with viruses vectored by mites. In particular, deformed wing virus (DWV) is a common viral pathogen infecting honey bees worldwide that has been shown to induce behavioral changes including precocious foraging and reduced associative learning. We investigated how DWV infection of bees affects the transcriptomic response of the brain. The transcriptomes of individual brains were analyzed using RNA-Seq after experimental infection of newly emerged adult bees with DWV. Two analytical methods were used to identify differentially expressed genes from the ~15,000 genes in the Apis mellifera genome. The 269 genes that had increased expression in DWV infected brains included genes involved in innate immunity such as antimicrobial peptides (AMPs), Ago2, and Dicer. Single bee brain NMR metabolomics methodology was developed for this work and indicates that proline is strongly elevated in DWV infected brains, consistent with the increased presence of the AMPs abaecin and apidaecin. The 1361 genes with reduced expression levels includes genes involved in cellular communication including G-protein coupled, tyrosine kinase, and ion-channel regulated signaling pathways. The number and function of the downregulated genes suggest that DWV has a major impact on neuron signaling that could explain DWV related behavioral changes.
Collapse
|
93
|
Direct Evidence for Infection of Varroa destructor Mites with the Bee-Pathogenic Deformed Wing Virus Variant B - but Not Variant A - via Fluorescence- in situ-Hybridization Analysis. J Virol 2021; 95:JVI.01786-20. [PMID: 33298545 PMCID: PMC8092827 DOI: 10.1128/jvi.01786-20] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Deformed wing virus (DWV) is a bee pathogenic, single- and positive-stranded RNA virus that has been involved in severe honey bee colony losses worldwide. DWV, when transmitted horizontally or vertically from bee to bee, causes mainly covert infections not associated with any visible symptoms or damage. Overt infections occur after vectorial transmission of DWV to the developing bee pupae through the ectoparasitic mite Varroa destructor Symptoms of overt infections are pupal death, bees emerging with deformed wings and shortened abdomens, or cognitive impairment due to brain infection. So far, three variants of DWV, DWV-A, DWV-B, and DWV-C, have been described. While it is widely accepted that V. destructor acts as vector of DWV, the question of whether the mite only functions as a mechanical vector or whether DWV can infect the mite thus using it as a biological vector is hotly debated, because in the literature data can be found that support both hypotheses. In order to settle this scientific dispute, we analyzed putatively DWV-infected mites with a newly established protocol for fluorescence-in situ-hybridization of mites and demonstrated DWV-specific signals inside mite cells. We provide compelling and direct evidence that DWV-B infects the intestinal epithelium and the salivary glands of V. destructor In contrast, no evidence for DWV-A infecting mite cells was found. Our data are key to understanding the pathobiology of DWV, the mite's role as a biological DWV vector and the quasispecies dynamics of this RNA virus when switching between insect and arachnid host species.IMPORTANCE Deformed wing virus (DWV) is a bee pathogenic, originally rather benign, single- and positive-stranded RNA virus. Only the vectorial transmission of this virus to honey bees by the ectoparasitic mite Varroa destructor leads to fatal or symptomatic infections of individuals, usually followed by collapse of the entire colony. Studies on whether the mite only acts as a mechanical virus vector or whether DWV can infect the mite and thus use it as a biological vector have led to disparate results. In our study using fluorescence-in situ-hybridization we provide compelling and direct evidence that at least the DWV-B variant infects the gut epithelium and the salivary glands of V. destructor Hence, the host range of DWV includes both, bees (Insecta) and mites (Arachnida). Our data contribute to a better understanding of the triangular relationship between honey bees, V. destructor and DWV and the evolution of virulence in this viral bee pathogen.
Collapse
|
94
|
Detection of deformed wing virus (DWV) in the Vietnamese walking stick Medauroidea extradentata (Phasmatodea). Virus Res 2020; 293:198263. [PMID: 33359173 DOI: 10.1016/j.virusres.2020.198263] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 12/13/2020] [Accepted: 12/15/2020] [Indexed: 11/22/2022]
Abstract
Deformed wing virus (DWV) is a single-stranded positive sense RNA virus that mainly infects honey bees (Apis mellifera) and can have devastating impacts on the colony. Recent studies have shown the presence of this virus in several species of Apis spp. and some other Hymenoptera, but our knowledge of their host range is very limited. We screened previously sequenced RNAseq libraries from different tissues of Vietnamese Walking Stick, Medauroidea extradentata (Phasmatodea) for DWV. We only found this virus in six libraries from anterior and posterior midgut tissue. From the midgut libraries we were able to construct a complete DWV genome sequence, which consisted of 10,140 nucleotides and included one open reading frame. Pairwise genome comparison confirmed strong similarity (98.89 %) of these assembled sequences with only 113 SNPs to the original DWV genome. We hypothesize the M. extradentata acquired this virus via a foodborne transmission by consuming DWV-infected material such as pollen or leaves contaminated with virus infected bee faeces.
Collapse
|
95
|
Woodford L, Evans DJ. Deformed wing virus: using reverse genetics to tackle unanswered questions about the most important viral pathogen of honey bees. FEMS Microbiol Rev 2020; 45:6035241. [PMID: 33320949 DOI: 10.1093/femsre/fuaa070] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 12/11/2020] [Indexed: 12/31/2022] Open
Abstract
Deformed wing virus (DWV) is the most important viral pathogen of honey bees. It usually causes asymptomatic infections but, when vectored by the ectoparasitic mite Varroa destructor, it is responsible for the majority of overwintering colony losses globally. Although DWV was discovered four decades ago, research has been hampered by the absence of an in vitro cell culture system or the ability to culture pure stocks of the virus. The recent developments of reverse genetic systems for DWV go some way to addressing these limitations. They will allow the investigation of specific questions about strain variation, host tropism and pathogenesis to be answered, and are already being exploited to study tissue tropism and replication in Varroa and non-Apis pollinators. Three areas neatly illustrate the advances possible with reverse genetic approaches: (i) strain variation and recombination, in which reverse genetics has highlighted similarities rather than differences between virus strains; (ii) analysis of replication kinetics in both honey bees and Varroa, in studies that likely explain the near clonality of virus populations often reported; and (iii) pathogen spillover to non-Apis pollinators, using genetically tagged viruses to accurately monitor replication and infection.
Collapse
Affiliation(s)
- Luke Woodford
- Biomedical Sciences Research Complex, University of St Andrews, St Andrews, KY16 9ST, UK
| | - David J Evans
- Biomedical Sciences Research Complex, University of St Andrews, St Andrews, KY16 9ST, UK
| |
Collapse
|
96
|
Varroa destructor mites vector and transmit pathogenic honey bee viruses acquired from an artificial diet. PLoS One 2020; 15:e0242688. [PMID: 33232341 PMCID: PMC7685439 DOI: 10.1371/journal.pone.0242688] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2019] [Accepted: 11/06/2020] [Indexed: 12/30/2022] Open
Abstract
The ectoparasitic mite Varroa destructor is one of the most destructive pests of the honey bee (Apis mellifera) and the primary biotic cause of colony collapse in many regions of the world. These mites inflict physical injury on their honey bee hosts from feeding on host hemolymph and fat body cells/cellular components, and serve as the vector for deadly honey bee viruses, including Deformed wing virus (DWV) and the related Varroa destructor virus-1 (VDV-1) (i.e., DWV-like viruses). Studies focused on elucidating the dynamics of Varroa-mediated vectoring and transmission of DWV-like viruses may be confounded by viruses present in ingested host tissues or the mites themselves. Here we describe a system that includes an artificial diet free of insect tissue-derived components for maintaining Varroa mites for in vitro experimentation. Using this system, together with the novel engineered cDNA clone-derived genetically tagged VDV-1 and wild-type DWV, we demonstrated for the first time that Varroa mites provided an artificial diet supplemented with engineered viruses for 36 hours could acquire and transmit sufficient numbers of virus particles to establish an infection in virus-naïve hosts. While the in vitro system described herein provides for only up to five days of mite survival, precluding study of the long-term impacts of viruses on mite health, the system allows for extensive insights into the dynamics of Varroa-mediated vectoring and transmission of honey bee viruses.
Collapse
|
97
|
Lin CY, Lee CC, Nai YS, Hsu HW, Lee CY, Tsuji K, Yang CCS. Deformed Wing Virus in Two Widespread Invasive Ants: Geographical Distribution, Prevalence, and Phylogeny. Viruses 2020; 12:v12111309. [PMID: 33203145 PMCID: PMC7696054 DOI: 10.3390/v12111309] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 11/10/2020] [Accepted: 11/13/2020] [Indexed: 12/16/2022] Open
Abstract
Spillover of honey bee viruses have posed a significant threat to pollination services, triggering substantial effort in determining the host range of the viruses as an attempt to understand the transmission dynamics. Previous studies have reported infection of honey bee viruses in ants, raising the concern of ants serving as a reservoir host. Most of these studies, however, are restricted to a single, local ant population. We assessed the status (geographical distribution/prevalence/viral replication) and phylogenetic relationships of honey bee viruses in ants across the Asia–Pacific region, using deformed wing virus (DWV) and two widespread invasive ants, Paratrechina longicornis and Anoplolepis gracilipes, as the study system. DWV was detected in both ant species, with differential geographical distribution patterns and prevenance levels between them. These metrics, however, are consistent across the geographical range of the same ant species. Active replication was only evident in P. longicornis. We also showed that ant-associated DWV is genetically similar to that isolated from Asian populations of honey bees, suggesting that local acquisition of DWV by the invasive ants may have been common at least in some of our sampled regions. Transmission efficiency of DWV to local arthropods mediated by ant, however, may vary across ant species.
Collapse
Affiliation(s)
- Chun-Yi Lin
- Research Institute for Sustainable Humanosphere, Kyoto University, Kyoto 611-0011, Japan; (C.-Y.L.); (C.-C.L.); (H.-W.H.)
| | - Chih-Chi Lee
- Research Institute for Sustainable Humanosphere, Kyoto University, Kyoto 611-0011, Japan; (C.-Y.L.); (C.-C.L.); (H.-W.H.)
- Laboratory of Insect Ecology, Graduate School of Agriculture, Kyoto University, Kyoto 606-8502, Japan
| | - Yu-Shin Nai
- Department of Entomology, National Chung Hsing University, Taichung 402204, Taiwan;
| | - Hung-Wei Hsu
- Research Institute for Sustainable Humanosphere, Kyoto University, Kyoto 611-0011, Japan; (C.-Y.L.); (C.-C.L.); (H.-W.H.)
- Laboratory of Insect Ecology, Graduate School of Agriculture, Kyoto University, Kyoto 606-8502, Japan
| | - Chow-Yang Lee
- Department of Entomology, University of California, 900 University Avenue, Riverside, CA 92521, USA;
| | - Kazuki Tsuji
- Department of Subtropical Agro-Environmental Sciences, University of the Ryukyus, Senbaru 1, Nishihara, Okinawa 903-0213, Japan;
| | - Chin-Cheng Scotty Yang
- Department of Entomology, National Chung Hsing University, Taichung 402204, Taiwan;
- Department of Entomology, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
- Correspondence: ; Tel.: +886-4-2284-0361 (ext. 540)
| |
Collapse
|
98
|
Deformed wing virus prevalence and load in honeybees in South Africa. Arch Virol 2020; 166:237-241. [PMID: 33136209 PMCID: PMC7815608 DOI: 10.1007/s00705-020-04863-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 09/16/2020] [Indexed: 11/03/2022]
Abstract
Deformed wing virus (DWV) is an emerging honeybee pathogen that has appeared across the globe in the past 40 years. When transmitted by the parasitic varroa mite, it has been associated with the collapse of millions of colonies throughout the Northern Hemisphere. However, despite the presence of the mite in the Southern Hemisphere, infested colonies survive. This study investigated the prevalence of DWV genotypes A, B and C along with their viral loads in South Africa and compared the findings with recent data from Brazil, the UK and the USA. We found that DWV-B was the most prevalent genotype throughout South Africa, although the total DWV viral load was significantly lower (2.8E+07) than found in the Northern Hemisphere (2.8E+07 vs. 2.7E+10, p > 0.00001) and not significantly different to that found in Brazil (5E+06, p = 0.13). The differences in viral load can be explained by the mite resistance in Brazil and South Africa, since mite-infested cells containing high viral loads are removed by the bees, thus lowering the colony's viral burden. This behaviour is much less developed in the vast majority of honeybees in the Northern Hemisphere.
Collapse
|
99
|
Brettell LE, Schroeder DC, Martin SJ. RNAseq of Deformed Wing Virus and Other Honey Bee-Associated Viruses in Eight Insect Taxa with or without Varroa Infestation. Viruses 2020; 12:E1229. [PMID: 33138298 PMCID: PMC7692275 DOI: 10.3390/v12111229] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 10/21/2020] [Accepted: 10/22/2020] [Indexed: 12/12/2022] Open
Abstract
The global spread of a parasitic mite (Varroa destructor) has resulted in Deformed wing virus (DWV), a previously rare pathogen, now dominating the viromes in honey bees and contributing to large-scale honey bee colony losses. DWV can be found in diverse insect taxa and has been implicated in spilling over from honey bees into associated ("apiary") and other ("non-apiary") insects. Here we generated next generation sequence data from 127 insect samples belonging to diverse taxa collected from Hawaiian islands with and without Varroa to identify whether the mite has indirectly affected the viral landscapes of key insect taxa across bees, wasps, flies and ants. Our data showed that, while Varroa was associated with a dramatic increase in abundance of (predominantly recombinant) DWV in honey bees (and no other honey bee-associated RNA virus), this change was not seen in any other taxa sampled. Honey bees share their environment with other insect populations and exist as a homogenous group, frequently sharing common viruses, albeit at low levels. Our data suggest that the threat of Varroa to increase viral load in an apiary does not automatically translate to an increase in virus load in other insects living in the wider community.
Collapse
Affiliation(s)
- Laura E. Brettell
- Hawkesbury Institute for the Environment, Western Sydney University, Locked bag 1797, Penrith, NSW 2751, Australia
- School of Environment and life Sciences, University of Salford, Manchester M5 5WT, UK;
| | - Declan C. Schroeder
- Veterinary Population Medicine, College of Veterinary Medicine, University of Minnesota, St Paul, MN 55108, USA;
- School of Biological Sciences, University of Reading, Reading RG6 6LA, UK
| | - Stephen J. Martin
- School of Environment and life Sciences, University of Salford, Manchester M5 5WT, UK;
| |
Collapse
|
100
|
Varroa destructor: how does it harm Apis mellifera honey bees and what can be done about it? Emerg Top Life Sci 2020; 4:45-57. [PMID: 32537655 PMCID: PMC7326341 DOI: 10.1042/etls20190125] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 05/27/2020] [Accepted: 05/27/2020] [Indexed: 12/23/2022]
Abstract
Since its migration from the Asian honey bee (Apis cerana) to the European honey bee (Apis mellifera), the ectoparasitic mite Varroa destructor has emerged as a major issue for beekeeping worldwide. Due to a short history of coevolution, the host–parasite relationship between A. mellifera and V. destructor is unbalanced, with honey bees suffering infestation effects at the individual, colony and population levels. Several control solutions have been developed to tackle the colony and production losses due to Varroa, but the burden caused by the mite in combination with other biotic and abiotic factors continues to increase, weakening the beekeeping industry. In this synthetic review, we highlight the main advances made between 2015 and 2020 on V. destructor biology and its impact on the health of the honey bee, A. mellifera. We also describe the main control solutions that are currently available to fight the mite and place a special focus on new methodological developments, which point to integrated pest management strategies for the control of Varroa in honey bee colonies.
Collapse
|