51
|
Volek M, Kurfürst J, Drexler M, Svoboda M, Srb P, Veverka V, Curtis E. Aurora: a fluorescent deoxyribozyme for high-throughput screening. Nucleic Acids Res 2024; 52:9049-9061. [PMID: 38860424 PMCID: PMC11347150 DOI: 10.1093/nar/gkae467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 05/07/2024] [Accepted: 05/23/2024] [Indexed: 06/12/2024] Open
Abstract
Fluorescence facilitates the detection, visualization, and tracking of molecules with high sensitivity and specificity. A functional DNA molecule that generates a robust fluorescent signal would offer significant advantages for many applications compared to intrinsically fluorescent proteins, which are expensive and labor intensive to synthesize, and fluorescent RNA aptamers, which are unstable under most conditions. Here, we describe a novel deoxyriboyzme that rapidly and efficiently generates a stable fluorescent product using a readily available coumarin substrate. An engineered version can detect picomolar concentrations of ribonucleases in a simple homogenous assay, and was used to rapidly identify novel inhibitors of the SARS-CoV-2 ribonuclease Nsp15 in a high-throughput screen. Our work adds an important new component to the toolkit of functional DNA parts, and also demonstrates how catalytic DNA motifs can be used to solve real-world problems.
Collapse
Affiliation(s)
- Martin Volek
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague 166 10, Czech Republic
- Department of Genetics and Microbiology, Faculty of Science, Charles University in Prague, Prague 128 44, Czech Republic
| | - Jaroslav Kurfürst
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague 166 10, Czech Republic
- Department of Informatics and Chemistry, University of Chemistry and Technology, Prague 166 28, Czech Republic
| | - Matúš Drexler
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague 166 10, Czech Republic
| | - Michal Svoboda
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague 166 10, Czech Republic
| | - Pavel Srb
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague 166 10, Czech Republic
| | - Václav Veverka
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague 166 10, Czech Republic
- Department of Cell Biology, Faculty of Science, Charles University in Prague, Prague 128 44, Czech Republic
| | - Edward A Curtis
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague 166 10, Czech Republic
| |
Collapse
|
52
|
Fesce R. Old innovations and shifted paradigms in cellular neuroscience. Front Cell Neurosci 2024; 18:1460219. [PMID: 39234031 PMCID: PMC11371623 DOI: 10.3389/fncel.2024.1460219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Accepted: 08/06/2024] [Indexed: 09/06/2024] Open
Abstract
Once upon a time the statistics of quantal release were fashionable: "n" available vesicles (fusion sites), each with probability "p" of releasing a quantum. The story was not so simple, a nice paradigm to be abandoned. Biophysicists, experimenting with "black films," explained the astonishing rapidity of spike-induced release: calcium can trigger the fusion of lipidic vesicles with a lipid bilayer, by masking the negative charges of the membranes. The idea passed away, buried by the discovery of NSF, SNAPs, SNARE proteins and synaptotagmin, Munc, RIM, complexin. Electrophysiology used to be a field for few adepts. Then came patch clamp, and multielectrode arrays and everybody became electrophysiologists. Now, optogenetics have blossomed, and the whole field has changed again. Nice surprise for me, when Alvarez de Toledo demonstrated that release of transmitters could occur through the transient opening of a pore between the vesicle and the plasma-membrane, no collapse of the vesicle in the membrane needed: my mentor Bruno Ceccarelli had cherished this idea ("kiss and run") and tried to prove it for 20 years. The most impressive developments have probably regarded IT, computers and all their applications; machine learning, AI, and the truly spectacular innovations in brain imaging, especially functional ones, have transformed cognitive neurosciences into a new extraordinarily prolific field, and certainly let us imagine that we may finally understand what is going on in our brains. Cellular neuroscience, on the other hand, though the large public has been much less aware of the incredible amount of information the scientific community has acquired on the cellular aspects of neuronal function, may indeed help us to eventually understand the mechanistic detail of how the brain work. But this is no more in the past, this is the future.
Collapse
Affiliation(s)
- Riccardo Fesce
- Department of Biomedical Sciences, Humanitas University Medical School, Pieve Emanuele, Italy
| |
Collapse
|
53
|
Koh DS, Stratiievska A, Jana S, Otto SC, Swanson TM, Nhim A, Carlson S, Raza M, Naves LA, Senning EN, Mehl RA, Gordon SE. Genetic code expansion, click chemistry, and light-activated PI3K reveal details of membrane protein trafficking downstream of receptor tyrosine kinases. eLife 2024; 12:RP91012. [PMID: 39162616 PMCID: PMC11335347 DOI: 10.7554/elife.91012] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/21/2024] Open
Abstract
Ligands such as insulin, epidermal growth factor, platelet-derived growth factor, and nerve growth factor (NGF) initiate signals at the cell membrane by binding to receptor tyrosine kinases (RTKs). Along with G-protein-coupled receptors, RTKs are the main platforms for transducing extracellular signals into intracellular signals. Studying RTK signaling has been a challenge, however, due to the multiple signaling pathways to which RTKs typically are coupled, including MAP/ERK, PLCγ, and Class 1A phosphoinositide 3-kinases (PI3K). The multi-pronged RTK signaling has been a barrier to isolating the effects of any one downstream pathway. Here, we used optogenetic activation of PI3K to decouple its activation from other RTK signaling pathways. In this context, we used genetic code expansion to introduce a click chemistry noncanonical amino acid into the extracellular side of membrane proteins. Applying a cell-impermeant click chemistry fluorophore allowed us to visualize delivery of membrane proteins to the plasma membrane in real time. Using these approaches, we demonstrate that activation of PI3K, without activating other pathways downstream of RTK signaling, is sufficient to traffic the TRPV1 ion channels and insulin receptors to the plasma membrane.
Collapse
Affiliation(s)
- Duk-Su Koh
- University of Washington, Department of Physiology & BiophysicsSeattleUnited States
| | | | - Subhashis Jana
- Department of Biochemistry and Biophysics, Oregon State UniversityCorvallisUnited States
| | - Shauna C Otto
- University of Washington, Department of Physiology & BiophysicsSeattleUnited States
| | - Teresa M Swanson
- University of Washington, Department of Physiology & BiophysicsSeattleUnited States
| | - Anthony Nhim
- University of Washington, Department of Physiology & BiophysicsSeattleUnited States
| | - Sara Carlson
- University of Washington, Department of Physiology & BiophysicsSeattleUnited States
| | - Marium Raza
- University of Washington, Department of Physiology & BiophysicsSeattleUnited States
| | - Ligia Araujo Naves
- University of Washington, Department of Physiology & BiophysicsSeattleUnited States
| | - Eric N Senning
- Department of Neuroscience, University of Texas at AustinAustinUnited States
| | - Ryan A Mehl
- Department of Biochemistry and Biophysics, Oregon State UniversityCorvallisUnited States
| | - Sharona E Gordon
- University of Washington, Department of Physiology & BiophysicsSeattleUnited States
| |
Collapse
|
54
|
Song Q, Tai X, Ren Q, Ren A. Structure-based insights into fluorogenic RNA aptamers. Acta Biochim Biophys Sin (Shanghai) 2024; 57:108-118. [PMID: 39148467 DOI: 10.3724/abbs.2024142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/17/2024] Open
Abstract
Fluorogenic RNA aptamers are in vitro-selected RNA molecules capable of binding to specific fluorophores, significantly increasing their intrinsic fluorescence. Over the past decade, the color palette of fluorescent RNA aptamers has greatly expanded. The emergence and development of these fluorogenic RNA aptamers has introduced a powerful approach for visualizing RNA localization and transport with high spatiotemporal resolution in live cells. To date, a variety of tertiary structures of fluorogenic RNA aptamers have been determined using X-ray crystallography or NMR spectroscopy. Many of these fluorogenic RNA aptamers feature base quadruples or base triples in their fluorophore-binding sites. This review summarizes the structure-based investigations of fluorogenic RNA aptamers, with a focus on their overall folds, ligand-binding pockets and fluorescence activation mechanisms. Additionally, the exploration of how structures guide rational optimization to enhance RNA visualization techniques is discussed.
Collapse
Affiliation(s)
- Qianqian Song
- Life Sciences Institute, Second Affiliated Hospital of Zhejiang University School of Medicine, Zhejiang University, Hangzhou 310058, China
| | - Xiaoqing Tai
- Life Sciences Institute, Second Affiliated Hospital of Zhejiang University School of Medicine, Zhejiang University, Hangzhou 310058, China
| | - Qianyu Ren
- Agricultural College, Yangzhou University, Yangzhou 225009, China
| | - Aiming Ren
- Life Sciences Institute, Second Affiliated Hospital of Zhejiang University School of Medicine, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
55
|
Majekodunmi T, Britton D, Montclare JK. Engineered Proteins and Materials Utilizing Residue-Specific Noncanonical Amino Acid Incorporation. Chem Rev 2024; 124:9113-9135. [PMID: 39008623 PMCID: PMC11327963 DOI: 10.1021/acs.chemrev.3c00855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/17/2024]
Abstract
The incorporation of noncanonical amino acids into proteins and protein-based materials has significantly expanded the repertoire of available protein structures and chemistries. Through residue-specific incorporation, protein properties can be globally modified, resulting in the creation of novel proteins and materials with diverse and tailored characteristics. In this review, we highlight recent advancements in residue-specific incorporation techniques as well as the applications of the engineered proteins and materials. Specifically, we discuss their utility in bio-orthogonal noncanonical amino acid tagging (BONCAT), fluorescent noncanonical amino acid tagging (FUNCAT), threonine-derived noncanonical amino acid tagging (THRONCAT), cross-linking, fluorination, and enzyme engineering. This review underscores the importance of noncanonical amino acid incorporation as a tool for the development of tailored protein properties to meet diverse research and industrial needs.
Collapse
Affiliation(s)
- Temiloluwa Majekodunmi
- Department of Chemical and Biomolecular Engineering, New York University Tandon School of Engineering, Brooklyn, New York 11201, United States
| | - Dustin Britton
- Department of Chemical and Biomolecular Engineering, New York University Tandon School of Engineering, Brooklyn, New York 11201, United States
| | - Jin Kim Montclare
- Department of Chemical and Biomolecular Engineering, New York University Tandon School of Engineering, Brooklyn, New York 11201, United States
- Department of Biomedical Engineering, New York University Tandon School of Engineering, Brooklyn, New York 11201, United States
- Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, New York, New York 10016, United States
- Department of Chemistry, New York University, New York, New York 10012, United States
- Department of Biomaterials, New York University College of Dentistry, New York, New York 10010, United States
- Department of Radiology, New York University Langone Health, New York, New York 10016, United States
| |
Collapse
|
56
|
Goetting-Minesky MP, Kim J, White DT, Hayashi M, Rickard AH, Fenno JC. Development of a small shuttle plasmid for use in oral Veillonella and initial appraisal of potential for fluorescence-based applications. Lett Appl Microbiol 2024; 77:ovae069. [PMID: 39020263 PMCID: PMC11299066 DOI: 10.1093/lambio/ovae069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 07/03/2024] [Accepted: 07/16/2024] [Indexed: 07/19/2024]
Abstract
Oral Veillonella species are among the early colonizers of the human oral cavity. We constructed a small, single-selectable-marker shuttle plasmid, examined its ability to be transformed into diverse oral Veillonella strains, and assessed its potential use for expressing a gene encoding an oxygen-independent fluorescent protein, thus generating a fluorescent Veillonella parvula strain. Because tetracycline resistance is common in Veillonella, we replaced genes encoding ampicillin- and tetracycline-resistance in a previously described shuttle plasmid (pBSJL2) with a chloramphenicol acetyltransferase gene. The resulting plasmid pCF1135 was successfully introduced into four strains representing V. parvula and V. atypica by either natural transformation or electroporation. We then modified this plasmid to express a gene encoding an oxygen-independent fluorescent protein in V. parvula SKV38. The resulting strain yielded a fluorescence signal intensity ∼16 times higher than the wild type in microplate-based fluorimetry experiments. While fluorescence microscopy demonstrated that planktonic cells, colonies, and biofilms of fluorescent V. parvula could also be imaged, photobleaching was a significant issue. In conclusion, we anticipate this genetic system and information provided here will facilitate expanded studies of oral Veillonella species' properties and behavior.
Collapse
Affiliation(s)
- M Paula Goetting-Minesky
- Department of Biologic and Materials Sciences and Prosthodontics, School of Dentistry, University of Michigan, Ann Arbor, MI 48109, United States
| | - Jordan Kim
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI 48109, United States
| | - Duane T White
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI 48109, United States
| | - Michael Hayashi
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI 48109, United States
| | - Alexander H Rickard
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI 48109, United States
| | - J Christopher Fenno
- Department of Biologic and Materials Sciences and Prosthodontics, School of Dentistry, University of Michigan, Ann Arbor, MI 48109, United States
| |
Collapse
|
57
|
Hacibeyoğlu K, Tuzlakoğlu Öztürk M, Arslan Ö, Tazebay UH. Live Cell Protein Imaging of Tandem Complemented-GFP11-Tagged Coiled-Coil Domain-Containing Protein-124 Identifies this Factor in G3BP1-Induced Stress-Granules. Protein J 2024; 43:834-841. [PMID: 39009911 DOI: 10.1007/s10930-024-10216-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/20/2024] [Indexed: 07/17/2024]
Abstract
Coiled-coil domain-containing 124 protein is a multifunctional RNA-binding factor, and it was previously reported to interact with various biomolecular complexes localized at diverse subcellular locations, such as the ribosome, centrosome, midbody, and nucleoli. We aimed to better characterize the subcellular CCDC124 translocation by labelling this protein with a fluorescent tag, followed by laser scanning confocal microscopy methods. As traditional GFP-tagging of small proteins such as CCDC124 often faces limitations like potential structural perturbations of labeled proteins, and interference of the fluorescent-tag with their endogenous cellular functions, we aimed to label CCDC124 with the smallest possible split-GFP associated protein-tagging system (GFP11/GFP1-10) for better characterization of its subcellular localizations and its translocation dynamics. By recombinant DNA techniques we generated CCDC124-constructs labelled with either single of four tandem copies of GFP11 (GFP11 × 1::CCDC124, GFP11 × 4::CCDC124, or CCDC124::GFP11 × 4). We then cotransfected U2OS cells with these split-GFP constructs (GFP11 × 1(or X4)::CCDC124/GFP1-10) and analyzed subcellular localization of CCDC124 protein by laser scanning confocal microscopy. Tagging CCDC124 with four tandem copies of a 16-amino acid short GFP-derived peptide-tag (GFP11 × 4::CCDC124) allowed better characterization of the subcellular localization of CCDC124 protein in our model human bone osteosarcoma (U2OS) cells. Thus, by this novel methodology we successfully identified GFP11 × 4::CCDC124 molecules in G3BP1-overexpression induced stress-granules by live cell protein imaging for the first time. Our findings propose CCDC124 as a novel component of the stress granule which is a membraneless organelle involved in translational shut-down in response to cellular stress.
Collapse
Affiliation(s)
- Kübra Hacibeyoğlu
- Department of Molecular Biology and Genetics, Gebze Technical University, Gebze, Kocaeli, 41400, Turkey
- Central Research Laboratory (GTU-MAR), Gebze Technical University, Gebze, Kocaeli, 41400, Turkey
| | - Merve Tuzlakoğlu Öztürk
- Department of Molecular Biology and Genetics, Gebze Technical University, Gebze, Kocaeli, 41400, Turkey
- Central Research Laboratory (GTU-MAR), Gebze Technical University, Gebze, Kocaeli, 41400, Turkey
| | - Özge Arslan
- Department of Molecular Biology and Genetics, Gebze Technical University, Gebze, Kocaeli, 41400, Turkey
- Central Research Laboratory (GTU-MAR), Gebze Technical University, Gebze, Kocaeli, 41400, Turkey
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, 75123, Sweden
| | - Uygar Halis Tazebay
- Department of Molecular Biology and Genetics, Gebze Technical University, Gebze, Kocaeli, 41400, Turkey.
- Central Research Laboratory (GTU-MAR), Gebze Technical University, Gebze, Kocaeli, 41400, Turkey.
| |
Collapse
|
58
|
Quenneville J, Feghaly A, Tual M, Thomas K, Major F, Gagnon E. Long-term severe hypoxia adaptation induces non-canonical EMT and a novel Wilms Tumor 1 (WT1) isoform. Cancer Gene Ther 2024; 31:1237-1250. [PMID: 38977895 PMCID: PMC11327107 DOI: 10.1038/s41417-024-00795-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 05/03/2024] [Accepted: 05/30/2024] [Indexed: 07/10/2024]
Abstract
The majority of cancer deaths are caused by solid tumors, where the four most prevalent cancers (breast, lung, colorectal and prostate) account for more than 60% of all cases (1). Tumor cell heterogeneity driven by variable cancer microenvironments, such as hypoxia, is a key determinant of therapeutic outcome. We developed a novel culture protocol, termed the Long-Term Hypoxia (LTHY) time course, to recapitulate the gradual development of severe hypoxia seen in vivo to mimic conditions observed in primary tumors. Cells subjected to LTHY underwent a non-canonical epithelial to mesenchymal transition (EMT) based on miRNA and mRNA signatures as well as displayed EMT-like morphological changes. Concomitant to this, we report production of a novel truncated isoform of WT1 transcription factor (tWt1), a non-canonical EMT driver, with expression driven by a yet undescribed intronic promoter through hypoxia-responsive elements (HREs). We further demonstrated that tWt1 initiates translation from an intron-derived start codon, retains proper subcellular localization and DNA binding. A similar tWt1 is also expressed in LTHY-cultured human cancer cell lines as well as primary cancers and predicts long-term patient survival. Our study not only demonstrates the importance of culture conditions that better mimic those observed in primary cancers, especially with regards to hypoxia, but also identifies a novel isoform of WT1 which correlates with poor long-term survival in ovarian cancer.
Collapse
Affiliation(s)
- Jordan Quenneville
- Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, QC, Canada.
- Department of Molecular Biology, Université de Montréal, Montréal, QC, Canada.
| | - Albert Feghaly
- Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, QC, Canada
| | - Margaux Tual
- Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, QC, Canada
- Department of Microbiology, Infectiology, and Immunology, Faculty of Medicine, Université de Montréal, Montréal, QC, Canada
| | - Kiersten Thomas
- Department of Integrative Oncology, BC Cancer Research Center, Vancouver, BC, Canada
| | - François Major
- Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, QC, Canada
- Department of Computer Science and Operations Research, Faculty of Arts and Sciences, Université de Montréal, Montréal, QC, Canada
| | - Etienne Gagnon
- Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, QC, Canada.
- Department of Microbiology, Infectiology, and Immunology, Faculty of Medicine, Université de Montréal, Montréal, QC, Canada.
| |
Collapse
|
59
|
Shweta H, Gupta K, Zhou Y, Cui X, Li S, Lu Z, Goldman YE, Dantzig JA. Characterization and structural basis for the brightness of mCLIFY: a novel monomeric and circularly permuted bright yellow fluorescent protein. RESEARCH SQUARE 2024:rs.3.rs-4638282. [PMID: 39070629 PMCID: PMC11276004 DOI: 10.21203/rs.3.rs-4638282/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
We present mCLIFY: a monomeric, bright, yellow, and long-lived fluorescent protein (FP) created by circular permutation of YPet, the brightest yellow FP from Aequorea Victoria for use in cellular and in vitro single molecule studies. mCLIFY retains the enhanced photophysical properties of YPET as a monomer at concentrations ≤ 40 μM. In contrast, we determined that YPet has a dimerization dissociation constant (K D 1-2) of 3.4 μM. Dimerization of YPet can cause homo-FRET, which underlies quantitative errors due to dimerization and homo-FRET. We determined the atomic structure of mCLIFY at 1.57 Å resolution and used its similarity with Venus for guided chromophore-targeted substitution studies to provide insights into its enhanced photophysical properties. The mutation V58L within the chromophore pocket improved quantum yield and extinction coefficient, making mCLIFY ~30% brighter than Venus. The extensive characterization of the photophysical and structural properties of YPet and mCLIFY presented here allowed us to reveal the basis of their long lifetimes and enhanced brightness and the basis of YPet's dimerization.
Collapse
Affiliation(s)
- Him Shweta
- Pennsylvania Muscle Institute, University of Pennsylvania, Philadelphia, PA-19104, United States of America
- Center for Engineering Mechanobiology (CEMB), Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA-19104, United States of America
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA-19104, United States of America
- Present address: Departments of Pharmacology and Cellular and Molecular Biology, University of California, Davis, CA-95616
| | - Kushol Gupta
- Department of Biochemistry & Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA-19104, United States of America
| | - Yufeng Zhou
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA-19104, United States of America
| | - Xiaonan Cui
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA-19104, United States of America
| | - Selene Li
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA-19104, United States of America
| | - Zhe Lu
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA-19104, United States of America
| | - Yale E. Goldman
- Pennsylvania Muscle Institute, University of Pennsylvania, Philadelphia, PA-19104, United States of America
- Center for Engineering Mechanobiology (CEMB), Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA-19104, United States of America
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA-19104, United States of America
- Present address: Departments of Pharmacology and Cellular and Molecular Biology, University of California, Davis, CA-95616
| | - Jody A. Dantzig
- Pennsylvania Muscle Institute, University of Pennsylvania, Philadelphia, PA-19104, United States of America
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA-19104, United States of America
| |
Collapse
|
60
|
Lama B, Sarma M. Ultrafast Hot Exciton Nonadiabatic Excited-State Dynamics in Green Fluorescent Protein Chromophore Analogue. J Phys Chem B 2024; 128:6786-6796. [PMID: 38959128 DOI: 10.1021/acs.jpcb.4c02733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/05/2024]
Abstract
The ultrafast high-energy nonadiabatic excited-state dynamics of the benzylidenedimethylimidazolinone chromophore dimer has been investigated using an electronic structure method coupled with on-the-fly quantitative wave function analysis to gain insight into the photophysics of hot excitons in biological systems. The dynamical simulation provides a rationalization of the behavior of the exciton in a dimer after the photoabsorption of light to higher-energy states. The results suggest that hot exciton localization within the manifold of excited states is caused by the hindrance of torsional rotation due to imidazolinone (I) or phenolate (P) bonds i.e., ΦI- or ΦP-dihedral rotation, in the monomeric units of a dimer. This hindrance arises due to weak π-π stacking interaction in the dimer, resulting in an energetically uphill excited-state barrier for ΦI- and ΦP-twisted rotation, impeding the isomerization process in the chromophore. Thus, this study highlights the potential impact of the weak π-π interaction in regulating the photodynamics of the green fluorescent protein chromophore derivatives.
Collapse
Affiliation(s)
- Bittu Lama
- Department of Chemistry, Indian Institute of Technology, Guwahati, Assam 781039, India
| | - Manabendra Sarma
- Department of Chemistry, Indian Institute of Technology, Guwahati, Assam 781039, India
| |
Collapse
|
61
|
Son JB, Kim S, Yang S, Ahn Y, Lee NK. Analysis of Fluorescent Proteins for Observing Single Gene Locus in a Live and Fixed Escherichia coli Cell. J Phys Chem B 2024; 128:6730-6741. [PMID: 38968413 PMCID: PMC11264270 DOI: 10.1021/acs.jpcb.4c01816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 06/21/2024] [Accepted: 06/27/2024] [Indexed: 07/07/2024]
Abstract
Fluorescent proteins (FPs) are essential tools for advanced microscopy techniques such as super-resolution imaging, single-particle tracking, and quantitative single-molecule counting. Various FPs fused to DNA-binding proteins have been used to observe the subcellular location and movement of specific gene loci in living and fixed bacterial cells. However, quantitative assessments of the properties of FPs for gene locus measurements are still lacking. Here, we assessed various FPs to observe specific gene loci in live and fixed Escherichia coli cells using a fluorescent repressor-operator binding system (FROS), tet operator-Tet repressor proteins (TetR). Tsr-fused FPs were used to assess the intensity and photostability of various FPs (five red FPs: mCherry2, FusionRed, mRFP, mCrimson3, and dKatushka; and seven yellow FPs: SYFP2, Venus, mCitrine, YPet, mClover3, mTopaz, and EYFP) at the single-molecule level in living cells. These FPs were then used for gene locus measurements using FROS. Our results indicate that TetR-mCrimson3 (red) and TetR-EYFP (yellow) had better properties for visualizing gene loci than the other TetR-FPs. Furthermore, fixation procedures affected the clustering of diffusing TetR-FPs and altered the locations of the TetR-FP foci. Fixation with formaldehyde consistently disrupted proper DNA locus observations using TetR-FPs. Notably, the foci measured using TetR-mCrimson3 remained close to their original positions in live cells after glyoxal fixation. This in vivo study provides a cell-imaging guide for the use of FPs for gene-locus observation in E. coli and a scheme for evaluating the use of FPs for other cell-imaging purposes.
Collapse
Affiliation(s)
| | | | | | - Youmin Ahn
- Department of Chemistry, Seoul
National University, 08826 Seoul, South
Korea
| | - Nam Ki Lee
- Department of Chemistry, Seoul
National University, 08826 Seoul, South
Korea
| |
Collapse
|
62
|
Prentice JA, Kasivisweswaran S, van de Weerd R, Bridges AA. Biofilm dispersal patterns revealed using far-red fluorogenic probes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.15.603607. [PMID: 39071379 PMCID: PMC11275749 DOI: 10.1101/2024.07.15.603607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
Bacteria frequently colonize niches by forming multicellular communities called biofilms. To explore new territories, cells exit biofilms through an active process called dispersal. Biofilm dispersal is essential for bacteria to spread between infection sites, yet how the process is executed at the single-cell level remains mysterious. Here, we characterize dispersal at unprecedented resolution for the global pathogen Vibrio cholerae. To do so, we first developed a far-red cell-labeling strategy that overcomes pitfalls of fluorescent protein-based approaches. We reveal that dispersal initiates at the biofilm periphery and ~25% of cells never disperse. We define novel micro-scale patterns that occur during dispersal, including biofilm compression and the formation of dynamic channels. These patterns are attenuated in mutants that reduce overall dispersal or that increase dispersal at the cost of homogenizing local mechanical properties. Collectively, our findings provide fundamental insights into the mechanisms of biofilm dispersal, advancing our understanding of how pathogens disseminate.
Collapse
Affiliation(s)
- Jojo A. Prentice
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh PA, USA
| | | | - Robert van de Weerd
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh PA, USA
- Ray and Stephanie Lane Computational Biology Department, Carnegie Mellon University, Pittsburgh PA, USA
- Neuroscience Institute, Carnegie Mellon University, Pittsburgh PA, USA
| | - Andrew A. Bridges
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh PA, USA
| |
Collapse
|
63
|
Nie MS, Li XH, Zhang S, Zeng DD, Cai YR, Peng DX, Jiang T, Shi JP, Li J. Screening for anti-influenza virus compounds from traditional Mongolian medicine by GFP-based reporter virus. Front Cell Infect Microbiol 2024; 14:1431979. [PMID: 39071166 PMCID: PMC11272615 DOI: 10.3389/fcimb.2024.1431979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 06/25/2024] [Indexed: 07/30/2024] Open
Abstract
Introduction Screening for effective antiviral compounds from traditional Mongolian medicine not only aids in the research of antiviral mechanisms of traditional medicines, but is also of significant importance for the development of new antiviral drugs targeting influenza A virus. Our study aimed to establish high-throughput, rapid screening methods for antiviral compounds against influenza A virus from abundant resources of Mongolian medicine. Methods The use of GFP-based reporter viruses plays a pivotal role in antiviral drugs screening by enabling rapid and precise identification of compounds that inhibit viral replication. Herein, a GFP-based reporter influenza A virus was used to identify potent anti-influenza compounds within traditional Mongolian medicine. Results Our study led to the discovery of three active compounds: Cardamonin, Curcumin, and Kaempferide, all of which exhibited significant antiviral properties in vitro. Subsequent analysis confirmed that their effectiveness was largely due to the stimulation of the antiviral signaling pathways of host cells, rather than direct interference with the viral components, such as the viral polymerase. Discussion This study showcased the use of GFP-based reporter viruses in high-throughput screening to unearth antiviral agents from traditional Mongolian medicine, which contains rich antiviral compounds and deserves further exploration. Despite certain limitations, fluorescent reporter viruses present substantial potential for antiviral drug screening research due to their high throughput and efficiency.
Collapse
Affiliation(s)
- Mao-Shun Nie
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Xiao-He Li
- College of Basic Medical Sciences, Inner Mongolia Medical University, Hohhot, China
| | - Sen Zhang
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing, China
| | - Dan-Dan Zeng
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing, China
| | - Yu-Rong Cai
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing, China
| | - Da-Xin Peng
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Tao Jiang
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing, China
| | - Jian-Ping Shi
- College of Traditional Chinese Medicine, Inner Mongolia Medical University, Hohhot, China
| | - Jing Li
- College of Basic Medical Sciences, Inner Mongolia Medical University, Hohhot, China
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing, China
| |
Collapse
|
64
|
Cao L, Wang L. Biospecific Chemistry for Covalent Linking of Biomacromolecules. Chem Rev 2024; 124:8516-8549. [PMID: 38913432 PMCID: PMC11240265 DOI: 10.1021/acs.chemrev.4c00066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
Interactions among biomacromolecules, predominantly noncovalent, underpin biological processes. However, recent advancements in biospecific chemistry have enabled the creation of specific covalent bonds between biomolecules, both in vitro and in vivo. This Review traces the evolution of biospecific chemistry in proteins, emphasizing the role of genetically encoded latent bioreactive amino acids. These amino acids react selectively with adjacent natural groups through proximity-enabled bioreactivity, enabling targeted covalent linkages. We explore various latent bioreactive amino acids designed to target different protein residues, ribonucleic acids, and carbohydrates. We then discuss how these novel covalent linkages can drive challenging protein properties and capture transient protein-protein and protein-RNA interactions in vivo. Additionally, we examine the application of covalent peptides as potential therapeutic agents and site-specific conjugates for native antibodies, highlighting their capacity to form stable linkages with target molecules. A significant focus is placed on proximity-enabled reactive therapeutics (PERx), a pioneering technology in covalent protein therapeutics. We detail its wide-ranging applications in immunotherapy, viral neutralization, and targeted radionuclide therapy. Finally, we present a perspective on the existing challenges within biospecific chemistry and discuss the potential avenues for future exploration and advancement in this rapidly evolving field.
Collapse
Affiliation(s)
- Li Cao
- Department of Pharmaceutical Chemistry, The Cardiovascular Research Institute, and Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, California 94158, United States
| | - Lei Wang
- Department of Pharmaceutical Chemistry, The Cardiovascular Research Institute, and Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, California 94158, United States
| |
Collapse
|
65
|
Liao L, Martin PCN, Kim H, Panahandeh S, Won KJ. Data enhancement in the age of spatial biology. Adv Cancer Res 2024; 163:39-70. [PMID: 39271267 DOI: 10.1016/bs.acr.2024.06.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/15/2024]
Abstract
Unveiling the intricate interplay of cells in their native environment lies at the heart of understanding fundamental biological processes and unraveling disease mechanisms, particularly in complex diseases like cancer. Spatial transcriptomics (ST) offers a revolutionary lens into the spatial organization of gene expression within tissues, empowering researchers to study both cell heterogeneity and microenvironments in health and disease. However, current ST technologies often face limitations in either resolution or the number of genes profiled simultaneously. Integrating ST data with complementary sources, such as single-cell transcriptomics and detailed tissue staining images, presents a powerful solution to overcome these limitations. This review delves into the computational approaches driving the integration of spatial transcriptomics with other data types. By illuminating the key challenges and outlining the current algorithmic solutions, we aim to highlight the immense potential of these methods to revolutionize our understanding of cancer biology.
Collapse
Affiliation(s)
- Linbu Liao
- Biotech Research and Innovation Centre (BRIC), University of Copenhagen, Denmark; Samuel Oschin Cancer Center, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Patrick C N Martin
- Department of Computational Biomedicine, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Hyobin Kim
- Department of Computational Biomedicine, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Sanaz Panahandeh
- Department of Computational Biomedicine, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Kyoung Jae Won
- Department of Computational Biomedicine, Cedars-Sinai Medical Center, Los Angeles, CA, United States.
| |
Collapse
|
66
|
Kuchimaru T. Emerging Synthetic Bioluminescent Reactions for Non-Invasive Imaging of Freely Moving Animals. Int J Mol Sci 2024; 25:7338. [PMID: 39000448 PMCID: PMC11242611 DOI: 10.3390/ijms25137338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 07/02/2024] [Accepted: 07/03/2024] [Indexed: 07/16/2024] Open
Abstract
Bioluminescence imaging (BLI) is an indispensable technique for visualizing the dynamics of diverse biological processes in mammalian animal models, including cancer, viral infections, and immune responses. However, a critical scientific challenge remains: non-invasively visualizing homeostatic and disease mechanisms in freely moving animals to understand the molecular basis of exercises, social behavior, and other phenomena. Classical BLI relies on prolonged camera exposure to accumulate the limited number of photons that traveled from deep tissues in anesthetized or constrained animals. Recent advancements in synthetic bioluminescence reactions, utilizing artificial luciferin-luciferase pairs, have considerably increased the number of detectable photons from deep tissues, facilitating high-speed BLI to capture moving objects. In this review, I provide an overview of emerging synthetic bioluminescence reactions that enable the non-invasive imaging of freely moving animals. This approach holds the potential to uncover unique physiological processes that are inaccessible with current methodologies.
Collapse
Affiliation(s)
- Takahiro Kuchimaru
- Center for Molecular Medicine, Jichi Medical University, Tochigi 329-0498, Japan
| |
Collapse
|
67
|
Nunes JPF, Williams M, Yang J, Wolf TJA, Rankine CD, Parrish R, Moore B, Wilkin K, Shen X, Lin MF, Hegazy K, Li R, Weathersby S, Martinez TJ, Wang XJ, Centurion M. Photo-induced structural dynamics of o-nitrophenol by ultrafast electron diffraction. Phys Chem Chem Phys 2024; 26:17991-17998. [PMID: 38764355 DOI: 10.1039/d3cp06253h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/21/2024]
Abstract
The photo-induced dynamics of o-nitrophenol, particularly its photolysis, has garnered significant scientific interest as a potential source of nitrous acid in the atmosphere. Although the photolysis products and preceding photo-induced electronic structure dynamics have been investigated extensively, the nuclear dynamics accompanying the non-radiative relaxation of o-nitrophenol on the ultrafast timescale, which include an intramolecular proton transfer step, have not been experimentally resolved. Herein, we present a direct observation of the ultrafast nuclear motions mediating photo-relaxation using ultrafast electron diffraction. This work spatiotemporally resolves the loss of planarity which enables access to a conical intersection between the first excited state and the ground state after the proton transfer step, on the femtosecond timescale and with sub-Angstrom resolution. Our observations, supported by ab initio multiple spawning simulations, provide new insights into the proton transfer mediated relaxation mechanism in o-nitrophenol.
Collapse
Affiliation(s)
- J P F Nunes
- Department of Physics and Astronomy, University of Nebraska-Lincoln, Lincoln, USA.
| | - M Williams
- SLAC National Accelerator Laboratory, Menlo Park, USA
- Stanford PULSE Institute, SLAC National Accelerator Laboratory, Menlo Park, USA
- Department of Chemistry, Stanford University, Stanford, USA
| | - J Yang
- SLAC National Accelerator Laboratory, Menlo Park, USA
- Stanford PULSE Institute, SLAC National Accelerator Laboratory, Menlo Park, USA
- Center of Basic Molecular Science, Department of Chemistry, Tsinghua University, Beijing, China
| | - T J A Wolf
- Stanford PULSE Institute, SLAC National Accelerator Laboratory, Menlo Park, USA
| | - C D Rankine
- School of Natural and Environmental Sciences, Newcastle University, UK
| | - R Parrish
- SLAC National Accelerator Laboratory, Menlo Park, USA
- Stanford PULSE Institute, SLAC National Accelerator Laboratory, Menlo Park, USA
- Department of Chemistry, Stanford University, Stanford, USA
| | - B Moore
- Department of Physics and Astronomy, University of Nebraska-Lincoln, Lincoln, USA.
| | - K Wilkin
- Department of Physics and Astronomy, University of Nebraska-Lincoln, Lincoln, USA.
| | - X Shen
- SLAC National Accelerator Laboratory, Menlo Park, USA
| | - Ming-Fu Lin
- SLAC National Accelerator Laboratory, Menlo Park, USA
| | - K Hegazy
- Stanford PULSE Institute, SLAC National Accelerator Laboratory, Menlo Park, USA
- Department of Physics, Stanford University, Stanford, USA
| | - R Li
- SLAC National Accelerator Laboratory, Menlo Park, USA
| | - S Weathersby
- SLAC National Accelerator Laboratory, Menlo Park, USA
| | - T J Martinez
- Stanford PULSE Institute, SLAC National Accelerator Laboratory, Menlo Park, USA
- Department of Chemistry, Stanford University, Stanford, USA
| | - X J Wang
- SLAC National Accelerator Laboratory, Menlo Park, USA
- Physics Department, Universität Duisburg Essen, 47052 Duisburg, Research Center Chemical Sciences and Sustainability, Research Alliance Ruhr, 44780 Bochum, Germany
- Physics Department, Technische Universität Dortmund, 44221 Dortmund, Research Center Chemical Sciences and Sustainability, Research Alliance Ruhr, 44780 Bochum, Germany
| | - M Centurion
- Department of Physics and Astronomy, University of Nebraska-Lincoln, Lincoln, USA.
| |
Collapse
|
68
|
Aherne O, Mørch M, Ortiz R, Shannon O, Davies JR. A novel multiplex fluorescent-labeling method for the visualization of mixed-species biofilms in vitro. Microbiol Spectr 2024; 12:e0025324. [PMID: 38785429 PMCID: PMC11218471 DOI: 10.1128/spectrum.00253-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 04/17/2024] [Indexed: 05/25/2024] Open
Abstract
In nature, bacteria usually exist as mixed-species biofilms, where they engage in a range of synergistic and antagonistic interactions that increase their resistance to environmental challenges. Biofilms are a major cause of persistent infections, and dispersal from initial foci can cause new infections at distal sites thus warranting further investigation. Studies of development and spatial interactions in mixed-species biofilms can be challenging due to difficulties in identifying the different bacterial species in situ. Here, we apply CellTrace dyes to studies of biofilm bacteria and present a novel application for multiplex labeling, allowing identification of different bacteria in mixed-species, in vitro biofilm models. Oral bacteria labeled with CellTrace dyes (far red, yellow, violet, and CFSE [green]) were used to create single- and mixed-species biofilms, which were analyzed with confocal spinning disk microscopy (CSDM). Biofilm supernatants were studied with flow cytometry (FC). Both Gram-positive and Gram-negative bacteria were well labeled and CSDM revealed biofilms with clear morphology and stable staining for up to 4 days. Analysis of CellTrace labeled cells in supernatants using FC showed differences in the biofilm dispersal between bacterial species. Multiplexing with different colored dyes allowed visualization of spatial relationships between bacteria in mixed-species biofilms and relative coverage by the different species was revealed through segmentation of the CSDM images. This novel application, thus, offers a powerful tool for studying structure and composition of mixed-species biofilms in vitro.IMPORTANCEAlthough most chronic infections are caused by mixed-species biofilms, much of our knowledge still comes from planktonic cultures of single bacterial species. Studies of formation and development of mixed-species biofilms are, therefore, required. This work describes a method applicable to labeling of bacteria for in vitro studies of biofilm structure and dispersal. Critically, labeled bacteria can be multiplexed for identification of different species in mixed-species biofilms using confocal spinning disk microscopy, facilitating investigation of biofilm development and spatial interactions under different environmental conditions. The study is an important step in increasing the tools available for such complex and challenging studies.
Collapse
Affiliation(s)
- Olivia Aherne
- Section for Oral Biology and Pathology, Faculty of Odontology and Biofilms Research Center for Biointerfaces, Malmö University, Malmö, Sweden
- CR Competence, Lund, Sweden
| | - Martina Mørch
- Section for Oral Biology and Pathology, Faculty of Odontology and Biofilms Research Center for Biointerfaces, Malmö University, Malmö, Sweden
| | | | - Oonagh Shannon
- Section for Oral Biology and Pathology, Faculty of Odontology and Biofilms Research Center for Biointerfaces, Malmö University, Malmö, Sweden
| | - Julia R Davies
- Section for Oral Biology and Pathology, Faculty of Odontology and Biofilms Research Center for Biointerfaces, Malmö University, Malmö, Sweden
| |
Collapse
|
69
|
Li Y, Zhou Y, Du Y, Gao P, Yang L, Wang W. In vivo Labeling and Intravital Imaging of Bacterial Infection using a Near-infrared Fluorescent D-Amino Acid Probe. Chembiochem 2024; 25:e202400283. [PMID: 38715148 DOI: 10.1002/cbic.202400283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 04/28/2024] [Indexed: 06/27/2024]
Abstract
Bacterial infections still pose a severe threat to public health, necessitating novel tools for real-time analysis of microbial behaviors in living organisms. While genetically engineered strains with fluorescent or luminescent reporters are commonly used in tracking bacteria, their in vivo uses are often limited. Here, we report a near-infrared fluorescent D-amino acid (FDAA) probe, Cy7ADA, for in situ labeling and intravital imaging of bacterial infections in mice. Cy7ADA probe effectively labels various bacteria in vitro and pathogenic Staphylococcus aureus in mice after intraperitoneal injection. Because of Cy7's high tissue penetration and the quick excretion of free probes via urine, real-time visualization of the pathogens in a liver abscess model via intravital confocal microscopy is achieved. The biodistributions, including their intracellular localization within Kupffer cells, are revealed. Monitoring bacterial responses to antibiotics also demonstrates Cy7ADA's capability to reflect the bacterial load dynamics within the host. Furthermore, Cy7ADA facilitates three-dimensional pathogen imaging in tissue-cleared liver samples, showcasing its potential for studying the biogeography of microbes in different organs. Integrating near-infrared FDAA probes with intravital microscopy holds promise for wide applications in studying bacterial infections in vivo.
Collapse
Affiliation(s)
- Yixuan Li
- Department of Anesthesiology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China, Key Laboratory of Anesthesiology (Shanghai Jiao Tong University), Ministry of Education, China
| | - Yingjun Zhou
- State Key Laboratory of Genetic Engineering, Department of Microbiology, Microbiome Center, School of Life Sciences, Fudan University, Shanghai, China
| | - Yahui Du
- Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, China
| | - Po Gao
- Department of Anesthesiology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China, Key Laboratory of Anesthesiology (Shanghai Jiao Tong University), Ministry of Education, China
| | - Liqun Yang
- Department of Anesthesiology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China, Key Laboratory of Anesthesiology (Shanghai Jiao Tong University), Ministry of Education, China
| | - Wei Wang
- State Key Laboratory of Genetic Engineering, Department of Microbiology, Microbiome Center, School of Life Sciences, Fudan University, Shanghai, China
- Beijing National Laboratory for Molecular Sciences, Beijing, China
| |
Collapse
|
70
|
Gaytán P, Roldán-Salgado A. Photoactivatable Blue Fluorescent Protein. ACS OMEGA 2024; 9:28577-28582. [PMID: 38973932 PMCID: PMC11223193 DOI: 10.1021/acsomega.4c02603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 05/13/2024] [Accepted: 05/30/2024] [Indexed: 07/09/2024]
Abstract
Photoactivatable and photoswitchable fluorescent proteins (FPs) are sophisticated molecular tools that in combination with super-resolution microscopy are helping to elucidate many biological processes. Through the Y66H mutation in the chromophore of the violet fluorescent protein SumireF, we created the first photoactivatable blue fluorescent protein (PA-BFP). This protein is rapidly activated over ordinary UV transilluminators at 302 or 365 nm in irreversible mode and by direct exposition to sunlight. The maximum excitation and emission wavelengths of this protein, centered at 358 and 445 nm, respectively, resemble the values of DAPI-the blue stain widely used in fluorescence microscopy to visualize nucleic acids in cells. Therefore, the immediate use of PA-BFP in cellular biology is clear because the technology required to follow this new genetically encoded reporter at the microscopic level has already been established. PA-BFP can potentially be used together with other photoactivatable fluorescent proteins of different colors to label multiple proteins, which can be simultaneously tracked by advanced microscopic techniques.
Collapse
Affiliation(s)
- Paul Gaytán
- Instituto de Biotecnología, Universidad Nacional Autónoma de México, Av. Universidad 2001, Col. Chamilpa, Cuernavaca, Morelos 62210, Mexico
| | - Abigail Roldán-Salgado
- Instituto de Biotecnología, Universidad Nacional Autónoma de México, Av. Universidad 2001, Col. Chamilpa, Cuernavaca, Morelos 62210, Mexico
| |
Collapse
|
71
|
Ge WD, Du TT, Wang CY, Sun LN, Wang YQ. Calcium signaling crosstalk between the endoplasmic reticulum and mitochondria, a new drug development strategies of kidney diseases. Biochem Pharmacol 2024; 225:116278. [PMID: 38740223 DOI: 10.1016/j.bcp.2024.116278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 04/25/2024] [Accepted: 05/10/2024] [Indexed: 05/16/2024]
Abstract
Calcium (Ca2+) acts as a second messenger and constitutes a complex and large information exchange system between the endoplasmic reticulum (ER) and mitochondria; this process is involved in various life activities, such as energy metabolism, cell proliferation and apoptosis. Increasing evidence has suggested that alterations in Ca2+ crosstalk between the ER and mitochondria, including alterations in ER and mitochondrial Ca2+ channels and related Ca2+ regulatory proteins, such as sarco/endoplasmic reticulum Ca2+-ATPase (SERCA), inositol 1,4,5-trisphosphate receptor (IP3R), and calnexin (CNX), are closely associated with the development of kidney disease. Therapies targeting intracellular Ca2+ signaling have emerged as an emerging field in the treatment of renal diseases. In this review, we focused on recent advances in Ca2+ signaling, ER and mitochondrial Ca2+ monitoring methods and Ca2+ homeostasis in the development of renal diseases and sought to identify new targets and insights for the treatment of renal diseases by targeting Ca2+ channels or related Ca2+ regulatory proteins.
Collapse
Affiliation(s)
- Wen-Di Ge
- Research Division of Clinical Pharmacology, the First Affiliated Hospital of Nanjing Medical University & Jiangsu Province Hospital, Nanjing, China; Department of Pharmacy, Nanjing Medical University, Nanjing, China
| | - Tian-Tian Du
- Research Division of Clinical Pharmacology, the First Affiliated Hospital of Nanjing Medical University & Jiangsu Province Hospital, Nanjing, China; Department of Pharmacy, Nanjing Medical University, Nanjing, China
| | - Cao-Yang Wang
- Research Division of Clinical Pharmacology, the First Affiliated Hospital of Nanjing Medical University & Jiangsu Province Hospital, Nanjing, China; Department of Pharmacy, Nanjing Medical University, Nanjing, China
| | - Lu-Ning Sun
- Research Division of Clinical Pharmacology, the First Affiliated Hospital of Nanjing Medical University & Jiangsu Province Hospital, Nanjing, China; Department of Pharmacy, Nanjing Medical University, Nanjing, China.
| | - Yong-Qing Wang
- Research Division of Clinical Pharmacology, the First Affiliated Hospital of Nanjing Medical University & Jiangsu Province Hospital, Nanjing, China; Department of Pharmacy, Nanjing Medical University, Nanjing, China.
| |
Collapse
|
72
|
Bhutani G, Verma P, Paul S, Dhamija S, Chattopadhyay K, De AK. Elucidating photocycle in large Stokes shift red fluorescent proteins: Focus on mKeima. Photochem Photobiol 2024; 100:897-909. [PMID: 38752609 DOI: 10.1111/php.13964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 04/29/2024] [Accepted: 04/30/2024] [Indexed: 07/30/2024]
Abstract
Large Stokes shift red fluorescent proteins (LSS-RFPs) are genetically encoded and exhibit a significant difference of a few hundreds of nanometers between their excitation and emission peak maxima (i.e., the Stokes shift). These LSS-RFPs (absorbing blue light and emitting red light) feature a unique photocycle responsible for their significant Stokes shift. The photocycle associated with this LSS characteristic in certain RFPs is quite perplexing, hinting at the complex nature of excited-state photophysics. This article provides a brief review on the fundamental mechanisms governing the photocycle of various LSS-RFPs, followed by a discussion on experimental results on mKeima emphasizing its relaxation pathways which garnered attention due to its >200 nm Stokes shift. Corroborating steady-state spectroscopy with computational studies, four different forms of chromophore of mKeima contributing to the cis-trans conformers of the neutral and anionic forms were identified in a recent study. Furthering these findings, in this account a detailed discussion on the photocycle of mKeima, which encompasses sequential excited-state isomerization, proton transfer, and subsequent structural reorganization involving three isomers, leading to an intriguing temperature and pH-dependent dual fluorescence, is explored using broadband femtosecond transient absorption spectroscopy.
Collapse
Affiliation(s)
- Garima Bhutani
- Condensed Phase Dynamics Group, Department of Chemical Sciences, Indian Institute of Science Education and Research Mohali, SAS Nagar, Punjab, India
| | - Pratima Verma
- Cytolysin Study Group, Department of Biological Sciences, Indian Institute of Science Education and Research Mohali, SAS Nagar, Punjab, India
| | - Sasthi Paul
- Condensed Phase Dynamics Group, Department of Chemical Sciences, Indian Institute of Science Education and Research Mohali, SAS Nagar, Punjab, India
| | - Shaina Dhamija
- Condensed Phase Dynamics Group, Department of Chemical Sciences, Indian Institute of Science Education and Research Mohali, SAS Nagar, Punjab, India
| | - Kausik Chattopadhyay
- Cytolysin Study Group, Department of Biological Sciences, Indian Institute of Science Education and Research Mohali, SAS Nagar, Punjab, India
| | - Arijit K De
- Condensed Phase Dynamics Group, Department of Chemical Sciences, Indian Institute of Science Education and Research Mohali, SAS Nagar, Punjab, India
| |
Collapse
|
73
|
Gutiérrez-Armayor D, Atoini Y, Van Opdenbosch D, Zollfrank C, Nieddu M, Costa RD. Simple Sol-Gel Protein Stabilization toward Rainbow and White Lighting Devices. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2311031. [PMID: 38597244 DOI: 10.1002/adma.202311031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 02/21/2024] [Indexed: 04/11/2024]
Abstract
Fluorescent proteins (FPs) are heralded as a paradigm of sustainable materials for photonics/optoelectronics. However, their stabilization under non-physiological environments and/or harsh operation conditions is the major challenge. Among the FP-stabilization methods, classical sol-gel is the most effective, but less versatile, as most of the proteins/enzymes are easily degraded due to the need of multi-step processes, surfactants, and mixed water/organic solvents in extreme pH. Herein, sol-gel chemistry with archetypal FPs (mGreenLantern; mCherry) is revisited, simplifying the method by one-pot, surfactant-free, and aqueous media (phosphate buffer saline pH = 7.4). The synthesis mechanism involves the direct reaction of the carboxylic groups at the FP surface with the silica precursor, generating a positively charged FP intermediate that acts as a seed for the formation of size-controlled mesoporous FP@SiO2 nanoparticles. Green-/red-emissive (single-FP component) and dual-emissive (multi-FPs component; kinetic studies not required) FP@SiO2 are prepared without affecting the FP photoluminescence and stabilities (>6 months) under dry storage and organic solvent suspensions. Finally, FP@SiO2 color filters are applied to rainbow and white bio-hybrid light-emitting diodes featuring up to 15-fold enhanced stabilities without reducing luminous efficacy compared to references with native FPs. Overall, an easy, versatile, and effective FP-stabilization method is demonstrated in FP@SiO2 toward sustainable protein lighting.
Collapse
Affiliation(s)
- David Gutiérrez-Armayor
- Chair of Biogenic Functional Materials, Technical University of Munich, Campus Straubing for Biotechnology and Sustainability, Schulgasse, 22, 94315, Straubing, Germany
| | - Youssef Atoini
- Chair of Biogenic Functional Materials, Technical University of Munich, Campus Straubing for Biotechnology and Sustainability, Schulgasse, 22, 94315, Straubing, Germany
| | - Daniel Van Opdenbosch
- Chair for Biogenic Polymers Technical University of Munich, Campus Straubing for Biotechnology and Sustainability, Schulgasse, 16, 94315, Straubing, Germany
| | - Cordt Zollfrank
- Chair for Biogenic Polymers Technical University of Munich, Campus Straubing for Biotechnology and Sustainability, Schulgasse, 16, 94315, Straubing, Germany
| | - Mattia Nieddu
- Chair of Biogenic Functional Materials, Technical University of Munich, Campus Straubing for Biotechnology and Sustainability, Schulgasse, 22, 94315, Straubing, Germany
| | - Rubén D Costa
- Chair of Biogenic Functional Materials, Technical University of Munich, Campus Straubing for Biotechnology and Sustainability, Schulgasse, 22, 94315, Straubing, Germany
| |
Collapse
|
74
|
Miyashiro D, Tojima T, Nakano A. Extremely high spatiotemporal resolution microscopy for live cell imaging by single photon counting, noise elimination, and a novel restoration algorithm based on probability calculation. Front Cell Dev Biol 2024; 12:1324906. [PMID: 38979036 PMCID: PMC11228276 DOI: 10.3389/fcell.2024.1324906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 06/03/2024] [Indexed: 07/10/2024] Open
Abstract
Optical microscopy is essential for direct observation of dynamic phenomena in living cells. According to the classic optical theories, the images obtained through light microscopes are blurred for about half the wavelength of light, and therefore small structures below this "diffraction limit" were thought unresolvable by conventional optical microscopy. In reality, accurately obtained optical images contain complete information about the observed objects. Temporal resolution is also important for the observation of dynamic phenomena. A challenge exists here to overcome the trade-off between the time required for measurement and the accuracy of the measurement. The present paper describes a concrete methodology for reconstructing the structure of an observed object, based on the information contained in the image obtained by optical microscopy. It is realized by accurate single photon counting, complete noise elimination, and a novel restoration algorithm based on probability calculation. This method has been implemented in the Super-resolution Confocal Live Imaging Microscopy (SCLIM) we developed. The new system named SCLIM2M achieves unprecedented high spatiotemporal resolution. We have succeeded in capturing sub-diffraction-limit structures with millisecond-level dynamics of organelles and vesicles in living cells, which were never observed by conventional optical microscopy. Actual examples of the high-speed and high-resolution 4D observation of living cells are presented.
Collapse
Affiliation(s)
- Daisuke Miyashiro
- Live Cell Super-Resolution Imaging Research Team, RIKEN Center for Advanced Photonics, Wako, Saitama, Japan
| | - Takuro Tojima
- Live Cell Super-Resolution Imaging Research Team, RIKEN Center for Advanced Photonics, Wako, Saitama, Japan
| | - Akihiko Nakano
- Live Cell Super-Resolution Imaging Research Team, RIKEN Center for Advanced Photonics, Wako, Saitama, Japan
| |
Collapse
|
75
|
Yi HB, Lee S, Seo K, Kim H, Kim M, Lee HS. Cellular and Biophysical Applications of Genetic Code Expansion. Chem Rev 2024; 124:7465-7530. [PMID: 38753805 DOI: 10.1021/acs.chemrev.4c00112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/18/2024]
Abstract
Despite their diverse functions, proteins are inherently constructed from a limited set of building blocks. These compositional constraints pose significant challenges to protein research and its practical applications. Strategically manipulating the cellular protein synthesis system to incorporate novel building blocks has emerged as a critical approach for overcoming these constraints in protein research and application. In the past two decades, the field of genetic code expansion (GCE) has achieved significant advancements, enabling the integration of numerous novel functionalities into proteins across a variety of organisms. This technological evolution has paved the way for the extensive application of genetic code expansion across multiple domains, including protein imaging, the introduction of probes for protein research, analysis of protein-protein interactions, spatiotemporal control of protein function, exploration of proteome changes induced by external stimuli, and the synthesis of proteins endowed with novel functions. In this comprehensive Review, we aim to provide an overview of cellular and biophysical applications that have employed GCE technology over the past two decades.
Collapse
Affiliation(s)
- Han Bin Yi
- Department of Chemistry, Sogang University, 35 Baekbeom-ro, Mapo-gu, Seoul 04107, Republic of Korea
| | - Seungeun Lee
- Department of Chemistry, Sogang University, 35 Baekbeom-ro, Mapo-gu, Seoul 04107, Republic of Korea
| | - Kyungdeok Seo
- Department of Chemistry, Sogang University, 35 Baekbeom-ro, Mapo-gu, Seoul 04107, Republic of Korea
| | - Hyeongjo Kim
- Department of Chemistry, Sogang University, 35 Baekbeom-ro, Mapo-gu, Seoul 04107, Republic of Korea
| | - Minah Kim
- Department of Chemistry, Sogang University, 35 Baekbeom-ro, Mapo-gu, Seoul 04107, Republic of Korea
| | - Hyun Soo Lee
- Department of Chemistry, Sogang University, 35 Baekbeom-ro, Mapo-gu, Seoul 04107, Republic of Korea
| |
Collapse
|
76
|
Rajbongshi BK, Abdullah S, Lama B, Bhattacharyya HP, Sarma M. Regioselective and solvent-dependent photoisomerization induced internal conversion in red fluorescent protein chromophore analogues. RSC Adv 2024; 14:18373-18384. [PMID: 38860252 PMCID: PMC11163268 DOI: 10.1039/d4ra00988f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 05/23/2024] [Indexed: 06/12/2024] Open
Abstract
Photophysical properties of three red fluorescent protein (RFP) chromophore analogues are reported here. The three RFP chromophore analogues differ in the additional conjugation present in the RFP chromophore. The three chromophores do not exhibit any solvent effect in both absorption and fluorescence spectra. The photoirradiation experiments and recording of 1H NMR before and after irradiation on one of the three RFP model chromophores show isomerization of the (Z,E) diastereomer to the (E,E) diastereomer. Calculation of S0 and S1 potential energy curves shows the preference for isomerization through the exocyclic C[double bond, length as m-dash]C bond with Z-stereochemistry, thus corroborating the experimental results. The computational studies also suggest that torsional motion along the exocyclic C[double bond, length as m-dash]C bond pushes the molecules to a conical intersection, thus paving the pathway for radiationless deactivation.
Collapse
Affiliation(s)
| | - Sheikh Abdullah
- Department of Chemistry, Cotton University Panbazar Guwahati Assam 781001 India
| | - Bittu Lama
- Department of Chemistry, Indian Institute of Technology Guwahati Assam 781039 India
| | | | - Manabendra Sarma
- Department of Chemistry, Indian Institute of Technology Guwahati Assam 781039 India
| |
Collapse
|
77
|
Bui M, Baek S, Bentahar RS, Melters DP, Dalal Y. Native and tagged CENP-A histones are functionally inequivalent. Epigenetics Chromatin 2024; 17:19. [PMID: 38825690 PMCID: PMC11145777 DOI: 10.1186/s13072-024-00543-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 05/22/2024] [Indexed: 06/04/2024] Open
Abstract
BACKGROUND Over the past several decades, the use of biochemical and fluorescent tags has elucidated mechanistic and cytological processes that would otherwise be impossible. The challenging nature of certain nuclear proteins includes low abundancy, poor antibody recognition, and transient dynamics. One approach to get around those issues is the addition of a peptide or larger protein tag to the target protein to improve enrichment, purification, and visualization. However, many of these studies were done under the assumption that tagged proteins can fully recapitulate native protein function. RESULTS We report that when C-terminally TAP-tagged CENP-A histone variant is introduced, it undergoes altered kinetochore protein binding, differs in post-translational modifications (PTMs), utilizes histone chaperones that differ from that of native CENP-A, and can partially displace native CENP-A in human cells. Additionally, these tagged CENP-A-containing nucleosomes have reduced centromeric incorporation at early G1 phase and poorly associates with linker histone H1.5 compared to native CENP-A nucleosomes. CONCLUSIONS These data suggest expressing tagged versions of histone variant CENP-A may result in unexpected utilization of non-native pathways, thereby altering the biological function of the histone variant.
Collapse
Affiliation(s)
- Minh Bui
- Center for Cancer Research, Laboratory of Receptor Biology and Gene Expression, National Cancer Institute, 41 Medlars Drive, Bldg 41/Rm B1300, Bethesda, MD, 20892, USA.
| | - Songjoon Baek
- Center for Cancer Research, Laboratory of Receptor Biology and Gene Expression, National Cancer Institute, 41 Medlars Drive, Bldg 41/Rm B1300, Bethesda, MD, 20892, USA
| | - Reda S Bentahar
- Center for Cancer Research, Laboratory of Receptor Biology and Gene Expression, National Cancer Institute, 41 Medlars Drive, Bldg 41/Rm B1300, Bethesda, MD, 20892, USA
| | - Daniël P Melters
- Center for Cancer Research, Laboratory of Receptor Biology and Gene Expression, National Cancer Institute, 41 Medlars Drive, Bldg 41/Rm B1300, Bethesda, MD, 20892, USA
| | - Yamini Dalal
- Center for Cancer Research, Laboratory of Receptor Biology and Gene Expression, National Cancer Institute, 41 Medlars Drive, Bldg 41/Rm B1300, Bethesda, MD, 20892, USA.
| |
Collapse
|
78
|
Clarke CJ, Verlet JRR. Dynamics of Anions: From Bound to Unbound States and Everything In Between. Annu Rev Phys Chem 2024; 75:89-110. [PMID: 38277700 DOI: 10.1146/annurev-physchem-090722-125031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2024]
Abstract
Gas-phase anions present an ideal playground for the exploration of excited-state dynamics. They offer control in terms of the mass, extent of solvation, internal temperature, and conformation. The application of a range of ion sources has opened the field to a vast array of anionic systems whose dynamics are important in areas ranging from biology to star formation. Here, we review recent experimental developments in the field of anion photodynamics, demonstrating the detailed insight into photodynamical and electron-capture processes that can be uncovered. We consider the electronic and nuclear ultrafast dynamics of electronically bound excited states along entire reaction coordinates; electronically unbound states showing that photochemical concepts, such as chromophores and Kasha's rule, are transferable to electron-driven chemistry; and nonvalence states that straddle the interface between bound and unbound states. Finally, we consider likely developments that are sure to keep the field of anion dynamics buoyant and impactful.
Collapse
Affiliation(s)
- Connor J Clarke
- Department of Chemistry, Durham University, Durham, United Kingdom;
| | - Jan R R Verlet
- Department of Chemistry, Durham University, Durham, United Kingdom;
| |
Collapse
|
79
|
Calvanese M, D'Angelo C, Lauro C, Tutino ML, Parrilli E. Recombinant protein production in Pseudoalteromonas haloplanktis TAC125 biofilm. Biofilm 2024; 7:100179. [PMID: 38322580 PMCID: PMC10844681 DOI: 10.1016/j.bioflm.2024.100179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 01/22/2024] [Accepted: 01/22/2024] [Indexed: 02/08/2024] Open
Abstract
Biofilms have great potential for producing valuable products, and recent research has been performed on biofilms for the production of compounds with biotechnological and industrial relevance. However, the production of recombinant proteins using this system is still limited. The recombinant protein production in microbial hosts is a well-established technology and a variety of expression systems are available. Nevertheless, the production of some recombinant proteins can result in proteolyzed, insoluble, and non-functional forms, therefore it is necessary to start the exploration of non-conventional production systems that, in the future, could be helpful to produce some "difficult" proteins. Non-conventional production systems can be based on the use of alternative hosts and/or on non-conventional ways to grow recombinant cells. In this paper, the use of the Antarctic marine bacterium Pseudoalteromonas haloplanktis TAC125 grown in biofilm conditions was explored to produce two fluorescent proteins, GFP and mScarlet. The best conditions for the production were identified by working on media composition, and induction conditions, and by building a new expression vector suitable for the biofilm conditions. Results reported demonstrated that the optimized system for the recombinant protein production in biofilm, although it takes longer than planktonic production, has the same potentiality as the classical planktonic approach with additional advantages since it needs a lower concentration of the carbon sources and doesn't require antibiotic addition. Moreover, in the case of mScarlet, the production in biofilm outperforms the planktonic system in terms of a better quality of the recombinant product.
Collapse
Affiliation(s)
- Marzia Calvanese
- Department of Chemical Sciences, University of Naples “Federico II”, Complesso Universitario Monte S. Angelo, Via Cintia 4, 80126, Naples, Italy
- Istituto Nazionale Biostrutture e Biosistemi I.N.B.B, Viale Medaglie D’Oro, 305-00136, Roma, Italy
| | - Caterina D'Angelo
- Department of Chemical Sciences, University of Naples “Federico II”, Complesso Universitario Monte S. Angelo, Via Cintia 4, 80126, Naples, Italy
| | - Concetta Lauro
- Department of Chemical Sciences, University of Naples “Federico II”, Complesso Universitario Monte S. Angelo, Via Cintia 4, 80126, Naples, Italy
- Istituto Nazionale Biostrutture e Biosistemi I.N.B.B, Viale Medaglie D’Oro, 305-00136, Roma, Italy
| | - Maria Luisa Tutino
- Department of Chemical Sciences, University of Naples “Federico II”, Complesso Universitario Monte S. Angelo, Via Cintia 4, 80126, Naples, Italy
- Istituto Nazionale Biostrutture e Biosistemi I.N.B.B, Viale Medaglie D’Oro, 305-00136, Roma, Italy
| | - Ermenegilda Parrilli
- Department of Chemical Sciences, University of Naples “Federico II”, Complesso Universitario Monte S. Angelo, Via Cintia 4, 80126, Naples, Italy
| |
Collapse
|
80
|
Martin A, Rivera-Fuentes P. Fluorogenic polymethine dyes by intramolecular cyclization. Curr Opin Chem Biol 2024; 80:102444. [PMID: 38520774 DOI: 10.1016/j.cbpa.2024.102444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 02/27/2024] [Accepted: 02/28/2024] [Indexed: 03/25/2024]
Abstract
Fluorescence imaging plays a pivotal role in the study of biological processes, and cell-permeable fluorogenic dyes are crucial to visualize intracellular structures with high specificity. Polymethine dyes are vitally important fluorophores in single-molecule localization microscopy and in vivo imaging, but their use in live cells has been limited by high background fluorescence and low membrane permeability. In this review, we summarize recent advances in the development of fluorogenic polymethine dyes via intramolecular cyclization. Finally, we offer an outlook on the prospects of fluorogenic polymethine dyes for bioimaging.
Collapse
Affiliation(s)
- Annabell Martin
- Department of Chemistry, University of Zurich, Zurich, Switzerland; École Polytechnique Fédérale de Lausanne, Institute of Chemical Sciences and Engineering, Lausanne, Switzerland
| | | |
Collapse
|
81
|
Selva Sharma A, Marimuthu M, Varghese AW, Wu J, Xu J, Xiaofeng L, Devaraj S, Lan Y, Li H, Chen Q. A review of biomolecules conjugated lanthanide up-conversion nanoparticles-based fluorescence probes in food safety and quality monitoring applications. Crit Rev Food Sci Nutr 2024; 64:6129-6159. [PMID: 36688820 DOI: 10.1080/10408398.2022.2163975] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Upconversion nanoparticles (UCNPs) are known to possess unique characteristics, which allow them to overcome a number of issues that plague traditional fluorescence probes. UCNPs have been employed in a variety of applications, but it is arguably in the realm of optical sensors where they have shown the most promise. Biomolecule conjugated UCNPs-based fluorescence probes have been developed to detect and quantify a wide range of analytes, from metal ions to biomolecules, with great specificity and sensitivity. In this review, we have given much emphasis on the recent trends and progress in the preparation strategies of bioconjugated UCNPs and their potential application as fluorescence sensors in the trace level detection of food industry-based toxicants and adulterants. The paper discusses the preparation and functionalisation strategies of commonly used biomolecules over the surface of UCNPs. The use of different sensing strategies namely heterogenous and homogenous assays, underlying fluorescence mechanisms in the detection process of food adulterants are summarized in detail. This review might set a precedent for future multidisciplinary research including the development of novel biomolecules conjugated UCNPs for potential applications in food science and technology.
Collapse
Affiliation(s)
- Arumugam Selva Sharma
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, PR China
- Division of Molecular Medicine, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences & Technology, Poojapura, Thiruvananthapuram, India
| | - Murugavelu Marimuthu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, PR China
- Department of Science & Humanities, Saveetha School of Engineering, SIMATS, Chennai, Tamil Nadu, India
| | - Amal Wilson Varghese
- Division of Molecular Medicine, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences & Technology, Poojapura, Thiruvananthapuram, India
| | - Jizong Wu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, PR China
| | - Jing Xu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, PR China
| | - Luo Xiaofeng
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, PR China
| | - Sabarinathan Devaraj
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, PR China
| | - Yang Lan
- Jiangxi Wuyuan Tea Vocational College, Jiangxi, PR China
| | - Huanhuan Li
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, PR China
| | - Quansheng Chen
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, PR China
| |
Collapse
|
82
|
Shroff H, Testa I, Jug F, Manley S. Live-cell imaging powered by computation. Nat Rev Mol Cell Biol 2024; 25:443-463. [PMID: 38378991 DOI: 10.1038/s41580-024-00702-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/10/2024] [Indexed: 02/22/2024]
Abstract
The proliferation of microscopy methods for live-cell imaging offers many new possibilities for users but can also be challenging to navigate. The prevailing challenge in live-cell fluorescence microscopy is capturing intra-cellular dynamics while preserving cell viability. Computational methods can help to address this challenge and are now shifting the boundaries of what is possible to capture in living systems. In this Review, we discuss these computational methods focusing on artificial intelligence-based approaches that can be layered on top of commonly used existing microscopies as well as hybrid methods that integrate computation and microscope hardware. We specifically discuss how computational approaches can improve the signal-to-noise ratio, spatial resolution, temporal resolution and multi-colour capacity of live-cell imaging.
Collapse
Affiliation(s)
- Hari Shroff
- Janelia Research Campus, Howard Hughes Medical Institute (HHMI), Ashburn, VA, USA
| | - Ilaria Testa
- Department of Applied Physics and Science for Life Laboratory, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Florian Jug
- Fondazione Human Technopole (HT), Milan, Italy
| | - Suliana Manley
- Institute of Physics, School of Basic Sciences, Swiss Federal Institute of Technology Lausanne (EPFL), Lausanne, Switzerland.
| |
Collapse
|
83
|
Zhang CJ, Mou H, Yuan J, Wang YH, Sun SN, Wang W, Xu ZH, Yu SJ, Jin K, Jin ZB. Effects of fluorescent protein tdTomato on mouse retina. Exp Eye Res 2024; 243:109910. [PMID: 38663720 DOI: 10.1016/j.exer.2024.109910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 02/26/2024] [Accepted: 04/22/2024] [Indexed: 04/30/2024]
Abstract
Fluorescent proteins (FPs) have been widely used to investigate cellular and molecular interactions and trace biological events in many applications. Some of the FPs have been demonstrated to cause undesirable cellular damage by light-induced ROS production in vivo or in vitro. However, it remains unknown if one of the most popular FPs, tdTomato, has similar effects in neuronal cells. In this study, we discovered that tdTomato expression led to unexpected retinal dysfunction and ultrastructural defects in the transgenic mouse retina. The retinal dysfunction mainly manifested in the reduced photopic electroretinogram (ERG) responses and decreased contrast sensitivity in visual acuity, caused by mitochondrial damages characterized with cellular redistribution, morphological modifications and molecular profiling alterations. Taken together, our findings for the first time demonstrated the retinal dysfunction and ultrastructural defects in the retinas of tdTomato-transgenic mice, calling for a more careful design and interpretation of experiments involved in FPs.
Collapse
Affiliation(s)
- Chang-Jun Zhang
- Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing Ophthalmology & Visual Science Key Laboratory, Beijing, 100730, China
| | - Hao Mou
- Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing Ophthalmology & Visual Science Key Laboratory, Beijing, 100730, China
| | - Jing Yuan
- Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing Ophthalmology & Visual Science Key Laboratory, Beijing, 100730, China
| | - Ya-Han Wang
- Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing Ophthalmology & Visual Science Key Laboratory, Beijing, 100730, China
| | - Shu-Ning Sun
- Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing Ophthalmology & Visual Science Key Laboratory, Beijing, 100730, China
| | - Wen Wang
- Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing Ophthalmology & Visual Science Key Laboratory, Beijing, 100730, China
| | - Ze-Hua Xu
- Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing Ophthalmology & Visual Science Key Laboratory, Beijing, 100730, China
| | - Si-Jian Yu
- Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing Ophthalmology & Visual Science Key Laboratory, Beijing, 100730, China
| | - Kangxin Jin
- Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing Ophthalmology & Visual Science Key Laboratory, Beijing, 100730, China.
| | - Zi-Bing Jin
- Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing Ophthalmology & Visual Science Key Laboratory, Beijing, 100730, China.
| |
Collapse
|
84
|
Ludvikova L, Simon E, Deygas M, Panier T, Plamont MA, Ollion J, Tebo A, Piel M, Jullien L, Robert L, Le Saux T, Espagne A. Near-infrared co-illumination of fluorescent proteins reduces photobleaching and phototoxicity. Nat Biotechnol 2024; 42:872-876. [PMID: 37537501 PMCID: PMC11180605 DOI: 10.1038/s41587-023-01893-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 06/30/2023] [Indexed: 08/05/2023]
Abstract
Here we present a method to reduce the photobleaching of fluorescent proteins and the associated phototoxicity. It exploits a photophysical process known as reverse intersystem crossing, which we induce by near-infrared co-illumination during fluorophore excitation. This dual illumination method reduces photobleaching effects 1.5-9.2-fold, can be easily implemented on commercial microscopes and is effective in eukaryotic and prokaryotic cells with a wide range of fluorescent proteins.
Collapse
Affiliation(s)
- Lucie Ludvikova
- PASTEUR, Département de chimie, École normale supérieure, PSL University, Sorbonne Université, CNRS, Paris, France
| | - Emma Simon
- PASTEUR, Département de chimie, École normale supérieure, PSL University, Sorbonne Université, CNRS, Paris, France
| | - Mathieu Deygas
- Institut Curie, Paris Sciences et Lettres (PSL) Research University, Centre National de la Recherche Scientifique (CNRS), Paris, France
- Institut Pierre-Gilles de Gennes, PSL Research University, Paris, France
| | - Thomas Panier
- Sorbonne Université, CNRS, Institut de Biologie Paris-Seine (IBPS), Laboratoire Jean Perrin (LJP), Paris, France
| | - Marie-Aude Plamont
- PASTEUR, Département de chimie, École normale supérieure, PSL University, Sorbonne Université, CNRS, Paris, France
| | | | - Alison Tebo
- PASTEUR, Département de chimie, École normale supérieure, PSL University, Sorbonne Université, CNRS, Paris, France
| | - Matthieu Piel
- Institut Curie, Paris Sciences et Lettres (PSL) Research University, Centre National de la Recherche Scientifique (CNRS), Paris, France
- Institut Pierre-Gilles de Gennes, PSL Research University, Paris, France
| | - Ludovic Jullien
- PASTEUR, Département de chimie, École normale supérieure, PSL University, Sorbonne Université, CNRS, Paris, France
| | - Lydia Robert
- Sorbonne Université, CNRS, Institut de Biologie Paris-Seine (IBPS), Laboratoire Jean Perrin (LJP), Paris, France.
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, Jouy-en-Josas, France.
| | - Thomas Le Saux
- PASTEUR, Département de chimie, École normale supérieure, PSL University, Sorbonne Université, CNRS, Paris, France.
| | - Agathe Espagne
- PASTEUR, Département de chimie, École normale supérieure, PSL University, Sorbonne Université, CNRS, Paris, France.
| |
Collapse
|
85
|
Nam KH, Xu Y. Structural Analysis of the Large Stokes Shift Red Fluorescent Protein tKeima. Molecules 2024; 29:2579. [PMID: 38893454 PMCID: PMC11173989 DOI: 10.3390/molecules29112579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 05/25/2024] [Accepted: 05/29/2024] [Indexed: 06/21/2024] Open
Abstract
The Keima family comprises large Stokes shift fluorescent proteins that are useful for dual-color fluorescence cross-correlation spectroscopy and multicolor imaging. The tKeima is a tetrameric large Stokes shift fluorescent protein and serves as the ancestor fluorescent protein for both dKeima and mKeima. The spectroscopic properties of tKeima have been previously reported; however, its structural basis and molecular properties have not yet been elucidated. In this study, we present the crystallographic results of the large Stokes shift fluorescent protein tKeima. The purified tKeima protein spontaneously crystallized after purification without further crystallization. The crystal structure of tKeima was determined at 3.0 Å resolution, revealing a β-barrel fold containing the Gln-Tyr-Gly chromophores mainly with cis-conformation. The tetrameric interfaces of tKeima were stabilized by numerous hydrogen bonds and salt-bridge interactions. These key residues distinguish the substituted residues in dKeima and mKeima. The key structure-based residues involved in the tetramer formation of tKeima provide insights into the generation of a new type of monomeric mKeima. This structural analysis expands our knowledge of the Keima family and provides insights into its protein engineering.
Collapse
Affiliation(s)
- Ki Hyun Nam
- College of General Education, Kookmin University, Seoul 02707, Republic of Korea
| | - Yongbin Xu
- Department of Bioengineering, College of Life Science, Dalian Minzu University, Dalian 116600, China
- Key Laboratory of Biotechnology and Bioresources Utilization of Ministry of Education, College of Life Science, Dalian Minzu University, Dalian 116600, China
| |
Collapse
|
86
|
Kamikawa T, Hashimoto A, Yamazaki N, Adachi J, Matsushima A, Kikuchi K, Hori Y. Bioisostere-conjugated fluorescent probes for live-cell protein imaging without non-specific organelle accumulation. Chem Sci 2024; 15:8097-8105. [PMID: 38817570 PMCID: PMC11134342 DOI: 10.1039/d3sc06957e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Accepted: 04/26/2024] [Indexed: 06/01/2024] Open
Abstract
Specific labeling of proteins using membrane-permeable fluorescent probes is a powerful technique for bioimaging. Cationic fluorescent dyes with high fluorescence quantum yield, photostability, and water solubility provide highly useful scaffolds for protein-labeling probes. However, cationic probes generally show undesired accumulation in organelles, which causes a false-positive signal in localization analysis. Herein, we report a design strategy for probes that suppress undesired organelle accumulation using a bioisostere for intracellular protein imaging in living cells. Our design allows the protein labeling probes to possess both membrane permeability and suppress non-specific accumulation and has been shown to use several protein labeling systems, such as PYP-tag and Halo tag systems. We further developed a fluorogenic PYP-tag labeling probe for intracellular proteins and used it to visualize multiple localizations of target proteins in the intracellular system. Our strategy offers a versatile design for undesired accumulation-suppressed probes with cationic dye scaffolds and provides a valuable tool for intracellular protein imaging.
Collapse
Affiliation(s)
- Takuya Kamikawa
- Graduate School of Science, Kyushu University 744 Motooka Nishi Fukuoka 819-0395 Japan
| | - Akari Hashimoto
- Graduate School of Engineering, Osaka University Suita Osaka 565-0871 Japan
| | - Nozomi Yamazaki
- Graduate School of Engineering, Osaka University Suita Osaka 565-0871 Japan
| | - Junya Adachi
- Faculty of Science, Kyushu University, Fukuoka Fukuoka 819-0395 Japan
| | - Ayami Matsushima
- Faculty of Science, Kyushu University, Fukuoka Fukuoka 819-0395 Japan
| | - Kazuya Kikuchi
- Graduate School of Engineering, Osaka University Suita Osaka 565-0871 Japan
- Immunology Frontier Research Center, Osaka University Suita Osaka 565-0871 Japan
| | - Yuichiro Hori
- Faculty of Science, Kyushu University, Fukuoka Fukuoka 819-0395 Japan
| |
Collapse
|
87
|
Kavčič L, Ilc G, Wang B, Vlahoviček-Kahlina K, Jerić I, Plavec J. α-Hydrazino Acid Insertion Governs Peptide Organization in Solution by Local Structure Ordering. ACS OMEGA 2024; 9:22175-22185. [PMID: 38799301 PMCID: PMC11112695 DOI: 10.1021/acsomega.4c00804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 04/18/2024] [Accepted: 04/29/2024] [Indexed: 05/29/2024]
Abstract
In this work, we have applied the concept of α-hydrazino acid insertion in a peptide sequence as a means of structurally organizing a potential protein-protein interactions (PPI) inhibitor. Hydrazino peptides characterized by the incorporation of an α-hydrazino acid at specific positions introduce an additional nitrogen atom into their backbone. This modification leads to a change in the electrostatic properties of the peptide and induces the restructuring of its hydrogen bonding network, resulting in conformational changes toward more stable structural motifs. Despite the successful use of synthetic hydrazino oligomers in binding to nucleic acids, the structural changes due to the incorporation of α-hydrazino acid into short natural peptides in solution are still poorly understood. Based on NMR data, we report structural models of p53-derived hydrazino peptides with elements of localized peptide structuring in the form of an α-, β-, or γ-turn as a result of hydrazino modification in the peptide backbone. The modifications could potentially lead to the preorganization of a helical secondary peptide structure in a solution that is favorable for binding to a biological receptor. Spectroscopically, we observed that the ensemble averaged rapidly interconverting conformations, including isomerization of the E-Z hydrazide bond. This further increases the adaptability by expanding the conformational space of hydrazine peptides as potential protein-protein interaction antagonists.
Collapse
Affiliation(s)
- Luka Kavčič
- Slovenian
NMR Centre, National Institute of Chemistry, Ljubljana 1000, Slovenia
| | - Gregor Ilc
- Slovenian
NMR Centre, National Institute of Chemistry, Ljubljana 1000, Slovenia
- EN-FIST
Centre of Excellence, Ljubljana 1000, Slovenia
| | - Baifan Wang
- Slovenian
NMR Centre, National Institute of Chemistry, Ljubljana 1000, Slovenia
| | | | - Ivanka Jerić
- Division
of Organic Chemistry and Biochemistry, Rudjer
Bošković Institute, Zagreb 10000, Croatia
| | - Janez Plavec
- Slovenian
NMR Centre, National Institute of Chemistry, Ljubljana 1000, Slovenia
- EN-FIST
Centre of Excellence, Ljubljana 1000, Slovenia
- Faculty
of Chemistry and Chemical Technology, University
of Ljubljana, Ljubljana 1000, Slovenia
| |
Collapse
|
88
|
Kato A. Development of conjugation-mediated versatile site-specific single-copy luciferase fusion system. J GEN APPL MICROBIOL 2024; 69:318-326. [PMID: 37940551 DOI: 10.2323/jgam.2023.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2023]
Abstract
There are a number of reporter systems that are useful for gene expression analysis in bacteria. However, at least in Salmonella, a versatile and simple luciferase reporter system that can be integrated precisely behind a promoter or gene of interest on a chromosome is not currently available. The luciferase operon luxCDABE from Photorhabdus luminescens has several advantages, including brightness, wide linear range, absence in most bacteria, stability at high temperature, and no substrate addition required for the assay. Here, a conjugation-mediated site-specific single-copy luciferase fusion system is developed. A reporter plasmid containing the conditional replication origin R6Kgγ, FRT-luxCDABE, and KmR marker was designed to be incorporated into the FRT site behind the promoter or gene of interest on the chromosome in cells expressing FLP. However, when this reporter plasmid was electroporated directly into such a S. enterica strain, no colonies appeared, likely due to the low transformation efficiency of this relatively large plasmid DNA. Meanwhile, the same reporter plasmid was successfully introduced and launched as an insert of an FRT-containing conjugative transfer plasmid from a mating E. coli strain to the same recipient S. enterica strain, as well as Citrobacter koseri. RcsB-dependent inducible luminescence from the constructed wzc-luxCDABE strains was confirmed. This system is feasible for detecting very low levels of transcription, even in Gram-negative bacterial species that are relatively difficult to genetically manipulate.
Collapse
Affiliation(s)
- Akinori Kato
- Department of Advanced Bioscience, Graduate School of Agriculture, Kindai University
| |
Collapse
|
89
|
Koveal D. Functional principles of genetically encoded fluorescent biosensors for metabolism and their quantitative use. J Neurochem 2024; 168:496-505. [PMID: 37314388 DOI: 10.1111/jnc.15878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 05/26/2023] [Accepted: 05/30/2023] [Indexed: 06/15/2023]
Abstract
Genetically encoded fluorescent biosensors provide an attractive means of measuring chemical changes in single cells on fast timescales (milliseconds to seconds). While their most prominent application has been in tracking neural activity and neurotransmitter release, there has been growing interest in developing and deploying new versions of these tools to study brain metabolism. However, the careful use of these tools and the interpretation of the data they provide remain challenging. Many biosensors are subject to interferences that can alter sensor responses within a single cell or between cells, producing ambiguous results. This presents a challenge for quantitation and for our ability to accurately interpret sensor responses. This review describes current methods of sensor quantitation, with a focus on cellular interferences that commonly affect sensor performance, ways to avoid false inferences, and recent advances in sensor optimization to make them more robust.
Collapse
Affiliation(s)
- Dorothy Koveal
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University School of Medicine, Atlanta, Georgia, USA
| |
Collapse
|
90
|
Pata J, Moreno A, Wiseman B, Magnard S, Lehlali I, Dujardin M, Banerjee A, Högbom M, Boumendjel A, Chaptal V, Prasad R, Falson P. Purification and characterization of Cdr1, the drug-efflux pump conferring azole resistance in Candida species. Biochimie 2024; 220:167-178. [PMID: 38158037 DOI: 10.1016/j.biochi.2023.12.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 12/01/2023] [Accepted: 12/22/2023] [Indexed: 01/03/2024]
Abstract
Candida albicans and C. glabrata express exporters of the ATP-binding cassette (ABC) superfamily and address them to their plasma membrane to expel azole antifungals, which cancels out their action and allows the yeast to become multidrug resistant (MDR). In a way to understand this mechanism of defense, we describe the purification and characterization of Cdr1, the membrane ABC exporter mainly responsible for such phenotype in both species. Cdr1 proteins were functionally expressed in the baker yeast, tagged at their C-terminal end with either a His-tag for the glabrata version, cgCdr1-His, or a green fluorescent protein (GFP) preceded by a proteolytic cleavage site for the albicans version, caCdr1-P-GFP. A membrane Cdr1-enriched fraction was then prepared to assay several detergents and stabilizers, probing their level of extraction and the ATPase activity of the proteins as a functional marker. Immobilized metal-affinity and size-exclusion chromatographies (IMAC, SEC) were then carried out to isolate homogenous samples. Overall, our data show that although topologically and phylogenetically close, both proteins display quite distinct behaviors during the extraction and purification steps, and qualify cgCdr1 as a good candidate to characterize this type of proteins for developing future inhibitors of their azole antifungal efflux activity.
Collapse
Affiliation(s)
- Jorgaq Pata
- Drug Resistance & Membrane Proteins Group, CNRS-Lyon 1 University Laboratory UMR 5086, IBCP, 69367, CEDEX Lyon 07, France
| | - Alexis Moreno
- Drug Resistance & Membrane Proteins Group, CNRS-Lyon 1 University Laboratory UMR 5086, IBCP, 69367, CEDEX Lyon 07, France; CALIXAR, 60 Avenue Rockefeller, Lyon, France
| | - Benjamin Wiseman
- Department of Biochemistry and Biophysics, Arrhenius Laboratories for Natural Sciences, Stockholm University, Stockholm, Sweden
| | - Sandrine Magnard
- Drug Resistance & Membrane Proteins Group, CNRS-Lyon 1 University Laboratory UMR 5086, IBCP, 69367, CEDEX Lyon 07, France
| | - Idriss Lehlali
- Drug Resistance & Membrane Proteins Group, CNRS-Lyon 1 University Laboratory UMR 5086, IBCP, 69367, CEDEX Lyon 07, France
| | | | - Atanu Banerjee
- Amity Institute of Biotechnology and Amity Institute of Integrative Sciences and Health, Amity University Haryana, Gurgaon, India
| | - Martin Högbom
- Department of Biochemistry and Biophysics, Arrhenius Laboratories for Natural Sciences, Stockholm University, Stockholm, Sweden
| | | | - Vincent Chaptal
- Drug Resistance & Membrane Proteins Group, CNRS-Lyon 1 University Laboratory UMR 5086, IBCP, 69367, CEDEX Lyon 07, France
| | - Rajendra Prasad
- Amity Institute of Biotechnology and Amity Institute of Integrative Sciences and Health, Amity University Haryana, Gurgaon, India
| | - Pierre Falson
- Drug Resistance & Membrane Proteins Group, CNRS-Lyon 1 University Laboratory UMR 5086, IBCP, 69367, CEDEX Lyon 07, France.
| |
Collapse
|
91
|
Jensen GC, Janis MK, Nguyen HN, David OW, Zastrow ML. Fluorescent Protein-Based Sensors for Detecting Essential Metal Ions across the Tree of Life. ACS Sens 2024; 9:1622-1643. [PMID: 38587931 PMCID: PMC11073808 DOI: 10.1021/acssensors.3c02695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/10/2024]
Abstract
Genetically encoded fluorescent metal ion sensors are powerful tools for elucidating metal dynamics in living systems. Over the last 25 years since the first examples of genetically encoded fluorescent protein-based calcium indicators, this toolbox of probes has expanded to include other essential and non-essential metal ions. Collectively, these tools have illuminated fundamental aspects of metal homeostasis and trafficking that are crucial to fields ranging from neurobiology to human nutrition. Despite these advances, much of the application of metal ion sensors remains limited to mammalian cells and tissues and a limited number of essential metals. Applications beyond mammalian systems and in vivo applications in living organisms have primarily used genetically encoded calcium ion sensors. The aim of this Perspective is to provide, with the support of historical and recent literature, an updated and critical view of the design and use of fluorescent protein-based sensors for detecting essential metal ions in various organisms. We highlight the historical progress and achievements with calcium sensors and discuss more recent advances and opportunities for the detection of other essential metal ions. We also discuss outstanding challenges in the field and directions for future studies, including detecting a wider variety of metal ions, developing and implementing a broader spectral range of sensors for multiplexing experiments, and applying sensors to a wider range of single- and multi-species biological systems.
Collapse
Affiliation(s)
- Gary C Jensen
- Department of Chemistry, University of Houston, Houston, Texas 77204, United States
| | - Makena K Janis
- Department of Chemistry, University of Houston, Houston, Texas 77204, United States
| | - Hazel N Nguyen
- Department of Chemistry, University of Houston, Houston, Texas 77204, United States
| | - Ogonna W David
- Department of Chemistry, University of Houston, Houston, Texas 77204, United States
| | - Melissa L Zastrow
- Department of Chemistry, University of Houston, Houston, Texas 77204, United States
| |
Collapse
|
92
|
Canini D, Ceschi E, Perozeni F. Toward the Exploitation of Sustainable Green Factory: Biotechnology Use of Nannochloropsis spp. BIOLOGY 2024; 13:292. [PMID: 38785776 PMCID: PMC11117969 DOI: 10.3390/biology13050292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 04/19/2024] [Accepted: 04/24/2024] [Indexed: 05/25/2024]
Abstract
Securing food, energy, and raw materials for a growing population is one of the most significant challenges of our century. Algae play a central role as an alternative to plants. Wastewater and flue gas can secure nutrients and CO2 for carbon fixation. Unfortunately, algae domestication is necessary to enhance biomass production and reduce cultivation costs. Nannochloropsis spp. have increased in popularity among microalgae due to their ability to accumulate high amounts of lipids, including PUFAs. Recently, the interest in the use of Nannochloropsis spp. as a green bio-factory for producing high-value products increased proportionally to the advances of synthetic biology and genetic tools in these species. In this review, we summarized the state of the art of current nuclear genetic manipulation techniques and a few examples of their application. The industrial use of Nannochloropsis spp. has not been feasible yet, but genetic tools can finally lead to exploiting this full-of-potential microalga.
Collapse
Affiliation(s)
| | | | - Federico Perozeni
- Department of Biotechnology, University of Verona, 37134 Verona, Italy; (D.C.); (E.C.)
| |
Collapse
|
93
|
Clarke R, Zeng L, Atkinson BC, Kadodwala M, Thomson AR, Sutherland A. Fluorescent carbazole-derived α-amino acids: structural mimics of tryptophan. Chem Sci 2024; 15:5944-5949. [PMID: 38665535 PMCID: PMC11040653 DOI: 10.1039/d4sc01173b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 03/20/2024] [Indexed: 04/28/2024] Open
Abstract
Fluorescent tags are commonly used for imaging of proteins and peptides during biological events; however, the large size of dyes can disrupt protein structure and function, and typically require the use of a chemical spacer. Herein, we report the synthesis of a new class of fluorescent unnatural α-amino acid, containing carbazole side-chains designed to mimic l-tryptophan and thus, readily incorporated into peptides. The amino acids were constructed using a Negishi cross-coupling reaction as the key step and exhibited strong fluorescent emission, with high quantum yields in both organic solvents and water. Compatible with solid phase peptide synthesis, the carbazole amino acids were used to replace tryptophan in a β-hairpin model peptide and shown to be a close structural mimic with retention of conformation. They were also found to be effective fluorescent molecular reporters for biological events. Incorporation into a proline-rich ligand of the WW domain protein demonstrated that the fluorescent properties of a carbazole amino acid could be used to measure the protein-protein binding interaction of this important biological signalling process.
Collapse
Affiliation(s)
- Rebecca Clarke
- School of Chemistry, University of Glasgow Joseph Black Building, University Avenue Glasgow G12 8QQ UK
| | - Liyao Zeng
- School of Chemistry, University of Glasgow Joseph Black Building, University Avenue Glasgow G12 8QQ UK
| | - Bethany C Atkinson
- School of Chemistry, University of Glasgow Joseph Black Building, University Avenue Glasgow G12 8QQ UK
| | - Malcolm Kadodwala
- School of Chemistry, University of Glasgow Joseph Black Building, University Avenue Glasgow G12 8QQ UK
| | - Andrew R Thomson
- School of Chemistry, University of Glasgow Joseph Black Building, University Avenue Glasgow G12 8QQ UK
| | - Andrew Sutherland
- School of Chemistry, University of Glasgow Joseph Black Building, University Avenue Glasgow G12 8QQ UK
| |
Collapse
|
94
|
Niu S, Liu F, Wang Y, Rao B, Wang Y. A Study on the Efficient Preparation of α-Ketoglutarate with L-Glutamate Oxidase. Molecules 2024; 29:1861. [PMID: 38675681 PMCID: PMC11055115 DOI: 10.3390/molecules29081861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 04/09/2024] [Accepted: 04/15/2024] [Indexed: 04/28/2024] Open
Abstract
Alpha-ketoglutaric acid (α-KG), as an intermediate product of the tricarboxylic acid cycle, plays a crucial role in peptide and amino acid synthesis. In order to reduce costs and improve efficiency in the oxidative production of α-ketoglutaric acid, this study successfully synthesized and expressed L-glutamate oxidase (LGOXStr) from Streptomyces viridosporus R111 and catalase (KatGEsc) from Escherichia coli H736. Two immobilization methods and the conditions for one-step whole-cell catalysis of α-ketoglutaric acid were investigated. α-Ketoglutaric acid has broad applications in the pharmaceutical, food, and chemical industries. The specific research results are as follows: (1) By fusing the sfGFP tag, L-glutamate oxidase (LGOXStr r) and catalase (KatGEsc) were successfully anchored to the outer membrane of Escherichia coli cells, achieving one-step whole-cell catalysis of α-ketoglutaric acid with a conversion efficiency of up to 75%. (2) Through the co-immobilization of LGOXStr and KatGEsc, optimization of the preparation parameters of immobilized cells, and exploration of the immobilization method using E.coli@ZIF-8, immobilized cells with conversion rates of over 60% were obtained even after 10 cycles of reuse. Under the optimal conditions, the production rate of α-ketoglutaric acid reached 96.7% in a 12 h reaction, which is 1.1 times that of E. coli@SA and 1.29 times that of free cells.
Collapse
Affiliation(s)
- Shuhui Niu
- National Biopesticide Engineering Technology Research Center, Hubei Biopesticide Engineering Research Center, Hubei Academy of Agricultural Sciences, Biopesticide Branch of Hubei Innovation Centre of Agricultural Science and Technology, Wuhan 430064, China; (S.N.)
- State Key Laboratory of Biocatalysis and Enzyme, Engineering Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei Key Laboratory of Industrial Biotechnology, Biology Faculty, Hubei University, Wuhan 430062, China
| | - Fang Liu
- National Biopesticide Engineering Technology Research Center, Hubei Biopesticide Engineering Research Center, Hubei Academy of Agricultural Sciences, Biopesticide Branch of Hubei Innovation Centre of Agricultural Science and Technology, Wuhan 430064, China; (S.N.)
| | - Yaping Wang
- State Key Laboratory of Biocatalysis and Enzyme, Engineering Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei Key Laboratory of Industrial Biotechnology, Biology Faculty, Hubei University, Wuhan 430062, China
| | - Ben Rao
- National Biopesticide Engineering Technology Research Center, Hubei Biopesticide Engineering Research Center, Hubei Academy of Agricultural Sciences, Biopesticide Branch of Hubei Innovation Centre of Agricultural Science and Technology, Wuhan 430064, China; (S.N.)
| | - Yueying Wang
- National Biopesticide Engineering Technology Research Center, Hubei Biopesticide Engineering Research Center, Hubei Academy of Agricultural Sciences, Biopesticide Branch of Hubei Innovation Centre of Agricultural Science and Technology, Wuhan 430064, China; (S.N.)
| |
Collapse
|
95
|
Hancock AM, Datta SS. Interplay between environmental yielding and dynamic forcing modulates bacterial growth. Biophys J 2024; 123:957-967. [PMID: 38454600 PMCID: PMC11052696 DOI: 10.1016/j.bpj.2024.03.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 02/22/2024] [Accepted: 03/04/2024] [Indexed: 03/09/2024] Open
Abstract
Many bacterial habitats-ranging from gels and tissues in the body to cell-secreted exopolysaccharides in biofilms-are rheologically complex, undergo dynamic external forcing, and have unevenly distributed nutrients. How do these features jointly influence how the resident cells grow and proliferate? Here, we address this question by studying the growth of Escherichia coli dispersed in granular hydrogel matrices with defined and highly tunable structural and rheological properties, under different amounts of external forcing imposed by mechanical shaking, and in both aerobic and anaerobic conditions. Our experiments establish a general principle: that the balance between the yield stress of the environment that the cells inhabit, σy, and the external stress imposed on the environment, σ, modulates bacterial growth by altering transport of essential nutrients to the cells. In particular, when σy<σ, the environment is easily fluidized and mixed over large scales, providing nutrients to the cells and sustaining complete cellular growth. By contrast, when σy>σ, the elasticity of the environment suppresses large-scale fluid mixing, limiting nutrient availability and arresting cellular growth. Our work thus reveals a new mechanism, beyond effects that change cellular behavior via local forcing, by which the rheology of the environment may modulate microbial physiology in diverse natural and industrial settings.
Collapse
Affiliation(s)
- Anna M Hancock
- Chemical and Biological Engineering, Princeton University, Princeton, New Jersey
| | - Sujit S Datta
- Chemical and Biological Engineering, Princeton University, Princeton, New Jersey.
| |
Collapse
|
96
|
Kundu S, Maji MS. Solution-Phase Late-Stage Chemoselective Photocatalytic Removal of Sulfonyl and Phenacyl Groups in Peptides. Chemistry 2024; 30:e202400033. [PMID: 38345998 DOI: 10.1002/chem.202400033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Indexed: 03/07/2024]
Abstract
Herein, BPC catalyzed visible-light-triggered target-specific late-stage solution phase desulfonylation from tryptophan in oligopeptides is portrayed by overcoming the isolation issue up to octamers. This robust and mild method is highly predictable and chemoselective, tolerating myriad of functional groups in aza-heteroaromatics and peptides. Interestingly, reductive desulfonylation is also amenable to biologically significant reactive histidine and tyrosine side chains, signifying the versatility of the strategy. Additional efficacy of BPC is demonstrated by solution phase phenacyl deprotection from C-terminal in peptides. Furthermore, excellent catalyst loading of 0.5 mol% and recyclability demonstrate the practical utility and applicability of this strategy.
Collapse
Affiliation(s)
- Samrat Kundu
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur, 721302, West Bengal, India
| | - Modhu Sudan Maji
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur, 721302, West Bengal, India
| |
Collapse
|
97
|
Miyanabe K, Yamashita T, Tsumoto K. Thermodynamic and molecular dynamic insights into how fusion influences peptide-tag recognition of an antibody. Sci Rep 2024; 14:8685. [PMID: 38622354 PMCID: PMC11018781 DOI: 10.1038/s41598-024-59355-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Accepted: 04/09/2024] [Indexed: 04/17/2024] Open
Abstract
To understand the effect of protein fusion on the recognition of a peptide-tag by an antibody, we fused a CCR5-derived peptide-tag (pep1) to GFP and investigated its recognition by an anti-pep1 antibody, 4B08. First, to characterize the thermodynamic properties associated with the pep1-4B08 binding, isothermal titration calorimetry experiments were conducted. It was found that pep1 fused to the C-terminus of GFP (GFP-CT) enhanced the enthalpic gain by 2.1 kcal mol-1 and the entropic loss only by 0.9 kcal mol-1, resulting in an 8-fold increase in the binding affinity compared to the unfused pep1. On the other hand, pep1 fused to the N-terminus of GFP (GFP-NT) enhanced the enthalpic gain by 3.0 kcal mol-1 and the entropic loss by 3.2 kcal mol-1, leading to no significant enhancement of the binding affinity. To gain deeper insights, molecular dynamics simulations of GFP-NT, GFP-CT, and pep1 were performed. The results showed that the location of the fusion point sensitively affects the interaction energy, the solvent accessible surface area, and the fluctuation of pep1 in the unbound state, which explains the difference in the experimental thermodynamic properties.
Collapse
Affiliation(s)
- Kazuhiro Miyanabe
- Department of Chemistry and Biotechnology, School of Engineering, The University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Takefumi Yamashita
- Laboratory for Systems Biology and Medicine, Research Center for Advanced Science and Technology, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo, 153-8904, Japan.
- Department of Physical Chemistry, School of Pharmacy and Pharmaceutical Sciences, Hoshi University, 2-4-41 Ebara, Shinagawa-ku, Tokyo, 142-8501, Japan.
| | - Kouhei Tsumoto
- Department of Chemistry and Biotechnology, School of Engineering, The University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo, 113-0033, Japan.
- Department of Bioengineering, School of Engineering, The University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo, 113-0033, Japan.
- Medical Proteomics Laboratory, The Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo, 108-8639, Japan.
| |
Collapse
|
98
|
Zhang L, Tan L, Liu M, Chen Y, Yang Y, Zhang Y, Zhao G. Quantitative measurement of cell-surface displayed proteins based on split-GFP assembly. Microb Cell Fact 2024; 23:108. [PMID: 38609965 PMCID: PMC11015686 DOI: 10.1186/s12934-024-02386-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 04/04/2024] [Indexed: 04/14/2024] Open
Abstract
BACKGROUND Microbial cell surface display technology allows immobilizing proteins on the cell surface by fusing them to anchoring motifs, thereby endowing the cells with diverse functionalities. However, the assessment of successful protein display and the quantification of displayed proteins remain challenging. The green fluorescent protein (GFP) can be split into two non-fluorescent fragments, while they spontaneously assemble and emit fluorescence when brought together through complementation. Based on split-GFP assembly, we aim to: (1) confirm the success display of passenger proteins, (2) quantify the number of passenger proteins displayed on individual cells. RESULTS In this study, we propose two innovative methods based on split-green fluorescent protein (split-GFP), named GFP1-10/GFP11 and GFP1-9/GFP10-11 assembly, for the purpose of confirming successful display and quantifying the number of proteins displayed on individual cells. We evaluated the display efficiency of SUMO and ubiquitin using different anchor proteins to demonstrate the feasibility of the two split-GFP assembly systems. To measure the display efficiency of functional proteins, laccase expression was measured using the split-GFP assembly system by co-displaying GFP11 or GFP10-11 tags, respectively. CONCLUSIONS Our study provides two split-GFP based methods that enable qualitative and quantitative analyses of individual cell display efficiency with a simple workflow, thus facilitating further comprehensive investigations into microbial cell surface display technology. Both split-GFP assembly systems offer a one-step procedure with minimal cost, simplifying the fluorescence analysis of surface-displaying cells.
Collapse
Affiliation(s)
- Li Zhang
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
- School of Minerals Processing and Bioengineering, Central South University, Changsha, Hunan, 410083, PR China
| | - Ling Tan
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
- Haihe Laboratory of Synthetic Biology, Tianjin, 300308, China
| | - Meizi Liu
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
- Haihe Laboratory of Synthetic Biology, Tianjin, 300308, China
| | - Yunhong Chen
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
- National Center of Technology Innovation for Synthetic Biology, Tianjin, 300308, China
| | - Yu Yang
- School of Minerals Processing and Bioengineering, Central South University, Changsha, Hunan, 410083, PR China.
| | - Yanfei Zhang
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China.
- National Center of Technology Innovation for Synthetic Biology, Tianjin, 300308, China.
| | - Guoping Zhao
- National Center of Technology Innovation for Synthetic Biology, Tianjin, 300308, China
- CAS-Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032, China
| |
Collapse
|
99
|
Werin B, Hansson Wennersten W, Olsson R, Kołodziejczyk O, Andersson MN, Carlquist M, Johanson U. Evaluation of heterologous expression in Pichia pastoris of Pine Weevil TRPA1 by GFP and flow cytometry. Microb Cell Fact 2024; 23:110. [PMID: 38609906 PMCID: PMC11015645 DOI: 10.1186/s12934-024-02382-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 03/28/2024] [Indexed: 04/14/2024] Open
Abstract
BACKGROUND The wasabi receptor, also known as the Transient Receptor Potential Ankyrin 1 (TRPA1) ion channel, is a potential target for development of repellents for insects, like the pine weevil (Hylobius abietis) feeding on conifer seedlings and causing damage in forestry. Heterologous expression of TRPA1 from pine weevil in the yeast Pichia pastoris can potentially provide protein for structural and functional studies. Here we take advantage of the Green Fluorescent Protein (GFP) tag to examine the various steps of heterologous expression, to get more insight in clone selection, expression and isolation of the intact purified protein. RESULTS The sequence of HaTRPA1 is reported and GFP-tagged constructs were made of the full-length protein and a truncated version (Δ1-708 HaTRPA1), lacking the N-terminal ankyrin repeat domain. Clones were screened on GFP expression plates, induced in small liquid cultures and in fed-batch cultures, and evaluated by flow cytometry and fluorescence microscopy. The screening on plates successfully identifies low-expression clones, but fails to predict the ranking of the best performing clones in small-scale liquid cultures. The two constructs differ in their cellular localization. Δ1-708 HaTRPA1 is found in a ring at the perimeter of cell, whereas HaTRPA1 is forming highly fluorescent speckles in interior regions of the cell. The pattern is consistent in different clones of the same construct and persists in fed-batch culture. The expression of Δ1-708 HaTRPA1 decreases the viability more than HaTRPA1, and in fed-batch culture it is clear that intact cells first express Δ1-708 HaTRPA1 and then become damaged. Purifications show that both constructs suffer from degradation of the expressed protein, but especially the HaTRPA1 construct. CONCLUSIONS The GFP tag makes it possible to follow expression by flow cytometry and fluorescence microscopy. Analyses of localization, cell viability and expression show that the former two parameters are specific for each of the two evaluated constructs, whereas the relative expression of the constructs varies with the cultivation method. High expression is not all that matters, so taking damaged cells into account, something that may be linked to protein degradation, is important when picking the most suitable construct, clone, and expression scheme.
Collapse
Affiliation(s)
- Balder Werin
- Center for Molecular Protein Science, Department of Chemistry, Lund University, Lund, SE-221 00, Sweden
| | | | - Robin Olsson
- Center for Molecular Protein Science, Department of Chemistry, Lund University, Lund, SE-221 00, Sweden
| | - Oliwia Kołodziejczyk
- Center for Molecular Protein Science, Department of Chemistry, Lund University, Lund, SE-221 00, Sweden
| | | | - Magnus Carlquist
- Division of Applied Microbiology, Department of Chemistry, Lund University, Lund, SE-221 00, Sweden
| | - Urban Johanson
- Center for Molecular Protein Science, Department of Chemistry, Lund University, Lund, SE-221 00, Sweden.
| |
Collapse
|
100
|
Liang J, Smith AW. The Oligomeric State of Vasorin in the Plasma Membrane Measured Non-Invasively by Quantitative Fluorescence Fluctuation Spectroscopy. Int J Mol Sci 2024; 25:4115. [PMID: 38612924 PMCID: PMC11012933 DOI: 10.3390/ijms25074115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 04/01/2024] [Accepted: 04/03/2024] [Indexed: 04/14/2024] Open
Abstract
Vasorin (VASN), a transmembrane protein heavily expressed in endothelial cells, has garnered recent interest due to its key role in vascular development and pathology. The oligomeric state of VASN is a crucial piece of knowledge given that receptor clustering is a frequent regulatory mechanism in downstream signaling activation and amplification. However, documentation of VASN oligomerization is currently absent. In this brief report, we describe the measurement of VASN oligomerization in its native membranous environment, leveraging a class of fluorescence fluctuation spectroscopy. Our investigation revealed that the majority of VASN resides in a monomeric state, while a minority of VASN forms homodimers in the cellular membrane. This result raises the intriguing possibility that ligand-independent clustering of VASN may play a role in transforming growth factor signaling.
Collapse
Affiliation(s)
- Junyi Liang
- Department of Chemistry, University of Akron, Akron, OH 44325, USA
- Genomic Medicine Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Adam W. Smith
- Department of Chemistry, University of Akron, Akron, OH 44325, USA
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX 79409, USA
| |
Collapse
|