51
|
Rosvall KA, Bergeon Burns CM, Jayaratna SP, Ketterson ED. Divergence along the gonadal steroidogenic pathway: Implications for hormone-mediated phenotypic evolution. Horm Behav 2016; 84:1-8. [PMID: 27206546 PMCID: PMC4996689 DOI: 10.1016/j.yhbeh.2016.05.015] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Revised: 04/18/2016] [Accepted: 05/16/2016] [Indexed: 11/19/2022]
Abstract
Across a range of taxa, hormones regulate suites of traits that influence survival and reproductive success; however, the mechanisms by which hormone-mediated traits evolve are still unclear. We hypothesized that phenotypic divergence might follow from differential regulation of genes encoding key steps in hormone biosynthesis and thus the rate of hormone production. We tested this hypothesis in relation to the steroid hormone testosterone by comparing two subspecies of junco (Junco hyemalis) in the wild and in captivity. These subspecies have diverged over the last 10-15kyears in multiple testosterone-mediated traits, including aggression, ornamentation, and body size. We show that variation in gonadal gene expression along the steroid biosynthetic pathway predicts phenotypic divergence within and among subspecies, and that the more androgenized subspecies exhibits a more prolonged time-course of elevated testosterone following exogenous stimulation. Our results point to specific genes that fulfill key conditions for phenotypic evolution because they vary functionally in their expression among individuals and between populations, and they map onto population variation in phenotype in a common garden. Our findings therefore build an important bridge between hormones, genes, and phenotypic evolution.
Collapse
Affiliation(s)
- Kimberly A Rosvall
- Department of Biology, Indiana University, 1001 E. Third Street, Bloomington, IN 47405, USA; Center for the Integrative Study of Animal Behavior, Indiana University, 1001 E. Third Street, Bloomington, IN 47405, USA.
| | - Christine M Bergeon Burns
- Center for the Integrative Study of Animal Behavior, Indiana University, 1001 E. Third Street, Bloomington, IN 47405, USA
| | - Sonya P Jayaratna
- Department of Biology, Indiana University, 1001 E. Third Street, Bloomington, IN 47405, USA
| | - Ellen D Ketterson
- Department of Biology, Indiana University, 1001 E. Third Street, Bloomington, IN 47405, USA; Center for the Integrative Study of Animal Behavior, Indiana University, 1001 E. Third Street, Bloomington, IN 47405, USA
| |
Collapse
|
52
|
Cox RM, McGlothlin JW, Bonier F. Evolutionary Endocrinology: Hormones as Mediators of Evolutionary Phenomena: An Introduction to the Symposium. Integr Comp Biol 2016; 56:121-5. [DOI: 10.1093/icb/icw047] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
|
53
|
Dantzer B, Westrick SE, van Kesteren F. Relationships between Endocrine Traits and Life Histories in Wild Animals: Insights, Problems, and Potential Pitfalls. Integr Comp Biol 2016; 56:185-97. [DOI: 10.1093/icb/icw051] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
|
54
|
Cox RM, McGlothlin JW, Bonier F. Hormones as Mediators of Phenotypic and Genetic Integration: an Evolutionary Genetics Approach. Integr Comp Biol 2016; 56:126-37. [PMID: 27252188 DOI: 10.1093/icb/icw033] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Evolutionary endocrinology represents a synthesis between comparative endocrinology and evolutionary genetics. This synthesis can be viewed through the breeder's equation, a cornerstone of quantitative genetics that, in its univariate form, states that a population's evolutionary response is the product of the heritability of a trait and selection on that trait (R = h(2)S). Under this framework, evolutionary endocrinologists have begun to quantify the heritability of, and the strength of selection on, a variety of hormonal phenotypes. With specific reference to our work on testosterone and corticosterone in birds and lizards, we review these studies while emphasizing the challenges of applying this framework to hormonal phenotypes that are inherently plastic and mediate adaptive responses to environmental variation. Next, we consider the untapped potential of evolutionary endocrinology as a framework for exploring multivariate versions of the breeder's equation, with emphasis on the role of hormones in structuring phenotypic and genetic correlations. As an extension of the familiar concepts of phenotypic integration and hormonal pleiotropy, we illustrate how the hormonal milieu of an individual acts as a local environment for the expression of genes and phenotypes, thereby influencing the quantitative genetic architecture of multivariate phenotypes. We emphasize that hormones are more than mechanistic links in the translation of genotype to phenotype: by virtue of their pleiotropic effects on gene expression, hormones structure the underlying genetic variances and covariances that determine a population's evolutionary response to selection.
Collapse
Affiliation(s)
- Robert M Cox
- *Department of Biology, University of Virginia, Charlottesville, VA, 22904 USA;
| | | | - Frances Bonier
- Biology Department, Queen's University, Kingston, Ontario, Canada K7L 3N6
| |
Collapse
|
55
|
Endocrine Flexibility: Optimizing Phenotypes in a Dynamic World? Trends Ecol Evol 2016; 31:476-488. [DOI: 10.1016/j.tree.2016.03.005] [Citation(s) in RCA: 120] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Revised: 02/25/2016] [Accepted: 03/03/2016] [Indexed: 01/08/2023]
|
56
|
Davidowitz G. Endocrine Proxies Can Simplify Endocrine Complexity to Enable Evolutionary Prediction. Integr Comp Biol 2016; 56:198-206. [DOI: 10.1093/icb/icw021] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
|
57
|
Zera AJ. Evolutionary Endocrinology of Hormonal Rhythms: Juvenile Hormone Titer Circadian Polymorphism inGryllus firmus. Integr Comp Biol 2016; 56:159-70. [DOI: 10.1093/icb/icw027] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
|
58
|
Zinna R, Gotoh H, Brent CS, Dolezal A, Kraus A, Niimi T, Emlen D, Lavine LC. Endocrine Control of Exaggerated Trait Growth in Rhinoceros Beetles. Integr Comp Biol 2016; 56:247-59. [PMID: 27252223 DOI: 10.1093/icb/icw042] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Juvenile hormone (JH) is a key insect growth regulator frequently involved in modulating phenotypically plastic traits such as caste determination in eusocial species, wing polymorphisms in aphids, and mandible size in stag beetles. The jaw morphology of stag beetles is sexually-dimorphic and condition-dependent; males have larger jaws than females and those developing under optimum conditions are larger in overall body size and have disproportionately larger jaws than males raised under poor conditions. We have previously shown that large males have higher JH titers than small males during development, and ectopic application of fenoxycarb (JH analog) to small males can induce mandibular growth similar to that of larger males. What remains unknown is whether JH regulates condition-dependent trait growth in other insects with extreme sexually selected structures. In this study, we tested the hypothesis that JH mediates the condition-dependent expression of the elaborate horns of the Asian rhinoceros beetle, Trypoxylus dichotomus. The sexually dimorphic head horn of this beetle is sensitive to nutritional state during larval development. Like stag beetles, male rhinoceros beetles receiving copious food produce disproportionately large horns for their body size compared with males under restricted diets. We show that JH titers are correlated with body size during the late feeding and early prepupal periods, but this correlation disappears by the late prepupal period, the period of maximum horn growth. While ectopic application of fenoxycarb during the third larval instar significantly delayed pupation, it had no effect on adult horn size relative to body size. Fenoxycarb application to late prepupae also had at most a marginal effect on relative horn size. We discuss our results in context of other endocrine signals of condition-dependent trait exaggeration and suggest that different beetle lineages may have co-opted different physiological signaling mechanisms to achieve heightened nutrient-sensitive weapon growth.
Collapse
Affiliation(s)
- R Zinna
- *Department of Entomology, Washington State University, Pullman, WA 99164 USA
| | - H Gotoh
- **Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Aichi 464-8601, Japan
| | - C S Brent
- U.S. Department of Agriculture, Arid-Land Agricultural Research Center, Maricopa, AZ 85138 USA
| | - A Dolezal
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, IA, 50011, USA
| | - A Kraus
- Department of Biology, Gonzaga University, Spokane, WA 99258 USA
| | - T Niimi
- Division of Evolutionary Developmental Biology, National Institute for Basic Biology, Okazaki, Aichi 444-8585, Japan
| | - D Emlen
- Division of Biological Sciences, University of Montana-Missoula, Missoula, MT 59812, USA
| | | |
Collapse
|
59
|
Rosvall KA, Bergeon Burns CM, Jayaratna SP, Dossey EK, Ketterson ED. Gonads and the evolution of hormonal phenotypes. Integr Comp Biol 2016; 56:225-34. [PMID: 27252189 DOI: 10.1093/icb/icw050] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Hormones are dynamic signaling molecules that influence gene activity and phenotype, and they are thus thought to play a central role in phenotypic evolution. In vertebrates, many fitness-related traits are mediated by the hormone testosterone (T), but the mechanisms by which T levels evolve are unclear. Here, we summarize a series of studies that advance our understanding of these mechanisms by comparing males from two subspecies of dark-eyed junco (Junco hyemalis) that differ in aggression, body size, and ornamentation. We first review our research demonstrating population differences in the time-course of T production, as well as findings that point to the gonad as a major source of this variation. In a common garden, the subspecies do not differ in pituitary output of luteinizing hormone, but males from the more androgenized subspecies have greater gonadal gene expression for specific steroidogenic enzymes, and they may be less sensitive to feedback along the hypothalamo-pituitary-gonadal (HPG) axis. Furthermore, we present new data from a common garden study demonstrating that the populations do not differ in gonadal sensitivity to gonadotropin-inhibitory hormone (i.e., GnIH receptor mRNA abundance), but the more androgenized subspecies expresses less gonadal mRNA for glucocorticoid receptor and mineralocorticoid receptor, suggesting altered cross-talk between the hypothalamo-pituitary-gonadal and -adrenal axes as another mechanism by which these subspecies have diverged in T production. These findings highlight the diversity of mechanisms that may generate functional variation in T and influence hormone-mediated phenotypic evolution.
Collapse
Affiliation(s)
- Kimberly A Rosvall
- *Department of Biology Center for the Integrative Study of Animal Behavior, Indiana University, Bloomington, IN, 47405 USA
| | | | | | | | - Ellen D Ketterson
- *Department of Biology Center for the Integrative Study of Animal Behavior, Indiana University, Bloomington, IN, 47405 USA
| |
Collapse
|
60
|
Márquez-García A, Canales-Lazcano J, Rantala MJ, Contreras-Garduño J. Is Juvenile Hormone a potential mechanism that underlay the "branched Y-model"? Gen Comp Endocrinol 2016; 230-231:170-6. [PMID: 27013379 DOI: 10.1016/j.ygcen.2016.03.027] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2014] [Revised: 03/17/2016] [Accepted: 03/19/2016] [Indexed: 10/22/2022]
Abstract
Trade-offs are a central tenet in the life-history evolution and the simplest model to understand it is the "Y" model: the investment of one arm will affect the investment of the other arm. However, this model is by far more complex, and a "branched Y-model" is proposed: trade-offs could exist within each arm of the Y, but the mechanistic link is unknown. Here we used Tenebrio molitor to test if Juvenile Hormone (JH) could be a mechanistic link behind the "branched Y-model". Larvae were assigned to one of the following experimental groups: (1) low, (2) medium and (3) high doses of methoprene (a Juvenile Hormone analogue, JHa), (4) acetone (methoprene diluents; control one) or (5) näive (handled in the same way as other groups; control two). The JHa lengthened the time of development from larvae to pupae and larvae to adults, resulting in adults with a larger size. Males with medium and long JHa treatment doses were favored with female choice, but had smaller testes and fewer viable sperm. There were no differences between groups in regard to the number of spermatozoa of males, or the number of ovarioles or eggs of females. This results suggest that JH: (i) is a mechanistic link of insects "branched Y model", (ii) is a double ended-sword because it may not only provide benefits on reproduction but could also impose costs, and (iii) has a differential effect on each sex, being males more affected than females.
Collapse
Affiliation(s)
- Armando Márquez-García
- Departamento de Biología, División de Ciencias Naturales y Exactas, Universidad de Guanajuato, Noria Alta s/n, Noria Alta, 36050 Guanajuato, Mexico
| | | | - Markus J Rantala
- Turku Brain and Mind Center, Department of Biology, University of Turku, FIN-20014 Turku, Finland
| | - Jorge Contreras-Garduño
- ENES, UNAM, unidad Morelia, Antigua Carretera a Pátzcuaro No.8701, Col. Ex-Hacienda San José de la Huerta, Código Postal 58190 Morelia, Michoacán, Mexico.
| |
Collapse
|
61
|
Hau M, Casagrande S, Ouyang J, Baugh A. Glucocorticoid-Mediated Phenotypes in Vertebrates. ADVANCES IN THE STUDY OF BEHAVIOR 2016. [DOI: 10.1016/bs.asb.2016.01.002] [Citation(s) in RCA: 107] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
62
|
Husak JF. Measuring Selection on Physiology in the Wild and Manipulating Phenotypes (in Terrestrial Nonhuman Vertebrates). Compr Physiol 2015; 6:63-85. [PMID: 26756627 DOI: 10.1002/cphy.c140061] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
To understand why organisms function the way that they do, we must understand how evolution shapes physiology. This requires knowledge of how selection acts on physiological traits in nature. Selection studies in the wild allow us to determine how variation in physiology causes variation in fitness, revealing how evolution molds physiology over evolutionary time. Manipulating phenotypes experimentally in a selection study shifts the distribution of trait variation in a population to better explore potential constraints and the adaptive value of physiological traits. There is a large database of selection studies in the wild on a variety of traits, but very few of those are physiological traits. Nevertheless, data available so far suggest that physiological traits, including metabolic rate, thermal physiology, whole-organism performance, and hormone levels, are commonly subjected to directional selection in nature, with stabilizing and disruptive selection less common than predicted if physiological traits are optimized to an environment. Selection studies on manipulated phenotypes, including circulating testosterone and glucocorticoid levels, reinforce this notion, but reveal that trade-offs between survival and reproduction or correlational selection can constrain the evolution of physiology. More studies of selection on physiological traits in nature that quantify multiple traits are necessary to better determine the manner in which physiological traits evolve and whether different types of traits (dynamic performance vs. regulatory) evolve differently.
Collapse
Affiliation(s)
- Jerry F Husak
- Department of Biology, University of St. Thomas, St. Paul, Minnesota, USA
| |
Collapse
|
63
|
Abstract
Immune defense and reproduction are physiologically and energetically demanding processes and have been observed to trade off in a diversity of female insects. Increased reproductive effort results in reduced immunity, and reciprocally, infection and activation of the immune system reduce reproductive output. This trade-off can manifest at the physiological level (within an individual) and at the evolutionary level (genetic distinction among individuals in a population). The resource allocation model posits that the trade-off arises because of competition for one or more limiting resources, and we hypothesize that pleiotropic signaling mechanisms regulate allocation of that resource between reproductive and immune processes. We examine the role of juvenile hormone, 20-hydroxyecdysone, and insulin/insulin-like growth factor-like signaling in regulating both oogenesis and immune system activity, and propose a signaling network that may mechanistically regulate the trade-off. Finally, we discuss implications of the trade-off in an ecological and evolutionary context.
Collapse
Affiliation(s)
- Robin A Schwenke
- Field of Genetics, Genomics, and Development
- Department of Entomology
| | - Brian P Lazzaro
- Field of Genetics, Genomics, and Development
- Department of Entomology
| | - Mariana F Wolfner
- Field of Genetics, Genomics, and Development
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York 14853; , ,
| |
Collapse
|
64
|
Hau M, Goymann W. Endocrine mechanisms, behavioral phenotypes and plasticity: known relationships and open questions. Front Zool 2015; 12 Suppl 1:S7. [PMID: 26816524 PMCID: PMC4722346 DOI: 10.1186/1742-9994-12-s1-s7] [Citation(s) in RCA: 120] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Behavior of wild vertebrate individuals can vary in response to environmental or social factors. Such within-individual behavioral variation is often mediated by hormonal mechanisms. Hormones also serve as a basis for among-individual variations in behavior including animal personalities and the degree of responsiveness to environmental and social stimuli. How do relationships between hormones and behavioral traits evolve to produce such behavioral diversity within and among individuals? Answering questions about evolutionary processes generating among-individual variation requires characterizing how specific hormones are related to variation in specific behavioral traits, whether observed hormonal variation is related to individual fitness and, whether hormonal traits are consistent (repeatable) aspects of an individual's phenotype. With respect to within-individual variation, we need to improve our insight into the nature of the quantitative relationships between hormones and the traits they regulate, which in turn will determine how they may mediate behavioral plasticity of individuals. To address these questions, we review the actions of two steroid hormones, corticosterone and testosterone, in mediating changes in vertebrate behavior, focusing primarily on birds. In the first part, we concentrate on among-individual variation and present examples for how variation in corticosterone concentrations can relate to behaviors such as exploration of novel environments and parental care. We then review studies on correlations between corticosterone variation and fitness, and on the repeatability over time of corticosterone concentrations. At the end of this section, we suggest that further progress in our understanding of evolutionary patterns in the hormonal regulation of behavior may require, as one major tool, reaction norm approaches to characterize hormonal phenotypes as well as their responses to environments. In the second part, we discuss types of quantitative relationships between hormones and behavioral traits within individuals, using testosterone as an example. We review conceptual models for testosterone-behavior relationships and discuss the relevance of these models for within-individual plasticity in behavior. Next, we discuss approaches for testing the nature of quantitative relationships between testosterone and behavior, concluding that again reaction norm approaches might be a fruitful way forward. We propose that an integration of new tools, especially of reaction norm approaches into the field of behavioral endocrinology will allow us to make significant progress in our understanding of the mechanisms, the functional implications and the evolution of hormone–behavior relationships that mediate variation both within and among individuals. This knowledge will be crucial in light of already ongoing habitat alterations due to global change, as it will allow us to evaluate the mechanisms as well as the capacity of wild populations to adjust hormonally-mediated behaviors to altered environmental conditions.
Collapse
Affiliation(s)
- Michaela Hau
- Max Planck Institute for Ornithology, Eberhard-Gwinner-Str., D-82319 Seewiesen, Germany; University of Konstanz, Department of Biology, Universitätsstraße 10, D-78464 Konstanz, Germany
| | - Wolfgang Goymann
- Max Planck Institute for Ornithology, Eberhard-Gwinner-Str., D-82319 Seewiesen, Germany
| |
Collapse
|
65
|
Smith CF, Schuett GW, Amarello M. Male mating success in a North American pitviper: influence of body size, testosterone, and spatial metrics. Biol J Linn Soc Lond 2015. [DOI: 10.1111/bij.12490] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Charles F. Smith
- Department of Ecology and Evolutionary Biology; The University of Connecticut; 75 N Eagle Road Unit 3043 Storrs CT 06269-3043 USA
- Department of Biology; Wofford College; 429 North Church Street Spartanburg SC 29303 USA
- The Copperhead Institute; P.O. Box 6755 Spartanburg SC 29304 USA
- Chiricahua Desert Museum; P.O. Box 376 Rodeo NM 88056 USA
| | - Gordon W. Schuett
- The Copperhead Institute; P.O. Box 6755 Spartanburg SC 29304 USA
- Chiricahua Desert Museum; P.O. Box 376 Rodeo NM 88056 USA
- Department of Biology and Center for Behavioural Neuroscience; Georgia State University; 33 Gilmer Street, S. E., Unit 8 Atlanta GA 30303 USA
| | - Melissa Amarello
- The Copperhead Institute; P.O. Box 6755 Spartanburg SC 29304 USA
- Advocates for Snake Preservation (A.S.P.); P.O. Box 40493 Tucson AZ 85717 USA
| |
Collapse
|
66
|
Quispe R, Trappschuh M, Gahr M, Goymann W. Towards more physiological manipulations of hormones in field studies: comparing the release dynamics of three kinds of testosterone implants, silastic tubing, time-release pellets and beeswax. Gen Comp Endocrinol 2015; 212:100-5. [PMID: 25623144 DOI: 10.1016/j.ygcen.2015.01.007] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2014] [Revised: 01/12/2015] [Accepted: 01/14/2015] [Indexed: 10/24/2022]
Abstract
Hormone manipulations are of increasing interest in the areas of physiological ecology and evolution, because hormones are mediators of complex phenotypic changes. Often, however, hormone manipulations in field settings follow the approaches that have been used in classical endocrinology, potentially using supra-physiological doses. To answer ecological and evolutionary questions, it may be important to manipulate hormones within their physiological range. We compare the release dynamics of three kinds of implants, silastic tubing, time-release pellets, and beeswax pellets, each containing 3mg of testosterone. These implants were placed into female Japanese quail, and plasma levels of testosterone measured over a period of 30 days. Testosterone in silastic tubing led to supraphysiological levels. Also, testosterone concentrations were highly variable between individuals. Time-release pellets led to levels of testosterone that were slightly supraphysiological during the first days. Over the period of 30 days, however, testosterone concentrations were more consistent. Beeswax implants led to a physiological increase in testosterone and a relatively constant release. The study demonstrated that hormone implants in 10mm silastic tubing led to a supraphysiological peak in female quail. Thus, the use of similar-sized or even larger silastic implants in males or in other smaller vertebrates needs careful assessment. Time-release pellets and beeswax implants provide a more controlled release and degrade within the body. Thus, it is not necessary to recapture the animal to remove the implant. We propose beeswax implants as an appropriate procedure to manipulate testosterone levels within the physiological range. Hence, such implants may be an effective alternative for field studies.
Collapse
Affiliation(s)
- Rene Quispe
- Department of Behavioral Neurobiology, Max Planck Institute for Ornithology, Eberhard-Gwinner-Straße, 82319 Seewiesen, Germany.
| | - Monika Trappschuh
- Department of Behavioral Neurobiology, Max Planck Institute for Ornithology, Eberhard-Gwinner-Straße, 82319 Seewiesen, Germany
| | - Manfred Gahr
- Department of Behavioral Neurobiology, Max Planck Institute for Ornithology, Eberhard-Gwinner-Straße, 82319 Seewiesen, Germany
| | - Wolfgang Goymann
- Department of Behavioral Neurobiology, Max Planck Institute for Ornithology, Eberhard-Gwinner-Straße, 82319 Seewiesen, Germany
| |
Collapse
|
67
|
Baugh AT, van Oers K, Dingemanse NJ, Hau M. Baseline and stress-induced glucocorticoid concentrations are not repeatable but covary within individual great tits (Parus major). Gen Comp Endocrinol 2014; 208:154-63. [PMID: 25218170 DOI: 10.1016/j.ygcen.2014.08.014] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2014] [Revised: 08/19/2014] [Accepted: 08/22/2014] [Indexed: 11/17/2022]
Abstract
In evolutionary endocrinology, there is a growing interest in the extent and basis of individual variation in endocrine traits, especially circulating concentrations of hormones. This is important because if targeted by selection, such individual differences present the opportunity for an evolutionary response to selection. It is therefore necessary to examine whether hormone traits are repeatable in natural populations. However, research in this area is complicated by the fact that different hormone traits can be correlated. The nature of these trait correlations (i.e., phenotypic, within-, or among-individual) is critically relevant in terms of the evolutionary implications, and these in turn, depend on the repeatability of each hormone trait. By decomposing phenotypic correlations between hormone traits into their within- and among-individual components it is possible to describe the multivariate nature of endocrine traits and generate inferences about their evolution. In the present study, we repeatedly captured individual great tits (Parus major) from a wild population and measured plasma concentrations of corticosterone. Using a mixed-modeling approach, we estimated repeatabilities in both initial (cf. baseline; CORT0) and stress-induced concentrations (CORT30) and the correlations between those traits among- and within-individuals. We found a lack of repeatability in both CORT0 and CORT30. Moreover, we found a strong phenotypic correlation between CORT0 and CORT30, and due to the lack of repeatability for both traits, there was no among-individual correlation between these two traits-i.e., an individual's average concentration of CORT0 was not correlated with its average concentration of CORT30. Instead, the phenotypic correlation was the result of a strong within-individual correlation, which implies that an underlying environmental factor co-modulates changes in initial and stress-induced concentrations within the same individual over time. These results demonstrate that (i) a phenotypic correlation between two hormone traits does not imply that the traits are correlated among individuals; (ii) the importance of repeated sampling to partition within- and among-individual variances and correlations among labile physiological traits; and (iii) that environmental factors explain a considerable fraction of the variation and co-variation in hormone concentrations.
Collapse
Affiliation(s)
- Alexander T Baugh
- Department of Biology, Swarthmore College, 500 College Avenue, Swarthmore, PA 19081, USA; Evolutionary Physiology Group, Max Planck Institute for Ornithology, Am Obstberg 1, 78315 Radolfzell, Germany.
| | - Kees van Oers
- Department of Animal Ecology, Netherlands Institute of Ecology (NIOO-KNAW), P.O. Box 50, 6708 PB Wageningen, The Netherlands.
| | - Niels J Dingemanse
- Evolutionary Ecology of Variation Research Group, Max Planck Institute for Ornithology, Eberhard-Gwinner-Str., 82319 Seewiesen, Germany; Behavioural Ecology, Department of Biology, Ludwig-Maximilians University of Munich, Planegg-Martinsried, Germany.
| | - Michaela Hau
- Evolutionary Physiology Group, Max Planck Institute for Ornithology, Am Obstberg 1, 78315 Radolfzell, Germany; Evolutionary Physiology Group, Max Planck Institute for Ornithology, Eberhard-Gwinner-Str., 82319 Seewiesen, Germany; Department of Biology, University of Konstanz, Universitätsstrasse 10, Konstanz, Germany.
| |
Collapse
|
68
|
Oostra V, Mateus ARA, van der Burg KRL, Piessens T, van Eijk M, Brakefield PM, Beldade P, Zwaan BJ. Ecdysteroid hormones link the juvenile environment to alternative adult life histories in a seasonal insect. Am Nat 2014; 184:E79-92. [PMID: 25141151 DOI: 10.1086/677260] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
The conditional expression of alternative life strategies is a widespread feature of animal life and a pivotal adaptation to life in seasonal environments. To optimally match suites of traits to seasonally changing ecological opportunities, animals living in seasonal environments need mechanisms linking information on environmental quality to resource allocation decisions. The butterfly Bicyclus anynana expresses alternative adult life histories in the alternating wet and dry seasons of its habitat as endpoints of divergent developmental pathways triggered by seasonal variation in preadult temperature. Pupal ecdysteroid hormone titers are correlated with the seasonal environment, but whether they play a functional role in coordinating the coupling of adult traits in the alternative life histories is unknown. Here, we show that manipulating pupal ecdysteroid levels is sufficient to mimic in direction and magnitude the shifts in adult reproductive resource allocation normally induced by seasonal temperature. Crucially, this allocation shift is accompanied by changes in ecologically relevant traits, including timing of reproduction, life span, and starvation resistance. Together, our results support a functional role for ecdysteroids during development in mediating strategic reproductive investment decisions in response to predictive indicators of environmental quality. This study provides a physiological mechanism for adaptive developmental plasticity, allowing organisms to cope with variable environments.
Collapse
Affiliation(s)
- Vicencio Oostra
- Institute of Biology, Leiden University, P. O. Box 9505, 2300 RA, Leiden, The Netherlands
| | | | | | | | | | | | | | | |
Collapse
|
69
|
Swanson EM, Snell-Rood EC. A Molecular Signaling Approach to Linking Intraspecific Variation and Macro-evolutionary Patterns. Integr Comp Biol 2014; 54:805-21. [DOI: 10.1093/icb/icu057] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
|
70
|
Cox RM, Lovern MB, Calsbeek R. Experimentally decoupling reproductive investment from energy storage to test the functional basis of a life-history trade-off. J Anim Ecol 2014; 83:888-98. [PMID: 24724820 DOI: 10.1111/1365-2656.12228] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2013] [Accepted: 03/31/2014] [Indexed: 11/29/2022]
Abstract
The ubiquitous life-history trade-off between reproduction and survival has long been hypothesized to reflect underlying energy-allocation trade-offs between reproductive investment and processes related to self-maintenance. Although recent work has questioned whether energy-allocation models provide sufficient explanations for the survival cost of reproduction, direct tests of this hypothesis are rare, especially in wild populations. This hypothesis was tested in a wild population of brown anole lizards (Anolis sagrei) using a two-step experiment. First, stepwise variation in reproductive investment was created using unilateral and bilateral ovariectomy (OVX) along with intact (SHAM) control. Next, this manipulation was decoupled from its downstream effects on energy storage by surgically ablating the abdominal fat stores from half of the females in each reproductive treatment. As predicted, unilateral OVX (intermediate reproductive investment) induced levels of growth, body condition, fat storage and breeding-season survival that were intermediate between the high levels of bilateral OVX (no reproductive investment) and the low levels of SHAM (full reproductive investment). Ablation of abdominal fat bodies had a strong and persistent effect on energy stores, but it did not influence post-breeding survival in any of the three reproductive treatments. This suggests that the energetic savings of reduced reproductive investment do not directly enhance post-breeding survival, with the caveat that only one aspect of energy storage was manipulated and OVX itself had no overall effect on post-breeding survival. This study supports the emerging view that simple energy-allocation models may often be insufficient as explanations for the life-history trade-off between reproduction and survival.
Collapse
Affiliation(s)
- Robert M Cox
- Department of Biology, University of Virginia, Charlottesville, VA, 22904, USA
| | - Matthew B Lovern
- Department of Zoology, Oklahoma State University, Stillwater, OK, 74078, USA
| | - Ryan Calsbeek
- Department of Biological Sciences, Dartmouth College, Hanover, NH, 03755, USA
| |
Collapse
|
71
|
Dosmann A, Mateo JM. Food, sex and predators: animal personality persists with multidimensional plasticity across complex environments. Anim Behav 2014. [DOI: 10.1016/j.anbehav.2014.01.011] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
72
|
Rauhamäki V, Wolfram J, Jokitalo E, Hanski I, Dahlhoff EP. Differences in the aerobic capacity of flight muscles between butterfly populations and species with dissimilar flight abilities. PLoS One 2014; 9:e78069. [PMID: 24416122 PMCID: PMC3885395 DOI: 10.1371/journal.pone.0078069] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2013] [Accepted: 09/16/2013] [Indexed: 11/22/2022] Open
Abstract
Habitat loss and climate change are rapidly converting natural habitats and thereby increasing the significance of dispersal capacity for vulnerable species. Flight is necessary for dispersal in many insects, and differences in dispersal capacity may reflect dissimilarities in flight muscle aerobic capacity. In a large metapopulation of the Glanville fritillary butterfly in the Åland Islands in Finland, adults disperse frequently between small local populations. Individuals found in newly established populations have higher flight metabolic rates and field-measured dispersal distances than butterflies in old populations. To assess possible differences in flight muscle aerobic capacity among Glanville fritillary populations, enzyme activities and tissue concentrations of the mitochondrial protein Cytochrome-c Oxidase (CytOx) were measured and compared with four other species of Nymphalid butterflies. Flight muscle structure and mitochondrial density were also examined in the Glanville fritillary and a long-distance migrant, the red admiral. Glanville fritillaries from new populations had significantly higher aerobic capacities than individuals from old populations. Comparing the different species, strong-flying butterfly species had higher flight muscle CytOx content and enzymatic activity than short-distance fliers, and mitochondria were larger and more numerous in the flight muscle of the red admiral than the Glanville fritillary. These results suggest that superior dispersal capacity of butterflies in new populations of the Glanville fritillary is due in part to greater aerobic capacity, though this species has a low aerobic capacity in general when compared with known strong fliers. Low aerobic capacity may limit dispersal ability of the Glanville fritillary.
Collapse
Affiliation(s)
- Virve Rauhamäki
- Helsinki Bioenergetics Group, Structural Biology and Biophysics Program, Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Joy Wolfram
- Metapopulation Research Group, Department of Biosciences, University of Helsinki, Helsinki, Finland
| | - Eija Jokitalo
- Electron Microscopy Unit, Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Ilkka Hanski
- Metapopulation Research Group, Department of Biosciences, University of Helsinki, Helsinki, Finland
| | - Elizabeth P. Dahlhoff
- Metapopulation Research Group, Department of Biosciences, University of Helsinki, Helsinki, Finland
- Department of Biology, Santa Clara University, Santa Clara, California, United States of America
- * E-mail:
| |
Collapse
|
73
|
Abstract
The major goal of ecological evolutionary developmental biology, also known as "eco-evo-devo," is to uncover the rules that underlie the interactions between an organism's environment, genes, and development and to incorporate these rules into evolutionary theory. In this chapter, we discuss some key and emerging concepts within eco-evo-devo. These concepts show that the environment is a source and inducer of genotypic and phenotypic variation at multiple levels of biological organization, while development acts as a regulator that can mask, release, or create new combinations of variation. Natural selection can subsequently fix this variation, giving rise to novel phenotypes. Combining the approaches of eco-evo-devo and ecological genomics will mutually enrich these fields in a way that will not only enhance our understanding of evolution, but also of the genetic mechanisms underlying the responses of organisms to their natural environments.
Collapse
|
74
|
Rosvall KA, Bergeon Burns CM, Hahn TP, Ketterson ED. Sources of variation in HPG axis reactivity and individually consistent elevation of sex steroids in a female songbird. Gen Comp Endocrinol 2013; 194:230-9. [PMID: 24090613 PMCID: PMC3852689 DOI: 10.1016/j.ygcen.2013.09.015] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2013] [Revised: 09/03/2013] [Accepted: 09/16/2013] [Indexed: 11/16/2022]
Abstract
Understanding sources of individual differences in steroid hormone production has important implications for the evolution of reproductive and social behaviors. In females in particular, little is known about the mechanistic sources of these individual differences, despite established linkages between sex steroids and a variety of fitness-related traits. Using captive female dark-eyed juncos (Junco hyemalis) from two subspecies, we asked how variation in different components of the hypothalamo-pituitary-gonadal (HPG) axis related to variation in testosterone production among females, and we compared females to males in multiple components of the HPG axis. We demonstrated consistent individual differences in testosterone elevation in response to challenges with luteinizing hormone (LH) and gonadotropin-releasing hormone (GnRH). These hormone challenges led to more LH production but less testosterone production in females than males, and the sexes differed in some but not all measures of sensitivity to hormones along the HPG axis. Similar to findings in males, variation in testosterone production among females was not related to variation in LH production, gonadal LH-receptor mRNA abundance, or hypothalamic abundance of androgen receptor mRNA or aromatase mRNA. Rather, the primary source of individual variation in circulating steroids appears to the gonad, a conclusion further supported by positive correlations between testosterone and estradiol production. Unlike males, females did not differ by subspecies in any of the endocrine parameters that we assessed, suggesting some degree of independent evolution between the two sexes. Our results highlight the sources of physiological variation that may underlie the evolution of hormone-mediated phenotypes in females.
Collapse
|
75
|
Rosvall KA. Proximate perspectives on the evolution of female aggression: good for the gander, good for the goose? Philos Trans R Soc Lond B Biol Sci 2013; 368:20130083. [PMID: 24167313 PMCID: PMC3826212 DOI: 10.1098/rstb.2013.0083] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Female-female aggression often functions in competition over reproductive or social benefits, but the proximate mechanisms of this apparently adaptive behaviour are not well understood. The sex steroid hormone testosterone (T) and its metabolites are well-established mediators of male-male aggression, and several lines of evidence suggest that T-mediated mechanisms may apply to females as well. However, a key question is whether mechanisms of female aggression primarily reflect correlated evolutionary responses to selection acting on males, or whether direct selection acting on females has made modifications to these mechanisms that are adaptive in light of female life history. Here, I examine the degree to which female aggression is mediated at the level of T production, target tissue sensitivity to T, or downstream genomic responses in order to test the hypothesis that selection favours mechanisms that facilitate female aggression while minimizing the costs of systemically elevated T. I draw heavily from avian systems, including the dark-eyed junco (Junco hyemalis), as well as other organisms in which these mechanisms have been well studied from an evolutionary/ecological perspective in both sexes. Findings reveal that the sexes share many behavioural and hormonal mechanisms, though several patterns also suggest sex-specific adaptation. I argue that greater attention to multiple levels of analysis-from hormone to receptor to gene network, including analyses of individual variation that represents the raw material of evolutionary change-will be a fruitful path for understanding mechanisms of behavioural regulation and intersexual coevolution.
Collapse
Affiliation(s)
- Kimberly A. Rosvall
- Department of Biology, Center for the Integrative Study of Animal Behavior, Indiana University, Bloomington, IN 47405, USA
| |
Collapse
|
76
|
Ouyang JQ, Sharp P, Quetting M, Hau M. Endocrine phenotype, reproductive success and survival in the great tit, Parus major. J Evol Biol 2013; 26:1988-98. [DOI: 10.1111/jeb.12202] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2013] [Revised: 05/01/2013] [Accepted: 05/02/2013] [Indexed: 11/28/2022]
Affiliation(s)
- J. Q. Ouyang
- Department of Ecology and Evolutionary Biology; Princeton University; Princeton NJ USA
| | - P. Sharp
- The Roslin Institute; University of Edinburgh; Easter Bush UK
| | - M. Quetting
- Evolutionary Physiology Group; Max Planck Institute for Ornithology; Radolfzell Germany
- Department of Biology; University of Konstanz; Konstanz Germany
| | - M. Hau
- Evolutionary Physiology Group; Max Planck Institute for Ornithology; Radolfzell Germany
- Department of Biology; University of Konstanz; Konstanz Germany
| |
Collapse
|
77
|
Bergeon Burns CM, Rosvall KA, Ketterson ED. Neural steroid sensitivity and aggression: comparing individuals of two songbird subspecies. J Evol Biol 2013; 26:820-31. [PMID: 23517519 PMCID: PMC3622748 DOI: 10.1111/jeb.12094] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2012] [Revised: 11/09/2012] [Accepted: 11/30/2012] [Indexed: 11/27/2022]
Abstract
Hormones coordinate the expression of complex phenotypes and thus may play important roles in evolutionary processes. When populations diverge in hormone-mediated phenotypes, differences may arise via changes in circulating hormones, sensitivity to hormones or both. Determining the relative importance of signal and sensitivity requires consideration of both inter- and intrapopulation variation in hormone levels, hormone sensitivity and phenotype, but such studies are rare, particularly among closely related taxa. We compared males of two subspecies of the dark-eyed junco (Junco hyemalis) for territorial aggression and associations among behaviour, circulating testosterone (T), and gene expression of androgen receptor (AR), aromatase (AROM) and oestrogen receptor α in three behaviourally relevant brain regions. Thus, we examined the degree to which evolution may shape behaviour via changes in plasma T as compared with key sex steroid binding/converting molecules. We found that the white-winged junco (J. h. aikeni) was more aggressive than the smaller, less ornamented Carolina junco (J. h. carolinensis). The subspecies did not differ in circulating testosterone, but did differ significantly in the abundance of AR and AROM mRNA in key areas of the brain. Within populations, both gene expression and circulating T co-varied significantly with individual differences in aggression. Notably, the differences identified between populations were opposite to those predicted by the patterns among individuals within populations. These findings suggest that hormone-phenotype relationships may evolve via multiple pathways, and that changes that have occurred over evolutionary time do not necessarily reflect standing physiological variation on which current evolutionary processes may act.
Collapse
Affiliation(s)
- C M Bergeon Burns
- Department of Biology and Center for the Integrative Study of Animal Behavior, Indiana University, Bloomington, IN 47405, USA.
| | | | | |
Collapse
|
78
|
Villanueva G, Lanz-Mendoza H, Hernández-Martínez S, Zavaleta MS, Manjarrez J, Contreras-Garduño JM, Contreras-Garduño J. In the monarch butterfly the juvenile hormone effect upon immune response depends on the immune marker and is sex dependent. ACTA ACUST UNITED AC 2013. [DOI: 10.4236/oje.2013.31007] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
79
|
Abstract
Surprising new discoveries in the field of skeletal biology show that bone cells produce endocrine hormones that regulate phosphate and glucose homeostasis. In this Review, we examine the features of these new endocrine pathways and discuss their physiological importance in the context of our current understanding of energy metabolism and mineral homeostasis. Consideration of evolutionary and comparative biology provides clues that a key driving force for the emergence of these hormonal pathways was the development of a large, energy-expensive musculoskeletal system. Specialized bone cells also evolved and produced endocrine hormones to integrate the skeleton in global mineral and nutrient homeostasis. The recognition of bone as a true endocrine organ represents a fertile area for further research and should improve the diagnosis and treatment of metabolic diseases such as osteoporosis and diabetes mellitus.
Collapse
|
80
|
Meylan S, Miles DB, Clobert J. Hormonally mediated maternal effects, individual strategy and global change. Philos Trans R Soc Lond B Biol Sci 2012; 367:1647-64. [PMID: 22566673 DOI: 10.1098/rstb.2012.0020] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
A challenge to ecologists and evolutionary biologists is predicting organismal responses to the anticipated changes to global ecosystems through climate change. Most evidence suggests that short-term global change may involve increasing occurrences of extreme events, therefore the immediate response of individuals will be determined by physiological capacities and life-history adaptations to cope with extreme environmental conditions. Here, we consider the role of hormones and maternal effects in determining the persistence of species in altered environments. Hormones, specifically steroids, are critical for patterning the behaviour and morphology of parents and their offspring. Hence, steroids have a pervasive influence on multiple aspects of the offspring phenotype over its lifespan. Stress hormones, e.g. glucocorticoids, modulate and perturb phenotypes both early in development and later into adulthood. Females exposed to abiotic stressors during reproduction may alter the phenotypes by manipulation of hormones to the embryos. Thus, hormone-mediated maternal effects, which generate phenotypic plasticity, may be one avenue for coping with global change. Variation in exposure to hormones during development influences both the propensity to disperse, which alters metapopulation dynamics, and population dynamics, by affecting either recruitment to the population or subsequent life-history characteristics of the offspring. We suggest that hormones may be an informative index to the potential for populations to adapt to changing environments.
Collapse
Affiliation(s)
- Sandrine Meylan
- Laboratoire Ecologie-Evolution, CNRS UMR 7625, Université Pierre et Marie Curie-Paris 6, 7 quai Saint Bernard, 75252 Paris cedex 05, France
| | | | | |
Collapse
|
81
|
Okada Y, Gotoh H, Miura T, Miyatake T, Okada K. Juvenile hormone mediates developmental integration between exaggerated traits and supportive traits in the horned flour beetle Gnatocerus cornutus. Evol Dev 2012; 14:363-71. [DOI: 10.1111/j.1525-142x.2012.00554.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Yasukazu Okada
- Laboratory of Evolutionary Ecology; Graduate School of Environmental Science; Okayama University; Tsushima-naka 1-1-1; Okayama; Japan
| | - Hiroki Gotoh
- Laboratory of Ecological Genetics; Graduate School of Environmental Science; Hokkaido University; N10 W5 Kita-ku; Sapporo; Japan
| | - Toru Miura
- Laboratory of Ecological Genetics; Graduate School of Environmental Science; Hokkaido University; N10 W5 Kita-ku; Sapporo; Japan
| | - Takahisa Miyatake
- Laboratory of Evolutionary Ecology; Graduate School of Environmental Science; Okayama University; Tsushima-naka 1-1-1; Okayama; Japan
| | - Kensuke Okada
- Laboratory of Evolutionary Ecology; Graduate School of Environmental Science; Okayama University; Tsushima-naka 1-1-1; Okayama; Japan
| |
Collapse
|
82
|
Moczek AP. The nature of nurture and the future of evodevo: toward a theory of developmental evolution. Integr Comp Biol 2012; 52:108-19. [PMID: 22617162 DOI: 10.1093/icb/ics048] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
This essay has three parts. First, I posit that much research in contemporary evodevo remains steeped in a traditional framework that views traits and trait differences as being caused by genes and genetic variation, and the environment as providing an external context in which development and evolution unfold. Second, I discuss three attributes of organismal development and evolution, broadly applicable to all organisms and traits that call into question the usefulness of gene- and genome-centric views of development and evolution. I then focus on the third and main aim of this essay and ask: what conceptual and empirical opportunities exist that would permit evodevo research to transcend the traditional boundaries inherited from its parent disciplines and to move toward the development of a more comprehensive and realistic theory of developmental evolution? Here, I focus on three conceptual frameworks, the theory of facilitated variation, the theory of evolution by genetic accommodation, and the theory of niche construction. I conclude that combined they provide a rich, interlocking framework within which to revise existing and develop novel empirical approaches toward a better understanding of the nature of developmental evolution. Examples of such approaches are highlighted, and the consequences of expanding existing frameworks are discussed.
Collapse
Affiliation(s)
- Armin P Moczek
- Department of Biology, Indiana University, 915 E. Third Street, Myers Hall 150, Bloomington IN 47405-7107, USA.
| |
Collapse
|
83
|
Crossin GT, Phillips RA, Trathan PN, Fox DS, Dawson A, Wynne-Edwards KE, Williams TD. Migratory carryover effects and endocrinological correlates of reproductive decisions and reproductive success in female albatrosses. Gen Comp Endocrinol 2012; 176:151-7. [PMID: 22285395 DOI: 10.1016/j.ygcen.2012.01.006] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2011] [Revised: 01/06/2012] [Accepted: 01/07/2012] [Indexed: 10/14/2022]
Abstract
Physiological mechanisms mediating carryover effects, wherein events or activities occurring in one season, habitat, or life-history stage affect important processes in subsequent life-history stages, are largely unknown. The mechanism most commonly invoked to explain carryover effects from migration centres on the acquisition and utilization of resources (e.g. body mass, or individual 'condition'). However, other mechanisms are plausible, e.g. trade-offs reflecting conflict or incompatibility between physiological regulatory systems required for different activities or life-history stages (migration vs. reproduction). Here we show that in female black-browed albatrosses (Thalassarche melanophris) the decision to reproduce or to defer reproduction, made prior to their arrival at breeding colonies after long-distance migration, is associated with condition-related (body mass, hematocrit, hemoglobin concentrations) and hormonal (progesterone, testosterone, estrogen-dependent yolk precursors) traits. In contrast, reproductive success showed little association with condition but showed significant associations with the steroidogenic processes underlying follicle development. Specifically, success was determined by reproductive readiness via differences in steroid hormones and hormone-dependent traits. Successful albatrosses were characterized by high progesterone and high estradiol-dependent yolk precursor levels, whereas failed albatrosses had high testosterone and low yolk precursor levels. Results are discussed with reference to migratory carryover effects and how these can differentially affect the physiologies influencing reproductive decisions and reproductive success.
Collapse
Affiliation(s)
- Glenn T Crossin
- Centre for Ecology and Hydrology, Natural Environment Research Council, Bush Estate, Penicuik, Midlothian EH26 0QB, United Kingdom.
| | | | | | | | | | | | | |
Collapse
|
84
|
Dijkstra PD, Verzijden MN, Groothuis TGG, Hofmann HA. Divergent hormonal responses to social competition in closely related species of haplochromine cichlid fish. Horm Behav 2012; 61:518-26. [PMID: 22289206 DOI: 10.1016/j.yhbeh.2012.01.011] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2011] [Revised: 01/13/2012] [Accepted: 01/14/2012] [Indexed: 10/14/2022]
Abstract
The diverse cichlid species flocks of the East African lakes provide a classical example of adaptive radiation. Territorial aggression is thought to influence the evolution of phenotypic diversity in this system. Most vertebrates mount hormonal (androgen, glucocorticoid) responses to a territorial challenge. These hormones, in turn, influence behavior and multiple aspects of physiology and morphology. Examining variation in competition-induced hormone secretion patterns is thus fundamental to an understanding of the mechanisms of phenotypic diversification. We test here the hypothesis that diversification in male aggression has been accompanied by differentiation in steroid hormone levels. We studied two pairs of sibling species from Lake Victoria belonging to the genera Pundamilia and Mbipia. The two genera are ecologically differentiated, while sibling species pairs differ mainly in male color patterns. We found that aggression directed toward conspecific males varied between species and across genera: Pundamilia nyererei males were more aggressive than Pundamilia pundamilia males, and Mbipia mbipi males were more aggressive than Mbipia lutea males. Males of both genera exhibited comparable attack rates during acute exposure to a novel conspecific intruder, while Mbipia males were more aggressive than Pundamilia males during continuous exposure to a conspecific rival, consistent with the genus difference in feeding ecology. Variation in aggressiveness between genera, but not between sibling species, was reflected in androgen levels. We further found that M. mbipi displayed lower levels of cortisol than M. lutea. Our results suggest that concerted divergence in hormones and behavior might play an important role in the rapid speciation of cichlid fishes.
Collapse
Affiliation(s)
- Peter D Dijkstra
- The University of Texas at Austin, Section of Integrative Biology, 1 University Station-C0930, Austin, TX 78712, USA.
| | | | | | | |
Collapse
|
85
|
Caro SP. Avian ecologists and physiologists have different sexual preferences. Gen Comp Endocrinol 2012; 176:1-8. [PMID: 22222933 DOI: 10.1016/j.ygcen.2011.12.021] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2011] [Revised: 12/16/2011] [Accepted: 12/17/2011] [Indexed: 11/20/2022]
Abstract
Seasonal timing is studied by ecologists and physiologists alike and it is now widely recognized that further integration of these fields is needed for a full understanding of phenology. This is especially true in the light of the impact of global climate change on living organisms. In studies of avian reproduction, one obstacle to this integration is that ecologists and physiologists do not allocate their research efforts equally to males and females. The physiological orchestration of breeding stages has been studied almost exclusively in males, while in avian ecology and evolutionary biology females are more often considered. This sex bias has severe implications: sexes differ in the way they use external cues to organize their life cycles, but often cue in on each other's physiology and behavior. The simultaneous investigation of both males and females within single studies is thus essential. In this review, I begin by illustrating the sex-bias in studies and attempt to explain its origin. I then provide a number of examples in which focusing on a single sex would have resulted in misleading conclusions. Finally, I review some classical studies of female reproductive physiology that have promoted and developed research on the "forgotten-sex".
Collapse
Affiliation(s)
- Samuel P Caro
- Department of Animal Ecology, Netherlands Institute of Ecology (NIOO-KNAW), PO Box 50, 6700 AB Wageningen, The Netherlands.
| |
Collapse
|
86
|
Ishikawa A, Ogawa K, Gotoh H, Walsh TK, Tagu D, Brisson JA, Rispe C, Jaubert-Possamai S, Kanbe T, Tsubota T, Shiotsuki T, Miura T. Juvenile hormone titre and related gene expression during the change of reproductive modes in the pea aphid. INSECT MOLECULAR BIOLOGY 2012; 21:49-60. [PMID: 21988597 DOI: 10.1111/j.1365-2583.2011.01111.x] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Most aphids show reproductive polyphenism, i.e. they alternate their reproductive modes from parthenogenesis to sexual reproduction in response to short photoperiods. Although juvenile hormone (JH) has been considered a likely candidate for regulating the transition from asexual to sexual reproduction after photoperiod sensing, there are few studies investigating the direct relationship between JH titres and the reproductive-mode change. In addition, the sequencing of the pea aphid genome has allowed identification of the genes involved in the JH pathway, which in turn allows us to examine their expression levels in relation to the reproductive-mode change. Using liquid chromatography-mass spectrometry in the pea aphid, JHIII titre was shown to be lower in aphids producing sexual morphs under short-day conditions than in aphids producing parthenogenetic morphs under long-day conditions. The expression levels of genes upstream and downstream of JH action were quantified by real-time quantitative reverse-transcription-PCR across the reproductive-mode change. The expression level of JH esterase, which is responsible for JH degradation, was significantly higher in aphids reared under short-day conditions. This suggests that the upregulation of the JH degradation pathway may be responsible for the lower JHIII titre in aphids exposed to short-days, leading to the production of sexual morphs.
Collapse
Affiliation(s)
- A Ishikawa
- Graduate School of Environmental Science, Hokkaido University, Sapporo, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
87
|
Zafón C. [Evolutionary endocrinology: a pending matter]. ACTA ACUST UNITED AC 2011; 59:62-8. [PMID: 22113050 DOI: 10.1016/j.endonu.2011.09.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2011] [Revised: 08/05/2011] [Accepted: 09/01/2011] [Indexed: 12/22/2022]
Abstract
Twenty years have passed since the foundational article of what is now known as evolutionary medicine (EM) was published. This young medical discipline examines, following Darwinian principles, susceptibility to certain diseases and how we react to them. In short, EM analyzes the final cause of the disease from a historical perspective. Over the years, EM has been introduced in various medical areas in very different ways. While it has found a role in some fields such as infectious diseases and oncology, its contribution in other areas has been quite limited. In endocrinology, EM has only gained prominence as a basis for the so-called "diseases of civilization", including diabetes mellitus and obesity. However, many experts suggest that it may have a much higher potential. The aim of this paper is to provide a view about what evolutionary medicine is. Some examples of how EM may contribute to progress of our specialty are also given. There is no doubt that evolution enriches medicine, but medicine also offers knowledge to evolution.
Collapse
Affiliation(s)
- Carles Zafón
- Servicio de Endocrinología y Nutrición, Hospital Universitari Vall d'Hebron, Barcelona, España.
| |
Collapse
|
88
|
Ouyang JQ, Hau M, Bonier F. Within seasons and among years: when are corticosterone levels repeatable? Horm Behav 2011; 60:559-64. [PMID: 21872600 DOI: 10.1016/j.yhbeh.2011.08.004] [Citation(s) in RCA: 106] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2011] [Revised: 08/08/2011] [Accepted: 08/11/2011] [Indexed: 12/01/2022]
Abstract
Hormones play a central role in integrating internal and external cues to help mediate life-history decisions as well as changes in behavior and physiology of individuals. Describing the consistency of endocrine traits within and among individuals is an important step for understanding whether hormonal traits are dependable predictors of phenotypes that selection could act upon. However, few long-term field studies have investigated the individual consistency of hormonal traits. Glucocorticoid hormones mediate homeostatic responses to environmental variation as well as stress responses to acute, unpredictable disturbances. We characterized the repeatability of plasma corticosterone concentrations in two species of free-living passerines across multiple years. We found repeatability in baseline corticosterone concentrations in both sexes of great tits (Parus major) and in female tree swallows (Tachycineta bicolor) within the breeding season but no repeatability of this trait among seasons or across years. Stress-induced levels of corticosterone were only assessed in great tits and were not repeatable in either sex. Our data suggest that in line with their function in mediating responses of individuals to longer-term and acute demands, both baseline and stress-induced plasma corticosterone concentrations are rather plastic traits. However, individuals may differ in their degree of trait plasticity and hence in behavioral and physiological responses to a variety of organismal challenges.
Collapse
Affiliation(s)
- Jenny Q Ouyang
- Department of Ecology and Evolutionary Biology, Guyot Hall, Princeton University, Princeton, NJ 08540, USA.
| | | | | |
Collapse
|
89
|
Dantzer B, Swanson EM. Mediation of vertebrate life histories via insulin-like growth factor-1. Biol Rev Camb Philos Soc 2011; 87:414-29. [PMID: 21981025 DOI: 10.1111/j.1469-185x.2011.00204.x] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Life-history traits describe parameters associated with growth, size, survival, and reproduction. Life-history variation is a hallmark of biological diversity, yet researchers commonly observe that one of the major axes of life-history variation after controlling for body size involves trade-offs among growth, reproduction, and longevity. This persistent pattern of covariation among these specific traits has engendered a search for shared mechanisms that could constrain or facilitate production of variation in life-history strategies. Endocrine traits are one candidate mechanism that may underlie the integration of life history and other phenotypic traits. However, the vast majority of this research has been on the effects of steroid hormones such as glucocorticoids and androgens on life-history trade-offs. Here we propose an expansion of the focus on glucocorticoids and gonadal hormones and review the potential role of insulin-like growth factor-1 (IGF-1) in shaping the adaptive integration of multiple life-history traits. IGF-1 is a polypeptide metabolic hormone largely produced by the liver. We summarize a vast array of research demonstrating that IGF-1 levels are susceptible to environmental variation and that IGF-1 can have potent stimulatory effects on somatic growth and reproduction but decrease lifespan. We review the few studies in natural populations that have measured plasma IGF-1 concentrations and its associations with life-history traits or other characteristics of the organism or its environment. We focus on two case studies that found support for the hypothesis that IGF-1 mediates adaptive divergence in suites of life-history traits in response to varying ecological conditions or artificial selection. We also examine what we view as potentially fruitful avenues of research on this topic, which until now has been rarely investigated by evolutionary ecologists. We discuss how IGF-1 may facilitate adaptive plasticity in life-history strategies in response to early environmental conditions and also how selection on loci controlling IGF-1 signaling may mediate population divergence and eventual speciation. After consideration of the interactions among androgens, glucocorticoids, and IGF-1 we suggest that IGF-1 be considered a suitable candidate mechanism for mediating life-history traits. Finally, we discuss what we can learn about IGF-1 from studies in free-ranging animals. The voluminous literature in laboratory and domesticated animals documenting relationships among IGF-1, growth, reproduction, and lifespan demonstrates the potential for a number of new research questions to be asked in free-ranging animals. Examining how IGF-1 mediates life-history traits in free-ranging animals could lead to great insight into the mechanisms that influence life-history variation.
Collapse
Affiliation(s)
- Ben Dantzer
- Department of Zoology, Michigan State University, East Lansing, MI 48824, USA.
| | | |
Collapse
|
90
|
Bortolin F, Piulachs MD, Congiu L, Fusco G. Cloning and expression pattern of the ecdysone receptor and retinoid X receptor from the centipede Lithobius peregrinus (Chilopoda, Lithobiomorpha). Gen Comp Endocrinol 2011; 174:60-9. [PMID: 21871895 DOI: 10.1016/j.ygcen.2011.08.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2011] [Revised: 08/08/2011] [Accepted: 08/10/2011] [Indexed: 01/10/2023]
Abstract
In arthropods, molting events are mediated by the binding of the ecdysone hormone to a heterodimer of two nuclear receptors: the ecdysone receptor (EcR) and the retinoid X receptor (RXR), a homolog of ultraspiracle (USP). We have cloned partial sequences of several isoforms for EcR and RXR genes from the centipede Lithobius peregrinus, and studied their expression profile during the second post-embryonic stage. LpEcR and LpRXR inferred amino acid sequences are very similar to other arthropod orthologs, especially to those of chelicerates and hemimetabolous insects, and their expression levels are significantly higher during the 48 h that precede the molt. Results obtained in this study represent the first data on the genetic basis of the ecdysone signal pathway for a myriapod, and in particular for an animal that, through a stereotyped developmental schedule paced by the molt cycle, completes trunk segmentation during post-embryonic life.
Collapse
Affiliation(s)
- Francesca Bortolin
- Department of Biology, University of Padova, via U. Bassi 58/B, I-35131 Padova, Italy.
| | | | | | | |
Collapse
|
91
|
DIJKSTRA PD, WIEGERTJES GF, FORLENZA M, van der SLUIJS I, HOFMANN HA, METCALFE NB, GROOTHUIS TGG. The role of physiology in the divergence of two incipient cichlid species. J Evol Biol 2011; 24:2639-52. [DOI: 10.1111/j.1420-9101.2011.02389.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
92
|
Fischman BJ, Woodard SH, Robinson GE. Molecular evolutionary analyses of insect societies. Proc Natl Acad Sci U S A 2011; 108 Suppl 2:10847-54. [PMID: 21690385 PMCID: PMC3131825 DOI: 10.1073/pnas.1100301108] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
The social insects live in extraordinarily complex and cohesive societies, where many individuals sacrifice their personal reproduction to become helpers in the colony. Identifying adaptive molecular changes involved in eusocial evolution in insects is important for understanding the mechanisms underlying transitions from solitary to social living, as well as the maintenance and elaboration of social life. Here, we review recent advances made in this area of research in several insect groups: the ants, bees, wasps, and termites. Drawing from whole-genome comparisons, candidate gene approaches, and a genome-scale comparative analysis of protein-coding sequence, we highlight novel insights gained for five major biological processes: chemical signaling, brain development and function, immunity, reproduction, and metabolism and nutrition. Lastly, we make comparisons across these diverse approaches and social insect lineages and discuss potential common themes of eusocial evolution, as well as challenges and prospects for future research in the field.
Collapse
Affiliation(s)
| | | | - Gene E. Robinson
- Program in Ecology, Evolution, and Conservation Biology
- Department of Entomology
- Institute for Genomic Biology, and
- Neuroscience Program, University of Illinois, Urbana, IL 61801
| |
Collapse
|
93
|
Martin LB, Liebl AL, Trotter JH, Richards CL, McCoy K, McCoy MW. Integrator Networks: Illuminating the Black Box Linking Genotype and Phenotype. Integr Comp Biol 2011; 51:514-27. [DOI: 10.1093/icb/icr049] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
|
94
|
|
95
|
Isaksson C, Sheldon BC, Uller T. The Challenges of Integrating Oxidative Stress into Life-history Biology. Bioscience 2011. [DOI: 10.1525/bio.2011.61.3.5] [Citation(s) in RCA: 105] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
|
96
|
Snell-Rood EC, Davidowitz G, Papaj DR. Reproductive tradeoffs of learning in a butterfly. Behav Ecol 2011. [DOI: 10.1093/beheco/arq169] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
|
97
|
Ouyang JQ, Sharp PJ, Dawson A, Quetting M, Hau M. Hormone levels predict individual differences in reproductive success in a passerine bird. Proc Biol Sci 2011; 278:2537-45. [PMID: 21247953 DOI: 10.1098/rspb.2010.2490] [Citation(s) in RCA: 132] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Hormones mediate major physiological and behavioural components of the reproductive phenotype of individuals. To understand basic evolutionary processes in the hormonal regulation of reproductive traits, we need to know whether, and during which reproductive phases, individual variation in hormone concentrations relates to fitness in natural populations. We related circulating concentrations of prolactin and corticosterone to parental behaviour and reproductive success during both the pre-breeding and the chick-rearing stages in both individuals of pairs of free-living house sparrows, Passer domesticus. Prolactin and baseline corticosterone concentrations in pre-breeding females, and prolactin concentrations in pre-breeding males, predicted total number of fledglings. When the strong effect of lay date on total fledgling number was corrected for, only pre-breeding baseline corticosterone, but not prolactin, was negatively correlated with the reproductive success of females. During the breeding season, nestling provisioning rates of both sexes were negatively correlated with stress-induced corticosterone levels. Lastly, individuals of both sexes with low baseline corticosterone before and high baseline corticosterone during breeding raised the most offspring, suggesting that either the plasticity of this trait contributes to reproductive success or that high parental effort leads to increased hormone concentrations. Thus hormone concentrations both before and during breeding, as well as their seasonal dynamics, predict reproductive success, suggesting that individual variation in absolute concentrations and in plasticity is functionally significant, and, if heritable, may be a target of selection.
Collapse
Affiliation(s)
- Jenny Q Ouyang
- Department of Ecology and Evolutionary Biology, Guyot Hall, Princeton University, Princeton, NJ 08540, USA.
| | | | | | | | | |
Collapse
|
98
|
Oda S, Kato Y, Watanabe H, Tatarazako N, Iguchi T. Morphological changes in Daphnia galeata induced by a crustacean terpenoid hormone and its analog. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2011; 30:232-238. [PMID: 20928915 DOI: 10.1002/etc.378] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Terpenoid hormones in insects (i.e., juvenile hormones) have various effects on physiology, morphology, and behavior, producing a wide range of phenotypic variation. Recent studies have shown that sex determination in cladoceran crustaceans is under the strong control of a major terpenoid hormone of crustaceans, methyl farnesoatote (MF). It can be easily conceived that MF is also a major determinant of other traits in cladocerans. In the present study, morphological changes known as antipredatory responses in a cladoceran Daphnia galeata in response to exposure to MF and a juvenile hormone-mimicking pesticide, fenoxycarb, were investigated. Morphological change was studied using neonates less than 24 h old, exposed either to MF at the concentrations from 1.9 to 30 µg/L, or fenoxycarb at the concentrations from 13 to 200 ng/L, for 6 d. Animals developed a longer helmet at 1.9 µg/L of MF and 25 ng/L of fenoxycarb, and showed a concentration-dependent elongation. However, the tail spine was reduced in size in a concentration-dependent manner. Results of the present study not only give new insight into the mechanisms of inducible defenses in cladocerans, but also provide invaluable information to understand ecological and evolutionary consequences of endocrine disruption through the shift in biological interaction between predator and prey.
Collapse
Affiliation(s)
- Shigeto Oda
- National Institute for Environmental Studies, Tsukuba, Ibaraki, Japan.
| | | | | | | | | |
Collapse
|
99
|
Guirao-Rico S, Aguadé M. Molecular evolution of the ligands of the insulin-signaling pathway: dilp genes in the genus Drosophila. Mol Biol Evol 2010; 28:1557-60. [PMID: 21196470 DOI: 10.1093/molbev/msq353] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Drosophila melanogaster, unlike mammals, has seven insulin-like peptides (DILPS). In Drosophila, all seven genes (dilp1-7) are single copy in the 12 species studied, except for D. grimshawi with two tandem copies of dilp2. Our comparative analysis revealed that genes dilp1-dilp7 exhibit differential functional constraint, which is indicative of some functional divergence. Species of the subgenera Sophophora and Drosophila differ in some traits likely affected by the insulin-signaling pathway, such as adult body size. It is in the branch connecting the two subgenera that we found the footprint left by positive selection driving nonsynonymous changes at some dilp1 codons to fixation. Finally, the similar rate at which the two dilp2 copies of D. grimshawi have evolved since their duplication and the presence of a putative regulatory region highly conserved between the two paralogs would suggest that both copies were preserved either because of subfunctionalization or dose dependency rather than by the neofunctionalization of one of the two copies.
Collapse
Affiliation(s)
- Sara Guirao-Rico
- Departament de Genètica, Facultat de Biologia, Universitat de Barcelona, Barcelona, Spain
| | | |
Collapse
|
100
|
Bernstein RM. The big and small of it: How body size evolves. AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY 2010; 143 Suppl 51:46-62. [DOI: 10.1002/ajpa.21440] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|