51
|
Collins KM, Bode A, Fernandez RW, Tanis JE, Brewer JC, Creamer MS, Koelle MR. Activity of the C. elegans egg-laying behavior circuit is controlled by competing activation and feedback inhibition. eLife 2016; 5. [PMID: 27849154 PMCID: PMC5142809 DOI: 10.7554/elife.21126] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Accepted: 11/14/2016] [Indexed: 01/13/2023] Open
Abstract
Like many behaviors, Caenorhabditis elegans egg laying alternates between inactive and active states. To understand how the underlying neural circuit turns the behavior on and off, we optically recorded circuit activity in behaving animals while manipulating circuit function using mutations, optogenetics, and drugs. In the active state, the circuit shows rhythmic activity phased with the body bends of locomotion. The serotonergic HSN command neurons initiate the active state, but accumulation of unlaid eggs also promotes the active state independent of the HSNs. The cholinergic VC motor neurons slow locomotion during egg-laying muscle contraction and egg release. The uv1 neuroendocrine cells mechanically sense passage of eggs through the vulva and release tyramine to inhibit egg laying, in part via the LGC-55 tyramine-gated Cl- channel on the HSNs. Our results identify discrete signals that entrain or detach the circuit from the locomotion central pattern generator to produce active and inactive states. DOI:http://dx.doi.org/10.7554/eLife.21126.001 It has been said that if the human brain were so simple that we could understand it, we would be so simple that we couldn’t. This quote neatly captures the challenge of working out how 80 billion neurons collectively generate our thoughts and behavior. Fortunately, the nervous system is also organized into simpler units called circuits. Each consists of a relatively small number of neurons, which communicate with one another to control as little as a single behavior. These circuits should in principle be simple enough for us to understand, particularly if we study them in nervous systems less complex than our own. Despite this, there is currently not a single circuit in any organism in which we can explain how communication between individual neurons generates behavior. Collins et al. therefore set out to characterize a simple neural circuit in one of the simplest model organisms: the egg-laying circuit of the worm C. elegans. Using mutations, drugs and molecular genetic techniques, Collins et al. systematically altered the activity and signaling of each of the neurons within the egg-laying circuit. The experiments revealed that cells called command neurons trigger egg laying by producing signals that switch on the rest of the circuit. Once activated, the circuit is able to respond to waves of activity from a second circuit – called the central pattern generator – that also controls the worm’s movement. Finally, laying an egg activates a third set of neurons, which release a signal that returns the circuit to its inactive state. The use of distinct signals and neurons to activate the circuit, to coordinate its ongoing activity, and to inactivate the circuit when its task is complete also applies to many other neural circuits. Now that these signals have been identified in one circuit, it should be possible to build on these findings to better understand how others work. DOI:http://dx.doi.org/10.7554/eLife.21126.002
Collapse
Affiliation(s)
- Kevin M Collins
- Department of Biology, University of Miami, Coral Gables, United States.,Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, United States
| | - Addys Bode
- Department of Biology, University of Miami, Coral Gables, United States
| | - Robert W Fernandez
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, United States
| | - Jessica E Tanis
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, United States
| | - Jacob C Brewer
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, United States
| | - Matthew S Creamer
- Interdepartmental Neuroscience Program, Yale University, New Haven, United States
| | - Michael R Koelle
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, United States.,Interdepartmental Neuroscience Program, Yale University, New Haven, United States
| |
Collapse
|
52
|
Large EE, Xu W, Zhao Y, Brady SC, Long L, Butcher RA, Andersen EC, McGrath PT. Selection on a Subunit of the NURF Chromatin Remodeler Modifies Life History Traits in a Domesticated Strain of Caenorhabditis elegans. PLoS Genet 2016; 12:e1006219. [PMID: 27467070 PMCID: PMC4965130 DOI: 10.1371/journal.pgen.1006219] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2016] [Accepted: 07/01/2016] [Indexed: 11/20/2022] Open
Abstract
Evolutionary life history theory seeks to explain how reproductive and survival traits are shaped by selection through allocations of an individual’s resources to competing life functions. Although life-history traits evolve rapidly, little is known about the genetic and cellular mechanisms that control and couple these tradeoffs. Here, we find that two laboratory-adapted strains of C. elegans descended from a single common ancestor that lived in the 1950s have differences in a number of life-history traits, including reproductive timing, lifespan, dauer formation, growth rate, and offspring number. We identified a quantitative trait locus (QTL) of large effect that controls 24%–75% of the total trait variance in reproductive timing at various timepoints. Using CRISPR/Cas9-induced genome editing, we show this QTL is due in part to a 60 bp deletion in the 3’ end of the nurf-1 gene, which is orthologous to the human gene encoding the BPTF component of the NURF chromatin remodeling complex. Besides reproduction, nurf-1 also regulates growth rate, lifespan, and dauer formation. The fitness consequences of this deletion are environment specific—it increases fitness in the growth conditions where it was fixed but decreases fitness in alternative laboratory growth conditions. We propose that chromatin remodeling, acting through nurf-1, is a pleiotropic regulator of life history trade-offs underlying the evolution of multiple traits across different species. Sex and death are two fundamental concerns of each organism. These traits evolve rapidly in natural populations as animals seek to maximize their fitness in a given environment. For example, in mammals, lifespan, size, and fecundity vary over two order of magnitude. A key observation of evolutionary life history theory is the recognition that there are limited amount of resources available, which creates tradeoffs between competing life functions. By studying a domesticated strain of C. elegans, we identify a beneficial mutation that regulates a number of life history tradeoffs. This mutation affects a subunit of the NURF chromatin remodeling complex. Our work suggests that NURF is a master regulator of life history tradeoffs through epigenetic regulation, and a target of evolution.
Collapse
Affiliation(s)
- Edward E. Large
- School of Biology, Georgia Institute of Technology, Atlanta, Georgia, United States of America
| | - Wen Xu
- School of Biology, Georgia Institute of Technology, Atlanta, Georgia, United States of America
| | - Yuehui Zhao
- School of Biology, Georgia Institute of Technology, Atlanta, Georgia, United States of America
| | - Shannon C. Brady
- Department of Molecular Biosciences, Northwestern University, Evanston, Illinois, United States of America
| | - Lijiang Long
- School of Biology, Georgia Institute of Technology, Atlanta, Georgia, United States of America
| | - Rebecca A. Butcher
- Department of Chemistry, University of Florida, Gainesville, Florida, United States of America
| | - Erik C. Andersen
- Department of Molecular Biosciences, Northwestern University, Evanston, Illinois, United States of America
| | - Patrick T. McGrath
- School of Biology, Georgia Institute of Technology, Atlanta, Georgia, United States of America
- * E-mail:
| |
Collapse
|
53
|
Scharf A, Gührs KH, von Mikecz A. Anti-amyloid compounds protect from silica nanoparticle-induced neurotoxicity in the nematode C. elegans. Nanotoxicology 2015; 10:426-35. [PMID: 26444998 PMCID: PMC4819850 DOI: 10.3109/17435390.2015.1073399] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Identifying nanomaterial-bio-interactions are imperative due to the broad introduction of nanoparticle (NP) applications and their distribution. Here, we demonstrate that silica NPs effect widespread protein aggregation in the soil nematode Caenorhabditis elegans ranging from induction of amyloid in nucleoli of intestinal cells to facilitation of protein aggregation in body wall muscles and axons of neural cells. Proteomic screening revealed that exposure of adult C. elegans with silica NPs promotes segregation of proteins belonging to the gene ontology (GO) group of “protein folding, proteolysis and stress response” to an SDS-resistant aggregome network. Candidate proteins in this group include chaperones, heat shock proteins and subunits of the 26S proteasome which are all decisively involved in protein homeostasis. The pathway of protein homeostasis was validated as a major target of silica NPs by behavioral phenotyping, as inhibitors of amyloid formation rescued NP-induced defects of locomotory patterns and egg laying. The analysis of a reporter worm for serotonergic neural cells revealed that silica NP-induced protein aggregation likewise occurs in axons of HSN neurons, where presynaptic accumulation of serotonin, e.g. disturbed axonal transport reduces the capacity for neurotransmission and egg laying. The results suggest that in C. elegans silica NPs promote a cascade of events including disturbance of protein homeostasis, widespread protein aggregation and inhibition of serotonergic neurotransmission which can be interrupted by compounds preventing amyloid fibrillation.
Collapse
Affiliation(s)
- Andrea Scharf
- a IUF - Leibniz Research Institute for Environmental Medicine at the Heinrich-Heine-University Duesseldorf , Düsseldorf , Germany and
| | - Karl-Heinz Gührs
- b CF Proteomics, FLI-Leibniz-Institute for Age Research, Fritz-Lipman-Institute e.V. , Jena , Germany
| | - Anna von Mikecz
- a IUF - Leibniz Research Institute for Environmental Medicine at the Heinrich-Heine-University Duesseldorf , Düsseldorf , Germany and
| |
Collapse
|
54
|
Gillan V, O'Neill K, Maitland K, Sverdrup FM, Devaney E. A repurposing strategy for Hsp90 inhibitors demonstrates their potency against filarial nematodes. PLoS Negl Trop Dis 2014; 8:e2699. [PMID: 24551261 PMCID: PMC3923716 DOI: 10.1371/journal.pntd.0002699] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2013] [Accepted: 01/02/2014] [Indexed: 02/03/2023] Open
Abstract
Novel drugs are required for the elimination of infections caused by filarial worms, as most commonly used drugs largely target the microfilariae or first stage larvae of these infections. Previous studies, conducted in vitro, have shown that inhibition of Hsp90 kills adult Brugia pahangi. As numerous small molecule inhibitors of Hsp90 have been developed for use in cancer chemotherapy, we tested the activity of several novel Hsp90 inhibitors in a fluorescence polarization assay and against microfilariae and adult worms of Brugia in vitro. The results from all three assays correlated reasonably well and one particular compound, NVP-AUY922, was shown to be particularly active, inhibiting Mf output from female worms at concentrations as low as 5.0 nanomolar after 6 days exposure to drug. NVP-AUY922 was also active on adult worms after a short 24 h exposure to drug. Based on these in vitro data, NVP-AUY922 was tested in vivo in a mouse model and was shown to significantly reduce the recovery of both adult worms and microfilariae. These studies provide proof of principle that the repurposing of currently available Hsp90 inhibitors may have potential for the development of novel agents with macrofilaricidal properties.
Collapse
Affiliation(s)
- Victoria Gillan
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow, United Kingdom
| | - Kerry O'Neill
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow, United Kingdom
| | - Kirsty Maitland
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow, United Kingdom
| | - Francis M. Sverdrup
- Center for World Health & Medicine, Saint Louis University, Saint Louis, Missouri, United States of America
| | - Eileen Devaney
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow, United Kingdom
| |
Collapse
|
55
|
Mowrey WR, Bennett JR, Portman DS. Distributed effects of biological sex define sex-typical motor behavior in Caenorhabditis elegans. J Neurosci 2014; 34:1579-91. [PMID: 24478342 PMCID: PMC3905135 DOI: 10.1523/jneurosci.4352-13.2014] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2013] [Revised: 11/05/2013] [Accepted: 11/07/2013] [Indexed: 12/24/2022] Open
Abstract
Sex differences in shared behaviors (for example, locomotion and feeding) are a nearly universal feature of animal biology. Though these behaviors may share underlying neural programs, their kinematics can exhibit robust differences between males and females. The neural underpinnings of these differences are poorly understood because of the often-untested assumption that they are determined by sex-specific body morphology. Here, we address this issue in the nematode Caenorhabditis elegans, which features two sexes with distinct body morphologies but similar locomotor circuitry and body muscle. Quantitative behavioral analysis shows that C. elegans and related nematodes exhibit significant sex differences in the dynamics and geometry of locomotor body waves, such that the male is generally faster. Using a recently proposed model of locomotor wave propagation, we show that sex differences in both body mechanics and the intrinsic dynamics of the motor system can contribute to kinematic differences in distinct mechanical contexts. By genetically sex-reversing the properties of specific tissues and cells, however, we find that sex-specific locomotor frequency in C. elegans is determined primarily by the functional modification of shared sensory neurons. Further, we find that sexual modification of body wall muscle together with the nervous system is required to alter body wave speed. Thus, rather than relying on a single focus of modification, sex differences in motor dynamics require independent modifications to multiple tissue types. Our results suggest shared motor behaviors may be sex-specifically optimized though distributed modifications to several aspects of morphology and physiology.
Collapse
Affiliation(s)
| | | | - Douglas S. Portman
- Center for Neural Development and Disease
- Department of Biomedical Genetics, and
- Department of Biology, University of Rochester, School of Medicine and Dentistry, Rochester, New York 14642
| |
Collapse
|
56
|
Wollenhaupt SGN, Soares AT, Salgueiro WG, Noremberg S, Reis G, Viana C, Gubert P, Soares FA, Affeldt RF, Lüdtke DS, Santos FW, Denardin CC, Aschner M, Avila DS. Seleno- and telluro-xylofuranosides attenuate Mn-induced toxicity in C. elegans via the DAF-16/FOXO pathway. Food Chem Toxicol 2013; 64:192-9. [PMID: 24296137 DOI: 10.1016/j.fct.2013.11.030] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2013] [Revised: 11/04/2013] [Accepted: 11/22/2013] [Indexed: 01/12/2023]
Abstract
Organochalcogens are promising pharmacological agents that possess significant biological activities. Nevertheless, because of the complexity of mammalian models, it has been difficult to determine the molecular pathways and specific proteins that are modulated in response to treatments with these compounds. The nematode worm Caenorhabditis elegans is an alternative experimental model that affords easy genetic manipulations, green fluorescent protein tagging and in vivo live analysis of toxicity. Abundant evidence points to oxidative stress in mediating manganese (Mn)-induced toxicity. In this study we challenged worms with Mn, and investigated the efficacy of inedited selenium- and tellurium-xylofuranosides in reversing and/or protecting the worms from Mn-induced toxicity. In addition, we investigated their putative mechanism of action. First, we determined the lethal dose 50% (LD50) and the effects of the xylofuranosides on various toxic parameters. This was followed by studies on the ability of xylofuranosides to afford protection against Mn-induced toxicity. Both Se- and Te-xylofuranosides increased the expression of superoxide dismutase (SOD-3). Furthermore, we observed that the xylofuranosides induced nuclear translocation of the transcription factor DAF-16/FOXO, which in the worm is known to regulate stress responsiveness, aging and metabolism. These findings suggest that xylofuranosides attenuate toxicity Mn-induced, by regulating the DAF-16/FOXO signaling pathway.
Collapse
Affiliation(s)
- Suzi G N Wollenhaupt
- Laboraterio do Grupo de Pesquisa em Bioquímica e Toxicologia em Caenorhabditis elegans (GBToxCe), Universidade Federal do Pampa - UNIPAMPA, CEP 97500-970, Uruguaiana, RS, Brazil
| | - Ana Thalita Soares
- Laboraterio do Grupo de Pesquisa em Bioquímica e Toxicologia em Caenorhabditis elegans (GBToxCe), Universidade Federal do Pampa - UNIPAMPA, CEP 97500-970, Uruguaiana, RS, Brazil
| | - Willian G Salgueiro
- Laboraterio do Grupo de Pesquisa em Bioquímica e Toxicologia em Caenorhabditis elegans (GBToxCe), Universidade Federal do Pampa - UNIPAMPA, CEP 97500-970, Uruguaiana, RS, Brazil
| | - Simone Noremberg
- Departamento de Química, Universidade Federal de Santa Maria - UFSM, CEP 97105-900, Santa Maria, RS, Brazil
| | - Gabriel Reis
- Departamento de Química, Universidade Federal de Santa Maria - UFSM, CEP 97105-900, Santa Maria, RS, Brazil
| | - Carine Viana
- Departamento de Química, Universidade Federal de Santa Maria - UFSM, CEP 97105-900, Santa Maria, RS, Brazil
| | - Priscila Gubert
- Departamento de Química, Universidade Federal de Santa Maria - UFSM, CEP 97105-900, Santa Maria, RS, Brazil
| | - Felix A Soares
- Departamento de Química, Universidade Federal de Santa Maria - UFSM, CEP 97105-900, Santa Maria, RS, Brazil
| | - Ricardo F Affeldt
- Instituto de Química, Universidade Federal do Rio Grande do Sul - UFRGS, CEP 91501-970, Porto Alegre, RS, Brazil
| | - Diogo S Lüdtke
- Instituto de Química, Universidade Federal do Rio Grande do Sul - UFRGS, CEP 91501-970, Porto Alegre, RS, Brazil
| | - Francielli W Santos
- Laboratório de Biotecnologia da Reprodução (Biotech), Campus Uruguaiana, Universidade Federal do Pampa - UNIPAMPA, CEP 97500-970, Uruguaiana, RS, Brazil
| | - Cristiane C Denardin
- Laboraterio do Grupo de Pesquisa em Bioquímica e Toxicologia em Caenorhabditis elegans (GBToxCe), Universidade Federal do Pampa - UNIPAMPA, CEP 97500-970, Uruguaiana, RS, Brazil
| | - Michael Aschner
- Division of Clinical Pharmacology and Pediatric Toxicology, Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN 37240, USA
| | - Daiana S Avila
- Laboraterio do Grupo de Pesquisa em Bioquímica e Toxicologia em Caenorhabditis elegans (GBToxCe), Universidade Federal do Pampa - UNIPAMPA, CEP 97500-970, Uruguaiana, RS, Brazil.
| |
Collapse
|
57
|
Rudel D, Douglas CD, Huffnagle IM, Besser JM, Ingersoll CG. Assaying environmental nickel toxicity using model nematodes. PLoS One 2013; 8:e77079. [PMID: 24116204 PMCID: PMC3792034 DOI: 10.1371/journal.pone.0077079] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2012] [Accepted: 09/06/2013] [Indexed: 11/19/2022] Open
Abstract
Although nickel exposure results in allergic reactions, respiratory conditions, and cancer in humans and rodents, the ramifications of excess nickel in the environment for animal and human health remain largely undescribed. Nickel and other cationic metals travel through waterways and bind to soils and sediments. To evaluate the potential toxic effects of nickel at environmental contaminant levels (8.9-7,600 µg Ni/g dry weight of sediment and 50-800 µg NiCl2/L of water), we conducted assays using two cosmopolitan nematodes, Caenorhabditis elegans and Pristionchus pacificus. We assayed the effects of both sediment-bound and aqueous nickel upon animal growth, developmental survival, lifespan, and fecundity. Uncontaminated sediments were collected from sites in the Midwestern United States and spiked with a range of nickel concentrations. We found that nickel-spiked sediment substantially impairs both survival from larval to adult stages and adult longevity in a concentration-dependent manner. Further, while aqueous nickel showed no adverse effects on either survivorship or longevity, we observed a significant decrease in fecundity, indicating that aqueous nickel could have a negative impact on nematode physiology. Intriguingly, C. elegans and P. pacificus exhibit similar, but not identical, responses to nickel exposure. Moreover, P. pacificus could be tested successfully in sediments inhospitable to C. elegans. Our results add to a growing body of literature documenting the impact of nickel on animal physiology, and suggest that environmental toxicological studies could gain an advantage by widening their repertoire of nematode species.
Collapse
Affiliation(s)
- David Rudel
- Department of Biology, East Carolina University, Greenville, North Carolina, United States of America
- * E-mail:
| | - Chandler D. Douglas
- Department of Biology, East Carolina University, Greenville, North Carolina, United States of America
| | - Ian M. Huffnagle
- Department of Biology, East Carolina University, Greenville, North Carolina, United States of America
| | - John M. Besser
- Columbia Environmental Research Center, U.S. Geological Survey, Columbia, Missouri, United States of America
| | - Christopher G. Ingersoll
- Columbia Environmental Research Center, U.S. Geological Survey, Columbia, Missouri, United States of America
| |
Collapse
|
58
|
Smith MA, Zhang Y, Polli JR, Wu H, Zhang B, Xiao P, Farwell MA, Pan X. Impacts of chronic low-level nicotine exposure on Caenorhabditis elegans reproduction: identification of novel gene targets. Reprod Toxicol 2013; 40:69-75. [PMID: 23735997 DOI: 10.1016/j.reprotox.2013.05.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2013] [Revised: 04/25/2013] [Accepted: 05/24/2013] [Indexed: 12/17/2022]
Abstract
Effects and mechanisms of chronic exposure to low levels of nicotine is an area fundamentally important however less investigated. We employed the model organism Caenorhabditis elegans to investigate potential impacts of chronic (24h) and low nicotine exposure (6.17-194.5 μM) on stimulus-response, reproduction, and gene expressions. Nicotine significantly affects the organism's response to touch stimulus (p=0.031), which follows a dose-dependent pattern. Chronic nicotine exposure promotes early egg-laying events and slightly increased egg productions during the first 72 h of adulthood. The expressions of 10 (egl-10, egl-44, hlh-14, ric-3, unc-103, unc-50, unc-68, sod-1, oxi-1, and old-1) out of 18 selected genes were affected significantly. Other tested genes were cat-4, egl-19, egl-47, egl-5, lin-39, unc-43, pink-1, and age-1. Changes in gene expression were more evident at low dosages than at relatively high levels. Genes implicated in reproduction, cholinergic signaling, and stress response were regulated by nicotine, suggesting widespread physiological impacts of nicotine.
Collapse
Affiliation(s)
- Michael A Smith
- Department of Biology, East Carolina University, Greenville, NC 27858, USA
| | | | | | | | | | | | | | | |
Collapse
|
59
|
Lee JI, Mukherjee S, Yoon K, Dwivedi M, Bandyopadhyay J. The multiple faces of calcineurin signaling in Caenorhabditis elegans: Development, behaviour and aging. J Biosci 2013; 38:417-31. [DOI: 10.1007/s12038-013-9319-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
60
|
Sarai RS, Kopp SR, Coleman GT, Kotze AC. Acetylcholine receptor subunit and P-glycoprotein transcription patterns in levamisole-susceptible and -resistant Haemonchus contortus. INTERNATIONAL JOURNAL FOR PARASITOLOGY-DRUGS AND DRUG RESISTANCE 2013; 3:51-8. [PMID: 24533293 DOI: 10.1016/j.ijpddr.2013.01.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2012] [Revised: 01/07/2013] [Accepted: 01/09/2013] [Indexed: 10/27/2022]
Abstract
The mechanism of resistance to the anthelmintic levamisole in parasitic nematodes is poorly understood, although there is some evidence implicating changes in expression of nicotinic acetylcholine receptor (nAChR) subunit genes. Hence, in order to define levamisole resistance mechanisms in some Australian field-derived isolates of Haemonchus contortus we examined gene expression patterns and SNPs in nAChR subunit genes, as well as expression levels for P-glycoprotein (P-gp) and receptor ancillary protein genes, in various life stages of one levamisole-sensitive and three levamisole-resistant isolates of this species. Larvae of two isolates showed high-level resistance to levamisole (resistance ratios at the IC50 > 600) while the third isolate showed a degree of heterogeneity, with a resistance factor of only 1.1-fold at the IC50 alongside the presence of a resistant subpopulation. Transcription patterns for nAChR subunit genes showed a great degree of variability across the different life stages and isolates. The most consistent observation was the down-regulation of Hco-unc-63a in adults of all resistant isolates. Transcription of this gene was also reduced in the L3 stage of the two most resistant isolates, highlighting its potential as a resistance marker in the readily accessible free-living stages. There was down regulation of all four Hco-unc-29 paralogs in adults of one resistant isolate. There were no consistent changes in expression of P-gps or ancillary protein genes across the resistant isolates. The present study has demonstrated a complex pattern of nAChR subunit gene expression in H. contortus, and has highlighted several instances where reduced expression of subunit genes (Hco-unc-63a, Hco-unc-29) may be associated with the observed levamisole resistance. The data also suggests that it will be difficult to detect resistance using gene transcription-based methods on pooled larval samples from isolates containing only a resistant subpopulation due to the averaging of gene expression data across the whole population.
Collapse
Affiliation(s)
- Ranbir S Sarai
- CSIRO Animal, Food and Health Sciences, 306 Carmody Rd., St. Lucia, Brisbane QLD 4067, Australia ; School of Veterinary Science, University of Queensland, Gatton QLD 4341, Australia
| | - Steven R Kopp
- School of Veterinary Science, University of Queensland, Gatton QLD 4341, Australia
| | - Glen T Coleman
- School of Veterinary Science, University of Queensland, Gatton QLD 4341, Australia
| | - Andrew C Kotze
- CSIRO Animal, Food and Health Sciences, 306 Carmody Rd., St. Lucia, Brisbane QLD 4067, Australia
| |
Collapse
|
61
|
Hsu PCL, O'Callaghan M, Al-Salim N, Hurst MRH. Quantum dot nanoparticles affect the reproductive system of Caenorhabditis elegans. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2012; 31:2366-2374. [PMID: 22847876 DOI: 10.1002/etc.1967] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2011] [Revised: 05/31/2012] [Accepted: 06/14/2012] [Indexed: 06/01/2023]
Abstract
Quantum dots (QDs) are an increasingly important class of nanoparticle, but little ecotoxicological data for QDs has been published to date. The effects of mercaptosuccinic acid (MSA)-capped QDs (QDs-MSA) and equivalent concentrations of cadmium (Cd) from cadmium chloride on growth and reproduction of the nematode Caenorhabditis elegans (Rhabditidae) were assessed in laboratory experiments. Growth from larvae to adults of C. elegans was unaffected by exposure to 1 µM fluorescent QDs-MSA, but adults produced more embryos and laid them prematurely. Furthermore, C. elegans exposed to QDs-MSA (1 µM) showed a high percentage of embryo mortality (19.2 ± 0.5, p < 0.001, percentage ± standard deviation) compared with unexposed nematodes (11.6 ± 0.4). An egg-laying defect phenotype was also observed at high frequency in response to 1 µM QDs-MSA exposure (38.3 ± 3.6%, p < 0.01; control 10.0 ± 2.2%). This resulted in a reduced mean life span (20.5 ± 1.1 d, p < 0.05) compared with the control (24.6 ± 1.0 d). Cadmium also caused reduced life span in C. elegans, but a low incidence of egg-laying defects was observed, suggesting that Cd and QDs-MSA affected C. elegans by different mechanisms. Furthermore, egg-laying defects caused by QDs-MSA responded to the addition of the anticonvulsant ethosuximide and to a lesser extent to the neurotransmitter serotonin, suggesting that QDs-MSA might have disrupted motor neurons during the reproduction process.
Collapse
|
62
|
McMullen PD, Aprison EZ, Winter PB, Amaral LAN, Morimoto RI, Ruvinsky I. Macro-level modeling of the response of C. elegans reproduction to chronic heat stress. PLoS Comput Biol 2012; 8:e1002338. [PMID: 22291584 PMCID: PMC3266876 DOI: 10.1371/journal.pcbi.1002338] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2011] [Accepted: 11/17/2011] [Indexed: 11/19/2022] Open
Abstract
A major goal of systems biology is to understand how organism-level behavior arises from a myriad of molecular interactions. Often this involves complex sets of rules describing interactions among a large number of components. As an alternative, we have developed a simple, macro-level model to describe how chronic temperature stress affects reproduction in C. elegans. Our approach uses fundamental engineering principles, together with a limited set of experimentally derived facts, and provides quantitatively accurate predictions of performance under a range of physiologically relevant conditions. We generated detailed time-resolved experimental data to evaluate the ability of our model to describe the dynamics of C. elegans reproduction. We find considerable heterogeneity in responses of individual animals to heat stress, which can be understood as modulation of a few processes and may represent a strategy for coping with the ever-changing environment. Our experimental results and model provide quantitative insight into the breakdown of a robust biological system under stress and suggest, surprisingly, that the behavior of complex biological systems may be determined by a small number of key components.
Collapse
Affiliation(s)
- Patrick D. McMullen
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois, United States of America
| | - Erin Z. Aprison
- Department of Ecology and Evolution, Institute for Genomics and Systems Biology, The University of Chicago, Chicago, Illinois, United States of America
| | - Peter B. Winter
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois, United States of America
| | - Luis A. N. Amaral
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois, United States of America
- * E-mail: (LANA); (RIM); (IR)
| | - Richard I. Morimoto
- Department of Molecular Biosciences, Rice Institute for Biomedical Sciences, Northwestern University, Evanston, Illinois, United States of America
- * E-mail: (LANA); (RIM); (IR)
| | - Ilya Ruvinsky
- Department of Ecology and Evolution, Institute for Genomics and Systems Biology, The University of Chicago, Chicago, Illinois, United States of America
- * E-mail: (LANA); (RIM); (IR)
| |
Collapse
|
63
|
Olsson-Carter K, Slack FJ. The POU transcription factor UNC-86 controls the timing and ventral guidance of Caenorhabditis elegans axon growth. Dev Dyn 2011; 240:1815-25. [PMID: 21656875 DOI: 10.1002/dvdy.22667] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/24/2011] [Indexed: 01/24/2023] Open
Abstract
The in vivo mechanisms that coordinate the timing of axon growth and guidance are not well understood. In the Caenorhabditis elegans hermaphrodite specific neurons (HSNs), the lin-4 microRNA controls the stage of axon initiation independent of the UNC-40 and SAX-3 ventral guidance receptors. lin-4 loss-of-function mutants exhibit marked delays in axon outgrowth, while lin-4 overexpression leads to precocious growth in the L3 larval stage. Here, we show that loss of the POU transcription factor UNC-86 not only results in penetrant ventral axon growth defects in in the HSNs, but also causes processes to extend in the L1, three stages earlier than wild-type. This temporal shift is not dependent on UNC-40 or SAX-3, and does not require the presence of lin-4. We propose that unc-86(lf) HSN axons are misguided due to the temporal decoupling of axon initiation and ventral guidance responses.
Collapse
Affiliation(s)
- Katherine Olsson-Carter
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, Connecticut, USA
| | | |
Collapse
|
64
|
Karmacharya R, Lynn SK, Demarco S, Ortiz A, Wang X, Lundy MY, Xie Z, Cohen BM, Miller GM, Buttner EA. Behavioral effects of clozapine: involvement of trace amine pathways in C. elegans and M. musculus. Brain Res 2011; 1393:91-9. [PMID: 21529784 PMCID: PMC3107707 DOI: 10.1016/j.brainres.2011.04.010] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2011] [Revised: 04/02/2011] [Accepted: 04/04/2011] [Indexed: 11/27/2022]
Abstract
Clozapine is an antipsychotic medication with superior efficacy in treatment refractory schizophrenia. The molecular basis of clozapine's therapeutic profile is not well understood. We studied behavioral effects of clozapine in Caenorhabditis elegans to identify novel pathways that modulate clozapine's biological effects. Clozapine stimulated egg laying in C. elegans in a dose-dependent manner. This effect was clozapine-specific, as it was not observed with exposure to a typical antipsychotic, haloperidol or an atypical antipsychotic, olanzapine. A candidate gene screen of biogenic amine neurotransmitter systems identified signaling pathways that mediate this clozapine-specific effect on egg laying. Specifically, we found that clozapine-induced increase in egg laying requires tyramine biosynthesis. To test the implications of this finding across species, we explored whether trace amine systems modulate clozapine's behavioral effects in mammals by studying trace amine-associated receptor 1 (TAAR1) knockout mice. Clozapine increased prepulse inhibition (PPI) in wild-type mice. This increase in PPI was abrogated in TAAR1 knockout mice, implicating TAAR1 in clozapine-induced PPI enhancement. In transfected mammalian cell lines, we found no TAAR activation by antipsychotics, suggesting that modulation of trace amine signaling in mice does not occur directly at the receptor itself. In summary, we report a heretofore-unknown role for trace amine systems in clozapine-mediated effects across two species: C. elegans and mice.
Collapse
Affiliation(s)
- Rakesh Karmacharya
- Department of Psychiatry, Harvard Medical School, Boston, MA 02115 USA
- Mailman Research Center and Frazier Research Institute, McLean Hospital, 115 Mill Street, Belmont, MA 02478 USA
- Chemical Biology Program, Broad Institute of Harvard and MIT, 7 Cambridge Center, Cambridge, MA 02142 USA
| | - Spencer K. Lynn
- Department of Psychiatry, Harvard Medical School, Boston, MA 02115 USA
- Mailman Research Center and Frazier Research Institute, McLean Hospital, 115 Mill Street, Belmont, MA 02478 USA
- Department of Psychology, Boston College, Chestnut Hill, MA 02467 USA
| | - Sarah Demarco
- Mailman Research Center and Frazier Research Institute, McLean Hospital, 115 Mill Street, Belmont, MA 02478 USA
| | - Angelica Ortiz
- Mailman Research Center and Frazier Research Institute, McLean Hospital, 115 Mill Street, Belmont, MA 02478 USA
| | - Xin Wang
- Mailman Research Center and Frazier Research Institute, McLean Hospital, 115 Mill Street, Belmont, MA 02478 USA
| | - Miriam Y. Lundy
- Mailman Research Center and Frazier Research Institute, McLean Hospital, 115 Mill Street, Belmont, MA 02478 USA
| | - Zhihua Xie
- Department of Psychiatry, Harvard Medical School, Boston, MA 02115 USA
- Division of Neuroscience, New England Primate Research Center, Southborough, MA 01772 USA
| | - Bruce M. Cohen
- Department of Psychiatry, Harvard Medical School, Boston, MA 02115 USA
- Mailman Research Center and Frazier Research Institute, McLean Hospital, 115 Mill Street, Belmont, MA 02478 USA
| | - Gregory M. Miller
- Department of Psychiatry, Harvard Medical School, Boston, MA 02115 USA
- Division of Neuroscience, New England Primate Research Center, Southborough, MA 01772 USA
| | - Edgar A. Buttner
- Department of Psychiatry, Harvard Medical School, Boston, MA 02115 USA
- Mailman Research Center and Frazier Research Institute, McLean Hospital, 115 Mill Street, Belmont, MA 02478 USA
| |
Collapse
|
65
|
Liu Y, LeBeouf B, Guo X, Correa PA, Gualberto DG, Lints R, Garcia LR. A cholinergic-regulated circuit coordinates the maintenance and bi-stable states of a sensory-motor behavior during Caenorhabditis elegans male copulation. PLoS Genet 2011; 7:e1001326. [PMID: 21423722 PMCID: PMC3053324 DOI: 10.1371/journal.pgen.1001326] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2010] [Accepted: 02/04/2011] [Indexed: 11/18/2022] Open
Abstract
Penetration of a male copulatory organ into a suitable mate is a conserved and necessary behavioral step for most terrestrial matings; however, the detailed molecular and cellular mechanisms for this distinct social interaction have not been elucidated in any animal. During mating, the Caenorhabditis elegans male cloaca is maintained over the hermaphrodite's vulva as he attempts to insert his copulatory spicules. Rhythmic spicule thrusts cease when insertion is sensed. Circuit components consisting of sensory/motor neurons and sex muscles for these steps have been previously identified, but it was unclear how their outputs are integrated to generate a coordinated behavior pattern. Here, we show that cholinergic signaling between the cloacal sensory/motor neurons and the posterior sex muscles sustains genital contact between the sexes. Simultaneously, via gap junctions, signaling from these muscles is transmitted to the spicule muscles, thus coupling repeated spicule thrusts with vulval contact. To transit from rhythmic to sustained muscle contraction during penetration, the SPC sensory-motor neurons integrate the signal of spicule's position in the vulva with inputs from the hook and cloacal sensilla. The UNC-103 K(+) channel maintains a high excitability threshold in the circuit, so that sustained spicule muscle contraction is not stimulated by fewer inputs. We demonstrate that coordination of sensory inputs and motor outputs used to initiate, maintain, self-monitor, and complete an innate behavior is accomplished via the coupling of a few circuit components.
Collapse
Affiliation(s)
- Yishi Liu
- Department of Biology, Texas A&M University, College Station, Texas, United States of America
| | - Brigitte LeBeouf
- Department of Biology, Texas A&M University, College Station, Texas, United States of America
- Howard Hughes Medical Institute, Texas A&M University, College Station, Texas, United States of America
| | - Xiaoyan Guo
- Department of Biology, Texas A&M University, College Station, Texas, United States of America
| | - Paola A. Correa
- Department of Biology, Texas A&M University, College Station, Texas, United States of America
| | - Daisy G. Gualberto
- Department of Biology, Texas A&M University, College Station, Texas, United States of America
- Howard Hughes Medical Institute, Texas A&M University, College Station, Texas, United States of America
| | - Robyn Lints
- Department of Biology, Texas A&M University, College Station, Texas, United States of America
| | - L. Rene Garcia
- Department of Biology, Texas A&M University, College Station, Texas, United States of America
- Howard Hughes Medical Institute, Texas A&M University, College Station, Texas, United States of America
- * E-mail:
| |
Collapse
|
66
|
Gotenstein JR, Swale RE, Fukuda T, Wu Z, Giurumescu CA, Goncharov A, Jin Y, Chisholm AD. The C. elegans peroxidasin PXN-2 is essential for embryonic morphogenesis and inhibits adult axon regeneration. Development 2010; 137:3603-13. [PMID: 20876652 PMCID: PMC2964093 DOI: 10.1242/dev.049189] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/25/2010] [Indexed: 02/03/2023]
Abstract
Peroxidasins form a highly conserved family of extracellular peroxidases of unknown cellular function. We identified the C. elegans peroxidasin PXN-2 in screens for mutants defective in embryonic morphogenesis. We find that PXN-2 is essential for specific stages of embryonic morphogenesis and muscle-epidermal attachment, and is also required postembryonically for basement membrane integrity. The peroxidase catalytic activity of PXN-2 is necessary for these developmental roles. pxn-2 mutants display aberrant ultrastructure of the extracellular matrix, suggesting a role in basement membrane consolidation. PXN-2 affects specific axon guidance choice points in the developing nervous system but is dispensable for maintenance of process positions. In adults, loss of pxn-2 function promotes regrowth of axons after injury, providing the first evidence that C. elegans extracellular matrix can play an inhibitory role in axon regeneration. Loss of function in the closely related C. elegans peroxidasin pxn-1 does not cause overt developmental defects. Unexpectedly, pxn-2 mutant phenotypes are suppressed by loss of function in pxn-1 and exacerbated by overexpression of wild-type pxn-1, indicating that PXN-1 and PXN-2 have antagonistic functions. These results demonstrate that peroxidasins play crucial roles in development and reveal a new role for peroxidasins as extracellular inhibitors of axonal regeneration.
Collapse
Affiliation(s)
- Jennifer R. Gotenstein
- Section of Cell and Developmental Biology, Division of Biological Sciences, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Ryann E. Swale
- Department of Molecular, Cell and Developmental Biology, Sinsheimer Laboratories, University of California, Santa Cruz, CA 95064, USA
| | - Tetsuko Fukuda
- Section of Cell and Developmental Biology, Division of Biological Sciences, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Zilu Wu
- Howard Hughes Medical Institute
| | - Claudiu A. Giurumescu
- Section of Cell and Developmental Biology, Division of Biological Sciences, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | | | - Yishi Jin
- Howard Hughes Medical Institute
- Section of Neurobiology, Division of Biological Sciences, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Andrew D. Chisholm
- Section of Cell and Developmental Biology, Division of Biological Sciences, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
- Department of Molecular, Cell and Developmental Biology, Sinsheimer Laboratories, University of California, Santa Cruz, CA 95064, USA
- Section of Neurobiology, Division of Biological Sciences, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| |
Collapse
|
67
|
Olsson-Carter K, Slack FJ. A developmental timing switch promotes axon outgrowth independent of known guidance receptors. PLoS Genet 2010; 6:e1001054. [PMID: 20700435 PMCID: PMC2916846 DOI: 10.1371/journal.pgen.1001054] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2010] [Accepted: 07/07/2010] [Indexed: 12/31/2022] Open
Abstract
To form functional neuronal connections, axon outgrowth and guidance must be tightly regulated across space as well as time. While a number of genes and pathways have been shown to control spatial features of axon development, very little is known about the in vivo mechanisms that direct the timing of axon initiation and elongation. The Caenorhabditis elegans hermaphrodite specific motor neurons (HSNs) extend a single axon ventrally and then anteriorly during the L4 larval stage. Here we show the lin-4 microRNA promotes HSN axon initiation after cell cycle withdrawal. Axons fail to form in lin-4 mutants, while they grow prematurely in lin-4-overexpressing animals. lin-4 is required to down-regulate two inhibitors of HSN differentiation--the transcriptional regulator LIN-14 and the "stemness" factor LIN-28--and it likely does so through a cell-autonomous mechanism. This developmental switch depends neither on the UNC-40/DCC and SAX-3/Robo receptors nor on the direction of axon growth, demonstrating that it acts independently of ventral guidance signals to control the timing of HSN axon elongation.
Collapse
Affiliation(s)
| | - Frank J. Slack
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, Connecticut, United States of America
| |
Collapse
|
68
|
Roh JY, Park YK, Park K, Choi J. Ecotoxicological investigation of CeO(2) and TiO(2) nanoparticles on the soil nematode Caenorhabditis elegans using gene expression, growth, fertility, and survival as endpoints. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2010; 29:167-72. [PMID: 21787599 DOI: 10.1016/j.etap.2009.12.003] [Citation(s) in RCA: 108] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2009] [Revised: 12/23/2009] [Accepted: 12/25/2009] [Indexed: 05/20/2023]
Abstract
In this study, the potential harmful effect of cerium dioxide (CeO(2)), and titanium dioxide (TiO(2)) nanoparticles on the environment was investigated using Caenorhabditis elegans ecotoxicity tests. Multiple toxic endpoints, such as stress-response gene expression, growth, fertility, and survival, were analyzed in C. elegans, in response to the CeO(2) and TiO(2) exposure. To investigate relationship between sizes of nanoparticles and toxicity, C. elegans were exposed to nanoparticles to the different sizes of nanoparticles (15, 45nm for CeO(2) and 7, 20nm for TiO(2)). An increase in the expression of the cyp35a2 gene, decrease in fertility and survival parameters were observed in the 15 and 45nm of CeO(2) and in the 7nm of TiO(2) nanoparticles exposed to C. elegans. Gene knock-down experiment using RNA interference (RNAi) suggested that physiological level disturbances may be related with the cyp35a2 gene expression. Smaller sized nanoparticles (7nm of TiO(2) and 15nm of CeO(2)) seemed to be more toxic than larger sized ones (20nm of TiO(2) and 45nm of CeO(2)) on the observed toxicity. The size-dependent effect in CeO(2) and TiO(2) nanoparticles-induced toxicity needs to be investigated under more detailed experimental settings with the various sizes of nanoparticles. Further studies on the mechanism by which CeO(2) and TiO(2) nanoparticles affect cyp35a2 gene expression, fertility, and survival are warranted to better understand the CeO(2) and TiO(2) nanoparticles-induced ecotoxicity in C. elegans, as are studies with the causal relationships between these parameters. Overall results suggest that CeO(2) and TiO(2) nanoparticles have a potential for provoking ecotoxicity on C. elegans and the data obtained from this study can comprise a contribution to knowledge of the ecotoxicology of nanoparticles in C. elegans, about which little data are available.
Collapse
Affiliation(s)
- Ji-Yeon Roh
- Faculty of Environmental Engineering, College of Urban Science, University of Seoul, 90 Jeonnong-dong, Dongdaemun-gu, Seoul 130-743, Republic of Korea
| | | | | | | |
Collapse
|
69
|
Hapiak VM, Hobson RJ, Hughes L, Smith K, Harris G, Condon C, Komuniecki P, Komuniecki RW. Dual excitatory and inhibitory serotonergic inputs modulate egg laying in Caenorhabditis elegans. Genetics 2009; 181:153-63. [PMID: 19001289 PMCID: PMC2621164 DOI: 10.1534/genetics.108.096891] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2008] [Accepted: 11/05/2008] [Indexed: 01/30/2023] Open
Abstract
Serotonin (5-HT) regulates key processes in both vertebrates and invertebrates. Previously, four 5-HT receptors that contributed to the 5-HT modulation of egg laying were identified in Caenorhabditis elegans. Therefore, to assess potential receptor interactions, we generated animals containing combinations of null alleles for each receptor, especially animals expressing only individual 5-HT receptors. 5-HT-stimulated egg laying and egg retention correlated well with different combinations of predicted excitatory and inhibitory serotonergic inputs. For example, 5-HT did not stimulate egg laying in ser-1, ser-7, or ser-7 ser-1 null animals, and ser-7 ser-1 animals retained more eggs than wild-type animals. In contrast, 5-HT-stimulated egg laying in ser-4;mod-1 animals was greater than in wild-type animals, and ser-4;mod-1 animals retained fewer eggs than wild-type animals. Surprisingly, ser-4;mod-1;ser-7 ser-1 animals retained the same number of eggs as wild-type animals and exhibited significant 5-HT-stimulated egg laying that was dependent on a previously uncharacterized receptor, SER-5. 5-HT-stimulated egg laying was absent in ser-5;ser-4;mod-1;ser-7 ser-1 animals, and these animals retained more eggs than either wild-type or ser-4;mod-1;ser-7 ser-1 animals. The 5-HT sensitivity of egg laying could be restored by ser-5 muscle expression. Together, these results highlight the dual excitatory/inhibitory serotonergic inputs that combine to modulate egg laying.
Collapse
Affiliation(s)
- Vera M Hapiak
- Department of Biological Sciences, University of Toledo, Toledo, Ohio 43606-3390, USA
| | | | | | | | | | | | | | | |
Collapse
|
70
|
Downie BR, Sánchez A, Knötgen H, Contreras-Jurado C, Gymnopoulos M, Weber C, Stühmer W, Pardo LA. Eag1 expression interferes with hypoxia homeostasis and induces angiogenesis in tumors. J Biol Chem 2008; 283:36234-40. [PMID: 18927085 PMCID: PMC2606018 DOI: 10.1074/jbc.m801830200] [Citation(s) in RCA: 129] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2008] [Revised: 09/19/2008] [Indexed: 01/07/2023] Open
Abstract
Ether-á-go-go-1 (Eag1) is a CNS-localized voltage-gated potassium channel that is found ectopically expressed in a majority of extracranial solid tumors. While circumstantial evidence linking Eag1 to tumor biology has been well established, the mechanisms by which the channel contributes to tumor progression remain elusive. In this study, we have used in vivo and in vitro techniques to identify a candidate mechanism. A mutation that eliminates ion permeation fails to completely abolish xenograft tumor formation by transfected cells, indicating that Eag1 contributes to tumor progression independently of its primary function as an ion channel. Our data suggest that Eag1 interferes with the cellular mechanism for maintaining oxygen homeostasis, increasing HIF-1 activity, and thereby VEGF secretion and tumor vascularization.
Collapse
Affiliation(s)
- Bryan R Downie
- Max-Planck Institute of Experimental Medicine, Hermann-Rein Str. 3, 37075 Göttingen, Germany
| | | | | | | | | | | | | | | |
Collapse
|
71
|
Zhang M, Chung SH, Fang-Yen C, Craig C, Kerr RA, Suzuki H, Samuel ADT, Mazur E, Schafer WR. A self-regulating feed-forward circuit controlling C. elegans egg-laying behavior. Curr Biol 2008; 18:1445-55. [PMID: 18818084 DOI: 10.1016/j.cub.2008.08.047] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2008] [Revised: 08/05/2008] [Accepted: 08/11/2008] [Indexed: 10/21/2022]
Abstract
BACKGROUND Egg laying in Caenorhabditis elegans has been well studied at the genetic and behavioral levels. However, the neural basis of egg-laying behavior is still not well understood; in particular, the roles of specific neurons and the functional nature of the synaptic connections in the egg-laying circuit remain uncharacterized. RESULTS We have used in vivo neuroimaging and laser surgery to address these questions in intact, behaving animals. We have found that the HSN neurons play a central role in driving egg-laying behavior through direct excitation of the vulval muscles and VC motor neurons. The VC neurons play a dual role in the egg-laying circuit, exciting the vulval muscles while feedback-inhibiting the HSNs. Interestingly, the HSNs are active in the absence of synaptic input, suggesting that egg laying may be controlled through modulation of autonomous HSN activity. Indeed, body touch appears to inhibit egg laying, in part by interfering with HSN calcium oscillations. CONCLUSIONS The egg-laying motor circuit comprises a simple three-component system combining feed-forward excitation and feedback inhibition. This microcircuit motif is common in the C. elegans nervous system, as well as in the mammalian cortex; thus, understanding its functional properties in C. elegans may provide insight into its computational role in more complex brains.
Collapse
Affiliation(s)
- Mi Zhang
- San Diego State University and University of California, San Diego Joint Doctoral Program, La Jolla, CA 92093, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
72
|
Abstract
Because life is often unpredictable, dynamic, and complex, all animals have evolved remarkable abilities to cope with changes in their external environment and internal physiology. This regulatory plasticity leads to shifts in behavior and metabolism, as well as to changes in development, growth, and reproduction, which is thought to improve the chances of survival and reproductive success. In favorable environments, the nematode Caenorhabditis elegans develops rapidly to reproductive maturity, but in adverse environments, animals arrest at the dauer diapause, a long-lived stress resistant stage. A molecular and genetic analysis of dauer formation has revealed key insights into how sensory and dietary cues are coupled to conserved endocrine pathways, including insulin/IGF, TGF-beta, serotonergic, and steroid hormone signal transduction, which govern the choice between reproduction and survival. These and other pathways reveal a molecular basis for metazoan plasticity in response to extrinsic and intrinsic signals.
Collapse
Affiliation(s)
- Nicole Fielenbach
- Huffington Center on Aging, Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Adam Antebi
- Huffington Center on Aging, Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas 77030, USA
| |
Collapse
|
73
|
Götz J, Ittner LM. Animal models of Alzheimer's disease and frontotemporal dementia. Nat Rev Neurosci 2008; 9:532-44. [PMID: 18568014 DOI: 10.1038/nrn2420] [Citation(s) in RCA: 487] [Impact Index Per Article: 30.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Insoluble protein aggregates have been linked to Alzheimer's disease (AD) and frontotemporal dementia (FTD). Recent work in transgenic mice has shed light on the role of these aggregates by identifying soluble oligomeric species that may interfere with essential cellular mechanisms at an early disease stage. This review summarizes what we have learned about the roles of these proteins from transgenic mice and invertebrate species such as flies and worms. Proteomic and transcriptomic analyses of tissue from these animal models have identified new molecules with crucial roles in disease. Moreover, transgenic animals have been instrumental in defining drug targets and designing novel therapeutic strategies. With advanced imaging techniques that can be used in both humans and mice an early, preclinical diagnosis of AD and FTD could be within reach.
Collapse
Affiliation(s)
- Jürgen Götz
- Alzheimer's & Parkinson's Disease Laboratory, Brain & Mind Research Institute, University of Sydney, 100 Mallett Street, Camperdown, NSW 2050, Australia.
| | | |
Collapse
|
74
|
Srinivasan S, Sadegh L, Elle IC, Christensen AGL, Faergeman NJ, Ashrafi K. Serotonin regulates C. elegans fat and feeding through independent molecular mechanisms. Cell Metab 2008; 7:533-44. [PMID: 18522834 PMCID: PMC2495008 DOI: 10.1016/j.cmet.2008.04.012] [Citation(s) in RCA: 158] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2007] [Revised: 02/12/2008] [Accepted: 04/29/2008] [Indexed: 10/22/2022]
Abstract
We investigated serotonin signaling in C. elegans as a paradigm for neural regulation of energy balance and found that serotonergic regulation of fat is molecularly distinct from feeding regulation. Serotonergic feeding regulation is mediated by receptors whose functions are not required for fat regulation. Serotonergic fat regulation is dependent on a neurally expressed channel and a G protein-coupled receptor that initiate signaling cascades that ultimately promote lipid breakdown at peripheral sites of fat storage. In turn, intermediates of lipid metabolism generated in the periphery modulate feeding behavior. These findings suggest that, as in mammals, C. elegans feeding behavior is regulated by extrinsic and intrinsic cues. Moreover, obesity and thinness are not solely determined by feeding behavior. Rather, feeding behavior and fat metabolism are coordinated but independent responses of the nervous system to the perception of nutrient availability.
Collapse
Affiliation(s)
- Supriya Srinivasan
- Department of Physiology and UCSF Diabetes Center, University of California, San Francisco, San Francisco, CA 94158-2517, USA
| | | | | | | | | | | |
Collapse
|
75
|
Duerr JS, Han HP, Fields SD, Rand JB. Identification of major classes of cholinergic neurons in the nematode Caenorhabditis elegans. J Comp Neurol 2008; 506:398-408. [PMID: 18041778 DOI: 10.1002/cne.21551] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
The neurotransmitter acetylcholine (ACh) is specifically synthesized by the enzyme choline acetyltransferase (ChAT). Subsequently, it is loaded into synaptic vesicles by a specific vesicular acetylcholine transporter (VAChT). We have generated antibodies that recognize ChAT or VAChT in a model organism, the nematode Caenorhabditis elegans, in order to examine the subcellular and cellular distributions of these cholinergic proteins. ChAT and VAChT are found in the same neurons, including more than one-third of the 302 total neurons present in the adult hermaphrodite. VAChT is found in synaptic regions, whereas ChAT appears to exist in two forms in neurons, a synapse-enriched form and a more evenly distributed possibly cytosolic form. We have used antibodies to identify the cholinergic neurons in the body of larval and adult hermaphrodites. All of the classes of putative excitatory motor neurons in the ventral nerve cord appear to be cholinergic: the DA and DB neurons in the first larval stage and the AS, DA, DB, VA, VB, and VC neurons in the adult. In addition, several interneurons with somas in the tail and processes in the tail or body are cholinergic; sensory neurons are generally not cholinergic. Description of the normal pattern of cholinergic proteins and neurons will improve our understanding of the role of cholinergic neurons in the behavior and development of this model organism.
Collapse
Affiliation(s)
- Janet S Duerr
- Program in Molecular, Cell and Developmental Biology, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA
| | | | | | | |
Collapse
|
76
|
Automated detection and analysis of foraging behavior in Caenorhabditis elegans. J Neurosci Methods 2008; 171:153-64. [PMID: 18342950 DOI: 10.1016/j.jneumeth.2008.01.027] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2007] [Revised: 01/31/2008] [Accepted: 01/31/2008] [Indexed: 12/11/2022]
Abstract
Foraging is a rapid, side-to-side movement of the nose generated by Caenorhabditis elegans as it explores its environment. In this paper, we present an automated method to detect and analyze foraging behavior of C. elegans in a video sequence. Several morphological image-processing methods are used to locate the precise nose position of the worm in each image. Then foraging events are detected by measuring the bending angle of the nose and investigating the overall bending curve using periodograms. We measure foraging-related parameters which have not previously been studied. The algorithm has applications in classifying and characterizing genetic mutations associated with this behavior.
Collapse
|
77
|
Gutierrez A, Sommer RJ. Functional diversification of the nematode mbd2/3 gene between Pristionchus pacificus and Caenorhabditis elegans. BMC Genet 2007; 8:57. [PMID: 17725827 PMCID: PMC2000911 DOI: 10.1186/1471-2156-8-57] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2007] [Accepted: 08/28/2007] [Indexed: 01/10/2023] Open
Abstract
Background Several members of the Methyl-Binding Domain protein family link DNA methylation with chromatin remodeling complexes in vertebrates. Amongst the four classes of MBD proteins, MBD2/3 is the most highly conserved and widespread in metazoans. We have previously reported that an mbd2/3 like gene (mbd-2) is encoded in the genomes of the nematodes Pristionchus pacificus, Caenorhabditis elegans and Caenorhabditis briggsae. RNAi knock-down of mbd-2 in the two Caenorhabditis species results in varying percentages of lethality. Results Here, we report that a general feature of nematode MBD2/3 proteins seems to be the lack of a bona fide methyl-binding domain. We isolated a null allele of mbd-2 in P. pacificus and show that Ppa-mbd-2 mutants are viable, fertile and display a fully penetrant egg laying defect. This egg laying defect is partially rescued by treatment with acetylcholine or nicotine suggesting a specific function of this protein in vulval neurons. Using Yeast-two-hybrid screens, Ppa-MBD-2 was found to associate with microtubule interacting and vesicle transfer proteins. Conclusion These results imply that MBD2/3 proteins in nematodes are more variable than their relatives in insects and vertebrates both in structure and function. Moreover, nematode MBD2/3 proteins assume functions independent of DNA methylation ranging from the indispensable to the non-essential.
Collapse
Affiliation(s)
- Arturo Gutierrez
- Max-Planck Institute for Developmental Biology, Department for Evolutionary Biology, Spemannstrasse 37, D-72076 Tübingen, Germany
| | - Ralf J Sommer
- Max-Planck Institute for Developmental Biology, Department for Evolutionary Biology, Spemannstrasse 37, D-72076 Tübingen, Germany
| |
Collapse
|
78
|
Roh JY, Jung IH, Lee JY, Choi J. Toxic effects of di(2-ethylhexyl)phthalate on mortality, growth, reproduction and stress-related gene expression in the soil nematode Caenorhabditis elegans. Toxicology 2007; 237:126-133. [PMID: 17604895 DOI: 10.1016/j.tox.2007.05.008] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2007] [Revised: 04/19/2007] [Accepted: 05/02/2007] [Indexed: 11/23/2022]
Abstract
In this study, di(2-ethylhexyl)phthalate (DEHP) toxicities to Caenorhabditis elegans were investigated using multiple toxic endpoints, such as mortality, growth, reproduction and stress-related gene expression, focusing on the identification of chemical-induced gene expression as a sensitive biomarker for DEHP monitoring. The possible use of C. elegans as a sentinel organism in the monitoring of soil ecosystem health was also tested by conducting the experiment on the exposure of nematode to field soil. Twenty-four-hour median lethal concentration (LC50) data suggest that DEHP has a relatively high potential of acute toxicity to C. elegans. Decreases in body length and egg number per worm observed after 24h of DEHP exposure may induce long-term alteration in the growth and reproduction of the nematode population. Based on the result from the C. elegans genome array and indicated in the literatures, stress proteins, metallothionein, vitellogenin, xenobiotic metabolism enzymes, apoptosis-related proteins, and antioxidant enzyme genes were selected as stress-related genes and their expression in C. elegans by DEHP exposure was analyzed semi-quantitatively. Expression of heat shock protein (hsp)-16.1 and hsp-16.2 genes was decreased by DEHP exposure. Expression of cytochrome P450 (cyp) 35a2 and glutathione-S-transferease (gst)-4, phase I and phase II of xenobiotic metabolism enzymes, was increased by DEHP exposure in a concentration-dependent manner. An increase in stress-related gene expressions occurred concomitantly with the deterioration on the physiological level, which suggests an increase in expression of those genes may not be considered as a homeostatic response but as a toxicity that might have physiological consequences. The experiment with the soil from the landfill site suggests that the potential of the C. elegans biomarker identified in laboratory conditions should be calibrated and validated for its use in situ.
Collapse
Affiliation(s)
- Ji-Yeon Roh
- Faculty of Environmental Engineering, College of Urban Science, University of Seoul, 90 Jeonnong-dong, Dongdaemun-gu, Seoul 130-743, Republic of Korea
| | - In-Ho Jung
- Faculty of Environmental Engineering, College of Urban Science, University of Seoul, 90 Jeonnong-dong, Dongdaemun-gu, Seoul 130-743, Republic of Korea
| | - Jai-Young Lee
- Faculty of Environmental Engineering, College of Urban Science, University of Seoul, 90 Jeonnong-dong, Dongdaemun-gu, Seoul 130-743, Republic of Korea
| | - Jinhee Choi
- Faculty of Environmental Engineering, College of Urban Science, University of Seoul, 90 Jeonnong-dong, Dongdaemun-gu, Seoul 130-743, Republic of Korea.
| |
Collapse
|
79
|
A role for sperm in regulation of egg-laying in the nematode C. elegans. BMC DEVELOPMENTAL BIOLOGY 2007; 7:41. [PMID: 17472754 PMCID: PMC1868018 DOI: 10.1186/1471-213x-7-41] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/10/2006] [Accepted: 05/01/2007] [Indexed: 11/10/2022]
Abstract
Background In insects and in mammals, male sperm and seminal fluid provide signaling factors that influence various aspects of female physiology and behavior to promote reproductive success and to compete with other males. It is less apparent how important such signaling is in the context of a self-fertile hermaphrodite species. We have addressed this question in the nematode Caenorhabditis elegans, which can reproduce either by hermaphrodite self-fertilization or by male-hermaphrodite mating. Results We have studied the egg-laying defective mutant, egl-32, and found that the cellular basis of the egl-32 egg-laying phenotype is likely a defect in sperm. First, the time of egl-32 action coincides with the timing of spermatogenesis in the hermaphrodite. Second, egl-32 interacts with genes expressed in sperm. Third, mating experiments have revealed that wild-type sperm can rescue the egg-laying defect of egl-32 mutant animals. Most importantly, introduction of mutant egl-32 sperm into wild-type hermaphrodites or females is sufficient to induce an egg-laying defective phenotype. Conclusion Previous work has revealed that C. elegans sperm release factors that stimulate oocyte maturation and ovulation. Here we describe evidence that sperm also promote egg laying, the release of embryos from the uterus.
Collapse
|
80
|
Portman DS. Genetic control of sex differences in C. elegans neurobiology and behavior. ADVANCES IN GENETICS 2007; 59:1-37. [PMID: 17888793 DOI: 10.1016/s0065-2660(07)59001-2] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
As a well-characterized, genetically tractable animal, the nematode Caenorhabditis elegans is an ideal model to explore the connections between genes and the sexual regulation of the nervous system and behavior. The two sexes of C. elegans, males and hermaphrodites, have precisely defined differences in neuroanatomy: superimposed onto a "core" nervous system of exactly 294 neurons, hermaphrodites and males have 8 and 89 sex-specific neurons, respectively. These sex-specific neurons are essential for cognate sex-specific behaviors, including hermaphrodite egg-laying and male mating. In addition, regulated sex differences in the core nervous system itself may provide additional, though poorly understood, controls on behavior. These differences in the nervous system and behavior, like all known sex differences in the C. elegans soma, are controlled by the master regulator of C. elegans sex determination, tra-1. Downstream of tra-1 lie specific effectors of sex determination, including genes controlling sex-specific cell death and a family of regulators, the DM-domain genes, related to Drosophila doublesex and the vertebrate DMRT genes. There is no central (i.e., gonadal) regulator of sexual phenotype in the C. elegans nervous system; instead, tra-1 acts cell-autonomously in nearly all sexually dimorphic somatic cells. However, recent results suggest that the status of the gonad can be communicated to the nervous system to modulate sex-specific behaviors. Continuing research into the genetic control of neural sex differences in C. elegans is likely to yield insight into conserved mechanisms of cell-autonomous cross talk between cell fate patterning and sexual differentiation pathways.
Collapse
Affiliation(s)
- Douglas S Portman
- Department of Biomedical Genetics and Center for Aging and Developmental Biology, University of Rochester, Rochester, New York 14642, USA
| |
Collapse
|