51
|
Galvão AC, Arce PF, Robazza WS, Machado TD, França CAL. Solubility and Pseudo Polymorphic Behavior of Nicotinic Acid in Alcoholic Solutions: Experimental Data and Phase Equilibrium Modeling. Ind Eng Chem Res 2019. [DOI: 10.1021/acs.iecr.9b05367] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Alessandro C. Galvão
- Laboratory ApTher - Applied Thermophysics, Department of Food and Chemical Engineering, Santa Catarina State University, Pinhalzinho, SC, Brazil
| | - Pedro F. Arce
- Engineering School of Lorena, Department of Chemical Engineering, University of São Paulo, Lorena, SP, Brazil
| | - Weber S. Robazza
- Laboratory ApTher - Applied Thermophysics, Department of Food and Chemical Engineering, Santa Catarina State University, Pinhalzinho, SC, Brazil
| | - Thaiany D. Machado
- Laboratory ApTher - Applied Thermophysics, Department of Food and Chemical Engineering, Santa Catarina State University, Pinhalzinho, SC, Brazil
| | - Caroline A. L. França
- Laboratory ApTher - Applied Thermophysics, Department of Food and Chemical Engineering, Santa Catarina State University, Pinhalzinho, SC, Brazil
| |
Collapse
|
52
|
The Lifespan Extension Ability of Nicotinic Acid Depends on Whether the Intracellular NAD + Level Is Lower than the Sirtuin-Saturating Concentrations. Int J Mol Sci 2019; 21:ijms21010142. [PMID: 31878234 PMCID: PMC6982340 DOI: 10.3390/ijms21010142] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Revised: 12/19/2019] [Accepted: 12/20/2019] [Indexed: 02/07/2023] Open
Abstract
Calorie restriction can extend lifespan by increasing intracellular nicotinamide adenine dinucleotide (NAD+), thereby upregulating the activity of sirtuins (Caenorhabditis elegans Sir-2.1; human SIRT1). Nicotinic acid (NA) can be metabolized to NAD+; however, the calorie restriction mimetic (CRM) potential of NA is unclear. This study explored the ability and mechanism of NA to extend the lifespan of human Hs68 cells and C. elegans. We found that NA can efficiently increase the intracellular NAD+ levels in Hs68 cells and C. elegans; however, NA was only able to extend the lifespan of C. elegans. The steady-state NAD+ level in C. elegans was approximately 55 μM. When intracellular NAD+ was increased by a mutation of pme-1 (poly (ADP-ribose) metabolism enzyme 1) or by pretreatment with NAD+ in the medium, the lifespan extension ability of NA disappeared. Additionally, the saturating concentration of NAD+ required by SIRT1 was approximately 200 μM; however, the steady-state concentration of NAD+ in Hs68 cells reached up to 460 μM. These results demonstrate that the lifespan extension ability of NA depends on whether the intracellular level of NAD+ is lower than the sirtuin-saturating concentration in Hs68 cells and in C. elegans. Thus, the CRM potential of NA should be limited to individuals with lower intracellular NAD+.
Collapse
|
53
|
Niacin nutrition and rumen-protected niacin supplementation in dairy cows: an updated review. Br J Nutr 2019; 122:1103-1112. [PMID: 31474235 DOI: 10.1017/s0007114519002216] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
As the precursor to NAD+ and NADP+, niacin is important for catabolic and anabolic redox reactions. In addition, niacin is known for its anti-lipolytic action via a hydroxycarboxylic acid-2-receptor-dependent mechanism. The anti-lipolytic effects of traditional free niacin supplementation during transition periods had been studied extensively, but the reported effects are ambiguous. In the past decade, a series of studies were conducted to evaluate the effects of rumen-protected niacin (RPN) on production performance and metabolic status in early lactation and on heat stress in dairy cows. Feeding RPN seems more effective than free niacin regarding increasing circulating niacin concentration. The rebound of plasma NEFA was found after termination of niacin abomasal infusion. Feeding RPN or infusion of niacin via the abomasum could suppress lipolysis and reduce insulin resistance in early lactation. Additionally, RPN supplementation could possibly relieve heat stress through vasodilation during moderate to severe heat stress condition. However, these beneficial effects of niacin supplementation have not always been observed. The inconsistent results across studies may be related to dosages of niacin supplementation, rebound of plasma NEFA concentration, stage of lactation or severity of heat stress. Overall, the current review is to present updated information on niacin nutrition in dairy cows and the recommendations are given for future research.
Collapse
|
54
|
Abstract
Ketone bodies, mainly β-hydroxybutyrate and acetoacetate, are important alternative energy sources in a state of energy deficit or metabolic crisis. The consumption of ketogenic diets, such as low-carbohydrate and medium-chain triglyceride diets, and time-restricted feeding lead to ketogenesis, which influences longevity and health. β-Hydroxybutyrate also acts as a signaling molecule via GPR109A and GPR41; however, to date, the specific G protein-coupled receptors responsible for acetoacetate and its physiological functions remain unknown. In this study, we demonstrate that acetoacetate acts as an endogenous agonist of GPR43 by ligand screening in a heterologous expression system, and that it, rather than short-chain fatty acids, maintains energy homeostasis via GPR43-mediated lipid metabolism under ketogenic conditions. Ketone bodies, including β-hydroxybutyrate and acetoacetate, are important alternative energy sources during energy shortage. β-Hydroxybutyrate also acts as a signaling molecule via specific G protein-coupled receptors (GPCRs); however, the specific associated GPCRs and physiological functions of acetoacetate remain unknown. Here we identified acetoacetate as an endogenous agonist for short-chain fatty acid (SCFA) receptor GPR43 by ligand screening in a heterologous expression system. Under ketogenic conditions, such as starvation and low-carbohydrate diets, plasma acetoacetate levels increased markedly, whereas plasma and cecal SCFA levels decreased dramatically, along with an altered gut microbiota composition. In addition, Gpr43-deficient mice showed reduced weight loss and suppressed plasma lipoprotein lipase activity during fasting and eucaloric ketogenic diet feeding. Moreover, Gpr43-deficient mice exhibited minimal weight decrease after intermittent fasting. These observations provide insight into the role of ketone bodies in energy metabolism under shifts in nutrition and may contribute to the development of preventive medicine via diet and foods.
Collapse
|
55
|
Adebowale TO, Liu H, Oso AO, Oke OE, Hussain T, Bamgbose AM, Yao K, Yulong Y. Effect of dietary niacin supplementation on performance, total tract nutrient retention, carcass yield and meat lipid profile of growing turkeys. ANIMAL PRODUCTION SCIENCE 2019. [DOI: 10.1071/an17806] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
A study was conducted to investigate the influence of dietary high or recommended nicotinic acid (niacin) supplementation on growth performance, total tract nutrient digestibility, hematology, serum chemistry, and lipoprotein concentrations in the serum and meat of growing turkeys. Turkeys were assigned to three treatments on weight equalisation basis with five replicates of eight turkeys in each group. Experimental diets were: no supplemental niacin (Control), a diet supplemented with 60 mg/kg niacin termed as recommended niacin supplementation and a diet supplemented with 180 mg/kg niacin termed as high niacin supplementation (HNS). The experiment lasted for the grower (Day 56–84) and finisher phases (Day 84–112) of the birds. Dietary inclusion of HNS increased (P < 0.01) bodyweight gain, metabolisable energy (Days 84 and 112), dressing percentage and retail cut parts of turkeys (Day 112) in relation to the Control-fed turkeys. Furthermore, least white blood cell count and higher concentrations of packed cell volume, red blood cells and hemoglobin (P < 0.01) were found in turkeys fed HNS on Days 84 and 112. Similarly, turkeys in the HNS group had improved serum constituents including serum protein, uric acid, aspartate aminotransferase, alanine aminotransferase, and alkaline phosphate. The blood and meat lipid profile analysis showed that low density lipoprotein and total cholesterol were least (P < 0.05) in turkeys fed HNS. Collectively, dietary high supplementation of niacin (180 mg/kg) improves production performances, reduces serum and meat fat content and improve indicators of stress resistance ability in growing turkeys.
Collapse
|
56
|
Effect of Dietary Niacin Supplementation on Growth Performance, Nutrient Digestibility, Hematology, and Lipoprotein Concentrations of Young Turkeys, Meleagris gallopavo. J Poult Sci 2019; 56:112-119. [PMID: 32055205 PMCID: PMC7005404 DOI: 10.2141/jpsa.0170212] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
The growth performance, nutrient digestibility, hematology, serum chemistry, and lipoprotein concentrations of turkey (Meleagris gallopavo) poults fed diets supplemented with high or recommended concentrations of niacin were investigated in this study. A total of 120 four-week-old turkey poults were randomly divided into three treatment groups with five replicates of eight birds in each group. The poult diets were supplemented with 0.0, 60, and 180 mg/kg niacin in the three treatments, termed control, recommended niacin supplementation (RNS), and high niacin supplementation (HNS), respectively. The study lasted for four weeks. The results showed that the HNS treatment reduced the feed intake and increased the body weight gain of poults. The apparent, nitrogen-corrected, and true metabolizable energy contents were the highest in the HNS-group turkey poults (P<0.05). The red and white blood cell counts and hemoglobin concentration of the turkeys improved with increasing niacin supplementation (P<0.01). The serum constituents, including the serum protein and globulin, were significantly increased (P<0.05), while the uric acid and creatinine contents were significantly reduced in the HNS-group turkeys. Similarly, the HNS-group turkeys exhibited significantly reduced alanine aminotransferase (ALT) and alkaline phosphatase (ALP) contents, while the RNS-group turkeys had the least aspartate aminotransferase (AST) content. In addition, the HNS-group turkeys had the least serum low-density lipoprotein (LDL), triglyceride, and total cholesterol concentrations and the highest serum high-density lipoprotein (HDL) (P<0.01) concentrations. In conclusion, the supplementation of 180 mg/kg niacin in the diet reduced the feed intake and serum ALT, ALP, LDL, triglyceride, and cholesterol contents and increased the body weight gain, metabolizable energy, and HDL concentration in turkeys. This study showed that niacin supplementation could reduce the fat content without compromising the body weight gain and increase stress resistance in turkey poults.
Collapse
|
57
|
Benito-Vicente A, Uribe KB, Jebari S, Galicia-Garcia U, Ostolaza H, Martin C. Familial Hypercholesterolemia: The Most Frequent Cholesterol Metabolism Disorder Caused Disease. Int J Mol Sci 2018; 19:ijms19113426. [PMID: 30388787 PMCID: PMC6275065 DOI: 10.3390/ijms19113426] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2018] [Revised: 10/21/2018] [Accepted: 10/29/2018] [Indexed: 12/18/2022] Open
Abstract
Cholesterol is an essential component of cell barrier formation and signaling transduction involved in many essential physiologic processes. For this reason, cholesterol metabolism must be tightly controlled. Cell cholesterol is mainly acquired from two sources: Dietary cholesterol, which is absorbed in the intestine and, intracellularly synthesized cholesterol that is mainly synthesized in the liver. Once acquired, both are delivered to peripheral tissues in a lipoprotein dependent mechanism. Malfunctioning of cholesterol metabolism is caused by multiple hereditary diseases, including Familial Hypercholesterolemia, Sitosterolemia Type C and Niemann-Pick Type C1. Of these, familial hypercholesterolemia (FH) is a common inherited autosomal co-dominant disorder characterized by high plasma cholesterol levels. Its frequency is estimated to be 1:200 and, if untreated, increases the risk of premature cardiovascular disease. This review aims to summarize the current knowledge on cholesterol metabolism and the relation of FH to cholesterol homeostasis with special focus on the genetics, diagnosis and treatment.
Collapse
Affiliation(s)
- Asier Benito-Vicente
- Departamento de Bioquímica, Instituto Biofisika (UPV/EHU, CSIC), Universidad del País Vasco, Apdo.644, 48080 Bilbao, Spain.
| | - Kepa B Uribe
- Departamento de Bioquímica, Instituto Biofisika (UPV/EHU, CSIC), Universidad del País Vasco, Apdo.644, 48080 Bilbao, Spain.
| | - Shifa Jebari
- Departamento de Bioquímica, Instituto Biofisika (UPV/EHU, CSIC), Universidad del País Vasco, Apdo.644, 48080 Bilbao, Spain.
| | - Unai Galicia-Garcia
- Departamento de Bioquímica, Instituto Biofisika (UPV/EHU, CSIC), Universidad del País Vasco, Apdo.644, 48080 Bilbao, Spain.
| | - Helena Ostolaza
- Departamento de Bioquímica, Instituto Biofisika (UPV/EHU, CSIC), Universidad del País Vasco, Apdo.644, 48080 Bilbao, Spain.
| | - Cesar Martin
- Departamento de Bioquímica, Instituto Biofisika (UPV/EHU, CSIC), Universidad del País Vasco, Apdo.644, 48080 Bilbao, Spain.
| |
Collapse
|
58
|
Ringseis R, Zeitz JO, Weber A, Koch C, Eder K. Hepatic transcript profiling in early-lactation dairy cows fed rumen-protected niacin during the transition from late pregnancy to lactation. J Dairy Sci 2018; 102:365-376. [PMID: 30487053 DOI: 10.3168/jds.2018-15232] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Accepted: 09/13/2018] [Indexed: 12/13/2022]
Abstract
In dairy cows, administration of high dosages of niacin (nicotinic acid, NA) was found to cause antilipolytic effects, which are mediated by the NA receptor hydroxyl-carboxylic acid receptor 2 (HCAR2) in white adipose tissue (WAT), and thereby an altered hepatic lipid metabolism. However, almost no attention has been paid to possible direct effects of NA in cattle liver, despite evidence that HCAR2 is also expressed in the liver and is even more abundant than in WAT. Because of this, we hypothesized that feeding a high dosage of rumen-protected NA to dairy cows influences critical metabolic or signaling pathways in the liver by inducing changes in the hepatic transcriptome. To identify these pathways, we applied genome-wide transcript profiling in liver biopsies obtained at d 7 postpartum (p.p.) from dairy cows used in our recent study; cows received either no NA (control group, n = 9) or 79 mg of rumen-protected NA/kg of body weight daily (NA group, n = 9) from 21 d before calving until 3 wk p.p. Hepatic transcript profiling revealed that 487 transcripts were differentially expressed (filter criteria: fold change >1.2 or <-1.2 and P < 0.05) in the liver at d 7 p.p. between cows fed NA and control cows. Substantially more transcripts were downregulated (n = 338), whereas only 149 transcripts were upregulated by NA in the liver of cows. Gene set enrichment analysis for the upregulated transcripts revealed that the most-enriched gene ontology biological process terms were exclusively related to immune processes, such as leukocyte differentiation, immune system process, activation of immune response, and acute inflammatory response. Gene set enrichment analysis of the downregulated transcripts showed that the most-enriched biological process terms were related to metabolic processes, such as cellular metabolic process, small molecule metabolic process, lipid catabolic process, organic cyclic compound metabolic process, small molecule biosynthetic process, and cellular lipid catabolic process. In conclusion, hepatic transcriptome analysis showed that rumen-protected NA induces genes that are involved mainly in immune processes, including acute phase response and stress response, in dairy cows at d 7 p.p. Thus, supplementation of a high dosage of rumen-protected NA to dairy cows in the periparturient period may induce or amplify the systemic inflammation-like condition that is typically observed in the liver of high-yielding dairy cows in the p.p. period.
Collapse
Affiliation(s)
- R Ringseis
- Institute of Animal Nutrition and Nutrition Physiology, Justus-Liebig-University Giessen, Heinrich-Buff-Ring 26-32, 35392 Giessen, Germany.
| | - J O Zeitz
- Institute of Animal Nutrition and Nutrition Physiology, Justus-Liebig-University Giessen, Heinrich-Buff-Ring 26-32, 35392 Giessen, Germany
| | - A Weber
- Institute of Animal Nutrition and Nutrition Physiology, Justus-Liebig-University Giessen, Heinrich-Buff-Ring 26-32, 35392 Giessen, Germany
| | - C Koch
- Educational and Research Centre for Animal Husbandry, Hofgut Neumuehle, 67728 Muenchweiler an der Alsenz, Germany
| | - K Eder
- Institute of Animal Nutrition and Nutrition Physiology, Justus-Liebig-University Giessen, Heinrich-Buff-Ring 26-32, 35392 Giessen, Germany
| |
Collapse
|
59
|
Abstract
The concept of replenishing or elevating NAD+ availability to combat metabolic disease and ageing is an area of intense research. This has led to a need to define the endogenous regulatory pathways and mechanisms cells and tissues utilise to maximise NAD+ availability such that strategies to intervene in the clinical setting are able to be fully realised. This review discusses the importance of different salvage pathways involved in metabolising the vitamin B3 class of NAD+ precursor molecules, with a particular focus on the recently identified nicotinamide riboside kinase pathway at both a tissue-specific and systemic level.
Collapse
|
60
|
Wannick M, Assmann JC, Vielhauer JF, Offermanns S, Zillikens D, Sadik CD, Schwaninger M. The Immunometabolomic Interface Receptor Hydroxycarboxylic Acid Receptor 2 Mediates the Therapeutic Effects of Dimethyl Fumarate in Autoantibody-Induced Skin Inflammation. Front Immunol 2018; 9:1890. [PMID: 30154797 PMCID: PMC6102353 DOI: 10.3389/fimmu.2018.01890] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Accepted: 07/31/2018] [Indexed: 11/13/2022] Open
Abstract
The drug dimethyl fumarate (DMF) is in clinical use for the treatment of psoriasis and multiple sclerosis. In addition, it has recently been demonstrated to ameliorate skin pathology in mouse models of pemphigoid diseases, a group of autoimmune blistering diseases of the skin and mucous membranes. However, the mode of action of DMF in inflammatory skin diseases has remained elusive. Therefore, we have investigated here the mechanisms by which DMF improves skin pathology, using the antibody transfer model of bullous pemphigoid-like epidermolysis bullosa acquisita (EBA). Experimental EBA was induced by transfer of antibodies against collagen VII that triggered the infiltration of immune cells into the skin and led to inflammatory skin lesions. DMF treatment reduced the infiltration of neutrophils and monocytes into the skin explaining the improved disease outcome in DMF-treated animals. Upon ingestion, DMF is converted to monomethyl fumarate that activates the hydroxycarboxylic acid receptor 2 (HCA2). Interestingly, neutrophils and monocytes expressed Hca2. To investigate whether the therapeutic effect of DMF in EBA is mediated by HCA2, we administered oral DMF to Hca2-deficient mice (Hca2−/−) and wild-type littermates (Hca2+/+) and induced EBA. DMF treatment ameliorated skin lesions in Hca2+/+ but not in Hca2−/− animals. These findings demonstrate that HCA2 is a molecular target of DMF treatment in EBA and suggest that HCA2 activation limits skin pathology by inhibiting the infiltration of neutrophils and monocytes into the skin.
Collapse
Affiliation(s)
- Melanie Wannick
- Institute for Experimental and Clinical Pharmacology and Toxicology, University of Lübeck, Lübeck, Germany
| | - Julian C Assmann
- Institute for Experimental and Clinical Pharmacology and Toxicology, University of Lübeck, Lübeck, Germany
| | - Jakob F Vielhauer
- Institute for Experimental and Clinical Pharmacology and Toxicology, University of Lübeck, Lübeck, Germany
| | - Stefan Offermanns
- Department of Pharmacology, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Detlef Zillikens
- Department of Dermatology, Allergy, and Venereology, University of Lübeck, Lübeck, Germany
| | - Christian D Sadik
- Department of Dermatology, Allergy, and Venereology, University of Lübeck, Lübeck, Germany
| | - Markus Schwaninger
- Institute for Experimental and Clinical Pharmacology and Toxicology, University of Lübeck, Lübeck, Germany
| |
Collapse
|
61
|
Son DH, Yang DJ, Sun JS, Kim SK, Kang N, Kang JY, Choi YH, Lee JH, Moh SH, Shin DM, Kim KW. A Novel Peptide, Nicotinyl⁻Isoleucine⁻Valine⁻Histidine (NA⁻IVH), Promotes Antioxidant Gene Expression and Wound Healing in HaCaT Cells. Mar Drugs 2018; 16:md16080262. [PMID: 30071627 PMCID: PMC6117656 DOI: 10.3390/md16080262] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Revised: 07/23/2018] [Accepted: 07/27/2018] [Indexed: 12/26/2022] Open
Abstract
Nicotinamide (NA), a water-soluble vitamin B3, has been shown to exert cellular-protective effects against reactive oxygen species (ROS). In order to improve the cellular-protective effects of NA, we synthesized a novel compound, nicotinyl–isoleucine–valine–histidine (NA–IVH), by combining NA with jellyfish peptides’ IVH. In the present study, we examined the cellular-protective effects of the novel synthetic nicotinyl-peptide, NA–IVH. We found that NA–IVH enhances the radical scavenging activity with a robust increase of the nuclear factor (erythroid-derived 2)-like factor (Nrf2) expression in human HaCaT keratinocytes. In addition, NA–IVH protected the cells from hydrogen peroxide (H2O2)-induced cell death. Interestingly, NA–IVH exhibited an improved wound-healing effect in a high glucose condition, possibly through the regulation of reactive oxygen species (ROS). Collectively, our results imply that a novel nicotinyl-peptide, NA–IVH, has a wound-healing effect in a hyperglycemic condition, possibly by modulating excessive ROS.
Collapse
Affiliation(s)
- Dong Hwee Son
- Department of Oral Biology, BK21 PLUS, Yonsei University College of Dentistry, Seoul 03722, Korea.
| | - Dong Joo Yang
- Department of Oral Biology, BK21 PLUS, Yonsei University College of Dentistry, Seoul 03722, Korea.
- Department of Global Medical Science, Yonsei University Wonju College of Medicine, Wonju 26426, Korea.
| | - Ji Su Sun
- Department of Oral Biology, BK21 PLUS, Yonsei University College of Dentistry, Seoul 03722, Korea.
| | - Seul Ki Kim
- Department of Oral Biology, BK21 PLUS, Yonsei University College of Dentistry, Seoul 03722, Korea.
| | - Namju Kang
- Department of Oral Biology, BK21 PLUS, Yonsei University College of Dentistry, Seoul 03722, Korea.
| | - Jung Yun Kang
- Department of Oral Biology, BK21 PLUS, Yonsei University College of Dentistry, Seoul 03722, Korea.
| | - Yun-Hee Choi
- Department of Oral Biology, BK21 PLUS, Yonsei University College of Dentistry, Seoul 03722, Korea.
| | - Jeong Hun Lee
- Anti-Aging Research Institute of BIO-FD&C Co. Ltd., Incheon 21990, Korea.
| | - Sang Hyun Moh
- Anti-Aging Research Institute of BIO-FD&C Co. Ltd., Incheon 21990, Korea.
| | - Dong Min Shin
- Department of Oral Biology, BK21 PLUS, Yonsei University College of Dentistry, Seoul 03722, Korea.
| | - Ki Woo Kim
- Department of Oral Biology, BK21 PLUS, Yonsei University College of Dentistry, Seoul 03722, Korea.
| |
Collapse
|
62
|
Effects on post-fresh period milk production and fertility as a result of prior niacin supplementation of dairy cows during their fresh period. Livest Sci 2018. [DOI: 10.1016/j.livsci.2018.05.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
63
|
Masuda Y, Kurikawa N, Nishizawa T. Overexpressing human GPR109A leads to pronounced reduction in plasma triglyceride levels in BAC transgenic rats. Atherosclerosis 2018; 272:182-192. [DOI: 10.1016/j.atherosclerosis.2018.03.041] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Revised: 02/21/2018] [Accepted: 03/22/2018] [Indexed: 11/26/2022]
|
64
|
Abstract
Blood lipids are important modifiable risk factors for coronary heart disease and various drugs have been developed to target lipid fractions. Considerable efforts have been made to identify genetic variants that modulate responses to drugs in the hope of optimizing their use. Pharmacogenomics and new biotechnologies now allow for meaningful integration of human genetic findings and therapeutic development for increased efficiency and precision of lipid-lowering drugs. Polygenic predictors of disease risk are also changing how patient populations can be stratified, enabling targeted therapeutic interventions to patients more likely to derive the highest benefit, marking a shift from single variant to genomic approaches in pharmacogenomics.
Collapse
Affiliation(s)
- Marc-André Legault
- Montreal Heart Institute, Montreal, QC, H1T 1C8, Canada.,Université de Montréal, Faculté de médecine, Montreal, QC, H3T 1J4, Canada.,Université de Montréal Beaulieu-Saucier Pharmacogenomics Centre, Montreal, H1T 1C8, QC, Canada
| | - Jean-Claude Tardif
- Montreal Heart Institute, Montreal, QC, H1T 1C8, Canada.,Université de Montréal, Faculté de médecine, Montreal, QC, H3T 1J4, Canada
| | - Marie-Pierre Dubé
- Montreal Heart Institute, Montreal, QC, H1T 1C8, Canada.,Université de Montréal, Faculté de médecine, Montreal, QC, H3T 1J4, Canada.,Université de Montréal Beaulieu-Saucier Pharmacogenomics Centre, Montreal, H1T 1C8, QC, Canada
| |
Collapse
|
65
|
Wei XS, Cai CJ, He JJ, Yu C, Mitloehner F, Liu BL, Yao JH, Cao YC. Effects of biotin and nicotinamide supplementation on glucose and lipid metabolism and milk production of transition dairy cows. Anim Feed Sci Technol 2018. [DOI: 10.1016/j.anifeedsci.2018.01.012] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
66
|
Zodda D, Giammona R, Schifilliti S. Treatment Strategy for Dyslipidemia in Cardiovascular Disease Prevention: Focus on Old and New Drugs. PHARMACY 2018; 6:pharmacy6010010. [PMID: 29361723 PMCID: PMC5874549 DOI: 10.3390/pharmacy6010010] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2017] [Revised: 01/08/2018] [Accepted: 01/11/2018] [Indexed: 12/24/2022] Open
Abstract
Prevention and treatment of dyslipidemia should be considered as an integral part of individual cardiovascular prevention interventions, which should be addressed primarily to those at higher risk who benefit most. To date, statins remain the first-choice therapy, as they have been shown to reduce the risk of major vascular events by lowering low-density lipoprotein cholesterol (LDL-C). However, due to adherence to statin therapy or statin resistance, many patients do not reach LDL-C target levels. Ezetimibe, fibrates, and nicotinic acid represent the second-choice drugs to be used in combination with statins if lipid targets cannot be reached. In addition, anti-PCSK9 drugs (evolocumab and alirocumab) provide an effective solution for patients with familial hypercholesterolemia (FH) and statin intolerance at very high cardiovascular risk. Recently, studies demonstrated the effects of two novel lipid-lowering agents (lomitapide and mipomersen) for the management of homozygous FH by decreasing LDL-C values and reducing cardiovascular events. However, the costs for these new therapies made the cost–effectiveness debate more complicated.
Collapse
Affiliation(s)
- Donatella Zodda
- Drug Department of Local Health Unit (ASP), Viale Giostra, 98168 Messina, Italy.
| | - Rosario Giammona
- Clinical Pharmacy Fellowship, University of Messina, Viale Annunziata, 98168 Messina, Italy.
| | - Silvia Schifilliti
- Clinical Pharmacy Fellowship, University of Messina, Viale Annunziata, 98168 Messina, Italy.
| |
Collapse
|
67
|
Purwar V, Oberoi PS, Dang AK. Effect of feed supplement and additives on stress mitigation in Karan Fries heifers. Vet World 2017; 10:1407-1412. [PMID: 29391680 PMCID: PMC5771164 DOI: 10.14202/vetworld.2017.1407-1412] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Accepted: 10/30/2017] [Indexed: 11/26/2022] Open
Abstract
AIM The objective of this study was to evaluate the effects of protected fat plus yeast, niacin, zinc, and chromium dietary supplementation on the reduction of heat stress in Karan Fries (KF) heifers during hot humid months. MATERIALS AND METHODS The basal ration for both the control and treatment groups was the same, containing maize as green fodder and concentrate mixture. However, the treatment group was supplemented with protected fat (2.5% of dry matter intake [DMI]), yeast (10 g/animal/day), niacin (6 g/animal/day), zinc (40 mg/kg DMI), and chromium (1.5 mg/kg DMI). RESULT The overall mean value of afternoon rectal temperature for control and treatment group was 103.17±0.09 and 102.72±0.10°F, respectively, and was significantly (p<0.01) lower in the treatment group. The overall mean value of afternoon respiration rate for control and treatment group was 76.35±0.56 and 73.13±0.58 breaths/min, respectively, and was also significantly (p<0.01) lower in the treatment group. The overall mean value of afternoon pulse rate for control and treatment group was 97.09±0.63 and 94.67±0.67 beats/minute, respectively, and was also significantly (p<0.01) lower in the treatment group. Finally, the mean cortisol concentration for control and treatment group was 3.94±0.05 ng/ml and 3.70±0.06 ng/ml, respectively, and was significantly (p<0.01) lower in the treatment group. CONCLUSION The present study shows that supplementation with the above feed additives could serve as a heat stress abatement strategy in growing KF heifers during extreme conditions in summer months.
Collapse
Affiliation(s)
- Vaibhav Purwar
- Livestock Production and Management Division, ICAR-National Dairy Research Institute, Karnal - 132 001, Haryana, India
| | - P. S. Oberoi
- Livestock Production and Management Division, ICAR-National Dairy Research Institute, Karnal - 132 001, Haryana, India
| | - A. K. Dang
- Animal Physiology Division, ICAR-National Dairy Research Institute, Karnal - 132 001, Haryana, India
| |
Collapse
|
68
|
Effects of niacin supplementation on the insulin resistance in Holstein cows during early lactation. ACTA VET BRNO 2017. [DOI: 10.2754/avb201786030231] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Insulin resistance in early lactation includes low glucose concentration, low insulin release and responsiveness and high lipolysis. Niacin is important antilipolytic agent and leads to increase glucose and insulin concentration. The objectives of this study were to determine the influence of niacin on the insulin resistance in cows during early lactation using the difference of value and regression analysis between blood non-esterified fatty acid (NEFA), glucose and insulin concentrations, revised quantitative insulin sensitivity check index and glucose-to-insulin ratio. Niacin supplementation led to a decrease of NEFA concentration and an increase of glucose and insulin concentrations during the first three weeks after calving. Cows in the niacin group which were more resistant to insulin showed higher concentrations of non-esterified fatty acid in comparison with more sensitive cows from the same group, but still lower than the control. The regression analyses suggest the following characteristics of cows supplemented with niacin in comparison with the control group: the insulin response to glucose was more intense; the antilipolytic effect of insulin was lower; insulin efficiency expressed as glucose-to-insulin ratio increase with a decrease in NEFA. The metabolic changes due to niacin supplementation showed a dual influence on the insulin resistance in dairy cows during early lactation: decreased NEFA concentrations led to a decrease in the insulin resistance (due to an increase in insulin efficiency and insulin sensitivity index), but increased concentrations of insulin and glucose possibly caused an increase in the insulin resistance in dairy cows (due to lower insulin sensitivity index and possibly lower antilipolytic effects of insulin).
Collapse
|
69
|
Milligan G. G protein-coupled receptors not currently in the spotlight: free fatty acid receptor 2 and GPR35. Br J Pharmacol 2017; 175:2543-2553. [PMID: 28940377 PMCID: PMC6003633 DOI: 10.1111/bph.14042] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Revised: 08/17/2017] [Accepted: 08/30/2017] [Indexed: 01/05/2023] Open
Abstract
It is widely appreciated that G protein‐coupled receptors have been the most successfully exploited class of targets for the development of small molecule medicines. Despite this, to date, less than 15% of the non‐olfactory G protein‐coupled receptors in the human genome are the targets of a clinically used medicine. In many cases, this is likely to reflect a lack of understanding of the basic underpinning biology of many G protein‐coupled receptors that are not currently in the spotlight, as well as a paucity of pharmacological tool compounds and appropriate animal models to test in vivo function of such G protein‐coupled receptors in both normal physiology and in the context of disease. ‘Open Innovation’ arrangements, in which pharmaceutical companies and public–private partnerships provide wider access to tool compounds identified from ligand screening programmes, alongside enhanced medicinal chemistry support to convert such screening ‘hits’ into useful ‘tool’ compounds will provide important routes to improved understanding. However, in parallel, novel approaches to define and fully appreciate the selectivity and mode of action of such tool compounds, as well as better understanding of potential species orthologue variability in the pharmacology and/or signalling profile of a wide range of currently poorly understood and understudied G protein‐coupled receptors, will be vital to fully exploit the therapeutic potential of this large target class. I consider these themes using as exemplars two G protein‐coupled receptors, free fatty acid receptor 2 and GPR35.
Collapse
Affiliation(s)
- Graeme Milligan
- Centre for Translational Pharmacology, Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, G12 8QQ, UK
| |
Collapse
|
70
|
Cell-Surface and Nuclear Receptors in the Colon as Targets for Bacterial Metabolites and Its Relevance to Colon Health. Nutrients 2017; 9:nu9080856. [PMID: 28796169 PMCID: PMC5579649 DOI: 10.3390/nu9080856] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Revised: 07/31/2017] [Accepted: 08/05/2017] [Indexed: 02/07/2023] Open
Abstract
The symbiotic co-habitation of bacteria in the host colon is mutually beneficial to both partners. While the host provides the place and food for the bacteria to colonize and live, the bacteria in turn help the host in energy and nutritional homeostasis, development and maturation of the mucosal immune system, and protection against inflammation and carcinogenesis. In this review, we highlight the molecular mediators of the effective communication between the bacteria and the host, focusing on selective metabolites from the bacteria that serve as messengers to the host by acting through selective receptors in the host colon. These bacterial metabolites include the short-chain fatty acids acetate, propionate, and butyrate, the tryptophan degradation products indole-3-aldehyde, indole-3-acetic, acid and indole-3-propionic acid, and derivatives of endogenous bile acids. The targets for these bacterial products in the host include the cell-surface G-protein-coupled receptors GPR41, GPR43, and GPR109A and the nuclear receptors aryl hydrocarbon receptor (AhR), pregnane X receptor (PXR), and farnesoid X receptor (FXR). The chemical communication between these bacterial metabolite messengers and the host targets collectively has the ability to impact metabolism, gene expression, and epigenetics in colonic epithelial cells as well as in mucosal immune cells. The end result, for the most part, is the maintenance of optimal colonic health.
Collapse
|
71
|
Elhassan YS, Philp AA, Lavery GG. Targeting NAD+ in Metabolic Disease: New Insights Into an Old Molecule. J Endocr Soc 2017; 1:816-835. [PMID: 29264533 PMCID: PMC5686634 DOI: 10.1210/js.2017-00092] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Accepted: 05/10/2017] [Indexed: 02/06/2023] Open
Abstract
Nicotinamide adenine dinucleotide (NAD+) is an established cofactor for enzymes serving cellular metabolic reactions. More recent research identified NAD+ as a signaling molecule and substrate for sirtuins and poly-adenosine 5'-diphosphate polymerases; enzymes that regulate protein deacetylation and DNA repair, and translate changes in energy status into metabolic adaptations. Deranged NAD+ homeostasis and concurrent alterations in mitochondrial function are intrinsic in metabolic disorders, such as type 2 diabetes, nonalcoholic fatty liver, and age-related diseases. Contemporary NAD+ precursors show promise as nutraceuticals to restore target tissue NAD+ and have demonstrated the ability to improve mitochondrial function and sirtuin-dependent signaling. This review discusses the accumulating evidence for targeting NAD+ metabolism in metabolic disease, maps the different strategies for NAD+ boosting, and addresses the challenges and open questions in the field. The health potential of targeting NAD+ homeostasis will inform clinical study design to identify nutraceutical approaches for combating metabolic disease and the unwanted effects of aging.
Collapse
Affiliation(s)
- Yasir S. Elhassan
- Institute of Metabolism and Systems Research, University of Birmingham, Birmingham B15 2TT, United Kingdom
- Centre for Endocrinology, Diabetes and Metabolism, Birmingham Health Partners, Birmingham B15 2TT, United Kingdom
| | - Andrew A. Philp
- MRC-ARUK Centre for Musculoskeletal Ageing Research, School of Sport, Exercise and Rehabilitation Sciences, University of Birmingham, Birmingham B15 2TT, United Kingdom
| | - Gareth G. Lavery
- Institute of Metabolism and Systems Research, University of Birmingham, Birmingham B15 2TT, United Kingdom
- Centre for Endocrinology, Diabetes and Metabolism, Birmingham Health Partners, Birmingham B15 2TT, United Kingdom
| |
Collapse
|
72
|
Yang X, Mei S, Niu H, Li J. Nicotinic acid impairs assembly of leading edge in glioma cells. Oncol Rep 2017; 38:829-836. [PMID: 28656206 PMCID: PMC5562096 DOI: 10.3892/or.2017.5757] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Accepted: 06/15/2017] [Indexed: 01/04/2023] Open
Abstract
Malignant glioma is a clinically formidable disease. It commonly leads to death within 5 years after diagnosis. Physicians are often baffled since the inevitable diffuse invasion deteriorates clinical outcomes rapidly. Therefore, cancerous infiltration presents a foremost challenge to all therapeutic strategies on glioblastoma multiforme (GBM). Previously, we demonstrated that nicotinic acid (NA) possesses a brand new function by targeting F-actin stress fibers. By treating HEK293 or NIH3T3 cells with a certain concentration of NA, the F-actin stress fiber was significantly disassembled. This notable finding inspired us to explore NA further in cancer cell lines, such as GBM cells, since F-actin stress fibers are the critical foundation of cell migration, proliferation and numerous essential signaling pathways. Expectedly, we observed that optimized concentrations of NA, 3.5 mM and 7.0 mM, detached U251 from culturing petri dishes. Moreover, 7.0 mM of NA was capable of disrupting the leading-edge assembly. Additionally, we collected paraffin specimens from 85 GBM patients and evaluated the expression pattern of paxillin. Notably, we found that discernable paxillin signals were detected in 67 out of 85 samples. Given that leading edge is critical for cancer cell migration, we propose that NA treatment may be developed into a potential therapy for malignant glioma.
Collapse
Affiliation(s)
- Xiangcai Yang
- Department of Clinical Laboratory, The Affiliated Hospital of KMUST, Medical Faculty, Kunming University of Science and Technology, Kunming, Yunnan 650032, P.R. China
| | - Shuting Mei
- Department of Gerontology, First People's Hospital of Yunnan Province, Kunming, Yunnan 650032, P.R. China
| | - Hua Niu
- Department of Clinical Laboratory, The Affiliated Hospital of KMUST, Medical Faculty, Kunming University of Science and Technology, Kunming, Yunnan 650032, P.R. China
| | - Jiejing Li
- Department of Clinical Laboratory, The Affiliated Hospital of KMUST, Medical Faculty, Kunming University of Science and Technology, Kunming, Yunnan 650032, P.R. China
| |
Collapse
|
73
|
Fletcher RS, Ratajczak J, Doig CL, Oakey LA, Callingham R, Da Silva Xavier G, Garten A, Elhassan YS, Redpath P, Migaud ME, Philp A, Brenner C, Canto C, Lavery GG. Nicotinamide riboside kinases display redundancy in mediating nicotinamide mononucleotide and nicotinamide riboside metabolism in skeletal muscle cells. Mol Metab 2017; 6:819-832. [PMID: 28752046 PMCID: PMC5518663 DOI: 10.1016/j.molmet.2017.05.011] [Citation(s) in RCA: 91] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Revised: 05/22/2017] [Accepted: 05/24/2017] [Indexed: 12/16/2022] Open
Abstract
Objective Augmenting nicotinamide adenine dinucleotide (NAD+) availability may protect skeletal muscle from age-related metabolic decline. Dietary supplementation of NAD+ precursors nicotinamide mononucleotide (NMN) and nicotinamide riboside (NR) appear efficacious in elevating muscle NAD+. Here we sought to identify the pathways skeletal muscle cells utilize to synthesize NAD+ from NMN and NR and provide insight into mechanisms of muscle metabolic homeostasis. Methods We exploited expression profiling of muscle NAD+ biosynthetic pathways, single and double nicotinamide riboside kinase 1/2 (NRK1/2) loss-of-function mice, and pharmacological inhibition of muscle NAD+ recycling to evaluate NMN and NR utilization. Results Skeletal muscle cells primarily rely on nicotinamide phosphoribosyltransferase (NAMPT), NRK1, and NRK2 for salvage biosynthesis of NAD+. NAMPT inhibition depletes muscle NAD+ availability and can be rescued by NR and NMN as the preferred precursors for elevating muscle cell NAD+ in a pathway that depends on NRK1 and NRK2. Nrk2 knockout mice develop normally and show subtle alterations to their NAD+ metabolome and expression of related genes. NRK1, NRK2, and double KO myotubes revealed redundancy in the NRK dependent metabolism of NR to NAD+. Significantly, these models revealed that NMN supplementation is also dependent upon NRK activity to enhance NAD+ availability. Conclusions These results identify skeletal muscle cells as requiring NAMPT to maintain NAD+ availability and reveal that NRK1 and 2 display overlapping function in salvage of exogenous NR and NMN to augment intracellular NAD+ availability. NRK1 and NRK2 are expressed in skeletal muscle and display redundancy in converting NR and NMN to NAD+. NRK1 and NRK2 are dispensable for maintaining basal skeletal muscle cell NAD+. Exogenous NMN salvage to NAD+ is NRK dependent.
Collapse
Affiliation(s)
- Rachel S Fletcher
- Institute of Metabolism and Systems Research, 2nd Floor IBR Tower, University of Birmingham, Birmingham, B15 2TT, UK; Centre for Endocrinology, Diabetes and Metabolism, Birmingham Health Partners, Birmingham, B15 2TH, UK
| | - Joanna Ratajczak
- Nestlé Institute of Health Sciences (NIHS), Lausanne, CH-1015, Switzerland; Ecole Polytechnique Fédérale de Lausanne, Switzerland
| | - Craig L Doig
- Institute of Metabolism and Systems Research, 2nd Floor IBR Tower, University of Birmingham, Birmingham, B15 2TT, UK; Centre for Endocrinology, Diabetes and Metabolism, Birmingham Health Partners, Birmingham, B15 2TH, UK
| | - Lucy A Oakey
- Centre for Endocrinology, Diabetes and Metabolism, Birmingham Health Partners, Birmingham, B15 2TH, UK
| | - Rebecca Callingham
- Section of Cell Biology and Functional Genomics, Department of Medicine, Imperial College London, London, W12 0NN, UK
| | - Gabriella Da Silva Xavier
- Section of Cell Biology and Functional Genomics, Department of Medicine, Imperial College London, London, W12 0NN, UK
| | - Antje Garten
- Institute of Metabolism and Systems Research, 2nd Floor IBR Tower, University of Birmingham, Birmingham, B15 2TT, UK; Leipzig University, Hospital for Children and Adolescents, Center for Pediatric Research, Liebigstrasse 19-21, 04103, Leipzig, Germany
| | - Yasir S Elhassan
- Institute of Metabolism and Systems Research, 2nd Floor IBR Tower, University of Birmingham, Birmingham, B15 2TT, UK; Centre for Endocrinology, Diabetes and Metabolism, Birmingham Health Partners, Birmingham, B15 2TH, UK
| | - Philip Redpath
- Mitchell Cancer Institute, 1660 Springhill Avenue, Mobile, AL, 36604, USA
| | - Marie E Migaud
- Mitchell Cancer Institute, 1660 Springhill Avenue, Mobile, AL, 36604, USA
| | - Andrew Philp
- School of Sport Exercise and Rehabilitation Sciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Charles Brenner
- Department of Biochemistry, Carver College of Medicine, University of Iowa, Iowa City, IA, 52242, USA
| | - Carles Canto
- Nestlé Institute of Health Sciences (NIHS), Lausanne, CH-1015, Switzerland; Ecole Polytechnique Fédérale de Lausanne, Switzerland
| | - Gareth G Lavery
- Institute of Metabolism and Systems Research, 2nd Floor IBR Tower, University of Birmingham, Birmingham, B15 2TT, UK; Centre for Endocrinology, Diabetes and Metabolism, Birmingham Health Partners, Birmingham, B15 2TH, UK.
| |
Collapse
|
74
|
Xiao Y, Rungruang S, Hall L, Collier J, Dunshea F, Collier R. Effects of niacin and betaine on bovine mammary and uterine cells exposed to thermal shock in vitro. J Dairy Sci 2017; 100:4025-4037. [DOI: 10.3168/jds.2016-11876] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Accepted: 01/03/2017] [Indexed: 01/09/2023]
|
75
|
Li J, Qu J, Shi Y, Perfetto M, Ping Z, Christian L, Niu H, Mei S, Zhang Q, Yang X, Wei S. Nicotinic acid inhibits glioma invasion by facilitating Snail1 degradation. Sci Rep 2017; 7:43173. [PMID: 28256591 PMCID: PMC5335718 DOI: 10.1038/srep43173] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Accepted: 01/23/2017] [Indexed: 01/22/2023] Open
Abstract
Malignant glioma is a formidable disease that commonly leads to death, mainly due to the invasion of tumor cells into neighboring tissues. Therefore, inhibition of tumor cell invasion may provide an effective therapy for malignant glioma. Here we report that nicotinic acid (NA), an essential vitamin, inhibits glioma cell invasion in vitro and in vivo. Treatment of the U251 glioma cells with NA in vitro results in reduced invasion, which is accompanied by a loss of mesenchymal phenotype and an increase in cell-cell adhesion. At the molecular level, transcription of the adherens junction protein E-cadherin is upregulated, leading to accumulation of E-cadherin protein at the cell-cell boundary. This can be attributed to NA's ability to facilitate the ubiquitination and degradation of Snail1, a transcription factor that represses E-cadherin expression. Similarly, NA transiently inhibits neural crest migration in Xenopus embryos in a Snail1-dependent manner, indicating that the mechanism of action for NA in cell migration is evolutionarily conserved. We further show that NA injection blocks the infiltration of tumor cells into the adjacent brain tissues and improves animal survival in a rat model of glioma. These results suggest that NA treatment may be developed into a potential therapy for malignant glioma.
Collapse
Affiliation(s)
- Jiejing Li
- Department of Clinical Laboratory, The Affiliated Hospital of KMUST, Medical School, Kunming University of Science and Technology, Kunming 650032, China.,Department of Biology, West Virginia University, Morgantown, WV 26506, United States
| | - Jiagui Qu
- Department of Clinical Laboratory, The Affiliated Hospital of KMUST, Medical School, Kunming University of Science and Technology, Kunming 650032, China
| | - Yu Shi
- Department of Clinical Laboratory, Children's Hospital of Chongqing Medical University, Chongqing 400014, China.,Ministry of Education Key Laboratory of Child Development and Disorders; Chongqing Key Laboratory of Pediatrics; Chongqing Key Laboratory of Translational Medical Research in Cognitive Development and Learning and Memory Disorders, Chongqing 400014, China
| | - Mark Perfetto
- Department of Biology, West Virginia University, Morgantown, WV 26506, United States.,Department of Biological Sciences, University of Delaware, Newark, DE 19716, United States
| | - Zhuxian Ping
- Department of Clinical Laboratory, The Affiliated Hospital of KMUST, Medical School, Kunming University of Science and Technology, Kunming 650032, China
| | - Laura Christian
- Department of Biology, West Virginia University, Morgantown, WV 26506, United States
| | - Hua Niu
- Department of Clinical Laboratory, The Affiliated Hospital of KMUST, Medical School, Kunming University of Science and Technology, Kunming 650032, China
| | - Shuting Mei
- Department of Gerontology, First People's Hospital of Yunnan Province, Kunming 650032, China
| | - Qin Zhang
- Department of Clinical Laboratory, The Affiliated Hospital of KMUST, Medical School, Kunming University of Science and Technology, Kunming 650032, China
| | - Xiangcai Yang
- Department of Clinical Laboratory, The Affiliated Hospital of KMUST, Medical School, Kunming University of Science and Technology, Kunming 650032, China
| | - Shuo Wei
- Department of Biology, West Virginia University, Morgantown, WV 26506, United States.,Department of Biological Sciences, University of Delaware, Newark, DE 19716, United States
| |
Collapse
|
76
|
Mishra DK, Das A, Kamath A, Sinha B. Solution thermodynamics and taste behaviour of nicotinic acid in aqueous sodium gluconate solutions: A volumetric and rheological perspective. J Mol Liq 2017. [DOI: 10.1016/j.molliq.2017.01.071] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
77
|
Shi Y, Lai X, Ye L, Chen K, Cao Z, Gong W, Jin L, Wang C, Liu M, Liao Y, Wang JM, Zhou N. Activated niacin receptor HCA2 inhibits chemoattractant-mediated macrophage migration via Gβγ/PKC/ERK1/2 pathway and heterologous receptor desensitization. Sci Rep 2017; 7:42279. [PMID: 28186140 PMCID: PMC5301212 DOI: 10.1038/srep42279] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Accepted: 01/08/2017] [Indexed: 12/18/2022] Open
Abstract
The niacin receptor HCA2 is implicated in controlling inflammatory host responses with yet poorly understood mechanistic basis. We previously reported that HCA2 in A431 epithelial cells transduced Gβγ-protein kinase C- and Gβγ-metalloproteinase/EGFR-dependent MAPK/ERK signaling cascades. Here, we investigated the role of HCA2 in macrophage-mediated inflammation and the underlying mechanisms. We found that proinflammatory stimulants LPS, IL-6 and IL-1β up-regulated the expression of HCA2 on macrophages. Niacin significantly inhibited macrophage chemotaxis in response to chemoattractants fMLF and CCL2 by disrupting polarized distribution of F-actin and Gβ protein. Niacin showed a selected additive effect on chemoattractant-induced activation of ERK1/2, JNK and PI3K pathways, but only the MEK inhibitor UO126 reduced niacin-mediated inhibition of macrophage chemotaxis, while activation of ERK1/2 by EGF alone did not inhibit fMLF-mediated migration of HEK293T cells co-expressing HCA2 and fMLF receptor FPR1. In addition, niacin induced heterologous desensitization and internalization of FPR1. Furthermore, niacin rescued mice from septic shock by diminishing inflammatory symptoms and the effect was abrogated in HCA2-/- mice. These results suggest that Gβγ/PKC-dependent ERK1/2 activation and heterologous desensitization of chemoattractant receptors are involved in the inhibition of chemoattractant-induced migration of macrophages by niacin. Thus, HCA2 plays a critical role in host protection against pro-inflammatory insults.
Collapse
Affiliation(s)
- Ying Shi
- College of Life Sciences, Zhejiang University, Yu Hang Tang Load 388, Hangzhou, PR China
| | - Xiangru Lai
- College of Life Sciences, Zhejiang University, Yu Hang Tang Load 388, Hangzhou, PR China
| | - Lingyan Ye
- College of Life Sciences, Zhejiang University, Yu Hang Tang Load 388, Hangzhou, PR China
| | - Keqiang Chen
- Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute-Frederick, NIH, Frederick, MD 21702, USA
| | - Zheng Cao
- College of Life Sciences, Zhejiang University, Yu Hang Tang Load 388, Hangzhou, PR China
| | - Wanghua Gong
- Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute-Frederick, NIH, Frederick, MD 21702, USA
| | - Lili Jin
- College of Life Sciences, Zhejiang University, Yu Hang Tang Load 388, Hangzhou, PR China
| | - Chunyan Wang
- Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute-Frederick, NIH, Frederick, MD 21702, USA.,Xuzhou Yes Biotech Laboratories Ltd. Xuzhou, Jiangsu, PR China
| | - Mingyong Liu
- Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute-Frederick, NIH, Frederick, MD 21702, USA.,Department of Spine Surgery, Daping Hospital, Third Military Medical University, Chongqing, PR China
| | - Yuan Liao
- College of Life Sciences, Zhejiang University, Yu Hang Tang Load 388, Hangzhou, PR China
| | - Ji Ming Wang
- Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute-Frederick, NIH, Frederick, MD 21702, USA
| | - Naiming Zhou
- College of Life Sciences, Zhejiang University, Yu Hang Tang Load 388, Hangzhou, PR China
| |
Collapse
|
78
|
Dunbar RL, Goel H, Tuteja S, Song WL, Nathanson G, Babar Z, Lalic D, Gelfand JM, Rader DJ, Grove GL. Measuring niacin-associated skin toxicity (NASTy) stigmata along with symptoms to aid development of niacin mimetics. J Lipid Res 2017; 58:783-797. [PMID: 28119443 DOI: 10.1194/jlr.d071696] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Revised: 01/17/2017] [Indexed: 12/25/2022] Open
Abstract
Though cardioprotective, niacin monotherapy is limited by unpleasant cutaneous symptoms mimicking dermatitis: niacin-associated skin toxicity (NASTy). Niacin is prototypical of several emerging drugs suffering off-target rubefacient properties whereby agonizing the GPR109A receptor on cutaneous immune cells provokes vasodilation, prompting skin plethora and rubor, as well as dolor, tumor, and calor, and systemically, heat loss, frigor, chills, and rigors. Typically, NASTy effects are described by subjective patient-reported perception, at best semi-quantitative and bias-prone. Conversely, objective, quantitative, and unbiased methods measuring NASTy stigmata would facilitate research to abolish them, motivating development of several objective methods. In early drug development, such methods might better predict clinical tolerability in larger clinical trials. Measuring cutaneous stigmata may also aid investigations of vasospastic, ischemic, and inflammatory skin conditions. We present methods to measure NASTy physical stigmata to facilitate research into novel niacin mimetics/analogs, detailing characteristics of each technique following niacin, and how NASTy stigmata relate to symptom perception. We gave niacin orally and measured rubor by colorimetry and white-light spectroscopy, plethora by laser Doppler flowmetry, and calor/frigor by thermometry. Surprisingly, each stigma's abruptness predicted symptom perception, whereas peak intensity did not. These methods are adaptable to study other rubefacient drugs or dermatologic and vascular disorders.
Collapse
Affiliation(s)
- Richard L Dunbar
- University of Pennsylvania Institute for Translational Medicine and Therapeutics, Philadelphia PA; Department of Medicine, Division of Cardiovascular Medicine, University of Pennsylvania Medical Center, Philadelphia, PA; Department of Medicine, Division of Translational Medicine and Human Genetics, University of Pennsylvania Medical Center, Philadelphia, PA.
| | - Harsh Goel
- Department Medicine, York Hospital, York, PA
| | - Sony Tuteja
- Department of Medicine, Division of Translational Medicine and Human Genetics, University of Pennsylvania Medical Center, Philadelphia, PA
| | - Wen-Liang Song
- Department of Medicine, Division of Cardiovascular Medicine, Vanderbilt University, Nashville, TN
| | - Grace Nathanson
- University of Pennsylvania Institute for Translational Medicine and Therapeutics, Philadelphia PA
| | | | - Dusanka Lalic
- University of Pennsylvania Institute for Translational Medicine and Therapeutics, Philadelphia PA; Department of Medicine, Division of Translational Medicine and Human Genetics, University of Pennsylvania Medical Center, Philadelphia, PA
| | - Joel M Gelfand
- University of Pennsylvania Institute for Translational Medicine and Therapeutics, Philadelphia PA; Departments of Dermatology and Biostatistics and Epidemiology, and Center for Clinical Epidemiology and Biostatistics, University of Pennsylvania, Philadelphia, PA
| | - Daniel J Rader
- University of Pennsylvania Institute for Translational Medicine and Therapeutics, Philadelphia PA; Department of Medicine, Division of Cardiovascular Medicine, University of Pennsylvania Medical Center, Philadelphia, PA; Cardiovascular Institute, Perelman School of Medicine at the University of Pennsylvania, and Institute for Diabetes, Obesity, and Metabolism, University of Pennsylvania School of Medicine, Philadelphia, PA; Department of Medicine, Division of Translational Medicine and Human Genetics, University of Pennsylvania Medical Center, Philadelphia, PA
| | | |
Collapse
|
79
|
Batuca JR, Amaral MC, Favas C, Paula FS, Ames PRJ, Papoila AL, Delgado Alves J. Extended-release niacin increases anti-apolipoprotein A-I antibodies that block the antioxidant effect of high-density lipoprotein-cholesterol: the EXPLORE clinical trial. Br J Clin Pharmacol 2017; 83:1002-1010. [PMID: 27891663 DOI: 10.1111/bcp.13198] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2016] [Revised: 10/18/2016] [Accepted: 11/14/2016] [Indexed: 12/15/2022] Open
Abstract
AIMS Extended-release niacin (ERN) is the most effective agent for increasing high-density lipoprotein-cholesterol (HDL-C). Having previously identified anti-HDL antibodies, we investigated whether ERN affected the antioxidant capacity of HDL and whether ERN was associated with the production of antibodies against HDL (aHDL) and apolipoprotein A-I (aApoA-I). METHODS Twenty-one patients older than 18 years, with HDL-C ≤40 mg dl-1 (men) or ≤50 mg dl-1 (women) were randomly assigned to receive daily ERN (n = 10) or placebo (n = 11) for two sequential 12-week periods, with 4 weeks of wash-out before cross-over. Primary outcome was change of paraoxonase-1 (PON1) activity and secondary outcomes were changes in aHDL and aApoA-I antibodies. Clinical Trial Unique Identifier: EudraCT 2006-006889-42. RESULTS The effect of ERN on PON1 activity was nonsignificant (coefficient estimate 20.83 U l-1 , 95% confidence interval [CI] -9.88 to 51.53; P = 0.184). ERN was associated with an increase in HDL-C levels (coefficient estimate 5.21 mg dl-1 , 95% CI 1.16 to 9.25; P = 0.012) and its subclasses HDL2 (coefficient estimate 2.46 mg dl-1 , 95% CI 0.57 to 4.34; P = 0.011) and HDL3 (coefficient estimate 2.73 mg dl-1 , 95% CI 0.47 to 4.98; P = 0.018). ERN was significantly associated with the production of aApoA-I antibodies (coefficient estimate 0.25 μg ml-1 , 95% CI 0.09-0.40; P = 0.001). aApoA-I titres at baseline were correlated with decreased PON activity. CONCLUSIONS The rise in HDL-C achieved with ERN was not matched by improved antioxidant capacity, eventually hampered by the emergence of aApoA-I antibodies. These results may explain why Niacin and other lipid lowering agents fail to reduce cardiovascular risk.
Collapse
Affiliation(s)
- Joana R Batuca
- CEDOC, NOVA Medical School
- Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Lisbon, Portugal
| | - Marta C Amaral
- CEDOC, NOVA Medical School
- Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Lisbon, Portugal.,Department of Medicine IV / Immune-mediated Systemic Diseases Unit, Fernando Fonseca Hospital, Amadora, Portugal
| | - Catarina Favas
- Department of Medicine IV / Immune-mediated Systemic Diseases Unit, Fernando Fonseca Hospital, Amadora, Portugal
| | - Filipe S Paula
- CEDOC, NOVA Medical School
- Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Lisbon, Portugal.,Department of Medicine IV / Immune-mediated Systemic Diseases Unit, Fernando Fonseca Hospital, Amadora, Portugal
| | - Paul R J Ames
- CEDOC, NOVA Medical School
- Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Lisbon, Portugal
| | - Ana L Papoila
- CEAUL, NOVA Medical School
- Faculdade de Ciências Médicas, Universidade Nova de Lisboa, Lisbon, Portugal
| | - José Delgado Alves
- CEDOC, NOVA Medical School
- Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Lisbon, Portugal.,Department of Medicine IV / Immune-mediated Systemic Diseases Unit, Fernando Fonseca Hospital, Amadora, Portugal
| |
Collapse
|
80
|
Havlin JM, Robinson PH, Garrett JE. Niacin feeding to fresh dairy cows: immediate effects on health and milk production. ANIMAL PRODUCTION SCIENCE 2017. [DOI: 10.1071/an15419] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Early lactation dairy cows are frequently in negative energy balance and susceptible to ketosis, fatty liver and metritis. Because of its anti-lipolytic properties, the B-vitamin niacin could reduce negative energy balance by reducing non-esterified fatty acids for ketogenesis, thereby reducing hyperketonemia. We determined effects of feeding ruminally protected niacin (RPNi) on lipolysis during the fresh period using blood non-esterified fatty acids concentrations as a ketosis indicator, blood β-hydroxybutyrate concentrations as an indicator of lipid mobilisation, as well as dry matter (DM) intake, milk and milk component yields, in 906 multi-parity Holstein cows from ~14 days before calving through the immediate fresh period. Prior to calving, cows were co-mingled in one pen and fed the same total mixed ration without RPNi. Between 24 and 36 h postpartum, cows were assigned to fresh pens and fed the same fresh cow total mixed ration, except for RPNi at 0, 3.5, 7 or 14 g niacin/cow.day. During the close-up and fresh periods, cows were sampled for tail vein blood. Milk yield and composition was measured twice at a 140-days interval in the fresh pens postpartum. The 3.5 g/day RPNi feeding tended to decrease ketosis prevalence (% of cows with β-hydroxybutyrate ≥ 1.44 mg/dL) from 36% to 20% (P = 0.06) and also tended (P = 0.07) to increase DM intake from 19.3 to 21.5 kg DM/day versus Control. The RPNi effect tended to increase with duration of RPNi feeding, with no effects at 7 ± 3.9 days in milk, but milk (P = 0.10), milk fat (P = 0.11) and milk energy (P = 0.07) yields tending to be higher at 21 ± 3.9 days in milk. Conversely, 14 g/day RPNi had no effect on ketosis prevalence or DM intake. However, milk (P = 0.10), milk fat (P = 0.11) and milk energy (P = 0.07) yields tended to decrease versus Control. Overall, low level RPNi feeding was judged to improve health and production in fresh cows, but higher feeding levels had clear negative impacts.
Collapse
|
81
|
Sahebkar A, Reiner Ž, Simental-Mendía LE, Ferretti G, Cicero AFG. Effect of extended-release niacin on plasma lipoprotein(a) levels: A systematic review and meta-analysis of randomized placebo-controlled trials. Metabolism 2016; 65:1664-1678. [PMID: 27733255 DOI: 10.1016/j.metabol.2016.08.007] [Citation(s) in RCA: 75] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2016] [Revised: 08/20/2016] [Accepted: 08/23/2016] [Indexed: 02/06/2023]
Abstract
AIM Lipoprotein(a) (Lp(a)) is a proatherogenic and prothrombotic lipoprotein. Our aim was to quantify the extended-release nicotinic acid Lp(a) reducing effect with a meta-analysis of the available randomized clinical trials. METHODS A meta-analysis and random-effects meta-regression were performed on data pooled from 14 randomized placebo-controlled clinical trials published between 1998 and 2015, comprising 17 treatment arms, which included 9013 subjects, with 5362 in the niacin arm. RESULTS The impact of ER niacin on plasma Lp(a) concentrations was reported in 17 treatment arms. Meta-analysis suggested a significant reduction of Lp(a) levels following ER niacin treatment (weighted mean difference - WMD: -22.90%, 95% CI: -27.32, -18.48, p<0.001). Results also remained similar when the meta-analysis was repeated with standardized mean difference as summary statistic (WMD: -0.66, 95% CI: -0.82, -0.50, p<0.001). When the studies were categorized according to the administered dose, there was a comparable effect between the subsets of studies with administered doses of <2000mg/day (WMD: -21.85%, 95% CI: -30.61, -13.10, p<0.001) and ≥2000mg/day (WMD: -23.21%, 95% CI: -28.41, -18.01, p<0.001). The results of the random-effects meta-regression did not suggest any significant association between the changes in plasma concentrations of Lp(a) with dose (slope: -0.0001; 95% CI: -0.01, 0.01; p=0.983), treatment duration (slope: -0.40; 95% CI: -0.97, 0.17; p=0.166), and percentage change in plasma HDL-C concentrations (slope: 0.44; 95% CI: -0.48, 1.36; p=0.350). CONCLUSION In this meta-analysis of randomized placebo-controlled clinical trials, treatment with nicotinic acid was associated with a significant reduction in Lp(a) levels.
Collapse
Affiliation(s)
- Amirhosssein Sahebkar
- Biotechnology Research Center, Mashhad University of Medical Sciences, Mashhad, 9177948564, Iran; Metabolic Research Centre, Royal Perth Hospital, School of Medicine and Pharmacology, University of Western Australia, Perth, Australia
| | - Željko Reiner
- University Hospital Center Zagreb, Department of Internal medicine, Kišpatićeva 12, Zagreb, Croatia
| | | | - Gianna Ferretti
- Dipartimento di Scienze cliniche Specialistiche ed Odontostomatologiche (DISCO), Università Politecnica delle Marche, Italy
| | - Arrigo F G Cicero
- Medicine and Surgery Sciences Dept., Alma Mater Studiorum University of Bologna, Italy.
| |
Collapse
|
82
|
Hannan PA, Khan JA, Ullah I, Ullah S. Synergistic combinatorial antihyperlipidemic study of selected natural antioxidants; modulatory effects on lipid profile and endogenous antioxidants. Lipids Health Dis 2016; 15:151. [PMID: 27613388 PMCID: PMC5016891 DOI: 10.1186/s12944-016-0323-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Accepted: 09/02/2016] [Indexed: 11/15/2022] Open
Abstract
Background Hyperlipidemia, a major pathological condition associated with disrupted lipid levels and physiological redox homeostasis. The excessive release of reactive oxygen species (ROS) leads to enhanced lipid peroxidation, aggravated atherosclerosis and oxidative stress. Integration of natural antioxidant blends in alone or with conventional treatments can alleviate these issues synergistically contributing least side effects. Published literature reported the efficacy of natural antioxidants as individual and in combinations in various conditions but less data is available on their evaluation in low dose ratio blends particularly in hypercholesterolemic diet. Methods Antihyperlipidemic effects of selected natural antioxidants; the phenolic oligomeric proanthocyanidins (OPC) and pterostilbene (PT) with niacin (NA) were investigated in current study. Their effects on lipid profile, lipid peroxidation and their aptitude to establish redox state between oxidants and antioxidants in body were evaluated in high cholesterol diet fed animal model. Male albino rabbits (n = 6) weighing 1.2–1.6 kg, supplemented with high cholesterol diet (400 mg/kg) for 12 weeks were used in the experiment. Antioxidants were administered individual high (100 mg/kg) and in low dose combinations (total dose = 100 mg/kg). Student’s t test and one way analysis of variance (ANOVA) followed by Dunnet’s test were used as statistical tools for evaluation. Results The results showed synergistic effects of low dose antioxidant blends. Therapies retarded elevation in blood lipid levels, lipid peroxidation and blood antioxidant depletion and consequently contributed in reestablishing redox homeostasis. The LDL/HDL ratio and atherogenic index were suppressed significantly in blend therapies with maximum effects of 59.3 and 25 % (p >0.001) observed in 50:30:20 ratios of OPC, NA and PT, compared to individual therapies 37 and 18 % max respectively. Moreover the results were also in close proximity with the statin therapy (52.66, 26.28 %). Conclusion This study provides an evidence for natural antioxidants blends superiority over individual therapy in chronic diseases like hyperlipidemia. Such therapies in human equivalent doses can help in mitigating chronic illnesses in general populations.
Collapse
Affiliation(s)
- Peer Abdul Hannan
- Department of Pharmacy, University of Peshawar, Peshawar, 25120, Khyber Pakhtunkhwa, Pakistan
| | - Jamshaid Ali Khan
- Department of Pharmacy, University of Peshawar, Peshawar, 25120, Khyber Pakhtunkhwa, Pakistan.
| | - Irfan Ullah
- Department of Pharmacy, University of Peshawar, Peshawar, 25120, Khyber Pakhtunkhwa, Pakistan
| | - Safi Ullah
- Department of Pharmacy, University of Peshawar, Peshawar, 25120, Khyber Pakhtunkhwa, Pakistan
| |
Collapse
|
83
|
Repaske DR. Medication-induced diabetes mellitus. Pediatr Diabetes 2016; 17:392-7. [PMID: 27492964 DOI: 10.1111/pedi.12406] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2016] [Revised: 05/13/2016] [Accepted: 05/30/2016] [Indexed: 12/28/2022] Open
Abstract
Epidemiological studies and case reports have demonstrated an increased rate of development of diabetes mellitus consequent to taking diverse types of medication. This review explores this evidence linking these medications and development of diabetes and presents postulated mechanisms by which the medications might cause diabetes. Some medications are associated with a reduction in insulin production, some with reduction in insulin sensitivity, and some appear to be associated with both reduction in insulin production and insulin sensitivity.
Collapse
Affiliation(s)
- David R Repaske
- Department of Pediatrics, University of Virginia, Charlottesville
| |
Collapse
|
84
|
Abu Farha R, Bustanji Y, Al-Hiari Y, Al-Qirim T, Abu Shiekha G, Albashiti R. Lipid lowering activity of novel N-(benzoylphenyl)pyridine-3-carboxamide derivatives in Triton WR-1339-induced hyperlipidemic rats. J Enzyme Inhib Med Chem 2016; 31:138-144. [PMID: 27558168 DOI: 10.1080/14756366.2016.1222581] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
CONTEXT Dyslipidemia is a major risk factor for the development of cardiovascular diseases. Many dyslipidemic patients do not achieve their target lipid levels with the currently available medications, and most of them may experience many side effects. OBJECTIVE The present work aimed toward identifying a new class of novel nicotinic acid-carboxamide derivatives as promising antihyperlipidemic compounds. MATERIALS AND METHODS Six novel N-(benzoylphenyl)pyridine-3-carboxamide derivatives were synthesized using acid chloride pathways. All structures were confirmed using 1H-NMR, 13C-NMR, IR, and HRMS. The evaluation of biological activity was conducted using Triton WR-1339-induced hyperlipidemic rats model. RESULTS This study revealed that some of the newly synthesized novel N-(benzoylphenyl)pyridine-3-carboxamide derivatives mainly C4 and C6 possessed significant antihyperlipidemic activities on lipid components TG and TC (p value <0.05). DISCUSSION AND CONCLUSION This research opens the door for new potential antihyperlipidemic compounds derived from nicotinic acid that need further optimization of their biological activities.
Collapse
Affiliation(s)
- Rana Abu Farha
- a Faculty of Pharmacy , The University of Jordan , Amman , Jordan and
| | - Yasser Bustanji
- a Faculty of Pharmacy , The University of Jordan , Amman , Jordan and
| | - Yusuf Al-Hiari
- a Faculty of Pharmacy , The University of Jordan , Amman , Jordan and
| | - Tariq Al-Qirim
- b Faculty of Pharmacy , Alzaytoonah University of Jordan , Amman , Jordan
| | | | - Rabab Albashiti
- a Faculty of Pharmacy , The University of Jordan , Amman , Jordan and
| |
Collapse
|
85
|
Auerbach S, Filer D, Reif D, Walker V, Holloway AC, Schlezinger J, Srinivasan S, Svoboda D, Judson R, Bucher JR, Thayer KA. Prioritizing Environmental Chemicals for Obesity and Diabetes Outcomes Research: A Screening Approach Using ToxCast™ High-Throughput Data. ENVIRONMENTAL HEALTH PERSPECTIVES 2016; 124:1141-54. [PMID: 26978842 PMCID: PMC4977057 DOI: 10.1289/ehp.1510456] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Revised: 10/09/2015] [Accepted: 02/08/2016] [Indexed: 05/23/2023]
Abstract
BACKGROUND Diabetes and obesity are major threats to public health in the United States and abroad. Understanding the role that chemicals in our environment play in the development of these conditions is an emerging issue in environmental health, although identifying and prioritizing chemicals for testing beyond those already implicated in the literature is challenging. This review is intended to help researchers generate hypotheses about chemicals that may contribute to diabetes and to obesity-related health outcomes by summarizing relevant findings from the U.S. Environmental Protection Agency (EPA) ToxCast™ high-throughput screening (HTS) program. OBJECTIVES Our aim was to develop new hypotheses around environmental chemicals of potential interest for diabetes- or obesity-related outcomes using high-throughput screening data. METHODS We identified ToxCast™ assay targets relevant to several biological processes related to diabetes and obesity (insulin sensitivity in peripheral tissue, pancreatic islet and β cell function, adipocyte differentiation, and feeding behavior) and presented chemical screening data against those assay targets to identify chemicals of potential interest. DISCUSSION The results of this screening-level analysis suggest that the spectrum of environmental chemicals to consider in research related to diabetes and obesity is much broader than indicated by research papers and reviews published in the peer-reviewed literature. Testing hypotheses based on ToxCast™ data will also help assess the predictive utility of this HTS platform. CONCLUSIONS More research is required to put these screening-level analyses into context, but the information presented in this review should facilitate the development of new hypotheses. CITATION Auerbach S, Filer D, Reif D, Walker V, Holloway AC, Schlezinger J, Srinivasan S, Svoboda D, Judson R, Bucher JR, Thayer KA. 2016. Prioritizing environmental chemicals for obesity and diabetes outcomes research: a screening approach using ToxCast™ high-throughput data. Environ Health Perspect 124:1141-1154; http://dx.doi.org/10.1289/ehp.1510456.
Collapse
Affiliation(s)
- Scott Auerbach
- Division of the National Toxicology Program, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, North Carolina, USA
| | - Dayne Filer
- National Center for Computational Toxicology, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina, USA
| | - David Reif
- Bioinformatics Research Center, Department of Biological Sciences, North Carolina State University, Raleigh, North Carolina, USA
| | - Vickie Walker
- Division of the National Toxicology Program, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, North Carolina, USA
| | - Alison C. Holloway
- Department of Obstetrics and Gynecology, McMaster University, Hamilton, Ontario, Canada
| | - Jennifer Schlezinger
- Department of Environmental Health, Boston University School of Medicine, Boston, Massachusetts, USA
| | - Supriya Srinivasan
- Department of Chemical Physiology, The Scripps Research Institute, La Jolla, California, USA
| | - Daniel Svoboda
- SciOme, LLC, Research Triangle Park, North Carolina, USA
| | - Richard Judson
- National Center for Computational Toxicology, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina, USA
| | - John R. Bucher
- Division of the National Toxicology Program, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, North Carolina, USA
| | - Kristina A. Thayer
- Division of the National Toxicology Program, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, North Carolina, USA
| |
Collapse
|
86
|
Meyer MR, Barton M. Estrogens and Coronary Artery Disease: New Clinical Perspectives. ADVANCES IN PHARMACOLOGY 2016; 77:307-60. [PMID: 27451102 DOI: 10.1016/bs.apha.2016.05.003] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
In premenopausal women, endogenous estrogens are associated with reduced prevalence of arterial hypertension, coronary artery disease, myocardial infarction, and stroke. Clinical trials conducted in the 1990s such as HERS, WHI, and WISDOM have shown that postmenopausal treatment with horse hormone mixtures (so-called conjugated equine estrogens) and synthetic progestins adversely affects female cardiovascular health. Our understanding of rapid (nongenomic) and chronic (genomic) estrogen signaling has since advanced considerably, including identification of a new G protein-coupled estrogen receptor (GPER), which like the "classical" receptors ERα and ERβ is highly abundant in the cardiovascular system. Here, we discuss the role of estrogen receptors in the pathogenesis of coronary artery disease and review natural and synthetic ligands of estrogen receptors as well as their effects in physiology, on cardiovascular risk factors, and atherosclerotic vascular disease. Data from preclinical and clinical studies using nonselective compounds activating GPER, which include selective estrogen receptor modulators such as tamoxifen or raloxifene, selective estrogen receptor downregulators such as Faslodex™ (fulvestrant/ICI 182,780), vitamin B3 (niacin), green tea catechins, and soy flavonoids such as genistein or resveratrol, strongly suggest that activation of GPER may afford therapeutic benefit for primary and secondary prevention in patients with or at risk for coronary artery disease. Evidence from preclinical studies suggest similar efficacy profiles for selective small molecule GPER agonists such as G-1 which are devoid of uterotrophic activity. Further clinical research in this area is warranted to provide opportunities for future cardiovascular drug development.
Collapse
Affiliation(s)
- M R Meyer
- Triemli City Hospital, Zürich, Switzerland.
| | - M Barton
- Molecular Internal Medicine, University of Zürich, Zürich, Switzerland.
| |
Collapse
|
87
|
Karacaglar E, Atar I, Altin C, Yetis B, Cakmak A, Bayraktar N, Coner A, Ozin B, Muderrisoglu H. The Effects of Niacin on Inflammation in Patients with Non-ST Elevated Acute Coronary Syndrome. ACTA CARDIOLOGICA SINICA 2016; 31:120-6. [PMID: 27122858 DOI: 10.6515/acs20140630e] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
BACKGROUND In this study, we aimed to evaluate the effects of niacin on high sensitivity C reactive protein (hs-CRP) and cholesterol levels in non-ST elevated acute coronary syndrome (NSTE-ACS) patients. METHODS In this prospective, open label study, 48 NSTE-ACS were randomized to niacin or control group. Patients continued their optimal medical therapy in the control group. In the niacin group patients were assigned to receive extended-release niacin 500 mg/day. Patients were contacted 1 month later to assess compliance and side effects. Blood samples for hs-CRP were obtained upon admittance to the coronary care unit, in the third day and in the first month of the treatment. Fasting blood samples for cholesterol levels were obtained before and 30 days after the treatment. The primary end point of the study was to evaluate changes in hs-CRP, cholesterol levels, short-term cardiovascular events, and the safety of niacin in NSTE-ACS. RESULTS Baseline demographic, clinical and laboratory characteristics were similar between the two groups. Logarithmic transformation of baseline and 3(rd) day hs-CRP levels were similar between the groups; but 1 month later, logarithmic transformation of hs-CRP level was significantly lower in the niacin group (0.43 ± 0.39 to 0.83 ± 0.91, p = 0.04). HDL-C level was significantly increased in the niacin group during follow-up. Drug related side effects were seen in 7 patients in the niacin group but no patients discontinued niacin. CONCLUSIONS Our findings demonstrate that lower dose extended release niacin can be used safely and decreases hs-CRP and lipid parameters successfully in NSTE-ACS patients. KEY WORDS Acute coronary syndrome; hs-CRP; Inflammation; Niacin.
Collapse
Affiliation(s)
| | | | | | | | | | - Nilufer Bayraktar
- Department of Biochemistry, Baskent University School of Medicine, Ankara, Turkey
| | | | - Bulent Ozin
- Department of Biochemistry, Baskent University School of Medicine, Ankara, Turkey
| | | |
Collapse
|
88
|
Sun J, Wang F, Hong G, Pang M, Xu H, Li H, Tian F, Fang R, Yao Y, Liu J. Antidepressant-like effects of sodium butyrate and its possible mechanisms of action in mice exposed to chronic unpredictable mild stress. Neurosci Lett 2016; 618:159-166. [PMID: 26957230 DOI: 10.1016/j.neulet.2016.03.003] [Citation(s) in RCA: 104] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Revised: 02/24/2016] [Accepted: 03/02/2016] [Indexed: 12/24/2022]
Abstract
Sodium butyrate (NaB) has exhibited neuroprotective activity. This study aimed to explore that NaB exerts beneficial effects on chronic unpredictable mild stress (CUMS)-induced depression-like behaviors and its possible mechanisms. The behavioral tests including sucrose preference test (SPT), open field test (OFT), tail suspension test (TST) and forced swimming test (FST) were to evaluate the antidepressant effects of NaB. Then changes of Nissl's body in the hippocampus, brain serotonin (5-HT) concentration, brain-derived neurotrophic factor (BDNF) and tight junctions (TJs) proteins level were assessed to explore the antidepressant mechanisms. Our results showed that CUMS caused significant depression-like behaviors, neuropathological changes, and decreased brain 5-HT concentration, TJs protein levels and BDNF expression in the hippocampus. However, NaB treatment significantly ameliorated behavioral deficits of the CUMS-induced mice, increased 5-HT concentration, increased BDNF expression, and up-regulated Occludin and zonula occludens-1(ZO-1) protein levels in the hippocampus, which demonstrated that NaB could partially restore CUMS-induced blood-brain barrier (BBB) impairments. Besides, the pathologic changes were alleviated. In conclusion, these results demonstrated that NaB significantly improved depression-like behaviors in CUMS-induced mice and its antidepressant actions might be related with, at least in part, the increasing brain 5-HT concentration and BDNF expression and restoring BBB impairments.
Collapse
Affiliation(s)
- Jing Sun
- Department of Neurology, the Second Affiliated Hospital of Wenzhou Medical University, 109 College West Road, Wenzhou, Zhejiang 325027, China
| | - Fangyan Wang
- Departments of Pathophysiology, Wenzhou Medical University, 1210 University Town, Wenzhou, Zhejiang 325035, China
| | - Guangliang Hong
- Department of Emergency, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Mengqi Pang
- School of Environmental Science and Public Health, Wenzhou Medical University, 1210 University Town, Wenzhou, Zhejiang 325035, China
| | - Hailing Xu
- School of Environmental Science and Public Health, Wenzhou Medical University, 1210 University Town, Wenzhou, Zhejiang 325035, China
| | - Haixiao Li
- School of Environmental Science and Public Health, Wenzhou Medical University, 1210 University Town, Wenzhou, Zhejiang 325035, China
| | - Feng Tian
- School of Environmental Science and Public Health, Wenzhou Medical University, 1210 University Town, Wenzhou, Zhejiang 325035, China
| | - Renchi Fang
- School of Environmental Science and Public Health, Wenzhou Medical University, 1210 University Town, Wenzhou, Zhejiang 325035, China
| | - Ye Yao
- School of Environmental Science and Public Health, Wenzhou Medical University, 1210 University Town, Wenzhou, Zhejiang 325035, China
| | - Jiaming Liu
- School of Environmental Science and Public Health, Wenzhou Medical University, 1210 University Town, Wenzhou, Zhejiang 325035, China.
| |
Collapse
|
89
|
Silva de Paula E, Carneiro MFH, Grotto D, Hernandes LC, Antunes LMG, Barbosa F. Protective effects of niacin against methylmercury-induced genotoxicity and alterations in antioxidant status in rats. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2016; 79:174-183. [PMID: 26914397 DOI: 10.1080/15287394.2015.1137264] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
This study investigates the potential beneficial effects of niacin (NA; vitamin B3) supplementation in rats chronically exposed to methylmercury (MeHg). Animals were randomly assigned to one of 4 groups (n = 6): Group I, control, received distilled water by gavage; Group II, received MeHg (100 µg/kg/d) by gavage; Group III, received NA (50 mg/kg/d) in drinking water; Group IV, received MeHg (100 µg/kg/d) by gavage + NA (50 mg/kg/d) in drinking water. Biochemical parameters levels of glucose, triglycerides, total cholesterol and fractions, and enzyme activities aspartate transaminase (AST) and alanine transaminase (ALT) were determined. Further, oxidative stress markers activity of glutathione peroxidase (GPx) and catalase (CAT) activity, as well as levels of reduced glutathione (GSH), malondialdehyde (MDA), and nitric oxide, were examined, and the comet assay was performed, using blood/plasma. Hg levels were measured in blood, brain, and kidneys of animals. Our results demonstrated that NA reduced adverse effects produced by MeHg. The mechanism underlying these effects appears to be related to the intrinsic antioxidant potential of NA. Considering the beneficial effects attributed to NA following MeHg exposure and that fish are the main source of both NA and MeHg, future studies need to evaluate the potential counteractive effect of NA against the adverse consequences of MeHg exposure in fish-eating populations.
Collapse
Affiliation(s)
- Eloisa Silva de Paula
- a Laboratório de Toxicologia e Essencialidade de Metais , Faculdade de Ciências Farmacêuticas de Ribeirão Preto-USP, Monte Alegre , Ribeirão Preto , São Paulo , Brazil
| | - Maria Fernanda Hornos Carneiro
- a Laboratório de Toxicologia e Essencialidade de Metais , Faculdade de Ciências Farmacêuticas de Ribeirão Preto-USP, Monte Alegre , Ribeirão Preto , São Paulo , Brazil
| | - Denise Grotto
- b Programa de Pós-Graduação em Ciências Farmacêuticas , Universidade de Sorocaba , Sorocaba , São Paulo , Brazil
| | - Lívia Cristina Hernandes
- c Laboratório de Nutrigenômica , Faculdade de Ciências Farmacêuticas de Ribeirão Preto-USP, Monte Alegre , Ribeirão Preto , São Paulo , Brazil
| | - Lusânia Maria Greggi Antunes
- c Laboratório de Nutrigenômica , Faculdade de Ciências Farmacêuticas de Ribeirão Preto-USP, Monte Alegre , Ribeirão Preto , São Paulo , Brazil
| | - Fernando Barbosa
- a Laboratório de Toxicologia e Essencialidade de Metais , Faculdade de Ciências Farmacêuticas de Ribeirão Preto-USP, Monte Alegre , Ribeirão Preto , São Paulo , Brazil
| |
Collapse
|
90
|
Handley RR, Reid SJ, Patassini S, Rudiger SR, Obolonkin V, McLaughlan CJ, Jacobsen JC, Gusella JF, MacDonald ME, Waldvogel HJ, Bawden CS, Faull RLM, Snell RG. Metabolic disruption identified in the Huntington's disease transgenic sheep model. Sci Rep 2016; 6:20681. [PMID: 26864449 PMCID: PMC4749952 DOI: 10.1038/srep20681] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Accepted: 12/31/2015] [Indexed: 12/02/2022] Open
Abstract
Huntington’s disease (HD) is a dominantly inherited, progressive neurodegenerative disorder caused by a CAG repeat expansion within exon 1 of HTT, encoding huntingtin. There are no therapies that can delay the progression of this devastating disease. One feature of HD that may play a critical role in its pathogenesis is metabolic disruption. Consequently, we undertook a comparative study of metabolites in our transgenic sheep model of HD (OVT73). This model does not display overt symptoms of HD but has circadian rhythm alterations and molecular changes characteristic of the early phase disease. Quantitative metabolite profiles were generated from the motor cortex, hippocampus, cerebellum and liver tissue of 5 year old transgenic sheep and matched controls by gas chromatography-mass spectrometry. Differentially abundant metabolites were evident in the cerebellum and liver. There was striking tissue-specificity, with predominantly amino acids affected in the transgenic cerebellum and fatty acids in the transgenic liver, which together may indicate a hyper-metabolic state. Furthermore, there were more strong pair-wise correlations of metabolite abundance in transgenic than in wild-type cerebellum and liver, suggesting altered metabolic constraints. Together these differences indicate a metabolic disruption in the sheep model of HD and could provide insight into the presymptomatic human disease.
Collapse
Affiliation(s)
- Renee R Handley
- Centre for Brain Research, University of Auckland, Auckland, 1010, New Zealand
| | - Suzanne J Reid
- Centre for Brain Research, University of Auckland, Auckland, 1010, New Zealand
| | - Stefano Patassini
- Centre for Brain Research, University of Auckland, Auckland, 1010, New Zealand
| | - Skye R Rudiger
- Molecular Biology and Reproductive Technology Laboratories, South Australian Research and Development, Adelaide, SA 5350, Australia
| | - Vladimir Obolonkin
- Research &Development, Livestock Improvement Corporation, Hamilton, 3240, New Zealand
| | - Clive J McLaughlan
- Molecular Biology and Reproductive Technology Laboratories, South Australian Research and Development, Adelaide, SA 5350, Australia
| | - Jessie C Jacobsen
- Centre for Brain Research, University of Auckland, Auckland, 1010, New Zealand
| | - James F Gusella
- Center for Human Genetic Research, Massachusetts General Hospital, Harvard Medical School, Boston MA 02114, United States of America
| | - Marcy E MacDonald
- Center for Human Genetic Research, Massachusetts General Hospital, Harvard Medical School, Boston MA 02114, United States of America
| | - Henry J Waldvogel
- Centre for Brain Research, University of Auckland, Auckland, 1010, New Zealand
| | - C Simon Bawden
- Molecular Biology and Reproductive Technology Laboratories, South Australian Research and Development, Adelaide, SA 5350, Australia
| | - Richard L M Faull
- Centre for Brain Research, University of Auckland, Auckland, 1010, New Zealand
| | - Russell G Snell
- Centre for Brain Research, University of Auckland, Auckland, 1010, New Zealand
| |
Collapse
|
91
|
Vu CB, Bemis JE, Benson E, Bista P, Carney D, Fahrner R, Lee D, Liu F, Lonkar P, Milne JC, Nichols AJ, Picarella D, Shoelson A, Smith J, Ting A, Wensley A, Yeager M, Zimmer M, Jirousek MR. Synthesis and Characterization of Fatty Acid Conjugates of Niacin and Salicylic Acid. J Med Chem 2016; 59:1217-31. [PMID: 26784936 DOI: 10.1021/acs.jmedchem.5b01961] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
This report describes the synthesis and preliminary biological characterization of novel fatty acid niacin conjugates and fatty acid salicylate conjugates. These molecular entities were created by covalently linking two bioactive molecules, either niacin or salicylic acid, to an omega-3 fatty acid. This methodology allows the simultaneous intracellular delivery of two bioactives in order to elicit a pharmacological response that could not be replicated by administering the bioactives individually or in combination. The fatty acid niacin conjugate 5 has been shown to be an inhibitor of the sterol regulatory element binding protein (SREBP), a key regulator of cholesterol metabolism proteins such as PCSK9, HMG-CoA reductase, ATP citrate lyase, and NPC1L1. On the other hand, the fatty acid salicylate conjugate 11 has been shown to have a unique anti-inflammatory profile based on its ability to modulate the NF-κB pathway through the intracellular release of the two bioactives.
Collapse
Affiliation(s)
- Chi B Vu
- Catabasis Pharmaceuticals , One Kendall Square, Suite B14202, Cambridge, Massachusetts 02139, United States
| | - Jean E Bemis
- Catabasis Pharmaceuticals , One Kendall Square, Suite B14202, Cambridge, Massachusetts 02139, United States
| | - Ericka Benson
- Catabasis Pharmaceuticals , One Kendall Square, Suite B14202, Cambridge, Massachusetts 02139, United States
| | - Pradeep Bista
- Catabasis Pharmaceuticals , One Kendall Square, Suite B14202, Cambridge, Massachusetts 02139, United States
| | - David Carney
- Catabasis Pharmaceuticals , One Kendall Square, Suite B14202, Cambridge, Massachusetts 02139, United States
| | - Richard Fahrner
- Catabasis Pharmaceuticals , One Kendall Square, Suite B14202, Cambridge, Massachusetts 02139, United States
| | - Diana Lee
- Catabasis Pharmaceuticals , One Kendall Square, Suite B14202, Cambridge, Massachusetts 02139, United States
| | - Feng Liu
- Catabasis Pharmaceuticals , One Kendall Square, Suite B14202, Cambridge, Massachusetts 02139, United States
| | - Pallavi Lonkar
- Catabasis Pharmaceuticals , One Kendall Square, Suite B14202, Cambridge, Massachusetts 02139, United States
| | - Jill C Milne
- Catabasis Pharmaceuticals , One Kendall Square, Suite B14202, Cambridge, Massachusetts 02139, United States
| | - Andrew J Nichols
- Catabasis Pharmaceuticals , One Kendall Square, Suite B14202, Cambridge, Massachusetts 02139, United States
| | - Dominic Picarella
- Catabasis Pharmaceuticals , One Kendall Square, Suite B14202, Cambridge, Massachusetts 02139, United States
| | - Adam Shoelson
- Catabasis Pharmaceuticals , One Kendall Square, Suite B14202, Cambridge, Massachusetts 02139, United States
| | - Jesse Smith
- Catabasis Pharmaceuticals , One Kendall Square, Suite B14202, Cambridge, Massachusetts 02139, United States
| | - Amal Ting
- Catabasis Pharmaceuticals , One Kendall Square, Suite B14202, Cambridge, Massachusetts 02139, United States
| | - Allison Wensley
- Catabasis Pharmaceuticals , One Kendall Square, Suite B14202, Cambridge, Massachusetts 02139, United States
| | - Maisy Yeager
- Catabasis Pharmaceuticals , One Kendall Square, Suite B14202, Cambridge, Massachusetts 02139, United States
| | - Michael Zimmer
- Catabasis Pharmaceuticals , One Kendall Square, Suite B14202, Cambridge, Massachusetts 02139, United States
| | - Michael R Jirousek
- Catabasis Pharmaceuticals , One Kendall Square, Suite B14202, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
92
|
Weber M, Locher L, Huber K, Kenéz Á, Rehage J, Tienken R, Meyer U, Dänicke S, Sauerwein H, Mielenz M. Longitudinal changes in adipose tissue of dairy cows from late pregnancy to lactation. Part 1: The adipokines apelin and resistin and their relationship to receptors linked with lipolysis. J Dairy Sci 2016; 99:1549-1559. [DOI: 10.3168/jds.2015-10131] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2015] [Accepted: 10/16/2015] [Indexed: 12/13/2022]
|
93
|
Graff EC, Fang H, Wanders D, Judd RL. Anti-inflammatory effects of the hydroxycarboxylic acid receptor 2. Metabolism 2016; 65:102-13. [PMID: 26773933 DOI: 10.1016/j.metabol.2015.10.001] [Citation(s) in RCA: 113] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2015] [Revised: 09/09/2015] [Accepted: 10/01/2015] [Indexed: 02/06/2023]
Abstract
The hydroxycarboxylic acid receptors (HCA1-3) are a family of G-protein-coupled receptors that are critical for sensing endogenous intermediates of metabolism. All three receptors are predominantly expressed on adipocytes and mediate anti-lipolytic effects. In addition to adipocytes, HCA2 is highly expressed on immune cells, including macrophages, monocytes, neutrophils and dermal dendritic cells, among other cell types. The endogenous ligand for HCA2 is beta-hydroxybutyrate (β-OHB), a ketone body produced by the liver through β-oxidation when an individual is in a negative energy balance. Recent studies demonstrate that HCA2 mediates profound anti-inflammatory effects in a variety of tissues, indicating that HCA2 may be an important therapeutic target for treating inflammatory disease processes. This review summarizes the roles of HCA2 on inflammation in a number of tissues and clinical states.
Collapse
Affiliation(s)
- Emily C Graff
- Department of Anatomy, Physiology and Pharmacology, College of Veterinary Medicine, Auburn University, Auburn, AL, United States; Department of Pathobiology, College of Veterinary Medicine, Auburn University, Auburn, AL, United States
| | - Han Fang
- Department of Anatomy, Physiology and Pharmacology, College of Veterinary Medicine, Auburn University, Auburn, AL, United States
| | - Desiree Wanders
- Department of Nutrition, Georgia State University, Atlanta, GA, United States
| | - Robert L Judd
- Department of Anatomy, Physiology and Pharmacology, College of Veterinary Medicine, Auburn University, Auburn, AL, United States.
| |
Collapse
|
94
|
Suzuki K, Kaneko-Kawano T. Biological roles and therapeutic potential of G protein-coupled receptors for free fatty acids and metabolic intermediates. ACTA ACUST UNITED AC 2016. [DOI: 10.7600/jpfsm.5.213] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Affiliation(s)
- Kenji Suzuki
- College of Pharmaceutical Sciences, Ritsumeikan University
| | | |
Collapse
|
95
|
Badelin VG, Tyunina EY, Mezhevoi IN, Tarasova GN. Thermodynamic characteristics of molecular interactions between L-tryptophan and nicotinic acid and uracyl in aqueous buffer solutions at 298 K. RUSSIAN JOURNAL OF PHYSICAL CHEMISTRY A 2015. [DOI: 10.1134/s0036024415120031] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
96
|
Avula B, Chittiboyina AG, Sagi S, Wang YH, Wang M, Khan IA, Cohen PA. Identification and quantification of vinpocetine and picamilon in dietary supplements sold in the United States. Drug Test Anal 2015; 8:334-43. [PMID: 26426301 DOI: 10.1002/dta.1853] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Revised: 07/08/2015] [Accepted: 07/15/2015] [Indexed: 11/09/2022]
Abstract
Vinpocetine and picamilon are drugs prescribed in many countries to treat a variety of cerebrovascular disorders. In the United States, vinpocetine and picamilon have never been approved by the US Food and Drug Administration, but they are both available for sale directly to consumers as dietary supplements. We designed our study to determine the accuracy of supplement labels with regard to the presence and quantity of vinpocetine and picamilon. A validated ultra-high performance liquid chromatography-photodiode-array method was developed for the quantification of vinpocetine and picamilon. The separation was achieved using a reversed phase (C-18) column, photodiode array detection, and water/acetonitrile as the mobile phase. Vinpocetine and picamilon were detected at concentrations as low as 10 and 50 ng/mL, respectively. The presence of vinpocetine and picamilon was confirmed using reference standards. Twenty-three supplements labelled as containing vinpocetine were available for sale at two large supplement retail chains; 17 contained vinpocetine with quantities ranging from 0.3 to 32 mg per recommended daily serving. No vinpocetine was detected in six of the sampled supplements. The supplement label implied that vinpocetine was a constituent of lesser periwinkle in three of the supplements. Of the 31 picamilon supplements available for sale from a variety of retailers: 30 contained picamilon in quantities ranging from 2.7 to 721.5 mg per recommended daily serving. We found that consumers cannot obtain accurate information from supplement labels regarding the presence or quantity of vinpocetine and picamilon. Copyright © 2015 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Bharathi Avula
- National Center for Natural Products Research, School of Pharmacy, University of Mississippi, University, MS, 38677, USA.
| | - Amar G Chittiboyina
- National Center for Natural Products Research, School of Pharmacy, University of Mississippi, University, MS, 38677, USA
| | - Satyanarayanaraju Sagi
- National Center for Natural Products Research, School of Pharmacy, University of Mississippi, University, MS, 38677, USA
| | - Yan-Hong Wang
- National Center for Natural Products Research, School of Pharmacy, University of Mississippi, University, MS, 38677, USA
| | - Mei Wang
- National Center for Natural Products Research, School of Pharmacy, University of Mississippi, University, MS, 38677, USA
| | - Ikhlas A Khan
- National Center for Natural Products Research, School of Pharmacy, University of Mississippi, University, MS, 38677, USA.,Division of Pharmacognosy, Department of BioMolecular Sciences, School of Pharmacy, The University of Mississippi, University, MS, 38677, USA
| | - Pieter A Cohen
- Cambridge Health Alliance, Somerville, MA, 02143, USA.,Harvard Medical School, Boston, MA, 02115, USA
| |
Collapse
|
97
|
Hu M, Yang YL, Chan P, Tomlinson B. Pharmacogenetics of cutaneous flushing response to niacin/laropiprant combination in Hong Kong Chinese patients with dyslipidemia. Pharmacogenomics 2015; 16:1387-97. [PMID: 26226939 DOI: 10.2217/pgs.15.79] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
AIM Cutaneous flushing with niacin varies between individuals and is substantially reduced by concomitant laropiprant. We investigated associations between baseline phenotypes and selected genotypes and flushing symptoms with niacin/laropiprant combination. PATIENTS & METHODS Flushing symptoms were quantified in 196 Chinese dyslipidaemic patients treated with niacin/laropiprant, and associations with phenotypes and selected polymorphisms were analyzed. RESULTS Moderate or severe flushing was associated with lower body mass index and the rs2279238 polymorphism in the LXRα on multivariate regression analysis and these factors accounted for 18.9% of the total variance. CONCLUSION Lower body mass index and the LXRα polymorphism appear to be associated with flushing symptoms with niacin/laropiprant. Whether these findings can be applicable to other niacin formulations without laropiprant needs to be verified.
Collapse
Affiliation(s)
- Miao Hu
- Department of Medicine & Therapeutics, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong
| | - Ya-Ling Yang
- Department of Medicine & Therapeutics, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong.,Diabetes Center, Second Xiangya Hospital, Institute of Metabolism & Endocrinology, Key Laboratory of Diabetes Immunology, Ministry of Education, Central South University, Changsha, Hunan, China
| | - Paul Chan
- Division of Cardiology, Department of Internal Medicine, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
| | - Brian Tomlinson
- Department of Medicine & Therapeutics, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong
| |
Collapse
|
98
|
van Veldhoven JPD, Liu R, Thee SA, Wouters Y, Verhoork SJM, Mooiman C, Louvel J, IJzerman AP. Affinity and kinetics study of anthranilic acids as HCA2 receptor agonists. Bioorg Med Chem 2015; 23:4013-25. [PMID: 25737085 DOI: 10.1016/j.bmc.2015.02.018] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2014] [Revised: 02/05/2015] [Accepted: 02/10/2015] [Indexed: 12/25/2022]
Abstract
Structure-affinity relationship (SAR) and structure-kinetics relationship (SKR) studies were combined to investigate a series of biphenyl anthranilic acid agonists for the HCA2 receptor. In total, 27 compounds were synthesized and twelve of them showed higher affinity than nicotinic acid. Two compounds, 6g (IC50=75nM) and 6z (IC50=108nM) showed a longer residence time profile compared to nicotinic acid, exemplified by their kinetic rate index (KRI) values of 1.31 and 1.23, respectively. The SAR study resulted in the novel 2-F, 4-OH derivative (6x) with an IC50 value of 23nM as the highest affinity HCA2 agonist of the biphenyl series, although it showed a similar residence time as nicotinic acid. The SAR and SKR data suggest that an early compound selection based on binding kinetics is a promising addition to the lead optimization process.
Collapse
Affiliation(s)
- Jacobus P D van Veldhoven
- Division of Medicinal Chemistry, Leiden Academic Centre for Drug Research, Leiden University, PO Box 9502, 2300 RA Leiden, The Netherlands
| | - Rongfang Liu
- Division of Medicinal Chemistry, Leiden Academic Centre for Drug Research, Leiden University, PO Box 9502, 2300 RA Leiden, The Netherlands
| | - Stephanie A Thee
- Division of Medicinal Chemistry, Leiden Academic Centre for Drug Research, Leiden University, PO Box 9502, 2300 RA Leiden, The Netherlands
| | - Yessica Wouters
- Division of Medicinal Chemistry, Leiden Academic Centre for Drug Research, Leiden University, PO Box 9502, 2300 RA Leiden, The Netherlands
| | - Sanne J M Verhoork
- Division of Medicinal Chemistry, Leiden Academic Centre for Drug Research, Leiden University, PO Box 9502, 2300 RA Leiden, The Netherlands
| | - Christiaan Mooiman
- Division of Medicinal Chemistry, Leiden Academic Centre for Drug Research, Leiden University, PO Box 9502, 2300 RA Leiden, The Netherlands
| | - Julien Louvel
- Division of Medicinal Chemistry, Leiden Academic Centre for Drug Research, Leiden University, PO Box 9502, 2300 RA Leiden, The Netherlands
| | - Adriaan P IJzerman
- Division of Medicinal Chemistry, Leiden Academic Centre for Drug Research, Leiden University, PO Box 9502, 2300 RA Leiden, The Netherlands.
| |
Collapse
|
99
|
Sprecher D, Maxwell M, Goodman J, White B, Tang CM, Boullay V, de Gouville AC. Discovery and characterization of GSK256073, a non-flushing hydroxy-carboxylic acid receptor 2 (HCA2) agonist. Eur J Pharmacol 2015; 756:1-7. [PMID: 25773497 DOI: 10.1016/j.ejphar.2015.01.051] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2014] [Revised: 01/27/2015] [Accepted: 01/30/2015] [Indexed: 10/23/2022]
Abstract
Niacin has been used for many years in the treatment of dyslipidemia due to its ability to decrease serum levels of triglycerides and low-density lipoprotein cholesterol and to increase levels of high density lipoprotein cholesterol. However, niacin causes severe flushing resulting in poor patient compliance. The discovery of hydroxy-carboxylic acid receptor 2 (HCA2) as a high affinity receptor for niacin has opened avenues to investigate the mechanism of action of niacin, and to potentially discover agonists which maintain the antilipolytic effects of niacin accessed by a decrease in circulating non-esterified fatty acids (NEFA) and thereby perhaps the lipid/lipoprotein effects, but avoid the flushing effects. Here we describe the strategy we implemented to identify such compounds. This approach resulted in the discovery of GSK256073, a highly potent HCA2 agonist, which produced similar NEFA lowering effects to niacin in preclinical models (rat and guinea pig). A guinea pig model was used to predict flushing, via an increase in ear temperature, and GSK256073 was found to have a minimal effect in this model. These preclinical models appeared to be predictive of human response, since in a first-time-in-human study, GSK256073 displayed long lasting NEFA and triglyceride lowering effects in healthy male subjects, which were not associated with flushing. GSK256073 can be used as a pharmacological tool to better understand the role of HCA2 in lipid metabolism.
Collapse
Affiliation(s)
- Dennis Sprecher
- GlaxoSmithKline Laboratories, Metabolic Pathways and Cardiovascular Unit, 709 Swedeland Road, King of Prussia, PA 19406, USA
| | - Miles Maxwell
- GlaxoSmithKline Laboratories, Gunnels Wood Road, Stevenage, Hertfordshire, UK
| | - Joanne Goodman
- GlaxoSmithKline Laboratories, Gunnels Wood Road, Stevenage, Hertfordshire, UK
| | - Brian White
- GlaxoSmithKline Laboratories, Gunnels Wood Road, Stevenage, Hertfordshire, UK
| | - Chi-Man Tang
- GlaxoSmithKline Laboratories, Gunnels Wood Road, Stevenage, Hertfordshire, UK
| | - Valerie Boullay
- GlaxoSmithKline Laboratories, Centre de Recherche François Hyafil, 27 av du Quebec, 91951 Les Ulis Cedex, France
| | - Anne-Charlotte de Gouville
- GlaxoSmithKline Laboratories, Centre de Recherche François Hyafil, 27 av du Quebec, 91951 Les Ulis Cedex, France.
| |
Collapse
|
100
|
Ma L, Lee BH, Clifton H, Schaefer S, Zheng J. Nicotinic acid is a common regulator of heat-sensing TRPV1-4 ion channels. Sci Rep 2015; 5:8906. [PMID: 25752528 PMCID: PMC4894441 DOI: 10.1038/srep08906] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2014] [Accepted: 02/05/2015] [Indexed: 01/08/2023] Open
Abstract
Nicotinic acid (NA, a.k.a. vitamin B3 or niacin) can reduce blood cholesterol and low-density lipoproteins whereas increase high-density lipoproteins. However, when NA is used to treat dyslipidemias, it causes a strong side effect of cutaneous vasodilation, commonly called flushing. A recent study showed that NA may cause flushing by lowering activation threshold temperature of the heat-sensitive capsaicin receptor TRPV1 ion channel, leading to its activation at body temperature. The finding calls into question whether NA might also interact with the homologous heat-sensitive TRPV2–4 channels, particularly given that TRPV3 and TRPV4 are abundantly expressed in keratinocytes of the skin where much of the flushing response occurs. We found that NA indeed potentiated TRPV3 while inhibited TRPV2 and TRPV4. Consistent with these gating effects, NA lowered the heat-activation threshold of TRPV3 but elevated that of TRPV4. We further found that activity of TRPV1 was substantially prolonged by extracellular NA, which may further enhance the direct activation effect. Consistent with the broad gating effect on TRPV1–4 channels, evidence from the present study hints that NA may share the same activation pathway as 2-aminoethoxydiphenyl borate (2-APB), a common agonist for these TRPV channels. These findings shed new light on the molecular mechanism underlying NA regulation of TRPV channels.
Collapse
Affiliation(s)
- Linlin Ma
- 1] Department of Physiology and Membrane Biology, University of California School of Medicine, Davis, California, USA [2] Institute for Molecular Bioscience, University of Queensland, St Lucia, QLD 4072, Australia
| | - Bo Hyun Lee
- Department of Physiology and Membrane Biology, University of California School of Medicine, Davis, California, USA
| | - Heather Clifton
- Division of Cardiovascular Medicine, University of California School of Medicine, Davis, California, USA
| | - Saul Schaefer
- Division of Cardiovascular Medicine, University of California School of Medicine, Davis, California, USA
| | - Jie Zheng
- Department of Physiology and Membrane Biology, University of California School of Medicine, Davis, California, USA
| |
Collapse
|