51
|
Hibberd TJ, Travis L, Wiklendt L, Costa M, Brookes SJH, Hu H, Keating DJ, Spencer NJ. Synaptic activation of putative sensory neurons by hexamethonium-sensitive nerve pathways in mouse colon. Am J Physiol Gastrointest Liver Physiol 2018; 314:G53-G64. [PMID: 28935683 DOI: 10.1152/ajpgi.00234.2017] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The gastrointestinal tract contains its own independent population of sensory neurons within the gut wall. These sensory neurons have been referred to as intrinsic primary afferent neurons (IPANs) and can be identified by immunoreactivity to calcitonin gene-related peptide (CGRP) in mice. A common feature of IPANs is a paucity of fast synaptic inputs observed during sharp microelectrode recordings. Whether this is observed using different recording techniques is of particular interest for understanding the physiology of these neurons and neural circuit modeling. Here, we imaged spontaneous and evoked activation of myenteric neurons in isolated whole preparations of mouse colon and correlated recordings with CGRP and nitric oxide synthase (NOS) immunoreactivity, post hoc. Calcium indicator fluo 4 was used for this purpose. Calcium responses were recorded in nerve cell bodies located 5-10 mm oral to transmural electrical nerve stimuli. A total of 618 recorded neurons were classified for CGRP or NOS immunoreactivity. Aboral electrical stimulation evoked short-latency calcium transients in the majority of myenteric neurons, including ~90% of CGRP-immunoreactive Dogiel type II neurons. Activation of Dogiel type II neurons had a time course consistent with fast synaptic transmission and was always abolished by hexamethonium (300 μM) and by low-calcium Krebs solution. The nicotinic receptor agonist 1,1-dimethyl-4-phenylpiperazinium iodide (during synaptic blockade) directly activated Dogiel type II neurons. The present study suggests that murine colonic Dogiel type II neurons receive prominent fast excitatory synaptic inputs from hexamethonium-sensitive neural pathways. NEW & NOTEWORTHY Myenteric neurons in isolated mouse colon were recorded using calcium imaging and then neurochemically defined. Short-latency calcium transients were detected in >90% of calcitonin gene-related peptide-immunoreactive neurons to electrical stimulation of hexamethonium-sensitive pathways. Putative sensory Dogiel type II calcitonin gene-related peptide-immunoreactive myenteric neurons may receive widespread fast synaptic inputs in mouse colon.
Collapse
Affiliation(s)
- Timothy J Hibberd
- Discipline of Human Physiology and Centre for Neuroscience, Flinders University , Adelaide South Australia
| | - Lee Travis
- Discipline of Human Physiology and Centre for Neuroscience, Flinders University , Adelaide South Australia
| | - Lukasz Wiklendt
- Discipline of Human Physiology and Centre for Neuroscience, Flinders University , Adelaide South Australia
| | - Marcello Costa
- Discipline of Human Physiology and Centre for Neuroscience, Flinders University , Adelaide South Australia
| | - Simon J H Brookes
- Discipline of Human Physiology and Centre for Neuroscience, Flinders University , Adelaide South Australia
| | - Hongzhen Hu
- Department of Anesthesiology, Washington University , Saint Louis, Missouri
| | - Damien J Keating
- Discipline of Human Physiology and Centre for Neuroscience, Flinders University , Adelaide South Australia
| | - Nick J Spencer
- Discipline of Human Physiology and Centre for Neuroscience, Flinders University , Adelaide South Australia
| |
Collapse
|
52
|
Abot A, Cani PD, Knauf C. Impact of Intestinal Peptides on the Enteric Nervous System: Novel Approaches to Control Glucose Metabolism and Food Intake. Front Endocrinol (Lausanne) 2018; 9:328. [PMID: 29988396 PMCID: PMC6023997 DOI: 10.3389/fendo.2018.00328] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Accepted: 05/31/2018] [Indexed: 12/13/2022] Open
Abstract
The gut is one of the most important sources of bioactive peptides in the body. In addition to their direct actions in the brain and/or peripheral tissues, the intestinal peptides can also have an impact on enteric nervous neurons. By modifying the endogenousproduction of these peptides, one may expect modify the "local" physiology such as glucose absorption, but also could have a "global" action via the gut-brain axis. Due to the various origins of gut peptides (i.e., nutrients, intestinal wall, gut microbiota) and the heterogeneity of enteric neurons population, the potential physiological parameters control by the interaction between the two partners are multiple. In this review, we will exclusively focus on the role of enteric nervous system as a potential target of gut peptides to control glucose metabolism and food intake. Potential therapeutic strategies based on per os administration of gut peptides to treat type 2 diabetes will be described.
Collapse
Affiliation(s)
- Anne Abot
- NeuroMicrobiota, European Associated Laboratory (EAL), INSERM, Université catholique de Louvain (UCL), Toulouse, France
- INSERM U1220 Institut de Recherche en Santé Digestive (IRSD), CHU Purpan, Université Toulouse III Paul Sabatier, Paris, France
| | - Patrice D. Cani
- NeuroMicrobiota, European Associated Laboratory (EAL), INSERM, Université catholique de Louvain (UCL), Toulouse, France
- Metabolism and Nutrition Research Group, Louvain Drug Research Institute (LDRI), WELBIO (Walloon Excellence in Life Sciences and BIOtechnology), Université catholique de Louvain (UCL), Brussels, Belgium
| | - Claude Knauf
- NeuroMicrobiota, European Associated Laboratory (EAL), INSERM, Université catholique de Louvain (UCL), Toulouse, France
- INSERM U1220 Institut de Recherche en Santé Digestive (IRSD), CHU Purpan, Université Toulouse III Paul Sabatier, Paris, France
- *Correspondence: Claude Knauf,
| |
Collapse
|
53
|
Rodrigues Sartori SS, Peixoto JV, Lopes VDPG, Barbosa AJA, Neves CA, Fonseca CC. Neuroendocrine structures of the small intestine of the capybara Hydrochoerus hydrochaeris (Mammalia, Rodentia). ANIM BIOL 2018. [DOI: 10.1163/15707563-17000109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Abstract
A complex network of nerve fibers of the enteric nervous system and enteroendocrine cells is known to regulate the gastrointestinal tract. The distribution and frequency of the argyrophil, argentaffin and serotonin immunoreactive endocrine cells and of the submucosal and myenteric nervous ganglia were studied in the small intestine of the capybara Hydrochoerus hydrochaeris, aiming to verify the existence of possible numerical correlations between endocrine cells and nervous ganglia. Fragments of the duodenum, jejunum and ileum of adult animals were collected and processed according to routine histological techniques. To study the nervous ganglia, hematoxylin and eosin staining was used, while specific staining techniques were used to study the argyrophil, argentaffin and serotonin immunoreactive endocrine cells: Grimelius, modified Masson-Fontana and peroxidase anti-peroxidase, respectively. Endocrine cells were more abundant in the area of the crypts and, in relation to their morphology, ‘open type’ endocrine cells prevailed. The population of argyrophil cells was larger than that of argentaffin cells, and these cells were larger than serotonin immunoreactive cells. The frequency of endocrine cells was apparently greater in the duodenum, indicating the importance of this intestinal segment in digestive and absorptive functions. Prominent nervous ganglia were observed in the submucosal and myenteric plexi, and were larger and more frequent in the myenteric plexus. A numerical correlation was found among the endocrine cells (argentaffin and serotonin immunoreactive cells) and the myenteric nervous ganglia, suggesting the presence of physiological interactions among the endocrine and nervous systems for the control of intestinal activities. The findings in this study contribute to the understanding of the digestive processes of this species, which may also help in its conservation and future survival.
Collapse
Affiliation(s)
| | - Juliano Vogas Peixoto
- 2Department of Veterinary Medicine, Federal University of Lavras, Lavras, Minas Gerais, Brazil
| | | | - Alfredo José Afonso Barbosa
- 3Department of Pathological Anatomy and Legal Medicine, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Clóvis Andrade Neves
- 4Department of General Biology, Federal University of Viçosa, Viçosa, Minas Gerais, Brazil
| | - Cláudio César Fonseca
- 5Department of Veterinary Medicine, Federal University of Viçosa, Viçosa, Minas Gerais, Brazil
| |
Collapse
|
54
|
Grubišić V, Verkhratsky A, Zorec R, Parpura V. Enteric glia regulate gut motility in health and disease. Brain Res Bull 2018; 136:109-117. [PMID: 28363846 PMCID: PMC5620110 DOI: 10.1016/j.brainresbull.2017.03.011] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Revised: 02/20/2017] [Accepted: 03/28/2017] [Indexed: 12/16/2022]
Abstract
The enteric nervous system, often referred to as the second brain, is the largest assembly of neurons and glia outside the central nervous system. The enteric nervous system resides within the wall of the digestive tract and regulates local gut reflexes involved in gastrointestinal motility and fluid transport; these functions can be accomplished in the absence of the extrinsic innervation from the central nervous system. It is neurons and their circuitry within the enteric nervous system that govern the gut reflexes. However, it is becoming clear that enteric glial cells are also actively involved in this process through the bidirectional signaling with neurons and other cells in the gut wall. We synthesize the recently discovered modulatory roles of enteric gliotransmission in gut motility and provide our perspective for future lines of research.
Collapse
Affiliation(s)
- Vladimir Grubišić
- Department of Neurobiology, University of Alabama at Birmingham, Birmingham, AL, USA; Neuroscience Program, Department of Physiology, Michigan State University, 567 Wilson Road, East Lansing, MI, 48824, USA
| | - Alexei Verkhratsky
- The University of Manchester, Manchester, UK; Achucarro Center for Neuroscience, IKERBASQUE, Basque Foundation for Science, 48011, Bilbao, Spain
| | - Robert Zorec
- Laboratory of Neuroendocrinology-Molecular Cell Physiology, Faculty of Medicine, Institute of Pathophysiology University of Ljubljana, Ljubljana, Slovenia; Celica BIOMEDICAL, Ljubljana, Slovenia
| | - Vladimir Parpura
- Department of Neurobiology, University of Alabama at Birmingham, Birmingham, AL, USA.
| |
Collapse
|
55
|
Imam MZ, Kuo A, Ghassabian S, Smith MT. Progress in understanding mechanisms of opioid-induced gastrointestinal adverse effects and respiratory depression. Neuropharmacology 2017; 131:238-255. [PMID: 29273520 DOI: 10.1016/j.neuropharm.2017.12.032] [Citation(s) in RCA: 86] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Revised: 12/18/2017] [Accepted: 12/19/2017] [Indexed: 02/06/2023]
Abstract
Opioids evoke analgesia through activation of opioid receptors (predominantly the μ opioid receptor) in the central nervous system. Opioid receptors are abundant in multiple regions of the central nervous system and the peripheral nervous system including enteric neurons. Opioid-related adverse effects such as constipation, nausea, and vomiting pose challenges for compliance and continuation of the therapy for chronic pain management. In the post-operative setting opioid-induced depression of respiration can be fatal. These critical limitations warrant a better understanding of their underpinning cellular and molecular mechanisms to inform the design of novel opioid analgesic molecules that are devoid of these unwanted side-effects. Research efforts on opioid receptor signalling in the past decade suggest that differential signalling pathways and downstream molecules preferentially mediate distinct pharmacological effects. Additionally, interaction among opioid receptors and, between opioid receptor and non-opioid receptors to form signalling complexes shows that opioid-induced receptor signalling is potentially more complicated than previously thought. This complexity provides an opportunity to identify and probe relationships between selective signalling pathway specificity and in vivo production of opioid-related adverse effects. In this review, we focus on current knowledge of the mechanisms thought to transduce opioid-induced gastrointestinal adverse effects (constipation, nausea, vomiting) and respiratory depression.
Collapse
Affiliation(s)
- Mohammad Zafar Imam
- Faculty of Medicine, The University of Queensland, Brisbane, QLD, Australia; UQ Centre for Clinical Research, Faculty of Medicine, The University of Queensland, Brisbane, QLD, Australia
| | - Andy Kuo
- UQ Centre for Clinical Research, Faculty of Medicine, The University of Queensland, Brisbane, QLD, Australia
| | - Sussan Ghassabian
- UQ Centre for Clinical Research, Faculty of Medicine, The University of Queensland, Brisbane, QLD, Australia
| | - Maree T Smith
- UQ Centre for Clinical Research, Faculty of Medicine, The University of Queensland, Brisbane, QLD, Australia; School of Pharmacy, Faculty of Health and Behavioural Sciences, The University of Queensland, Brisbane, QLD, Australia.
| |
Collapse
|
56
|
Costello CM, Phillipsen MB, Hartmanis LM, Kwasnica MA, Chen V, Hackam D, Chang MW, Bentley WE, March JC. Microscale Bioreactors for in situ characterization of GI epithelial cell physiology. Sci Rep 2017; 7:12515. [PMID: 28970586 PMCID: PMC5624909 DOI: 10.1038/s41598-017-12984-2] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Accepted: 09/14/2017] [Indexed: 02/08/2023] Open
Abstract
The development of in vitro artificial small intestines that realistically mimic in vivo systems will enable vast improvement of our understanding of the human gut and its impact on human health. Synthetic in vitro models can control specific parameters, including (but not limited to) cell types, fluid flow, nutrient profiles and gaseous exchange. They are also “open” systems, enabling access to chemical and physiological information. In this work, we demonstrate the importance of gut surface topography and fluid flow dynamics which are shown to impact epithelial cell growth, proliferation and intestinal cell function. We have constructed a small intestinal bioreactor using 3-D printing and polymeric scaffolds that mimic the 3-D topography of the intestine and its fluid flow. Our results indicate that TEER measurements, which are typically high in static 2-D Transwell apparatuses, is lower in the presence of liquid sheer and 3-D topography compared to a flat scaffold and static conditions. There was also increased cell proliferation and discovered localized regions of elevated apoptosis, specifically at the tips of the villi, where there is highest sheer. Similarly, glucose was actively transported (as opposed to passive) and at higher rates under flow.
Collapse
Affiliation(s)
- Cait M Costello
- Department of Biological and Environmental Engineering, Cornell University, Ithaca, USA
| | - Mikkel B Phillipsen
- Department of Biological and Environmental Engineering, Cornell University, Ithaca, USA
| | - Leonard M Hartmanis
- Department of Biological and Environmental Engineering, Cornell University, Ithaca, USA
| | - Marek A Kwasnica
- Department of Biological and Environmental Engineering, Cornell University, Ithaca, USA
| | - Victor Chen
- Department of Biological and Environmental Engineering, Cornell University, Ithaca, USA
| | - David Hackam
- Division of Pediatric Surgery, Department of Surgery, Johns Hopkins University, Baltimore, USA
| | - Matthew W Chang
- Department of Biochemistry, Yong Loo Lin School of Medicine, NUS, Singapore, Singapore
| | - William E Bentley
- Institute for Biomedical Devices, University of Maryland, Maryland, USA
| | - John C March
- Department of Biological and Environmental Engineering, Cornell University, Ithaca, USA.
| |
Collapse
|
57
|
Schlieve CR, Fowler KL, Thornton M, Huang S, Hajjali I, Hou X, Grubbs B, Spence JR, Grikscheit TC. Neural Crest Cell Implantation Restores Enteric Nervous System Function and Alters the Gastrointestinal Transcriptome in Human Tissue-Engineered Small Intestine. Stem Cell Reports 2017; 9:883-896. [PMID: 28803915 PMCID: PMC5599241 DOI: 10.1016/j.stemcr.2017.07.017] [Citation(s) in RCA: 86] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2017] [Revised: 07/20/2017] [Accepted: 07/21/2017] [Indexed: 01/20/2023] Open
Abstract
Acquired or congenital disruption in enteric nervous system (ENS) development or function can lead to significant mechanical dysmotility. ENS restoration through cellular transplantation may provide a cure for enteric neuropathies. We have previously generated human pluripotent stem cell (hPSC)-derived tissue-engineered small intestine (TESI) from human intestinal organoids (HIOs). However, HIO-TESI fails to develop an ENS. The purpose of our study is to restore ENS components derived exclusively from hPSCs in HIO-TESI. hPSC-derived enteric neural crest cell (ENCC) supplementation of HIO-TESI establishes submucosal and myenteric ganglia, repopulates various subclasses of neurons, and restores neuroepithelial connections and neuron-dependent contractility and relaxation in ENCC-HIO-TESI. RNA sequencing identified differentially expressed genes involved in neurogenesis, gliogenesis, gastrointestinal tract development, and differentiated epithelial cell types when ENS elements are restored during in vivo development of HIO-TESI. Our findings validate an effective approach to restoring hPSC-derived ENS components in HIO-TESI and may implicate their potential for the treatment of enteric neuropathies.
Collapse
Affiliation(s)
- Christopher R Schlieve
- Developmental Biology and Regenerative Medicine Program, The Saban Research Institute at Children's Hospital Los Angeles, 4650 W. Sunset Boulevard, MS#100, Los Angeles, CA 90027, USA; Department of Surgery, Division of Pediatric Surgery, Children's Hospital Los Angeles, Los Angeles, CA, 90027, USA
| | - Kathryn L Fowler
- Developmental Biology and Regenerative Medicine Program, The Saban Research Institute at Children's Hospital Los Angeles, 4650 W. Sunset Boulevard, MS#100, Los Angeles, CA 90027, USA
| | - Matthew Thornton
- Department of Obstetrics and Gynecology, University of Southern California, Los Angeles, CA, 90033, USA
| | - Sha Huang
- Department of Internal Medicine, Division of Gastroenterology, University of Michigan Medical School, Ann Arbor, MI, 48109, USA; Center for Organogenesis, University of Michigan Medical School, Ann Arbor, MI, 48109, USA; Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
| | - Ibrahim Hajjali
- Developmental Biology and Regenerative Medicine Program, The Saban Research Institute at Children's Hospital Los Angeles, 4650 W. Sunset Boulevard, MS#100, Los Angeles, CA 90027, USA
| | - Xiaogang Hou
- Developmental Biology and Regenerative Medicine Program, The Saban Research Institute at Children's Hospital Los Angeles, 4650 W. Sunset Boulevard, MS#100, Los Angeles, CA 90027, USA
| | - Brendan Grubbs
- Department of Obstetrics and Gynecology, University of Southern California, Los Angeles, CA, 90033, USA
| | - Jason R Spence
- Department of Internal Medicine, Division of Gastroenterology, University of Michigan Medical School, Ann Arbor, MI, 48109, USA; Center for Organogenesis, University of Michigan Medical School, Ann Arbor, MI, 48109, USA; Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
| | - Tracy C Grikscheit
- Developmental Biology and Regenerative Medicine Program, The Saban Research Institute at Children's Hospital Los Angeles, 4650 W. Sunset Boulevard, MS#100, Los Angeles, CA 90027, USA; Department of Surgery, Division of Pediatric Surgery, Children's Hospital Los Angeles, Los Angeles, CA, 90027, USA.
| |
Collapse
|
58
|
Koussoulas K, Gwynne RM, Foong JPP, Bornstein JC. Cholera Toxin Induces Sustained Hyperexcitability in Myenteric, but Not Submucosal, AH Neurons in Guinea Pig Jejunum. Front Physiol 2017; 8:254. [PMID: 28496413 PMCID: PMC5406514 DOI: 10.3389/fphys.2017.00254] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Accepted: 04/10/2017] [Indexed: 01/04/2023] Open
Abstract
Background and Aims: Cholera toxin (CT)-induced hypersecretion requires activation of secretomotor pathways in the enteric nervous system (ENS). AH neurons, which have been identified as a population of intrinsic sensory neurons (ISNs), are a source of excitatory input to the secretomotor pathways. We therefore examined effects of CT in the intestinal lumen on myenteric and submucosal AH neurons. Methods: Isolated segments of guinea pig jejunum were incubated for 90 min with saline plus CT (12.5 μg/ml) or CT + neurotransmitter antagonist, or CT + tetrodotoxin (TTX) in their lumen. After washing CT away, submucosal or myenteric plexus preparations were dissected keeping circumferentially adjacent mucosa intact. Submucosal AH neurons were impaled adjacent to intact mucosa and myenteric AH neurons were impaled adjacent to, more than 5 mm from, and in the absence of intact mucosa. Neuronal excitability was monitored by injecting 500 ms current pulses through the recording electrode. Results: After CT pre-treatment, excitability of myenteric AH neurons adjacent to intact mucosa (n = 29) was greater than that of control neurons (n = 24), but submucosal AH neurons (n = 33, control n = 27) were unaffected. CT also induced excitability increases in myenteric AH neurons impaled distant from the mucosa (n = 6) or in its absence (n = 5). Coincubation with tetrodotoxin or SR142801 (NK3 receptor antagonist), but not SR140333 (NK1 antagonist) or granisetron (5-HT3 receptor antagonist) prevented the increased excitability induced by CT. Increased excitability was associated with a reduction in the characteristic AHP and an increase in the ADP of these neurons, but not a change in the hyperpolarization-activated inward current, Ih. Conclusions: CT increases excitability of myenteric, but not submucosal, AH neurons. This is neurally mediated and depends on NK3, but not 5-HT3 receptors. Therefore, CT may act to amplify the secretomotor response to CT via an increase in the activity of the afferent limb of the enteric reflex circuitry.
Collapse
Affiliation(s)
- Katerina Koussoulas
- Enteric Neuroscience Laboratory, Department of Physiology, University of MelbourneParkville, VIC, Australia
| | - Rachel M Gwynne
- Enteric Neuroscience Laboratory, Department of Physiology, University of MelbourneParkville, VIC, Australia
| | - Jaime P P Foong
- Enteric Neuroscience Laboratory, Department of Physiology, University of MelbourneParkville, VIC, Australia
| | - Joel C Bornstein
- Enteric Neuroscience Laboratory, Department of Physiology, University of MelbourneParkville, VIC, Australia
| |
Collapse
|
59
|
Grubišić V, Gulbransen BD. Enteric glia: the most alimentary of all glia. J Physiol 2017; 595:557-570. [PMID: 27106597 PMCID: PMC5233670 DOI: 10.1113/jp271021] [Citation(s) in RCA: 123] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Accepted: 01/06/2016] [Indexed: 12/12/2022] Open
Abstract
Glia (from Greek γλοία meaning 'glue') pertains to non-neuronal cells in the central (CNS) and peripheral nervous system (PNS) that nourish neurons and maintain homeostasis. In addition, glia are now increasingly appreciated as active regulators of numerous physiological processes initially considered exclusively under neuronal regulation. For instance, enteric glia, a collection of glial cells residing within the walls of the intestinal tract, regulate intestinal motility, a well-characterized reflex controlled by enteric neurons. Enteric glia also interact with various non-neuronal cell types in the gut wall such as enterocytes, enteroendocrine and immune cells and are therefore emerging as important local regulators of diverse gut functions. The intricate molecular mechanisms that govern glia-mediated regulation are beginning to be discovered, but much remains unknown about the functions of enteric glia in health and disease. Here we present a current view of the enteric glia and their regulatory roles in gastrointestinal (GI) (patho)physiology; from GI motility and epithelial barrier function to enteric neuroinflammation.
Collapse
Affiliation(s)
- Vladimir Grubišić
- Neuroscience Program, Department of PhysiologyMichigan State University567 Wilson RoadEast LansingMI48824USA
| | - Brian D. Gulbransen
- Neuroscience Program, Department of PhysiologyMichigan State University567 Wilson RoadEast LansingMI48824USA
| |
Collapse
|
60
|
Ito J, Uchida H, Machida N, Ohtake K, Saito Y, Kobayashi J. Inducible and neuronal nitric oxide synthases exert contrasting effects during rat intestinal recovery following fasting. Exp Biol Med (Maywood) 2017; 242:762-772. [PMID: 28195513 DOI: 10.1177/1535370217694434] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
We investigated the effects of endogenous inducible (iNOS) and neuronal nitric oxide synthase on recovery from intestinal mucosal atrophy caused by fasting-induced apoptosis and decreased cell proliferation during refeeding in rats. Rats were divided into five groups, one of which was fed ad libitum, and four of which underwent 72 h of fasting, followed by refeeding for 0, 6, 24, and 48 h, respectively. iNOS and neuronal nitric oxide synthase mRNA and protein levels in jejunal tissues were measured, and mucosal height was histologically evaluated. Apoptotic indices, interferon-γ (IFN-γ) transcription levels, nitrite levels (as a measure of nitric oxide [NO] production),8-hydroxydeoxyguanosine formation (indicating reactive oxygen species [ROS] levels), crypt cell proliferation, and the motility indices (MI) were also estimated. Associations between mucosal height and NOS protein levels were determined using Spearman's rank correlation test. Notably, we observed significant increases in mucosal height and in neuronal nitric oxide synthase mRNA and protein expression as refeeding time increased. Indeed, there was a significant positive correlation between neuronal nitric oxide synthase protein level and mucosal height during the 48-h refeeding period ( r = 0.725, P < 0.01). Conversely, iNOS mRNA and protein expression decreased according to refeeding time, with a significant negative correlation between iNOS protein level and mucosal height being recorded during the 48-h refeeding period ( r = -0.898, P < 0.01). We also noted a significant negative correlation between jejunal neuronal nitric oxide synthase and iNOS protein concentrations over this same period ( r = -0.734, P < 0.01). Refeeding also restored the decreased jejunal MI caused by fasting. Our finding suggests that refeeding likely repairs fasting-induced jejunal atrophy by suppressing iNOS expression and subsequently inhibiting NO, ROS, and IFN-γ as apoptosis mediators, and by promoting neuronal nitric oxide synthase production and inducing crypt cell proliferation via mechanical stimulation. Impact statement Besides providing new data confirming the involvement of iNOS and nNOS in intestinal mucosal atrophy caused by fasting, this study details their expression and function during recovery from this condition following refeeding. We demonstrate a significant negative correlation between iNOS and nNOS levels during refeeding, and associate this with cell proliferation and apoptosis in crypts and villi. These novel findings elucidate the relationship between these NOS isoforms and its impact on recovery from intestinal injury. A mechanism is proposed comprising the up-regulation of nNOS activity by mechanical stimulation due to the presence of food in the intestine, restricting iNOS-associated apoptosis and promoting cell proliferation and gut motility. Our investigation sheds light on the molecular basis behind the repercussions of total parenteral nutrition on intestinal mucosal integrity, and more importantly, the beneficial effects of early enteral feeding.
Collapse
Affiliation(s)
- Junta Ito
- Division of Pathophysiology, Faculty of Pharmaceutical Science, Department of Clinical Dietetics and Human Nutrition, Josai University, Saitama 350-0295, Japan
| | - Hiroyuki Uchida
- Division of Pathophysiology, Faculty of Pharmaceutical Science, Department of Clinical Dietetics and Human Nutrition, Josai University, Saitama 350-0295, Japan
| | - Naomi Machida
- Division of Pathophysiology, Faculty of Pharmaceutical Science, Department of Clinical Dietetics and Human Nutrition, Josai University, Saitama 350-0295, Japan
| | - Kazuo Ohtake
- Division of Pathophysiology, Faculty of Pharmaceutical Science, Department of Clinical Dietetics and Human Nutrition, Josai University, Saitama 350-0295, Japan
| | - Yuki Saito
- Division of Pathophysiology, Faculty of Pharmaceutical Science, Department of Clinical Dietetics and Human Nutrition, Josai University, Saitama 350-0295, Japan
| | - Jun Kobayashi
- Division of Pathophysiology, Faculty of Pharmaceutical Science, Department of Clinical Dietetics and Human Nutrition, Josai University, Saitama 350-0295, Japan
| |
Collapse
|
61
|
Abstract
Comprehension of small intestine physiology and function provides a framework for the understanding of several important disease pathways of the gastrointestinal system. This article reviews the development, anatomy and histology of the small bowel in addition to physiology and digestion of key nutrients.
Collapse
|
62
|
Zhu X, Liu Z, Niu W, Wang Y, Zhang A, Qu H, Zhou J, Bai L, Yang Y, Li J. Effects of electroacupuncture at ST25 and BL25 in a Sennae-induced rat model of diarrhoea-predominant irritable bowel syndrome. Acupunct Med 2016; 35:216-223. [PMID: 27852563 DOI: 10.1136/acupmed-2016-011180] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/22/2016] [Indexed: 11/03/2022]
Abstract
BACKGROUND Electroacupuncture (EA) may have a role in the treatment of diarrhoea symptoms. Serotonin (5-hydroxytryptamine, 5-HT) is an important neurotransmitter and paracrine signalling molecule in the gastrointestinal (GI) tract, which initiates peristaltic, secretory, vasodilatory, vagal and nociceptive reflexes. In addition, according to the results of our previous report, EA stimulation mediates GI peristalsis by increasing expression of 5-HT and tryptophan hydroxylase (TPH). AIM To investigate the effect of EA at acupuncture points ST25 and BL25 in a rat model of diarrhoea. METHODS A diarrhoea-predominant irritable bowel syndrome (IBS-D) model was induced by Folium Sennae in 24 rats, which remained untreated (n=6) or received EA at ST25 (n=6), BL25 (n=6) or the combination of ST25 and BL25 (n=6). A control group of healthy rats was also included (n=6). After treatment, changes in loose stool and small intestine transit rates, enterochromaffin (EC) cell number, expression of TPH, and faecal/colonic 5-HT contents were measured. RESULTS Loose stool and small intestine transit rates, EC cell numbers, colonic TPH expression and faecal/colonic 5-HT content of IBS-D rats were significantly increased relative to controls (p<0.05) and all these parameters were improved by EA at ST25, BL25, or ST25 and BL25 in combination (all p<0.05 vs untreated IBS-D rats). CONCLUSIONS EA at ST25 and/or BL25 had a positive effect on objective markers of diarrhoea in a IBS-D rat model and induced changes in EC cell number, colonic TPH and 5-HT contents. The effects of EA stimulation at ST25/BL25 on IBS-D rats may be mediated by excitation of sympathetic nerves.
Collapse
Affiliation(s)
- Xianwei Zhu
- Innovation Research Centre of Acupuncture Combined with Medicine, Shaanxi University of Chinese Medicine, Xi'an-Xianyang New Ecomic Zone, Xi'an City, Shaanxi Province, China
| | - Zhibin Liu
- Innovation Research Centre of Acupuncture Combined with Medicine, Shaanxi University of Chinese Medicine, Xi'an-Xianyang New Ecomic Zone, Xi'an City, Shaanxi Province, China.,Department of Acupuncture and Moxibustion, Shaanxi University of Chinese Medicine, Xi'an-Xianyang New Ecomic Zone, Xianyang City, Shaanxi Province, China
| | - Wenmin Niu
- Innovation Research Centre of Acupuncture Combined with Medicine, Shaanxi University of Chinese Medicine, Xi'an-Xianyang New Ecomic Zone, Xi'an City, Shaanxi Province, China.,Department of Acupuncture and Moxibustion, Shaanxi University of Chinese Medicine, Xi'an-Xianyang New Ecomic Zone, Xianyang City, Shaanxi Province, China
| | - Yuan Wang
- Innovation Research Centre of Acupuncture Combined with Medicine, Shaanxi University of Chinese Medicine, Xi'an-Xianyang New Ecomic Zone, Xi'an City, Shaanxi Province, China
| | - Aimin Zhang
- Department of Urologic Surgery, Affiliated Hospital of Shaanxi University of Chinese Medicine, Xi'an-Xianyang New Ecomic Zone, Xi'an City, Shaanxi Province, China
| | - Hongyan Qu
- Department of Acupuncture and Moxibustion, Shaanxi University of Chinese Medicine, Xi'an-Xianyang New Ecomic Zone, Xianyang City, Shaanxi Province, China
| | - Jing Zhou
- College of Public Hygiene, Shaanxi University of Chinese Medicine, Xi'an-Xianyang New Ecomic Zone, Xianyang, Shaanxi Province, China
| | - Lu Bai
- Department of English, Shaanxi University of Chinese Medicine, Xi'an-Xianyang New Ecomic Zone, Xi'an, Shaanxi Province, China
| | - Yong Yang
- College of Basic Medicine, Shaanxi University of Chinese Medicine, Xi'an-Xianyang New Ecomic Zone, Xianyang, Shaanxi Province, China
| | - Jie Li
- Department of Acupuncture and Moxibustion, Shaanxi University of Chinese Medicine, Xi'an-Xianyang New Ecomic Zone, Xianyang City, Shaanxi Province, China
| |
Collapse
|
63
|
Brijs J, Hennig GW, Kellermann AM, Axelsson M, Olsson C. The presence and role of interstitial cells of Cajal in the proximal intestine of shorthorn sculpin (Myoxocephalus scorpius). ACTA ACUST UNITED AC 2016; 220:347-357. [PMID: 27875260 DOI: 10.1242/jeb.141523] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Accepted: 11/03/2016] [Indexed: 12/27/2022]
Abstract
Rhythmic contractions of the mammalian gastrointestinal tract can occur in the absence of neuronal or hormonal stimulation owing to the generation of spontaneous electrical activity by interstitial cells of Cajal (ICC) that are electrically coupled to smooth muscle cells. The myogenically driven component of gastrointestinal motility patterns in fish probably also involves ICC; however, little is known of their presence, distribution and function in any fish species. In the present study, we combined immunohistochemistry and in vivo recordings of intestinal motility to investigate the involvement of ICC in the motility of the proximal intestine in adult shorthorn sculpin (Myoxocephalus scorpius). Antibodies against anoctamin 1 (Ano1, a Ca2+-activated Cl- channel), revealed a dense network of multipolar, repeatedly branching cells in the myenteric region of the proximal intestine, similar in many regards to the mammalian ICC-MY network. The addition of benzbromarone, a potent blocker of Ano1, altered the motility patterns seen in vivo after neural blockade with TTX. The results indicate that ICC are integral for the generation and propagation of the majority of rhythmic contractile patterns in fish, although their frequency and amplitude can be modulated via neural activity.
Collapse
Affiliation(s)
- Jeroen Brijs
- Department of Biological and Environmental Sciences, University of Gothenburg, SE-405 30 Göteborg, Sweden
| | - Grant W Hennig
- Department of Physiology and Cell Biology, University of Reno, Nevada, NV 89557, USA
| | - Anna-Maria Kellermann
- Department of Nature and Engineering, Bremen University of Applied Sciences, Bremen 28199, Germany
| | - Michael Axelsson
- Department of Biological and Environmental Sciences, University of Gothenburg, SE-405 30 Göteborg, Sweden
| | - Catharina Olsson
- Department of Biological and Environmental Sciences, University of Gothenburg, SE-405 30 Göteborg, Sweden
| |
Collapse
|
64
|
Shaylor LA, Hwang SJ, Sanders KM, Ward SM. Convergence of inhibitory neural inputs regulate motor activity in the murine and monkey stomach. Am J Physiol Gastrointest Liver Physiol 2016; 311:G838-G851. [PMID: 27634009 PMCID: PMC5130542 DOI: 10.1152/ajpgi.00062.2016] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Accepted: 09/12/2016] [Indexed: 01/31/2023]
Abstract
Inhibitory motor neurons regulate several gastric motility patterns including receptive relaxation, gastric peristaltic motor patterns, and pyloric sphincter opening. Nitric oxide (NO) and purines have been identified as likely candidates that mediate inhibitory neural responses. However, the contribution from each neurotransmitter has received little attention in the distal stomach. The aims of this study were to identify the roles played by NO and purines in inhibitory motor responses in the antrums of mice and monkeys. By using wild-type mice and mutants with genetically deleted neural nitric oxide synthase (Nos1-/-) and P2Y1 receptors (P2ry1-/-) we examined the roles of NO and purines in postjunctional inhibitory responses in the distal stomach and compared these responses to those in primate stomach. Activation of inhibitory motor nerves using electrical field stimulation (EFS) produced frequency-dependent inhibitory junction potentials (IJPs) that produced muscle relaxations in both species. Stimulation of inhibitory nerves during slow waves terminated pacemaker events and associated contractions. In Nos1-/- mice IJPs and relaxations persisted whereas in P2ry1-/- mice IJPs were absent but relaxations persisted. In the gastric antrum of the non-human primate model Macaca fascicularis, similar NO and purine neural components contributed to inhibition of gastric motor activity. These data support a role of convergent inhibitory neural responses in the regulation of gastric motor activity across diverse species.
Collapse
Affiliation(s)
- Lara A. Shaylor
- Department of Physiology and Cell Biology, University of Nevada School of Medicine, Reno, Nevada
| | - Sung Jin Hwang
- Department of Physiology and Cell Biology, University of Nevada School of Medicine, Reno, Nevada
| | - Kenton M. Sanders
- Department of Physiology and Cell Biology, University of Nevada School of Medicine, Reno, Nevada
| | - Sean M. Ward
- Department of Physiology and Cell Biology, University of Nevada School of Medicine, Reno, Nevada
| |
Collapse
|
65
|
Rodriguez-Tapia E, Perez-Medina A, Bian X, Galligan JJ. Upregulation of L-type calcium channels in colonic inhibitory motoneurons of P/Q-type calcium channel-deficient mice. Am J Physiol Gastrointest Liver Physiol 2016; 311:G763-G774. [PMID: 27586650 PMCID: PMC5142195 DOI: 10.1152/ajpgi.00263.2016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Accepted: 08/23/2016] [Indexed: 01/31/2023]
Abstract
Enteric inhibitory motoneurons use nitric oxide and a purine neurotransmitter to relax gastrointestinal smooth muscle. Enteric P/Q-type Ca2+ channels contribute to excitatory neuromuscular transmission; their contribution to inhibitory transmission is less clear. We used the colon from tottering mice (tg/tg, loss of function mutation in the α1A pore-forming subunit of P/Q-type Ca2+ channels) to test the hypothesis that P/Q-type Ca2+ channels contribute to inhibitory neuromuscular transmission and colonic propulsive motility. Fecal pellet output in vivo and the colonic migrating motor complex (ex vivo) were measured. Neurogenic circular muscle relaxations and inhibitory junction potentials (IJPs) were also measured ex vivo. Colonic propulsive motility in vivo and ex vivo was impaired in tg/tg mice. IJPs were either unchanged or somewhat larger in tissues from tg/tg compared with wild-type (WT) mice. Nifedipine (L-type Ca2+ channel antagonist) inhibited IJPs by 35 and 14% in tissues from tg/tg and WT mice, respectively. The contribution of N- and R-type channels to neuromuscular transmission was larger in tissues from tg/tg compared with WT mice. The resting membrane potential of circular muscle cells was similar in tissues from tg/tg and WT mice. Neurogenic relaxations of circular muscle from tg/tg and WT mice were similar. These results demonstrate that a functional deficit in P/Q-type channels does not alter propulsive colonic motility. Myenteric neuron L-type Ca2+ channel function increases to compensate for loss of functional P/Q-type Ca2+ channels. This compensation maintains inhibitory neuromuscular transmission and normal colonic motility.
Collapse
Affiliation(s)
| | - Alberto Perez-Medina
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, Michigan
| | - Xiaochun Bian
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, Michigan
| | - James J Galligan
- The Neuroscience Program, Michigan State University, East Lansing, Michigan; and
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, Michigan
| |
Collapse
|
66
|
Affiliation(s)
- Friedrich C Luft
- Experimental and Clinical Research Center, Charité Medical Faculty and the Max Delbrück Center for Molecular Medicine, Lindenbergerweg 80, Berlin, 13125, Germany.
| |
Collapse
|
67
|
Clara R, Langhans W, Mansouri A. Oleic acid stimulates glucagon-like peptide-1 release from enteroendocrine cells by modulating cell respiration and glycolysis. Metabolism 2016; 65:8-17. [PMID: 26892511 DOI: 10.1016/j.metabol.2015.10.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Revised: 09/22/2015] [Accepted: 10/01/2015] [Indexed: 12/22/2022]
Abstract
OBJECTIVE Glucagon-like peptide-1 (GLP-1) is a potent satiating and incretin hormone released by enteroendocrine L-cells in response to eating. Dietary fat, in particular monounsaturated fatty acids, such as oleic acid (OA), potently stimulates GLP-1 secretion from L-cells. It is, however, unclear whether the intracellular metabolic handling of OA is involved in this effect. METHODS First we determined the optimal medium for the bioenergetics measurements. Then we examined the effect of OA on the metabolism of the immortalized enteroendocrine GLUTag cell model and assessed GLP-1 release in parallel. We measured oxygen consumption rate and extracellular acidification rate in response to OA and to different metabolic inhibitors with the Seahorse extracellular flux analyzer. RESULTS OA increased cellular respiration and potently stimulated GLP-1 release. The fatty acid oxidation inhibitor etomoxir did neither reduce OA-induced respiration nor affect the OA-induced GLP-1 release. In contrast, inhibition of the respiratory chain or of downstream steps of aerobic glycolysis reduced the OA-induced GLP-1 release, and an inhibition of the first step of glycolysis by addition of 2-deoxy-d-glucose even abolished it. CONCLUSION These findings indicate that an indirect stimulation of glycolysis is crucial for the OA-induced release of GLP-1.
Collapse
Affiliation(s)
- Rosmarie Clara
- Physiology and Behavior Laboratory, ETH Zürich, 8603 Schwerzenbach (Zürich), Switzerland
| | - Wolfgang Langhans
- Physiology and Behavior Laboratory, ETH Zürich, 8603 Schwerzenbach (Zürich), Switzerland
| | - Abdelhak Mansouri
- Physiology and Behavior Laboratory, ETH Zürich, 8603 Schwerzenbach (Zürich), Switzerland.
| |
Collapse
|
68
|
Affiliation(s)
- Robert O Heuckeroth
- Children's Hospital of Philadelphia Research Institute and the Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| |
Collapse
|
69
|
Whitehead K, Cortes Y, Eirmann L. Gastrointestinal dysmotility disorders in critically ill dogs and cats. J Vet Emerg Crit Care (San Antonio) 2016; 26:234-53. [PMID: 26822390 DOI: 10.1111/vec.12449] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2013] [Revised: 07/21/2015] [Accepted: 08/30/2014] [Indexed: 12/12/2022]
Abstract
OBJECTIVE To review the human and veterinary literature regarding gastrointestinal (GI) dysmotility disorders in respect to pathogenesis, patient risk factors, and treatment options in critically ill dogs and cats. ETIOLOGY GI dysmotility is a common sequela of critical illness in people and small animals. The most common GI motility disorders in critically ill people and small animals include esophageal dysmotility, delayed gastric emptying, functional intestinal obstruction (ie, ileus), and colonic motility abnormalities. Medical conditions associated with the highest risk of GI dysmotility include mechanical ventilation, sepsis, shock, trauma, systemic inflammatory response syndrome, and multiple organ failure. The incidence and pathophysiology of GI dysmotility in critically ill small animals is incompletely understood. DIAGNOSIS A presumptive diagnosis of GI dysmotility is often made in high-risk patient populations following detection of persistent regurgitation, vomiting, lack of tolerance of enteral nutrition, abdominal pain, and constipation. Definitive diagnosis is established via radioscintigraphy; however, this diagnostic tool is not readily available and is difficult to perform on small animals. Other diagnostic modalities that have been evaluated include abdominal ultrasonography, radiographic contrast, and tracer studies. THERAPY Therapy is centered at optimizing GI perfusion, enhancement of GI motility, and early enteral nutrition. Pharmacological interventions are instituted to promote gastric emptying and effective intestinal motility and prevention of complications. Promotility agents, including ranitidine/nizatidine, metoclopramide, erythromycin, and cisapride are the mainstays of therapy in small animals. PROGNOSIS The development of complications related to GI dysmotility (eg, gastroesophageal reflux and aspiration) have been associated with increased mortality risk. Institution of prophylaxic therapy is recommended in high-risk patients, however, no consensus exists regarding optimal timing of initiating prophylaxic measures, preference of treatment, or duration of therapy. The prognosis for affected small animal patients remains unknown.
Collapse
Affiliation(s)
- KimMi Whitehead
- Emergency and Critical Care Department, Oradell Animal Hospital, Paramus, NJ, 07452
| | - Yonaira Cortes
- Emergency and Critical Care Department, Oradell Animal Hospital, Paramus, NJ, 07452
| | - Laura Eirmann
- the Nutrition Department (Eirmann), Oradell Animal Hospital, Paramus, NJ, 07452
| |
Collapse
|
70
|
Kendig DM, Hurst NR, Grider JR. Spatiotemporal Mapping of Motility in Ex Vivo Preparations of the Intestines. J Vis Exp 2016:e53263. [PMID: 26863156 PMCID: PMC4781693 DOI: 10.3791/53263] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Multiple approaches have been used to record and evaluate gastrointestinal motility including: recording changes in muscle tension, intraluminal pressure, and membrane potential. All of these approaches depend on measurement of activity at one or multiple locations along the gut simultaneously which are then interpreted to provide a sense of overall motility patterns. Recently, the development of video recording and spatiotemporal mapping (STmap) techniques have made it possible to observe and analyze complex patterns in ex vivo whole segments of colon and intestine. Once recorded and digitized, video records can be converted to STmaps in which the luminal diameter is converted to grayscale or color [called diameter maps (Dmaps)]. STmaps can provide data on motility direction (i.e., stationary, peristaltic, antiperistaltic), velocity, duration, frequency and strength of contractile motility patterns. Advantages of this approach include: analysis of interaction or simultaneous development of different motility patterns in different regions of the same segment, visualization of motility pattern changes over time, and analysis of how activity in one region influences activity in another region. Video recordings can be replayed with different timescales and analysis parameters so that separate STmaps and motility patterns can be analyzed in more detail. This protocol specifically details the effects of intraluminal fluid distension and intraluminal stimuli that affect motility generation. The use of luminal receptor agonists and antagonists provides mechanistic information on how specific patterns are initiated and how one pattern can be converted into another pattern. The technique is limited by the ability to only measure motility that causes changes in luminal diameter, without providing data on intraluminal pressure changes or muscle tension, and by the generation of artifacts based upon experimental setup; although, analysis methods can account for these issues. When compared to previous techniques the video recording and STmap approach provides a more comprehensive understanding of gastrointestinal motility.
Collapse
Affiliation(s)
- Derek M Kendig
- Department of Physiology and Biophysics, Virginia Commonwealth University; Department of Biology, Loyola University Maryland;
| | - Norm R Hurst
- Department of Physiology and Biophysics, Virginia Commonwealth University
| | - John R Grider
- Department of Physiology and Biophysics, Virginia Commonwealth University
| |
Collapse
|
71
|
El Aidy S, Stilling R, Dinan TG, Cryan JF. Microbiome to Brain: Unravelling the Multidirectional Axes of Communication. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 874:301-36. [PMID: 26589226 DOI: 10.1007/978-3-319-20215-0_15] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The gut microbiome plays a crucial role in host physiology. Disruption of its community structure and function can have wide-ranging effects making it critical to understand exactly how the interactive dialogue between the host and its microbiota is regulated to maintain homeostasis. An array of multidirectional signalling molecules is clearly involved in the host-microbiome communication. This interactive signalling not only impacts the gastrointestinal tract, where the majority of microbiota resides, but also extends to affect other host systems including the brain and liver as well as the microbiome itself. Understanding the mechanistic principles of this inter-kingdom signalling is fundamental to unravelling how our supraorganism function to maintain wellbeing, subsequently opening up new avenues for microbiome manipulation to favour desirable mental health outcome.
Collapse
Affiliation(s)
- Sahar El Aidy
- Microbial Physiology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, The Netherlands
| | - Roman Stilling
- Laboratory of Neurogastroenterology, Alimentary Pharmabiotic Centre, University College Cork, Cork, Ireland.,Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
| | - Timothy G Dinan
- Laboratory of Neurogastroenterology, Alimentary Pharmabiotic Centre, University College Cork, Cork, Ireland.,Department of Psychiatry, University College Cork, Cork, Ireland
| | - John F Cryan
- Laboratory of Neurogastroenterology, Alimentary Pharmabiotic Centre, University College Cork, Cork, Ireland. .,Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland.
| |
Collapse
|
72
|
Gallego D, Mañé N, Gil V, Martínez-Cutillas M, Jiménez M. Mechanisms responsible for neuromuscular relaxation in the gastrointestinal tract. REVISTA ESPANOLA DE ENFERMEDADES DIGESTIVAS 2016; 108:721-731. [DOI: 10.17235/reed.2016.4058/2015] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
73
|
Zhu X, Liu Z, Qu H, Niu W, Gao L, Wang Y, Zhang A, Bai L. The effect and mechanism of electroacupuncture at LI11 and ST37 on constipation in a rat model. Acupunct Med 2015; 34:194-200. [PMID: 26561562 PMCID: PMC4941155 DOI: 10.1136/acupmed-2015-010897] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/11/2015] [Indexed: 01/03/2023]
Abstract
Background Electroacupuncture (EA) is used clinically for the treatment of constipation. Serotonin (5-hydroxytryptamine, 5-HT) plays an important role in colonic motility; however it is unknown whether alterations in colonic 5-HT are associated with EA. In this study, the effect and mechanism of EA at acupuncture points LI11 and ST37 were examined using a cold saline-induced rat model of constipation. Methods A rat constipation model was induced by cold saline gavage in 24 Sprague-Dawley rats. A further six rats were included as a Control group. The constipated rats were divided into four groups (n=6 each): a Constipation group that remained untreated; a Constipation+LI11 group that received EA at LI11; a Constipation+ST37 groups that received EA at ST37; and a Constipation+LI11+ST37 group that received EA at both LI11 and ST37. After EA treatment, faecal water content, defaecation frequency, and gastrointestinal (GI) transit were measured, as well as the expression of tryptophan hydroxylase (TPH) in colonic tissues (by Western blot analysis) and 5-HT in both faeces and colonic tissues (by ELISA). Results All three EA-treated groups demonstrated significant improvements in faecal water content, defaecation frequency and GI transit (p<0.05). In addition, TPH and 5-HT expression were both increased by EA at LI11 and/or ST37 (p<0.05). There were no significant differences between the three EA groups for any outcomes. Conclusions EA at LI11 and/or ST37 had a positive effect on objective markers of constipation in a rat model. In addition, EA increased 5-HT and TPH in the colonic tissues.
Collapse
Affiliation(s)
- Xianwei Zhu
- Innovation Research Centre of Acupuncture combined with Medicine, Shaanxi University of Chinese Medicine, Xi'an-Xianyang New Ecomic Zone, Shaanxi Province, China
| | - Zhibin Liu
- Innovation Research Centre of Acupuncture combined with Medicine, Shaanxi University of Chinese Medicine, Xi'an-Xianyang New Ecomic Zone, Shaanxi Province, China Department of Acupuncture and Moxibustion, Shaanxi University of Chinese Medicine, Xi'an-Xianyang New Ecomic Zone, Shaanxi Province, China
| | - Hongyan Qu
- Department of Acupuncture and Moxibustion, Shaanxi University of Chinese Medicine, Xi'an-Xianyang New Ecomic Zone, Shaanxi Province, China
| | - Wenmin Niu
- Innovation Research Centre of Acupuncture combined with Medicine, Shaanxi University of Chinese Medicine, Xi'an-Xianyang New Ecomic Zone, Shaanxi Province, China Department of Acupuncture and Moxibustion, Shaanxi University of Chinese Medicine, Xi'an-Xianyang New Ecomic Zone, Shaanxi Province, China
| | - Li Gao
- Department of Acupuncture and Moxibustion, Shaanxi University of Chinese Medicine, Xi'an-Xianyang New Ecomic Zone, Shaanxi Province, China
| | - Yuan Wang
- Innovation Research Centre of Acupuncture combined with Medicine, Shaanxi University of Chinese Medicine, Xi'an-Xianyang New Ecomic Zone, Shaanxi Province, China
| | - Aimin Zhang
- Department of Urologic Surgery, Affiliated Hospital of Shaanxi University of Chinese Medicine, Xi'an-Xianyang New Ecomic Zone, Shaanxi Province, China
| | - Lu Bai
- Department of English, Shaanxi University of Chinese Medicine, Xi'an-Xianyang New Ecomic Zone, Shaanxi Province, China
| |
Collapse
|
74
|
France M, Skorich E, Kadrofske M, Swain GM, Galligan JJ. Sex-related differences in small intestinal transit and serotonin dynamics in high-fat-diet-induced obesity in mice. Exp Physiol 2015; 101:81-99. [PMID: 26381722 DOI: 10.1113/ep085427] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2015] [Accepted: 09/15/2015] [Indexed: 12/17/2022]
Abstract
Obesity alters gastrointestinal (GI) motility and 5-HT signalling. Altered 5-HT signalling disrupts control of GI motility. Levels of extracellular 5-HT depend on enterochromaffin (EC) cell release and serotonin transporter (SERT) uptake. We assessed GI transit and 5-HT signalling in the jejunum of normal and obese mice. Male and female mice were fed a control diet (CD; 10% of kilocalories as fat) or a high-fat diet (HFD; 60% of kilocalories as fat). Gastrointestinal transit was increased in male HFD-fed and female CD-fed compared with male CD-fed mice. The 5-HT3 receptor blocker, alosetron, increased gastric emptying in male CD-fed mice, but decreased transit in female CD-fed mice. The 5-HT-induced jejunal longitudinal muscle contractions in vitro were similar in all mice. In contrast to male CD-fed mice, 5-HT uptake (measured using continuous amperometry in vitro) in male HFD-fed mice was fluoxetine insensitive, yet sensitive to cocaine and the dopamine transporter (DAT) blocker GBR 12909. Immunoreactivity for DAT was present in the mucosa, and protein levels were greater in male HFD-fed compared with CD-fed mice. Extracellular 5-HT and mucosal 5-hydroxyindolacetic acid (5-HT metabolite) were similar in male HFD-fed compared with CD-fed mice. 5-Hydroxytryptamine uptake was fluoxetine sensitive in all females. Greater SERT protein, decreased extracellular 5-HT and greater mucosal 5-hydroxyindolacetic acid were observed in female HFD-fed compared with CD-fed mice. Mucosal 5-HT and EC cell numbers were similar in CD-fed and HFD-fed mice of both sexes; female 5-HT and EC cell numbers were increased compared with males. The HFD did not alter plasma sex hormone levels in any mice. Overall, obesity alters GI transit and 5-HT signalling in a sex-dependent manner.
Collapse
Affiliation(s)
- Marion France
- Neuroscience Program, Michigan State University, East Lansing, MI, USA
| | - Emmalee Skorich
- Neuroscience Program, Michigan State University, East Lansing, MI, USA
| | - Mark Kadrofske
- Department of Pediatrics and Human Development, Michigan State University, East Lansing, MI, USA
| | - Greg M Swain
- Neuroscience Program, Michigan State University, East Lansing, MI, USA.,Department of Chemistry, Michigan State University, East Lansing, MI, USA
| | - James J Galligan
- Neuroscience Program, Michigan State University, East Lansing, MI, USA.,Department of Pharmacology & Toxicology, Michigan State University, East Lansing, MI, USA
| |
Collapse
|
75
|
Anderson CD, Kendig DM, Al-Qudah M, Mahavadi S, Murthy KS, Grider JR. Role of various kinases in muscarinic M3 receptor-mediated contraction of longitudinal muscle of rat colon. J Smooth Muscle Res 2015; 50:103-19. [PMID: 25891767 PMCID: PMC4862207 DOI: 10.1540/jsmr.50.103] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The longitudinal muscle layer in gut is the functional opponent to the circular muscle
layer during peristalsis. Differences in innervation of the layers allow for the
contraction of one layer concurrently with the relaxation of the other, enabling the
passage of gut contents in a controlled fashion. Differences in development have given the
cells of the two layers differences in receptor populations, membrane lipid handling, and
calcium handling profiles/behaviors. The contractile activity of the longitudinal muscle
is largely mediated by cholinergic neural input from myenteric plexus. Activation of
muscarinic receptors leads to rapid activation of several kinases including MLC kinase,
ERK1/2, CaMKII and Rho kinase. Phosphorylation of myosin light chain (MLC20) by
MLC kinase (MLCK) is a prerequisite for contraction in both circular and longitudinal
muscle cells. In rat colonic longitudinal muscle strips, we measured muscarinic
receptor-mediated contraction following incubation with kinase inhibitors. Basal tension
was differentially regulated by Rho kinase, ERK1/2, CaMKII and CaMKK. Selective inhibitors
of Rho kinase, ERK1/2, CaMKK/AMPK, and CaMKII each reduced carbachol-induced contraction
in the innervated muscle strips. These inhibitors had no direct effect on MLCK activity.
Thus unlike previously reported for isolated muscle cells where CaMKII and ERK1/2 are not
involved in contraction, we conclude that the regulation of carbachol-induced contraction
in innervated longitudinal muscle strips involves the interplay of Rho kinase, ERK1/2,
CaMKK/AMPK, and CAMKII.
Collapse
Affiliation(s)
- Charles D Anderson
- Department of Physiology and Biophysics, VCU Program in Enteric Neuromuscular Sciences, Virginia Commonwealth University, USA
| | | | | | | | | | | |
Collapse
|
76
|
Langness S, Coimbra R, Eliceiri BP, Costantini TW. Vagus Nerve Mediates the Neural Stem Cell Response to Intestinal Injury. J Am Coll Surg 2015. [PMID: 26209457 DOI: 10.1016/j.jamcollsurg.2015.05.015] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
BACKGROUND Intestinal ischemia and reperfusion injury results in damage to elements critical to maintaining intestinal barrier function, including neurons and glia cells, which are part of the enteric nervous system (ENS). To limit inflammation, the ENS must be restored or replaced, yet the process by which this occurs is poorly understood. Multipotent progenitor cells called enteric nervous stem cells (ENSC) can differentiate into neurons or glia when stimulated. The ability of this cell population to respond to intestinal injury is unknown. In this study, we hypothesized that resolution of intestinal barrier injury would be associated with vagus nerve-mediated expansion of ENSCs. STUDY DESIGN Ischemia and reperfusion injury was reproduced in male mice by occluding the superior mesenteric artery for 30 minutes. Abdominal vagotomy was performed in a separate cohort to study the effects of the vagus nerve. Terminal ileum was harvested at various time points after reperfusion and analyzed with histology, flow cytometry, and immunohistochemistry. RESULTS Enteric nervous stem cell expansion occurs at 2, 4, and 8 hours after injury compared with sham (4.6% vs 2.1%; p < 0.001) and correlated with increased glial fibrillary acidic protein on immunohistochemistry. Vagotomy prevented both ENSC expansion and increased glial fibrillary acidic protein staining after injury. Intestinal permeability was restored to baseline by 48 hours after injury, but remained elevated in the vagotomy group compared with sham and injury alone at 48 hours (3.25 mg/mL vs 0.57 mg/mL and 0.26 mg/mL, respectively; p < 0.05). CONCLUSIONS Vagal-mediated expansion of ENSCs occurs after ischemia and reperfusion injury and results in improved kinetics of injury resolution.
Collapse
Affiliation(s)
- Simone Langness
- Division of Trauma, Surgical Critical Care, Burns and Acute Care Surgery, Department of Surgery, University of California, San Diego Health Sciences, San Diego, CA
| | - Raul Coimbra
- Division of Trauma, Surgical Critical Care, Burns and Acute Care Surgery, Department of Surgery, University of California, San Diego Health Sciences, San Diego, CA
| | - Brian P Eliceiri
- Division of Trauma, Surgical Critical Care, Burns and Acute Care Surgery, Department of Surgery, University of California, San Diego Health Sciences, San Diego, CA
| | - Todd W Costantini
- Division of Trauma, Surgical Critical Care, Burns and Acute Care Surgery, Department of Surgery, University of California, San Diego Health Sciences, San Diego, CA.
| |
Collapse
|
77
|
Racosta JM, Kimpinski K, Morrow SA, Kremenchutzky M. Autonomic dysfunction in multiple sclerosis. Auton Neurosci 2015; 193:1-6. [PMID: 26070809 DOI: 10.1016/j.autneu.2015.06.001] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2015] [Revised: 05/15/2015] [Accepted: 06/01/2015] [Indexed: 01/23/2023]
Abstract
Autonomic dysfunction is a prevalent and significant cause of disability among patients with multiple sclerosis. Autonomic dysfunction in multiple sclerosis is usually explained by lesions within central nervous system regions responsible for autonomic regulation, but novel evidence suggests that other factors may be involved as well. Additionally, the interactions between the autonomic nervous system and the immune system have generated increased interest about the role of autonomic dysfunction in the pathogenesis of multiple sclerosis. In this paper we analyze systematically the most relevant signs and symptoms of autonomic dysfunction in MS, considering separately their potential causes and implications.
Collapse
Affiliation(s)
- Juan Manuel Racosta
- Department of Clinical Neurological Sciences, London Health Sciences Centre, Western University, London, ON, Canada.
| | - Kurt Kimpinski
- Department of Clinical Neurological Sciences, London Health Sciences Centre, Western University, London, ON, Canada
| | - Sarah Anne Morrow
- Department of Clinical Neurological Sciences, London Health Sciences Centre, Western University, London, ON, Canada
| | - Marcelo Kremenchutzky
- Department of Clinical Neurological Sciences, London Health Sciences Centre, Western University, London, ON, Canada
| |
Collapse
|
78
|
Bashashati M, Nasser Y, Keenan CM, Ho W, Piscitelli F, Nalli M, Mackie K, Storr MA, Di Marzo V, Sharkey KA. Inhibiting endocannabinoid biosynthesis: a novel approach to the treatment of constipation. Br J Pharmacol 2015; 172:3099-111. [PMID: 25684407 DOI: 10.1111/bph.13114] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2014] [Revised: 02/03/2015] [Accepted: 02/09/2015] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND AND PURPOSE Endocannabinoids are a family of lipid mediators involved in the regulation of gastrointestinal (GI) motility. The expression, localization and function of their biosynthetic enzymes in the GI tract are not well understood. Here, we examined the expression, localization and function of the enzyme diacylglycerol lipase-α (DAGLα), which is involved in biosynthesis of the endocannabinoid 2-arachidonoylglycerol (2-AG). EXPERIMENTAL APPROACH Cannabinoid CB1 receptor-deficient, wild-type control and C3H/HeJ mice, a genetically constipated strain, were used. The distribution of DAGLα in the enteric nervous system was examined by immunohistochemistry. Effects of the DAGL inhibitors, orlistat and OMDM-188 on pharmacologically induced GI hypomotility were assessed by measuring intestinal contractility in vitro and whole gut transit or faecal output in vivo. Endocannabinoid levels were measured by mass spectrometry. KEY RESULTS DAGLα was expressed throughout the GI tract. In the intestine, unlike DAGLβ, DAGLα immunoreactivity was prominently expressed in the enteric nervous system. In the myenteric plexus, it was colocalized with the vesicular acetylcholine transporter in cholinergic nerves. In normal mice, inhibiting DAGL reversed both pharmacologically reduced intestinal contractility and pharmacologically prolonged whole gut transit. Moreover, inhibiting DAGL normalized faecal output in constipated C3H/HeJ mice. In colons incubated with scopolamine, 2-AG was elevated while inhibiting DAGL normalized 2-AG levels. CONCLUSIONS AND IMPLICATIONS DAGLα was expressed in the enteric nervous system of mice and its inhibition reversed slowed GI motility, intestinal contractility and constipation through 2-AG and CB1 receptor-mediated mechanisms. Our data suggest that DAGLα inhibitors may be promising candidates for the treatment of constipation.
Collapse
Affiliation(s)
- M Bashashati
- Hotchkiss Brain Institute and Snyder Institute for Chronic Diseases, Department of Physiology and Pharmacology, University of Calgary, Calgary, AB, Canada
| | - Y Nasser
- Division of Gastroenterology, Department of Medicine, University of Calgary, Calgary, AB, Canada
| | - C M Keenan
- Hotchkiss Brain Institute and Snyder Institute for Chronic Diseases, Department of Physiology and Pharmacology, University of Calgary, Calgary, AB, Canada
| | - W Ho
- Hotchkiss Brain Institute and Snyder Institute for Chronic Diseases, Department of Physiology and Pharmacology, University of Calgary, Calgary, AB, Canada
| | - F Piscitelli
- Endocannabinoid Research Group, Istituto di Chimica Biomolecolare, Consiglio Nazionale delle Ricerche, Pozzuoli, Italy
| | - M Nalli
- Dipartimento di Chimica e Tecnologie del Farmaco, Sapienza Università di Roma, Rome, Italy
| | - K Mackie
- Department of Psychological and Brain Sciences, Gill Center for Biomolecular Science, Indiana University, Bloomington, IN, USA
| | - M A Storr
- Division of Gastroenterology, Department of Medicine, University of Calgary, Calgary, AB, Canada.,II Medical Department, Klinikum Groshadern, Ludwig Maximilians University of Munich, Munich, Germany
| | - V Di Marzo
- Endocannabinoid Research Group, Istituto di Chimica Biomolecolare, Consiglio Nazionale delle Ricerche, Pozzuoli, Italy
| | - K A Sharkey
- Hotchkiss Brain Institute and Snyder Institute for Chronic Diseases, Department of Physiology and Pharmacology, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
79
|
El Aidy S, Dinan TG, Cryan JF. Gut Microbiota: The Conductor in the Orchestra of Immune-Neuroendocrine Communication. Clin Ther 2015; 37:954-67. [PMID: 25846319 DOI: 10.1016/j.clinthera.2015.03.002] [Citation(s) in RCA: 148] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Revised: 02/23/2015] [Accepted: 03/04/2015] [Indexed: 01/01/2023]
Abstract
PURPOSE It is well established that mammals are so-called super-organisms that coexist with a complex microbiota. Growing evidence points to the delicacy of this host-microbe interplay and how disruptive interventions could have lifelong consequences. The goal of this article was to provide insights into the potential role of the gut microbiota in coordinating the immune-neuroendocrine cross-talk. METHODS Literature from a range of sources, including PubMed, Google Scholar, and MEDLINE, was searched to identify recent reports regarding the impact of the gut microbiota on the host immune and neuroendocrine systems in health and disease. FINDINGS The immune system and nervous system are in continuous communication to maintain a state of homeostasis. Significant gaps in knowledge remain regarding the effect of the gut microbiota in coordinating the immune-nervous systems dialogue. Recent evidence from experimental animal models found that stimulation of subsets of immune cells by the gut microbiota, and the subsequent cross-talk between the immune cells and enteric neurons, may have a major impact on the host in health and disease. IMPLICATIONS Data from rodent models, as well as from a few human studies, suggest that the gut microbiota may have a major role in coordinating the communication between the immune and neuroendocrine systems to develop and maintain homeostasis. However, the underlying mechanisms remain unclear. The challenge now is to fully decipher the molecular mechanisms that link the gut microbiota, the immune system, and the neuroendocrine system in a network of communication to eventually translate these findings to the human situation, both in health and disease.
Collapse
Affiliation(s)
- Sahar El Aidy
- Laboratory of Neurogastroenterology, Alimentary Pharmabiotic Centre, University College Cork, Cork, Ireland; Department of Industrial Biotechnology, Genetic Engineering and Biotechnology Research Institute, Sadat City University, Sadat City, Egypt
| | - Timothy G Dinan
- Laboratory of Neurogastroenterology, Alimentary Pharmabiotic Centre, University College Cork, Cork, Ireland; Department of Psychiatry, University College Cork, Cork, Ireland
| | - John F Cryan
- Laboratory of Neurogastroenterology, Alimentary Pharmabiotic Centre, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland.
| |
Collapse
|
80
|
Stenkamp-Strahm CM, Nyavor YEA, Kappmeyer AJ, Horton S, Gericke M, Balemba OB. Prolonged high fat diet ingestion, obesity, and type 2 diabetes symptoms correlate with phenotypic plasticity in myenteric neurons and nerve damage in the mouse duodenum. Cell Tissue Res 2015; 361:411-26. [PMID: 25722087 DOI: 10.1007/s00441-015-2132-9] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2014] [Accepted: 01/20/2015] [Indexed: 12/18/2022]
Abstract
Symptoms of diabetic gastrointestinal dysmotility indicate neuropathy of the enteric nervous system. Long-standing diabetic enteric neuropathy has not been fully characterized, however. We used prolonged high fat diet ingestion (20 weeks) in a mouse model to mimic human obese and type 2 diabetic conditions, and analyzed changes seen in neurons of the duodenal myenteric plexus. Ganglionic and neuronal size, number of neurons per ganglionic area, density indices of neuronal phenotypes (immunoreactive nerve cell bodies and varicosities per ganglion or tissue area) and nerve injury were measured. Findings were compared with results previously seen in mice fed the same diet for 8 weeks. Compared to mice fed standard chow, those on a prolonged high fat diet had smaller ganglionic and cell soma areas. Myenteric VIP- and ChAT-immunoreactive density indices were also reduced. Myenteric nerve fibers were markedly swollen and cytoskeletal protein networks were disrupted. The number of nNOS nerve cell bodies per ganglia was increased, contrary to the reduction previously seen after 8 weeks, but the density index of nNOS varicosities was reduced. Mice fed high fat and standard chow diets experienced an age-related reduction in total neurons, with bias towards neurons of sensory phenotype. Meanwhile, ageing was associated with an increase in excitatory neuronal markers. Collectively, these results support a notion that nerve damage underlies diabetic symptoms of dysmotility, and reveals adaptive ENS responses to the prolonged ingestion of a high fat diet. This highlights a need to mechanistically study long-term diet-induced nerve damage and age-related impacts on the ENS.
Collapse
Affiliation(s)
- Chloe M Stenkamp-Strahm
- Department of Biological Sciences, University of Idaho, 875 Perimeter Drive 3051, LSS 252, Moscow, ID, 83844-3051, USA
| | | | | | | | | | | |
Collapse
|
81
|
Schreiber D, Jost V, Bischof M, Seebach K, Lammers WJEP, Douglas R, Schäfer KH. Motility patterns of ex vivo intestine segments depend on perfusion mode. World J Gastroenterol 2014; 20:18216-18227. [PMID: 25561789 PMCID: PMC4277959 DOI: 10.3748/wjg.v20.i48.18216] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2014] [Revised: 06/08/2014] [Accepted: 07/11/2014] [Indexed: 02/06/2023] Open
Abstract
AIM: To evaluate and characterize motility patterns from small intestinal gut segments depending on different perfusion media and pressures.
METHODS: Experiments were carried out in a custom designed perfusion chamber system to validate and standardise the perfusion technique used. The perfusion chamber was built with a transparent front wall allowing for optical motility recordings and a custom made fastener to hold the intestinal segments. Experiments with different perfusion and storage media combined with different luminal pressures were carried out to evaluate the effects on rat small intestine motility. Software tools which enable the visualization and characterization of intestinal motility in response to different stimuli were used to evaluate the videotaped experiments. The data collected was presented in so called heatmaps thus providing a concise overview of form and strength of contractility patterns. Furthermore, the effect of different storage media on tissue quality was evaluated. Haematoxylin-Eosin stainings were used to compare tissue quality depending on storage and perfusion mode.
RESULTS: Intestinal motility is characterized by different repetitive motility patterns, depending on the actual situation of the gut. Different motility patterns could be recorded and characterized depending on the perfusion pressure and media used. We were able to describe at least three different repetitive patterns of intestinal motility in vitro. Patterns with an oral, anal and oro-anal propagation direction could be recorded. Each type of pattern finalized its movement with or without a subsequent distension of the wavefront. Motility patterns could clearly be distinguished in heatmap diagrams. Furthermore undirected motility could be observed. The quantity of the different patterns varies and is highly dependent on the perfusion medium used. Tissue preservation varies depending on the perfusion medium utilized, therefore media with a simple composition as Tyrode solution can only be recommended for short time experiments. The more complex media, MEM-HEPES medium and especially AQIX® RS-I tissue preservation reagent preserved the tissue much better during perfusion.
CONCLUSION: Perfusion media have to be carefully chosen considering type and duration of the experiments. If excellent tissue quality is required, complex media are favorable. Perfusion pressure is also of great importance due to the fact that a minimum amount of luminal pressure seems to be necessary to trigger intestinal contractions.
Collapse
|
82
|
EP2 and EP4 receptors mediate PGE2 induced relaxation in murine colonic circular muscle: Pharmacological characterization. Pharmacol Res 2014; 90:76-86. [DOI: 10.1016/j.phrs.2014.10.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2014] [Revised: 10/07/2014] [Accepted: 10/13/2014] [Indexed: 01/27/2023]
|
83
|
Mazet B. Gastrointestinal motility and its enteric actors in mechanosensitivity: past and present. Pflugers Arch 2014; 467:191-200. [PMID: 25366494 DOI: 10.1007/s00424-014-1635-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2013] [Revised: 10/14/2014] [Accepted: 10/19/2014] [Indexed: 12/14/2022]
Abstract
Coordinated contractions of the smooth muscle layers of the gastrointestinal (GI) tract are required to produce motor patterns that ensure normal GI motility. The crucial role of the enteric nervous system (ENS), the intrinsic ganglionated network located within the GI wall, has long been recognized in the generation of the main motor patterns. However, devising an appropriate motility requires the integration of informations emanating from the lumen of the GI tract. As already found more than half a century ago, the ability of the GI tract to respond to mechanical forces such as stretch is not restricted to neuronal mechanisms. Instead, mechanosensitivity is now recognized as a property of several non-neuronal cell types, the excitability of which is probably involved in shaping the motor patterns. This brief review gives an overview on how mechanosensitivity of different cell types in the GI tract has been established and, whenever available, on what ionic conductances are involved in mechanotransduction and their potential impact on normal GI motility.
Collapse
Affiliation(s)
- Bruno Mazet
- Aix Marseille Université, CNRS, CRN2M UMR 7286, CS80011 Bd Pierre Dramard, 13344, Marseille Cedex 15, France,
| |
Collapse
|
84
|
Abstract
Gastrointestinal motility causes movement of food during digestion through contractions of the gut smooth muscle. The enteric nervous system regulates these events, and Muller et al. now find that its interaction with the immune system, in concert with gut microbiota, provides an additional layer of regulation to this complex task.
Collapse
Affiliation(s)
| | - Marco Colonna
- Washington University School of Medicine, St. Louis, MO 63110, USA.
| |
Collapse
|
85
|
Guo H, Zhang J, Gao W, Qu Z, Liu C. Gastrointestinal effect of methanol extract of Radix Aucklandiae and selected active substances on the transit activity of rat isolated intestinal strips. PHARMACEUTICAL BIOLOGY 2014; 52:1141-9. [PMID: 24649908 DOI: 10.3109/13880209.2013.879601] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
CONTEXT Radix Aucklandiae, the dry rhizome of Aucklandia lappa Decne (Asteraceae), enjoyed traditional popularity for its antidiarrheal effects. Although there are many investigations on its chemical constituents and pharmacologic actions, few studies explaining its activity and mechanism in gastrointestinal disorders are available. OBJECTIVE In this paper, we focused on the effects of the methanol extract of R. Aucklandiae (RA ext) on gastrointestinal tract, so as to assess some of the possible mechanisms involved in the clinical treatment. MATERIALS AND METHODS In vivo, in neostigmine-induced mice and normal mice, after intragastric administration, RA ext (100, 200, 300, and 400 mg/kg) was studied on gastrointestinal transit including gastric emptying and small intestinal motility. Meanwhile, in vitro, the effect of it (0.1, 0.2, 0.3, and 0.4 mg/mL) on the isolated tissue preparations of rat jejunum was also investigated, as well as costunolide and dehydrocostuslactone which were the main constituents. RESULTS In vivo, the gastric emptying increased and intestinal transit decreased after the administration of RA ext in normal mice. However, RA ext inhibited the gastric emptying and the intestinal transit throughout the concentrations in neostigmine-induced mice. In vitro, RA ext caused inhibitory effect on the spontaneous contraction of rat-isolated jejunum in a dose-dependent manner ranging from 0.1 to 0.4 mg/mL, and it also relaxed the acetylcholine chloride (Ach, 10(-5) M), 5-hydroxytryptamine (5-HT, 200 μM)-induced, and K(+) (60 mM)-induced contractions. RA ext shifted the Ca(2+) concentration-response curves to right, similar to that caused by verapamil (0.025 mM). The Ca(2+) concentration-response curves were shifted by costunolide (CO) (5.4, 8.1, and 10.8 μg/mL), dehydrocostuslactone (DE) (4.6, 6.9, and 9.2 μg/mL), costunolide-dehydrocostuslactone (CO-DE) (5.4-4.6, 8.1-6.9, and 10.8-9.2 μg/mL) to the right, similar to that caused by verapamil (0.01 mM). DISCUSSION AND CONCLUSION These results indicate that RA ext played a spasmolytic role in gastrointestinal motility, which is probably mediated through the inhibition of muscarinic receptors, 5-HT receptors, and calcium influx. The presence of cholinergic and calcium antagonist constituents may be the compatibility of CO and DE. All these results provide a pharmacological basis for its clinical use in the gastrointestinal tract.
Collapse
Affiliation(s)
- Huimin Guo
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University , Tianjin , China
| | | | | | | | | |
Collapse
|
86
|
Brijs J, Hennig GW, Axelsson M, Olsson C. Effects of feeding on in vivo motility patterns in the proximal intestine of shorthorn sculpin (Myoxocephalus scorpius). J Exp Biol 2014; 217:3015-27. [PMID: 24948631 PMCID: PMC4148186 DOI: 10.1242/jeb.101741] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2013] [Accepted: 06/10/2014] [Indexed: 01/16/2023]
Abstract
This is the first study to catalogue the diverse array of in vivo motility patterns in a teleost fish and how they are affected by feeding. Video recordings of exteriorised proximal intestine from fasted and fed shorthorn sculpin (Myoxocephalus scorpius) were used to generate spatio-temporal maps to portray and quantify motility patterns. Propagating and non-propagating contractions were observed to occur at different frequencies and durations. The most apparent difference between the feeding states was that bands of relatively high amplitude contractions propagating slowly in the anal direction were observed in all fasted fish (N=10) but in only 35% of fed fish (N=11). Additionally, fed fish displayed a reduced frequency (0.21±0.03 versus 0.32±0.06 contractions min(-1)) and rhythmicity of these contractions compared with fasted fish. Although the underlying mechanisms of these slow anally propagating contractions differ from those of mammalian migrating motor complexes, we believe that they may play a similar role in shorthorn sculpin during the interdigestive period, to potentially remove food remnants and prevent the establishment of pathogens. 'Ripples' were the most prevalent contraction type in shorthorn sculpin and may be important during mixing and absorption. The persistence of shallow ripples and pendular movements of longitudinal muscle after tetrodotoxin (1 μmol l(-1)) treatment suggests these contractions were myogenic in origin. The present study highlights both similarities and differences in motility patterns between shorthorn sculpin and other vertebrates, as well as providing a platform to examine other aspects of gastrointestinal functions in fish, including the impact of environmental changes.
Collapse
Affiliation(s)
- Jeroen Brijs
- Department of Biological and Environmental Sciences, University of Gothenburg, Gothenburg, Sweden
| | - Grant W Hennig
- Department of Physiology and Cell Biology, University of Reno, NV, USA
| | - Michael Axelsson
- Department of Biological and Environmental Sciences, University of Gothenburg, Gothenburg, Sweden
| | - Catharina Olsson
- Department of Biological and Environmental Sciences, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
87
|
Joscelyn J, Kasper LH. Digesting the emerging role for the gut microbiome in central nervous system demyelination. Mult Scler 2014; 20:1553-9. [PMID: 25070675 DOI: 10.1177/1352458514541579] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The fields of microbiology, immunology, neurology and nutrition are rapidly converging, as advanced sequencing and genomics-based methodologies have enabled the mapping out of the microbial diversity of humans for the first time. Bugs, guts, brains and behavior were once believed to be separate domains of clinical practice and research; however, recent observations in our understanding of the microbiome indicate that the boundaries between domains are becoming permeable. This permeability is multidirectional: Biological systems are operating simultaneously in a vastly complex and interconnected web. Understanding the microbiome-gut-brain axis will entail fleshing out the mechanisms by which transduction across each domain occurs, allowing us ultimately to appreciate the role of commensal organisms in shaping and modulating host immunity. This article will highlight animal and human research to date, as well as highlight directions for future research. We speculate that the gut microbiome is potentially the premier environmental risk factor mediating inflammatory central nervous system demyelination, in particular multiple sclerosis.
Collapse
Affiliation(s)
| | - Lloyd H Kasper
- Geisel School of Medicine, Dartmouth College, Hanover, NH, USA
| |
Collapse
|
88
|
Singh RD, Gibbons SJ, Saravanaperumal SA, Du P, Hennig GW, Eisenman ST, Mazzone A, Hayashi Y, Cao C, Stoltz GJ, Ordog T, Rock JR, Harfe BD, Szurszewski JH, Farrugia G. Ano1, a Ca2+-activated Cl- channel, coordinates contractility in mouse intestine by Ca2+ transient coordination between interstitial cells of Cajal. J Physiol 2014; 592:4051-68. [PMID: 25063822 DOI: 10.1113/jphysiol.2014.277152] [Citation(s) in RCA: 84] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Interstitial cells of Cajal (ICC) are pacemaker cells that generate electrical activity to drive contractility in the gastrointestinal tract via ion channels. Ano1 (Tmem16a), a Ca(2+)-activated Cl(-) channel, is an ion channel expressed in ICC. Genetic deletion of Ano1 in mice resulted in loss of slow waves in smooth muscle of small intestine. In this study, we show that Ano1 is required to maintain coordinated Ca(2+) transients between myenteric ICC (ICC-MY) of small intestine. First, we found spontaneous Ca(2+) transients in ICC-MY in both Ano1 WT and knockout (KO) mice. However, Ca(2+) transients within the ICC-MY network in Ano1 KO mice were uncoordinated, while ICC-MY Ca(2+) transients in Ano1 WT mice were rhythmic and coordinated. To confirm the role of Ano1 in the loss of Ca(2+) transient coordination, we used pharmacological inhibitors of Ano1 activity and shRNA-mediated knock down of Ano1 expression in organotypic cultures of Ano1 WT small intestine. Coordinated Ca(2+) transients became uncoordinated using both these approaches, supporting the conclusion that Ano1 is required to maintain coordination/rhythmicity of Ca(2+) transients. We next determined the effect on smooth muscle contractility using spatiotemporal maps of contractile activity in Ano1 KO and WT tissues. Significantly decreased contractility that appeared to be non-rhythmic and uncoordinated was observed in Ano1 KO jejunum. In conclusion, Ano1 has a previously unidentified role in the regulation of coordinated gastrointestinal smooth muscle function through coordination of Ca(2+) transients in ICC-MY.
Collapse
Affiliation(s)
- Raman Deep Singh
- Department of Physiology and Biomedical Engineering Enteric NeuroScience Program, Mayo Clinic, Rochester, MN, USA
| | - Simon J Gibbons
- Department of Physiology and Biomedical Engineering Enteric NeuroScience Program, Mayo Clinic, Rochester, MN, USA
| | | | - Peng Du
- Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand
| | - Grant W Hennig
- Department of Physiology and Cell Biology, University of Nevada School of Medicine, Reno, NV, USA
| | - Seth T Eisenman
- Department of Physiology and Biomedical Engineering Enteric NeuroScience Program, Mayo Clinic, Rochester, MN, USA
| | - Amelia Mazzone
- Department of Physiology and Biomedical Engineering Enteric NeuroScience Program, Mayo Clinic, Rochester, MN, USA
| | - Yujiro Hayashi
- Department of Physiology and Biomedical Engineering Enteric NeuroScience Program, Mayo Clinic, Rochester, MN, USA
| | - Chike Cao
- Department of Physiology and Biomedical Engineering Enteric NeuroScience Program, Mayo Clinic, Rochester, MN, USA
| | - Gary J Stoltz
- Department of Physiology and Biomedical Engineering Enteric NeuroScience Program, Mayo Clinic, Rochester, MN, USA
| | - Tamas Ordog
- Department of Physiology and Biomedical Engineering Enteric NeuroScience Program, Mayo Clinic, Rochester, MN, USA
| | - Jason R Rock
- Department of Anatomy, UCSF School of Medicine, San Francisco, CA, USA
| | - Brian D Harfe
- Department of Molecular Genetics and Microbiology Genetics Institute, University of Florida, College of Medicine, Gainesville, FL, USA
| | - Joseph H Szurszewski
- Department of Physiology and Biomedical Engineering Enteric NeuroScience Program, Mayo Clinic, Rochester, MN, USA
| | - Gianrico Farrugia
- Department of Physiology and Biomedical Engineering Enteric NeuroScience Program, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
89
|
Guo H, Zhang J, Gao W, Qu Z, Liu C. Anti-diarrhoeal activity of methanol extract of Santalum album L. in mice and gastrointestinal effect on the contraction of isolated jejunum in rats. JOURNAL OF ETHNOPHARMACOLOGY 2014; 154:704-710. [PMID: 24809287 DOI: 10.1016/j.jep.2014.04.043] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2013] [Revised: 04/22/2014] [Accepted: 04/27/2014] [Indexed: 06/03/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Santalum album L., namely Sandalwood, honored as "Green Gold", is a traditional Chinese herb which has the effects of anti-diarrhoeal and antibacterial activity. But there is limit scientific study on its activity and mechanism in gastrointestinal disorders. MATERIALS AND METHODS in vivo, after intragastric administration, the methanol extract of Sandalwood (SE) (200, 400 and 800 mg/kg) were studied in castor oil-induced diarrhoea mice. By the test of small intestinal hyperfunction induced by neostigmine, SE was studied on gastrointestinal transit including gastric emptying and small intestinal motility. Meanwhile, in vitro, the effects of SE (0.02, 0.05, 0.1, 0.2, 0.3, 0.4 mg/mL) on the isolated tissue preparations of rat jejunum were also investigated. The rat jejunum strips were pre-contracted with acetylcholine (Ach; 10(-6)M), 5-hydroxytryptamine (5-HT, 200 μM) or potassium chloride (KCl; 60 mM) and tested in the presence of SE. In addition, the possible myogenic effect was analyzed in the pretreatment of the jejunum preparations with SE or verapamil in Ca(2+)-free high-K(+) (60 mM) solution containing EDTA. RESULTS At doses of 200, 400 and 800 mg/kg, SE showed significant anti-diarrhoeal activity against castor oil-induced diarrhoea as compared with the control. At the same doses, it also inhibited the gastric emptying and small intestinal motility in the mice of which small intestinal hyperfunction induced by neostigmine. It caused inhibitory effects on the spontaneous contraction of rat-isolated jejunum in dose-dependent manner ranging from 0.02 to 0.4 mg/mL, and it also relaxed the Ach-induced, 5-HT-induced and K(+)-induced contractions. SE shifted the Ca(2+) concentration-response curves to right, similar to that caused by verapamil (0.025 mM). CONCLUSIONS These findings indicated that SE played a spasmolytic role in gastrointestinal motility which was probably mediated through inhibition of muscarinic receptors, 5-HT receptors and calcium influx. All these results provide pharmacological basis for its clinical use in gastrointestinal tract.
Collapse
Affiliation(s)
- Huimin Guo
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China
| | - Jingze Zhang
- Department of Pharmacy, Logistics College of Chinese People's Armed Police Forces, Tianjin 300162, China
| | - Wenyuan Gao
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China.
| | - Zhuo Qu
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China
| | - Changxiao Liu
- The State Key Laboratories of Pharmacodynamics and Pharmacokinetics, Tianjin, China
| |
Collapse
|
90
|
Raghavan S, Bitar KN. The influence of extracellular matrix composition on the differentiation of neuronal subtypes in tissue engineered innervated intestinal smooth muscle sheets. Biomaterials 2014; 35:7429-40. [PMID: 24929617 DOI: 10.1016/j.biomaterials.2014.05.037] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2014] [Accepted: 05/15/2014] [Indexed: 01/29/2023]
Abstract
Differentiation of enteric neural stem cells into several appropriate neural phenotypes is crucial while considering transplantation as a cellular therapy to treat enteric neuropathies. We describe the formation of tissue engineered innervated sheets, where intestinal smooth muscle and enteric neuronal progenitor cells are brought into close association in extracellular matrix (ECM) based microenvironments. Uniaxial alignment of constituent smooth muscle cells was achieved by substrate microtopography. The smooth muscle component of the tissue engineered sheets maintained a contractile phenotype irrespective of the ECM composition, and generated equivalent contractions in response to potassium chloride stimulation, similar to native intestinal tissue. We provided enteric neuronal progenitor cells with permissive ECM-based compositional and viscoelastic cues to generate excitatory and inhibitory neuronal subtypes. In the presence of the smooth muscle cells, the enteric neuronal progenitor cells differentiated to functionally innervate the smooth muscle. The differentiation of specific neuronal subtypes was influenced by the ECM microenvironment, namely combinations of collagen I, collagen IV, laminin and/or heparan sulfate. The physiology of differentiated neurons within tissue engineered sheets was evaluated. Sheets with composite collagen and laminin had the most similar patterns of Acetylcholine-induced contraction to native intestinal tissue, corresponding to an increased protein expression of choline acetyltransferase. An enriched nitrergic neuronal population, evidenced by an increased expression of neuronal nitric oxide synthase, was obtained in tissue engineered sheets that included collagen IV. These sheets had a significantly increased magnitude of electrical field stimulated relaxation, sensitive maximally to nitric oxide synthase inhibition. Tissue engineered sheets containing laminin and/or heparan sulfate had a balanced expression of contractile and relaxant motor neurons. Our studies demonstrated that neuronal subtype was modulated by varying ECM composition. This observation could be utilized to derive enriched populations of specific enteric neurons in vitro prior to transplantation.
Collapse
Affiliation(s)
- Shreya Raghavan
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, NC 27101, USA; Virginia Tech-Wake Forest School of Biomedical Engineering and Sciences, Winston-Salem, NC 27101, USA
| | - Khalil N Bitar
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, NC 27101, USA; Virginia Tech-Wake Forest School of Biomedical Engineering and Sciences, Winston-Salem, NC 27101, USA.
| |
Collapse
|
91
|
Dinning PG, Wiklendt L, Omari T, Arkwright JW, Spencer NJ, Brookes SJH, Costa M. Neural mechanisms of peristalsis in the isolated rabbit distal colon: a neuromechanical loop hypothesis. Front Neurosci 2014; 8:75. [PMID: 24795551 PMCID: PMC3997013 DOI: 10.3389/fnins.2014.00075] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2014] [Accepted: 03/26/2014] [Indexed: 11/13/2022] Open
Abstract
Propulsive contractions of circular muscle are largely responsible for the movements of content along the digestive tract. Mechanical and electrophysiological recordings of isolated colonic circular muscle have demonstrated that localized distension activates ascending and descending interneuronal pathways, evoking contraction orally and relaxation anally. These polarized enteric reflex pathways can theoretically be sequentially activated by the mechanical stimulation of the advancing contents. Here, we test the hypothesis that initiation and propagation of peristaltic contractions involves a neuromechanical loop; that is an initial gut distension activates local and oral reflex contraction and anal reflex relaxation, the subsequent movement of content then acts as new mechanical stimulus triggering sequentially reflex contractions/relaxations at each point of the gut resulting in a propulsive peristaltic contraction. In fluid filled isolated rabbit distal colon, we combined spatiotemporal mapping of gut diameter and intraluminal pressure with a new analytical method, allowing us to identify when and where active (neurally-driven) contraction or relaxation occurs. Our data indicate that gut dilation is associated with propagating peristaltic contractions, and that the associated level of dilation is greater than that preceding non-propagating contractions (2.7 ± 1.4 mm vs. 1.6 ± 1.2 mm; P < 0.0001). These propagating contractions lead to the formation of boluses that are propelled by oral active neurally driven contractions. The propelled boluses also activate neurally driven anal relaxations, in a diameter dependent manner. These data support the hypothesis that neural peristalsis is the consequence of the activation of a functional loop involving mechanical dilation which activates polarized enteric circuits. These produce propulsion of the bolus which activates further anally, polarized enteric circuits by distension, thus closing the neuromechanical loop.
Collapse
Affiliation(s)
- Phil G Dinning
- Department of Gastroenterology and Surgery, Flinders Medical Centre, Flinders University Bedford Park, SA, Australia ; Department of Human Physiology, School of Medicine, Flinders University Bedford Park, SA, Australia
| | - Lukasz Wiklendt
- Department of Human Physiology, School of Medicine, Flinders University Bedford Park, SA, Australia
| | - Taher Omari
- Department of Human Physiology, School of Medicine, Flinders University Bedford Park, SA, Australia ; Gastroenterology Unit, Child, Youth and Women's Health Service Adelaide, SA, Australia
| | | | - Nick J Spencer
- Department of Human Physiology, School of Medicine, Flinders University Bedford Park, SA, Australia
| | - Simon J H Brookes
- Department of Human Physiology, School of Medicine, Flinders University Bedford Park, SA, Australia
| | - Marcello Costa
- Department of Human Physiology, School of Medicine, Flinders University Bedford Park, SA, Australia
| |
Collapse
|
92
|
Collins J, Borojevic R, Verdu EF, Huizinga JD, Ratcliffe EM. Intestinal microbiota influence the early postnatal development of the enteric nervous system. Neurogastroenterol Motil 2014; 26:98-107. [PMID: 24329946 DOI: 10.1111/nmo.12236] [Citation(s) in RCA: 210] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2012] [Accepted: 08/25/2013] [Indexed: 12/12/2022]
Abstract
BACKGROUND Normal gastrointestinal function depends on an intact and coordinated enteric nervous system (ENS). While the ENS is formed during fetal life, plasticity persists in the postnatal period during which the gastrointestinal tract is colonized by bacteria. We tested the hypothesis that colonization of the bowel by intestinal microbiota influences the postnatal development of the ENS. METHODS The development of the ENS was studied in whole mount preparations of duodenum, jejunum, and ileum of specific pathogen-free (SPF), germ-free (GF), and altered Schaedler flora (ASF) NIH Swiss mice at postnatal day 3 (P3). The frequency and amplitude of circular muscle contractions were measured in intestinal segments using spatiotemporal mapping of video recorded spontaneous contractile activity with and without exposure to lidocaine and N-nitro-L-arginine (NOLA). KEY RESULTS Immunolabeling with antibodies to PGP9.5 revealed significant abnormalities in the myenteric plexi of GF jejunum and ileum, but not duodenum, characterized by a decrease in nerve density, a decrease in the number of neurons per ganglion, and an increase in the proportion of myenteric nitrergic neurons. Frequency of amplitude of muscle contractions were significantly decreased in the jejunum and ileum of GF mice and were unaffected by exposure to lidocaine, while NOLA enhanced contractile frequency in the GF jejunum and ileum. CONCLUSIONS & INFERENCES These findings suggest that early exposure to intestinal bacteria is essential for the postnatal development of the ENS in the mid to distal small intestine. Future studies are needed to investigate the mechanisms by which enteric microbiota interact with the developing ENS.
Collapse
Affiliation(s)
- J Collins
- Department of Pediatrics, McMaster University, Hamilton, ON, Canada; Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, ON, Canada
| | | | | | | | | |
Collapse
|
93
|
Abstract
The colon serves as the habitat for trillions of microbes, which it must maintain, regulate, and sequester. This is managed by what is termed the mucosal barrier. The mucosal barrier separates the gut flora from the host tissues; regulates the absorption of water, electrolytes, minerals, and vitamins; and facilitates host-flora interactions. Colonic homeostasis depends on a complex interaction between the microflora and the mucosal epithelium, immune system, vasculature, stroma, and nervous system. Disruptions in the colonic microenvironment such as changes in microbial composition, epithelial cell function/proliferation/differentiation, mucus production/makeup, immune function, diet, motility, or blood flow may have substantial local and systemic consequences. Understanding the complex activities of the colon in health and disease is important in drug development, as xenobiotics can impact all segments of the colon. Direct and indirect effects of pharmaceuticals on intestinal function can produce adverse findings in laboratory animals and humans and can negatively impact drug development. This review will discuss normal colon homeostasis with examples, where applicable, of xenobiotics that disrupt normal function.
Collapse
Affiliation(s)
- Rani S Sellers
- 1Albert Einstein College of Medicine, Bronx, New York, USA
| | | |
Collapse
|
94
|
Brun P, Giron MC, Qesari M, Porzionato A, Caputi V, Zoppellaro C, Banzato S, Grillo AR, Spagnol L, De Caro R, Pizzuti D, Barbieri V, Rosato A, Sturniolo GC, Martines D, Zaninotto G, Palù G, Castagliuolo I. Toll-like receptor 2 regulates intestinal inflammation by controlling integrity of the enteric nervous system. Gastroenterology 2013; 145:1323-33. [PMID: 23994200 DOI: 10.1053/j.gastro.2013.08.047] [Citation(s) in RCA: 217] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2013] [Revised: 08/03/2013] [Accepted: 08/15/2013] [Indexed: 12/19/2022]
Abstract
BACKGROUND & AIMS In the intestines, Toll-like receptor 2 (TLR2) mediates immune responses to pathogens and regulates epithelial barrier function; polymorphisms in TLR2 have been associated with inflammatory bowel disease phenotype. We assessed the effects of TLR2 signaling on the enteric nervous system (ENS) in mice. METHODS TLR2 distribution and function in the ileal neuromuscular layer of mice were determined by immunofluorescence, cytofluorimetric analysis, immunoprecipitation, and immunoblot analyses. We assessed morphology and function of the ENS in Tlr2(-/-) mice and in mice with wild-type Tlr2 (wild-type mice) depleted of intestinal microbiota, using immunofluorescence, immunoblot, and gastrointestinal motility assays. Levels and signaling of glial cell line-derived neurotrophic factor (GDNF) were determined using quantitative reverse transcriptase polymerase chain reaction, immunohistochemistry, and immunoprecipitation analyses. Colitis was induced by administration of dextran sulfate sodium or 2,4 dinitrobenzensulfonic acid to Tlr2(-/-) mice after termination of GDNF administration. RESULTS TLR2 was expressed in enteric neurons, glia, and smooth muscle cells of the intestinal wall. Tlr2(-/-) mice had alterations in ENS architecture and neurochemical profile, intestinal dysmotility, abnormal mucosal secretion, reduced levels of GDNF in smooth muscle cells, and impaired signaling via Ret-GFRα1. ENS structural and functional anomalies were completely corrected by administration of GDNF to Tlr2(-/-) mice. Wild-type mice depleted of intestinal microbiota had ENS defects and GDNF deficiency, similar to Tlr2(-/-) mice; these defects were partially restored by administration of a TLR2 agonist. Tlr2(-/-) mice developed more severe colitis than wild-type mice after administration of dextran sulfate sodium or 2,4 dinitrobenzensulfonic acid; colitis was not more severe if Tlr2(-/-) mice were given GDNF before dextran sulfate sodium or 2,4 dinitrobenzensulfonic acid. CONCLUSIONS In mice, TLR2 signaling regulates intestinal inflammation by controlling ENS structure and neurochemical coding, along with intestinal neuromuscular function. These findings provide information as to how defective TLR2 signaling in the ENS affects inflammatory bowel disease phenotype in humans.
Collapse
Affiliation(s)
- Paola Brun
- Department of Molecular Medicine, University of Padova, Padova, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
95
|
Enteric sensory neurons communicate with interstitial cells of Cajal to affect pacemaker activity in the small intestine. Pflugers Arch 2013; 466:1467-75. [PMID: 24101295 DOI: 10.1007/s00424-013-1374-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2013] [Revised: 09/18/2013] [Accepted: 09/29/2013] [Indexed: 10/26/2022]
Abstract
Enteric sensory neurons (the AH neurons) play a role in control of gastrointestinal motor activity; AH neuron activation has been proposed to change propulsion into segmentation. We sought to find a mechanism underlying this phenomenon. We formulated the hypothesis that AH neurons increase local ICC-MP (interstitial cells of Cajal associated with the myenteric plexus) pacemaker frequency to disrupt peristalsis and promote absorption. To that end, we sought structural and physiological evidence for communication between ICC-MP and AH neurons. We designed experiments that allowed us to simultaneously activate AH neurons and observe changes in ICC calcium transients that underlie its pacemaker activity. Neurobiotin injection in AH neurons together with ICC immunohistochemistry proved the presence of multiple contacts between AH neuron varicosities and the cell bodies and processes of ICC-MP. Generating action potential activity in AH neurons led to increase in the frequency and amplitude of calcium transients underlying pacemaker activity in ICC. When no rhythmicity was seen, rhythmic calcium transients were evoked in ICC. As a control, we stimulated nitrergic S neurons, which led to reduction in ICC calcium transients. Hence, we report here the first demonstration of communication between AH neurons and ICC. The following hypothesis can now be formulated: AH neuron activation can disrupt peristalsis directed by ICC-MP slow wave activity, through initiation of a local pacemaker by increasing ICC pacemaker frequency through increasing the frequency of ICC calcium transients. Evoking new pacemakers distal to the proximal lead pacemaker will initiate both retrograde and antegrade propulsion causing back and forth movements that may disrupt peristalsis.
Collapse
|
96
|
Bickelhaupt S, Froehlich JM, Cattin R, Patuto N, Tutuian R, Wentz KU, Culmann JL, Raible S, Bouquet H, Bill U, Patak MA. Differentiation between active and chronic Crohn's disease using MRI small-bowel motility examinations - initial experience. Clin Radiol 2013; 68:1247-53. [PMID: 23973163 DOI: 10.1016/j.crad.2013.06.024] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2013] [Revised: 05/29/2013] [Accepted: 06/24/2013] [Indexed: 02/06/2023]
Abstract
AIM To evaluate the influence of locally active Crohn's disease on systemic small-bowel motility in patients with chronic Crohn's disease compared to healthy individuals. MATERIAL AND METHODS Fifteen healthy individuals (11 men, four women; mean age 37 years) and 20 patients with histopathologically proven active (n = 15; 10 women, 5 men; mean age 45 years) or chronic (n = 5; four women, one man; mean age 48 years) Crohn's disease were included in this institutional review board-approved, retrospective study. Magnetic resonance imaging (MRI; 1.5 T) was performed after standardized preparation. Two-dimensional (2D) cine sequences for motility acquisition were performed in apnoea (27 s). Motility assessment was performed using dedicated software in three randomly chosen areas of the small-bowel outside known Crohn's disease-affected hotspots. The main quantitative characteristics (frequency, amplitude, occlusion rate) were compared using Student's t-test and one-way analysis of variance (ANOVA). RESULTS Three randomly chosen segments were analysed in each participant. Patients with active Crohn's disease had significantly (p < 0.05) reduced contraction frequencies (active Crohn's disease: 2.86/min; chronic: 4.14/min; healthy: 4.53/min) and luminal occlusion rates (active: 0.43; chronic: 0.70; healthy: 0.73) compared to healthy individuals and patients with chronic Crohn's disease. Contraction amplitudes were significantly reduced during active Crohn's disease (6.71 mm) compared to healthy participants (10.14 mm), but this only reached borderline significance in comparison to chronic Crohn's disease (8.87 mm). Mean bowel lumen diameter was significantly (p = 0.04) higher in patients with active Crohn's disease (16.91 mm) compared to healthy participants (14.79 mm) but not in comparison to patients with chronic Crohn's disease (13.68). CONCLUSION The findings of the present study suggest that local inflammatory activity of small-bowel segments in patients with active Crohn's disease alters small-bowel motility in distant, non-affected segments. The motility patterns revealed reduced contraction-wave frequencies, amplitudes, and decreased luminal occlusion rates. Thus evaluation of these characteristics potentially helps to differentiate between chronic and active Crohn's disease.
Collapse
Affiliation(s)
- S Bickelhaupt
- Department of Radiology, University Hospital Zürich, Zürich, Switzerland
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
97
|
Garzoni L, Faure C, Frasch M. Fetal cholinergic anti-inflammatory pathway and necrotizing enterocolitis: the brain-gut connection begins in utero. Front Integr Neurosci 2013; 7:57. [PMID: 23964209 PMCID: PMC3737662 DOI: 10.3389/fnint.2013.00057] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2013] [Accepted: 07/18/2013] [Indexed: 12/25/2022] Open
Abstract
Necrotizing enterocolitis (NEC) is an acute neonatal inflammatory disease that affects the intestine and may result in necrosis, systemic sepsis and multisystem organ failure. NEC affects 5-10% of all infants with birth weight ≤ 1500 g or gestational age less than 30 weeks. Chorioamnionitis (CA) is the main manifestation of pathological inflammation in the fetus and is strong associated with NEC. CA affects 20% of full-term pregnancies and upto 60% of preterm pregnancies and, notably, is often an occult finding. Intrauterine exposure to inflammatory stimuli may switch innate immunity cells such as macrophages to a reactive phenotype ("priming"). Confronted with renewed inflammatory stimuli during labour or postnatally, such sensitized cells can sustain a chronic or exaggerated production of proinflammatory cytokines associated with NEC (two-hit hypothesis). Via the cholinergic anti-inflammatory pathway, a neurally mediated innate anti-inflammatory mechanism, higher levels of vagal activity are associated with lower systemic levels of proinflammatory cytokines. This effect is mediated by the α7 subunit nicotinic acetylcholine receptor (α7nAChR) on macrophages. The gut is the most extensive organ innervated by the vagus nerve; it is also the primary site of innate immunity in the newborn. Here we review the mechanisms of possible neuroimmunological brain-gut interactions involved in the induction and control of antenatal intestinal inflammatory response and priming. We propose a neuroimmunological framework to (1) study the long-term effects of perinatal intestinal response to infection and (2) to uncover new targets for preventive and therapeutic intervention.
Collapse
Affiliation(s)
- L. Garzoni
- CHU Sainte Justine Research Center, MontrealQC, Canada
- Division of Gastroenterology, Hepatology and Nutrition, CHU Sainte-Justine, MontrealQC, Canada
| | - C. Faure
- CHU Sainte Justine Research Center, MontrealQC, Canada
- Division of Gastroenterology, Hepatology and Nutrition, CHU Sainte-Justine, MontrealQC, Canada
| | - M.G. Frasch
- CHU Sainte Justine Research Center, MontrealQC, Canada
- Department of Obstetrics and Gynaecology, University of MontrealMontreal, QC, Canada
| |
Collapse
|
98
|
High-fat diet ingestion correlates with neuropathy in the duodenum myenteric plexus of obese mice with symptoms of type 2 diabetes. Cell Tissue Res 2013; 354:381-94. [PMID: 23881404 DOI: 10.1007/s00441-013-1681-z] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2013] [Accepted: 06/13/2013] [Indexed: 02/08/2023]
Abstract
Obesity and type 2 diabetes are increasing in prevalence at an alarming rate in developed and developing nations and over 50% of patients with prolonged stages of disease experience forms of autonomic neuropathy. These patients have symptoms indicating disrupted enteric nervous system function including gastric discomfort, gastroparesis and intestinal dysmotility. Previous assessments have examined enteric neuronal injury within either type 1 diabetic or transgenic type 2 diabetic context. This study aims to assess damage to myenteric neurons within the duodenum of high-fat diet ingesting mice experiencing symptoms of type 2 diabetes, as this disease context is most parallel to the human condition and disrupted duodenal motility underlies negative gastrointestinal symptoms. Mice fed a high-fat diet developed symptoms of obesity and diabetes by 4 weeks. After 8 weeks, the total number of duodenal myenteric neurons and the synaptophysin density index were reduced and transmission electron microscopy showed axonal swelling and loss of neurofilaments and microtubules, suggesting compromised neuronal health. High-fat diet ingestion correlated with a loss of neurons expressing VIP and nNOS but did not affect the expression of ChAT, substance P, calbindin and CGRP. These results correlate high-fat diet ingestion, obesity and type 2 diabetes symptoms with a loss of duodenal neurons, biasing towards those with inhibitory nature. This pathology may underlie dysmotility and other negative GI symptoms experienced by human type 2 diabetic and obese patients.
Collapse
|
99
|
Khoshdel A, Verdu EF, Kunze W, McLean P, Bergonzelli G, Huizinga JD. Bifidobacterium longum NCC3001 inhibits AH neuron excitability. Neurogastroenterol Motil 2013; 25:e478-84. [PMID: 23663494 DOI: 10.1111/nmo.12147] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2013] [Accepted: 04/05/2013] [Indexed: 02/08/2023]
Abstract
BACKGROUND Bifidobacterium longum (B. longum) NCC3001 can affect behavior and brain biochemistry, but identification of the cellular targets needs further investigation. Our hypothesis was that the communication with the brain might start with action on enteric sensory neurons. METHODS Ileal segments from adult mice were used to create a longitudinal muscle-myenteric-plexus preparation to expose sensory after-hyperpolarizing (AH) neurons in the myenteric plexus to allow access with microelectrodes. The intrinsic excitability of AH neurons was tested in response to the perfusion of conditioned media (B. longum culture supernatant) or unconditioned media (growth medium, MRS). KEY RESULTS B. longum conditioned medium significantly reduced the excitability of AH neurons compared to perfusion with the unconditioned medium. Specifically, a reduction was seen in the number of action potentials fired per depolarizing test pulse, the instantaneous and time-dependent input resistances and the magnitude of the hyperpolarization-activated cationic current (Ih ). CONCLUSIONS & INFERENCES The probiotic B. longum reduces excitability of AH sensory neurons likely via opening of potassium channels and closing of hyperpolarization-activated cation channels.
Collapse
Affiliation(s)
- A Khoshdel
- Department of Medicine, Faculty of Health Sciences, Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, Ontario, Canada
| | | | | | | | | | | |
Collapse
|
100
|
Durnin L, Sanders KM, Mutafova-Yambolieva VN. Differential release of β-NAD(+) and ATP upon activation of enteric motor neurons in primate and murine colons. Neurogastroenterol Motil 2013; 25:e194-204. [PMID: 23279315 PMCID: PMC3578016 DOI: 10.1111/nmo.12069] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
BACKGROUND The purinergic component of enteric inhibitory neurotransmission is important for normal motility in the gastrointestinal (GI) tract. Controversies exist about the purine(s) responsible for inhibitory responses in GI muscles: ATP has been assumed to be the purinergic neurotransmitter released from enteric inhibitory motor neurons; however, recent studies demonstrate that β-nicotinamide adenine dinucleotide (β-NAD(+)) and ADP-ribose mimic the inhibitory neurotransmitter better than ATP in primate and murine colons. The study was designed to clarify the sources of purines in colons of Cynomolgus monkeys and C57BL/6 mice. METHODS High-performance liquid chromatography with fluorescence detection was used to analyze purines released by stimulation of nicotinic acetylcholine receptors (nAChR) and serotonergic 5-HT(3) receptors (5-HT(3)R), known to be present on cell bodies and dendrites of neurons within the myenteric plexus. KEY RESULTS Nicotinic acetylcholine receptor or 5-HT(3)R agonists increased overflow of ATP and β-NAD(+) from tunica muscularis of monkey and murine colon. The agonists did not release purines from circular muscles of monkey colon lacking myenteric ganglia. Agonist-evoked overflow of β-NAD(+), but not ATP, was inhibited by tetrodotoxin (0.5 μmol L(-1)) or ω-conotoxin GVIA (50 nmol L(-1)), suggesting that β-NAD(+) release requires nerve action potentials and junctional mechanisms known to be critical for neurotransmission. ATP was likely released from nerve cell bodies in myenteric ganglia and not from nerve terminals of motor neurons. CONCLUSIONS & INFERENCES These results support the conclusion that ATP is not a motor neurotransmitter in the colon and are consistent with the hypothesis that β-NAD(+), or its metabolites, serve as the purinergic inhibitory neurotransmitter.
Collapse
Affiliation(s)
- L Durnin
- Department of Physiology and Cell Biology, University of Nevada School of Medicine, Reno, NV 89557-0575, USA
| | | | | |
Collapse
|