51
|
Barr JY, Wang X, Meyerholz DK, Lieberman SM. CD8 T cells contribute to lacrimal gland pathology in the nonobese diabetic mouse model of Sjögren syndrome. Immunol Cell Biol 2017; 95:684-694. [PMID: 28465508 PMCID: PMC5595634 DOI: 10.1038/icb.2017.38] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Revised: 04/27/2017] [Accepted: 04/27/2017] [Indexed: 01/01/2023]
Abstract
Sjögren syndrome is an autoimmune disease characterized by targeted destruction of the lacrimal and salivary glands resulting in symptoms of severe ocular and oral dryness. Despite its prevalence, the mechanisms driving autoimmune manifestations are unclear. In patients and in the nonobese diabetic (NOD) mouse model of Sjögren syndrome, lymphocytic infiltrates consist of CD4 and CD8 T cells, although the role of CD8 T cells in disease pathogenesis has been largely unexplored. Here, we evaluated the contribution of CD8 T cells to lacrimal and salivary gland autoimmunity. Within the lacrimal and salivary glands of NOD mice, CD8 T cells were proliferating, expressed an activated phenotype, and produced inflammatory cytokines. Transfer of purified CD8 T cells isolated from the cervical lymph nodes (LNs) of NOD mice into NOD-severe combined immunodeficiency recipients resulted in inflammation of the lacrimal glands, but was not sufficient to cause inflammation of the salivary glands. Lacrimal gland-infiltrating CD8 T cells displayed a cytotoxic phenotype, and epithelial cell damage in the lacrimal glands was observed in recipients of CD8 T cells regardless of the presence of CD4 T cells. Collectively, our results demonstrate that CD8 T cells have a pathogenic role in lacrimal gland autoimmunity. The gland-specific pathogenicity of CD8 T cells makes them a valuable resource to further understand the mechanisms that discriminate lacrimal versus salivary gland autoimmunity and for the development of new therapeutics that target the early stages of disease.
Collapse
Affiliation(s)
- Jennifer Y Barr
- Stead Family Department of Pediatrics, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Xiaofang Wang
- Stead Family Department of Pediatrics, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - David K Meyerholz
- Department of Pathology, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Scott M Lieberman
- Stead Family Department of Pediatrics, Carver College of Medicine, University of Iowa, Iowa City, IA, USA.,Interdisciplinary Graduate Program in Immunology, University of Iowa, Iowa City, IA, USA
| |
Collapse
|
52
|
Zhou J, Kawai T, Yu Q. Pathogenic role of endogenous TNF-α in the development of Sjögren's-like sialadenitis and secretory dysfunction in non-obese diabetic mice. J Transl Med 2017; 97:458-467. [PMID: 28067896 PMCID: PMC5376226 DOI: 10.1038/labinvest.2016.141] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Revised: 11/05/2016] [Accepted: 11/20/2016] [Indexed: 12/14/2022] Open
Abstract
Patients with Sjögren's syndrome (SS), an autoimmune disease primarily affecting exocrine glands, exhibit enhanced TNF-α expression in the saliva and salivary glands. However, the precise in vivo role of TNF-α during the initiation and development of SS is not clearly defined. The present study is undertaken to determine the function of endogenously produced TNF-α in the pathogenesis of SS in non-obese diabetic (NOD) mice, a model of this human disease. Administration of a neutralizing anti-TNF-α antibody to female NOD mice during the stage prior to disease onset significantly improved salivary secretion, indicating a remission of clinical symptoms of SS. TNF-α blockade also decreased the number of leukocyte foci and reduced the number of T cells and B cells in the submandibular glands (SMG). Moreover, TNF-α blockade reduced T-bet protein levels in the SMG, suggesting a decrease in T helper 1 and T cytotoxic 1 cells. These cellular changes induced by TNF-α neutralization were associated with a reduction in T- and B-cell chemoattractants CXCL9 and CXC13. In addition, TNF-α blockade markedly increased the expression level of tight junction protein claudin-1 and water channel protein aquaporin-5, two key factors required for normal salivary secretion, in the SMG. Collectively, these findings indicate that endogenous TNF-α has a pathogenic role in the development of SS in the NOD model of this disease.
Collapse
Affiliation(s)
| | | | - Qing Yu
- Address for correspondence and reprint requests: Corresponding Author: Qing Yu, M.D., Ph.D., Department of Immunology and Infectious Diseases, The Forsyth Institute, 245 First Street, Cambridge, MA 02142, Tel: 617-892-8310,
| |
Collapse
|
53
|
Chen K, Jiang WD, Wu P, Liu Y, Kuang SY, Tang L, Tang WN, Zhang YA, Zhou XQ, Feng L. Effect of dietary phosphorus deficiency on the growth, immune function and structural integrity of head kidney, spleen and skin in young grass carp (Ctenopharyngodon idella). FISH & SHELLFISH IMMUNOLOGY 2017; 63:103-126. [PMID: 28192254 DOI: 10.1016/j.fsi.2017.02.007] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2016] [Revised: 02/07/2017] [Accepted: 02/08/2017] [Indexed: 05/20/2023]
Abstract
This study evaluates the effects of dietary phosphorus on the growth, immune function and structural integrity (head kidney, spleen and skin) of young grass carp (Ctenopharyngodon idella) that were fed graded levels of available phosphorus (0.95-8.75 g/kg diet). Results indicated that phosphorus deficiency decreased the growth performance of young grass carp. In addition, the results first demonstrated that compared with the optimal phosphorus level, phosphorus deficiency depressed the lysozyme (LZ) and acid phosphatase (ACP) activities and the complement 3 (C3), C4 and immunoglobulin M (IgM) contents, and down-regulated the mRNA levels of antimicrobial peptides, anti-inflammatory cytokines, inhibitor of κBα (IκBα) and target of rapamycin (TOR), whereas it up-regulated pro-inflammatory cytokines, nuclear factor kappa B (NF-κB) p65 and NF-κB p52 mRNA levels to decrease fish head kidney and spleen immune functions. Moreover, phosphorus deficiency up-regulated the mRNA levels of Kelch-like-ECH-associated protein 1a (Keap1a), Fas ligand (FasL), apoptotic protease activating factor-1 (Apaf-1), Bcl-2 associated X protein (Bax), caspase -2, -3, -7, -8 and -9, p38 mitogen-activated protein kinase (MAPK) and myosin light chain kinase (MLCK), whereas it depressed the glutathione (GSH) contents and antioxidant enzymes activities, and down-regulated the mRNA levels of antioxidant enzymes, NF-E2-related factor 2 (Nrf2), B-cell lymphoma protein-2 (Bcl-2), myeloid cell leukemia-1 (Mcl-1) and tight junction complexes to attenuate fish head kidney and spleen structural integrity. In addition, phosphorus deficiency increased skin hemorrhage and lesions morbidity. Finally, based on the percent weight gain (PWG) and the ability to combat skin hemorrhage and lesions, the dietary available phosphorus requirements for young grass carp (254.56-898.23 g) were estimated to be 4.10 and 4.13 g/kg diet, respectively. In summary, phosphorus deficiency decreases the growth performance, and impairs immune function and structural integrity in the head kidney, spleen and skin of young grass carp.
Collapse
Affiliation(s)
- Kang Chen
- Animal Nutrition Institute, Sichuan Agricultural University, Sichuan, Chengdu 611130, China
| | - Wei-Dan Jiang
- Animal Nutrition Institute, Sichuan Agricultural University, Sichuan, Chengdu 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Sichuan, Chengdu 611130, China; Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Sichuan, Chengdu 611130, China
| | - Pei Wu
- Animal Nutrition Institute, Sichuan Agricultural University, Sichuan, Chengdu 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Sichuan, Chengdu 611130, China; Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Sichuan, Chengdu 611130, China
| | - Yang Liu
- Animal Nutrition Institute, Sichuan Agricultural University, Sichuan, Chengdu 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Sichuan, Chengdu 611130, China; Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Sichuan, Chengdu 611130, China
| | - Sheng-Yao Kuang
- Animal Nutrition Institute, Sichuan Academy of Animal Science, Chengdu 610066, China
| | - Ling Tang
- Animal Nutrition Institute, Sichuan Academy of Animal Science, Chengdu 610066, China
| | - Wu-Neng Tang
- Animal Nutrition Institute, Sichuan Academy of Animal Science, Chengdu 610066, China
| | - Yong-An Zhang
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Xiao-Qiu Zhou
- Animal Nutrition Institute, Sichuan Agricultural University, Sichuan, Chengdu 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Sichuan, Chengdu 611130, China; Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Sichuan, Chengdu 611130, China.
| | - Lin Feng
- Animal Nutrition Institute, Sichuan Agricultural University, Sichuan, Chengdu 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Sichuan, Chengdu 611130, China; Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Sichuan, Chengdu 611130, China.
| |
Collapse
|
54
|
Ding C, Cong X, Zhang XM, Li SL, Wu LL, Yu GY. Decreased interaction between ZO-1 and occludin is involved in alteration of tight junctions in transplanted epiphora submandibular glands. J Mol Histol 2017; 48:225-234. [PMID: 28332063 DOI: 10.1007/s10735-017-9716-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Accepted: 03/09/2017] [Indexed: 12/23/2022]
Abstract
Tight junctions (TJs) in salivary epithelium play an important role in regulating saliva secretion. Autologous transplantation of submandibular glands (SMGs) is an effective method to treat severe dry eye syndrome. However, epiphora occurs in some patients 6 months after transplantation. We previously found that the acinar TJs are enlarged in rabbit SMGs after long-term transplantation, but the exact TJ components involved in the epiphora are still unknown. Here, we found that the mRNA and protein expression of ZO-1 and occludin were increased in the transplanted SMGs obtained from epiphora patients, while other TJs were unchanged. The intensity of ZO-1 and occludin at the apicolateral membranes as well as occludin in the cytoplasm were increased in epiphora SMGs, but the interaction between ZO-1 and occludin was decreased as evidenced by both co-immunoprecipitation assay and co-immunofluorescence staining. Mechanically, the expression of casein kinase 2α (CK2α) and CK2β, which was reported to affect occludin modification and the interaction of occludin with ZO-1 in previous literatures, were increased in epiphora glands. Moreover, activation of muscarinic acetylcholine receptor (mAChR) by carbachol directly decreased the interaction between ZO-1 and occludin and increased the acinar TJ width in the freshly isolated human SMGs, whereas these effects were abolished by pretreatment with CK2 inhibitor. Taken together, our findings suggest that decreased interaction between ZO-1 and occludin might contribute to the epiphora occurred in the transplanted SMGs, and mAChR together with the intracellular molecule CK2 might be responsible for the alteration of TJs in epiphora glands.
Collapse
Affiliation(s)
- Chong Ding
- Center for Salivary Gland Diseases and Center Laboratory, Peking University School and Hospital of Stomatology, Beijing, 100081, People's Republic of China
| | - Xin Cong
- Department of Physiology and Pathophysiology, Peking University School of Basic Medical Sciences, Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education, and Beijing Key Laboratory of Cardiovascular Receptors Research, 38 Xueyuan Road, Haidian District, Beijing, 100191, People's Republic of China
| | - Xue-Ming Zhang
- Department of Oral and Maxillofacial Surgery, Peking University School and Hospital of Stomatology, 22 Zhongguancun South Street, Haidian District, Beijing, 100081, People's Republic of China
| | - Sheng-Lin Li
- Center for Salivary Gland Diseases and Center Laboratory, Peking University School and Hospital of Stomatology, Beijing, 100081, People's Republic of China
| | - Li-Ling Wu
- Department of Physiology and Pathophysiology, Peking University School of Basic Medical Sciences, Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education, and Beijing Key Laboratory of Cardiovascular Receptors Research, 38 Xueyuan Road, Haidian District, Beijing, 100191, People's Republic of China.
| | - Guang-Yan Yu
- Department of Oral and Maxillofacial Surgery, Peking University School and Hospital of Stomatology, 22 Zhongguancun South Street, Haidian District, Beijing, 100081, People's Republic of China.
| |
Collapse
|
55
|
Amoozadeh Y, Dan Q, Anwer S, Huang HH, Barbieri V, Waheed F, Maishan M, Szászi K. Tumor Necrosis Factor-α Increases Claudin-1, 4, and 7 Expression in Tubular Cells: Role in Permeability Changes. J Cell Physiol 2017; 232:2210-2220. [DOI: 10.1002/jcp.25736] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Accepted: 12/13/2016] [Indexed: 12/22/2022]
Affiliation(s)
- Yasaman Amoozadeh
- Keenan Research Centre for Biomedical Science of the St. Michael's Hospital; Ontario Canada
| | - Qinghong Dan
- Keenan Research Centre for Biomedical Science of the St. Michael's Hospital; Ontario Canada
| | - Shaista Anwer
- Keenan Research Centre for Biomedical Science of the St. Michael's Hospital; Ontario Canada
| | - Hsiao Han Huang
- Keenan Research Centre for Biomedical Science of the St. Michael's Hospital; Ontario Canada
| | - Vanessa Barbieri
- Keenan Research Centre for Biomedical Science of the St. Michael's Hospital; Ontario Canada
| | - Faiza Waheed
- Keenan Research Centre for Biomedical Science of the St. Michael's Hospital; Ontario Canada
| | - Mazharul Maishan
- Keenan Research Centre for Biomedical Science of the St. Michael's Hospital; Ontario Canada
- Department of Physiology; University of Toronto; Ontario Canada
| | - Katalin Szászi
- Keenan Research Centre for Biomedical Science of the St. Michael's Hospital; Ontario Canada
- Department of Surgery; University of Toronto; Ontario Canada
| |
Collapse
|
56
|
Xiao K, Cao S, Jiao L, Song Z, Lu J, Hu C. TGF-β1 protects intestinal integrity and influences Smads and MAPK signal pathways in IPEC-J2 after TNF-α challenge. Innate Immun 2017; 23:276-284. [PMID: 28142299 DOI: 10.1177/1753425917690815] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
The aim of this study was to investigate the protective effects of TGF-β1 on intestinal epithelial barrier, as well as canonical Smad and MAPK signal pathways involved in these protection processes by a IPEC-J2 model stimulated with TNF-α. IPEC-J2 monolayers were treated without or with TNF-α in the absence or presence of TGF-β1. The results showed that TGF-β1 pretreatment ameliorated TNF-α-induced intestinal epithelial barrier disturbances as indicated by decrease of transepithelial electrical resistance (TER) and increase of paracellular permeability. TGF-β1 also dramatically alleviated TNF-α-induced alteration of TJ proteins ZO-1 and occludin. Moreover, TGF-β1 pretreatment increased TβRII protein expression in IPEC-J2 monolayers challenged with TNF-α. In addition, a significant increase of Smad4 and Smad7 mRNA was also observed in the TGF-β1 pretreatment after TNF-α challenge compared with the control group. Furthermore, TGF-β1 pretreatment enhanced smad2 protein activation. These results indicated that the canonical Smad signaling pathway was activated by TGF-β1 pretreatment. Finally, TGF-β1 pretreatment decreased the ratios of the phosphorylated to total JNK and p38 (p-JNK/JNK and p-p38/p38) and increased the ratio of ERK (p-ERK/ERK). Anti-TGF-β1 Abs reduced these TGF-β1 effects. These results indicated that TGF-β1 protects intestinal integrity and influences Smad and MAPK signal pathways in IPEC-J2 after TNF-α challenge.
Collapse
Affiliation(s)
- Kan Xiao
- Animal Science College, Zhejiang University; Key Laboratory of Animal Feed and Nutrition of Zhejiang Province; The Key Laboratory of Molecular Animal Nutrition, Ministry of Education, Hangzhou, 310058, China
| | - Shuting Cao
- Animal Science College, Zhejiang University; Key Laboratory of Animal Feed and Nutrition of Zhejiang Province; The Key Laboratory of Molecular Animal Nutrition, Ministry of Education, Hangzhou, 310058, China
| | - Lefei Jiao
- Animal Science College, Zhejiang University; Key Laboratory of Animal Feed and Nutrition of Zhejiang Province; The Key Laboratory of Molecular Animal Nutrition, Ministry of Education, Hangzhou, 310058, China
| | - Zehe Song
- Animal Science College, Zhejiang University; Key Laboratory of Animal Feed and Nutrition of Zhejiang Province; The Key Laboratory of Molecular Animal Nutrition, Ministry of Education, Hangzhou, 310058, China
| | - Jianjun Lu
- Animal Science College, Zhejiang University; Key Laboratory of Animal Feed and Nutrition of Zhejiang Province; The Key Laboratory of Molecular Animal Nutrition, Ministry of Education, Hangzhou, 310058, China
| | - Caihong Hu
- Animal Science College, Zhejiang University; Key Laboratory of Animal Feed and Nutrition of Zhejiang Province; The Key Laboratory of Molecular Animal Nutrition, Ministry of Education, Hangzhou, 310058, China
| |
Collapse
|
57
|
Weber TJ, Smith JN, Carver ZA, Timchalk C. Non-invasive saliva human biomonitoring: development of an in vitro platform. JOURNAL OF EXPOSURE SCIENCE & ENVIRONMENTAL EPIDEMIOLOGY 2017; 27:72-77. [PMID: 26555474 DOI: 10.1038/jes.2015.74] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Revised: 09/30/2015] [Accepted: 10/01/2015] [Indexed: 06/05/2023]
Abstract
Direct measurements of exposure represent the most accurate assessment of a subject's true exposure. The clearance of many drugs and chemicals, including pesticides such as chlorpyrifos (CPF), can be detected non-invasively in saliva. Here we have developed a serous-acinar transwell model system as an in vitro screening platform to prioritize chemicals for non-invasive biomonitoring through salivary clearance mechanisms. Rat primary serous-acinar cells express both α-amylase and aquaporin-5 proteins and develop significant tight junctions at postconfluence - a feature necessary for chemical transport studies in vitro. CPF exhibited bidirectional passage across the serous-acinar barrier that was disproportional to the passage of a cell impermeable chemical (lucifer yellow), consistent with a hypothesized passive diffusion process. CPF was metabolized to trichlorpyridinol (TCPy) by serous-acinar cells, and TCPy also displayed bidirectional diffusion in the transwell assay. This model system should prove useful as an in vitro screening platform to support the non-invasive monitoring of toxicons and pharmacons in human saliva and provide guidance for development of advanced in vitro screening platforms utilizing primary human salivary gland epithelial cells.
Collapse
Affiliation(s)
- Thomas J Weber
- Pacific Northwest National Laboratory, Health Impacts and Exposure Science Group, Richland, WA, USA
| | - Jordan N Smith
- Pacific Northwest National Laboratory, Health Impacts and Exposure Science Group, Richland, WA, USA
| | - Zana A Carver
- Pacific Northwest National Laboratory, Health Impacts and Exposure Science Group, Richland, WA, USA
| | - Charles Timchalk
- Pacific Northwest National Laboratory, Health Impacts and Exposure Science Group, Richland, WA, USA
| |
Collapse
|
58
|
Zhou J, Jin JO, Kawai T, Yu Q. Endogenous programmed death ligand-1 restrains the development and onset of Sjӧgren's syndrome in non-obese diabetic mice. Sci Rep 2016; 6:39105. [PMID: 27966604 PMCID: PMC5155421 DOI: 10.1038/srep39105] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Accepted: 11/17/2016] [Indexed: 01/09/2023] Open
Abstract
Programmed death-ligand 1 (PD-L1) down-modulates various immune responses by engaging the co-inhibitory receptor programmed death-1. Expression of PD-L1 and programmed death-1 is elevated in the salivary glands of patients with Sjögren’s syndrome (SS). The objective of this study is to define the role of endogenous PD-L1 in SS pathogenesis in non-obese diabetic (NOD) mouse model of this disease. We inhibited endogenous PD-L1 function by intraperitoneal administration of a blocking antibody to 6 week-old female NOD/ShiLtJ mice repeatedly during a 9-day period. PD-L1 blockade accelerated leukocyte infiltration and caspase-3 activation in the submandibular gland (SMG), production of antinuclear and anti-M3 muscarinic acetylcholine receptor (M3R) autoantibodies and impairment of saliva secretion, indicative of accelerated development and onset of SS. The effect of PD-L1 blockade was associated with increased T- and B cells and T helper 1 cytokine IFN-γ in the SMG. Local administration of exogenous IFN-γ to the SMG led to impaired salivary secretion accompanied by down-regulation of aquaporin 5 and an increase in anti-M3R autoantibodies. Conversely, neutralization of IFN-γ markedly improved salivary secretion and aquaporin 5 expression in anti-PD-L1-treated NOD/ShiLtJ mice. Hence, endogenous PD-L1 hinders the development and onset of SS in NOD mice, in part by suppressing IFN-γ production.
Collapse
Affiliation(s)
- Jing Zhou
- Department of Immunology and Infectious Diseases, the Forsyth Institute, 245 First Street, Cambridge, MA 02142, USA.,Department of Oral Medicine, Infection and Immunity, Harvard School of Dental Medicine, 188 Longwood Avenue, Boston, MA 02115, USA
| | - Jun-O Jin
- Department of Immunology and Infectious Diseases, the Forsyth Institute, 245 First Street, Cambridge, MA 02142, USA
| | - Toshihisa Kawai
- Department of Immunology and Infectious Diseases, the Forsyth Institute, 245 First Street, Cambridge, MA 02142, USA.,Department of Oral Medicine, Infection and Immunity, Harvard School of Dental Medicine, 188 Longwood Avenue, Boston, MA 02115, USA
| | - Qing Yu
- Department of Immunology and Infectious Diseases, the Forsyth Institute, 245 First Street, Cambridge, MA 02142, USA.,Department of Oral Medicine, Infection and Immunity, Harvard School of Dental Medicine, 188 Longwood Avenue, Boston, MA 02115, USA
| |
Collapse
|
59
|
Luettig J, Rosenthal R, Lee IFM, Krug SM, Schulzke JD. The ginger component 6-shogaol prevents TNF-α-induced barrier loss via inhibition of PI3K/Akt and NF-κB signaling. Mol Nutr Food Res 2016; 60:2576-2586. [PMID: 27487982 DOI: 10.1002/mnfr.201600274] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Revised: 06/20/2016] [Accepted: 07/21/2016] [Indexed: 12/26/2022]
Abstract
SCOPE Anti-inflammatory properties of the ginger-derived pungent component 6-shogaol (6-SG) have been studied intensively in recent years. Purpose of this study was to characterize the influence of 6-SG on inflammation-related intestinal barrier dysfunction, especially its paracellular component. METHODS AND RESULTS The effect of 6-SG was studied in the human intestinal cell models HT-29/B6 and Caco-2 either under control conditions or challenged by the pro-inflammatory cytokine tumor necrosis factor α (TNF-α). Electrophysiological measurements, freeze-fracture electron microscopy, and protein analyses were performed. 6-SG partially prevented both, the TNF-α-induced decrease in transepithelial resistance and the rise in fluorescein permeability. By inhibiting phosphatidylinositol-3-kinase/Akt signaling 6-SG prevented the TNF-α-induced increase in protein expression of claudin-2, a channel-forming tight junction protein. In addition, the TNF-α-induced disassembly of the sealing tight junction protein claudin-1 was attenuated, the latter of which was due to TNF-α-triggered phosphorylation of nuclear factor kappa light chain enhancer of activated B cells (NF-κB). CONCLUSION 6-SG has barrier-protective effects by affecting TNF-α-induced claudin-2 upregulation and claudin-1 disassembly via inhibition of phoshatidylinositol-3-kinase/Akt and nuclear factor kappa light chain enhancer of activated B-cell signaling. Therefore, 6-SG-containing food might be beneficial for barrier preservation during intestinal inflammation.
Collapse
Affiliation(s)
- Julia Luettig
- Nutritional Medicine and Clinical Physiology, Department of Gastroenterology, Rheumatology and Infectious Diseases, Charité-Universitätsmedizin Berlin, Campus Benjamin Franklin, Berlin, Germany
| | - Rita Rosenthal
- Nutritional Medicine and Clinical Physiology, Department of Gastroenterology, Rheumatology and Infectious Diseases, Charité-Universitätsmedizin Berlin, Campus Benjamin Franklin, Berlin, Germany
| | - In-Fah M Lee
- Nutritional Medicine and Clinical Physiology, Department of Gastroenterology, Rheumatology and Infectious Diseases, Charité-Universitätsmedizin Berlin, Campus Benjamin Franklin, Berlin, Germany
| | - Susanne M Krug
- Nutritional Medicine and Clinical Physiology, Department of Gastroenterology, Rheumatology and Infectious Diseases, Charité-Universitätsmedizin Berlin, Campus Benjamin Franklin, Berlin, Germany
| | - Jörg D Schulzke
- Nutritional Medicine and Clinical Physiology, Department of Gastroenterology, Rheumatology and Infectious Diseases, Charité-Universitätsmedizin Berlin, Campus Benjamin Franklin, Berlin, Germany
| |
Collapse
|
60
|
Bhat AA, Ahmad R, Uppada SB, Singh AB, Dhawan P. Claudin-1 promotes TNF-α-induced epithelial-mesenchymal transition and migration in colorectal adenocarcinoma cells. Exp Cell Res 2016; 349:119-127. [PMID: 27742576 PMCID: PMC6166648 DOI: 10.1016/j.yexcr.2016.10.005] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Revised: 09/02/2016] [Accepted: 10/05/2016] [Indexed: 02/07/2023]
Abstract
Epithelial-mesenchymal transition (EMT) is an important mechanism in cancer progression and malignancy including colorectal cancer (CRC). Importantly, inflammatory mediators are critical constituents of the local tumor environment and an intimate link between CRC progression and inflammation is now validated. We and others have reported key role of the deregulated claudin-1 expression in colon carcinogenesis including colitis-associated colon cancer (CAC). However, the causal association between claudin-1 expression and inflammation-induced colon cancer progression remains unclear. Here we demonstrate, TNF-α, a pro-inflammatory cytokine, regulates claudin-1 to modulate epithelial to mesenchymal transition (EMT) and migration in colon adenocarcinoma cells. Importantly, colon cancer cells cultured in the presence of TNF-α (10ng/ml), demonstrated a sharp decrease in E-cadherin expression and an increase in vimentin expression (versus control cells). Interestingly, TNF-α treatment also upregulated (and delocalized) claudin-1 expression in a time-dependent manner accompanied by increase in proliferation and wound healing. Furthermore, similar to our previous observation that claudin-1 overexpression in CRC cells induces ERK1/2 and Src- activation, signaling associated with colon cancer cell survival and transformation, TNF-α-treatment induced upregulation of phospho-ERK1/2 and -Src expression. The shRNA-mediated inhibition of claudin-1 expression largely abrogated the TNF-α-induced changes in EMT, proliferation, migration, p-Erk and p-Src expression. Taken together, our data demonstrate TNF-α mediated regulation of claudin-1 and tumorigenic abilities of colon cancer cells and highlights a key role of deregulated claudin-1 expression in inflammation-induced colorectal cancer growth and progression, through the regulation of the ERK and Src-signaling.
Collapse
Affiliation(s)
- Ajaz A Bhat
- Surgery, Vanderbilt University Medical Center, Nashville, TN 37232, United States
| | - Rizwan Ahmad
- Departments of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68022, United States
| | - SrijayaPrakash B Uppada
- Departments of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68022, United States
| | - Amar B Singh
- From the Department of Veterans Affairs, University of Nebraska Medical Center, Omaha, NE 68022, United States; Departments of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68022, United States; Buffet Cancer Center, University of Nebraska Medical Center, Omaha, NE 68022, United States
| | - Punita Dhawan
- From the Department of Veterans Affairs, University of Nebraska Medical Center, Omaha, NE 68022, United States; Departments of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68022, United States; Buffet Cancer Center, University of Nebraska Medical Center, Omaha, NE 68022, United States.
| |
Collapse
|
61
|
Zhou Y, Jin L, Kong F, Zhang H, Fang X, Chen Z, Wang G, Li X, Li X. Clinical and immunological consequences of total glucosides of paeony treatment in Sjögren's syndrome: A randomized controlled pilot trial. Int Immunopharmacol 2016; 39:314-319. [PMID: 27517517 DOI: 10.1016/j.intimp.2016.08.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Revised: 07/28/2016] [Accepted: 08/03/2016] [Indexed: 12/22/2022]
Abstract
BACKGROUND The total glucosides of paeony (TGP) can inhibit inflammation and alleviate symptoms in autoimmune diseases. This study investigated the clinical and immunological consequences of TGP treatment in patients with primary Sjögren's syndrome (SS). METHODS We conducted a randomized, double-blinded, placebo-controlled clinical trial in 45 patients with primary SS. Patients were randomized at 2:1 ratio to either TGP group (n=29) or placebo group (n=16) and followed up for 24weeks. The primary outocme was the European League Against Rheumatism Sjögren's Syndrome Patient Reported Index (ESSPRI). The secondary outcomes were stimulated and unstimulated salivary flow rate, Schirmer's test and erythrocyte sedimentation rate (ESR), immuneglobulin (Ig), anti-nuclear antibody (ANA), anti-SSA, and anti-SSB. The proportions of B cells in peripheral blood and the levels of serum inerleukin-6 (IL-6), tumor necrosis factor-α (TNF-α), interferon-γ (IFN-γ) and B cell activating factor belonging to the TNF family (BAFF) were measured at baseline and at the end of follow up of 24weeks. RESULTS The average score of ESSPRI in both groups had no statistical significance at 24th week. The mean of ESSPRI in the dry-mouth part of questionnaire in patients who scored 3 to 6 points was significantly reduced in the TGP group changed from (4.81±0.60) at baseline to (4.20±1.46) (P=0.027) at week 24. Stimulated salivary flow rate increased at week 24 from (1.80±0.39) to (2.01±0.51) (P=0.031) and unstimulated salivary flow rate increased from (0.65±0.46) to (0.78±0.45) (P=0.011) in the TGP group, but the placebo group showed no significant difference. Erythrocyte sedimentation rate (ESR) was decreased significantly compared to the placebo group at 12- and 24-week from (40.9±18.0) to (29.4±12.2) (P=0.003) and (30.4±17.3) (P=0.024). The percentage of naive B cells decreased at week 24 in the TGP group from (77.34±12.20) to (64.59±15.60) (P=0.005) while memory B cells increased from (21.79±11.97) to (34.21±15.48) (P=0.006) respectively. The concentrations of TNF-α and IFN-γ decreased in the TGP group at week 24 from (32.51±26.67) to (24.22±13.56) (P=0.017) and (10.71±8.94) to (6.55±4.88) (P=0.022), respectively. No significant difference in ANA titer, anti-SSA antibodies, anti-SSB antibodies, C3 concentration or C4 concentration was observed between the two groups. CONCLUSION TGP appears to improve the glandular secreting function and decrease the level of inflammatory cytokines.
Collapse
Affiliation(s)
- Yingbo Zhou
- Department of Rheumatology and Immunology, Anhui Medical University Affiliated Provincial Hospital, Hefei, Anhui 230001, China
| | - Li Jin
- Department of Rheumatology and Immunology, Anhui Medical University Affiliated Provincial Hospital, Hefei, Anhui 230001, China
| | - Feifei Kong
- Department of Rheumatology and Immunology, SuZhou Municipal Hospital, SuZhou, Anhui 230001, China
| | - Hong Zhang
- Department of Rheumatology and Immunology, Anhui Medical University Affiliated Provincial Hospital, Hefei, Anhui 230001, China
| | - Xuan Fang
- Department of Rheumatology and Immunology, Anhui Medical University Affiliated Provincial Hospital, Hefei, Anhui 230001, China
| | - Zhu Chen
- Department of Rheumatology and Immunology, Anhui Medical University Affiliated Provincial Hospital, Hefei, Anhui 230001, China
| | - Guosheng Wang
- Department of Rheumatology and Immunology, Anhui Medical University Affiliated Provincial Hospital, Hefei, Anhui 230001, China
| | - Xiangpei Li
- Department of Rheumatology and Immunology, Anhui Medical University Affiliated Provincial Hospital, Hefei, Anhui 230001, China
| | - Xiaomei Li
- Department of Rheumatology and Immunology, Anhui Medical University Affiliated Provincial Hospital, Hefei, Anhui 230001, China.
| |
Collapse
|
62
|
Zhu J, Zhang Y, Zhang W, Zhang W, Fan L, Wang L, Liu Y, Liu S, Guo Y, Wang Y, Yi J, Yan Q, Wang Z, Huang G. MicroRNA-142-5p contributes to Hashimoto's thyroiditis by targeting CLDN1. J Transl Med 2016; 14:166. [PMID: 27277258 PMCID: PMC4898455 DOI: 10.1186/s12967-016-0917-6] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Accepted: 05/20/2016] [Indexed: 12/20/2022] Open
Abstract
Background MicroRNAs have the potential as diagnostic biomarkers and therapeutic targets in autoimmune diseases. However, very limited studies have evaluated the expression of microRNA profile in thyroid gland related to Hashimoto’s thyroiditis (HT). Methods MicroRNA microarray expression profiling was performed and validated by quantitative RT-PCR. The expression pattern of miR-142-5p was detected using locked nucleic acid-in situ hybridization. The target gene was predicted and validated using miRNA targets prediction database, gene expression analysis, quantitative RT-PCR, western blot, and luciferase assay. The potential mechanisms of miR-142-5p were studied using immunohistochemistry, immunofluorescence, and quantitative assay of thyrocyte permeability. Results Thirty-nine microRNAs were differentially expressed in HT (Fold change ≥2, P < 0.05) and miR-142-5p, miR-142-3p, and miR-146a were only high expression in HT thyroid gland (P < 0.001). miR-142-5p, which was expressed at high levels in injured follicular epithelial cells, was also detected in HT patient serum and positively correlated with thyroglobulin antibody (r ≥ 0.6, P < 0.05). Furthermore, luciferase assay demonstrated CLDN1 was the direct target gene of miR-142-5p (P < 0.05), and Immunohistochemical staining showed a reverse expression patterns with miR-142-5p and CLDN1. Overexpression of miR-142-5p in thyrocytes resulted in reducing of the expression of claudin-1 both in mRNA and protein level (P = 0.032 and P = 0.009 respectively) and increasing the permeability of thyrocytes monolayer (P < 0.01). Conclusions Our findings indicate a previously unrecognized mechanism that miR-142-5p, targeting CLDN1, plays an important role in HT pathogenesis. Electronic supplementary material The online version of this article (doi:10.1186/s12967-016-0917-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jin Zhu
- State Key Laboratory of Cancer Biology and Department of Pathology, Xijing Hospital, Fourth Military Medical University, Changle West Road #169, Xi'an, 710032, People's Republic of China.,Department of Clinical Laboratory, Lintong Sanatorium, Lanzhou Military Command, Xi'an, 710600, People's Republic of China
| | - Yuehua Zhang
- State Key Laboratory of Cancer Biology and Department of Pathology, Xijing Hospital, Fourth Military Medical University, Changle West Road #169, Xi'an, 710032, People's Republic of China.,Department of Pathology, Foshan First People's Hospital, Foshan, 528000, People's Republic of China
| | - Weichen Zhang
- State Key Laboratory of Cancer Biology and Department of Pathology, Xijing Hospital, Fourth Military Medical University, Changle West Road #169, Xi'an, 710032, People's Republic of China
| | - Wei Zhang
- The Helmholtz Sino-German Laboratory for Cancer Research, Department of Pathology, Tangdu Hospital, Fourth Military Medical University, Xi'an, 710038, People's Republic of China
| | - Linni Fan
- State Key Laboratory of Cancer Biology and Department of Pathology, Xijing Hospital, Fourth Military Medical University, Changle West Road #169, Xi'an, 710032, People's Republic of China
| | - Lu Wang
- State Key Laboratory of Cancer Biology and Department of Pathology, Xijing Hospital, Fourth Military Medical University, Changle West Road #169, Xi'an, 710032, People's Republic of China
| | - Yixiong Liu
- State Key Laboratory of Cancer Biology and Department of Pathology, Xijing Hospital, Fourth Military Medical University, Changle West Road #169, Xi'an, 710032, People's Republic of China
| | - Shasha Liu
- Department of Neurology, Tangdu Hospital, Fourth Military Medical University, Xi'an, 710038, People's Republic of China
| | - Ying Guo
- State Key Laboratory of Cancer Biology and Department of Pathology, Xijing Hospital, Fourth Military Medical University, Changle West Road #169, Xi'an, 710032, People's Republic of China
| | - Yingmei Wang
- State Key Laboratory of Cancer Biology and Department of Pathology, Xijing Hospital, Fourth Military Medical University, Changle West Road #169, Xi'an, 710032, People's Republic of China
| | - Jun Yi
- Department of Vascular and Endocrine Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, People's Republic of China
| | - Qingguo Yan
- State Key Laboratory of Cancer Biology and Department of Pathology, Xijing Hospital, Fourth Military Medical University, Changle West Road #169, Xi'an, 710032, People's Republic of China.
| | - Zhe Wang
- State Key Laboratory of Cancer Biology and Department of Pathology, Xijing Hospital, Fourth Military Medical University, Changle West Road #169, Xi'an, 710032, People's Republic of China.
| | - Gaosheng Huang
- State Key Laboratory of Cancer Biology and Department of Pathology, Xijing Hospital, Fourth Military Medical University, Changle West Road #169, Xi'an, 710032, People's Republic of China.
| |
Collapse
|
63
|
Abstract
Primary Sjögren's syndrome (pSS) is a chronic autoimmune disease that is estimated to affect 35 million people worldwide. Currently, no effective treatments exist for Sjögren's syndrome, and there is a limited understanding of the physiological mechanisms associated with xerostomia and hyposalivation. The present work revealed that aquaporin 5 expression, a water channel critical for salivary gland fluid secretion, is regulated by bone morphogenetic protein 6. Increased expression of this cytokine is strongly associated with the most common symptom of primary Sjögren's syndrome, the loss of salivary gland function. This finding led us to develop a therapy in the treatment of Sjögren's syndrome by increasing the water permeability of the gland to restore saliva flow. Our study demonstrates that the targeted increase of gland permeability not only resulted in the restoration of secretory gland function but also resolved the hallmark salivary gland inflammation and systemic inflammation associated with disease. Secretory function also increased in the lacrimal gland, suggesting this local therapy could treat the systemic symptoms associated with primary Sjögren's syndrome.
Collapse
|
64
|
Wang CS, Wee Y, Yang CH, Melvin JE, Baker OJ. ALX/FPR2 Modulates Anti-Inflammatory Responses in Mouse Submandibular Gland. Sci Rep 2016; 6:24244. [PMID: 27064029 PMCID: PMC4827125 DOI: 10.1038/srep24244] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Accepted: 03/23/2016] [Indexed: 12/14/2022] Open
Abstract
Activation of the G-protein coupled formyl peptide receptor 2 (ALX/FPR2) by the lipid mediators lipoxin A4 and resolvin D1 (RvD1) promotes resolution of inflammation. Our previous in vitro studies indicate that RvD1 activation of ALX/FPR2 resolves cytokine-mediated inflammatory responses in mammalian cells. However, the impact of ALX/FPR2 activation on salivary gland function in vivo is unknown. The objective of this study was to determine whether submandibular glands (SMG) from ALX/FPR2(-/-) mice display enhanced inflammatory responses to lipopolysaccharides (LPS) stimulation. For these studies, C57BL/6 and ALX/FPR2(-/-) mice at age 8-12-week-old were treated with LPS by i.p for 24 h. Salivary gland structure and function were analyzed by histopathological assessment, saliva flow rate, quantitative PCR, Western blot analyses and immunofluorescence. Our results showed the following events in the ALX/FPR2(-/-) mice treated with LPS: a) upregulated inflammatory cytokines and decreased M3R (Muscarinic Acetylcholine receptor M3) and AQP5 (Aquaporin 5) protein expression, b) decreased saliva secretion, c) increased apoptosis, d) alteration of tight junction and neuronal damage. Overall, our data suggest that the loss of ALX/FPR2 results in unresolved acute inflammation and SMG dysfunction (xerostomia) in response to LPS that is similar to human salivary gland dysfunction induced by bacterial infection.
Collapse
Affiliation(s)
- Ching-Shuen Wang
- School of Dentistry, University of Utah, Salt Lake City, UT 84108, USA
| | - Yinshen Wee
- The Division of Microbiology and Immunology, Department of Pathology, University of Utah School of Medicine, Salt Lake City, UT, 84102, USA
| | - Chieh-Hsiang Yang
- Department of Bioengineering, University of Utah, Salt Lake City, Utah, 84112, USA
| | - James E. Melvin
- National Institute of Dental & Craniofacial Research, NIH, Bethesda, MD 20892, USA
| | - Olga J. Baker
- School of Dentistry, University of Utah, Salt Lake City, UT 84108, USA
| |
Collapse
|
65
|
Baker OJ. Current trends in salivary gland tight junctions. Tissue Barriers 2016; 4:e1162348. [PMID: 27583188 DOI: 10.1080/21688370.2016.1162348] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Revised: 02/28/2016] [Accepted: 03/01/2016] [Indexed: 12/21/2022] Open
Abstract
Tight junctions form a continuous intercellular barrier between epithelial cells that is required to separate tissue spaces and regulate selective movement of solutes across the epithelium. They are composed of strands containing integral membrane proteins (e.g., claudins, occludin and tricellulin, junctional adhesion molecules and the coxsackie adenovirus receptor). These proteins are anchored to the cytoskeleton via scaffolding proteins such as ZO-1 and ZO-2. In salivary glands, tight junctions are involved in polarized saliva secretion and barrier maintenance between the extracellular environment and the glandular lumen. This review seeks to provide an overview of what is currently known, as well as the major questions and future research directions, regarding tight junction expression, organization and function within salivary glands.
Collapse
Affiliation(s)
- Olga J Baker
- School of Dentistry, University of Utah , Salt Lake City, UT, USA
| |
Collapse
|
66
|
Easley JT, Nelson JW, Mellas RE, Sommakia S, Wu C, Trump B, Baker OJ. Aspirin-Triggered Resolvin D1 Versus Dexamethasone in the Treatment of Sjögren's Syndrome-Like NOD/ShiLtJ Mice - A Pilot Study. ACTA ACUST UNITED AC 2015; 1. [PMID: 27110599 DOI: 10.23937/2469-5726/1510027] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Resolvin D1 (RvD1) and its aspirin-triggered epimeric form (AT-RvD1) are endogenous lipid mediators (derived from docosahexaenoic acid, DHA) that control the duration and magnitude of inflammation in models of complex diseases. Our previous studies demonstrated that RvD1-mediated signaling pathways are expressed and active in salivary glands from rodents and humans. Furthermore, treatment of salivary cells with RvD1 blocked TNF-α-mediated inflammatory signals and improved epithelial integrity. The purpose of this pilot study was to determine the feasibility of treatment with AT-RvD1 versus dexamethasone (DEX) on inflammation (i.e., lymphocytic infiltration, cytokine expression and apoptosis) observed in submandibular glands (SMG) from the NOD/ShiLtJ Sjögren's syndrome (SS) mouse model before experimenting with a larger population. NOD/ShiLtJ mice were treated intravenously with NaCl (0.9%, negative control), AT-RvD1 (0.01-0.1 mg/kg) or DEX (4.125-8.25 mg/kg) twice a week for 14 weeks beginning at 4 weeks of age. At 18 weeks of age, SMG were collected for pathological analysis and detection of SS-associated inflammatory genes. The AT-RvD1 treatment alone did not affect lymphocytic infiltration seen in NOD/ShiLtJ mice while DEX partially prevented lymphocytic infiltration. Interestingly, both AT-RvD1 and DEX caused downregulation of SS-associated inflammatory genes and reduction of apoptosis. Results from this pilot study suggest that a systemic treatment with AT-RvD1 and DEX alone attenuated inflammatory responses observed in the NOD/ShiLtJ mice; therefore, they may be considered as potential therapeutic tools in treating SS patients when used alone or in combination.
Collapse
Affiliation(s)
- Justin T Easley
- School of Dentistry, University of Utah, Salt Lake City, UT 84108-1201, USA
| | - Joel W Nelson
- School of Dentistry, University of Utah, Salt Lake City, UT 84108-1201, USA
| | - Rachel E Mellas
- School of Dentistry, University of Utah, Salt Lake City, UT 84108-1201, USA
| | - Salah Sommakia
- School of Dentistry, University of Utah, Salt Lake City, UT 84108-1201, USA
| | - Chunhua Wu
- School of Dentistry, University of Utah, Salt Lake City, UT 84108-1201, USA
| | - Bryan Trump
- School of Dentistry, University of Utah, Salt Lake City, UT 84108-1201, USA
| | - Olga J Baker
- School of Dentistry, University of Utah, Salt Lake City, UT 84108-1201, USA
| |
Collapse
|
67
|
Zhou J, Jin JO, Patel ES, Yu Q. Interleukin-6 inhibits apoptosis of exocrine gland tissues under inflammatory conditions. Cytokine 2015; 76:244-252. [PMID: 26255211 PMCID: PMC4605873 DOI: 10.1016/j.cyto.2015.07.027] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2015] [Revised: 07/27/2015] [Accepted: 07/29/2015] [Indexed: 01/12/2023]
Abstract
Interleukin (IL)-6 is a multi-functional cytokine that can either promote or suppress tissue inflammation depending on the specific disease context. IL-6 is elevated in the exocrine glands and serum of patients with Sjögren's syndrome (SS), but the specific role of IL-6 in the pathogenesis of this disease has not been defined. In this study, we showed that IL-6 expression levels were increased with age in C56BL/6.NOD-Aec1Aec2 mice, a primary SS model, and higher than the control C57BL/6 mice. To assess the role of IL-6 during the immunological phase of SS development, a neutralizing anti-IL-6 antibody was administered into 16 week-old female C56BL/6.NOD-Aec1Aec2 mice, 3 times weekly for a consecutive 8 weeks. Neutralization of endogenous IL-6 throughout the immunological phase of SS development led to increased apoptosis, caspase-3 activation, leukocytic infiltration, and IFN-γ- and TNF-α production in the salivary gland. To further determine the effect of IL-6 on the apoptosis of exocrine gland cells, recombinant human IL-6 or the neutralizing anti-IL-6 antibody was injected into female C57BL/6 mice that received concurrent injection of anti-CD3 antibody to induce the apoptosis of exocrine gland tissues. Neutralization of IL-6 enhanced, whereas administration of IL-6 inhibited apoptosis and caspase-3 activation in salivary and lacrimal glands in this model. The apoptosis-suppressing effect of IL-6 was associated with up-regulation of Bcl-xL and Mcl-1 in both glands. Moreover, IL-6 treatment induced activation of STAT3 and up-regulated Bcl-xL and Mcl-1 gene expression in a human salivary gland epithelial cell line. In conclusion, IL-6 inhibits the apoptosis of exocrine gland tissues and exerts a tissue-protective effect under inflammatory conditions including SS. These findings suggest the possibility of using this property of IL-6 to preserve exocrine gland tissue integrity and function under autoimmune and inflammatory conditions.
Collapse
Affiliation(s)
- Jing Zhou
- Department of Immunology and Infectious Diseases, The Forsyth Institute, 245 First Street, Cambridge, MA 02142, USA; Department of Oral Medicine, Infection and Immunity, Harvard School of Dental Medicine, 188 Longwood Avenue, Boston, MA 02115, USA.
| | - Jun-O Jin
- Department of Immunology and Infectious Diseases, The Forsyth Institute, 245 First Street, Cambridge, MA 02142, USA.
| | - Ekta S Patel
- Department of Immunology and Infectious Diseases, The Forsyth Institute, 245 First Street, Cambridge, MA 02142, USA; Department of Oral Medicine, Infection and Immunity, Harvard School of Dental Medicine, 188 Longwood Avenue, Boston, MA 02115, USA.
| | - Qing Yu
- Department of Immunology and Infectious Diseases, The Forsyth Institute, 245 First Street, Cambridge, MA 02142, USA; Department of Oral Medicine, Infection and Immunity, Harvard School of Dental Medicine, 188 Longwood Avenue, Boston, MA 02115, USA.
| |
Collapse
|
68
|
Mei M, Xiang RL, Cong X, Zhang Y, Li J, Yi X, Park K, Han JY, Wu LL, Yu GY. Claudin-3 is required for modulation of paracellular permeability by TNF-α through ERK1/2/slug signaling axis in submandibular gland. Cell Signal 2015; 27:1915-27. [PMID: 26148935 DOI: 10.1016/j.cellsig.2015.07.002] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2015] [Accepted: 07/01/2015] [Indexed: 02/07/2023]
Abstract
TNF-α plays an important role in the pathogenesis of salivary inflammatory diseases. Salivary dysfunction, which leads to impaired saliva secretion, can be caused by TNF-α-induced disrupted epithelial barrier. However, the signaling mechanism involved in TNF-α-modulated tight junction barrier in salivary gland remains unclear. Here, we found that TNF-α reduced transepithelial resistance (TER) and increased FITC-dextran flux in a rat submandibular cell line SMG-C6. Claudin (Cln)-3 was selectively downregulated and disrupted by TNF-α, whereas Cln-1, Cln-4, and β-catenin were not affected. Overexpression of Cln-3 retained and Cln-3 knockdown abolished the TNF-α-induced alterations. Moreover, TNF-α increased extracellular signal-regulated kinase (ERK1/2) phosphorylation and the expression of transcriptional factor slug. ERK1/2 kinase inhibitor PD98059 abrogated TNF-α-induced increase in paracellular permeability, alterations of Cln-3, and elevation of slug. Overexpression of slug decreased and slug knockdown increased Cln-3 expression. In addition, slug bind to the E-box elements of Cln-3 promoter in TNF-α-treated cells, and this response was blocked by PD98059. Furthermore, TNF-α decreased Cln-3 expression and increased slug content in cultured human submandibular gland. Taken together, our data suggest that Cln-3 plays a vital role in TNF-α-modulated paracellular permeability in submandibular epithelium and ERK1/2/slug signaling axis is involved in alteration of Cln-3 redistribution and downregulation.
Collapse
Affiliation(s)
- Mei Mei
- Department of Oral and Maxillofacial Surgery, Peking University School and Hospital of Stomatology, Beijing 100081, China
| | - Ruo-Lan Xiang
- Department of Physiology and Pathophysiology, Peking University Health Science Center and Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education, Beijing Key Laboratory of Cardiovascular Receptors Research, Beijing 100191, China
| | - Xin Cong
- Department of Physiology and Pathophysiology, Peking University Health Science Center and Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education, Beijing Key Laboratory of Cardiovascular Receptors Research, Beijing 100191, China
| | - Yan Zhang
- Department of Physiology and Pathophysiology, Peking University Health Science Center and Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education, Beijing Key Laboratory of Cardiovascular Receptors Research, Beijing 100191, China
| | - Jing Li
- Department of Oral and Maxillofacial Surgery, Peking University School and Hospital of Stomatology, Beijing 100081, China
| | - Xia Yi
- Department of Biochemistry and Molecular Biology, Peking University Health Science Center and Key Laboratory of Carcinogenesis and Translational Research, Ministry of Education, Beijing 100191, China
| | - Kyungpyo Park
- Department of Physiology, School of Dentistry, Seoul National University, Seoul 110-749, South Korea
| | - Jing-Yan Han
- Department of Integration of Chinese and Western Medicine, Peking University Health Science Center, Beijing 100191, China
| | - Li-Ling Wu
- Department of Physiology and Pathophysiology, Peking University Health Science Center and Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education, Beijing Key Laboratory of Cardiovascular Receptors Research, Beijing 100191, China.
| | - Guang-Yan Yu
- Department of Oral and Maxillofacial Surgery, Peking University School and Hospital of Stomatology, Beijing 100081, China.
| |
Collapse
|
69
|
Saeedi BJ, Kao DJ, Kitzenberg DA, Dobrinskikh E, Schwisow KD, Masterson JC, Kendrick AA, Kelly CJ, Bayless AJ, Kominsky DJ, Campbell EL, Kuhn KA, Furuta GT, Colgan SP, Glover LE. HIF-dependent regulation of claudin-1 is central to intestinal epithelial tight junction integrity. Mol Biol Cell 2015; 26:2252-62. [PMID: 25904334 PMCID: PMC4462943 DOI: 10.1091/mbc.e14-07-1194] [Citation(s) in RCA: 163] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2014] [Accepted: 04/15/2015] [Indexed: 01/30/2023] Open
Abstract
This study demonstrates a critical link between hypoxia-inducible factor (HIF) and claudin-1 (CLDN1). HIF1β-deficient intestinal epithelial cells develop abnormal tight junction (TJ) structure and have striking barrier defects. CLDN1 is an HIF target gene, and overexpression of CLDN1 in HIF1β-deficient cells restores TJ structure and function. Intestinal epithelial cells (IECs) are exposed to profound fluctuations in oxygen tension and have evolved adaptive transcriptional responses to a low-oxygen environment. These adaptations are mediated primarily through the hypoxia-inducible factor (HIF) complex. Given the central role of the IEC in barrier function, we sought to determine whether HIF influenced epithelial tight junction (TJ) structure and function. Initial studies revealed that short hairpin RNA–mediated depletion of the HIF1β in T84 cells resulted in profound defects in barrier and nonuniform, undulating TJ morphology. Global HIF1α chromatin immunoprecipitation (ChIP) analysis identified claudin-1 (CLDN1) as a prominent HIF target gene. Analysis of HIF1β-deficient IEC revealed significantly reduced levels of CLDN1. Overexpression of CLDN1 in HIF1β-deficient cells resulted in resolution of morphological abnormalities and restoration of barrier function. ChIP and site-directed mutagenesis revealed prominent hypoxia response elements in the CLDN1 promoter region. Subsequent in vivo analysis revealed the importance of HIF-mediated CLDN1 expression during experimental colitis. These results identify a critical link between HIF and specific tight junction function, providing important insight into mechanisms of HIF-regulated epithelial homeostasis.
Collapse
Affiliation(s)
- Bejan J Saeedi
- Mucosal Inflammation Program, University of Colorado Anschutz Medical Campus, Aurora, CO 80045 Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045
| | - Daniel J Kao
- Mucosal Inflammation Program, University of Colorado Anschutz Medical Campus, Aurora, CO 80045 Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045
| | - David A Kitzenberg
- Mucosal Inflammation Program, University of Colorado Anschutz Medical Campus, Aurora, CO 80045 Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045
| | - Evgenia Dobrinskikh
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045 Division of Renal Diseases and Hypertension, University of Colorado Anschutz Medical Campus, Aurora, CO 80045
| | - Kayla D Schwisow
- Mucosal Inflammation Program, University of Colorado Anschutz Medical Campus, Aurora, CO 80045 Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045
| | - Joanne C Masterson
- Mucosal Inflammation Program, University of Colorado Anschutz Medical Campus, Aurora, CO 80045 Section of Pediatric Gastroenterology, Hepatology and Nutrition, Gastrointestinal Eosinophilic Diseases Program, Department of Pediatrics, Digestive Health Institute, University of Colorado Anschutz Medical Campus, Aurora, CO 80045
| | - Agnieszka A Kendrick
- Mucosal Inflammation Program, University of Colorado Anschutz Medical Campus, Aurora, CO 80045 Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045
| | - Caleb J Kelly
- Mucosal Inflammation Program, University of Colorado Anschutz Medical Campus, Aurora, CO 80045 Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045
| | - Amanda J Bayless
- Mucosal Inflammation Program, University of Colorado Anschutz Medical Campus, Aurora, CO 80045 Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045
| | - Douglas J Kominsky
- Mucosal Inflammation Program, University of Colorado Anschutz Medical Campus, Aurora, CO 80045 Department of Anesthesiology and Perioperative Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045
| | - Eric L Campbell
- Mucosal Inflammation Program, University of Colorado Anschutz Medical Campus, Aurora, CO 80045 Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045
| | - Kristine A Kuhn
- Mucosal Inflammation Program, University of Colorado Anschutz Medical Campus, Aurora, CO 80045 Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045
| | - Glenn T Furuta
- Mucosal Inflammation Program, University of Colorado Anschutz Medical Campus, Aurora, CO 80045 Division of Renal Diseases and Hypertension, University of Colorado Anschutz Medical Campus, Aurora, CO 80045
| | - Sean P Colgan
- Mucosal Inflammation Program, University of Colorado Anschutz Medical Campus, Aurora, CO 80045 Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045
| | - Louise E Glover
- Mucosal Inflammation Program, University of Colorado Anschutz Medical Campus, Aurora, CO 80045 Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045
| |
Collapse
|
70
|
Baer AN, Hall JC. Sjögren syndrome. Rheumatology (Oxford) 2015. [DOI: 10.1016/b978-0-323-09138-1.00138-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
|
71
|
Shiozaki A, Shimizu H, Ichikawa D, Konishi H, Komatsu S, Kubota T, Fujiwara H, Okamoto K, Iitaka D, Nakashima S, Nako Y, Liu M, Otsuji E. Claudin 1 mediates tumor necrosis factor alpha-induced cell migration in human gastric cancer cells. World J Gastroenterol 2014; 20:17863-17876. [PMID: 25548484 PMCID: PMC4273136 DOI: 10.3748/wjg.v20.i47.17863] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2014] [Revised: 05/02/2014] [Accepted: 06/13/2014] [Indexed: 02/06/2023] Open
Abstract
AIM: To investigate the role of claudin 1 in the regulation of genes involved in cell migration and tumor necrosis factor alpha (TNF-α)-induced gene expression in human gastric adenocarcinoma cells.
METHODS: Knockdown experiments were conducted with claudin 1 small interfering RNA (siRNA), and the effects on the cell cycle, apoptosis, migration and invasion were analyzed in human gastric adenocarcinoma MKN28 cells. The gene expression profiles of cells were analyzed by microarray and bioinformatics.
RESULTS: The knockdown of claudin 1 significantly inhibited cell proliferation, migration and invasion, and increased apoptosis. Microarray analysis identified 245 genes whose expression levels were altered by the knockdown of claudin 1. Pathway analysis showed that the top-ranked molecular and cellular function was the cellular movement related pathway, which involved MMP7, TNF-SF10, TGFBR1, and CCL2. Furthermore, TNF- and nuclear frctor-κB were the top-ranked upstream regulators related to claudin 1. TNF-α treatment increased claudin 1 expression and cell migration in MKN28 cells. Microarray analysis indicated that the depletion of claudin 1 inhibited 80% of the TNF-α-induced mRNA expression changes. Further, TNF-α did not enhance cell migration in the claudin 1 siRNA transfected cells.
CONCLUSION: These results suggest that claudin 1 is an important messenger that regulates TNF-α-induced gene expression and migration in gastric cancer cells. A deeper understanding of these cellular processes may be helpful in establishing new therapeutic strategies for gastric cancer.
Collapse
|
72
|
Miyamoto J, Mizukure T, Park SB, Kishino S, Kimura I, Hirano K, Bergamo P, Rossi M, Suzuki T, Arita M, Ogawa J, Tanabe S. A gut microbial metabolite of linoleic acid, 10-hydroxy-cis-12-octadecenoic acid, ameliorates intestinal epithelial barrier impairment partially via GPR40-MEK-ERK pathway. J Biol Chem 2014; 290:2902-18. [PMID: 25505251 DOI: 10.1074/jbc.m114.610733] [Citation(s) in RCA: 190] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Gut microbial metabolites of polyunsaturated fatty acids have attracted much attention because of their various physiological properties. Dysfunction of tight junction (TJ) in the intestine contributes to the pathogenesis of many disorders such as inflammatory bowel disease. We evaluated the effects of five novel gut microbial metabolites on tumor necrosis factor (TNF)-α-induced barrier impairment in Caco-2 cells and dextran sulfate sodium-induced colitis in mice. 10-Hydroxy-cis-12-octadecenoic acid (HYA), a gut microbial metabolite of linoleic acid, suppressed TNF-α and dextran sulfate sodium-induced changes in the expression of TJ-related molecules, occludin, zonula occludens-1, and myosin light chain kinase. HYA also suppressed the expression of TNF receptor 2 (TNFR2) mRNA and protein expression in Caco-2 cells and colonic tissue. In addition, HYA suppressed the protein expression of TNFR2 in murine intestinal epithelial cells. Furthermore, HYA significantly up-regulated G protein-coupled receptor (GPR) 40 expression in Caco-2 cells. It also induced [Ca(2+)]i responses in HEK293 cells expressing human GPR40 with higher sensitivity than linoleic acid, its metabolic precursor. The barrier-recovering effects of HYA were abrogated by a GPR40 antagonist and MEK inhibitor in Caco-2 cells. Conversely, 10-hydroxyoctadacanoic acid, which is a gut microbial metabolite of oleic acid and lacks a carbon-carbon double bond at Δ12 position, did not show these TJ-restoring activities and down-regulated GPR40 expression. Therefore, HYA modulates TNFR2 expression, at least partially, via the GPR40-MEK-ERK pathway and may be useful in the treatment of TJ-related disorders such as inflammatory bowel disease.
Collapse
Affiliation(s)
- Junki Miyamoto
- From the Graduate School of Biosphere Science, Hiroshima University, 1-4-4 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8528, Japan
| | - Taichi Mizukure
- From the Graduate School of Biosphere Science, Hiroshima University, 1-4-4 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8528, Japan
| | - Si-Bum Park
- the Graduate School of Agriculture, Kyoto University, Kitashirakawa-oiwakecho, Sakyo-ku, Kyoto 606-8502, Japan
| | - Shigenobu Kishino
- the Graduate School of Agriculture, Kyoto University, Kitashirakawa-oiwakecho, Sakyo-ku, Kyoto 606-8502, Japan
| | - Ikuo Kimura
- the Graduate School of Pharmaceutical Sciences, Kyoto University, 46-29 Yoshida-Shimoadachicho, Sakyo-ku, Kyoto 606-8501, Japan, the Graduate School of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu, Tokyo 183-8509, Japan
| | - Kanako Hirano
- the Graduate School of Pharmaceutical Sciences, Kyoto University, 46-29 Yoshida-Shimoadachicho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Paolo Bergamo
- the Institute of Food Sciences, National Research Council, via Roma 64, Avellino 83100, Italy, and
| | - Mauro Rossi
- the Institute of Food Sciences, National Research Council, via Roma 64, Avellino 83100, Italy, and
| | - Takuya Suzuki
- From the Graduate School of Biosphere Science, Hiroshima University, 1-4-4 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8528, Japan
| | - Makoto Arita
- the Laboratory for Metabolomics, RIKEN Center for Integrative Medical Sciences, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
| | - Jun Ogawa
- the Graduate School of Agriculture, Kyoto University, Kitashirakawa-oiwakecho, Sakyo-ku, Kyoto 606-8502, Japan,
| | - Soichi Tanabe
- From the Graduate School of Biosphere Science, Hiroshima University, 1-4-4 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8528, Japan,
| |
Collapse
|
73
|
Mellas RE, Leigh NJ, Nelson JW, McCall AD, Baker OJ. Zonula occludens-1, occludin and E-cadherin expression and organization in salivary glands with Sjögren's syndrome. J Histochem Cytochem 2014; 63:45-56. [PMID: 25248927 DOI: 10.1369/0022155414555145] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Sjögren's syndrome (SS) is a chronic inflammatory autoimmune disorder that causes secretory dysfunction of the salivary glands leading to dry mouth. Previous studies reported that tight junction (TJ) proteins are down-regulated and lose polarity in human minor salivary glands with SS, suggesting that TJ structure is compromised in SS patients. In this paper, we utilized the NOD/ShiLtJ mouse with the main goal of evaluating this model for future TJ research. We found that the organization of apical proteins in areas proximal and distal to lymphocytic infiltration remained intact in mouse and human salivary glands with SS. These areas looked comparable to control glands (i.e., with no lymphocytic infiltration). TJ staining was absent in areas of lymphocytic infiltration coinciding with the loss of salivary epithelium. Gene expression studies show that most TJs are not significantly altered in 20-week-old NOD/ShiLtJ mice as compared with age-matched C57BL/6 controls. Protein expression studies revealed that the TJ proteins, zonula occludens-1 (ZO-1), occludin, claudin-12, as well as E-cadherin, do not significantly change in NOD/ShiLtJ mice. Our results suggest that ZO-1, occludin and E-cadherin are not altered in areas without lymphocytic infiltration. However, future studies will be necessary to test the functional aspect of these results.
Collapse
Affiliation(s)
- Rachel E Mellas
- School of Dentistry, The University of Utah, Salt Lake City, UT, USA (REM, NJL, JWN, OJB)
| | - Noel J Leigh
- School of Dentistry, The University of Utah, Salt Lake City, UT, USA (REM, NJL, JWN, OJB)
| | - Joel W Nelson
- School of Dentistry, The University of Utah, Salt Lake City, UT, USA (REM, NJL, JWN, OJB)
| | - Andrew D McCall
- Department of Oral Biology, University at Buffalo, The State University of New York, Buffalo, NY, USA (ADM)
| | - Olga J Baker
- School of Dentistry, The University of Utah, Salt Lake City, UT, USA (REM, NJL, JWN, OJB)
| |
Collapse
|
74
|
Capaldo CT, Farkas AE, Hilgarth RS, Krug SM, Wolf MF, Benedik JK, Fromm M, Koval M, Parkos C, Nusrat A. Proinflammatory cytokine-induced tight junction remodeling through dynamic self-assembly of claudins. Mol Biol Cell 2014; 25:2710-9. [PMID: 25031428 PMCID: PMC4161507 DOI: 10.1091/mbc.e14-02-0773] [Citation(s) in RCA: 94] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Epithelial barriers are vital components of the innate immune system. This barrier is provided by tight junctions and compromised by proinflammatory cytokine signaling. Study of claudin 4 live-cell protein dynamics shows that tight junctions are self-assembling systems that undergo remodeling through heterotypic claudin incompatibility. Tight junctions (TJs) are dynamic, multiprotein intercellular adhesive contacts that provide a vital barrier function in epithelial tissues. TJs are remodeled during physiological development and pathological mucosal inflammation, and differential expression of the claudin family of TJ proteins determines epithelial barrier properties. However, the molecular mechanisms involved in TJ remodeling are incompletely understood. Using acGFP-claudin 4 as a biosensor of TJ remodeling, we observed increased claudin 4 fluorescence recovery after photobleaching (FRAP) dynamics in response to inflammatory cytokines. Interferon γ and tumor necrosis factor α increased the proportion of mobile claudin 4 in the TJ. Up-regulation of claudin 4 protein rescued these mobility defects and cytokine-induced barrier compromise. Furthermore, claudins 2 and 4 have reciprocal effects on epithelial barrier function, exhibit differential FRAP dynamics, and compete for residency within the TJ. These findings establish a model of TJs as self-assembling systems that undergo remodeling in response to proinflammatory cytokines through a mechanism of heterotypic claudin-binding incompatibility.
Collapse
Affiliation(s)
- Christopher T Capaldo
- Epithelial Pathobiology and Mucosal Inflammation Research Unit, Department of Pathology and Laboratory Medicine, Emory University, Atlanta, GA 30322
| | - Attila E Farkas
- Epithelial Pathobiology and Mucosal Inflammation Research Unit, Department of Pathology and Laboratory Medicine, Emory University, Atlanta, GA 30322
| | - Roland S Hilgarth
- Epithelial Pathobiology and Mucosal Inflammation Research Unit, Department of Pathology and Laboratory Medicine, Emory University, Atlanta, GA 30322
| | - Susanne M Krug
- Institute of Clinical Physiology Charité, Campus Benjamin Franklin, Freie Universität and Humboldt-Universität, 12200 Berlin, Germany
| | - Mattie F Wolf
- Epithelial Pathobiology and Mucosal Inflammation Research Unit, Department of Pathology and Laboratory Medicine, Emory University, Atlanta, GA 30322
| | - Jeremy K Benedik
- Epithelial Pathobiology and Mucosal Inflammation Research Unit, Department of Pathology and Laboratory Medicine, Emory University, Atlanta, GA 30322
| | - Michael Fromm
- Institute of Clinical Physiology Charité, Campus Benjamin Franklin, Freie Universität and Humboldt-Universität, 12200 Berlin, Germany
| | - Michael Koval
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Cell Biology, Emory University, Atlanta, GA 30322
| | - Charles Parkos
- Epithelial Pathobiology and Mucosal Inflammation Research Unit, Department of Pathology and Laboratory Medicine, Emory University, Atlanta, GA 30322
| | - Asma Nusrat
- Epithelial Pathobiology and Mucosal Inflammation Research Unit, Department of Pathology and Laboratory Medicine, Emory University, Atlanta, GA 30322
| |
Collapse
|
75
|
Cheng CS, Davis BNJ, Madden L, Bursac N, Truskey GA. Physiology and metabolism of tissue-engineered skeletal muscle. Exp Biol Med (Maywood) 2014; 239:1203-14. [PMID: 24912506 DOI: 10.1177/1535370214538589] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Skeletal muscle is a major target for tissue engineering, given its relative size in the body, fraction of cardiac output that passes through muscle beds, as well as its key role in energy metabolism and diabetes, and the need for therapies for muscle diseases such as muscular dystrophy and sarcopenia. To date, most studies with tissue-engineered skeletal muscle have utilized murine and rat cell sources. On the other hand, successful engineering of functional human muscle would enable different applications including improved methods for preclinical testing of drugs and therapies. Some of the requirements for engineering functional skeletal muscle include expression of adult forms of muscle proteins, comparable contractile forces to those produced by native muscle, and physiological force-length and force-frequency relations. This review discusses the various strategies and challenges associated with these requirements, specific applications with cultured human myoblasts, and future directions.
Collapse
Affiliation(s)
- Cindy S Cheng
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA
| | - Brittany N J Davis
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA
| | - Lauran Madden
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA
| | - Nenad Bursac
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA
| | - George A Truskey
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA
| |
Collapse
|
76
|
Jin JO, Kawai T, Cha S, Yu Q. Interleukin-7 enhances the Th1 response to promote the development of Sjögren's syndrome-like autoimmune exocrinopathy in mice. ACTA ACUST UNITED AC 2013; 65:2132-42. [PMID: 23666710 DOI: 10.1002/art.38007] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2012] [Accepted: 04/30/2013] [Indexed: 01/01/2023]
Abstract
OBJECTIVE Although elevated interleukin-7 (IL-7) levels have been reported in patients with primary Sjögren's syndrome (SS), the role of IL-7 in this disease remains unclear. We undertook this study to characterize the previously unexplored role of IL-7 in the development and onset of primary SS using the C57BL/6.NOD-Aec1Aec2 (B6.NOD-Aec) mouse model, which recapitulates human primary SS. METHODS For gain-of-function studies, recombinant IL-7 or control phosphate buffered saline was injected intraperitoneally (IP) into 12-week-old B6.NOD-Aec mice for 8 weeks. For loss-of-function studies, anti-IL-7 receptor α-chain (anti-IL-7Rα) antibody or its isotype control IgG was administered IP into 16-week-old B6.NOD-Aec mice. Salivary flow measurement, histologic and flow cytometric analysis of salivary glands, and serum antinuclear antibody assay were performed to assess various disease parameters. RESULTS Administration of exogenous IL-7 accelerated the development of primary SS, whereas blockade of IL-7Rα signaling almost completely abolished the development of primary SS, based on salivary gland inflammation and apoptosis, autoantibody production, and secretory dysfunction. IL-7 positively regulated interferon-γ (IFNγ)-producing Th1 and CD8+ T cells in the salivary glands without affecting IL-17. Moreover, IL-7 enhanced the expression of CXCR3 ligands in a T cell- and IFNγ-dependent manner. Accordingly, IFNγ induced a human salivary gland epithelial cell line to produce CXCR3 ligands. IL-7 also increased the level of tumor necrosis factor α, another Th1-associated cytokine that can facilitate tissue destruction and inflammation. CONCLUSION IL-7 plays a pivotal pathogenic role in SS, which is underpinned by an enhanced Th1 response and IFNγ/CXCR3 ligand-mediated lymphocyte infiltration of target organs. These results suggest that targeting the IL-7 pathway may be a potential future strategy for preventing and treating SS.
Collapse
Affiliation(s)
- Jun-O Jin
- The Forsyth Institute, Cambridge, MA 02142, USA
| | | | | | | |
Collapse
|
77
|
Hu YJ, Wang YD, Tan FQ, Yang WX. Regulation of paracellular permeability: factors and mechanisms. Mol Biol Rep 2013; 40:6123-42. [PMID: 24062072 DOI: 10.1007/s11033-013-2724-y] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2012] [Accepted: 09/14/2013] [Indexed: 12/20/2022]
Abstract
Epithelial permeability is composed of transcellular permeability and paracellular permeability. Paracellular permeability is controlled by tight junctions (TJs). Claudins and occludin are two major transmembrane proteins in TJs, which directly determine the paracellular permeability to different ions or large molecules. Intracellular signaling pathways including Rho/Rho-associated protein kinase, protein kinase Cs, and mitogen-activated protein kinase, modulate the TJ proteins to affect paracellular permeability in response for diverse stimuli. Cytokines, growth factors and hormones in organism can regulate the paracellular permeability via signaling pathway. The transcellular transporters such as Na-K-ATPase, Na(+)-coupled transporters and chloride channels, can interact with paracellular transport and regulate the TJs. In this review, we summarized the factors affecting paracellular permeability and new progressions of the related mechanism in recent studies, and pointed out further research areas.
Collapse
Affiliation(s)
- Yan-Jun Hu
- Department of Reproductive Endocrinology, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, 310006, People's Republic of China
| | | | | | | |
Collapse
|
78
|
Naydenov NG, Baranwal S, Khan S, Feygin A, Gupta P, Ivanov AI. Novel mechanism of cytokine-induced disruption of epithelial barriers: Janus kinase and protein kinase D-dependent downregulation of junction protein expression. Tissue Barriers 2013; 1:e25231. [PMID: 24665409 PMCID: PMC3783224 DOI: 10.4161/tisb.25231] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2013] [Revised: 05/01/2013] [Accepted: 05/31/2013] [Indexed: 12/13/2022] Open
Abstract
The ductal epithelium plays a key role in physiological secretion of pancreatic enzymes into the digestive system. Loss of barrier properties of the pancreatic duct may contribute to the development of pancreatitis and metastatic dissemination of pancreatic tumors. Proinflammatory cytokines are essential mediators of pancreatic inflammation and tumor progression; however, their effects on the integrity and barrier properties of the ductal epithelium have not been previously addressed. In the present study, we investigate mechanisms of cytokine-induced disassembly of tight junctions (TJs) and adherens junctions (AJs) in a model pancreatic epithelium. Exposure of HPAF-II human pancreatic epithelial cell monolayers to interferon (IFN)γ disrupted integrity and function of apical junctions as manifested by increased epithelial permeability and cytosolic translocation of AJ and TJ proteins. Tumor necrosis factor (TNF)α potentiated the effects of IFNγ on pancreatic epithelial junctions. The cytokine-induced increase in epithelial permeability and AJ/TJ disassembly was attenuated by pharmacological inhibition of Janus kinase (JAK) and protein kinase D (PKD). Loss of apical junctions in IFNγ/TNFα-treated HPAF-II cells was accompanied by JAK and PKD dependent decrease in expression of AJ (E-cadherin, p120 catenin) and TJ (occludin, ZO-1) proteins. Depletion of E-cadherin or p120 catenin recapitulated the effects of cytokines on HPAF-II cell permeability and junctions. Our data suggests that proinflammatory cytokines disrupt pancreatic epithelial barrier via expressional downregulation of key structural components of AJs and TJs. This mechanism is likely to be important for pancreatic inflammatory injury and tumorigenesis.
Collapse
Affiliation(s)
- Nayden G Naydenov
- Department of Human and Molecular Genetics, Virginia Commonwealth University School of Medicine, Richmond, VA USA
| | - Somesh Baranwal
- Department of Human and Molecular Genetics, Virginia Commonwealth University School of Medicine, Richmond, VA USA
| | - Shadab Khan
- Department of Medicine, University of Rochester School of Medicine, Rochester, NY USA
| | - Alex Feygin
- Department of Human and Molecular Genetics, Virginia Commonwealth University School of Medicine, Richmond, VA USA
| | - Pooja Gupta
- Department of Human and Molecular Genetics, Virginia Commonwealth University School of Medicine, Richmond, VA USA
| | - Andrei I Ivanov
- Department of Human and Molecular Genetics, Virginia Commonwealth University School of Medicine, Richmond, VA USA; ; VCU Institute of Molecular Medicine; Virginia Commonwealth University School of Medicine; Richmond, VA USA ; VCU Massey Cancer Center; Virginia Commonwealth University School of Medicine; Richmond, VA USA
| |
Collapse
|
79
|
McCall AD, Nelson JW, Leigh NJ, Duffey ME, Lei P, Andreadis ST, Baker OJ. Growth factors polymerized within fibrin hydrogel promote amylase production in parotid cells. Tissue Eng Part A 2013; 19:2215-25. [PMID: 23594102 DOI: 10.1089/ten.tea.2012.0674] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Salivary gland cell differentiation has been a recurring challenge for researchers as primary salivary cells show a loss of phenotype in culture. Particularly, parotid cells show a marked decrease in amylase expression, the loss of tight junction organization and proper cell function. Previously, Matrigel has been used successfully as an extracellular matrix; however, it is not practical for in vivo applications as it is tumorigenic. An alternative method could rely on the use of fibrin hydrogel (FH), which has been used extensively in biomedical engineering applications ranging from cardiovascular tissue engineering to wound-healing experiments. Although several groups have examined the effects of a three-dimensional (3D) environment on salivary cell cultures, little is known about the effects of FH on salivary cell cultures. The current study developed a 3D cell culture model to support parotid gland cell differentiation using a combination of FH and growth factor-reduced Matrigel (GFR-MG). Furthermore, FH polymerized with a combination of EGF and IGF-1 induced formation of 3D spheroids capable of amylase expression and an agonist-induced increase in the intracellular Ca(2+) concentration ([Ca(2+)]i) in salivary cells. These studies represent an initial step toward the construction of an artificial salivary gland to restore salivary gland dysfunction. This is necessary to reduce xerostomia in patients with compromised salivary function.
Collapse
Affiliation(s)
- Andrew D McCall
- Department of Oral Biology, School of Dental Medicine, University at Buffalo-The State University of New York, Buffalo, NY 14214, USA
| | | | | | | | | | | | | |
Collapse
|
80
|
Prestifilippo JP, Medina VA, Mohn CE, Rodriguez PA, Elverdin JC, Fernandez-Solari J. Endocannabinoids mediate hyposalivation induced by inflammogens in the submandibular glands and hypothalamus. Arch Oral Biol 2013; 58:1251-9. [PMID: 23684250 DOI: 10.1016/j.archoralbio.2013.04.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2012] [Revised: 03/13/2013] [Accepted: 04/05/2013] [Indexed: 12/12/2022]
Abstract
OBJECTIVE The aim of this study was to investigate the factors that could participate on salivary glands hypofunction during inflammation and the participation of endocannabinoids in hyposalivation induced by the presence of inflammogens in the submandibular gland (SMG) or in the brain. DESIGN Salivary secretion was assessed in the presence of inflammogens and/or the cannabinoid receptor antagonist AM251 in the SMG or in the brain of rats. At the end of the experiments, some systemic and glandular inflammatory markers were measured and histopathological analysis was performed. RESULTS The inhibitory effect observed 1h after lipopolysaccharide (LPS, 50μg/50μl) injection into the SMG (ig) was completely prevented by the injection of AM251 (5μg/50μl) by the same route (P<0.05). The LPS (ig)-induced increase in PGE2 content was not altered by AM251 (ig), while the glandular production of TNFα induced by the endotoxin (P<0.001) was partially blocked by it. Also, LPS injection produced no significant changes in the wet weight of the SMG neither damage to lipid membranes of its cells, nor significant microscopic changes in them, after hispopathological analysis, compared to controls. Finally, TNFα (100ng/5μl) injected intracerebro-ventricularly (icv) inhibited methacholine-induced salivary secretion evaluated 30min after (P<0.01), but the previous injection of AM251 (500ng/5μl, icv) prevented completely that effect. CONCLUSION We conclude that endocannabinoids mediate the hyposialia induced by inflammogens in the SMG and in the brain. The hypofunction would be due to changes on signalling pathway produced by inflammatory compounds since anatomical changes were not observed.
Collapse
Affiliation(s)
- J P Prestifilippo
- Department of Physiology, Dental School, University of Buenos Aires, Marcelo T.de Alvear 2142, Buenos Aires, Argentina
| | | | | | | | | | | |
Collapse
|
81
|
Kumar TS, Yang T, Mishra S, Cronin C, Charkaborty S, Shen JB, Liang BT, Jacobson KA. 5'-Phosphate and 5'-phosphonate ester derivatives of (N)-methanocarba adenosine with in vivo cardioprotective activity. J Med Chem 2013; 56:902-14. [PMID: 23286881 PMCID: PMC3574217 DOI: 10.1021/jm301372c] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Activation of a cardiac myocyte P2X4 receptor protects against heart failure. 5'-Phosphonate and 5'-phosphate analogues of AMP containing a (N)-methanocarba (bicyclo[3.1.0]hexane) system could protect from heart failure by potentially activating this cardioprotective channel. Phosphoesters and phosphonodiesters were synthesized and administered in vivo via a miniosmotic pump in a mouse ischemic heart failure model and most significantly increased intact heart contractile function (echocardiography) compared to vehicle infusion. Several new thio and deuterated phosphate derivatives were protective in a calsequestrin (CSQ) overexpressing heart failure model. Diethyl (7, MRS4084) and diisopropyl (8, MRS4074) phosphotriesters were highly protective in the ischemic model. Substitution of 2-Cl with iodo reduced protection in the CSQ model. Diisopropyl ester 16 (MRS2978) of (1'S,2'R,3'S,4'R,5'S)-4'-(6-amino-2-chloropurin-9-yl)-2',3'-(dihydroxy)-1'-(phosphonoethylene)bicyclo[3.1.0]hexane was highly efficacious (CSQ), while lower homologue 1'-phosphonomethylene derivative 14 was inactive. Thus, we identified uncharged carbocyclic nucleotide analogues that represent potential candidates for the treatment of heart failure, suggesting this as a viable and structurally broad approach.
Collapse
Affiliation(s)
- T. Santhosh Kumar
- Molecular Recognition Section, National Institutes of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda, MD 20892
| | - Tiehong Yang
- Pat and Jim Calhoun Cardiology Center, University of Connecticut Health Center, Farmington, CT 06030
| | - Shilpi Mishra
- Molecular Recognition Section, National Institutes of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda, MD 20892
| | - Chunxia Cronin
- Pat and Jim Calhoun Cardiology Center, University of Connecticut Health Center, Farmington, CT 06030
| | - Saibal Charkaborty
- Molecular Recognition Section, National Institutes of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda, MD 20892
| | - Jian-Bing Shen
- Pat and Jim Calhoun Cardiology Center, University of Connecticut Health Center, Farmington, CT 06030
| | - Bruce T. Liang
- Pat and Jim Calhoun Cardiology Center, University of Connecticut Health Center, Farmington, CT 06030
| | - Kenneth A. Jacobson
- Molecular Recognition Section, National Institutes of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda, MD 20892
| |
Collapse
|
82
|
Ariyadi B, Isobe N, Yoshimura Y. Expression of tight junction molecule “claudins” in the lower oviductal segments and their changes with egg-laying phase and gonadal steroid stimulation in hens. Theriogenology 2013. [DOI: 10.1016/j.theriogenology.2012.10.018] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
83
|
Precise probes of type II interferon activity define the origin of interferon signatures in target tissues in rheumatic diseases. Proc Natl Acad Sci U S A 2012; 109:17609-14. [PMID: 23045702 DOI: 10.1073/pnas.1209724109] [Citation(s) in RCA: 112] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Elucidating the molecular pathways active in pathologic tissues has important implications for defining disease subsets, selecting therapy, and monitoring disease activity. The development of therapeutics directed at IFN-α or IFN-γ makes the discovery of probes that report precisely on the activity of different IFN pathways a high priority. We show that, although type I and II IFNs induce the expression of a largely overlapping group of molecules, precise probes of IFN-γ activity can be defined. Used in combination, these probes show prominent IFN-γ effects in Sjögren syndrome (SS) tissues. In contrast, dermatomyositis muscle shows a dominant type I IFN pattern. Interestingly, heterogeneity of IFN signatures exists in patients with SS, with some patients demonstrating a predominant type I pattern. The biochemical patterns largely distinguish the target tissues in patients with SS from those with dermatomyositis and provide a relative weighting of the effects of distinct IFN pathways in specific biopsies. In SS, type I and II IFN effects are localized to the same epithelial cells, surrounded by inflammatory cells expressing IFN-γ-induced proteins, suggesting reinforcing interactions. Precise probes of the different IFN pathways active in tissues of complex rheumatic diseases will be critical to classify disease, elucidate pathogenesis, and select therapy.
Collapse
|
84
|
Bowman S, Barone F. Biologic treatments in Sjögren's syndrome. Presse Med 2012; 41:e495-509. [PMID: 22836195 DOI: 10.1016/j.lpm.2012.05.024] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2012] [Accepted: 05/11/2012] [Indexed: 02/08/2023] Open
Abstract
Primary Sjögren's Syndrome (pSS) is characterized by focal lymphocytic infiltration of secretory exocrine glands associated with severe dryness of eyes and mouth in particular. Systemic features such as disabling fatigue, cutaneous vasculitis, lung, neurological, haematological or other systemic involvement also occur. Conventional immunosuppressive therapies such as corticosteroids or disease-modifying drugs, have been used in some patients with these systemic features with variable benefit. Current therapy for dryness is principally symptomatic although medications to stimulate residual glandular secretion can be helpful for appropriate individuals. As the pathogenesis of the condition becomes better understood, particularly, in recent years, the role of systemic B-cell activation, biologic therapies specifically targeted against molecules involved in disease pathogenesis represent a more targeted approach to therapeutic intervention. The greatest experience in pSS is with rituximab, an anti-CD20 (expressed on a subset of B-cells) monoclonal antibody already in use for the treatment of some B-cell lymphomas and rheumatoid arthritis. Randomised placebo-controlled studies in pSS are currently underway. This review discusses the rationale for using biologic therapies in pSS, the current data on rituximab and the potential use of other biologic therapies in pSS in the future.
Collapse
Affiliation(s)
- Simon Bowman
- Queen Elizabeth Hospital, Rheumatology Department, Edgbaston, Birmingham B15 2TH, United Kingdom.
| | | |
Collapse
|
85
|
Nelson J, Manzella K, Baker OJ. Current cell models for bioengineering a salivary gland: a mini-review of emerging technologies. Oral Dis 2012; 19:236-44. [PMID: 22805753 PMCID: PMC3477256 DOI: 10.1111/j.1601-0825.2012.01958.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Saliva plays a major role in maintaining oral health. Patients afflicted with a decrease in saliva secretion (symptomatically, xerostomia) exhibit difficulty in chewing and swallowing foods, tooth decay, periodontal disease, and microbial infections. Despite recent improvements in treating xerostomia (e.g., saliva stimulants, saliva substitutes, and gene therapy), there is a need of more scientific advancements that can be clinically applied toward restoration of compromised salivary gland function. Here we provide a summary of the current salivary cell models that have been used to advance restorative treatments via development of an artificial salivary gland. These models represent initial steps toward clinical and translational research, to facilitate creation of clinically safe salivary glands. Further studies in salivary cell lines and primary cells are necessary to improve survival rates, cell differentiation, and secretory function. Additionally, the characterization of salivary progenitor and stem cell markers are necessary. Although these models are not fully characterized, their improvement may lead to the construction of an artificial salivary gland that is in high demand for improving the quality of life of many patients suffering from salivary secretory dysfunction.
Collapse
Affiliation(s)
- J Nelson
- Department of Oral Biology, School of Dental Medicine, University at Buffalo, The State University of New York, Buffalo, NY, USA
| | | | | |
Collapse
|
86
|
Nandula SR, Dey P, Corbin KL, Nunemaker CS, Bagavant H, Deshmukh US. Salivary gland hypofunction induced by activation of innate immunity is dependent on type I interferon signaling. J Oral Pathol Med 2012; 42:66-72. [PMID: 22672212 DOI: 10.1111/j.1600-0714.2012.01181.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
BACKGROUND Activation of innate immunity through polyinosinic:polycytidylic acid [poly(I:C)] causes acute salivary gland hypofunction. As a major consequence of poly(I:C) treatment is type I interferon (IFN) production, this study was undertaken to investigate their role in salivary gland dysfunction. METHODS Different strains of mice deficient in either interferon alpha receptor (IFNAR1(-/-)) or IL-6(-/-), or IL-10(-/-), or EBI3(-/-) were treated with poly(I:C). Salivary gland function was determined by measuring pilocarpine-induced saliva volume. Gene expression levels were measured by real-time PCR. Ca(2+) mobilization studies were performed using ex-vivo acinar cells. RESULTS A single injection of poly(I:C) rapidly induced salivary gland hypofunction in wild-type B6 mice (41% drop in saliva volumes compared to PBS-treated mice). In contrast, the loss of function in poly(I:C)-treated IFNAR(-/-) mice was only 9.6%. Gene expression analysis showed reduced levels of Il-6, Il-10, and Il-27 in submandibular glands of poly(I:C)-treated IFNAR(-/-) mice. While salivary gland dysfunction in poly(I:C)-treated IL-10(-/-) and EBI3(-/-) mice was comparable to wild-type mice, the IL-6(-/-) mice were more resistant, with only a 21% drop in function. Pilocarpine-induced Ca(2+) flux was significantly suppressed in acinar cells obtained from poly(I:C)-treated wild-type mice. CONCLUSIONS Our data demonstrate that a combined action of type I IFNs and IL-6 contributes toward salivary gland hypofunction. This happens through interference with Ca(2+) mobilization within acinar cells. Thus, in acute viral infections and diseases like Sjögren's syndrome, elevated levels of type I IFNs and IL-6 can directly affect glandular function.
Collapse
Affiliation(s)
- Seshagiri-Rao Nandula
- Division of Nephrology, Center for Immunity Inflammation and Regenerative Medicine, University of Virginia, Charlottesville, VA 22908, USA
| | | | | | | | | | | |
Collapse
|
87
|
Shiozaki A, Bai XH, Shen-Tu G, Moodley S, Takeshita H, Fung SY, Wang Y, Keshavjee S, Liu M. Claudin 1 mediates TNFα-induced gene expression and cell migration in human lung carcinoma cells. PLoS One 2012; 7:e38049. [PMID: 22675434 PMCID: PMC3365005 DOI: 10.1371/journal.pone.0038049] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2011] [Accepted: 05/02/2012] [Indexed: 12/26/2022] Open
Abstract
Epithelial-mesenchymal transition (EMT) is an important mechanism in carcinogenesis. To determine the mechanisms that are involved in the regulation of EMT, it is crucial to develop new biomarkers and therapeutic targets towards cancers. In this study, when TGFβ1 and TNFα were used to induce EMT in human lung carcinoma A549 cells, we found an increase in an epithelial cell tight junction marker, Claudin 1. We further identified that it was the TNFα and not the TGFβ1 that induced the fibroblast-like morphology changes. TNFα also caused the increase in Claudin-1 gene expression and protein levels in Triton X-100 soluble cytoplasm fraction. Down-regulation of Claudin-1, using small interfering RNA (siRNA), inhibited 75% of TNFα-induced gene expression changes. Claudin-1 siRNA effectively blocked TNFα-induced molecular functional networks related to inflammation and cell movement. Claudin-1 siRNA was able to significantly reduce TNF-enhanced cell migration and fibroblast-like morphology. Furthermore, over expression of Claudin 1 with a Claudin 1-pcDNA3.1/V5-His vector enhanced cell migration. In conclusion, these observations indicate that Claudin 1 acts as a critical signal mediator in TNFα-induced gene expression and cell migration in human lung cancer cells. Further analyses of these cellular processes may be helpful in developing novel therapeutic strategies.
Collapse
Affiliation(s)
- Atsushi Shiozaki
- Latner Thoracic Surgery Research Laboratories, University Health Network Toronto General Research Institute, Toronto, Canada
| | - Xiao-hui Bai
- Latner Thoracic Surgery Research Laboratories, University Health Network Toronto General Research Institute, Toronto, Canada
| | - Grace Shen-Tu
- Latner Thoracic Surgery Research Laboratories, University Health Network Toronto General Research Institute, Toronto, Canada
| | - Serisha Moodley
- Latner Thoracic Surgery Research Laboratories, University Health Network Toronto General Research Institute, Toronto, Canada
| | - Hiroki Takeshita
- Latner Thoracic Surgery Research Laboratories, University Health Network Toronto General Research Institute, Toronto, Canada
| | - Shan-Yu Fung
- Latner Thoracic Surgery Research Laboratories, University Health Network Toronto General Research Institute, Toronto, Canada
| | - Yingchun Wang
- Latner Thoracic Surgery Research Laboratories, University Health Network Toronto General Research Institute, Toronto, Canada
| | - Shaf Keshavjee
- Latner Thoracic Surgery Research Laboratories, University Health Network Toronto General Research Institute, Toronto, Canada
- Department of Surgery, Faculty of Medicine, University of Toronto, Toronto, Canada
| | - Mingyao Liu
- Latner Thoracic Surgery Research Laboratories, University Health Network Toronto General Research Institute, Toronto, Canada
- Department of Surgery, Faculty of Medicine, University of Toronto, Toronto, Canada
- * E-mail:
| |
Collapse
|
88
|
Cong X, Zhang Y, Shi L, Yang NY, Ding C, Li J, Ding QW, Su YC, Xiang RL, Wu LL, Yu GY. Activation of transient receptor potential vanilloid subtype 1 increases expression and permeability of tight junction in normal and hyposecretory submandibular gland. J Transl Med 2012; 92:753-68. [PMID: 22391958 DOI: 10.1038/labinvest.2012.12] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Tight junction (TJ) is an important structure that regulates material transport through the paracellular pathway across the epithelium, but its significance in salivary physiology and pathogenesis of salivary dysfunctional diseases is not fully understood. We previously demonstrated that a functional transient receptor potential vanilloid subtype 1 (TRPV1) expresses in submandibular gland (SMG). However, association of TRPV1-induced saliva secretion with TJ remains unknown. Here we explored the effect of TRPV1 activation on expression and function of TJ of rabbit SMG in vitro and in vivo. RT-PCR and western blot analysis revealed that capsaicin upregulated expression of zonula occludin-1 (ZO-1), claudin (Cldn)-3, and -11, but not Cldn-1, -2, -4, -5, and -7 in cultured SMG cells. Capsaicin also increased the entering of 4 kDa FITC-dextran into the acinar lumen, induced redistribution of cytoskeleton F-actin under confocal microscope, and these effects were abolished by preincubation of capsazepine, a TRPV1 antagonist, indicating that activation of TRPV1 increases expression and permeability of TJ in SMG. Additionally, in a hyposecretory model induced by rabbit SMG transplantation, the expression of ZO-1, Cldn-3, and -11 was decreased, whereas other TJs remained unaltered. The structure of TJ was impaired and the width of apical TJs was reduced under transmission electron microscope, concomitant with diminished immunofluorescence of F-actin in peri-apicolateral region, indicating impaired TJ expression and decreased paracellular permeability in the transplanted SMG. Moreover, topical capsaicin cream increased secretion, decreased TJ structural injury, reversed TJ expression levels, and protected F-actin morphology from disarrangement in transplanted SMGs. These data provide the first evidence to demonstrate that TJ components, particularly ZO-1, Cldn-3, and -11 have important roles in secretion of SMG under both physiological and pathophysiological conditions. The injury in TJ integrity was involved in the hypofunctional SMGs, and TRPV1 might be a potential target to improve saliva secretion through modulating expression and function of TJs.
Collapse
Affiliation(s)
- Xin Cong
- Center for Salivary Gland Diseases of Peking University School and Hospital of Stomatology, Department of Physiology and Pathophysiology, Peking University HealthScience Center and Key Laboratory of Molecular Cardiovascular Sciences, Beijing, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
89
|
Weisman GA, Ajit D, Garrad R, Peterson TS, Woods LT, Thebeau C, Camden JM, Erb L. Neuroprotective roles of the P2Y(2) receptor. Purinergic Signal 2012; 8:559-78. [PMID: 22528682 DOI: 10.1007/s11302-012-9307-6] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2011] [Accepted: 10/04/2011] [Indexed: 02/07/2023] Open
Abstract
Purinergic signaling plays a unique role in the brain by integrating neuronal and glial cellular circuits. The metabotropic P1 adenosine receptors and P2Y nucleotide receptors and ionotropic P2X receptors control numerous physiological functions of neuronal and glial cells and have been implicated in a wide variety of neuropathologies. Emerging research suggests that purinergic receptor interactions between cells of the central nervous system (CNS) have relevance in the prevention and attenuation of neurodegenerative diseases resulting from chronic inflammation. CNS responses to chronic inflammation are largely dependent on interactions between different cell types (i.e., neurons and glia) and activation of signaling molecules including P2X and P2Y receptors. Whereas numerous P2 receptors contribute to functions of the CNS, the P2Y(2) receptor is believed to play an important role in neuroprotection under inflammatory conditions. While acute inflammation is necessary for tissue repair due to injury, chronic inflammation contributes to neurodegeneration in Alzheimer's disease and occurs when glial cells undergo prolonged activation resulting in extended release of proinflammatory cytokines and nucleotides. This review describes cell-specific and tissue-integrated functions of P2 receptors in the CNS with an emphasis on P2Y(2) receptor signaling pathways in neurons, glia, and endothelium and their role in neuroprotection.
Collapse
Affiliation(s)
- Gary A Weisman
- Department of Biochemistry, University of Missouri, 540E Life Sciences Center, 1201 Rollins Road, Columbia, MO 65211-7310, USA.
| | | | | | | | | | | | | | | |
Collapse
|
90
|
Odusanwo O, Chinthamani S, McCall A, Duffey ME, Baker OJ. Resolvin D1 prevents TNF-α-mediated disruption of salivary epithelial formation. Am J Physiol Cell Physiol 2012; 302:C1331-45. [PMID: 22237406 DOI: 10.1152/ajpcell.00207.2011] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Sjögren's syndrome is a chronic autoimmune disorder characterized by inflammation of salivary glands resulting in impaired secretory function. Our present studies indicate that chronic exposure of salivary epithelium to TNF-α and/or IFN-γ alters tight junction integrity, leading to secretory dysfunction. Resolvins of the D-series (RvDs) are endogenous lipid mediators derived from DHA that regulate excessive inflammatory responses leading to resolution and tissue homeostasis. In this study, we addressed the hypothesis that activation of the RvD1 receptor ALX/FPR2 in salivary epithelium prevents and/or resolves the TNF-α-mediated disruption of acinar organization and enhances monolayer formation. Our results indicate that 1) the RvD1 receptor ALX/FPR2 is present in fresh, isolated cells from mouse salivary glands and in cell lines of salivary origin; and 2) the agonist RvD1 (100 ng/ml) abolished tight junction and cytoskeletal disruption caused by TNF-α and enhanced cell migration and polarity in salivary epithelium. These effects were blocked by the ALX/FPR2 antagonist butyloxycarbonyl-Phe-Leu-Phe-Leu-Phe. The ALX/FPR2 receptor signals via modulation of the phosphatidylinositol 3-kinase (PI3K)/Akt signaling pathways since, in our study, blocking PI3K activation with LY294002, a potent and selective PI3K inhibitor, prevented RvD1-induced cell migration. Furthermore, Akt gene silencing with the corresponding siRNA almost completely blocked the ability of Par-C10 cells to migrate. Our findings suggest that RvD1 receptor activation promotes resolution of inflammation and tissue repair in salivary epithelium, which may have relevance in the restoration of salivary gland dysfunction associated with Sjögren's syndrome.
Collapse
Affiliation(s)
- Olutayo Odusanwo
- Department of Oral Biology, School of Dental Medicine, University at Buffalo, The State University of New York, Buffalo, New York 14214-3092, USA.
| | | | | | | | | |
Collapse
|
91
|
Chinthamani S, Odusanwo O, Mondal N, Nelson J, Neelamegham S, Baker OJ. Lipoxin A4 inhibits immune cell binding to salivary epithelium and vascular endothelium. Am J Physiol Cell Physiol 2011; 302:C968-78. [PMID: 22205391 DOI: 10.1152/ajpcell.00259.2011] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Lipoxins are formed by leukocytes during cell-cell interactions with epithelial or endothelial cells. Native lipoxin A(4) (LXA(4)) binds to the G protein-coupled lipoxin receptors formyl peptide receptor 2 (FPR2)/ALX and CysLT1. Furthermore, LXA(4) inhibits recruitment of neutrophils, by attenuating chemotaxis, adhesion, and transmigration across vascular endothelial cells. LXA(4) thus appears to serve as an endogenous "stop signal" for immune cell-mediated tissue injury (Serhan CN; Annu Rev Immunol 25: 101-137, 2007). The role of LXA(4) has not been addressed in salivary epithelium, and little is known about its effects on vascular endothelium. Here, we determined that interleukin-1β (IL-1β) and tumor necrosis factor-α (TNF-α) receptor activation in vascular endothelium and salivary epithelium upregulated the expression of adhesion molecules that facilitates the binding of immune cells. We hypothesize that the activation of the ALX/FPR2 and/or CysLT1 receptors by LXA(4) decreases this cytokine-mediated upregulation of cell adhesion molecules that enhance lymphocyte binding to both the vascular endothelium and salivary epithelium. In agreement with this hypothesis, we observed that nanomolar concentrations of LXA(4) blocked IL-1β- and TNF-α-mediated upregulation of E-selectin and intercellular cell adhesion molecule-1 (ICAM-1) on human umbilical vein endothelial cells (HUVECs). Binding of Jurkat cells to stimulated HUVECs was abrogated by LXA(4). Furthermore, LXA(4) preincubation with human submandibular gland cell line (HSG) also blocked TNF-α-mediated upregulation of vascular cell adhesion molecule-1 (VCAM-1) in these cells, and it reduced lymphocyte adhesion. These findings suggest that ALX/FPR2 and/or CysLT1 receptor activation in endothelial and epithelial cells blocks cytokine-induced adhesion molecule expression and consequent binding of lymphocytes, a critical event in the pathogenesis of Sjögren's syndrome (SS).
Collapse
Affiliation(s)
- Sreedevi Chinthamani
- Department of Oral Biology, School of Dental Medicine, University at Buffalo, The State University of New York, 14214-3092, USA
| | | | | | | | | | | |
Collapse
|
92
|
Fujita T, Yumoto H, Shiba H, Ouhara K, Miyagawa T, Nagahara T, Matsuda S, Kawaguchi H, Matsuo T, Murakami S, Kurihara H. Irsogladine maleate regulates epithelial barrier function in tumor necrosis factor-α-stimulated human gingival epithelial cells. J Periodontal Res 2011; 47:55-61. [DOI: 10.1111/j.1600-0765.2011.01404.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
93
|
Banninger GP, Cha S, Said MS, Pauley KM, Carter CJ, Ornate M, Pauley BA, Anderson SM, Reyland ME. Loss of PKCδ results in characteristics of Sjögren's syndrome including salivary gland dysfunction. Oral Dis 2011; 17:601-9. [PMID: 21702866 PMCID: PMC3293255 DOI: 10.1111/j.1601-0825.2011.01819.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
OBJECTIVES Chronic infiltration of lymphocytes into the salivary and lacrimal glands of patients with Sjögren's syndrome (SS) leads to destruction of acinar cells and loss of exocrine function. Protein kinase C-delta (PKCδ) is known to play a critical role in B-cell maintenance. Mice in which the PKCδ gene has been disrupted have a loss of B-cell tolerance, multiple organ lymphocytic infiltration, and altered apoptosis. To determine whether PKCδ contributes to the pathogenesis of SS, we quantified changes in indicators of SS in PKCδ-/- mice as a function of age. Salivary gland histology, function, the presence of autoantibodies, and cytokine expression were examined. MATERIALS AND METHODS Submandibular glands were examined for the presence of lymphocytic infiltrates, and the type of infiltrating lymphocyte and cytokine deposition was evaluated by immunohistochemistry. Serum samples were tested by autoantibody screening, which was graded by its staining pattern and intensity. Salivary gland function was determined by saliva collection at various ages. RESULTS PKCδ-/- mice have reduced salivary gland function, B220+ B-cell infiltration, anti-nuclear antibody production, and elevated IFN-γ in the salivary glands as compared to PKCδ+/+ littermates. CONCLUSIONS PKCδ-/- mice have exocrine gland tissue damage indicative of a SS-like phenotype.
Collapse
Affiliation(s)
| | - Seunghee Cha
- Department of Oral and Maxillofacial Diagnostic Sciences, College of Dentistry, University of Florida
| | - M Sherif Said
- Department of Pathology, School of Medicine, University of Colorado, Anschutz Medical Campus
| | - Kaleb M. Pauley
- Department of Pathology, School of Medicine, University of Colorado, Anschutz Medical Campus
| | | | - Mairelys Ornate
- Department of Pathology, School of Medicine, University of Colorado, Anschutz Medical Campus
| | - Brad A. Pauley
- Department of Pathology, School of Medicine, University of Colorado, Anschutz Medical Campus
| | - Steven M. Anderson
- Department of Oral and Maxillofacial Diagnostic Sciences, College of Dentistry, University of Florida
| | - Mary E. Reyland
- Department of Craniofacial Biology, School of Dental Medicine
| |
Collapse
|
94
|
Dysfunction of lacrimal and salivary glands in Sjögren's syndrome: nonimmunologic injury in preinflammatory phase and mouse model. J Biomed Biotechnol 2011; 2011:407031. [PMID: 21660135 PMCID: PMC3110304 DOI: 10.1155/2011/407031] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2010] [Revised: 02/08/2011] [Accepted: 03/08/2011] [Indexed: 11/30/2022] Open
Abstract
Sjögren's syndrome (SjS) is a chronic autoimmune disorder characterized by dry eyes and dry mouth due to dacryoadenitis and sialoadenitis with SS-A/Ro and/or SS-B/La autoantibodies in genetically predisposed individuals. Destruction of lacrimal and salivary glands by autoimmune reactions may lead to clinical manifestation. However, the mechanisms behind the decreased volume of secretions in tears and saliva are complex and are not fully understood. Exocrine gland dysfunction may precede autoimmunity (acquired immunity) or represent a process independent from inflammation in the pathogenesis of SjS. The preceded functional and morphologic changes of those tissues by nonimmunologic injury before the development of inflammation at the sites of target organs have been implicated. This paper focuses on the several factors and components relating to glandular dysfunction and morphologic changes by nonimmunologic injury during the preinflammatory phase in mouse model, including the factors which link between innate immunity and adaptive immunity.
Collapse
|
95
|
Baker OJ, Schulz DJ, Camden JM, Liao Z, Peterson TS, Seye CI, Petris MJ, Weisman GA. Rat parotid gland cell differentiation in three-dimensional culture. Tissue Eng Part C Methods 2011; 16:1135-44. [PMID: 20121592 DOI: 10.1089/ten.tec.2009.0438] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
The use of polarized salivary gland cell monolayers has contributed to our understanding of salivary gland physiology. However, these cell models are not representative of glandular epithelium in vivo, and, therefore, are not ideal for investigating salivary epithelial functions. The current study has developed a three-dimensional (3D) cell culture model for rat Par-C10 parotid gland cells that forms differentiated acinar-like spheres on Matrigel. These 3D Par-C10 acinar-like spheres display characteristics similar to differentiated acini in salivary glands, including cell polarization, tight junction (TJ) formation required to maintain transepithelial potential difference, basolateral expression of aquaporin-3 and Na+/K+/2Cl- cotransporter-1, and responsiveness to the muscarinic receptor agonist carbachol that is decreased by the anion channel blocker diphenylamine-2-carboxylic acid or chloride replacement with gluconate. Incubation of the spheres in the hypertonic medium increased the expression level of the water channel aquaporin-5. Further, the proinflammatory cytokines tumor necrosis factor-alpha and interferon-gamma induced alterations in TJ integrity in the acinar-like spheres without affecting individual cell viability, suggesting that cytokines may affect salivary gland function by altering TJ integrity. Thus, 3D Par-C10 acinar-like spheres represent a novel in vitro model to study physiological and pathophysiological functions of differentiated acini.
Collapse
Affiliation(s)
- Olga J Baker
- Department of Oral Biology, School of Dental Medicine, University at Buffalo, The State University of New York, Buffalo, New York 14214-3092, USA.
| | | | | | | | | | | | | | | |
Collapse
|
96
|
Nagamine K, Kawashima T, Sekine S, Ido Y, Kanzaki M, Nishizawa M. Spatiotemporally controlled contraction of micropatterned skeletal muscle cells on a hydrogel sheet. LAB ON A CHIP 2011; 11:513-517. [PMID: 21116545 DOI: 10.1039/c0lc00364f] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
We have developed gel sheet-supported C(2)C(12) myotube micropatterns and combined them with a microelectrode array chip to afford a skeletal muscle cell-based bioassay system. Myotube line patterns cultured on a glass substrate were transferred with 100% efficiency to the surface of fibrin gel sheets. The contractile behavior of each myotube line pattern on the gel was individually controlled by localized electrical stimulation using microelectrode arrays that had been previously modified with electropolymerized poly(3,4-ethylenedioxythiophene) (PEDOT). We successfully demonstrated fluorescent imaging of the contraction-induced translocation of the glucose transporter, GLUT4, from intracellular vesicles to the plasma membrane of the myotubes. This device is applicable for the bioassay of contraction-induced metabolic alterations in a skeletal muscle cell.
Collapse
Affiliation(s)
- Kuniaki Nagamine
- Department of Bioengineering and Robotics, Graduate School of Engineering, Tohoku University, 6-6-01 Aramaki, Aoba-ku, Sendai, 980-8579, Japan
| | | | | | | | | | | |
Collapse
|
97
|
Abstract
Sjögren's syndrome (SjS) is a systemic autoimmune disease that primarily targets salivary and lacrimal glands. SjS affects 2-4 million people in the US alone and greatly affects the life quality of the afflicted individuals. Autoreactive effector T cells are central executors and orchestrators in the pathogenic processes of SjS by mediating target organ inflammation and destruction and by facilitating B cell responses and autoantibody production. A variety of cytokines that are produced by effector T cells or capable of directly affecting effector T cells are elevated in the target organs and circulations of SjS patients. The recent advancement in the understanding about the functions of these cytokines, achieved by using both human samples and mouse disease models, has generated great insights into the cytokine control of autoimmune responses in the SjS disease setting. In this review, we summarized the recent findings on the expression and functions of cytokines in this disease, with specific focus on those derived from T cells and/or directly affecting T cell responses.
Collapse
Affiliation(s)
- Jun-O Jin
- Department of Immunology and Infectious Disease, The Forsyth Institute, 245 First Street, Cambridge, MA
| | | |
Collapse
|
98
|
Tumor necrosis factor alpha and inflammation disrupt the polarity complex in intestinal epithelial cells by a posttranslational mechanism. Mol Cell Biol 2010; 31:756-65. [PMID: 21135124 DOI: 10.1128/mcb.00811-10] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Inflammatory processes disrupt the barrier function in epithelia. Increased permeability often leads to chronic of inflammation. Important among other cytokines, tumor necrosis factor alpha (TNF-α) initiates an NF-κB-mediated response that leads to upregulation of myosin light chain kinase (MLCK), a hallmark of the pathogenesis of inflammatory bowel disease. Here, we found that two components of the evolutionarily conserved organizer of tight junctions and polarity, the polarity complex (atypical protein kinase C [aPKC]-PAR6-PAR3) were downregulated by TNF-α signaling in intestinal epithelial cells and also in vivo during intestinal inflammation. Decreases in aPKC levels were due to decreased chaperoning activity of Hsp70 proteins, with failure of the aPKC rescue machinery, and these effects were rescued by NF-κB inhibition. Comparable downregulation of aPKC shRNA phenocopied effects of TNF-α signaling, including apical nonmuscle myosin II accumulation and myosin light chain phosphorylation. These effects, including ZO-1 downregulation, were rescued by overexpression of constitutively active aPKC. We conclude that this novel mechanism is a complementary effector pathway for TNF-α signaling.
Collapse
|
99
|
Ewert P, Aguilera S, Alliende C, Kwon YJ, Albornoz A, Molina C, Urzúa U, Quest AFG, Olea N, Pérez P, Castro I, Barrera MJ, Romo R, Hermoso M, Leyton C, González MJ. Disruption of tight junction structure in salivary glands from Sjögren's syndrome patients is linked to proinflammatory cytokine exposure. ACTA ACUST UNITED AC 2010; 62:1280-9. [PMID: 20131287 DOI: 10.1002/art.27362] [Citation(s) in RCA: 131] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
OBJECTIVE Disorganization of acinar cell apical microvilli and the presence of stromal collagen in the acinar lumen suggest that the labial salivary gland (LSG) barrier function is impaired in patients with Sjögren's syndrome. Tight junctions define cell polarity and regulate the paracellular flow of ions and water, crucial functions of acinar cells. This study was undertaken to evaluate the expression and localization of tight junction proteins in LSGs from patients with SS and to determine in vitro the effects of tumor necrosis factor alpha (TNFalpha) and interferon-gamma (IFNgamma) on tight junction integrity of isolated acini from control subjects. METHODS Twenty-two patients and 15 controls were studied. The messenger RNA and protein levels of tight junction components (claudin-1, claudin-3, claudin-4, occludin, and ZO-1) were determined by semiquantitative reverse transcriptase-polymerase chain reaction and Western blotting. Tight junction protein localization was determined by immunohistochemistry. Tight junction ultrastructure was examined by transmission electron microscopy. Isolated acini from control subjects were treated with TNFalpha and IFNgamma. RESULTS Significant differences in tight junction protein levels were detected in patients with SS. ZO-1 and occludin were strongly down-regulated, while claudin-1 and claudin-4 were overexpressed. Tight junction proteins localized exclusively to apical domains in acini and ducts of LSGs from controls. In SS patients, the ZO-1 and occludin the apical domain presence of decreased, while claudin-3 and claudin-4 was redistributed to the basolateral plasma membrane. Exposure of isolated control acini to TNFalpha and IFNgamma reproduced these alterations in vitro. Ultrastructural analysis associated tight junction disorganization with the presence of endocytic vesicles containing electron-dense material that may represent tight junction components. CONCLUSION Our findings indicate that local cytokine production in LSGs from SS patients may contribute to the secretory gland dysfunction observed in SS patients by altering tight junction integrity of epithelial cells, thereby decreasing the quality and quantity of saliva.
Collapse
|
100
|
Fernandez-Solari J, Prestifilippo JP, Ossola CA, Rettori V, Elverdin JC. Participation of the endocannabinoid system in lipopolysaccharide-induced inhibition of salivary secretion. Arch Oral Biol 2010; 55:583-90. [PMID: 20542488 DOI: 10.1016/j.archoralbio.2010.05.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2010] [Revised: 05/11/2010] [Accepted: 05/15/2010] [Indexed: 12/22/2022]
Abstract
OBJECTIVE The aim of the present paper was to assess whether lipopolysaccharide (LPS)-induced inhibition of salivary secretion involves the activation of the endocannabinoid system and the participation of tumor necrosis factor (TNF)alpha in the submandibular gland. DESIGN Pharmacological approaches were performed by using CB1 and/or CB2 cannabinoid receptor antagonists, AM251 and AM630, respectively, injected into the submandibular gland, to study the participation of the endocannabinoid system in LPS inhibitory effects on metacholine-induced salivary secretion. To assess the participation of TNFalpha on LPS inhibitory effects, salivary secretion was studied in LPS treated rats after the intraglandular injection of etanercept, a soluble form of TNF receptor which blocks TNFalpha action. Finally, to evaluate the possible interplay between endocannabinoids and TNFalpha on the submandibular gland function reduced during LPS challenge, the salivary secretion was studied after the intraglandular injection of this cytokine alone or concomitantly with AM251 and AM630. RESULTS AM251 and AM630, injected separately or concomitantly, partially prevented LPS-induced inhibition of salivation. Also, anandamide synthase activity was increased in submandibular glands extracted from rats 3h after LPS injection, suggesting that the endocannabinoid system was activated in response to this challenge. On the other hand, etanercept, prevented the inhibitory effect of LPS on salivary secretion and moreover, TNFalpha injected intraglandularly inhibited salivary secretion, being this effect prevented by AM251 and AM630 injected concomitantly. CONCLUSION The present results demonstrate the participation of the endocannabinoid system and TNFalpha on salivary responses during systemic inflammation induced by LPS.
Collapse
|