51
|
Corti A, Franzini M, Cianchetti S, Paggiaro P, Pompella A. Cystic fibrosis, elevated gamma-glutamyltransferase, and lung transplant outcome. Transpl Int 2012; 25:e123-4; author reply e125-6. [PMID: 22994688 DOI: 10.1111/j.1432-2277.2012.01563.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
52
|
Veit G, Bossard F, Goepp J, Verkman AS, Galietta LJV, Hanrahan JW, Lukacs GL. Proinflammatory cytokine secretion is suppressed by TMEM16A or CFTR channel activity in human cystic fibrosis bronchial epithelia. Mol Biol Cell 2012; 23:4188-202. [PMID: 22973054 PMCID: PMC3484098 DOI: 10.1091/mbc.e12-06-0424] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Functional expression of either CFTR or the calcium-activated chloride channel TMEM16A attenuates expression and secretion of the proinflammatory cytokines IL-6, IL-8, and CXCL1/2 in respiratory epithelia. Thus augmented proinflammatory cytokine secretion caused by defective anion transport may contribute to lung inflammation in cystic fibrosis. Cystic fibrosis (CF) is caused by the functional expression defect of the CF transmembrane conductance regulator (CFTR) chloride channel at the apical plasma membrane. Impaired bacterial clearance and hyperactive innate immune response are hallmarks of the CF lung disease, yet the existence of and mechanism accounting for the innate immune defect that occurs before infection remain controversial. Inducible expression of either CFTR or the calcium-activated chloride channel TMEM16A attenuated the proinflammatory cytokines interleukin-6 (IL-6), IL-8, and CXCL1/2 in two human respiratory epithelial models under air–liquid but not liquid–liquid interface culture. Expression of wild-type but not the inactive G551D-CFTR indicates that secretion of the chemoattractant IL-8 is inversely proportional to CFTR channel activity in cftr∆F508/∆F508 immortalized and primary human bronchial epithelia. Similarly, direct but not P2Y receptor–mediated activation of TMEM16A attenuates IL-8 secretion in respiratory epithelia. Thus augmented proinflammatory cytokine secretion caused by defective anion transport at the apical membrane may contribute to the excessive and persistent lung inflammation in CF and perhaps in other respiratory diseases associated with documented down-regulation of CFTR (e.g., chronic obstructive pulmonary disease). Direct pharmacological activation of TMEM16A offers a potential therapeutic strategy to reduce the inflammation of CF airway epithelia.
Collapse
Affiliation(s)
- Guido Veit
- Department of Physiology and Groupe de Recherche Axé sur la Structure des Protéines, McGill University, Montréal, QC H3G 1Y6, Canada
| | | | | | | | | | | | | |
Collapse
|
53
|
McIsaac SM, Stadnyk AW, Lin TJ. Toll-like receptors in the host defense against Pseudomonas aeruginosa respiratory infection and cystic fibrosis. J Leukoc Biol 2012; 92:977-85. [PMID: 22892106 DOI: 10.1189/jlb.0811410] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
TLRs function in innate immunity by detecting conserved structures present in bacteria, viruses, and fungi. Although TLRs do not necessarily distinguish pathogenic organisms from commensals, in the context of compromised innate immunity and combined with pathogens' effector molecules, TLRs drive the host response to the organism. This review will discuss the evidence and role(s) of TLRs in the response to the opportunistic bacterial pathogen, Pseudomonas aeruginosa, as it relates to respiratory infection and CF, in which innate immune mechanisms are indeed compromised. Outer membrane lipoproteins, LPS, flagellin, and nucleic acids all serve as ligands for TLR2, -4, -5, and -9, respectively. These TLRs and their respective downstream effector molecules have proven critical to the host response to P. aeruginosa, although the protective effects of TLRs may be impaired and in some cases, enhanced in the CF patient, contributing to the particular susceptibility of individuals with this disease to P. aeruginosa infection.
Collapse
Affiliation(s)
- Shayla M McIsaac
- Department of Microbiology, Dalhousie University, Halifax, Nova Scotia, Canada
| | | | | |
Collapse
|
54
|
Griffin PE, Roddam LF, Belessis YC, Strachan R, Beggs S, Jaffe A, Cooley MA. Expression of PPARγ and paraoxonase 2 correlated with Pseudomonas aeruginosa infection in cystic fibrosis. PLoS One 2012; 7:e42241. [PMID: 22860094 PMCID: PMC3409144 DOI: 10.1371/journal.pone.0042241] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2012] [Accepted: 07/02/2012] [Indexed: 12/19/2022] Open
Abstract
The Pseudomonas aeruginosa quorum sensing signal molecule N-3-oxododecanoyl-l-homoserine lactone (3OC12HSL) can inhibit function of the mammalian anti-inflammatory transcription factor peroxisome proliferator activated receptor (PPAR)γ, and can be degraded by human paraoxonase (PON)2. Because 3OC12HSL is detected in lungs of cystic fibrosis (CF) patients infected with P. aeruginosa, we investigated the relationship between P. aeruginosa infection and gene expression of PPARγ and PON2 in bronchoalveolar lavage fluid (BALF) of children with CF. Total RNA was extracted from cell pellets of BALF from 43 children aged 6 months–5 years and analyzed by reverse transcription–quantitative real time PCR for gene expression of PPARγ, PON2, and P. aeruginosa lasI, the 3OC12HSL synthase. Patients with culture-confirmed P. aeruginosa infection had significantly lower gene expression of PPARγ and PON2 than patients without P. aeruginosa infection. All samples that were culture-positive for P. aeruginosa were also positive for lasI expression. There was no significant difference in PPARγ or PON2 expression between patients without culture-detectable infection and those with non-Pseudomonal bacterial infection, so reduced expression was specifically associated with P. aeruginosa infection. Expression of both PPARγ and PON2 was inversely correlated with neutrophil counts in BALF, but showed no correlation with other variables evaluated. Thus, lower PPARγ and PON2 gene expression in the BALF of children with CF is associated specifically with P. aeruginosa infection and neutrophilia. We cannot differentiate whether this is a cause or the effect of P. aeruginosa infection, but propose that the level of expression of these genes may be a marker for susceptibility to early acquisition of P. aeruginosa in children with CF.
Collapse
Affiliation(s)
- Phoebe E. Griffin
- Menzies Research Institute, Hobart, Tasmania, Australia
- School of Medicine, University of Tasmania, Hobart, Tasmania, Australia
| | - Louise F. Roddam
- School of Medicine, University of Tasmania, Hobart, Tasmania, Australia
| | - Yvonne C. Belessis
- Department of Respiratory Medicine, Sydney Children’s Hospital, Randwick, New South Wales, Australia
| | - Roxanne Strachan
- Department of Respiratory Medicine, Sydney Children’s Hospital, Randwick, New South Wales, Australia
| | - Sean Beggs
- School of Medicine, University of Tasmania, Hobart, Tasmania, Australia
- Department of Pediatrics, Royal Hobart Hospital, Hobart, Tasmania, Australia
| | - Adam Jaffe
- Department of Respiratory Medicine, Sydney Children’s Hospital, Randwick, New South Wales, Australia
| | - Margaret A. Cooley
- School of Medicine, University of Tasmania, Hobart, Tasmania, Australia
- * E-mail:
| |
Collapse
|
55
|
Hampton TH, Ballok AE, Bomberger JM, Rutkowski MR, Barnaby R, Coutermarsh B, Conejo-Garcia JR, O'Toole GA, Stanton BA. Does the F508-CFTR mutation induce a proinflammatory response in human airway epithelial cells? Am J Physiol Lung Cell Mol Physiol 2012; 303:L509-18. [PMID: 22821996 DOI: 10.1152/ajplung.00226.2011] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
In the clinical setting, mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) gene enhance the inflammatory response in the lung to Pseudomonas aeruginosa (P. aeruginosa) infection. However, studies on human airway epithelial cells in vitro have produced conflicting results regarding the effect of mutations in CFTR on the inflammatory response to P. aeruginosa, and there are no comprehensive studies evaluating the effect of P. aeruginosa on the inflammatory response in airway epithelial cells with the ΔF508/ΔF508 genotype and their matched CF cell line rescued with wild-type (wt)-CFTR. CFBE41o- cells (ΔF508/ΔF508) and CFBE41o- cells complemented with wt-CFTR (CFBE-wt-CFTR) have been used extensively as an experimental model to study CF. Thus the goal of this study was to examine the effect of P. aeruginosa on gene expression and cytokine/chemokine production in this pair of cells. P. aeruginosa elicited a more robust increase in cytokine and chemokine expression (e.g., IL-8, CXCL1, CXCL2 and TNF-α) in CFBE-wt-CFTR cells compared with CFBE-ΔF508-CFTR cells. These results demonstrate that CFBE41o- cells complemented with wt-CFTR mount a more robust inflammatory response to P. aeruginosa than CFBE41o-ΔF508/ΔF508-CFTR cells. Taken together with other published studies, our data demonstrate that there is no compelling evidence to support the view that mutations in CFTR induce a hyperinflammatory response in human airway epithelial cells in vivo. Although the lungs of patients with CF have abundant levels of proinflammatory cytokines and chemokines, because the lung is populated by immune cells and epithelial cells there is no way to know, a priori, whether airway epithelial cells in the CF lung in vivo are hyperinflammatory in response to P. aeruginosa compared with non-CF lung epithelial cells. Thus studies on human airway epithelial cell lines and primary cells in vitro that propose to examine the effect of mutations in CFTR on the inflammatory response to P. aeruginosa have uncertain clinical significance with regard to CF.
Collapse
Affiliation(s)
- Thomas H Hampton
- Dept. of Microbiology and Immunology, The Geisel School of Medicine at Dartmouth, Hanover, NH 03755, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
56
|
Pezzulo AA, Tang XX, Hoegger MJ, Abou Alaiwa MH, Ramachandran S, Moninger TO, Karp PH, Wohlford-Lenane CL, Haagsman HP, van Eijk M, Bánfi B, Horswill AR, Stoltz DA, McCray PB, Welsh MJ, Zabner J. Reduced airway surface pH impairs bacterial killing in the porcine cystic fibrosis lung. Nature 2012; 487:109-13. [PMID: 22763554 PMCID: PMC3390761 DOI: 10.1038/nature11130] [Citation(s) in RCA: 593] [Impact Index Per Article: 45.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2012] [Accepted: 04/05/2012] [Indexed: 12/18/2022]
Abstract
Cystic fibrosis (CF) is a life-shortening disease caused by mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) gene 1. Although bacterial lung infection and the resulting inflammation cause most of the morbidity and mortality, how loss of CFTR first disrupts airway host defense has remained uncertain 2–6. We asked what abnormalities impair eradication when a bacterium lands on the pristine surface of a newborn CF airway? To investigate these defects, we interrogated the viability of individual bacteria immobilized on solid grids and placed on the airway surface. As a model we studied CF pigs, which spontaneously develop hallmark features of CF lung disease 7,8. At birth, their lungs lack infection and inflammation, but have a reduced ability to eradicate bacteria 8. Here we show that in newborn wild-type pigs, the thin layer of airway surface liquid (ASL) rapidly killed bacteria in vivo, when removed from the lung, and in primary epithelial cultures. Lack of CFTR reduced bacterial killing. We found that ASL pH was more acidic in CF, and reducing pH inhibited the antimicrobial activity of ASL. Reducing ASL pH diminished bacterial killing in wild-type pigs, and increasing ASL pH rescued killing in CF pigs. These results directly link the initial host defense defect to loss of CFTR, an anion channel that facilitates HCO3− transport 9–13. Without CFTR, airway epithelial HCO3− secretion is defective, ASL pH falls and inhibits antimicrobial function, and thereby impairs killing of bacteria that enter the newborn lung. These findings suggest that increasing ASL pH might prevent the initial infection in patients with CF and that assaying bacterial killing could report on the benefit of therapeutic interventions.
Collapse
Affiliation(s)
- Alejandro A Pezzulo
- Department of Medicine, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa 52242, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
57
|
Livraghi-Butrico A, Kelly EJ, Klem ER, Dang H, Wolfgang MC, Boucher RC, Randell SH, O'Neal WK. Mucus clearance, MyD88-dependent and MyD88-independent immunity modulate lung susceptibility to spontaneous bacterial infection and inflammation. Mucosal Immunol 2012; 5:397-408. [PMID: 22419116 PMCID: PMC3377774 DOI: 10.1038/mi.2012.17] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
It has been postulated that mucus stasis is central to the pathogenesis of obstructive lung diseases. In Scnn1b-transgenic (Scnn1b-Tg⁺ mice, airway-targeted overexpression of the epithelial Na⁺ channel β subunit causes airway surface dehydration, which results in mucus stasis and inflammation. Bronchoalveolar lavage from neonatal Scnn1b-Tg⁺ mice, but not wild-type littermates, contained increased mucus, bacteria, and neutrophils, which declined with age. Scnn1b-Tg⁺ mice lung bacterial flora included environmental and oropharyngeal species, suggesting inhalation and/or aspiration as routes of entry. Genetic deletion of the Toll-interleukin-1 receptor adapter molecule MyD88 in Scnn1b-Tg⁺ mice did not modify airway mucus obstruction, but caused defective neutrophil recruitment and increased bacterial infection, which persisted into adulthood. Scnn1b-Tg⁺ mice derived into germ-free conditions exhibited mucus obstruction similar to conventional Scnn1b-Tg⁺ mice and sterile inflammation. Collectively, these data suggest that dehydration-induced mucus stasis promotes infection, compounds defects in other immune mechanisms, and alone is sufficient to trigger airway inflammation.
Collapse
Affiliation(s)
- A Livraghi-Butrico
- Cystic Fibrosis/Pulmonary Research and Treatment Center, School of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA.
| | | | | | | | | | | | | | | |
Collapse
|
58
|
Yang J, Eiserich JP, Cross CE, Morrissey BM, Hammock BD. Metabolomic profiling of regulatory lipid mediators in sputum from adult cystic fibrosis patients. Free Radic Biol Med 2012; 53:160-71. [PMID: 22580336 PMCID: PMC3412514 DOI: 10.1016/j.freeradbiomed.2012.05.001] [Citation(s) in RCA: 106] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2011] [Revised: 04/29/2012] [Accepted: 05/01/2012] [Indexed: 01/22/2023]
Abstract
Retained respiratory tract (RT) secretions, infection, and exuberant inflammatory responses are core abnormalities in cystic fibrosis (CF) lung disease. Factors contributing to the destructive CF airway inflammatory processes remain incompletely characterized. The pro-oxidative inflammatory CF RT milieu is known to contain enzymatically and nonenzymatically produced regulatory lipid mediators, a panel of structurally defined oxidized metabolites of polyunsaturated fatty acids known to play a role in pathology related to inflammation. Using an extraction protocol that maximizes recoveries of sputum-spiked deuterated standards, coupled with an LC/MS/MS detection system, this study presents a metabolomic method to assess a broad spectrum of regulatory lipid mediators in freshly obtained sputum from CF patients. A broad range of both proinflammatory and anti-inflammatory lipid mediators was detected, including PGE2, PGD2, TXB2, LTB4, 6-trans-LTB4, 20-OH-LTB4, 20-COOH-LTB4, 20-HETE, 15-HETE, 11-HETE, 12-HETE, 8-HETE, 9-HETE, 5-HETE, EpETrEs, diols, resolvin E1, 15-deoxy-PGJ2, and LXA4. The vast majority of these oxylipins have not been reported previously in CF RT secretions. Whereas direct associations of individual proinflammatory lipid mediators with compromised lung function (FEV-1) were observed, the relationships were not robust. However, multiple statistical analyses revealed that the regulatory lipid mediators profile taken in aggregate proved to have a stronger association with lung function in relatively stable outpatient adult CF patients. Our data reveal a relative paucity of the anti-inflammatory lipid mediator lipoxin A4 in CF sputum. Patients displaying detectable levels of the anti-inflammatory lipid mediator resolvin E1 demonstrated a better lung function compared to those patients with undetectable levels. Our data suggest that comprehensive metabolomic profiling of regulatory lipid mediators in CF sputum should contribute to a better understanding of the molecular mechanisms underlying CF RT inflammatory pathobiology. Further studies are required to determine the extent to which nutritional or pharmacological interventions alter the regulatory lipid mediators profile of the CF RT and the impact of potential modulations of RT regulatory lipid mediators on the clinical progression of CF lung disease.
Collapse
Affiliation(s)
- Jun Yang
- Department of Entomology, University of California at Davis, Davis, CA 95616, USA
| | | | | | | | | |
Collapse
|
59
|
Inflammasome-mediated IL-1β production in humans with cystic fibrosis. PLoS One 2012; 7:e37689. [PMID: 22649552 PMCID: PMC3359311 DOI: 10.1371/journal.pone.0037689] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2011] [Accepted: 04/24/2012] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND Inflammation and infection are major determinants of disease severity and consequently, the quality of life and outcome for patients with cystic fibrosis (CF). Interleukin-1 beta (IL-1β) is a key inflammatory mediator. Secretion of biologically active IL-1β involves inflammasome-mediated processing. Little is known about the contribution of IL-1β and the inflammasomes in CF inflammatory disease. This study examines inflammasome-mediated IL-1β production in CF bronchial epithelial cell lines and human patients with CF. RESULTS Bronchial epithelial cell lines were found to produce negligible amounts of basal or stimulated IL-1β compared to hematopoeitic cells and they did not significantly upregulate caspase-1 activity upon inflammasome stimulation. In contrast, peripheral blood mononuclear cells (PBMCs) from both CF and healthy control subjects produced large amounts of IL-1β and strongly upregulated caspase-1 activity upon inflammasome stimulation. PBMCs from CF patients and controls displayed similar levels of caspase-1 activation and IL-1β production when stimulated with inflammasome activators. This IL-1β production was dependent on NF-κB activity and could be enhanced by priming with LPS. Finally, chemical inhibition of CFTR activity in control PBMCs and THP-1 cells did not significantly alter IL-1β or IL-8 production in response to P. aeruginosa. CONCLUSION Hematopoeitic cells appear to be the predominant source of inflammasome-induced pro-inflammatory IL-1β in CF. PBMCs derived from CF subjects display preserved inflammasome activation and IL-1β secretion in response to the major CF pathogen Pseudomonas aeruginosa. However, our data do not support the hypothesis that increased IL-1β production in CF subjects is due to an intrinsic increase in NF-κB activity through loss of CFTR function.
Collapse
|
60
|
Chen J, Jiang XH, Chen H, Guo JH, Tsang LL, Yu MK, Xu WM, Chan HC. CFTR negatively regulates cyclooxygenase-2-PGE(2) positive feedback loop in inflammation. J Cell Physiol 2012; 227:2759-66. [PMID: 21913191 DOI: 10.1002/jcp.23020] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Cystic fibrosis (CF) is an autosomal recessive disorder caused by mutations of the cystic fibrosis transmembrane conductance regulator (CFTR), a cAMP-dependent anion channel mostly expressed in epithelia. Accumulating evidence suggests that CF airway epithelia are overwhelmed by excessive inflammatory cytokines and prostaglandins (PGs), which eventually lead to the over-inflammatory condition observed in CF lung disease. However, the exact underlying mechanism remains elusive. In this study, we observed increased cyclooxygenase-2 (COX-2) expression and over-production of prostaglandin E(2) (PGE(2)) in human CF bronchial epithelia cell line (CFBE41o--) with elevated NF-κB activity compared to a wild-type airway epithelial cell line (16HBE14o--). Moreover, we demonstrated that CFTR knockout mice had inherently higher levels of COX-2 and NF-κB activity, supporting the notion that lack of CFTR results in hyper-inflammatory signaling. In addition, we identified a positive feedback loop for production of PGE(2) involving PKA and transcription factor, CREB. More importantly, overexpression of wild-type CFTR significantly suppressed COX-2 expression in CFBE41o- cells, and wild-type CFTR protein expression was significantly increased when 16HBE14o-- cells were challenged with LPS as well as PGE(2), indicating possible involvement of CFTR in negative regulation of COX-2/PGE(2). In conclusion, CFTR is a negative regulator of PGE(2)-mediated inflammatory response, defect of which may result in excessive activation of NF-κB, leading to over production of PGE(2) as seen in inflammatory CF tissues.
Collapse
Affiliation(s)
- Jing Chen
- Epithelial Cell Biology Research Center, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | | | | | | | | | | | | | | |
Collapse
|
61
|
Abstract
Cystic fibrosis transmembrane conductance regulator (CFTR) functions as a channel that regulates the transport of ions and the movement of water across the epithelial barrier. Mutations in CFTR, which form the basis for the clinical manifestations of cystic fibrosis, affect the epithelial innate immune function in the lung, resulting in exaggerated and ineffective airway inflammation that fails to eradicate pulmonary pathogens. Compounding the effects of excessive neutrophil recruitment, the mutant CFTR channel does not transport antioxidants to counteract neutrophil-associated oxidative stress. Whereas mutant CFTR expression in leukocytes outside of the lung does not markedly impair their function, the expected regulation of inflammation in the airways is clearly deficient in cystic fibrosis. The resulting bacterial infections, which are caused by organisms that have substantial genetic and metabolic flexibility, can resist multiple classes of antibiotics and evade phagocytic clearance. The development of animal models that approximate the human pulmonary phenotypes-airway inflammation and spontaneous infection-may provide the much-needed tools to establish how CFTR regulates mucosal immunity and to test directly the effect of pharmacologic potentiation and correction of mutant CFTR function on bacterial clearance.
Collapse
|
62
|
Finotti A, Borgatti M, Bezzerri V, Nicolis E, Lampronti I, Dechecchi M, Mancini I, Cabrini G, Saviano M, Avitabile C, Romanelli A, Gambari R. Effects of decoy molecules targeting NF-kappaB transcription factors in Cystic fibrosis IB3-1 cells: recruitment of NF-kappaB to the IL-8 gene promoter and transcription of the IL-8 gene. ARTIFICIAL DNA, PNA & XNA 2012; 3:97-296. [PMID: 22772035 PMCID: PMC3429536 DOI: 10.4161/adna.21061] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
One of the clinical features of cystic fibrosis (CF) is a deep inflammatory process, which is characterized by production and release of cytokines and chemokines, among which interleukin 8 (IL-8) represents one of the most important. Accordingly, there is a growing interest in developing therapies against CF to reduce the excessive inflammatory response in the airways of CF patients. Since transcription factor NF-kappaB plays a critical role in IL-8 expression, the transcription factor decoy (TFD) strategy might be of interest. In order to demonstrate that TFD against NF-kappaB interferes with the NF-kappaB pathway we proved, by chromatin immunoprecipitation (ChIP) that treatment with TFD oligodeoxyribonucleotides of cystic fibrosis IB3–1 cells infected with Pseudomonas aeruginosa leads to a decrease occupancy of the Il-8 gene promoter by NF-kappaB factors. In order to develop more stable therapeutic molecules, peptide nucleic acids (PNAs) based agents were considered. In this respect PNA-DNA-PNA (PDP) chimeras are molecules of great interest from several points of view: (1) they can be complexed with liposomes and microspheres; (2) they are resistant to DNases, serum and cytoplasmic extracts; (3) they are potent decoy molecules. By using electrophoretic mobility shift assay and RT-PCR analysis we have demonstrated that (1) the effects of PDP/PDP NF-kappaB decoy chimera on accumulation of pro-inflammatory mRNAs in P.aeruginosa infected IB3–1 cells reproduce that of decoy oligonucleotides; in particular (2) the PDP/PDP chimera is a strong inhibitor of IL-8 gene expression; (3) the effect of PDP/PDP chimeras, unlike those of ODN-based decoys, are observed even in the absence of protection with lipofectamine. These informations are of great impact, in our opinion, for the development of stable molecules to be used in non-viral gene therapy of cystic fibrosis.
Collapse
Affiliation(s)
- Alessia Finotti
- ER-GenTech and BioPharmaNet, Department of Biochemistry and Molecular Biology, Università di Ferrara, Ferrara, Italy
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
63
|
Monterisi S, Favia M, Guerra L, Cardone RA, Marzulli D, Reshkin SJ, Casavola V, Zaccolo M. CFTR regulation in human airway epithelial cells requires integrity of the actin cytoskeleton and compartmentalized cAMP and PKA activity. J Cell Sci 2012; 125:1106-17. [PMID: 22302988 DOI: 10.1242/jcs.089086] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The cystic fibrosis transmembrane conductance regulator (CFTR) mutation ΔF508CFTR still causes regulatory defects when rescued to the apical membrane, suggesting that the intracellular milieu might affect its ability to respond to cAMP regulation. We recently reported that overexpression of the Na(+)/H(+) exchanger regulatory factor NHERF1 in the cystic fibrosis (CF) airway cell line CFBE41o-rescues the functional expression of ΔF508CFTR by promoting F-actin organization and formation of the NHERF1-ezrin-actin complex. Here, using real-time FRET reporters of both PKA activity and cAMP levels, we find that lack of an organized subcortical cytoskeleton in CFBE41o-cells causes both defective accumulation of cAMP in the subcortical compartment and excessive cytosolic accumulation of cAMP. This results in reduced subcortical levels and increased cytosolic levels of PKA activity. NHERF1 overexpression in CFBE41o-cells restores chloride secretion, subcortical cAMP compartmentalization and local PKA activity, indicating that regulation of ΔF508CFTR function requires not only stable expression of the mutant CFTR at the cell surface but also depends on both generation of local cAMP signals of adequate amplitude and activation of PKA in proximity of its target. Moreover, we found that the knockdown of wild-type CFTR in the non-CF 16HBE14o-cells results in both altered cytoskeletal organization and loss of cAMP compartmentalization, whereas stable overexpression of wt CFTR in CF cells restores cytoskeleton organization and re-establishes the compartmentalization of cAMP at the plasma membrane. This suggests that the presence of CFTR on the plasma membrane influences the cytoskeletal organizational state and, consequently, cAMP distribution. Our data show that a sufficiently high concentration of cAMP in the subcortical compartment is required to achieve PKA-mediated regulation of CFTR activity.
Collapse
Affiliation(s)
- Stefania Monterisi
- Department of General and Environmental Physiology, University of Bari, Bari, 70125, Italy
| | | | | | | | | | | | | | | |
Collapse
|
64
|
Looi K, Sutanto EN, Banerjee B, Garratt L, Ling KM, Foo CJ, Stick SM, Kicic A. Bronchial brushings for investigating airway inflammation and remodelling. Respirology 2011; 16:725-37. [PMID: 21624002 DOI: 10.1111/j.1440-1843.2011.02001.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Asthma is the commonest medical cause for hospital admission for children in Australia, affects more than 300 million people worldwide, and is incurable, severe in large number and refractory to treatment in many. However, there have been no new significant treatments despite intense research and billions of dollars. The advancement in our understanding in this disease has been limited due to its heterogeneity, genetic complexity and has severely been hampered particularly in children by the difficulty in obtaining relevant target organ tissue. This review attempts to provide an overview of the currently used and recently developed/adapted techniques used to obtain lung tissue with specific reference to the airway epithelium.
Collapse
Affiliation(s)
- Kevin Looi
- School of Paediatrics and Child Health, Centre for Health Research, The University of Western Australia, Nedlands, Australia
| | | | | | | | | | | | | | | |
Collapse
|
65
|
Shin HS, Ha UH. Up-regulation of human bradykinin B1 receptor by secreted components ofPseudomonas aeruginosavia a NF-κB pathway in epithelial cells. ACTA ACUST UNITED AC 2011; 63:418-26. [DOI: 10.1111/j.1574-695x.2011.00868.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2011] [Revised: 08/26/2011] [Accepted: 08/30/2011] [Indexed: 11/28/2022]
|
66
|
Porter LA, Goldberg JB. Influence of neutrophil defects on Burkholderia cepacia complex pathogenesis. Front Cell Infect Microbiol 2011; 1:9. [PMID: 22919575 PMCID: PMC3417359 DOI: 10.3389/fcimb.2011.00009] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2011] [Accepted: 11/01/2011] [Indexed: 12/16/2022] Open
Abstract
The Burkholderia cepacia complex (Bcc) is a group of Gram-negative bacteria that are ubiquitous in the environment and have emerged as opportunistic pathogens in immunocompromised patients. The primary patient populations infected with Bcc include individuals with cystic fibrosis (CF), as well as those with chronic granulomatous disease (CGD). While Bcc infection in CF is better characterized than in CGD, these two genetic diseases are not obviously similar and it is currently unknown if there is any commonality in host immune defects that is responsible for the susceptibility to Bcc. CF is caused by mutations in the CF transmembrane conductance regulator, resulting in manifestations in various organ systems, however the major cause of morbidity and mortality is currently due to bacterial respiratory infections. CGD, on the other hand, is a genetic disorder that is caused by defects in phagocyte NADPH oxidase. Because of the defect in CGD, phagocytes in these patients are unable to produce reactive oxygen species, which results in increased susceptibility to bacterial and fungal infections. Despite this significant defect in microbial clearance, the spectrum of pathogens frequently implicated in infections in CGD is relatively narrow and includes some bacterial species that are considered almost pathognomonic for this disorder. Very little is known about the cause of the specific susceptibility to Bcc over other potential pathogens more prevalent in the environment, and a better understanding of specific mechanisms required for bacterial virulence has become a high priority. This review will summarize both the current knowledge and future directions related to Bcc virulence in immunocompromised individuals with a focus on the roles of bacterial factors and neutrophil defects in pathogenesis.
Collapse
Affiliation(s)
- Laura A Porter
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia Health System, Charlottesville, VA, USA
| | | |
Collapse
|
67
|
Balghi H, Robert R, Rappaz B, Zhang X, Wohlhuter-Haddad A, Evagelidis A, Luo Y, Goepp J, Ferraro P, Roméo P, Trebak M, Wiseman PW, Thomas DY, Hanrahan JW. Enhanced Ca2+ entry due to Orai1 plasma membrane insertion increases IL-8 secretion by cystic fibrosis airways. FASEB J 2011; 25:4274-91. [PMID: 21873556 DOI: 10.1096/fj.11-187682] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Cystic fibrosis (CF) is caused by mutations in the gene encoding the CF transmembrane conductance regulator (CFTR). The most common mutation, ΔF508, causes retention of CFTR in the endoplasmic reticulum (ER). Some CF abnormalities can be explained by altered Ca(2+) homeostasis, although it remains unknown how CFTR influences calcium signaling. This study examined the novel hypothesis that store-operated calcium entry (SOCE) through Orai1 is abnormal in CF. The significance of Orai1-mediated SOCE for increased interleukin-8 (IL-8) expression in CF was also investigated. CF and non-CF human airway epithelial cell line and primary cells (obtained at lung transplantation) were used in Ca(2+) imaging, electrophysiology, and fluorescence imaging experiments to explore differences in Orai1 function in CF vs. non-CF cells. Protein expression and localization was assessed by Western blots, cell surface biotinylation, ELISA, and image correlation spectroscopy (ICS). We show here that store-operated Ca(2+) entry (SOCE) is elevated in CF human airway epithelial cells (hAECs; ≈ 1.8- and ≈ 2.5-fold for total Ca(2+)(i) increase and Ca(2+) influx rate, respectively, and ≈ 2-fold increase in the I(CRAC) current) and is caused by increased exocytotic insertion (≈ 2-fold) of Orai1 channels into the plasma membrane, which is normalized by rescue of ΔF508-CFTR trafficking to the cell surface. Augmented SOCE in CF cells is a major factor leading to increased IL-8 secretion (≈ 2-fold). CFTR normally down-regulates the Orai1/stromal interaction molecule 1 (STIM1) complex, and loss of this inhibition due to the absence of CFTR at the plasma membrane helps to explain the potentiated inflammatory response in CF cells.
Collapse
Affiliation(s)
- Haouaria Balghi
- Department of Physiology, McGill University, Montréal, Québec, Canada.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
68
|
De Stefano D, Ungaro F, Giovino C, Polimeno A, Quaglia F, Carnuccio R. Sustained inhibition of IL-6 and IL-8 expression by decoy ODN to NF-κB delivered through respirable large porous particles in LPS-stimulated cystic fibrosis bronchial cells. J Gene Med 2011; 13:200-8. [PMID: 21322102 DOI: 10.1002/jgm.1546] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Cystic fibrosis (CF) is caused by mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) gene. Neutrophil-dominated inflammation and chronic bacterial infection are still considered the primary cause of bronchioectasis, respiratory failure and consequent death in CF patients. Activation of nuclear factor (NF)-κB is responsible for overproduction of cytokines, such as interleukin (IL)-6 and IL-8, in airways of CF patients. Thus, decoy oligodeoxynucleotides against NF-κB (dec-ODN) may limit lung inflammation in CF. In the present study, we studied the effects of dec-ODN delivered through biodegradable and respirable poly(D,L-lactide-co-glycolide) large porous particles (LPP) on IL-6 and IL-8 mRNA expression as well as NF-κB/DNA binding activity in cystic fibrosis cells stimulated with lipopolysaccharide (LPS) from Pseudomonas aeruginosa. METHODS dec-ODN LPP were prepared by a modified double emulsion technique and characterized in terms of size, morphology, tapped density and dec-ODN loading. Human epithelial bronchial IB3-1 (CFTR-mutated) as well as S9 (CFTR-corrected) were stimulated with LPS from P. aeruginosa for 24 and 72 h in the absence or presence of naked dec-ODN or dec-ODN LPP. RESULTS Stimulation of cells with LPS from P. aeruginosa caused an increase of IL-6 and IL-8 mRNA levels, which were significantly inhibited by dec-ODN LPP at 24 and 72 h, whereas naked dec-ODN inhibited those only at 24 h. Similar effects were exhibited by dec-ODN LPP or naked dec-ODN on NF-κB/DNA binding activity. CONCLUSIONS Our observations indicate that respirable biodegradable dec-ODN LPP may represent a promising strategy for inhibiting NF-κB transcriptional activity and related gene expression and, thus, reduce lung chronic inflammation in CF patients.
Collapse
Affiliation(s)
- Daniela De Stefano
- Department of Experimental Pharmacology, School of Biotechnological Sciences, University of Naples Federico II, Italy
| | | | | | | | | | | |
Collapse
|
69
|
Carter CJ. Pathogen and autoantigen homologous regions within the cystic fibrosis transmembrane conductance regulator (CFTR) protein suggest an autoimmune treatable component of cystic fibrosis. ACTA ACUST UNITED AC 2011; 62:197-214. [DOI: 10.1111/j.1574-695x.2011.00803.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
70
|
Sutanto EN, Kicic A, Foo CJ, Stevens PT, Mullane D, Knight DA, Stick SM. Innate Inflammatory Responses of Pediatric Cystic Fibrosis Airway Epithelial Cells. Am J Respir Cell Mol Biol 2011; 44:761-7. [DOI: 10.1165/rcmb.2010-0368oc] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
71
|
Mueller C, Braag SA, Keeler A, Hodges C, Drumm M, Flotte TR. Lack of cystic fibrosis transmembrane conductance regulator in CD3+ lymphocytes leads to aberrant cytokine secretion and hyperinflammatory adaptive immune responses. Am J Respir Cell Mol Biol 2011; 44:922-9. [PMID: 20724552 PMCID: PMC3135852 DOI: 10.1165/rcmb.2010-0224oc] [Citation(s) in RCA: 102] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2010] [Accepted: 07/26/2010] [Indexed: 11/24/2022] Open
Abstract
Cystic fibrosis (CF), the most common fatal monogenic disease in the United States, results from mutations in CF transmembrane conductance regulator (CFTR), a chloride channel. The mechanisms by which CFTR mutations cause lung disease in CF are not fully defined but may include altered ion and water transport across the airway epithelium and aberrant inflammatory and immune responses to pathogens within the airways. We have shown that Cftr(-/-) mice mount an exaggerated IgE response toward Aspergillus fumigatus, with higher levels of IL-13 and IL-4, mimicking both the T helper cell type 2-biased immune responses seen in patients with CF. Herein, we demonstrate that these aberrations are primarily due to Cftr deficiency in lymphocytes rather than in the epithelium. Adoptive transfer experiments with CF splenocytes confer a higher IgE response to Aspergillus fumigatus compared with hosts receiving wild-type splenocytes. The predilection of Cftr-deficient lymphocytes to mount T helper cell type 2 responses with high IL-13 and IL-4 was confirmed by in vitro antigen recall experiments. Conclusive data on this phenomenon were obtained with conditional Cftr knockout mice, where mice lacking Cftr in T cell lineages developed higher IgE than their wild-type control littermates. Further analysis of Cftr-deficient lymphocytes revealed an enhanced intracellular Ca(2+) flux in response to T cell receptor activation. This was accompanied by an increase in nuclear localization of the calcium-sensitive transcription factor, nuclear factor of activated T cell, which could drive the IL-13 response. In summary, our data identified that CFTR dysfunction in T cells can lead directly to aberrant immune responses. These findings implicate the lymphocyte population as a potentially important target for CF therapeutics.
Collapse
Affiliation(s)
- Christian Mueller
- University of Massachusetts Medical School Department of Pediatrics and Gene Therapy Center, Worcester, Massachusetts 01605, USA.
| | | | | | | | | | | |
Collapse
|
72
|
Up-regulation of bradykinin B2 receptor by Pseudomonas aeruginosa via the NF-κB pathway. Curr Microbiol 2011; 63:138-44. [PMID: 21626144 DOI: 10.1007/s00284-011-9959-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2011] [Accepted: 05/20/2011] [Indexed: 12/16/2022]
Abstract
As the first line of host defense, inflammatory responses in response to bacterial infection are initiated by the production of a range of mediators. Infection of Pseudomonas aeruginosa has been shown to stimulate the production of bradykinin (BK), which is known as a universal mediator for the induction of inflammatory reaction via the predominant interaction with the bradykinin B2 receptor (B2R). Thus, the interaction between BK and B2R represents an important host innate response against invading P. aeruginosa. However, the contribution of P. aeruginosa to the up-regulation of B2R expression remains unclear. Here, we report that P. aeruginosa is potent in inducing the expression of B2R at the mRNA and protein levels in a dose- and time-dependent manner. Components produced and secreted from P. aeruginosa could play an essential role in inducing B2R expression, and the secreted components are not under the control of Type III secretion system or quorum sensing. B2R expression in response to P. aeruginosa is mediated by the induction of cellular signaling that leads to the activation of transcription factor NF-κB. Thus, this study demonstrates that P. aeruginosa is able to up-regulate the expression of B2R during infection via the NF-κB signaling pathway.
Collapse
|
73
|
Host derived inflammatory phospholipids regulate rahU (PA0122) gene, protein, and biofilm formation in Pseudomonas aeruginosa. Cell Immunol 2011; 270:95-102. [PMID: 21679933 DOI: 10.1016/j.cellimm.2011.04.011] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2011] [Revised: 04/12/2011] [Accepted: 04/27/2011] [Indexed: 01/12/2023]
Abstract
This study describes the role of "inflammatory" oxidized (Ox) phospholipids in regulation of rahU (PA0122) expression and biofilm formation in Pseudomonas aeruginosa (383) wild type (rahU(+)) and rahU mutant (rahU(-)) strains. Functional analysis of RahU protein from P. aeruginosa in presence of Ox-phospholipids show: (a) LysoPC modulates RahU gene/and protein expression in rahU(+) cells; (b) rahU promoter activity is increased by lysoPC and inhibited by PAPC, Ox-PAPC and arachidonic acid; the latter inhibitory effect can be reversed by lysoPC, which was enzymatically derived from PAPC; (c) biofilm formation increased in rahU(-) cells as compared to rahU(+); and (d) inhibition of rahU promoter activity by PAPC and AA (but not lysoPC) showed significantly augmented biofilm formation in rahU(+) but not in rahU(-) cells. This study shows that host derived Ox-phospholipids affect P. aeruginosa-rahU gene and protein expression, which in turn modulates biofilm formation. The accompanying paper describes the role of RahU protein in eukaryotic-host cells.
Collapse
|
74
|
|
75
|
Rada B, Gardina P, Myers TG, Leto TL. Reactive oxygen species mediate inflammatory cytokine release and EGFR-dependent mucin secretion in airway epithelial cells exposed to Pseudomonas pyocyanin. Mucosal Immunol 2011; 4:158-71. [PMID: 20962773 PMCID: PMC3026888 DOI: 10.1038/mi.2010.62] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Despite the long-appreciated in vivo role of the redox-active virulence factor pyocyanin in Pseudomonas airway infections and the importance of airway epithelial cells in combating bacterial pathogens, little is known about pyocyanin's effect on airway epithelial cells. We find that exposure of bronchiolar epithelial cells to pyocyanin results in MUC2/MUC5AC induction and mucin secretion through release of inflammatory cytokines and growth factors (interleukin (IL)-1β, IL-6, heparin-bound epidermal growth factor, tissue growth factor-α, tumor necrosis factor-α) that activate the epidermal growth factor receptor pathway. These changes are mediated by reactive oxygen species produced by pyocyanin. Microarray analysis identified 286 pyocyanin-induced genes in airway epithelial cells, including many inflammatory mediators elevated in cystic fibrosis (granulocyte colony-stimulating factor (G-CSF), granulocyte-monocyte CSF, chemokine (C-X-C motif) ligand 1 (CXCL1), serum amyloid, IL-23) and several novel pyocyanin-responsive genes of potential importance in the infection process (IL-24, CXCL2, CXCL3, CCL20, CXCR4). This comprehensive study uncovers numerous details of pyocyanin's proinflammatory action and establishes airway epithelial cells as key responders to this microbial toxin.
Collapse
Affiliation(s)
- Balázs Rada
- National Institutes of Health, National Institute of Allergy and Infectious Diseases, Laboratory of Host Defenses, 12441 Parklawn Drive, 20852 Rockville, MD, U.S.A
| | - Paul Gardina
- National Institutes of Health, National Institute of Allergy and Infectious Diseases, Research Technologies Branch, Genomic Technologies Section, 50 South Drive, 20892 Bethesda MD, U.S.A
| | - Timothy G. Myers
- National Institutes of Health, National Institute of Allergy and Infectious Diseases, Research Technologies Branch, Genomic Technologies Section, 50 South Drive, 20892 Bethesda MD, U.S.A
| | - Thomas L. Leto
- National Institutes of Health, National Institute of Allergy and Infectious Diseases, Laboratory of Host Defenses, 12441 Parklawn Drive, 20852 Rockville, MD, U.S.A
| |
Collapse
|
76
|
Hauser AR, Jain M, Bar-Meir M, McColley SA. Clinical significance of microbial infection and adaptation in cystic fibrosis. Clin Microbiol Rev 2011; 24:29-70. [PMID: 21233507 PMCID: PMC3021203 DOI: 10.1128/cmr.00036-10] [Citation(s) in RCA: 287] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
A select group of microorganisms inhabit the airways of individuals with cystic fibrosis. Once established within the pulmonary environment in these patients, many of these microbes adapt by altering aspects of their structure and physiology. Some of these microbes and adaptations are associated with more rapid deterioration in lung function and overall clinical status, whereas others appear to have little effect. Here we review current evidence supporting or refuting a role for the different microbes and their adaptations in contributing to poor clinical outcomes in cystic fibrosis.
Collapse
Affiliation(s)
- Alan R Hauser
- Department of Microbiology/Immunology, Northwestern University, 303 E. Chicago Ave., Searle 6-495, Chicago, IL 60611, USA.
| | | | | | | |
Collapse
|
77
|
Blohmke CJ, Park J, Hirschfeld AF, Victor RE, Schneiderman J, Stefanowicz D, Chilvers MA, Durie PR, Corey M, Zielenski J, Dorfman R, Sandford AJ, Daley D, Turvey SE. TLR5 as an anti-inflammatory target and modifier gene in cystic fibrosis. THE JOURNAL OF IMMUNOLOGY 2010; 185:7731-8. [PMID: 21068401 DOI: 10.4049/jimmunol.1001513] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
New treatments are needed to improve the health of people with cystic fibrosis (CF). Reducing lung-damaging inflammation is likely to be beneficial, but specific anti-inflammatory targets have not been identified. By combining cellular immunology with a population-based genetic modifier study, we examined TLR5 as an anti-inflammatory target and modifier gene in CF. Using two pairs of human CF and control airway epithelial cells, we demonstrated that the TLR5-flagellin interaction is a major mediator of inflammation following exposure to Pseudomonas aeruginosa. To validate TLR5 as an anti-inflammatory target, we analyzed the disease modifying effects of the TLR5 c.1174C>T single nucleotide polymorphism (rs5744168) in a large cohort of CF patients (n = 2219). rs5744168 encodes a premature stop codon and the T allele is associated with a 45.5-76.3% reduction in flagellin responsiveness (p < 0.0001). To test the hypothesis that reduced TLR5 responsiveness would be associated with improved health in CF patients, we examined the relationship between rs5744168 and two clinical phenotypes: lung function and body weight. Adults with CF carrying the TLR5 premature stop codon (CT or TT genotype) had a higher body mass index than did CF patients homozygous for the fully functional allele (CC genotype) (p = 0.044); however, similar improvements in lung function associated with the T allele were not statistically significant. Although follow-up studies are needed to confirm the impact of TLR5 on nutritional status, this translational research provides evidence that genetic variation in TLR5 resulting in reduced flagellin responsiveness is associated with improved health indicators in adults with CF.
Collapse
Affiliation(s)
- Christoph J Blohmke
- Department of Paediatrics, BC Children's Hospital and Child and Family Research Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
78
|
Mechanisms of action and clinical application of macrolides as immunomodulatory medications. Clin Microbiol Rev 2010; 23:590-615. [PMID: 20610825 DOI: 10.1128/cmr.00078-09] [Citation(s) in RCA: 453] [Impact Index Per Article: 30.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Macrolides have diverse biological activities and an ability to modulate inflammation and immunity in eukaryotes without affecting homeostatic immunity. These properties have led to their long-term use in treating neutrophil-dominated inflammation in diffuse panbronchiolitis, bronchiectasis, rhinosinusitis, and cystic fibrosis. These immunomodulatory activities appear to be polymodal, but evidence suggests that many of these effects are due to inhibition of extracellular signal-regulated kinase 1/2 (ERK1/2) phosphorylation and nuclear factor kappa B (NF-kappaB) activation. Macrolides accumulate within cells, suggesting that they may associate with receptors or carriers responsible for the regulation of cell cycle and immunity. A concern is that long-term use of macrolides increases the emergence of antimicrobial resistance. Nonantimicrobial macrolides are now in development as potential immunomodulatory therapies.
Collapse
|
79
|
Abstract
The life expectancy of people with cystic fibrosis (CF), a lethal inherited disease, has been greatly extended by advances in therapy. Currently, there are a number of potential drugs for treatment of CF lung disease in clinical trials. These therapies are targeted at all points in the pathogenesis of lung disease, from gene transfer to drugs that treat mucus, infection and inflammation in the airways. An exciting development is that of modulation of the abnormal protein that causes CF, the cystic fibrosis transmembrane conductance regulator (CFTR), where drugs are targeted at specific defects in CFTR transcription, processing or functioning. Inhaled therapies are being developed to augment airway surface liquid height, either by modulating the abnormal ion channel function in the airway epithelial cell or by rehydrating with osmotic agents. Anti-inflammatory therapy is also of great interest in CF and there are several candidate drugs in clinical trials. A number of antibacterial agents formulated for inhalation are at various stages of study or newly approved, which should improve options for chronic management of airway infection. Hopefully, many of these potential therapies will come to market and will further extend the life expectancy of people with CF.
Collapse
Affiliation(s)
- Paula Anderson
- Division of Pulmonary and Critical Care Medicine, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA.
| |
Collapse
|
80
|
Schwarzer C, Wong S, Shi J, Matthes E, Illek B, Ianowski JP, Arant RJ, Isacoff E, Vais H, Foskett JK, Maiellaro I, Hofer AM, Machen TE. Pseudomonas aeruginosa Homoserine lactone activates store-operated cAMP and cystic fibrosis transmembrane regulator-dependent Cl- secretion by human airway epithelia. J Biol Chem 2010; 285:34850-63. [PMID: 20739289 DOI: 10.1074/jbc.m110.167668] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
The ubiquitous bacterium Pseudomonas aeruginosa frequently causes hospital-acquired infections. P. aeruginosa also infects the lungs of cystic fibrosis (CF) patients and secretes N-(3-oxo-dodecanoyl)-S-homoserine lactone (3O-C12) to regulate bacterial gene expression critical for P. aeruginosa persistence. In addition to its effects as a quorum-sensing gene regulator in P. aeruginosa, 3O-C12 elicits cross-kingdom effects on host cell signaling leading to both pro- or anti-inflammatory effects. We find that in addition to these slow effects mediated through changes in gene expression, 3O-C12 also rapidly increases Cl(-) and fluid secretion in the cystic fibrosis transmembrane regulator (CFTR)-expressing airway epithelia. 3O-C12 does not stimulate Cl(-) secretion in CF cells, suggesting that lactone activates the CFTR. 3O-C12 also appears to directly activate the inositol trisphosphate receptor and release Ca(2+) from the endoplasmic reticulum (ER), lowering [Ca(2+)] in the ER and thereby activating the Ca(2+)-sensitive ER signaling protein STIM1. 3O-C12 increases cytosolic [Ca(2+)] and, strikingly, also cytosolic [cAMP], the known activator of CFTR. Activation of Cl(-) current by 3O-C12 was inhibited by a cAMP antagonist and increased by a phosphodiesterase inhibitor. Finally, a Ca(2+) buffer that lowers [Ca(2+)] in the ER similar to the effect of 3O-C12 also increased cAMP and I(Cl). The results suggest that 3O-C12 stimulates CFTR-dependent Cl(-) and fluid secretion in airway epithelial cells by activating the inositol trisphosphate receptor, thus lowering [Ca(2+)] in the ER and activating STIM1 and store-operated cAMP production. In CF airways, where CFTR is absent, the adaptive ability to rapidly flush the bacteria away is compromised because the lactone cannot affect Cl(-) and fluid secretion.
Collapse
Affiliation(s)
- Christian Schwarzer
- Department of Molecular and Cell Biology, University of California, Berkeley, California 94720-3200, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
81
|
Farberman MM, Ibricevic A, Joseph TD, Akers KT, Garcia-Medina R, Crosby S, Clarke LL, Brody SL, Ferkol TW. Effect of polarized release of CXC-chemokines from wild-type and cystic fibrosis murine airway epithelial cells. Am J Respir Cell Mol Biol 2010; 45:221-8. [PMID: 20639462 DOI: 10.1165/rcmb.2009-0249oc] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
The respiratory epithelium lining the airway relies on mucociliary clearance and a complex network of inflammatory mediators to protect the lung. Alterations in the composition and volume of the periciliary liquid layer, as occur in cystic fibrosis (CF), lead to impaired mucociliary clearance and persistent airway infection. Moreover, the respiratory epithelium releases chemoattractants after infection, inciting airway inflammation. However, characterizing the inflammatory response of primary human airway epithelial cells to infection can be challenging because of genetic heterogeneity. Using well-characterized, differentiated, primary murine tracheal cells grown at an air-liquid interface, which provides an in vitro polarized epithelial model, we compared inflammatory gene expression and secretion in wild-type and ΔF508 CF airway cells after infection with Pseudomonas aeruginosa. The expression of several CXC-chemokines, including macrophage inflammatory protein-2, small inducible cytokine subfamily member 2, lipopolysaccharide-induced chemokine, and interferon-inducible cytokine-10, was markedly increased after infection, and these proinflammatory mediators were asymmetrically released from the airway epithelium, predominantly from the basolateral surface. Equal amounts of CXC-chemokines were released from wild-type and CF cells. Secreted mediators were concentrated in the thin, periciliary fluid layer, and the dehydrated apical microenvironment of CF airway epithelial cells amplified the inflammatory signal, potentially resulting in high chemokine concentration gradients across the epithelium. Consistent with this observation, the enhanced chemotaxis of wild-type neutrophils was detected in CF airway epithelial cultures, compared with wild-type cells. These data suggest that P. aeruginosa infection of the airway epithelium induces the expression and polarized secretion of CXC-chemokines, and the increased concentration gradient across the CF airway leads to an exaggerated inflammatory response.
Collapse
Affiliation(s)
- Michelle M Farberman
- Division of Pediatric Allergy, Immunology, and Pulmonary Medicine, Department of Pediatrics, Washington University School of Medicine, St. Louis, MO 63110, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
82
|
Dubin PJ, Kolls JK. Pseudomonas aeruginosa and the host pulmonary immune response. Expert Rev Respir Med 2010; 1:121-37. [PMID: 20477272 DOI: 10.1586/17476348.1.1.121] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Pseudomonas aeruginosa is a highly adaptable, opportunistic pathogen that is commonly found in the environment. It can infect a number of sites in the body and disseminate. It can cause both acute and chronic pulmonary infection and the acuity of infection and accompanying inflammatory phenotype is determined, for the most part, by the host. Although P. aeruginosa has been a successful opportunist in the context of a number of different disease states, it has been best studied in the context of cystic fibrosis (CF). The adaptability of P. aeruginosa has enabled it to adjust quickly to the CF airway, transitioning from initial colonization to chronic infection. The organism quickly expresses virulence factors that allow it to circumvent some elements of the host immune response and, even more importantly, quickly develops antimicrobial resistance. In the case of CF, chronic infection resulting in progressive lung damage, coupled with antimicrobial resistance, becomes an increasingly important issue as individuals with CF live longer. It is for these reasons that both organism- and host-targeted immunotherapies are being increasingly explored.
Collapse
Affiliation(s)
- Patricia J Dubin
- Children's Hospital of Pittsburgh, Suite 3765, 3705 Fifth Avenue, Pittsburgh, PA 15213, USA.
| | | |
Collapse
|
83
|
Gambari R, Borgatti M, Bezzerri V, Nicolis E, Lampronti I, Dechecchi MC, Mancini I, Tamanini A, Cabrini G. Decoy oligodeoxyribonucleotides and peptide nucleic acids-DNA chimeras targeting nuclear factor kappa-B: inhibition of IL-8 gene expression in cystic fibrosis cells infected with Pseudomonas aeruginosa. Biochem Pharmacol 2010; 80:1887-94. [PMID: 20615393 DOI: 10.1016/j.bcp.2010.06.047] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2010] [Revised: 06/24/2010] [Accepted: 06/28/2010] [Indexed: 12/25/2022]
Abstract
Cystic fibrosis (CF) is characterized by a deep inflammatory process, with production and release of cytokines and chemokines, among which interleukin 8 (IL-8) represents one of the most important. Accordingly, there is a growing interest in developing therapies against IL-8, with the aim of reducing the excessive inflammatory response in the airways of CF patients. Since transcription factor NF-kappaB plays a critical role in IL-8 expression, the transcription factor decoy (TFD) strategy might be of interest. TFD is based on biomolecules mimicking the target sites of transcription factors (TFs) and able to interfere with TF activity when delivered to target cells. Here, we review the inhibitory effects of decoy oligodeoxyribonucleotides (ODNs) on expression of IL-8 gene and secretion of IL-8 by cystic fibrosis cells infected by Pseudomonas aeruginosa. In addition, the effects of decoy molecules based on peptide nucleic acids (PNAs) are discussed. In this respect PNA-DNA-PNA (PDP) chimeras are interesting: (a) unlike PNAs, they can be complexed with liposomes and microspheres; (b) unlike oligodeoxyribonucleotides (ODNs), they are resistant to DNAses, serum and cytoplasmic extracts; (c) unlike PNA/PNA and PNA/DNA hybrids, they are potent decoy molecules. Interestingly, PDP/PDP NF-kappaB decoy chimeras inhibit accumulation of pro-inflammatory mRNAs (including IL-8 mRNA) in P. aeruginosa infected IB3-1, cells reproducing the effects of decoy oligonucleotides. The effects of PDP/PDP chimeras, unlike ODN-based decoys, are observed even in absence of protection with lipofectamine. Since IL-8 is pivotal in pro-inflammatory processes affecting cystic fibrosis, inhibition of its functions might have a clinical relevance.
Collapse
Affiliation(s)
- Roberto Gambari
- ER-GenTech and BioPharmaNet, Department of Biochemistry and Molecular Biology, University of Ferrara, Italy.
| | | | | | | | | | | | | | | | | |
Collapse
|
84
|
Choi S, Park YS, Koga T, Treloar A, Kim KC. TNF-α is a key regulator of MUC1, an anti-inflammatory molecule, during airway Pseudomonas aeruginosa infection. Am J Respir Cell Mol Biol 2010; 44:255-60. [PMID: 20448050 DOI: 10.1165/rcmb.2009-0323oc] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Muc1 is a heterodimeric mucin that is expressed on the apical surface of airway epithelial cells as well as hematopoietic cells. Both in vivo and in vitro studies revealed that Muc1 suppresses inflammatory responses induced by Pseudomonas aeruginosa (PA). In this study, we sought to determine, using intact animals (C57BL/6 mice), whether the expression of Muc1 is important during airway PA infection, and how Muc1 levels are controlled during inflammation. Our results showed that: (1) Muc1 levels in the wild-type (WT) mice were initially low, but gradually increased after PA inhalation, reaching a peak on Day 2, remaining elevated until Day 4, and then gradually decreasing to basal levels on Day 7; (2) TNF receptor 1(-/-) mice failed to increase Muc1 levels after PA infection; (3) after PA inhalation, more inflammatory cells were present in the bronchoalveolar lavage fluid from either Muc1(-/-) or TNF receptor(-/-) mice compared with their WT control animals; (4) more apoptotic neutrophils were present in bronchoalveolar lavage fluid from WT mice compared with Muc1(-/-) mice. We conclude that Muc1(-/-) mice are more inflammatory than WT mice during airway PA infection as a result of both an increase in neutrophil influx and a decrease in neutrophil apoptosis. These results suggest that the up-regulation of Muc1 during airway PA infection might be crucial for suppressing excessive and prolonged inflammatory responses, and is induced mainly by TNF-α, the key proinflammatory mediator.
Collapse
Affiliation(s)
- Seongwon Choi
- Immunology and Asthma Program, Lovelace Respiratory Research Institute, Albuquerque, New Mexico, USA
| | | | | | | | | |
Collapse
|
85
|
Regulation of the epithelial Na+ channel and airway surface liquid volume by serine proteases. Pflugers Arch 2010; 460:1-17. [PMID: 20401730 DOI: 10.1007/s00424-010-0827-z] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2010] [Revised: 03/10/2010] [Accepted: 03/12/2010] [Indexed: 01/11/2023]
Abstract
Mammalian airways are protected from infection by a thin film of airway surface liquid (ASL) which covers airway epithelial surfaces and acts as a lubricant to keep mucus from adhering to the epithelial surface. Precise regulation of ASL volume is essential for efficient mucus clearance and too great a reduction in ASL volume causes mucus dehydration and mucus stasis which contributes to chronic airway infection. The epithelial Na(+) channel (ENaC) is the rate-limiting step that governs Na(+) absorption in the airways. Recent in vitro and in vivo data have demonstrated that ENaC is a critical determinant of ASL volume and hence mucus clearance. ENaC must be cleaved by either intracellular furin-type proteases or extracellular serine proteases to be active and conduct Na(+), and this process can be inhibited by protease inhibitors. ENaC can be regulated by multiple pathways, and once proteolytically cleaved ENaC may then be inhibited by intracellular second messengers such as cAMP and PIP(2). In the airways, however, regulation of ENaC by proteases seems to be the predominant mode of regulation since knockdown of either endogenous serine proteases such as prostasin, or inhibitors of ENaC proteolysis such as SPLUNC1, has large effects on ENaC activity in airway epithelia. In this review, we shall discuss how ENaC is proteolytically cleaved, how this process can regulate ASL volume, and how its failure to operate correctly may contribute to chronic airway disease.
Collapse
|
86
|
Alveolar inflammation in cystic fibrosis. J Cyst Fibros 2010; 9:217-27. [PMID: 20347403 DOI: 10.1016/j.jcf.2010.03.001] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2009] [Revised: 02/08/2010] [Accepted: 03/01/2010] [Indexed: 11/30/2022]
Abstract
BACKGROUND In infected lungs of the cystic fibrosis (CF) patients, opportunistic pathogens and mutated cystic fibrosis transmembrane conductance regulator protein (CFTR) contribute to chronic airway inflammation that is characterized by neutrophil/macrophage infiltration, cytokine release and ceramide accumulation. We sought to investigate CF lung inflammation in the alveoli. METHODS Lung tissue from 14 CF patients and four healthy individuals was analyzed for numbers of effector cells, elastin and collagen concentrations, inflammatory markers and density of Pseudomonas aeruginosa. Additionally, desmosine and isodesmosine concentrations were determined in 52 urine specimens from CF patients to estimate the burden of elastase activities in respiratory secretions. RESULTS Elastin concentration was significantly decreased and collagen significantly increased in CF alveolar tissues as compared to age-matched, healthy individuals. Elastin split products were significantly increased in urine samples from patients with CF and correlated inversely with age, indicating local tissue remodelling due to elastin degradation by unopposed proteolytic enzymes. Alveolar inflammation was also characterized by a significant cell infiltration of neutrophils, macrophages and T cells, extensive nuclear factor-kappaB and insulin-like growth factor-1 activation in various cell types and increased intercellular adhesion molecule-1 expression, and increased numbers of myofibroblasts. Additionally, ceramide accumulated in type II alveolar epithelial cells, lacking CFTR. P. aeruginosa organisms were rarely present in inflamed alveoli. CONCLUSIONS Chronic inflammation and remodeling is present in alveolar tissues of the CF lung and needs to be addressed by anti-inflammatory therapies.
Collapse
|
87
|
Pseudomonas signal molecule 3-oxo-C12-homoserine lactone interferes with binding of rosiglitazone to human PPARγ. Microbes Infect 2010; 12:231-7. [DOI: 10.1016/j.micinf.2009.12.009] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2009] [Revised: 12/14/2009] [Accepted: 12/21/2009] [Indexed: 11/23/2022]
|
88
|
Peluso L, de Luca C, Bozza S, Leonardi A, Giovannini G, Lavorgna A, De Rosa G, Mascolo M, Ortega De Luna L, Catania MR, Romani L, Rossano F. Protection against Pseudomonas aeruginosa lung infection in mice by recombinant OprF-pulsed dendritic cell immunization. BMC Microbiol 2010; 10:9. [PMID: 20070893 PMCID: PMC2820439 DOI: 10.1186/1471-2180-10-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2009] [Accepted: 01/13/2010] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The Pseudomonas aeruginosa major constitutive outer membrane porin protein F (OprF) has been shown to be a protective antigen and was previously used to activate an immunological response in a mouse model of lung pneumonia. The purpose of our study was to demonstrate the ability of mouse dendritic cells pulsed with purified or recombinant OprF to protect mice against P. aeruginosa infection and inflammation.Both native (n-OprF), isolated and purified from PAO1 bacterial strain, and recombinant (histidin-conjugated) OprF (His-OprF), obtained by cloning of the oprF gene into the pET28a expression vector, were used to stimulate dendritic cells in vitro before adoptive transfer into prospective recipient mice with P. aeruginosa pulmonary infection. RESULTS Similar to n-OprF, His-OprF activated dendritic cells in vitro, inducing the costimulatory molecule expression as well as cytokine production. Upon adoptive transfer in vivo, porin-pulsed dendritic cells (DCs) induced Th1-mediated resistance to infection and associated inflammatory pathology caused by either the PAO1 strain or a clinically-isolated mucoid strain. CONCLUSIONS This study highlights the pivotal contribution of DCs to vaccine-induced protection against P. aeruginosa infection and associated inflammation.
Collapse
Affiliation(s)
- Lucia Peluso
- Department of Cellular and Molecular Biology and Pathology L, Califano, University of Naples Federico II, Via S Pansini 5, 80131 Naples, Italy
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
89
|
Han JY, Im J, Choi JN, Lee CH, Park HJ, Park DK, Yun CH, Han SH. Induction of IL-8 expression by Cordyceps militaris grown on germinated soybeans through lipid rafts formation and signaling pathways via ERK and JNK in A549 cells. JOURNAL OF ETHNOPHARMACOLOGY 2010; 127:55-61. [PMID: 19799982 DOI: 10.1016/j.jep.2009.09.051] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2009] [Revised: 09/21/2009] [Accepted: 09/22/2009] [Indexed: 05/28/2023]
Abstract
AIM OF THE STUDY In order to elucidate immunoregulatory mechanisms of Cordyceps militaris, a methanol extract of Cordyceps militaris grown on germinated soybeans was prepared and its immunoregulatory effect in the human lung epithelial cells was investigated by examining its ability to induce IL-8 expression. MATERIALS AND METHODS Cordyceps militaris grown on germinated soybeans was extracted with 80% methanol (GSC4M) and used for stimulation of a human lung epithelial cell-line, A549. An enzyme-linked immunosorbent assay and reverse transcription-polymerase chain reaction were performed to examine the production of IL-8 protein and its mRNA, respectively. For the analysis of transcription factors regulating IL-8 transcriptional activation, the nuclear fraction was extracted from GSC4M-treated A549 cells and subjected to electrophoretic mobility shift assay. RESULTS GSC4M induced IL-8 protein secretion and its mRNA expression from A549 cells in a dose- and time-dependent manner. GSC4M-induced IL-8 expression was inhibited by an inhibitor for lipid rafts formation but not by that for clathrin-coated pits. In addition, signaling pathways for GSC4M-induced IL-8 expression were mediated through ERK and JNK but hardly through p38 kinase. Furthermore, GSC4M augmented the DNA-binding activity of the transcription factors AP-1, NF-IL6, and NF-kappaB, all of which are involved in the transcriptional activation of the IL-8 gene. CONCLUSION Cordyceps militaris grown on germinated soybeans stimulates lung epithelial cells to produce IL-8 through lipid rafts formation and signaling pathways via ERK and JNK.
Collapse
Affiliation(s)
- Ji Young Han
- Department of Oral Microbiology & Immunology, Dental Research Institute, and BK21 Program, School of Dentistry, Seoul National University, Seoul 110-749, Republic of Korea
| | | | | | | | | | | | | | | |
Collapse
|
90
|
Hampton TH, Stanton BA. A novel approach to analyze gene expression data demonstrates that the DeltaF508 mutation in CFTR downregulates the antigen presentation pathway. Am J Physiol Lung Cell Mol Physiol 2009; 298:L473-82. [PMID: 20044437 DOI: 10.1152/ajplung.00379.2009] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Gene array studies comparing cystic fibrosis (CF) and non-CF genotypes should reveal factors that explain variability in CF lung disease progression, yielding insights that lead to improved CF care. To date, studies have reached conflicting conclusions, perhaps due to experimental differences and divergent statistical approaches. This review aims: 1) to summarize the findings of four recent gene studies comparing CF and non-CF genotypes, and 2) to reanalyze original data using a recently developed statistical approach, with the aim of identifying genes and paths consistently regulated by the CF genotype. We identified four studies evaluating the effect of the DeltaF508-CFTR mutation on human airway epithelial cell gene expression, restricting our investigation to human airway epithelial cell studies whose data were accessible in NCBI's Gene Expression Omnibus or the European Bioinformatic Institute's ArrayExpress. Gene expression patterns showed consistent repression of MHC class I antigen presentation genes in CF human airway epithelia, suggesting a novel mechanistic explanation for poor clearance of viral and bacterial infections by CF patients. We also examined proinflammatory and NF-kappaB genes, whose induction is widely accepted as a hallmark of the CF genotype, but found little evidence of induction, consistent with a recent review (Machen TE, Am J Physiol Cell Physiol 291: C218-C230, 2006.). In conclusion, our analysis suggests that the CF genotype may impair immune function in airway epithelial cells but may not increase inflammation. Additional studies are required to determine whether MHC class I gene repression in CF reduces antigen presentation at the protein level and whether repression impairs immune function.
Collapse
Affiliation(s)
- Thomas H Hampton
- Department of Physiology, Dartmouth Medical School, Hanover, New Hampshire 03755, USA
| | | |
Collapse
|
91
|
Guerrera IC, Astarita G, Jais JP, Sands D, Nowakowska A, Colas J, Sermet-Gaudelus I, Schuerenberg M, Piomelli D, Edelman A, Ollero M. A novel lipidomic strategy reveals plasma phospholipid signatures associated with respiratory disease severity in cystic fibrosis patients. PLoS One 2009; 4:e7735. [PMID: 19893743 PMCID: PMC2768907 DOI: 10.1371/journal.pone.0007735] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2009] [Accepted: 10/14/2009] [Indexed: 02/05/2023] Open
Abstract
The aim of this study was to search for lipid signatures in blood plasma from cystic fibrosis (CF) patients using a novel MALDI-TOF-ClinProTools strategy, initially developed for protein analysis, and thin layer chromatography coupled to MALDI-TOF (TLC-MALDI). Samples from 33 CF patients and 18 healthy children were subjected to organic extraction and column chromatography separation of lipid classes. Extracts were analyzed by MALDI-TOF, ion signatures were compared by the ClinProTools software and by parallel statistical analyses. Relevant peaks were identified by LC-MSn. The ensemble of analyses provided 11 and 4 peaks differentially displayed in CF vs healthy and in mild vs severe patients respectively. Ten ions were significantly decreased in all patients, corresponding to 4 lysophosphatidylcholine (18:0, 18:2, 20:3, and 20:5) and 6 phosphatidylcholine (36:5, O-38:0, 38:4, 38:5, 38:6, and P-40:1) species. One sphingolipid, SM(d18:0), was significantly increased in all patients. Four PC forms (36:3, 36:5, 38:5, and 38:6) were consistently downregulated in severe vs mild patients. These observations were confirmed by TLC-MALDI. These results suggest that plasma phospholipid signatures may be able to discriminate mild and severe forms of CF, and show for the first time MALDI-TOF-ClinProTools as a suitable methodology for the search of lipid markers in CF.
Collapse
Affiliation(s)
- Ida Chiara Guerrera
- Plateau Proteome Necker, Université Paris Descartes, IFR94, Paris, France
- INSERM, U845, Université Paris Descartes, Faculté de Médecine, Paris, France
| | - Giuseppe Astarita
- University of California Irvine, Irvine, California, United States of America
| | - Jean-Philippe Jais
- Université Paris Descartes, Service de Biostastistiques et Bioinformatique du CHU Necker-Enfants-Malades, Paris, France
| | | | | | - Julien Colas
- INSERM, U845, Université Paris Descartes, Faculté de Médecine, Paris, France
| | | | | | - Daniele Piomelli
- University of California Irvine, Irvine, California, United States of America
| | - Aleksander Edelman
- Plateau Proteome Necker, Université Paris Descartes, IFR94, Paris, France
- INSERM, U845, Université Paris Descartes, Faculté de Médecine, Paris, France
| | - Mario Ollero
- INSERM, U845, Université Paris Descartes, Faculté de Médecine, Paris, France
| |
Collapse
|
92
|
Herald MC. General Model of Inflammation. Bull Math Biol 2009; 72:765-79. [DOI: 10.1007/s11538-009-9468-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2008] [Accepted: 10/06/2009] [Indexed: 11/28/2022]
|
93
|
Borot F, Vieu DL, Faure G, Fritsch J, Colas J, Moriceau S, Baudouin-Legros M, Brouillard F, Ayala-Sanmartin J, Touqui L, Chanson M, Edelman A, Ollero M. Eicosanoid release is increased by membrane destabilization and CFTR inhibition in Calu-3 cells. PLoS One 2009; 4:e7116. [PMID: 19847291 PMCID: PMC2760709 DOI: 10.1371/journal.pone.0007116] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2009] [Accepted: 08/10/2009] [Indexed: 12/12/2022] Open
Abstract
The antiinflammatory protein annexin-1 (ANXA1) and the adaptor S100A10 (p11), inhibit cytosolic phospholipase A2 (cPLA2α) by direct interaction. Since the latter is responsible for the cleavage of arachidonic acid at membrane phospholipids, all three proteins modulate eicosanoid production. We have previously shown the association of ANXA1 expression with that of CFTR, the multifactorial protein mutated in cystic fibrosis. This could in part account for the abnormal inflammatory status characteristic of this disease. We postulated that CFTR participates in the regulation of eicosanoid release by direct interaction with a complex containing ANXA1, p11 and cPLA2α. We first analyzed by plasmon surface resonance the in vitro binding of CFTR to the three proteins. A significant interaction between p11 and the NBD1 domain of CFTR was found. We observed in Calu-3 cells a rapid and partial redistribution of all four proteins in detergent resistant membranes (DRM) induced by TNF-α. This was concomitant with increased IL-8 synthesis and cPLA2α activation, ultimately resulting in eicosanoid (PGE2 and LTB4) overproduction. DRM destabilizing agent methyl-β-cyclodextrin induced further cPLA2α activation and eicosanoid release, but inhibited IL-8 synthesis. We tested in parallel the effect of short exposure of cells to CFTR inhibitors Inh172 and Gly-101. Both inhibitors induced a rapid increase in eicosanoid production. Longer exposure to Inh172 did not increase further eicosanoid release, but inhibited TNF-α-induced relocalization to DRM. These results show that (i) CFTR may form a complex with cPLA2α and ANXA1 via interaction with p11, (ii) CFTR inhibition and DRM disruption induce eicosanoid synthesis, and (iii) suggest that the putative cPLA2/ANXA1/p11/CFTR complex may participate in the modulation of the TNF-α-induced production of eicosanoids, pointing to the importance of membrane composition and CFTR function in the regulation of inflammation mediator synthesis.
Collapse
Affiliation(s)
- Florence Borot
- INSERM, U845, Université Paris Descartes, Faculté de Médecine Paris Descartes, Paris, France
| | - Diane-Lore Vieu
- INSERM, U845, Université Paris Descartes, Faculté de Médecine Paris Descartes, Paris, France
| | - Grazyna Faure
- Institut Pasteur, Unité d'Immunologie Structurale, CNRS, URA 2185, Paris, France
| | - Janine Fritsch
- INSERM, U845, Université Paris Descartes, Faculté de Médecine Paris Descartes, Paris, France
| | - Julien Colas
- INSERM, U845, Université Paris Descartes, Faculté de Médecine Paris Descartes, Paris, France
| | - Sandra Moriceau
- INSERM, U845, Université Paris Descartes, Faculté de Médecine Paris Descartes, Paris, France
| | | | - Franck Brouillard
- INSERM, U845, Université Paris Descartes, Faculté de Médecine Paris Descartes, Paris, France
| | | | - Lhousseine Touqui
- Institut Pasteur, Unité de Défense Innée et Inflammation, INSERM, U874, Paris, France
| | - Marc Chanson
- Laboratoire d'Investigation Clinique III, Hôpitaux Universitaires et Faculté de Médecine, Genève, Switzerland
| | - Aleksander Edelman
- INSERM, U845, Université Paris Descartes, Faculté de Médecine Paris Descartes, Paris, France
| | - Mario Ollero
- INSERM, U845, Université Paris Descartes, Faculté de Médecine Paris Descartes, Paris, France
- * E-mail:
| |
Collapse
|
94
|
Treharne KJ, Cassidy D, Goddard C, Colledge WH, Cassidy A, Mehta A. Epithelial IgG and its relationship to the loss of F508 in the common mutant form of the cystic fibrosis transmembrane conductance regulator. FEBS Lett 2009; 583:2493-9. [PMID: 19596328 PMCID: PMC2741568 DOI: 10.1016/j.febslet.2009.07.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2009] [Revised: 06/22/2009] [Accepted: 07/01/2009] [Indexed: 10/28/2022]
Abstract
The most debilitating feature of cystic fibrosis (CF) disease is uncontrolled inflammation of respiratory epithelium. The relationship between the commonest mutated form of CFTR (F508del or DeltaF508) and inflammation has not yet been elucidated. Here, we present a new paradigm suggesting that CFTR can interact with intra-epithelial IgG, establishing a direct link between normal CFTR and the immune system. Further, our data show that the amino-acid sequence local to F508 can bind IgG with high affinity, dependent on F508, such that loss of F508 abolishes this link both in vitro and in the intact cell.
Collapse
Affiliation(s)
- Kate J. Treharne
- Division of Medical Sciences, Ninewells Hospital and Medical School, University of Dundee, Dundee DD1 9SY, UK
| | - Diane Cassidy
- Division of Medical Sciences, Ninewells Hospital and Medical School, University of Dundee, Dundee DD1 9SY, UK
| | - Catharine Goddard
- Physiology, Development and Neuroscience Department, University of Cambridge, Cambridge, UK
| | - William H. Colledge
- Physiology, Development and Neuroscience Department, University of Cambridge, Cambridge, UK
| | - Andrew Cassidy
- DNA Analysis Facility, Ninewells Hospital and Medical School, University of Dundee, Dundee DD1 9SY, UK
| | - Anil Mehta
- Division of Medical Sciences, Ninewells Hospital and Medical School, University of Dundee, Dundee DD1 9SY, UK
| |
Collapse
|
95
|
Zeitlin PL. Pseudomonas aeruginosa: can studies in engineered cells tell us why is it such a problem in people with cystic fibrosis? Focus on “Cystic fibrosis transmembrane conductance regulator and caveolin-1 regulate epithelial cell internalization of Pseudomonas aeruginosa”. Am J Physiol Cell Physiol 2009; 297:C235-7. [DOI: 10.1152/ajpcell.00257.2009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
96
|
Al Alam D, Deslee G, Tournois C, Lamkhioued B, Lebargy F, Merten M, Belaaouaj A, Guenounou M, Gangloff SC. Impaired interleukin-8 chemokine secretion by staphylococcus aureus-activated epithelium and T-cell chemotaxis in cystic fibrosis. Am J Respir Cell Mol Biol 2009; 42:644-50. [PMID: 19597126 DOI: 10.1165/rcmb.2008-0021oc] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Staphylococcus aureus is frequently isolated from lungs of patients with cystic fibrosis (CF). Upon lung infection with S. aureus, airway epithelial cells (AEC) produce high levels of chemokines that enhance T-cell chemotaxis. Although the number of lymphocytes is increased in the airways and bronchoalveolar lavage fluid of patients with CF, the mechanisms responsible for their accumulation and the role of S. aureus in this process are largely unknown. This study investigated early S. aureus impact on chemokine secretion by CF epithelial cells and chemotaxis of CF T cells. CF and non-CF AEC were grown in a cell culture model and apically stimulated with S. aureus. Supernatants were quantified for chemokine secretions and assayed for T-cell chemotaxis. CF AEC secreted constitutively larger amounts of IL-8, GROalpha, MIG, MIP-3beta, and MCP-1 than non-CF epithelial cells. S. aureus interaction with epithelial cells increased chemokine production by non-CF cells but had no effect on CF cells. Chemotaxis of T cells derived from patients with CF was greater than that of T cells from subjects without CF. Moreover, there were more CF T cells expressing CXCR1 as compared with non-CF T cells. Under our experimental conditions, inhibition of IL-8 or its receptor CXCR1 resulted in a considerable decrease in T-cell chemotaxis (up to 80%). These data suggest that IL-8 and its receptor CXCR1 are key players in the chemotaxis of CF T cells and could be used as targets to develop therapies for CF.
Collapse
Affiliation(s)
- Denise Al Alam
- Laboratoire d'Immunologie et de Microbiologie EA3796, IFR53, UFR de Pharmacie 1 avenue du Maréchal Juin 51100 Reims, France
| | | | | | | | | | | | | | | | | |
Collapse
|
97
|
John G, Yildirim AO, Rubin BK, Gruenert DC, Henke MO. TLR-4-mediated innate immunity is reduced in cystic fibrosis airway cells. Am J Respir Cell Mol Biol 2009; 42:424-31. [PMID: 19502387 DOI: 10.1165/rcmb.2008-0408oc] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Airway epithelial cells contribute to the inflammatory response of the lung, and their innate immune response is primarily mediated via Toll-like receptor (TLR) signaling. Cystic fibrosis (CF) airways are chronically infected with Pseudomonas aeruginosa, suggesting a modified immune response in CF. We investigated the TLR-4 expression and the inflammatory profile (IL-8 and IL-6 secretion) in CF bronchial epithelial cell line CFBE41o- and its CF transmembrane ion condcutance regulator (CFTR)-corrected counterpart grown under air-liquid interface conditions after stimulation with lipopolysaccharide (LPS) from gram-negative bacteria. In CFTR-corrected cells, IL-8 and IL-6 secretions were constitutively activated but significantly increased after LPS stimulation compared with CFBE41o-. Blocking TLR-4 by a specific antibody significantly inhibited IL-8 secretion only in CFTR-corrected cells. Transfection with specific siRNA directed against TLR-4 mRNA significantly reduced the response to LPS in both cell lines. Fluorescence-activated cell sorter analysis revealed significantly higher levels of TLR-4 surface expression in CFTR-corrected cells. In histologic lung sections of patients with CF, the TLR-4 expression in the bronchial epithelium was significantly reduced compared with healthy control subjects. In CF the loss of CFTR function appears to decrease innate immune responses, possibly by altering the expression of TLR-4 on airway epithelial cells. This may contribute to chronic bacterial infection of CF airways.
Collapse
Affiliation(s)
- Gerrit John
- Philipps-University Marburg, Department of Pulmonary Medicine, Baldingerstrasse 1, 35043 Marburg, Germany
| | | | | | | | | |
Collapse
|
98
|
Dannhoffer L, Blouquit-Laye S, Regnier A, Chinet T. Functional Properties of Mixed Cystic Fibrosis and Normal Bronchial Epithelial Cell Cultures. Am J Respir Cell Mol Biol 2009; 40:717-23. [DOI: 10.1165/rcmb.2008-0018oc] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
99
|
Haggie PM, Verkman AS. Defective organellar acidification as a cause of cystic fibrosis lung disease: reexamination of a recurring hypothesis. Am J Physiol Lung Cell Mol Physiol 2009; 296:L859-67. [PMID: 19329540 PMCID: PMC2692795 DOI: 10.1152/ajplung.00018.2009] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2009] [Accepted: 03/20/2009] [Indexed: 11/22/2022] Open
Abstract
The cellular mechanisms by which loss-of-function mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) chloride channel produce cystic fibrosis (CF) lung disease remain uncertain. Defective organellar function has been proposed as an important determinant in the pathogenesis of CF lung disease. According to one hypothesis, reduced CFTR chloride conductance in organelles in CF impairs their acidification by preventing chloride entry into the organelle lumen, which is needed to balance the positive charge produced by proton entry. According to a different hypothesis, CFTR mutation hyperacidifies organelles by an indirect mechanism involving unregulated sodium efflux through epithelial sodium channels. There are reports of defective Golgi, endosomal and lysosomal acidification in CF epithelial cells, defective phagolysosomal acidification in CF alveolar macrophages, and organellar hyperacidification in CF respiratory epithelial cells. The common theme relating too high or low organellar pH to cellular dysfunction and CF pathogenesis is impaired functioning of organellar enzymes, such as those involved in ceramide metabolism and protein processing in epithelial cells and antimicrobial activity in alveolar macrophages. We review here the evidence for defective organellar acidification in CF. Significant technical and conceptual concerns are discussed regarding the validity of data showing too high/low organellar pH in CF cells, and rigorous measurements of organellar pH in CF cells are reviewed that fail to support defective organellar acidification in CF. Indeed, there is an expanding body of evidence supporting the involvement of non-CFTR chloride channels in organellar acidification. We conclude that biologically significant involvement of CFTR in organellar acidification is unlikely.
Collapse
Affiliation(s)
- Peter M Haggie
- 1246 Health Sciences East Tower, Box 0521, Univ. of California, San Francisco, San Francisco, CA 94143-0521, USA.
| | | |
Collapse
|
100
|
Abstract
Cystic fibrosis is the most common lethal genetic disease in white populations. The outlook for patients with the disease has improved steadily over many years, largely as a result of earlier diagnosis, more aggressive therapy, and provision of care in specialised centres. Researchers now have a more complete understanding of the molecular-biological defect that underlies cystic fibrosis, which is leading to new approaches to treatment. One of these treatments, hypertonic saline, is already in use, whereas others are in advanced stages of development. We review clinical care for cystic fibrosis and discuss recent advances in the understanding of its pathogenesis, implementation of screening of neonates, and development of therapies aimed at treating the basic defect.
Collapse
Affiliation(s)
- Brian P O'Sullivan
- Department of Pediatrics, University of Massachusetts Medical School, Worcester, MA 01655, USA.
| | | |
Collapse
|