51
|
Matsubara H. [Angiotensin II type 2 (AT2) receptor signal and cardiovascular action]. Nihon Yakurigaku Zasshi 2002; 119:95-102. [PMID: 11862763 DOI: 10.1254/fpj.119.95] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Due to the discovery of nonpeptic ligands, the receptors for angiotensin (Ang) II are classified into two subtypes (AT1-R and AT2-R). AT1-R mediates most of the cardiovascular actions of Ang II. AT2-R is expressed at very high levels in the developing fetus. Its expression is very low in the cardiovascular system of the adult. The expression of AT2-R can be modulated by pathological states associated with tissue remodeling or inflammation. In failing hearts or neointima formation after vascular injury, AT2-R is reexpressed in cells proliferating in interstitial regions or neointima and exerts an inhibitory effect on Ang II-induced mitogen signals or synthesis of extracellular matrix proteins, resulting in attenuation of the tissue remodeling. An extreme form of cell growth inhibition ends in programmed cell death, and this process, which is initiated by the withdrawal of growth factors, is also enhanced by AT2-R. Cardiac myocyte- or vascular smooth muscle-specific mice that overexpress AT2-R display an inhibition of Ang II-induced chronotropic or pressor actions, suggesting the role of AT2-R on the activity of cardiac pacemaker cells and the maintenance of vascular resistance. AT2-R also activates the kinin/nitric oxide/cGMP system in the cardiovascular and renal systems, resulting in AT2-R-mediated cardioprotection, vasodilation and pressure natriuresis. These effects, transmitted by AT2-R, are mainly exerted by stimulation of protein tyrosine or serine/threonine phosphatases in a Gi-protein-dependent manner. The expression level of AT2-R is much higher in human hearts than in rodent hearts, and the AT2-R-mediated actions are likely enhanced, especially by clinical application of AT1-R antagonists. Thus, in this review, the regulation of AT2-R expression, its cellular localization, its pathological role in cardiovascular and kidney diseases, and pharmacotherapeutic effects of AT2-R stimulation are discussed.
Collapse
Affiliation(s)
- Hiroaki Matsubara
- Department of Medicine II, Cardiovascular Center, Kansai Medical University, Fumizonocho 10-15, Moriguchi, Osaka 570-8507, Japan.
| |
Collapse
|
52
|
Berry C, Touyz R, Dominiczak AF, Webb RC, Johns DG. Angiotensin receptors: signaling, vascular pathophysiology, and interactions with ceramide. Am J Physiol Heart Circ Physiol 2001; 281:H2337-65. [PMID: 11709400 DOI: 10.1152/ajpheart.2001.281.6.h2337] [Citation(s) in RCA: 183] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Angiotensin II (ANG II) is a pleiotropic vasoactive peptide that binds to two distinct receptors: the ANG II type 1 (AT(1)) and type 2 (AT(2)) receptors. Activation of the renin-angiotensin system (RAS) results in vascular hypertrophy, vasoconstriction, salt and water retention, and hypertension. These effects are mediated predominantly by AT(1) receptors. Paradoxically, other ANG II-mediated effects, including cell death, vasodilation, and natriuresis, are mediated by AT(2) receptor activation. Our understanding of ANG II signaling mechanisms remains incomplete. AT(1) receptor activation triggers a variety of intracellular systems, including tyrosine kinase-induced protein phosphorylation, production of arachidonic acid metabolites, alteration of reactive oxidant species activities, and fluxes in intracellular Ca(2+) concentrations. AT(2) receptor activation leads to stimulation of bradykinin, nitric oxide production, and prostaglandin metabolism, which are, in large part, opposite to the effects of the AT(1) receptor. The signaling pathways of ANG II receptor activation are a focus of intense investigative effort. We critically appraise the literature on the signaling mechanisms whereby AT(1) and AT(2) receptors elicit their respective actions. We also consider the recently reported interaction between ANG II and ceramide, a lipid second messenger that mediates cytokine receptor activation. Finally, we discuss the potential physiological cross talk that may be operative between the angiotensin receptor subtypes in relation to health and cardiovascular disease. This may be clinically relevant, inasmuch as inhibitors of the RAS are increasingly used in treatment of hypertension and coronary heart disease, where activation of the RAS is recognized.
Collapse
Affiliation(s)
- C Berry
- Department of Medicine and Therapeutics, Western Infirmary, University of Glasgow, G11 6NT Glasgow, United Kingdom.
| | | | | | | | | |
Collapse
|
53
|
Hines J, Fluharty SJ, Yee DK. Chimeric AT1/AT2 receptors reveal functional similarities despite key amino acid dissimilarities in the domains mediating agonist-dependent activation. Biochemistry 2001; 40:11251-60. [PMID: 11551225 DOI: 10.1021/bi002780u] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Chimeric AT1/AT2 angiotensin II (AngII) receptors in which the sixth and/or seventh transmembrane-spanning domains of the AT2 receptor were substituted into the AT1 receptor were used to investigate the activation mechanisms of the two receptor subtypes. Numerous reports have identified amino acid residues in the sixth and seventh transmembrane-spanning domains of the AT1 receptor involved in the intrareceptor activation mechanism following agonist binding. Many of these residues are not conserved in the AT2 receptor; the corresponding AT2 receptor residues are, in fact, disruptive of AngII-dependent activation when substituted into the AT1 receptor. Surprisingly, the chimeric AT1/AT2 receptors--which also lack these crucial AT1 residues--exhibited AngII-induced activation of phosphoinositide hydrolysis with efficacies and potencies similar to the wild-type AT1 receptor. Consistent with earlier reports, a AT1[Y292F] point mutant demonstrated greatly decreased agonist-induced activation of phosphoinositide hydrolysis. However, a AT1[Y292F/N295S] double-point mutant allowed for normal agonist-induced activation with a pharmacodynamic profile indistinguishable from the wild-type receptor. Despite amino acid dissimilarities, the same corresponding domains and even the same residue loci in both of the AngII receptor subtypes are equally able to mediate agonist-induced receptor activation. This suggests that these corresponding domains in the AT1 and the AT2 receptors are crucial to the activation mechanism, demonstrating greater structural flexibility than previously believed regarding AT1 receptor activation and supporting the possibility of a common activation mechanism for the two receptor subtypes.
Collapse
Affiliation(s)
- J Hines
- Department of Pharmacology, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6046, USA
| | | | | |
Collapse
|
54
|
Zhu M, Sumners C, Gelband CH, Posner P. Chronotropic Effect of Angiotensin II via Type 2 Receptors in Rat Brain Neurons. J Neurophysiol 2001; 85:2177-83. [PMID: 11353032 DOI: 10.1152/jn.2001.85.5.2177] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Previously, we determined that angiotensin II (Ang II) elicits an Ang II type 2 (AT2) receptor–mediated increase of neuronal delayed rectifier K+( I KV) current in neuronal cultures from newborn rat hypothalamus and brain stem. This requires generation of lipoxygenase (LO) metabolites of arachidonic acid (AA) and activation of serine/threonine phosphatase type 2A (PP-2A). Enhancement of I KV results in a decrease in net inward current during the action potential (AP) upstroke as well as shortening of the refractory period, which may lead to alterations in neuronal firing rate. Thus, in the present study, we used whole-cell current clamp recording methods to investigate the AT2 receptor–mediated effects of Ang II on the firing rate of cultured neurons from the hypothalamus and brain stem. At room temperature, these neurons exhibited spontaneous APs with an amplitude of 77.72 ± 2.7 mV ( n = 20) and they fired at a frequency of 0.8 ± 0.1 Hz ( n = 11). Most cells had a prolonged early after-depolarization that followed an initial fully developed AP. Superfusion of Ang II (100 nM) plus losartan (LOS, 1 μM) to block Ang II type 1 receptors elicited a significant chronotropic effect that was reversed by the AT2 receptor inhibitor PD 123,319 (1 μM). LOS alone had no effect on any of the parameters measured. The chronotropic effect of Ang II was reversed by the general LO inhibitor 5,8,11,14-eicosatetraynoic acid (10 μM) or by the selective PP-2A inhibitor okadaic acid (1 nM) and was mimicked by the 12-LO metabolite of AA 12-(S)-hydroxy-(5Z, 8Z, 10E, 14Z)-eicosatetraynoic acid. These data indicate that Ang II elicits an AT2 receptor–mediated increase in neuronal firing rate, an effect that involves generation of LO metabolites of AA and activation of PP-2A.
Collapse
MESH Headings
- 12-Hydroxy-5,8,10,14-eicosatetraenoic Acid/pharmacology
- 5,8,11,14-Eicosatetraynoic Acid/pharmacology
- Action Potentials/drug effects
- Angiotensin II/antagonists & inhibitors
- Angiotensin II/pharmacology
- Angiotensin II Type 2 Receptor Blockers
- Angiotensin Receptor Antagonists
- Animals
- Animals, Newborn
- Arachidonic Acids/metabolism
- Brain/cytology
- Cytarabine/pharmacology
- Enzyme Inhibitors/pharmacology
- Imidazoles/pharmacology
- Lipoxygenase/metabolism
- Lipoxygenase Inhibitors/pharmacology
- Losartan/pharmacology
- Nerve Tissue Proteins/drug effects
- Nerve Tissue Proteins/physiology
- Neurons/drug effects
- Neurons/physiology
- Okadaic Acid/pharmacology
- Phosphoprotein Phosphatases/antagonists & inhibitors
- Phosphoprotein Phosphatases/metabolism
- Pyridines/pharmacology
- Rats
- Rats, Sprague-Dawley
- Receptor, Angiotensin, Type 2
- Receptors, Angiotensin/drug effects
- Receptors, Angiotensin/physiology
- Signal Transduction/drug effects
- Synaptic Transmission/drug effects
- Tetrodotoxin/pharmacology
- Time Factors
Collapse
Affiliation(s)
- M Zhu
- Department of Physiology, College of Medicine and McKnight Brain Institute, University of Florida, Gainesville, Florida 32610, USA
| | | | | | | |
Collapse
|
55
|
Abstract
Sixty years after its initial discovery, the octapeptide hormone angiotensin II (AngII) has proved to play numerous physiological roles that reach far beyond its initial description as a hypertensive factor. In spite of the host of target tissues that have been identified, only two major receptor subtypes, AT1 and AT2, are currently fully identified. The specificity of the effects of AngII relies upon numerous and complex intracellular signaling pathways that often mobilize calcium ions from intracellular stores or from the extracellular medium. Various types of calcium channels (store- or voltage-operated channels) endowed with distinct functional properties play a crucial role in these processes. The activity of these channels can be modulated by AngII in a positive and/or negative fashion, depending on the cell type under observation. This chapter reviews the main characteristics of AngII receptor subtypes and of the various calcium channels as well as the involvement of the multiple signal transduction mechanisms triggered by the hormone in the cell-specific modulation of the activity of these channels.
Collapse
Affiliation(s)
- M F Rossier
- Department of Internal Medicine, University Hospital, Geneva, Switzerland
| | | |
Collapse
|
56
|
Ferguson AV, Washburn DL, Latchford KJ. Hormonal and neurotransmitter roles for angiotensin in the regulation of central autonomic function. Exp Biol Med (Maywood) 2001; 226:85-96. [PMID: 11446443 DOI: 10.1177/153537020122600205] [Citation(s) in RCA: 104] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
In this review we present the case for both hormonal and neurotransmitter actions of angiotensin II (ANG) in the control of neuronal excitability in a simple neural pathway involved in central autonomic regulation. We will present both single-cell and whole-animal data highlighting hormonal roles for ANG in controlling the excitability of subfornical organ (SFO) neurons. More controversially we will also present the case for a neurotransmitter role for ANG in SFO neurons in controlling the excitability of identified neurons in the paraventricular nucleus (PVN) of the hypothalamus. In this review we highlight the similarities between the actions of ANG on these two populations of neurons in an attempt to emphasize that whether we call such actions "hormonal" or "neurotransmitter" is largely semantic. In fact such definitions only refer to the method of delivery of the chemical messenger, in this case ANG, to its cellular site of action, in this case the AT1 receptor. We also described in this review some novel concepts that may underlie synthesis, metabolic processing, and co-transmitter actions of ANG in this pathway. We hope that such suggestions may lead ultimately to the development of broader guiding principles to enhance our understanding of the multiplicity of physiological uses for single chemical messengers.
Collapse
Affiliation(s)
- A V Ferguson
- Department of Physiology, Queen's University, Kingston, Ontario, Canada.
| | | | | |
Collapse
|
57
|
Sasamura H, Mifune M, Nakaya H, Amemiya T, Hiraki T, Nishimoto I, Saruta T. Analysis of Galpha protein recognition profiles of angiotensin II receptors using chimeric Galpha proteins. Mol Cell Endocrinol 2000; 170:113-21. [PMID: 11162895 DOI: 10.1016/s0303-7207(00)00333-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Receptors with a heptahelical structure initiate signal transduction by interacting with specific Galpha proteins. The aim of this study was to analyze the ability of type 1 (AT1) and type 2 (AT2) angiotensin receptors to recognize the receptor coupling regions of Galpha proteins using our previously described technique (Ikezu, T., Okamoto, T., Komatsuzaki, K., Matsui, T., Martyn, J.A.J., Nishimoto, I., 1996. Negative transactivation of cAMP response element by familial Alzheimer's mutants of APP. EMBO J. 15, 2468-2475; Komatsuzaki, K., Murayama, Y., Giambarella, U., Ogata, E., Seino, S., Nishimoto, I., 1996. A novel system that reports the G-proteins linked to a given receptor: a study of the type 3 somatostatin receptor. FEBS Lett. 406, 165-170). Chimeric Galphas protein constructs, whose receptor binding regions contained sequences from the four major families of Galpha proteins (Galphaq, Galphai, Galpha12, Galphas), were cotransfected with AT1 or AT2 receptors in COS cells, then stimulated with angiotensin II (Ang II). Changes in cellular cAMP were assayed on cell lysates by enzyme immunoassay. In the case of the Galphaq family, cotransfection of AT1 with Galpha11/Galphas, Galpha14/Galphas, Galpha16/Galphas, elicited significant increases in cAMP after agonist stimulation. Confirmatory results were found using an independent [35S]GTPgammaS binding assay. Further examination using chimeric G proteins for Galpha12 proteins and Galphai family proteins provided evidence that the AT1 receptor can recognize sequences from Galpha12, Galphai1/i2, Galphaz, Galphao, while both receptors interacted with Galphai3. These results provide a Galpha protein recognition database for both AT1 and AT2 receptors, which may be important for understanding the full spectrum of cellular responses mediated by the hormone Ang II.
Collapse
Affiliation(s)
- H Sasamura
- Departments of Internal Medicine and Pharmacology, School of Medicine, Keio University, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan.
| | | | | | | | | | | | | |
Collapse
|
58
|
Zhu M, Natarajan R, Nadler JL, Moore JM, Gelband CH, Sumners C. Angiotensin II increases neuronal delayed rectifier K(+) current: role of 12-lipoxygenase metabolites of arachidonic acid. J Neurophysiol 2000; 84:2494-501. [PMID: 11067992 DOI: 10.1152/jn.2000.84.5.2494] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Angiotensin II (Ang II) elicits an Ang II type 2 (AT(2)) receptor-mediated increase in voltage-dependent delayed rectifier K(+) current (I(KV)) in neurons cultured from newborn rat hypothalamus and brain stem. In previous studies, we have determined that this effect of Ang II is mediated via a Gi protein, activation of phospholipase A(2) (PLA(2)), and generation of arachidonic acid (AA). AA is rapidly metabolized within cells via lipoxygenases (LO), cyclooxygenase (COX) or p450 monooxygenase enzymes, and the metabolic products are known regulators of K(+) currents and channels. Thus in the present study, we have investigated whether the AT(2) receptor-mediated effects of Ang II on neuronal I(KV) require AA metabolism and if so, which metabolic pathways are involved. The data presented here indicate that the stimulatory actions of Ang II and AA on neuronal I(KV) are attenuated by selective blockade of 12-LO enzymes. However, the effects of Ang II are not altered by blockade of 5-LO or p450 monooxygenase enzymes. Furthermore, the actions of Ang II are mimicked by a 12-LO metabolite of AA, but 5-LO metabolites such as leukotriene B(4) and C(4) do not alter neuronal I(KV). These data indicate that the AT(2) receptor-mediated stimulation of neuronal I(KV) is partially mediated through 12-LO metabolites of AA.
Collapse
MESH Headings
- 5,8,11,14-Eicosatetraynoic Acid/pharmacology
- Angiotensin II/pharmacology
- Animals
- Antibodies/pharmacology
- Arachidonate 12-Lipoxygenase/immunology
- Arachidonate 12-Lipoxygenase/metabolism
- Arachidonic Acid/metabolism
- Brain Stem/cytology
- Cells, Cultured
- Delayed Rectifier Potassium Channels
- Flavanones
- Flavonoids/pharmacology
- Free Radical Scavengers/pharmacology
- Hypothalamus/cytology
- Indoles/pharmacology
- Lipoxygenase Inhibitors/pharmacology
- Membrane Potentials/drug effects
- Membrane Potentials/physiology
- Neurons/chemistry
- Neurons/cytology
- Neurons/metabolism
- Patch-Clamp Techniques
- Potassium Channels/physiology
- Potassium Channels, Voltage-Gated
- Rats
- Rats, Sprague-Dawley
- Receptor, Angiotensin, Type 1
- Receptor, Angiotensin, Type 2
- Receptors, Angiotensin/metabolism
- Signal Transduction/physiology
- Vasoconstrictor Agents/pharmacology
Collapse
Affiliation(s)
- M Zhu
- Department of Physiology, College of Medicine and University of Florida Brain Institute, University of Florida, Gainesville, Florida 32610, USA
| | | | | | | | | | | |
Collapse
|
59
|
Mifune M, Sasamura H, Shimizu-Hirota R, Miyazaki H, Saruta T. Angiotensin II type 2 receptors stimulate collagen synthesis in cultured vascular smooth muscle cells. Hypertension 2000; 36:845-50. [PMID: 11082154 DOI: 10.1161/01.hyp.36.5.845] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Previously, we and others have shown that angiotensin II enhances vascular smooth muscle cell extracellular matrix synthesis via stimulation of the angiotensin II type 1 (AT(1)) receptor. Recently, expression of the type 2 (AT(2)) receptor has been confirmed in the adult vasculature, but its role has not yet been fully defined. The aim of the present study was to examine the effects of stimulation of AT(2) receptors on collagen synthesis in vascular smooth muscle cells. Retroviral gene transfer was used to supplement adult vascular smooth muscle cells with AT(2) receptors to mimic the vasculature in vivo. The treatment of these cells with the AT(2) receptor agonist CGP42212A (10(-7) mol/L) alone did not cause a significant change in p42/p44 MAP kinase activity but caused a modest (30% to 50%) decrease in protein tyrosine phosphatase activity. Treatment with CGP42112A also caused a dose- and time-dependent increase in both cell-associated and secretory collagen synthesis (148+/-17% of control at 48 hours, P<0.05), which was completely inhibited by the AT(2) receptor antagonist PD123319, unaffected by the AT(1) receptor antagonist losartan, and attenuated by treatment with pertussis toxin or G(alpha)(i) antisense oligonucleotides. Interestingly, studies in other cell lines demonstrated that CGP42112A caused similar results in transfected mesangial cells but had essentially opposite effects in fibroblasts (NIH-3T3-AT(2)). These results suggest that AT(2) receptor stimulation can increase collagen synthesis in vascular smooth muscle cells via a G(alpha)(i)-mediated mechanism and provide evidence for heterogeneity in the effects of AT(2) receptor stimulation in different tissues.
Collapse
MESH Headings
- Animals
- Cells, Cultured
- Collagen/biosynthesis
- Extracellular Matrix/drug effects
- Extracellular Matrix/metabolism
- Fibroblasts/drug effects
- Fibroblasts/physiology
- Losartan/pharmacology
- Male
- Mitogen-Activated Protein Kinase 1/metabolism
- Muscle, Smooth, Vascular/cytology
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/metabolism
- Oligonucleotides, Antisense/pharmacology
- Oligopeptides/pharmacology
- Protein-Tyrosine Kinases/metabolism
- Rats
- Rats, Wistar
- Receptors, Angiotensin/drug effects
- Receptors, Angiotensin/physiology
- Thionucleotides/pharmacology
Collapse
Affiliation(s)
- M Mifune
- Department of Internal Medicine, School of Medicine, Keio University, Tokyo, Japan
| | | | | | | | | |
Collapse
|
60
|
Hansen JL, Servant G, Baranski TJ, Fujita T, Iiri T, Sheikh SP. Functional reconstitution of the angiotensin II type 2 receptor and G(i) activation. Circ Res 2000; 87:753-9. [PMID: 11055978 DOI: 10.1161/01.res.87.9.753] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
On the basis of the patterns of conserved amino acid sequence, the angiotensin II type 2 (AT(2)) receptor belongs to the family of serpentine receptors, which relay signals from extracellular stimuli to heterotrimeric G proteins. However, the AT(2) receptor signal transduction mechanisms are poorly understood. We have measured AT(2)-triggered activation of purified heterotrimeric proteins in urea-extracted membranes from cultured COS-7 cells expressing the recombinant receptor. This procedure removes contaminating GTP-binding proteins without inactivating the serpentine receptor. Binding studies using [(125)I] angiotensin (Ang) II revealed a single binding site with a K(d)=0.45 and a capacity of 627 fmol/mg protein in the extracted membranes. The AT(2) receptor caused a rapid activation of alpha(i) and alpha(o) but not of alpha(q) and alpha(s), as measured by radioactive guanosine 5'-3-O-(thio)triphosphate (GTPgammaS) binding. Activation required the presence of activated receptors, betagamma, and alpha subunits. As a first step aimed at developing an in vitro assay to examine AT(2) receptor pharmacology, we tested a battery of Ang II-related ligands for their ability to promote AT(1) or AT(2) receptor-catalyzed G(i) activation. Two proteolytic fragments of Ang II, Ang III and Ang1-7, also promoted activation of alpha(i) through the AT(2) receptor. Furthermore, we found that [Sar(1),Ala(8)]Ang II is an antagonist for both AT(1) and AT(2) receptors and that CPG42112 behaves as a partial agonist for the AT(2) receptor. In combination with previous observations, these results show that the AT(2) receptor is fully capable of activating G(i) and provides a new tool for exploring AT(2) receptor pharmacology and interactions with G-protein trimers.
Collapse
Affiliation(s)
- J L Hansen
- Laboratory for Molecular Cardiology and the Department of Medicine B, University of Copenhagen, Denmark
| | | | | | | | | | | |
Collapse
|
61
|
Gallinat S, Busche S, Raizada MK, Sumners C. The angiotensin II type 2 receptor: an enigma with multiple variations. Am J Physiol Endocrinol Metab 2000; 278:E357-74. [PMID: 10710489 DOI: 10.1152/ajpendo.2000.278.3.e357] [Citation(s) in RCA: 112] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Since it was discovered ten years ago, the angiotensin II (ANG II) type 2 (AT(2)) receptor has been an enigma. This receptor binds ANG II with a high affinity but is not responsible for mediating any of the classical physiological actions of this peptide, all of which involve the ANG II type 1 (AT(1)) receptor. Furthermore, the AT(2) receptor exhibits dramatic differences in biochemical and functional properties and in patterns of expression compared with the AT(1) receptor. During the past decade, much information has been gathered about the AT(2) receptor, and the steadily increasing number of publications indicates a growing interest in this new and independent area of research. A number of studies suggest a role of AT(2) receptors in brain, renal, and cardiovascular functions and in the processes of apoptosis and tissue regeneration. Despite these advances, nothing stands out as the major singular function of these receptors. The study of AT(2) receptors has reached a crossroads, and innovative approaches must be considered so that unifying mechanisms as to the function of these unique receptors can be put forward. In this review we will discuss the advances that have been made in understanding the biology of the AT(2) receptor. Furthermore, we will consider how these discoveries, along with newer experimental approaches, may eventually lead to the elusive physiological and pathophysiological functions of these receptors.
Collapse
Affiliation(s)
- S Gallinat
- Department of Physiology, College of Medicine, and University of Florida Brain Institute, University of Florida, Gainesville, Florida 32610, USA
| | | | | | | |
Collapse
|
62
|
Herzig S, Neumann J. Effects of serine/threonine protein phosphatases on ion channels in excitable membranes. Physiol Rev 2000; 80:173-210. [PMID: 10617768 DOI: 10.1152/physrev.2000.80.1.173] [Citation(s) in RCA: 202] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
This review deals with the influence of serine/threonine-specific protein phosphatases on the function of ion channels in the plasma membrane of excitable tissues. Particular focus is given to developments of the past decade. Most of the electrophysiological experiments have been performed with protein phosphatase inhibitors. Therefore, a synopsis is required incorporating issues from biochemistry, pharmacology, and electrophysiology. First, we summarize the structural and biochemical properties of protein phosphatase (types 1, 2A, 2B, 2C, and 3-7) catalytic subunits and their regulatory subunits. Then the available pharmacological tools (protein inhibitors, nonprotein inhibitors, and activators) are introduced. The use of these inhibitors is discussed based on their biochemical selectivity and a number of methodological caveats. The next section reviews the effects of these tools on various classes of ion channels (i.e., voltage-gated Ca(2+) and Na(+) channels, various K(+) channels, ligand-gated channels, and anion channels). We delineate in which cases a direct interaction between a protein phosphatase and a given channel has been proven and where a more complex regulation is likely involved. Finally, we present ideas for future research and possible pathophysiological implications.
Collapse
Affiliation(s)
- S Herzig
- Institut für Pharmakologie, Universität Köln, Köln, Germany.
| | | |
Collapse
|
63
|
Carey RM, Wang ZQ, Siragy HM. Role of the angiotensin type 2 receptor in the regulation of blood pressure and renal function. Hypertension 2000; 35:155-63. [PMID: 10642292 DOI: 10.1161/01.hyp.35.1.155] [Citation(s) in RCA: 261] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The renin-angiotensin system is a major physiological regulator of body fluid volume, electrolyte balance, and arterial pressure. Virtually all of the biological actions of the principle effector peptide angiotensin II (ANG II) have been attributed to an action at the type 1 (AT(1)) ANG receptor. Until recently, the functional role of the type 2 (AT(2)) receptor, if any, has been unknown, possibly because the AT(2) receptor has a low degree of expression compared with that of the AT(1) receptor. Evidence has now accumulated that the AT(2) receptor opposes functions mediated by the AT(1) receptor. Whereas the AT(1) receptor stimulates cell proliferation, the AT(2) receptor inhibits proliferation and promotes cell differentiation. These differences in growth responses have been ascribed to different cell signaling pathways in which the AT(1) receptor stimulates protein phosphorylation and the AT(2) receptor dephosphorylation. During the past 5 years, studies have demonstrated that the AT(2) receptor is responsible for vasodilation and natriuresis, thus opposing the vasoconstrictor and antinatriuretic effects of ANG II mediated through the AT(1) receptor. Work from our laboratory and others indicates that the AT(2) receptor stimulates vasodilation and natriuresis by an autocrine cascade including bradykinin, nitric oxide, and cyclic GMP. The AT(2) receptor also has been found to control vasodilator prostaglandins, which have a role in blood pressure regulation. The AT(2) receptor appears to play a counterregulatory protective role in the regulation of blood pressure and sodium excretion that opposes the AT(1) receptor.
Collapse
Affiliation(s)
- R M Carey
- Department of Medicine, University of Virginia School of Medicine, Charlottesville, VA 22908, USA.
| | | | | |
Collapse
|
64
|
Chapter iii Localization of angiotensin receptors in the nervous system. ACTA ACUST UNITED AC 2000. [DOI: 10.1016/s0924-8196(00)80005-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
65
|
Zhu M, Gelband CH, Posner P, Sumners C. Angiotensin II decreases neuronal delayed rectifier potassium current: role of calcium/calmodulin-dependent protein kinase II. J Neurophysiol 1999; 82:1560-8. [PMID: 10482769 DOI: 10.1152/jn.1999.82.3.1560] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Angiotensin II (Ang II) acts at specific receptors located on neurons in the hypothalamus and brain stem to elicit alterations in blood pressure, fluid intake, and hormone secretion. These actions of Ang II are mediated via Ang II type 1 (AT1) receptors and involve modulation of membrane ionic currents and neuronal activity. In previous studies we utilized neurons cultured from the hypothalamus and brain stem of newborn rats to investigate the AT1 receptor-mediated effects of Ang II on neuronal K+ currents. Our data indicate that Ang II decreases neuronal delayed rectifier (Kv) current, and that this effect is partially due to activation of protein kinase C (PKC), specifically PKCalpha. However, the data also indicated that another Ca2+-dependent mechanism was also involved in addition to PKC. Because Ca2+/calmodulin-dependent protein kinase II (CaM KII) is a known modulator of K+ currents in neurons, we investigated the role of this enzyme in the AT1 receptor-mediated reduction of neuronal Kv current by Ang II. The reduction of neuronal Kv current by Ang II was attenuated by selective inhibition of either calmodulin or CaM KII and was mimicked by intracellular application of activated (autothiophosphorylated) CaM KIIalpha. Concurrent inhibition of CaM KII and PKC completely abolished the reduction of neuronal Kv by Ang II. Consistent with these findings is the demonstration that Ang II increases CaM KII activity in neuronal cultures, as evidenced by increased levels of autophosphorylated CaM KIIalpha subunit. Last, single-cell reverse transcriptase (RT)-PCR analysis revealed the presence of AT1 receptor-, CaM KIIalpha-, and PKCalpha subunit mRNAs in neurons that responded to Ang II with a decrease in Kv current. The present data indicate that the AT1 receptor-mediated reduction of neuronal Kv current by Ang II involves a Ca2+/calmodulin/CaM KII pathway, in addition to the previously documented involvement of PKC.
Collapse
Affiliation(s)
- M Zhu
- Department of Physiology, College of Medicine, and University of Florida Brain Institute, University of Florida, Gainesville, Florida 32610, USA
| | | | | | | |
Collapse
|
66
|
Gendron L, Laflamme L, Rivard N, Asselin C, Payet MD, Gallo-Payet N. Signals from the AT2 (angiotensin type 2) receptor of angiotensin II inhibit p21ras and activate MAPK (mitogen-activated protein kinase) to induce morphological neuronal differentiation in NG108-15 cells. Mol Endocrinol 1999; 13:1615-26. [PMID: 10478850 DOI: 10.1210/mend.13.9.0344] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
In a previous study, we had shown that activation of the AT2 (angiotensin type 2) receptor of angiotensin II (Ang II) induced morphological differentiation of the neuronal cell line NG108-15. In the present study, we investigated the nature of the possible intracellular mediators involved in the AT2 effect. We found that stimulation of AT2 receptors in NG108-15 cells resulted in time-dependent modulation of tyrosine phosphorylation of a number of cytoplasmic proteins. Stimulation of NG108-15 cells with Ang II induced a decrease in GTP-bound p21ras but a sustained increase in the activity of p42mapk and p44mapk as well as neurite outgrowth. Similarly, neurite elongation, increased polymerized tubulin levels, and increased mitogen-activated protein kinase (MAPK) activity were also observed in a stably transfected NG108-15 cell line expressing the dominant-negative mutant of p21ras, RasN17. These results support the observation that inhibition of p21ras did not impair the effect of Ang II on its ability to stimulate MAPK activity. While 10 microM of the MEK inhibitor, PD98059, only moderately affected elongation, 50 microM PD98059 completely blocked the Ang II- and the RasN17-mediated induction of neurite outgrowth. These results demonstrate that some of the events associated with the AT2 receptor-induced neuronal morphological differentiation of NG108-15 cells not only include inhibition of p21ras but an increase in MAPK activity as well, which is essential for neurite outgrowth.
Collapse
Affiliation(s)
- L Gendron
- Department of Anatomy and Cell Biology, Faculty of Medicine, University of Sherbrooke, Quebec, Canada
| | | | | | | | | | | |
Collapse
|
67
|
Inagami T, Kambayashi Y, Ichiki T, Tsuzuki S, Eguchi S, Yamakawa T. Angiotensin receptors: molecular biology and signalling. Clin Exp Pharmacol Physiol 1999; 26:544-9. [PMID: 10405785 DOI: 10.1046/j.1440-1681.1999.03086.x] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
1. The active peptide hormone angiotensin II (AngII) is formed from its prohormone angiotensinogen by way of inactive angiotensin I. The highly specific protease, renin, responsible for the initiation of this system was elusive and considered unstable. We isolated it in a pure and stable form from the kidney of the pig, human, rat, and land submandibular glands of the mouse. It was shown that there is only one type of renin with highly stringent substrate specificity, except certain strains of the mouse which have two gene products. 2. The well-known diversity of action of AngII can be attributed to the presence of more than two subtypes, AT1 and AT2, as well as multiple signalling pathways for both of them. 3. The first subtype AT1 was shown to mediate most of the traditionally recognized AngII functions such as vasoconstriction, electrolyte homeostasis etc. 4. Although the identification of the signalling modes of the second subtype AT2 still remains elusive, we and others have shown evidence that its action is generally antagonistic to that of AT1. AT2 inhibits AT1 (growth factor-stimulated cell growth), AT2 attenuates the vasoconstriction induced by AT1. Since AT2 seems to mediate nitric oxide formation in the renal cells, it may initiate a natriuretic pathway in contrast to the sodium-retaining action of AT1-mediated AngII action. 5. Newer mechanisms and functions of these and other receptors will be clarified by the combination of molecular, cellular and integrated physiological studies.
Collapse
Affiliation(s)
- T Inagami
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee, USA.
| | | | | | | | | | | |
Collapse
|
68
|
Abstract
The angiotensin AT2 receptor subtype was recently cloned and pharmacologically characterized but its function still remains elusive and controversial. It is a member of the G-protein coupled receptor superfamily with a minimal sequence homology with the AT1 receptor, responsible for the known effect of angiotensin II. The AT2 receptor displays a totally different signaling mechanisms from the AT1 receptor and involves various phosphatases. It is expressed at low density in adult tissues but up-regulated in pathological circumstances. Clearly, the AT2 receptor has antiproliferative properties and therefore opposes the growth promoting effect linked to the AT1 receptor stimulation. It is also reported that the AT2 receptor regulates ionic fluxes, affects differentiation and nerve regeneration, has anti-angiogenic and anti-fibrotic properties and stimulates apoptosis. However, the results, although suggestive, are sometimes equivocal. Obviously, the AT2 receptor plays a role in the pathogenesis and remodeling of cardiovascular and renal diseases. A more extensive knowledge of the AT2 receptor could therefore contribute to the understanding of the clincial beneficial effects of the AT1 receptor antagonists.
Collapse
|
69
|
Carey RM, Wang ZQ, Siragy HM. Novel actions of angiotensin II via its renal type-2 (AT(2)) receptor. Curr Hypertens Rep 1999; 1:151-7. [PMID: 10981059 DOI: 10.1007/s11906-999-0012-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The vast majority of the biologic effects of angiotensin II have been considered to be mediated by the subtype-1 (AT(1)) receptor. The AT(2) receptor is expressed to a low degree in most adult cells and tissues, and its function has not been understood. Recent studies, however, have identified novel actions of angiotensin II mediated by the AT(2) receptor in the kidney. These AT(2) receptor actions have importance in the control of blood pressure and hypertension. The AT(2) receptor mediates a renal vasodilator cascade, including generation of bradykinin, nitric oxide, and cyclic GMP. This action of angiotensin II occurs when the renin-angiotensin system is activated, as in sodium depletion. The AT(2) receptor also appears to mediate prostaglandin (PG) F(2)(a) formation, probably by stimulating conversion of PGE2 to PGF(2)(a). The AT(2) receptor plays a counter-regulatory vasodilator role opposing the vasoconstrictor actions of angiotensin II. The AT(1) and AT(2) receptors engage in inter-receptor "cross-talk." In the absence of the AT(2) receptor, sustained angiotensin II pressor and antinatriuretic hypersensitivity occurs, mediated by a deficiency of bradykinin, nitric oxide, and cyclic GMP. The AT(2) receptor may play an important role in stimulating pressure natriuresis, but definitive studies are required to resolve this issue. The AT(2) receptor mediates several renal actions of angiotensin II, appears to be important in the physiologic regulation of blood pressure, and may be involved in the pathophysiology of hypertension.
Collapse
Affiliation(s)
- R M Carey
- Department of Medicine, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
| | | | | |
Collapse
|
70
|
Shenoy UV, Richards EM, Huang XC, Sumners C. Angiotensin II type 2 receptor-mediated apoptosis of cultured neurons from newborn rat brain. Endocrinology 1999; 140:500-9. [PMID: 9886863 DOI: 10.1210/endo.140.1.6396] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Angiotensin II (Ang II) type 2 (AT2) receptors are highly expressed in neonate brain and may have a role in developmental processes such as apoptosis. Concurrent activation of c-Jun N-terminal kinase (JNK) and inhibition of Erk mitogen-activated protein kinase activities is important for apoptosis in many cells, and we previously demonstrated that stimulation of AT2 receptors causes decreased mitogen-activated protein kinase activity in neurons cultured from newborn rat hypothalamus and brain stem. Using such cultures we have employed terminal deoxynucleotidyl transferase-mediated deoxy-UTP nick end labeling and internucleosomal DNA fragmentation to assess the role of AT2 receptors in neuronal apoptosis. Ang II (100 nM; 4-72 h) alone produced no significant neuronal apoptosis, and AT2 receptor activation did not stimulate JNK activity. However, exposure of cultures to UV radiation (6 J/m2/sec for 4 sec) to stimulate JNK elicited neuronal apoptosis that was significantly enhanced by Ang II, an effect that was abolished by the AT2 receptor antagonist PD 123,319 (1 microM) or the serine/threonine phosphatase inhibitor okadaic acid (3 nM). Additionally, Ang II enhanced the UV radiation-induced decrease in the levels of the DNA repair enzyme poly-(ADP-ribose) polymerase. These data indicate that Ang II, via AT2 receptors and activation of a serine/threonine phosphatase, contributes to neuronal apoptosis.
Collapse
Affiliation(s)
- U V Shenoy
- Department of Physiology, College of Medicine and the University of Florida Brain Institute, University of Florida, Gainesville 32610, USA
| | | | | | | |
Collapse
|
71
|
Allen AM, MacGregor DP, McKinley MJ, Mendelsohn FA. Angiotensin II receptors in the human brain. REGULATORY PEPTIDES 1999; 79:1-7. [PMID: 9930578 DOI: 10.1016/s0167-0115(98)00138-4] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The distribution of angiotensin AT1 and AT2 receptors in the human central nervous system has been mapped and is reviewed here. The results discussed provide the anatomical basis for inferences regarding the physiological role of angiotensin in the human brain. The distribution of the AT2 receptor is very restricted in the human brain and shows a high degree of variability across species. The physiological role of this receptor in the adult central nervous system is not clear. In contrast, a high correlation exists between the distributions of AT1 receptors in the human and other mammalian brains studied. This pattern of distribution suggests that angiotensin, acting through the AT1 receptor, would act as a neuromodulator or neurotransmitter in the human central nervous system to influence fluid and electrolyte homeostasis, pituitary hormone release and autonomic control of cardiovascular function.
Collapse
Affiliation(s)
- A M Allen
- The Howard Florey Institute of Experimental Physiology and Medicine, University of Melbourne, Parkville, Australia.
| | | | | | | |
Collapse
|
72
|
Abstract
Since the discovery of nonpeptidic ligands, the receptors for angiotensin (Ang) II have been classified into 2 subtypes (Ang II type 1 receptor [AT1-R] and Ang II type 2 receptor [AT2-R]). AT1-R mediates most of the cardiovascular actions of Ang II. AT2-R is expressed at very high levels in the developing fetus. Its expression is very low in the cardiovascular system of the adult. The expression of AT2-R can be modulated by pathological states associated with tissue remodeling or inflammation. In failing hearts or neointima formation after vascular injury, AT2-R is reexpressed in cells proliferating in interstitial regions or neointima and exerts an inhibitory effect on Ang II-induced mitogen signals or synthesis of extracellular matrix proteins, resulting in attenuation of the tissue remodeling. An extreme form of cell growth inhibition ends in programmed cell death, and this process, which is initiated by the withdrawal of growth factors, is also enhanced by AT2-R. Cardiac myocyte- or vascular smooth muscle-specific mice that overexpress AT2-R display an inhibition of Ang II-induced chronotropic or pressor actions, suggesting the role of AT2-R on the activity of cardiac pacemaker cells and the maintenance of vascular resistance. AT2-R also activates the kinin/nitric oxide/cGMP system in the cardiovascular and renal systems, resulting in AT2-R-mediated cardioprotection, vasodilation, and pressure natriuresis. These effects, transmitted by AT2-R, are mainly exerted by stimulation of protein tyrosine or serine/threonine phosphatases in a Gi protein-dependent manner. The expression level of AT2-R is much higher in human hearts than in rodent hearts, and the AT2-R-mediated actions are likely enhanced, especially by clinical application of AT1-R antagonists. Thus, in this review, the regulation of AT2-R expression, its cellular localization, its pathological role in cardiovascular and kidney diseases, and pharmacotherapeutic effects of AT2-R stimulation are discussed.
Collapse
Affiliation(s)
- H Matsubara
- Department of Medicine II, Division of Endocrine Hypertension and Metabolism and Nephrology, Kansai Medical University, Moriguchi, Osaka, Japan.
| |
Collapse
|
73
|
Tsutsumi Y, Matsubara H, Ohkubo N, Mori Y, Nozawa Y, Murasawa S, Kijima K, Maruyama K, Masaki H, Moriguchi Y, Shibasaki Y, Kamihata H, Inada M, Iwasaka T. Angiotensin II type 2 receptor is upregulated in human heart with interstitial fibrosis, and cardiac fibroblasts are the major cell type for its expression. Circ Res 1998; 83:1035-46. [PMID: 9815151 DOI: 10.1161/01.res.83.10.1035] [Citation(s) in RCA: 144] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The expression pattern of angiotensin (Ang) II type 2 receptor (AT2-R) in the remodeling process of human left ventricles (LVs) remains poorly defined. We analyzed its expression at protein, mRNA, and cellular levels using autopsy, biopsy, or operation LV samples from patients with failing hearts caused by acute (AMI) or old (OMI) myocardial infarction and idiopathic dilated cardiomyopathy (DCM) and also examined functional biochemical responses of failing hearts to Ang II. In autopsy samples from the nonfailing heart group, the ratio of AT1-R and AT2-R was 59% and 41%, respectively. The expression of AT2-R was markedly increased in DCM hearts at protein (3.5-fold) and mRNA (3.1-fold) levels compared with AMI or OMI. AT1-R protein and mRNA levels in AMI hearts showed 1.5- and 2.1-fold increases, respectively, whereas in OMI and DCM hearts, AT1-R expression was significantly downregulated. AT1-R-mediated response in inositol phosphate production was significantly attenuated in LV homogenate from failing hearts compared with nonfailing hearts. AT2-R sites were highly localized in the interstitial region in either nonfailing or failing heart, whereas AT1-R was evenly distributed over myocardium at lower densities. Mitogen-activated protein kinase (MAPK) activation by Ang II was significantly decreased in fibroblast compartment from the failing hearts, and pretreatment with AT2-R antagonist caused an additional significant increase in Ang II-induced MAPK activity (36%). Cardiac hypertrophy suggested by atrial and brain natriuretic peptide levels was comparably increased in OMI and DCM, whereas accumulation of matrix proteins such as collagen type 1 and fibronectin was much more prominent in DCM than in OMI. These findings demonstrate that (1) AT2-R expression is upregulated in failing hearts, and fibroblasts present in the interstitial regions are the major cell type responsible for its expression, (2) AT2-R present in the fibroblasts exerts an inhibitory effect on Ang II-induced mitogen signals, and (3) AT1-R in atrial and LV tissues was downregulated during chronic heart failure, and AT1-R-mediated functional biochemical responsiveness was decreased in the failing hearts. Thus, the expression level of AT2-R is likely determined by the extent of interstitial fibrosis associated with heart failure, and the expression and function of AT1-R and AT2-R are differentially regulated in failing human hearts.
Collapse
MESH Headings
- Adult
- Autopsy
- Biopsy
- Blotting, Northern
- Calcium-Calmodulin-Dependent Protein Kinases/metabolism
- Cardiomyopathy, Dilated/metabolism
- Cardiomyopathy, Dilated/pathology
- Endomyocardial Fibrosis/metabolism
- Endomyocardial Fibrosis/physiopathology
- Female
- Fibroblasts/chemistry
- Fibroblasts/pathology
- Gene Expression/physiology
- Heart Failure/metabolism
- Heart Failure/pathology
- Heart Ventricles/chemistry
- Heart Ventricles/enzymology
- Heart Ventricles/pathology
- Humans
- Hypertrophy, Left Ventricular/metabolism
- Hypertrophy, Left Ventricular/pathology
- Inositol Phosphates/metabolism
- Male
- Middle Aged
- Myocardial Infarction/metabolism
- Myocardial Infarction/pathology
- Myocardium/chemistry
- Myocardium/enzymology
- Myocardium/pathology
- RNA, Messenger/metabolism
- Receptor, Angiotensin, Type 1
- Receptor, Angiotensin, Type 2
- Receptors, Angiotensin/genetics
- Up-Regulation/physiology
Collapse
Affiliation(s)
- Y Tsutsumi
- Department of Medicine II, Kansai Medical University, Osaka, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
74
|
Allen AM, Moeller I, Jenkins TA, Zhuo J, Aldred GP, Chai SY, Mendelsohn FA. Angiotensin receptors in the nervous system. Brain Res Bull 1998; 47:17-28. [PMID: 9766385 DOI: 10.1016/s0361-9230(98)00039-2] [Citation(s) in RCA: 192] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
In addition to its traditional role as a circulating hormone, angiotensin is also involved in local functions through the activity of tissue renin-angiotensin systems that occur in many organs, including the brain. In the brain, both systemic and presumptive neurally derived angiotensin and angiotensin metabolites act through specific receptors to modulate many functions. This review examines the distribution of these specific angiotensin receptors and discusses evidence regarding the function of angiotensin peptides in various brain regions. Angiotensin AT1 and AT2 receptors occur in characteristic distributions that are highly correlated with the distribution of angiotensin-like immunoreactivity in nerve terminals. Acting through the AT1 receptor in the brain, angiotensin has effects on fluid and electrolyte homeostasis, neuroendocrine systems, autonomic pathways regulating cardiovascular function and behavior. Angiotensin AT1 receptors are also found in many afferent and efferent components of the peripheral autonomic nervous system. The role of the AT2 receptor in the brain is less well understood, although recent knockout studies point to an involvement with behavioral and cardiovascular functions. In addition to the AT1 and AT2 receptors, receptors for other fragments of angiotensin have been proposed. The AT4 binding site, which binds angiotensin, has a widespread distribution in the brain quite distinct from that of the AT1 and AT2 receptors. It is associated with many cholinergic neuronal groups and also several sensory nuclei, but its function remains to be determined. Our discovery that another brain-derived peptide binds to the AT4 binding site in the brain and may represent the native ligand is discussed. Overall, the distribution of angiotensin receptors in the brain indicate that they play diverse and important physiological roles in the nervous system.
Collapse
Affiliation(s)
- A M Allen
- The Howard Florey Institute of Experimental Physiology and Medicine, University of Melbourne, Parkville, Victoria, Australia.
| | | | | | | | | | | | | |
Collapse
|
75
|
Chung O, Kühl H, Stoll M, Unger T. Physiological and pharmacological implications of AT1 versus AT2 receptors. KIDNEY INTERNATIONAL. SUPPLEMENT 1998; 67:S95-9. [PMID: 9736262 DOI: 10.1046/j.1523-1755.1998.06719.x] [Citation(s) in RCA: 76] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Angiotensin II (Ang II) has diverse physiological actions that lead, for instance, to increases in extracellular volume and peripheral vascular resistance and blood pressure, and it has also been implicated in the regulation of cell growth and differentiation. Molecular cloning and pharmacological studies have defined two major classes of Ang II receptors, designated AT1 and AT2. Most effects of Ang II are mediated by AT1 receptors. Much less is known about the physiological role of AT2 receptors. Recent evidence suggests involvement of AT2 receptors in development, cell differentiation, apoptosis, and regeneration in various tissues. AT1 and AT2 receptors have been shown to exert counteracting effects on cellular growth and differentiation, vascular tone, and the release of arginine vasopressin. In each condition, the AT2 receptor appears to down-modulate actions mediated by the AT1 receptor, resulting in decreased cellular proliferation, decreased levels of serum arginine vasopressin levels, or decreased vasoconstrictor responses. In addition, in neuronal cell lines, the AT2 receptor exerts antiproliferative actions and promotes neurite outgrowth, an effect accompanied by significant changes in the expression pattern of growth/differentiation-related genes.
Collapse
Affiliation(s)
- O Chung
- Institute of Pharmacology, University of Kiel, Germany
| | | | | | | |
Collapse
|
76
|
Ciuffo GM, Alvarez SE, Fuentes LB. Angiotensin II receptors induce tyrosine dephosphorylation in rat fetal membranes. REGULATORY PEPTIDES 1998; 74:129-35. [PMID: 9712173 DOI: 10.1016/s0167-0115(98)00032-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Recently, it has become clear that many of the intracellular signals mediated by Ang II receptors are similar to the signaling pathways activated by receptor tyrosine kinases. In the present paper, we are reporting a full characterization of Ang II receptors in rat fetal membranes. We assayed binding of the Ang II antagonist [125I]Sar1Ile8Ang II and the AT2 specific competitor [(125)1]CGP42112. Both ligands exhibited a rapid equilibrium and a high specificity for Ang II receptors. Competition studies confirmed the presence of both receptor subtypes, with a predominance of AT2 receptors and the following order of potency: CGP42112>Ang II>Losartan>PD123177. Immunoblotting studies of tyrosine phosphoproteins showed that Ang II (10(-6)M) mediates a rapid reduction in tyrosine phosphorylation of several proteins with apparent molecular masses in the range of 30-45 kDa. Increasing concentrations of Ang II (10(-9) - 10(-6)M) showed a dose-response behavior, suggesting a clear physiological role of the observed effect. The response, blocked by Losartan and PD123177, seems to be mediated by both receptor subtypes. These results clearly indicate that both Ang II receptors mediate tyrosine dephosphorylation in early stages of development and support a role of these receptors in growth and development.
Collapse
Affiliation(s)
- G M Ciuffo
- Cátedra de Bioquímica Avanzada, Facultad de Química y Farmacia, Universidad Nacional de San Luis, Chacabuco y Pedernera, Argentina.
| | | | | |
Collapse
|
77
|
Gelband CH, Sumners C, Lu D, Raizada MK. Angiotensin receptors and norepinephrine neuromodulation: implications of functional coupling. REGULATORY PEPTIDES 1998; 73:141-7. [PMID: 9556076 DOI: 10.1016/s0167-0115(97)11050-3] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The objective of this review is to examine the role of neuronal angiotensin II (Ang II) receptors in vitro. Two types of G protein-coupled Ang II receptors have been identified in cardiovascularly relevant areas of the brain: the AT1 and the AT2. We have utilized neurons in culture to study the signaling mechanisms of AT1 and AT2 receptors. Neuronal AT1 receptors are involved in norepinephrine (NE) neuromodulation. NE neuromodulation can be either evoked or enhanced. Evoked NE neuromodulation involves AT1 receptor-mediated, losartan-dependent, rapid NE release, inhibition of K+ channels and stimulation of Ca2+ channels. AT1 receptor-mediated enhanced NE neuromodulation involves the Ras-Raf-MAP kinase cascade and ultimately leads to an increase in NE transporter, tyrosine hydroxylase and dopamine beta-hydroxylase mRNA transcription. Neuronal AT2 receptors signal via a Gi protein and are coupled to activation of PP2A and PLA2 and stimulation of K+ channels. Finally, putative cross-talk pathways between AT1 and AT2 receptors will be discussed.
Collapse
Affiliation(s)
- C H Gelband
- Department of Physiology, College of Medicine, University of Florida, Gainesville 32610, USA
| | | | | | | |
Collapse
|
78
|
Angiotensin II type 2 receptor stimulation of neuronal delayed-rectifier potassium current involves phospholipase A2 and arachidonic acid. J Neurosci 1998. [PMID: 9425010 DOI: 10.1523/jneurosci.18-02-00679.1998] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Angiotensin II (Ang II) elicits an Ang II type 2 (AT2) receptor-mediated increase in delayed-rectifier K+ current (IK) in neurons cultured from newborn rat hypothalamus and brainstem. This effect involves a pertussis toxin (PTX)-sensitive Gi protein and is abolished by inhibition of serine and threonine phosphatase 2A (PP-2A). Here, we determined that Ang II stimulates [3H]arachidonic acid (AA) release from cultured neurons via AT2 receptors. This effect of Ang II was blocked by inhibition of phospholipase A2 (PLA2) and by PTX. Because AA and its metabolites are powerful modulators of neuronal K+ currents, we investigated the involvement of PLA2 and AA in the AT2 receptor-mediated stimulation of IK by Ang II. Single-cell reverse transcriptase (RT)-PCR analyses revealed the presence of PLA2 mRNA in neurons that responded to Ang II with an increase in IK. The stimulation of neuronal IK by Ang II was attenuated by selective inhibitors of PLA2 and was mimicked by application of AA to neurons. Inhibition of lipoxygenase (LO) enzymes significantly reduced both Ang II- and AA-stimulated IK, and the 12-LO metabolite of AA 12S-hydroxyeicosatetraenoic acid (12S-HETE) stimulated IK. These data indicate the involvement of a PLA2, AA, and LO metabolite intracellular pathway in the AT2 receptor-mediated stimulation of neuronal IK by Ang II. Furthermore, the demonstration that inhibition of PP-2A abolished the stimulatory effects of Ang II, AA, and 12S-HETE on neuronal IK but did not alter Ang II-stimulated [3H]-AA release suggests that PP-2A is a distal event in this pathway.
Collapse
|
79
|
Masaki H, Kurihara T, Yamaki A, Inomata N, Nozawa Y, Mori Y, Murasawa S, Kizima K, Maruyama K, Horiuchi M, Dzau VJ, Takahashi H, Iwasaka T, Inada M, Matsubara H. Cardiac-specific overexpression of angiotensin II AT2 receptor causes attenuated response to AT1 receptor-mediated pressor and chronotropic effects. J Clin Invest 1998; 101:527-35. [PMID: 9449684 PMCID: PMC508594 DOI: 10.1172/jci1885] [Citation(s) in RCA: 171] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Angiotensin (Ang) II has two major receptor isoforms, AT1 and AT2. Currently, AT1 antagonists are undergoing clinical trials in patients with cardiovascular diseases. Treatment with AT1 antagonists causes elevation of plasma Ang II which selectively binds to AT2 and exerts as yet undefined effects. Cardiac AT2 level is low in adult hearts, whereas its distribution ratio is increased during cardiac remodeling and its action is enhanced by application of AT1 antagonists. Although in AT2 knock-out mice sensitivity to the pressor action of Ang II was increased, underlying mechanisms remain undefined. Here, we report the unexpected finding that cardiac-specific overexpression of the AT2 gene using alpha-myosin heavy chain promoter resulted in decreased sensitivity to AT1-mediated pressor and chronotropic actions. AT2 protein undetectable in the hearts of wild-type mice was overexpressed in atria and ventricles of the AT2 transgenic (TG) mice and the proportions of AT2 relative to AT1 were 41% in atria and 45% in ventricles. No obvious morphological change was observed in the myocardium and there was no significant difference in cardiac development or heart to body weight ratio between wild-type and TG mice. Infusion of Ang II to AT2 TG mice caused a significantly attenuated increase in blood pressure response and the change was completely blocked by pretreatment with AT2 antagonist. This decreased sensitivity to Ang II-induced pressor action was mainly due to the AT2-mediated strong negative chronotropic effect and exerted by circulating Ang II in a physiological range that did not stimulate catecholamine release. Isolated hearts of AT2 transgenic mice perfused using a Langendorff apparatus also showed decreased chronotropic responses to Ang II with no effects on left ventricular dp/dt max values, and Ang II-induced activity of mitogen-activated protein kinase was inhibited in left ventricles in the transgenic mice. Although transient outward K+ current recorded in cardiomyocytes from AT2 TG mice was not influenced by AT2 activation, this study suggested that overexpression of AT2 decreases the sensitivity of pacemaker cells to Ang II. Our results demonstrate that stimulation of cardia AT2 exerts a novel antipressor action by inhibiting AT1-mediated chronotropic effects, and that application of AT1 antagonists to patients with cardiovascular diseases has beneficial pharmacotherapeutic effects of stimulating cardiac AT2.
Collapse
MESH Headings
- Angiotensin II/administration & dosage
- Angiotensin II/metabolism
- Animals
- Calcium-Calmodulin-Dependent Protein Kinases/metabolism
- Dose-Response Relationship, Drug
- Heart/drug effects
- Heart/growth & development
- Heart/physiology
- Heart Rate/drug effects
- Hemodynamics/drug effects
- Infusions, Intra-Arterial
- Male
- Mice
- Mice, Inbred C57BL
- Mice, Transgenic
- Myocardial Contraction/drug effects
- Myocardium/metabolism
- Phenotype
- Receptor, Angiotensin, Type 1
- Receptor, Angiotensin, Type 2
- Receptors, Angiotensin/biosynthesis
- Receptors, Angiotensin/genetics
- Receptors, Angiotensin/metabolism
- Receptors, Catecholamine/metabolism
Collapse
Affiliation(s)
- H Masaki
- Department of Medicine II, Kansai Medical University, Osaka 570-8507, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
80
|
Pulakat L, Tadessee AS, Dittus JJ, Gavini N. Role of Lys215 located in the fifth transmembrane domain of the AT2 receptor in ligand-receptor interaction. REGULATORY PEPTIDES 1998; 73:51-7. [PMID: 9537673 DOI: 10.1016/s0167-0115(97)01059-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Studies on ligand-receptor interaction of Angiotensin II (Ang II) receptor type 1 have shown that for peptidic ligands to bind this receptor they must interact via their C-terminal carboxylate group to the positively charged side chain of the Lysine residue 199 located in the fifth transmembrane domain of this receptor. In the Ang II receptor type AT2, this Lysine residue is conserved at position 215 in the fifth transmembrane domain. To determine the specific mechanism of ligand binding to the Angiotensin II receptor type AT2, mutated AT2 receptors were generated in which the Lys215 was replaced with glutamic acid, glutamine, alanine and arginine. The ability of these mutated receptors to bind peptidic ligands 125I-[Sar1-Ile8]Ang II (non-specific for AT2 receptor type), 125I-CGP42112A (AT2 receptor specific) and the non-peptidic ligand PD123319 (AT2 receptor specific) was evaluated by expressing these receptors in Xenopus oocytes and performing binding assays. The Lys215Glu and Lys215Gln mutants of AT2 receptor lost their affinity to 125I-[Sar1-Ile8]Ang II, but retained their affinity to 125I-CGP42112A and PD123319. In contrast, Lys215Arg mutant retained its affinity to 125I-[Sar1-Ile8]Ang II, but exhibited lower affinity to 125I-CGP42112A. The Lys215Ala mutant lost its affinity to both 125I-[Sar1-Ile8]Ang II and 125I-CGP42112A. These results suggest that the binding mechanism of 125I-[Sar1-Ile8]Ang II to AT2 receptor is similar to that of AT1 receptor since an amino acid with positively charged side chain (Lys or Arg) located in the fifth transmembrane domain is required for this ligand to bind AT2 receptor. In contrast, although CGP42112A is a peptidic ligand, it does not require an interaction between its C-terminal carboxylate group and the positively charged side-chain of an amino acid in the fifth transmembrane domain for its binding to AT2 receptor.
Collapse
Affiliation(s)
- L Pulakat
- Department of Biological Sciences, Bowling Green State University, OH 43403, USA.
| | | | | | | |
Collapse
|
81
|
Gelband CH, Sumners C, Lu D, Raizada MK. Angiotensin receptors and norepinephrine neuromodulation: implications of functional coupling. REGULATORY PEPTIDES 1997; 72:139-45. [PMID: 9652973 DOI: 10.1016/s0167-0115(97)01050-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The objective of this review is to examine the role of neuronal angiotensin II (Ang II) receptors in vitro. Two types of G protein-coupled Ang II receptors have been identified in cardiovascularly relevant areas of the brain: the AT1 and the AT2. We have utilized neurons in culture to study the signaling mechanisms of AT1 and AT2 receptors. Neuronal AT1 receptors are involved in norepinephrine (NE) neuromodulation. NE neuromodulation can be either evoked or enhanced. Evoked NE neuromodulation involves AT1 receptor-mediated, losartan-dependent, rapid NE release, inhibition of K+ channels and stimulation of Ca2+ channels. AT1 receptor-mediated enhanced NE neuromodulation involves the Ras-Raf-MAP kinase cascade and ultimately leads to an increase in NE transporter, tyrosine hydroxylase and dopamine beta-hydroxylase mRNA transcription. Neuronal AT2 receptors signal via a Gi protein and are coupled to activation of PP2A and PLA2 and stimulation of K+ channels. Finally, putative cross-talk pathways between AT1 and AT2 receptors will be discussed.
Collapse
MESH Headings
- Animals
- Brain/cytology
- Brain/drug effects
- Brain/enzymology
- Coculture Techniques
- Gene Expression Regulation, Enzymologic/drug effects
- Gene Expression Regulation, Enzymologic/genetics
- Humans
- Mixed Function Oxygenases/genetics
- Mixed Function Oxygenases/metabolism
- Neurons/drug effects
- Neurons/metabolism
- Norepinephrine/metabolism
- Norepinephrine/pharmacology
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Receptor, Angiotensin, Type 1
- Receptor, Angiotensin, Type 2
- Receptors, Angiotensin/drug effects
- Receptors, Angiotensin/genetics
- Receptors, Angiotensin/metabolism
- Signal Transduction/drug effects
- Signal Transduction/genetics
- Sympathomimetics/metabolism
- Sympathomimetics/pharmacology
- Synaptic Transmission/drug effects
- Synaptic Transmission/physiology
Collapse
Affiliation(s)
- C H Gelband
- Department of Physiology, College of Medicine, University of Florida, Gainesville 32610, USA
| | | | | | | |
Collapse
|
82
|
Albrecht D, Broser M, Krüger H, Bader M. Effects of angiotensin II and IV on geniculate activity in nontransgenic and transgenic rats. Eur J Pharmacol 1997; 332:53-63. [PMID: 9298925 DOI: 10.1016/s0014-2999(97)01062-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Microiontophoretic ejection of angiotensin II and angiotensin IV in the vicinity of geniculate neurons was used to study the effects of these peptides on the discharge rate and the discharge pattern of extracellularly recorded activity. The main aim of the experiments was to study the effects of angiotensins in different strains of rats anesthetized with urethane (normotensive Wistar, normotensive Sprague-Dawley and hypertensive, transgenic (TGR(mREN2)27) rats). Both angiotensins mostly increased the spontaneous activity of angiotensin-sensitive geniculate neurons in all strains. Angiotensin II reduced the number of bursts in most neurons, whereas angiotensin IV significantly enhanced it. Inhibitory effects of angiotensins on spontaneous as well as on light-evoked activity could be effectively blocked by GABA(A) or GABA(B) receptor antagonists. Therefore, it can be supposed that angiotensin-containing afferent fibers innervate both projection and local circuit neurons of the dorsal lateral geniculate nucleus. In addition, angiotensin II suppressed excitation induced by glutamate receptor agonists in most neurons tested. Angiotensin-induced effects could be blocked by specific receptor antagonists. There were no significant differences in the effects of angiotensins in the various strains of rats, except for the latencies of the neuronal responses to the iontophoretic ejection of angiotensins.
Collapse
Affiliation(s)
- D Albrecht
- Institute of Physiology, Faculty of Medicine (Charité), Humboldt University, Berlin, Germany.
| | | | | | | |
Collapse
|
83
|
Park PD, Henry JL. Receptor subtypes mediating spinal cardiovascular effects of angiotensin II in rat using losartan and PD 123319. Eur J Pharmacol 1997; 326:139-45. [PMID: 9196266 DOI: 10.1016/s0014-2999(97)85408-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
It has previously been shown in this laboratory that intrathecal administration of 10 microg of angiotensin II produces an increase in arterial pressure and heart rate. As two receptor subtypes of angiotensin II, termed AT1 and AT2, have been identified in central nervous tissue this study examines the effects of selective antagonists on the pressor and cardioacceleratory responses to intrathecal administration of 10 microg of angiotensin II to the ninth thoracic spinal cord. The two non-peptide antagonists were losartan (2-n-butyl-4-chloro-5-hydroxymethyl-1-[(2'-(1H)-tetrazol-5-yl)biph enyl-4-yl)methyl]imidazole), which is selective for the angiotensin AT1 receptor, and PD 123319 (1-[[4-(dimethylamino)-3-methylphenyl]methyl]-5-(diphenyacetyl)-4, 5,6,7-tetrahydro-1H-imidazo[4,5-c]pyridine-6-carboxylic acid, ditrifluoroacetate, dihydrate), which is selective for the angiotensin AT2 receptor. Intravenous administration of losartan blocked both pressor and cardioacceleratory effects of angiotensin II. Intrathecal administration of losartan blocked only the pressor effects, raising the possibility that block of the heart rate response was in the periphery. Intrathecal administration of PD 123319 blocked the pressor effect of angiotensin II but had no effect on the cardioacceleratory response. However, by itself the antagonist produced a transient increase in arterial pressure and a slower increase in heart rate. The data support the involvement of the angiotensin AT1 receptor in mediating the effects of exogenously administered angiotensin II but also indicate a possible role of angiotensin AT2 receptors at the spinal level.
Collapse
Affiliation(s)
- P D Park
- Department of Psychiatry, Allan Memorial Institute, Montreal, Canada
| | | |
Collapse
|
84
|
Abstract
As an antihypertensive regimen, angiotensin I-converting enzyme (ACE) inhibition appears to have an antiproliferative cardiovascular effect that is not caused by blood pressure reduction alone. On the other hand, ACE inhibition has been shown to induce neocapillarization in hypertrophied myocardium. The possible mechanisms behind these beneficial cardiovascular effects of ACE inhibition are the suppression of angiotensin II formation and the potentiation of bradykinin. Angiotensin II receptor antagonism appears to have a similar antiproliferative effect on myocardium and vascular smooth muscle as ACE inhibition. This suggests that the antiproliferative action of both regimens is due only to the reduction of the pressor and growth effects of angiotensin II, or that both regimens have an additional, similarly effective antiproliferative action. Recently, knowledge about angiotensin II receptors has almost exponentially expanded. The two main classes of angiotensin II receptors, type 1 and 2 (AT1 and AT2), have been shown to belong to the same receptor family. However, their signal transduction and function seem to differ totally. The function and signal transduction of AT1 are to a large extent known. All the well-known physiological and pathophysiological effects of angiotensin II have been attributed to AT1. On the other hand, AT2 has quite recently been shown to mediate antiproliferation and differentiation at least in some tissues and cells, e.g. in vascular endothelial cells and some cells of neuronal origin. This review highlights the recent findings on angiotensin II receptors, and discusses the mechanisms behind the beneficial cardiovascular effects of interfering with the renin-angiotensin system.
Collapse
Affiliation(s)
- K Helin
- Department of Medicine, Helsinki University Central Hospital, Finland
| | | | | | | | | |
Collapse
|
85
|
Liénard F, Thornton SN, Martial FP, Mousseau MC, Nicolaïdis S. Angiotensin II receptor subtype antagonists can both stimulate and inhibit salt appetite in rats. REGULATORY PEPTIDES 1996; 66:87-94. [PMID: 8899899 DOI: 10.1016/0167-0115(96)00061-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
In urethane-anaesthetised male Wistar rats iontophoretic application of the angiotensin II (Ang II) type 1 (AT-1) receptor specific nonpeptide antagonist losartan in the septo-preoptic continuum can produce neuronal excitation of short- and long-term duration which has been interpreted as removal of tonic Ang II-induced inhibition. Mineralocorticoid pretreatment, which increases neuronal sensitivity to Ang II to enhance salt appetite, also removes this losartan-induced long-term excitation. These results suggested steroid modulation of the AT-1 receptor and a complex involvement of Ang II in salt appetite. To investigate the role of the inhibitory action of central Ang II on salt appetite, we gave intracerebroventicular injections of a single, low dose (10 ng) of losartan in normal euhydrated rats and this produced, paradoxically, a progressive increase in salt intake (1.6 +/- 0.3 ml/day to 3.5 +/- 0.9 ml/day, n = 15, P < 0.05). Treatment of these salt enhanced rats with DOCA (0.5 mg/day, s.c., for 3 days) further increased the salt appetite, but then a second i.c.v. injection of the same dose of losartan significantly inhibited the enhanced salt appetite (4.7 +/- 0.7 to 1.3 +/- 0.4, n = 9, P < 0.05). These results provide evidence for a complex action of Ang II on the At-1 receptor mediating the generation of salt appetite that appears to involve either at least two functional subtypes of this AT-1 receptor, as already suggested by previous electrophysiological experiments, or one AT-1 receptor with several activation states.
Collapse
Affiliation(s)
- F Liénard
- Centre National de la Recherche Scientifique, Collège de France, Paris, France
| | | | | | | | | |
Collapse
|
86
|
Jacobs LS, Douglas JG. Angiotensin II type 2 receptor subtype mediates phospholipase A2-dependent signaling in rabbit proximal tubular epithelial cells. Hypertension 1996; 28:663-8. [PMID: 8843895 DOI: 10.1161/01.hyp.28.4.663] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
We investigated the ability of angiotensin II (Ang II) or the stable analogue [Sar1]-Ang II to increase intracellular and extracellular free arachidonic acid in primary cultures of rabbit proximal tubular epithelial cells to better characterize the receptor subtype and orientation of phospholipase A2 (PLA2)-mediated signaling. Proximal tubular cells were labeled with [3H]arachidonic acid for 4 hours and then treated with Ang II or [Sar1]-Ang II. Lipids were extracted from labeled cells, separated by thin-layer chromatography, and quantified by liquid scintillation counting. Ang II (10 mumol/L, 1 minute) stimulated an increase in intracellular free [3H]arachidonic acid from 21.0 +/- 2.0 to 32.2 +/- 2.8 disintegrations per minute/microgram protein, an effect that was potentiated by EGTA. [Sar1]-Ang II stimulated a time- and concentration-dependent increase in [3H]arachidonic acid release from labeled cells. Release of [3H]arachidonic acid was maximal at 10 mumol/L [Sar1]-Ang II, with an EC50 of approximately 3 mumol/L. Ang II receptor antagonists caused concentration-dependent inhibition of [Sar1]-Ang II-stimulated [3H]arachidonic acid release with the following order of potency: CGP 42112 = PD 123319 > losartan. Furthermore, in proximal tubular epithelial cells grown on polyester membrane filters, the Ang II receptor that mediated arachidonic acid release was predominantly apical rather than basolateral. These observations are consistent with activation of a Ca(2+)-independent, apical PLA2 isoform in epithelial cells through an Ang II type 2 receptor subtype.
Collapse
Affiliation(s)
- L S Jacobs
- Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, OH 44106-4982, USA
| | | |
Collapse
|
87
|
Laflamme L, Gasparo M, Gallo JM, Payet MD, Gallo-Payet N. Angiotensin II induction of neurite outgrowth by AT2 receptors in NG108-15 cells. Effect counteracted by the AT1 receptors. J Biol Chem 1996; 271:22729-35. [PMID: 8798447 DOI: 10.1074/jbc.271.37.22729] [Citation(s) in RCA: 144] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
In the present study, 3-day treatment of nondifferentiated NG108-15 cells with 100 nM angiotensin II (Ang II) induces morphological differentiation of neuronal cells characterized by the outgrowth of neurites. These morphological changes are correlated with an increase in the level of polymerized tubulin and in the level of the microtubule-associated protein, MAP2c. Mediation by the AT2 receptor may be inferred since: (a) these cells contain only AT2 receptors; (b) the effects are mimicked by CGP 42112 (an AT2 receptor agonist); (c) they are not suppressed by the addition of DUP 753 (an AT1 receptor antagonist); and (d) are abolished by co-incubation with PD 123319 (an AT2 receptor antagonist). Application of Ang II in dibutyryl cAMP-differentiated cells (which contain both types of receptors) induces neurite retraction, an effect mediated by the AT1 receptor. These results indicate that the AT2 receptor of Ang II induces neuronal differentiation, which is initiated through an increase in the levels of MAP2c associated with tubulin. Moreover, our results demonstrate that the AT1 receptor inhibit the process of differentiation induced by dibutyryl cAMP, whereas the AT2 receptors potentiate this effect, illustrating negative cross-talk interaction between the two types of Ang II receptors.
Collapse
Affiliation(s)
- L Laflamme
- Service of Endocrinology, Faculty of Medicine, University of Sherbrooke, Sherbrooke, J1H 5N4 Quebec, Canada
| | | | | | | | | |
Collapse
|
88
|
Hayashida W, Horiuchi M, Dzau VJ. Intracellular third loop domain of angiotensin II type-2 receptor. Role in mediating signal transduction and cellular function. J Biol Chem 1996; 271:21985-92. [PMID: 8703004 DOI: 10.1074/jbc.271.36.21985] [Citation(s) in RCA: 89] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
The present study tests the hypothesis that the unique intracellular third loop domain of angiotensin II type-2 (AT2) receptor is essential for the subsequent intracellular signaling and plays an important role in mediating receptor function. Synthetic intracellular third loop peptide of the AT2 receptor (AT2-3LP, 22 amino acids) and control peptide consisting of the same amino acid composition in random sequence were delivered into adult rat aortic vascular smooth muscle cells by cationic liposome-mediated transfection. Successful intracellular peptide delivery was confirmed by microscopic localization of the fluorescein-labeled AT2-3LP within the cells and also by co-immunoprecipitation of the 125I-labeled 3LP complexed with Gi protein using anti-Gialpha antibody. The AT2-3LP-transfected cells showed reduction of serum-stimulated DNA synthesis and cell proliferation as well as a decrease in mitogen-activated protein kinase activity, simulating the effects of AT2 receptor stimulation. The antagonistic effect of the AT2-3LP on mitogen-activated protein kinase activity and DNA synthesis were reversed by pertussis toxin and sodium orthovanadate. Thus, our data suggest that the intracellular third loop domain of the AT2 receptor is closely linked with the cellular signaling pathways of vascular smooth muscle cells in which Gi and protein-phosphotyrosine phosphatase are involved, resulting in the alteration of mitogen-activated protein kinase activity and in growth inhibition.
Collapse
Affiliation(s)
- W Hayashida
- Falk Cardiovascular Research Center, Stanford University School of Medicine, Stanford, California 94305-5246, USA
| | | | | |
Collapse
|
89
|
Meffert S, Stoll M, Steckelings UM, Bottari SP, Unger T. The angiotensin II AT2 receptor inhibits proliferation and promotes differentiation in PC12W cells. Mol Cell Endocrinol 1996; 122:59-67. [PMID: 8898348 DOI: 10.1016/0303-7207(96)03873-7] [Citation(s) in RCA: 168] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Angiotensin II (ANG II) has been implicated in cell growth and differentiation. We investigated the effect of AT2 receptor stimulation on proliferation and morphological differentiation in cells of neuronal origin by using the pheochromocytoma derived cell line, PC12W. ANG II (10(-8)-10(-6) M) inhibited fetal calf serum (FCS)-induced cell proliferation in a concentration dependent manner. In half of the experiments, the epidermal growth factor (EGF) exerted a mitogenic action which was concentration-dependently inhibited by ANG II. In the other half of the experiments, EGF had an antimitogenic effect which was further enhanced by ANG II (maximally at 10(-6) M). Treatment with nerve growth factor (NGF) induced an inhibition of [3H]thymidine incorporation, which was enhanced by ANG II, maximally 25% at the highest concentration. The effects of ANG II on [3H]thymidine incorporation were reflected by those on cell number and were prevented by the AT2 receptor antagonist, PD123177, but not influenced by the AT1 receptor antagonist, losartan. The ANG II-induced inhibition of cell proliferation was paralleled by morphological differentiation in response to daily treatment with ANG II. ANG II also enhanced low-dose NGF-induced neurite formation. Again, these effects of ANG II were abolished by the AT2 receptor antagonist, PD123177. Our data in PC12W cells show that the AT2 receptor not only inhibits growth factor-induced proliferation and enhances the NGF-mediated growth arrest but also induces morphological differentiation in cells of neuronal origin. These findings strongly support the hypothesis that the AT2 receptor promotes differentiation in neuronal cells.
Collapse
Affiliation(s)
- S Meffert
- Department of Pharmacology, Christian-Albrechts-University, Kiel, Germany
| | | | | | | | | |
Collapse
|
90
|
Martens JR, Wang D, Sumners C, Posner P, Gelband CH. Angiotensin II type 2 receptor-mediated regulation of rat neuronal K+ channels. Circ Res 1996; 79:302-9. [PMID: 8756008 DOI: 10.1161/01.res.79.2.302] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
We have previously shown that angiotensin II (Ang II), via AT2 receptors, increases whole-cell K+ current in cultured rat hypothalamus and brain stern neurons. We have now investigated the AT2 receptor-mediated effects of Ang II on the activity of single delayed rectifier K+ channels in cell-attached membrane patches. In control recordings (bath, 5.4 mmol/L K+; pipette, 140 mmol/L K+), two voltage-dependent channels were recorded with conductances of 34 +/- 4 and 56 +/- 6 pS, respectively (n = 6). When patches were excised, the channels reversed near a membrane potential expected for a K+ channel. In cell-attached patches (-40 mV), Ang II (100 nmol/L) increased open probability of the 56-pS K+ channel from 0.03 +/- 0.01 to 0.21 +/- 0.05 (n = 3). The selective AT2 receptor antagonist PD 123319 (1 mumol/L) but not the AT1 receptor antagonist losartan (1 mumol/L) blocked the actions of Ang II (n = 3). The selective AT2 receptor agonist CGP 42112 (100 nmol/L) produced similar effects to Ang II. Kinetic analysis of the Ang II effect showed that open-time histograms were best fit by two exponential functions. Ang II increased both open-time constants relative to control (control, tau 1 = 0.9 +/- 0.1 milliseconds, tau 2 = 2.3 +/- 0.3 milliseconds; Ang II, tau 1 = 3.1 +/- 0.4 milliseconds, tau 2 = 12.1 +/- 2.4 milliseconds), and PD 123319 blocked this effect (n = 3). The closed-time histogram was not affected by Ang II PD 123319, or losartan. These results suggest that activation of AT2 receptors modulates rat hypothalamus and brain stern neuronal whole-cell K+ current by increasing the open probability of a 56-pS K+ channel.
Collapse
Affiliation(s)
- J R Martens
- Department of Physiology, University of Florida, College of Medicine, Gainesville 32610, USA
| | | | | | | | | |
Collapse
|
91
|
Kambayashi Y, Nagata K, Ichiki T, Inagami T. Insulin and insulin-like growth factors induce expression of angiotensin type-2 receptor in vascular-smooth-muscle cells. EUROPEAN JOURNAL OF BIOCHEMISTRY 1996; 239:558-65. [PMID: 8774697 DOI: 10.1111/j.1432-1033.1996.0558u.x] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Angiotensin type-2 receptor (AT2) is abundant in fetal tissues, including aorta, and its expression level declines after birth. In the present study, the regulation of its expression was studied in cultured vascular-smooth-muscle cells (VSMC). The maximum number of binding sites of AT2 increased in VSMC after they were cultured without serum in the presence of insulin, which was essential for its expression. AT2 expression was inhibited by treatment with phorbol ester. Northern blot analyses revealed that insulin-dependent expression is due to elevation of mRNA level of AT2. Similar induction was observed when insulin-like growth factor (IGF)-I or IGF-II was used instead of insulin. The study on the dose dependencies of these factors revealed that the induction of AT2 expression was mediated through the activation of IGF-I receptors. The insulin-induced expression of AT2 was detected in the aorta of genetically obese (fa/fa) Zucker rats, which reportedly have approximately tenfold-higher plasma concentrations of insulin than their lean littermates. The insulin-dependence seems characteristic of VSMC, because it was not observed for pheochromocytoma cells or adrenal glands. These results suggest that the expression of AT2 is regulated by at least two mechanisms, that is, IGF-I receptor dependent and IGF-I receptor independent, and that the former may play an important role in the expression of AT2 in VSMC.
Collapse
MESH Headings
- Animals
- Aorta/metabolism
- Base Sequence
- Cells, Cultured
- Culture Media, Serum-Free
- Gene Expression Regulation
- Hyperinsulinism/metabolism
- Insulin/pharmacology
- Insulin-Like Growth Factor I/pharmacology
- Insulin-Like Growth Factor II/pharmacology
- Male
- Molecular Sequence Data
- Muscle, Smooth, Vascular/cytology
- Muscle, Smooth, Vascular/drug effects
- Pheochromocytoma/metabolism
- RNA, Messenger/metabolism
- Rats
- Rats, Zucker
- Receptor, Angiotensin, Type 2
- Receptor, IGF Type 1/metabolism
- Receptors, Angiotensin/biosynthesis
- Receptors, Angiotensin/genetics
- Somatomedins/pharmacology
- Tetradecanoylphorbol Acetate/pharmacology
- Transcription, Genetic
Collapse
Affiliation(s)
- Y Kambayashi
- Discovery Research Laboratories II, Shionogi & Co. Ltd., Osaka, Japan
| | | | | | | |
Collapse
|
92
|
Huang XC, Richards EM, Sumners C. Mitogen-activated protein kinases in rat brain neuronal cultures are activated by angiotensin II type 1 receptors and inhibited by angiotensin II type 2 receptors. J Biol Chem 1996; 271:15635-41. [PMID: 8663175 DOI: 10.1074/jbc.271.26.15635] [Citation(s) in RCA: 137] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Neurons cultured from neonatal rat hypothalamus and brainstem contain many angiotensin II (Ang II) type 2 (AT2) receptors, and we previously determined that activation of these sites elicited a stimulation of serine/threonine phosphatase 2A (PP2A). Here, we have investigated the effects of Ang II on neuronal mitogen-activated protein (MAP) kinases, potential targets for PP2A. Using in-gel kinase assays and immunoprecipitation analyses we have shown that Ang II (10 nM-1 microM) elicits significant increases in p44(MAPK) (Erk1) and p42(MAPK) (Erk2) activities in cultured neurons, mediated via Ang II type 1 (AT1) receptors. This stimulatory effect of Ang II on Erk1 and Erk2 activities was potentiated by blockade of AT2 receptors with (S)-1-[4-(dimethylamino)-3-methylphenyl]methyl-5-(diphenylacetyl)- 4, 5,6,7-tetrahydro-1H-imidazo[4,5-C]pyridine-6-carboxylic acid (PD 123319, 1 microM). Furthermore, the AT2 receptor agonist N-alpha-nicotinoyl-Tyr-Lys-(N-alphaCBZ-Arg)-His-Pro-Ile-OH (CGP42112A) (10-50 nM) caused significant decreases in neuronal Erk1 and Erk2 activities, which were abolished by PD 123319 (1 microM) and by the PP2A inhibitor okadaic acid (3 nM). This indicates that AT1 and AT2 receptors have opposite actions on Erk1 and Erk2 activities in neonatal neurons. Since MAP kinases are involved in the regulation of growth/differentiation and apoptosis, our data may provide an intracellular basis for modulatory effects of Ang II receptors on these processes.
Collapse
Affiliation(s)
- X C Huang
- Department of Physiology, College of Medicine, University of Florida, Gainesville, Florida 32610, USA
| | | | | |
Collapse
|
93
|
Zhang J, Pratt RE. The AT2 Receptor Selectively Associates with Giα2 and Giα3 in the Rat Fetus. J Biol Chem 1996. [DOI: 10.1074/jbc.271.25.15026] [Citation(s) in RCA: 101] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
94
|
Nahmias C, Cazaubon SM, Sutren M, Masson M, Lazard D, Villageois P, Elbaz N, Strosberg AD. Molecular and functional characterization of angiotensin II AT2 receptor in neuroblastoma N1E-115 cells. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 1996; 396:167-73. [PMID: 8726696 DOI: 10.1007/978-1-4899-1376-0_17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Affiliation(s)
- C Nahmias
- ICGM and CNRS UPR 0415 22, Paris, France
| | | | | | | | | | | | | | | |
Collapse
|
95
|
Huang XC, Sumners C, Richards EM. Angiotensin II stimulates protein phosphatase 2A activity in cultured neuronal cells via type 2 receptors in a pertussis toxin sensitive fashion. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 1996; 396:209-15. [PMID: 8726701 DOI: 10.1007/978-1-4899-1376-0_22] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Recent studies have suggested a role for an inhibitory G protein (Gi) and protein phosphatase 2A (PP2A) in the angiotensin II (Ang II) type 2 (AT2) receptor mediated stimulation of neuronal K+ currents. In the present study we have directly analyzed the effects of Ang II on PP2A activity in neurons cultured from newborn rat hypothalamus and brainstem. Ang II elicited time (30 min-24 h)- and concentration (10 nM -1 microM)-dependent increases in PP2A activity in these cells. This effect of Ang II involved AT2 receptors, since it was inhibited by the AT2 receptor selective ligand PD123319 (1 microM), but not by the Ang II type 1 receptor antagonist losartan (1 microM). Furthermore, the stimulatory effects of Ang II on PP2A activity were inhibited by pretreatment of cultures with pertussis toxin (PTX) (200 ng/ml; 24 h) indicating the involvement of an inhibitory G-protein; and by cycloheximide (CHX) (1 microgram/ml; 30 min) indicating a requirement for protein synthesis. These effects of Ang II appear to be via activation of PP2A, since Western Blot analyses revealed no effects of this peptide on the protein levels of the catalytic subunit of PP2A in cultured neurons. In summary, these data suggest that PP2A is a key component of the intracellular pathways coupled to neuronal AT2 receptors.
Collapse
Affiliation(s)
- X C Huang
- Department of Physiology, College of Medicine, University of Florida, Gainesville, USA
| | | | | |
Collapse
|
96
|
Duerson K, White RE, Jiang F, Schonbrunn A, Armstrong DL. Somatostatin stimulates BKCa channels in rat pituitary tumor cells through lipoxygenase metabolites of arachidonic acid. Neuropharmacology 1996; 35:949-61. [PMID: 8938725 DOI: 10.1016/0028-3908(96)00131-1] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The stimulation of large-conductance, calcium-activated (BK) potassium channels by somatostatin through protein dephosphorylation in rat pituitary tumor cells (White et al., Nature 351, 570-573, 1991) is blocked by drugs that interfere with arachidonic acid release by phospholipase A2 and metabolism by 5-lip-oxygenase. In contrast, higher concentrations of the same drugs had no effect on BK channel gating in cell-free patches, on the inhibition of adenylyl cyclase by somatostatin, or on the stimulation of BK channels by protein dephosphorylation through a cGMP-dependent pathway (White et al., Nature 361, 263-266, 1993). Exogenous arachidonic acid (1-20 muM) stimulated BK channel activity through protein dephosphorylation as effectively as somatostatin and was also blocked by inhibitors of lipoxygenases but not by inhibitors of phospholipase A2. These results support the hypothesis that lipoxygenase metabolites of arachidonic acid are second messengers linking pertussis toxin sensitive G-proteins to protein phosphatases regulating potassium channel activity (Armstrong and White, Trends Neurosci. 15, 403-408, 1992).
Collapse
Affiliation(s)
- K Duerson
- Laboratory of Cellular & Molecular Pharmacology, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, USA
| | | | | | | | | |
Collapse
|
97
|
Smith RD. Atypical (non-AT1, non-AT2) angiotensin receptors. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 1996; 396:237-45. [PMID: 8726704 DOI: 10.1007/978-1-4899-1376-0_25] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Affiliation(s)
- R D Smith
- Department of Clinical Biochemistry, Addenbrooke's Hospital, Cambridge, United Kingdom
| |
Collapse
|
98
|
Ichiki T, Kambayashi Y, Inagami T. Molecular cloning and expression of angiotensin II type 2 receptor gene. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 1996; 396:145-52. [PMID: 8726694 DOI: 10.1007/978-1-4899-1376-0_15] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Affiliation(s)
- T Ichiki
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, USA
| | | | | |
Collapse
|
99
|
Tanaka M, Ohnishi J, Ozawa Y, Sugimoto M, Usuki S, Naruse M, Murakami K, Miyazaki H. Characterization of the AT2 receptor on rat ovarian granulosa cells. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 1996; 396:175-82. [PMID: 8726697 DOI: 10.1007/978-1-4899-1376-0_18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Affiliation(s)
- M Tanaka
- Institute of Applied Biochemistry, Gene Experiment Center, University of Tsukuba, Ibaraki, Japan
| | | | | | | | | | | | | | | |
Collapse
|
100
|
Kivlighn SD, Zingaro GJ, Gabel RA, Broten TP, Chang RS, Ondeyka DL, Mantlo NB, Gibson RE, Greenlee WJ, Siegl PK. In vivo pharmacology of an angiotensin AT1 receptor antagonist with balanced affinity for AT2 receptors. Eur J Pharmacol 1995; 294:439-50. [PMID: 8750704 DOI: 10.1016/0014-2999(95)00564-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
L-163,017 (6-[benzoylamino]-7-methyl-2-propyl-3-[[2'-(N-(3-methyl-1-butoxy) carbonylaminosulfonyl)[1,1']-biphenyl-4-yl]methyl]-3H-imidazo[4,5- b]pyridine) is a potent, orally active, nonpeptide angiotensin II receptor antagonist. Conscious rats and dogs were dosed p.o. and i.v.; in both species the plasma bioequivalents are similar at the angiotensin AT1 and AT2 receptor sites indicating balanced activity is maintained in vivo. L-163,017 prevents the pressor response to intravenous (i.v.) angiotensin II in the conscious rat, dog, and rhesus monkey. L-163,017 also significantly reduces blood pressure in a renin-dependent model of hypertension, similar to an angiotensin converting enzyme inhibitor (Enalapril) and an angiotensin AT1 receptor-selective antagonist (L-159,282). These studies indicate that neither the angiotensin AT2 receptor nor bradykinin is important in the acute antihypertensive activity of angiotensin converting enzyme inhibitors or angiotensin II receptor antagonists.
Collapse
Affiliation(s)
- S D Kivlighn
- Department of Cardiovascular Pharmacology, Merck Research Laboratories, West Point, PA 19486, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|