51
|
Lu M, Sferruzzi-Perri AN. Placental mitochondrial function in response to gestational exposures. Placenta 2021; 104:124-137. [PMID: 33338764 DOI: 10.1016/j.placenta.2020.11.012] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 11/25/2020] [Accepted: 11/29/2020] [Indexed: 02/07/2023]
Abstract
Poor environmental conditions, including malnutrition, hypoxia and obesity in the mother increase the risk of pregnancy complications, such as pre-eclampsia and gestational diabetes mellitus, which impacts the lifelong health of the mother and her offspring. The placenta plays an important role in determining pregnancy outcome by acting as an exchange interface and endocrine hub to support fetal growth. Mitochondria are energy powerhouses of cells that fuel placental physiology throughout pregnancy, including placental development, substrate exchange and hormone secretion. They are responsive to environmental cues and changes in mitochondrial function may serve to mediate or mitigate the impacts of poor gestational environments on placental physiology and hence, the risks of pregnancy complications. Thus, a more integrated understanding about the role of placental mitochondria in orchestrating changes in relation to environmental conditions and pregnancy outcome is paramount. This review summarises the functions of mitochondria in the placenta and findings from humans and experimental animals that demonstrate how mitochondrial structure and function are altered in different gestational environments (namely complicated pregnancies and adverse environmental conditions). Together the available data suggest that mitochondria in the placenta play a major role in determining placental physiology, fetal growth and pregnancy outcome.
Collapse
Affiliation(s)
- Minhui Lu
- Centre for Trophoblast Research, Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
| | - Amanda Nancy Sferruzzi-Perri
- Centre for Trophoblast Research, Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK.
| |
Collapse
|
52
|
Easton ZJW, Delhaes F, Mathers K, Zhao L, Vanderboor CMG, Regnault TRH. Syncytialization and prolonged exposure to palmitate impacts BeWo respiration. Reproduction 2021; 161:73-88. [PMID: 33151905 PMCID: PMC8647596 DOI: 10.1530/rep-19-0433] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Accepted: 11/05/2020] [Indexed: 11/08/2022]
Abstract
Placental villous trophoblast mitochondrial respiratory function is critical for a successful pregnancy and environmental influences such as maternal obesity have been associated with respiratory impairment at term. More recently, a gestational high fat diet independent of maternal body composition, has been highlighted as a potential independent regulator of placental mitochondrial metabolism. The current study aimed to characterize the direct impact of a prolonged and isolated exposure to the dietary fatty acids Palmitate (PA) and Oleate (OA) upon placental cell mitochondrial respiratory function. BeWo cytotrophoblast (CT) and syncytiotrophoblast (SCT) cells were treated for 72 h with 100 µM PA, OA or PA+OA (P/O). Live-cell metabolic function was analyzed via the Seahorse XF Mito and Glycolysis Stress tests. Immunoblots and spectrophotometric activity assays were utilized to examine the protein expression and function of electron transport chain (ETC) complexes and key mitochondrial regulatory enzymes. Syncytialization of BeWo cells resulted reduced respiratory activity in conjunction with altered complex I and II activity and decreased pyruvate dehydrogenase (PDH) protein expression and activity. PA and P/O treatments were associated with increased basal and maximal respiratory activities in BeWo CT cells without alterations in protein expression or activity of individual ETC complexes and mitochondrial substrate regulators. The metabolic suppression in BeWo SCTs was consistent with that previously observed in primary human trophoblast cell cultures, while the observed increases in respiratory activity in PA-treated BeWo CTs may be indicative of an early timepoint of specific dietary saturated fat-mediated placental cell mitochondrial dysfunction.
Collapse
Affiliation(s)
- Zachary J W Easton
- Department of Physiology and Pharmacology, Western University, London, Ontario, Canada
| | - Flavien Delhaes
- Department of Physiology and Pharmacology, Western University, London, Ontario, Canada
| | - Katherine Mathers
- Department of Physiology and Pharmacology, Western University, London, Ontario, Canada
| | - Lin Zhao
- Department of Physiology and Pharmacology, Western University, London, Ontario, Canada
| | | | - Timothy R H Regnault
- Department of Physiology and Pharmacology, Western University, London, Ontario, Canada
- Department of Obstetrics and Gynaecology, Western University, London, Ontario, Canada
- Children's Health Research Institute, London, Ontario, Canada
- Lawson Health Research Institute, London, Ontario, Canada
| |
Collapse
|
53
|
Hebert JF, Myatt L. Placental mitochondrial dysfunction with metabolic diseases: Therapeutic approaches. Biochim Biophys Acta Mol Basis Dis 2021; 1867:165967. [PMID: 32920120 PMCID: PMC8043619 DOI: 10.1016/j.bbadis.2020.165967] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 09/03/2020] [Accepted: 09/04/2020] [Indexed: 12/25/2022]
Abstract
Both obesity and gestational diabetes mellitus (GDM) lead to poor maternal and fetal outcomes, including pregnancy complications, fetal growth issues, stillbirth, and developmental programming of adult-onset disease in the offspring. Increased placental oxidative/nitrative stress and reduced placental (trophoblast) mitochondrial respiration occur in association with the altered maternal metabolic milieu of obesity and GDM. The effect is particularly evident when the fetus is male, suggesting a sexually dimorphic influence on the placenta. In addition, obesity and GDM are associated with inflexibility in trophoblast, limiting the ability to switch between usage of glucose, fatty acids, and glutamine as substrates for oxidative phosphorylation, again in a sexually dimorphic manner. Here we review mechanisms underlying placental mitochondrial dysfunction: its relationship to maternal and fetal outcomes and the influence of fetal sex. Prevention of placental oxidative stress and mitochondrial dysfunction may improve pregnancy outcomes. We outline pathways to ameliorate deficient mitochondrial respiration, particularly the benefits and pitfalls of mitochondria-targeted antioxidants.
Collapse
Affiliation(s)
- Jessica F Hebert
- Department of Obstetrics and Gynecology, Oregon Health & Science University, Portland, OR, United States of America
| | - Leslie Myatt
- Department of Obstetrics and Gynecology, Oregon Health & Science University, Portland, OR, United States of America.
| |
Collapse
|
54
|
Easton ZJW, Regnault TRH. The Impact of Maternal Body Composition and Dietary Fat Consumption upon Placental Lipid Processing and Offspring Metabolic Health. Nutrients 2020; 12:nu12103031. [PMID: 33022934 PMCID: PMC7601624 DOI: 10.3390/nu12103031] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Revised: 09/29/2020] [Accepted: 09/30/2020] [Indexed: 12/20/2022] Open
Abstract
The proportion of women of reproductive age who are overweight or obese is increasing globally. Gestational obesity is strongly associated in both human studies and animal models with early-onset development of adult-associated metabolic diseases including metabolic syndrome in the exposed offspring. However, animal model studies have suggested that gestational diet in obese pregnancies is an independent but underappreciated mediator of offspring risk for later life metabolic disease, and human diet consumption data have highlighted that many women do not follow nutritional guidelines prior to and during pregnancy. Thus, this review will highlight how maternal diet independent from maternal body composition impacts the risk for later-life metabolic disease in obesity-exposed offspring. A poor maternal diet, in combination with the obese metabolic state, are understood to facilitate pathological in utero programming, specifically through changes in lipid handling processes in the villous trophoblast layer of the placenta that promote an environment associated with the development of metabolic disease in the offspring. This review will additionally highlight how maternal obesity modulates villous trophoblast lipid processing functions including fatty acid transport, esterification and beta-oxidation. Further, this review will discuss how altering maternal gestational diet may ameliorate these functional changes in lipid metabolic processes in the obese placenta.
Collapse
Affiliation(s)
- Zachary J. W. Easton
- Department of Physiology and Pharmacology, Western University, Medical Sciences Building Room 216, London, ON N6A 5C1, Canada;
- Correspondence: ; Tel.: +1-(519)-661-2111 (ext. 82869)
| | - Timothy R. H. Regnault
- Department of Physiology and Pharmacology, Western University, Medical Sciences Building Room 216, London, ON N6A 5C1, Canada;
- Department of Obstetrics and Gynaecology, London Health Science Centre-Victoria Hospital, B2-401, London, ON N6H 5W9, Canada
- Children’s Health Research Institute, 800 Commissioners Road East, London, ON N6C 2V5, Canada
- Lawson Health Research Institute, 750 Base Line Rd E, London, ON N6C 2R5, Canada
| |
Collapse
|
55
|
Mitochondrial dysfunction in the fetoplacental unit in gestational diabetes mellitus. Biochim Biophys Acta Mol Basis Dis 2020; 1866:165948. [PMID: 32866635 DOI: 10.1016/j.bbadis.2020.165948] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 08/17/2020] [Accepted: 08/20/2020] [Indexed: 12/12/2022]
Abstract
Gestational diabetes mellitus (GDM) is a disease of pregnancy that is associated with d-glucose intolerance and foeto-placental vascular dysfunction. GMD causes mitochondrial dysfunction in the placental endothelium and trophoblast. Additionally, GDM is associated with reduced placental oxidative phosphorylation due to diminished activity of the mitochondrial F0F1-ATP synthase (complex V). This phenomenon may result from a higher generation of reactive superoxide anion and nitric oxide. Placental mitochondrial biogenesis and mitophagy work in concert to maintain cell homeostasis and are vital mechanisms securing the efficient generation of ATP, whose demand is higher in pregnancy, ensuring foetal growth and development. Additional factors disturbing placental ATP synthase activity in GDM include pre-gestational maternal obesity or overweight, intracellular pH, miRNAs, fatty acid oxidation, and foetal (and 'placental') sex. GDM is also associated with maternal and foetal hyperinsulinaemia, altered circulating levels of adiponectin and leptin, and the accumulation of extracellular adenosine. Here, we reviewed the potential interplay between these molecules or metabolic conditions on the mechanisms of mitochondrial dysfunction in the foeto-placental unit in GDM pregnancies.
Collapse
|
56
|
Placental Adaptive Changes to Protect Function and Decrease Oxidative Damage in Metabolically Healthy Maternal Obesity. Antioxidants (Basel) 2020; 9:antiox9090794. [PMID: 32859037 PMCID: PMC7555720 DOI: 10.3390/antiox9090794] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 08/21/2020] [Accepted: 08/24/2020] [Indexed: 12/12/2022] Open
Abstract
Pregnancy-related disorders, including preeclampsia and gestational diabetes, are characterized by the presence of an adverse intrauterine milieu that may ultimately result in oxidative and nitrosative stress. This scenario may trigger uncontrolled production of reactive oxygen species (ROS) such as superoxide anion (O●−) and reactive nitrogen species (RNS) such as nitric oxide (NO), along with an inactivation of antioxidant systems, which are associated with the occurrence of relevant changes in placental function through recognized redox post-translational modifications in key proteins. The general objective of this study was to assess the impact of a maternal obesogenic enviroment on the regulation of the placental nitroso-redox balance at the end of pregnancy. We measured oxidative damage markers—thiobarbituric acid-reacting substances (TBARS) and carbonyl groups (C=O) levels; nitrosative stress markers—inducible nitric oxide synthase, nitrosothiol groups, and nitrotyrosine residues levels; and the antioxidant biomarkers—catalase and superoxide dismutase (SOD) activity and expression, and total antioxidant capacity (TAC), in full-term placental villous from both pre-pregnancy normal weight and obese women, and with absence of metabolic complications throughout gestation. The results showed a decrease in C=O and TBARS levels in obese pregnancies. Although total SOD and catalase concentrations were shown to be increased, both activities were significantly downregulated in obese pregnancies, along with total antioxidant capacity. Inducible nitric oxide sintase levels were increased in the obese group compared to the lean group, accompanied by an increase in nitrotyrosine residues levels and lower levels of nitrosothiol groups in proteins such as ERK1/2. These findings reveal a reduction in oxidative damage, accompanied by a decline in antioxidant response, and an increase via NO-mediated nitrative stress in placental tissue from metabolically healthy pregnancies with obesity. All this plausibly points to a placental adaptation of the affected antioxidant response towards a NO-induced alternative pathway, through changes in the ROS/RNS balance, in order to reduce oxidative damage and preserve placental function in pregnancy.
Collapse
|
57
|
Maternal physical activity significantly alters the placental transcriptome. Placenta 2020; 100:111-121. [PMID: 32891005 DOI: 10.1016/j.placenta.2020.08.016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 08/17/2020] [Accepted: 08/19/2020] [Indexed: 02/07/2023]
Abstract
INTRODUCTION Maternal lifestyle, in particular physical activity (PA), influences many of the physiological adaptations during pregnancy associated with feto-placental development and growth. There is limited to no information on the link between PA during pregnancy and the molecular mechanisms governing placental function. The aim of this study was to investigate the molecular mechanisms through which maternal PA may influence placental function. METHODS The level of PA was measured by accelerometry and gene expression was measured in term placenta with custom polymerase chain reaction (PCR) arrays and microarray analysis followed by a pathway analyses on significantly differentially expressed genes (DEGs). RESULTS Microarray analysis showed 43 significantly DEGs between active and non-active participants. RT-qPCR validation of a sub-sample of DEGs revealed significant changes in the level of expression between active and non-active moms (student's t-test, p < 0.05, n = 11). Genes involved in transport of water (p = 0.00236) and uptake of glycerol (p = 0.00219) were enriched in active moms. PA was also associated with the alteration of alternative splicing patters. The most consistent splicing changes were observed for AQP9 where active moms lacked exon 2. DISCUSSION Variations in maternal PA influences placental gene. We show significant expression changes of genes that are involved in transport and localization between active and non-active women. Most notably, the expression of the aquaporin family of genes (e.g. AQP1 and AQP9) were found to be significantly higher in the placentas of active women suggesting an adaptive response for the transport of water and glycerol in this population.
Collapse
|
58
|
Rodríguez-Cano AM, Calzada-Mendoza CC, Estrada-Gutierrez G, Mendoza-Ortega JA, Perichart-Perera O. Nutrients, Mitochondrial Function, and Perinatal Health. Nutrients 2020; 12:E2166. [PMID: 32708345 PMCID: PMC7401276 DOI: 10.3390/nu12072166] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 07/13/2020] [Accepted: 07/20/2020] [Indexed: 12/16/2022] Open
Abstract
Mitochondria are active independent organelles that not only meet the cellular energy requirement but also regulate central cellular activities. Mitochondria can play a critical role in physiological adaptations during pregnancy. Differences in mitochondrial function have been found between healthy and complicated pregnancies. Pregnancy signifies increased nutritional requirements to support fetal growth and the metabolism of maternal and fetal tissues. Nutrient availability regulates mitochondrial metabolism, where excessive macronutrient supply could lead to oxidative stress and contribute to mitochondrial dysfunction, while micronutrients are essential elements for optimal mitochondrial processes, as cofactors in energy metabolism and/or as antioxidants. Inadequate macronutrient and micronutrient consumption can result in adverse pregnancy outcomes, possibly through mitochondrial dysfunction, by impairing energy supply, one-carbon metabolism, biosynthetic pathways, and the availability of metabolic co-factors which modulate the epigenetic processes capable of establishing significant short- and long-term effects on infant health. Here, we review the importance of macronutrients and micronutrients on mitochondrial function and its influence on maternal and infant health.
Collapse
Affiliation(s)
- Ameyalli M Rodríguez-Cano
- Section for Postgraduate Studies and Research, Higher School of Medicine, Instituto Politécnico Nacional, Mexico City 11340, Mexico; (A.M.R.-C.); (C.C.C.-M.)
- Nutrition and Bioprogramming Department, Instituto Nacional de Perinatología Isidro Espinosa de los Reyes, Montes Urales 800, Lomas de Virreyes, Mexico City 11000, Mexico
| | - Claudia C Calzada-Mendoza
- Section for Postgraduate Studies and Research, Higher School of Medicine, Instituto Politécnico Nacional, Mexico City 11340, Mexico; (A.M.R.-C.); (C.C.C.-M.)
| | - Guadalupe Estrada-Gutierrez
- Instituto Nacional de Perinatología Isidro Espinosa de los Reyes, Research Division; Montes Urales 800, Lomas de Virreyes, Mexico City 11000, Mexico;
| | - Jonatan A Mendoza-Ortega
- Immunobiochemistry Department, Instituto Nacional de Perinatología Isidro Espinosa de los Reyes, Montes Urales 800, Lomas de Virreyes, Mexico City 11000, Mexico;
- Immunology Department, National School of Biological Sciences, Instituto Politécnico Nacional, Mexico City 11350, Mexico
| | - Otilia Perichart-Perera
- Nutrition and Bioprogramming Department, Instituto Nacional de Perinatología Isidro Espinosa de los Reyes, Montes Urales 800, Lomas de Virreyes, Mexico City 11000, Mexico
| |
Collapse
|
59
|
Placental function in maternal obesity. Clin Sci (Lond) 2020; 134:961-984. [PMID: 32313958 DOI: 10.1042/cs20190266] [Citation(s) in RCA: 107] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 04/07/2020] [Accepted: 04/08/2020] [Indexed: 02/06/2023]
Abstract
Maternal obesity is associated with pregnancy complications and increases the risk for the infant to develop obesity, diabetes and cardiovascular disease later in life. However, the mechanisms linking the maternal obesogenic environment to adverse short- and long-term outcomes remain poorly understood. As compared with pregnant women with normal BMI, women entering pregnancy obese have more pronounced insulin resistance, higher circulating plasma insulin, leptin, IGF-1, lipids and possibly proinflammatory cytokines and lower plasma adiponectin. Importantly, the changes in maternal levels of nutrients, growth factors and hormones in maternal obesity modulate placental function. For example, high insulin, leptin, IGF-1 and low adiponectin in obese pregnant women activate mTOR signaling in the placenta, promoting protein synthesis, mitochondrial function and nutrient transport. These changes are believed to increase fetal nutrient supply and contribute to fetal overgrowth and/or adiposity in offspring, which increases the risk to develop disease later in life. However, the majority of obese women give birth to normal weight infants and these pregnancies are also associated with activation of inflammatory signaling pathways, oxidative stress, decreased oxidative phosphorylation and lipid accumulation in the placenta. Recent bioinformatics approaches have expanded our understanding of how maternal obesity affects the placenta; however, the link between changes in placental function and adverse outcomes in obese women giving birth to normal sized infants is unclear. Interventions that specifically target placental function, such as activation of placental adiponectin receptors, may prevent the transmission of metabolic disease from obese women to the next generation.
Collapse
|
60
|
Gyllenhammer LE, Entringer S, Buss C, Wadhwa PD. Developmental programming of mitochondrial biology: a conceptual framework and review. Proc Biol Sci 2020; 287:20192713. [PMID: 32345161 PMCID: PMC7282904 DOI: 10.1098/rspb.2019.2713] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Research on mechanisms underlying the phenomenon of developmental programming of health and disease has focused primarily on processes that are specific to cell types, organs and phenotypes of interest. However, the observation that exposure to suboptimal or adverse developmental conditions concomitantly influences a broad range of phenotypes suggests that these exposures may additionally exert effects through cellular mechanisms that are common, or shared, across these different cell and tissue types. It is in this context that we focus on cellular bioenergetics and propose that mitochondria, bioenergetic and signalling organelles, may represent a key cellular target underlying developmental programming. In this review, we discuss empirical findings in animals and humans that suggest that key structural and functional features of mitochondrial biology exhibit developmental plasticity, and are influenced by the same physiological pathways that are implicated in susceptibility for complex, common age-related disorders, and that these targets of mitochondrial developmental programming exhibit long-term temporal stability. We conclude by articulating current knowledge gaps and propose future research directions to bridge these gaps.
Collapse
Affiliation(s)
- Lauren E Gyllenhammer
- Development, Health and Disease Research Program, School of Medicine, Irvine, CA, USA.,Department of Pediatrics, School of Medicine, Irvine, CA, USA
| | - Sonja Entringer
- Development, Health and Disease Research Program, School of Medicine, Irvine, CA, USA.,Department of Pediatrics, School of Medicine, Irvine, CA, USA.,Charité-Universitätsmedizin Berlin, Institute of Medical Psychology, Berlin, Germany
| | - Claudia Buss
- Development, Health and Disease Research Program, School of Medicine, Irvine, CA, USA.,Department of Pediatrics, School of Medicine, Irvine, CA, USA.,Charité-Universitätsmedizin Berlin, Institute of Medical Psychology, Berlin, Germany
| | - Pathik D Wadhwa
- Development, Health and Disease Research Program, School of Medicine, Irvine, CA, USA.,Department of Pediatrics, School of Medicine, Irvine, CA, USA.,Department of Psychiatry and Human Behaviour, School of Medicine, Irvine, CA, USA.,Department of Obstetrics and Gynecology, School of Medicine, Irvine, CA, USA.,Department of Epidemiology, University of California, School of Medicine, Irvine, CA, USA
| |
Collapse
|
61
|
Impaired Mitochondrial Function Results from Oxidative Stress in the Full-Term Placenta of Sows with Excessive Back-Fat. Animals (Basel) 2020; 10:ani10020360. [PMID: 32102192 PMCID: PMC7070850 DOI: 10.3390/ani10020360] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Revised: 02/19/2020] [Accepted: 02/20/2020] [Indexed: 01/01/2023] Open
Abstract
The aim of this study was to determine the effect of excessive back-fat (BF) of sows on placental oxidative stress, ATP generation, mitochondrial alterations in content and structure, and mitochondrial function in isolated trophoblasts. Placental tissue was collected by vaginal delivery from BFI (15-20 mm, n = 10) and BFII (21-27 mm, n = 10) sows formed according to BF at mating. Our results demonstrated that excessive back-fat contributed to augmented oxidative stress in term placenta, as evidenced by excessive production of ROS, elevated protein carbonylation, and reduced SOD, GSH-PX, and CAT activities (p < 0.05). Indicative of mitochondrial dysfunction, reduced mitochondrial respiration in cultured trophoblasts was linked to decreased ATP generation, lower mitochondrial Complex I activity and reduced expression of electron transport chain subunits in placenta of BFII sows (p < 0.05). Meanwhile, we observed negative alterations in mitochondrial biogenesis and structure in the placenta from BFII group (p < 0.05). Finally, our in vitro studies showed lipid-induced ROS production resulted in mitochondrial alterations in trophoblasts, and these effects were blocked by antioxidant treatment. Together, these data reveal that excessive back-fat aggravates mitochondrial injury induced by increased oxidative stress in pig term placenta, which may have detrimental consequences on placental function and therefore impaired fetal growth and development.
Collapse
|
62
|
Prendergast C. Maternal phenotype: how do age, obesity and diabetes affect myometrial function? CURRENT OPINION IN PHYSIOLOGY 2020. [DOI: 10.1016/j.cophys.2019.10.016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
63
|
Nichols AR, Rundle AG, Factor-Litvak P, Insel BJ, Hoepner L, Rauh V, Perera F, Widen EM. Prepregnancy obesity is associated with lower psychomotor development scores in boys at age 3 in a low-income, minority birth cohort. J Dev Orig Health Dis 2020; 11:49-57. [PMID: 31486358 PMCID: PMC6934918 DOI: 10.1017/s2040174419000412] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Whether maternal obesity and gestational weight gain (GWG) are associated with early-childhood development in low-income, urban, minority populations, and whether effects differ by child sex remain unknown. This study examined the impact of prepregnancy BMI and GWG on early childhood neurodevelopment in the Columbia Center for Children's Environmental Health Mothers and Newborns study. Maternal prepregnancy weight was obtained by self-report, and GWG was assessed from participant medical charts. At child age 3 years, the Psychomotor Development Index (PDI) and Mental Development Index (MDI) of the Bayley Scales of Infant Intelligence were completed. Sex-stratified linear regression models assessed associations between prepregnancy BMI and pregnancy weight gain z-scores with child PDI and MDI scores, adjusting for covariates. Of 382 women, 48.2% were normal weight before pregnancy, 24.1% overweight, 23.0% obese, and 4.7% underweight. At 3 years, mean scores on the PDI and MDI were higher among girls compared to boys (PDI: 102.3 vs. 97.2, P = 0.0002; MDI: 92.8 vs. 88.3, P = 0.0001). In covariate-adjusted models, maternal obesity was markedly associated with lower PDI scores in boys [b = -7.81, 95% CI: (-13.08, -2.55), P = 0.004], but not girls. Maternal BMI was not associated with MDI in girls or boys, and GWG was not associated with PDI or MDI among either sex (all-P > 0.05). We found that prepregnancy obesity was associated with lower PDI scores at 3 years in boys, but not girls. The mechanisms underlying this sex-specific association remain unclear, but due to elevated obesity exposure in urban populations, further investigation is warranted.
Collapse
Affiliation(s)
- Amy R Nichols
- Department of Nutritional Sciences, University of Texas at Austin, Austin, TX, USA
| | - Andrew G Rundle
- Columbia Center for Children's Environmental Health, Mailman School of Public Health, Columbia University, New York, NY, USA
- Department of Epidemiology, Mailman School of Public Health, Columbia University, New York, NY, USA
| | - Pam Factor-Litvak
- Department of Epidemiology, Mailman School of Public Health, Columbia University, New York, NY, USA
| | - Beverly J Insel
- Department of Epidemiology, Mailman School of Public Health, Columbia University, New York, NY, USA
| | - Lori Hoepner
- Columbia Center for Children's Environmental Health, Mailman School of Public Health, Columbia University, New York, NY, USA
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, NY, USA
- Department of Environmental and Occupational Health Sciences, SUNY Downstate Medical Center, Brooklyn, NY, USA
| | - Virginia Rauh
- Heilbrunn Department of Population and Family Health, Mailman School of Public Health, Columbia University, New York, NY, USA
| | - Frederica Perera
- Columbia Center for Children's Environmental Health, Mailman School of Public Health, Columbia University, New York, NY, USA
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, NY, USA
| | - Elizabeth M Widen
- Department of Nutritional Sciences, University of Texas at Austin, Austin, TX, USA
- Columbia Center for Children's Environmental Health, Mailman School of Public Health, Columbia University, New York, NY, USA
| |
Collapse
|
64
|
Widen EM, Nichols AR, Kahn LG, Factor-Litvak P, Insel BJ, Hoepner L, Dube SM, Rauh V, Perera F, Rundle A. Prepregnancy obesity is associated with cognitive outcomes in boys in a low-income, multiethnic birth cohort. BMC Pediatr 2019; 19:507. [PMID: 31862007 PMCID: PMC6924019 DOI: 10.1186/s12887-019-1853-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Accepted: 11/22/2019] [Indexed: 01/13/2023] Open
Abstract
Background Maternal obesity and high gestational weight gain (GWG) disproportionally affect low-income populations and may be associated with child neurodevelopment in a sex-specific manner. We examined sex-specific associations between prepregnancy BMI, GWG, and child neurodevelopment at age 7. Methods Data are from a prospective low-income cohort of African American and Dominican women (n = 368; 44.8% male offspring) enrolled during the second half of pregnancy from 1998 to 2006. Neurodevelopment was measured using the Wechsler Intelligence Scale for Children (WISC-IV) at approximately child age 7. Linear regression estimated associations between prepregnancy BMI, GWG, and child outcomes, adjusting for race/ethnicity, marital status, gestational age at delivery, maternal education, maternal IQ and child age. Results Overweight affected 23.9% of mothers and obesity affected 22.6%. At age 7, full-scale IQ was higher among girls (99.7 ± 11.6) compared to boys (96.9 ± 13.3). Among boys, but not girls, prepregnancy overweight and obesity were associated with lower full-scale IQ scores [overweight β: − 7.1, 95% CI: (− 12.1, − 2.0); obesity β: − 5.7, 95% CI: (− 10.7, − 0.7)]. GWG was not associated with full-scale IQ in either sex. Conclusions Prepregnancy overweight and obesity were associated with lower IQ among boys, but not girls, at 7 years. These findings are important considering overweight and obesity prevalence and the long-term implications of early cognitive development.
Collapse
Affiliation(s)
- Elizabeth M Widen
- Department of Nutritional Sciences, College of Natural Sciences, University of Texas at Austin, 103 W 24TH ST A2703, Austin, TX, 78712, USA. .,Columbia Center for Children's Environmental Health, Mailman School of Public Health, Columbia University, 722 West 168th Street, 12th Floor, New York, NY, 10032, USA.
| | - Amy R Nichols
- Department of Nutritional Sciences, College of Natural Sciences, University of Texas at Austin, 103 W 24TH ST A2703, Austin, TX, 78712, USA.,Columbia Center for Children's Environmental Health, Mailman School of Public Health, Columbia University, 722 West 168th Street, 12th Floor, New York, NY, 10032, USA
| | - Linda G Kahn
- Department of Pediatrics, New York University School of Medicine, 403 East 34th St, New York, NY, 10016, USA
| | - Pam Factor-Litvak
- Department of Epidemiology, Mailman School of Public Health, Columbia University, 722 West 168 Street Room 1614, New York, NY, 10032, USA
| | - Beverly J Insel
- Department of Epidemiology, Mailman School of Public Health, Columbia University, 722 West 168 Street Room 1614, New York, NY, 10032, USA.,Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, NY, USA
| | - Lori Hoepner
- Columbia Center for Children's Environmental Health, Mailman School of Public Health, Columbia University, 722 West 168th Street, 12th Floor, New York, NY, 10032, USA.,Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, NY, USA.,Department of Environmental and Occupational Health Sciences, SUNY Downstate Medical Center, School of Public Health, 450 Clarkson Avenue, MSC 43, Brooklyn, NY, 11203, USA
| | - Sara M Dube
- Department of Nutritional Sciences, College of Natural Sciences, University of Texas at Austin, 103 W 24TH ST A2703, Austin, TX, 78712, USA.,Department of Nutritional Sciences, 1400 Barbara Jordan Blvd, Austin, TX, 78723, USA
| | - Virginia Rauh
- Heilbrunn Department of Population and Family Health, Mailman School of Public Health, Columbia University, 60 Haven Avenue, B-2, Room 213, New York, NY, 10032, USA
| | - Frederica Perera
- Columbia Center for Children's Environmental Health, Mailman School of Public Health, Columbia University, 722 West 168th Street, 12th Floor, New York, NY, 10032, USA.,Department of Epidemiology, Mailman School of Public Health, Columbia University, 722 West 168 Street Room 1614, New York, NY, 10032, USA
| | - Andrew Rundle
- Columbia Center for Children's Environmental Health, Mailman School of Public Health, Columbia University, 722 West 168th Street, 12th Floor, New York, NY, 10032, USA.,Department of Epidemiology, Mailman School of Public Health, Columbia University, 722 West 168 Street Room 1614, New York, NY, 10032, USA
| |
Collapse
|
65
|
Sarina, Li DF, Feng ZQ, Du J, Zhao WH, Huang N, Jia JC, Wu ZY, Alamusi, Wang YY, Ji XL, Yu L. Mechanism of Placenta Damage in Gestational Diabetes Mellitus by Investigating TXNIP of Patient Samples and Gene Functional Research in Cell Line. Diabetes Ther 2019; 10:2265-2288. [PMID: 31654346 PMCID: PMC6848504 DOI: 10.1007/s13300-019-00713-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Indexed: 12/14/2022] Open
Abstract
INTRODUCTION Gestational diabetes mellitus (GDM) is a gestational complication that affects maternal and child health. The placenta provides the fetus with the necessary nutrition and oxygen and takes away the metabolic waste. Patients with GDM are diagnosed and treated merely on the basis of the blood glucose level; this approach does nothing to help evaluate the status of the placenta, which is worth noting in GDM. The purpose of this research was to clarify the relation between thioredoxin-interacting protein (TXNIP) and reactive oxygen species (ROS) in the placenta of patients with GDM, which has thus far remained unclear. METHODS The expression of TXNIP in the placentas of 10 patients with GDM and 10 healthy puerperae (control group) was investigated via immunofluorescence. The relation among TXNIP, ROS, and the function of mitochondria was explored in HTR-8/SVneo cells stimulated by high glucose (HG). RESULTS The results showed the expression of TXNIP in the placentas of patients with GDM was higher than that in the control group, and the expression of TXNIP in HTR-8/SVneo cells treated with HG was higher than that in the control group, causing the accumulation of ROS and changes of mitochondria, promoting apoptosis and inhibition of migration. CONCLUSIONS High expression of TXNIP caused by HG mediates the increasing ROS and the mitochondria dysfunction in GDM; this impairs the function of the placenta and is the basis for the prediction of perinatal outcome.
Collapse
Affiliation(s)
- Sarina
- Department of Clinical Medical Research Center, Inner Mongolia People's Hospital, Hohhot, 010010, China
| | - Dong Fang Li
- Department of Clinical Medical Research Center, Inner Mongolia People's Hospital, Hohhot, 010010, China
| | - Zong Qi Feng
- Department of Clinical Medical Research Center, Inner Mongolia People's Hospital, Hohhot, 010010, China
| | - Jie Du
- Department of Gynecology and Obstetrics, Inner Mongolia People's Hospital, Hohhot, 010010, China
| | - Wen Hua Zhao
- Department of Gynecology and Obstetrics, Inner Mongolia People's Hospital, Hohhot, 010010, China
| | - Na Huang
- Department of Clinical Medical Research Center, Inner Mongolia People's Hospital, Hohhot, 010010, China
| | - Jian Chao Jia
- Department of Clinical Medical Research Center, Inner Mongolia People's Hospital, Hohhot, 010010, China
| | - Zhou Ying Wu
- Department of Clinical Medical Research Center, Inner Mongolia People's Hospital, Hohhot, 010010, China
| | - Alamusi
- Department of Ophthalmology, Inner Mongolia International Mongolian Hospital, Hohhot, 010000, China
| | - Yong Yun Wang
- Department of Clinical Medical Research Center, Inner Mongolia People's Hospital, Hohhot, 010010, China
| | - Xiao Li Ji
- Department of Clinical Medical Research Center, Inner Mongolia People's Hospital, Hohhot, 010010, China
| | - Lan Yu
- Department of Clinical Medical Research Center, Inner Mongolia People's Hospital, Hohhot, 010010, China.
| |
Collapse
|
66
|
Yang S, Mei H, Mei H, Yang Y, Li N, Tan Y, Zhang Y, Zhang D, Zhang Y, Peng A, Zhang B. Risks of maternal prepregnancy overweight/obesity, excessive gestational weight gain, and bottle-feeding in infancy rapid weight gain: evidence from a cohort study in China. SCIENCE CHINA-LIFE SCIENCES 2019; 62:1580-1589. [PMID: 31745693 DOI: 10.1007/s11427-018-9831-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Accepted: 09/06/2019] [Indexed: 11/30/2022]
Abstract
Rapid weight gain (RWG) in infants is associated with numerous health problems, and its risk factors are still unclear. We assessed 98,097 maternal-infant pairs from a population-based cohort study and followed up with them until the infants were 6 months old. We assessed the associations between maternal prepregnancy weight status; gestational weight gain; feeding pattern; and infants' RWG at 0-1, 0-3, 1-3, and 3-6 months using multivariate unconditional logistic regression models, with controlled confounders. We found that maternal prepregnancy weight status, gestational weight gain, and feeding pattern at the 1st, 3rd, and 6th months had significant impacts on the infants' RWG at each time period (P<0.05). Infants with overweight/obese mothers had a higher risk of RWG after birth, whereas those of mothers who experienced excessive gestational weight gain had higher risks of RWG from birth than the other groups (P<0.01). Infants who were formula-fed had a higher risk of RWG than breastfed infants at the same time point (P<0.01). In conclusion, maternal prepregnancy obesity, excessive gestational weight gain, and formula-feeding were risk factors for infants' RWG during the first 6 months of life.
Collapse
Affiliation(s)
- Shaoping Yang
- Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science & Technology, Wuhan, 430014, China
| | - Hong Mei
- Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science & Technology, Wuhan, 430014, China
| | - Hui Mei
- Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science & Technology, Wuhan, 430014, China
| | - Yan Yang
- Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science & Technology, Wuhan, 430014, China
| | - Na Li
- Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science & Technology, Wuhan, 430014, China
| | - Yafei Tan
- Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science & Technology, Wuhan, 430014, China
| | - Yiming Zhang
- Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science & Technology, Wuhan, 430014, China
| | - Dan Zhang
- Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science & Technology, Wuhan, 430014, China
| | - Yan Zhang
- Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science & Technology, Wuhan, 430014, China
| | - An'na Peng
- Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science & Technology, Wuhan, 430014, China
| | - Bin Zhang
- Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science & Technology, Wuhan, 430014, China.
| |
Collapse
|
67
|
Chien CW, Lo YS, Wu HY, Hsuan Y, Lin CK, Chen YJ, Lin W, Han CL. Transcriptomic and Proteomic Profiling of Human Mesenchymal Stem Cell Derived from Umbilical Cord in the Study of Preterm Birth. Proteomics Clin Appl 2019; 14:e1900024. [PMID: 31520560 DOI: 10.1002/prca.201900024] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Revised: 08/10/2019] [Indexed: 12/26/2022]
Abstract
OBJECTIVE Mesenchymal stem cells (MSCs) hold great therapeutic potential in morbidities associated with preterm birth. However, the molecular expressions of MSCs in preterm birth infants are not systematically evaluated. In this study, the dual-omics analyses of umbilical-cord (UC)-derived MSCs to identify the dysregulated cellular functions are presented. MATERIALS AND METHODS The UC-MSCs are collected from ten full-term and eight preterm birth infants for microarray and iTRAQ-based proteome profiling. RESULTS The integrative analysis of dual-omics data discovered 5615 commonly identified genes/proteins of which 29 genes/proteins show consistent up- or downregulation in preterm birth. The Gene Ontology analysis reveals that dysregulation of mitochondrial translation and cellular response to oxidative stress are mainly enriched in 290 differential expression proteins (DEPs) while the 412 differential expression genes (DEGs) are majorly involved in single-organism biosynthetic process, cellular response to stress, and mitotic cell cycle in preterm birth. Besides, a 13-protein module involving CUL2 and CUL3 is identified, which plays an important role in cullin-RING-based ubiquitin ligase complex, as potential mechanism for preterm birth. CONCLUSION The dual-omics data not only provide new insights to the molecular mechanism but also identify panel of candidate markers associated with preterm birth.
Collapse
Affiliation(s)
- Chih-Wei Chien
- Research and Development Division, Meribank Biotech Co. Ltd., Taipei, 11493, Taiwan
| | - Yu-Shu Lo
- Research and Development Division, Meribank Biotech Co. Ltd., Taipei, 11493, Taiwan
| | - Hsin-Yi Wu
- Instrumentation Center, National Taiwan University, Taipei, 10617, Taiwan
| | - Yogi Hsuan
- Meridigen Biotech Co. Ltd., Taipei, 11493, Taiwan
| | - Chi-Kang Lin
- Department of Obstetrics and Gynecology, Tri-Service General Hospital, National Defense Medical Center, Taipei, 11490, Taiwan
| | - Yu-Ju Chen
- Institute of Chemistry, Academia Sinica, Taipei, 11529, Taiwan
| | - Willie Lin
- Meridigen Biotech Co. Ltd., Taipei, 11493, Taiwan
| | - Chia-Li Han
- Master Program in Clinical Pharmacogenomics and Pharmacoproteomics, College of Pharmacy, Taipei Medical University, Taipei, 11031, Taiwan
| |
Collapse
|
68
|
Maternal Diet-Induced Obesity Compromises Oxidative Stress Status and Angiogenesis in the Porcine Placenta by Upregulating Nox2 Expression. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:2481592. [PMID: 31662816 PMCID: PMC6791269 DOI: 10.1155/2019/2481592] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 06/23/2019] [Accepted: 07/18/2019] [Indexed: 12/15/2022]
Abstract
Maternal obesity is associated with placental oxidative stress. However, the mechanism underlying this association remains poorly understood. In the present study, a gilt obesity model was developed by exposure to different energy diets and used to investigate the role of NADPH oxidase 2 (Nox2) in the placenta. Specifically, 99 gilts (Guangdong Small-ear Spotted pig) at day 60 of gestation were randomly assigned to one of the following three treatments: low-energy group (L, DE = 11.50 MJ/kg), medium-energy group (M, DE = 12.41 MJ/kg), and high-energy group (H, DE = 13.42 MJ/kg), with 11 replicate pens per treatment and 3 gilts per pen. At the start of the study, maternal body weight and backfat thickness were not significantly different in the three treatments. After the study, data indicated that the H group had higher body weight and backfat thickness gain for gilts during gestation and lower piglet birth weight compared with the other two groups. Additionally, the H group showed glucolipid metabolic disorders and increased triglyceride and nonesterified fatty acid contents in the placenta of gilts. Compared with the L group, the H group exhibited lower mitochondrial biogenesis and increased oxidative damage in the placenta. Importantly, increased mRNA expression and protein abundance of Nox2 were observed for the first time in H group placentae. Furthermore, compared with the L group, the H group showed a decrease in the density of placental vessels and the protein levels of vascular endothelial cadherin (VE-cadherin), vascular endothelial growth factor A (VEGF-A), and phosphorylation of vascular endothelial growth factor receptor 2 (p-VEGFR2) as well as the immunostaining intensity of platelet endothelial cell adhesion molecule-1 (CD31). Our findings suggest that maternal high-energy diet-induced obesity increases placental oxidative stress and decreases placental angiogenesis possibly through the upregulation of Nox2.
Collapse
|
69
|
Fisher JJ, Bartho LA, Perkins AV, Holland OJ. Placental mitochondria and reactive oxygen species in the physiology and pathophysiology of pregnancy. Clin Exp Pharmacol Physiol 2019; 47:176-184. [PMID: 31469913 DOI: 10.1111/1440-1681.13172] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Revised: 08/22/2019] [Accepted: 08/27/2019] [Indexed: 12/13/2022]
Abstract
Mitochondria are central to cell function. The placenta forms the interface between maternal and fetal systems, and placental mitochondria have critical roles in maintaining pregnancy. The placenta is unusual in having two adjacent cell layers (cytotrophoblasts and the syncytiotrophoblast) with vastly different mitochondria that have distinct functions in health and disease. Mitochondria both produce the majority of reactive oxygen species (ROS), and are sensitive to ROS. ROS are important in allowing cells to sense their environment through mitochondrial-centred signalling, and this signalling also helps cells/tissues adapt to changing environments. However, excessive ROS are damaging, and increased ROS levels are associated with pregnancy complications, including the important disorders preeclampsia and gestational diabetes mellitus. Here we review the function of placental mitochondria in healthy pregnancy, and also in pregnancy complications. Placental mitochondria are critical to cell function, and mitochondrial damage is a feature of pregnancy complications. However, the responsiveness of mitochondria to ROS signalling may be central to placental adaptations that mitigate damage, and placental mitochondria are an attractive target for the development of therapeutics to improve pregnancy outcomes.
Collapse
Affiliation(s)
- Joshua J Fisher
- School of Medical Science, Griffith University, Gold Coast Campus, Southport, Queensland, Australia
| | - Lucy A Bartho
- School of Medical Science, Griffith University, Gold Coast Campus, Southport, Queensland, Australia
| | - Anthony V Perkins
- School of Medical Science, Griffith University, Gold Coast Campus, Southport, Queensland, Australia
| | - Olivia J Holland
- School of Medical Science, Griffith University, Gold Coast Campus, Southport, Queensland, Australia
| |
Collapse
|
70
|
Abstract
PURPOSE OF REVIEW A growing body of epidemiological and experimental data indicate that nutritional or environmental stressors during early development can induce long-term adaptations that increase risk of obesity, diabetes, cardiovascular disease, and other chronic conditions-a phenomenon termed "developmental programming." A common phenotype in humans and animal models is altered body composition, with reduced muscle and bone mass, and increased fat mass. In this review, we summarize the recent literature linking prenatal factors to future body composition and explore contributing mechanisms. RECENT FINDINGS Many prenatal exposures, including intrauterine growth restriction, extremes of birth weight, maternal obesity, and maternal diabetes, are associated with increased fat mass, reduced muscle mass, and decreased bone density, with effects reported throughout infancy and childhood, and persisting into middle age. Mechanisms and mediators include maternal diet, breastmilk composition, metabolites, appetite regulation, genetic and epigenetic influences, stem cell commitment and function, and mitochondrial metabolism. Differences in body composition are a common phenotype following disruptions to the prenatal environment, and may contribute to developmental programming of obesity and diabetes risk.
Collapse
Affiliation(s)
- Elvira Isganaitis
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA.
- Research Division, Joslin Diabetes Center, 1 Joslin Place, Room 655A, Boston, 02215, MA, USA.
| |
Collapse
|
71
|
Prepregnancy Obesity, Maternal Dietary Intake, and Oxidative Stress Biomarkers in the Fetomaternal Unit. BIOMED RESEARCH INTERNATIONAL 2019; 2019:5070453. [PMID: 31312657 PMCID: PMC6595351 DOI: 10.1155/2019/5070453] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Accepted: 05/20/2019] [Indexed: 01/06/2023]
Abstract
Background Obesity and pregnancy increase levels of maternal oxidative stress (OS). However, little is known about the maternal, placental, and neonatal OS status. Objective To analyze the relation between prepregnancy obesity and the expression of OS markers and antioxidant capacity in the fetomaternal unit and their association with dietary intake. Methods This cross-sectional study included 33 women with singleton, noncomplicated pregnancies. Two groups were formed: women with prepregnancy body mass index (pBMI) within normal range (18.5-24.9 kg/m2, n = 18) and women with pBMI ≥ 30 kg/m2, suggestive of obesity (n = 15). Dietary and clinical information was obtained by questionnaire and from clinical records. Total antioxidant capacity (TAC) and malondialdehyde (MDA) concentration were measured on maternal and cord serum by colorimetric techniques, and placental expression of glutathione peroxidase 4 (GPx4) was measured by immunohistochemistry. Results Placental GPx4 expression was lower in the group with pBMI suggestive of obesity than in the normal weight group (ß = -0.08, p = 0.03, adjusted for gestational age and magnesium intake). Concentrations of TAC and MDA in maternal and cord blood were not statistically different between groups (p>0.05). Cord MDA concentration was related to maternal MDA concentration (ß = 0.40, p < 0.01), vitamin A intake (tertile 2: ß = -0.04, p = 0.40, tertile 3: ß = 0.13, p = 0.03, vs tertile 1), and placental GPx4 expression (ß = -0.09, p = 0.02). Conclusion Prepregnancy obesity is associated with a decrease in GPx4 expression in the placenta, which is related to OS in the newborn. The influence of micronutrient intake on OS biomarkers highlights the importance of nutritional assessment during pregnancy and adequate prenatal care.
Collapse
|
72
|
Wang Y, Bucher M, Myatt L. Use of Glucose, Glutamine and Fatty Acids for Trophoblast Respiration in Lean, Obese and Gestational Diabetic Women. J Clin Endocrinol Metab 2019; 104:4178-4187. [PMID: 31116396 PMCID: PMC6688456 DOI: 10.1210/jc.2019-00166] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Accepted: 05/16/2019] [Indexed: 12/27/2022]
Abstract
PURPOSE Maternal obesity and gestational diabetes (GDM) are associated with adverse outcomes particularly with a male fetus. The composition and amount of substrate supplied to the placenta is altered in these conditions. We hypothesized that there are sexually dimorphic differences in utilization of glucose, fatty acids and glutamine between trophoblast of lean, obese and GDM women. METHODS Trophoblast were isolated from term male or female placentas from lean, obese or GDM women (n = 4-6/group) and syncytiotrophoblast formed over 72 hr before measuring mitochondrial respiration by fuel flex assay (Seahorse XF96 analyzer). Dependency, capacity and flexibility for use of glucose, glutamine and fatty acids was measured with western blot of glucose transporter GLUT1, glutaminase and carnitine palmitoyl-transferase 1A, (CPT1A). RESULTS Sexual dimorphism in syncytiotrophoblast fuel utilization was seen in GDM vs lean with a significant increase in glucose dependency in male and glucose capacity in female, whereas for glutamine capacity significantly decreased in male and female but dependency only in female. Fatty acid dependency and capacity significantly increased in male and capacity in female trophoblast of GDM vs either lean or obese. In male but not female trophoblast flexibility to use all three fuels significantly decreased from lean to obese and GDM. In male trophoblast there were significant associations between GLUT1 and glucose dependency (positive) and flexibility (negative). MAIN CONCLUSIONS Human syncytiotrophoblast utilizes glutamine for mitochondrial respiration. Utilization of glucose, fatty acids and glutamine changes in a sexually dimorphic manner with obesity and GDM predominantly with a male placenta.
Collapse
Affiliation(s)
- Yu Wang
- Department of Obstetrics & Gynecology, Oregon Health & Science University, Portland, OR, USA
| | - Matthew Bucher
- Department of Obstetrics & Gynecology, Oregon Health & Science University, Portland, OR, USA
| | - Leslie Myatt
- Department of Obstetrics & Gynecology, Oregon Health & Science University, Portland, OR, USA
| |
Collapse
|
73
|
Jayabalan N, Lai A, Ormazabal V, Adam S, Guanzon D, Palma C, Scholz-Romero K, Lim R, Jansson T, McIntyre HD, Lappas M, Salomon C. Adipose Tissue Exosomal Proteomic Profile Reveals a Role on Placenta Glucose Metabolism in Gestational Diabetes Mellitus. J Clin Endocrinol Metab 2019; 104:1735-1752. [PMID: 30517676 DOI: 10.1210/jc.2018-01599] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Accepted: 11/28/2018] [Indexed: 01/03/2023]
Abstract
CONTEXT Molecules produced by adipose tissue (AT) function as an endocrine link between maternal AT and fetal growth by regulating placental function in normal women and women with gestational diabetes mellitus (GDM). OBJECTIVE We hypothesized that AT-derived exosomes (exo-AT) from women with GDM would carry a specific set of proteins that influences glucose metabolism in the placenta. DESIGN Exosomes were isolated from omental AT-conditioned media from normal glucose tolerant (NGT) pregnant women (n = 65) and pregnant women with GDM (n = 82). Sequential window acquisition of all theoretical fragment ion spectra mass spectrometry was used to construct a small ion library from AT and exosomal proteins, followed by ingenuity pathway analysis to determine the canonical pathways and biofunctions. The effect of exosomes on human placental cells was determined using a Human Glucose Metabolism RT2 Profiler PCR array. RESULTS The number of exosomes (vesicles/μg of tissue/24 hours) was substantially (1.7-fold) greater in GDM than in NGT, and the number of exosomes correlated positively with the birthweight Z score. Ingenuity pathway analysis of the exosomal proteins revealed differential expression of the proteins targeting the sirtuin signaling pathway, oxidative phosphorylation, and mechanistic target of rapamycin signaling pathway in GDM compared with NGT. GDM exo-AT increased the expression of genes associated with glycolysis and gluconeogenesis in placental cells compared with the effect of NGT exo-AT. CONCLUSIONS Our findings are consistent with the possibility that AT exosomes play an important role in mediating the changes in placental function in GDM and might be responsible for some of the adverse consequences in this pregnancy complication, such as fetal overgrowth.
Collapse
Affiliation(s)
- Nanthini Jayabalan
- Exosome Biology Laboratory, Centre for Clinical Diagnostics, University of Queensland Centre for Clinical Research, Royal Brisbane and Women's Hospital, University of Queensland, Brisbane, Queensland, Australia
| | - Andrew Lai
- Exosome Biology Laboratory, Centre for Clinical Diagnostics, University of Queensland Centre for Clinical Research, Royal Brisbane and Women's Hospital, University of Queensland, Brisbane, Queensland, Australia
| | - Valeska Ormazabal
- Faculty of Biological Sciences, University of Concepción, Concepción, Chile
| | - Stefanie Adam
- Exosome Biology Laboratory, Centre for Clinical Diagnostics, University of Queensland Centre for Clinical Research, Royal Brisbane and Women's Hospital, University of Queensland, Brisbane, Queensland, Australia
| | - Dominic Guanzon
- Exosome Biology Laboratory, Centre for Clinical Diagnostics, University of Queensland Centre for Clinical Research, Royal Brisbane and Women's Hospital, University of Queensland, Brisbane, Queensland, Australia
| | - Carlos Palma
- Exosome Biology Laboratory, Centre for Clinical Diagnostics, University of Queensland Centre for Clinical Research, Royal Brisbane and Women's Hospital, University of Queensland, Brisbane, Queensland, Australia
| | - Katherin Scholz-Romero
- Exosome Biology Laboratory, Centre for Clinical Diagnostics, University of Queensland Centre for Clinical Research, Royal Brisbane and Women's Hospital, University of Queensland, Brisbane, Queensland, Australia
- Department of Clinical Biochemistry and Immunology, Faculty of Pharmacy, University of Concepción, Concepción, Chile
| | - Ratana Lim
- Obstetrics, Nutrition and Endocrinology Group, Department of Obstetrics and Gynaecology, University of Melbourne, Victoria, Australia
- Mercy Perinatal Research Centre, Mercy Hospital for Women, Victoria, Australia
| | - Thomas Jansson
- Department of Obstetrics and Gynecology, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Harold David McIntyre
- Mater Research, Faculty of Medicine, The University of Queensland, Brisbane, Queensland, Australia
| | - Martha Lappas
- Obstetrics, Nutrition and Endocrinology Group, Department of Obstetrics and Gynaecology, University of Melbourne, Victoria, Australia
- Mercy Perinatal Research Centre, Mercy Hospital for Women, Victoria, Australia
| | - Carlos Salomon
- Exosome Biology Laboratory, Centre for Clinical Diagnostics, University of Queensland Centre for Clinical Research, Royal Brisbane and Women's Hospital, University of Queensland, Brisbane, Queensland, Australia
- Department of Clinical Biochemistry and Immunology, Faculty of Pharmacy, University of Concepción, Concepción, Chile
| |
Collapse
|
74
|
Hoch D, Gauster M, Hauguel-de Mouzon S, Desoye G. Diabesity-associated oxidative and inflammatory stress signalling in the early human placenta. Mol Aspects Med 2019; 66:21-30. [DOI: 10.1016/j.mam.2018.11.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2018] [Revised: 11/08/2018] [Accepted: 11/30/2018] [Indexed: 12/17/2022]
|
75
|
Excessive backfat of sows at mating promotes oxidative stress and up-regulates mitochondrial-mediated apoptotic pathway in the full-term placenta. Livest Sci 2019. [DOI: 10.1016/j.livsci.2019.02.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
76
|
Rosario FJ, Gupta MB, Myatt L, Powell TL, Glenn JP, Cox L, Jansson T. Mechanistic Target of Rapamycin Complex 1 Promotes the Expression of Genes Encoding Electron Transport Chain Proteins and Stimulates Oxidative Phosphorylation in Primary Human Trophoblast Cells by Regulating Mitochondrial Biogenesis. Sci Rep 2019; 9:246. [PMID: 30670706 PMCID: PMC6343003 DOI: 10.1038/s41598-018-36265-8] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Accepted: 11/13/2018] [Indexed: 01/06/2023] Open
Abstract
Trophoblast oxidative phosphorylation provides energy for active transport and protein synthesis, which are critical placental functions influencing fetal growth and long-term health. The molecular mechanisms regulating trophoblast mitochondrial oxidative phosphorylation are largely unknown. We hypothesized that mechanistic Target of Rapamycin Complex 1 (mTORC1) is a positive regulator of key genes encoding Electron Transport Chain (ETC) proteins and stimulates oxidative phosphorylation in trophoblast and that ETC protein expression is down-regulated in placentas of infants with intrauterine growth restriction (IUGR). We silenced raptor (mTORC1 inhibition), rictor (mTORC2 inhibition) or DEPTOR (mTORC1/2 activation) in cultured term primary human trophoblast (PHT) cells. mTORC1 inhibition caused a coordinated down-regulation of 18 genes encoding ETC proteins representing all ETC complexes. Inhibition of mTORC1, but not mTORC2, decreased protein expression of ETC complexes I–IV, mitochondrial basal, ATP coupled and maximal respiration, reserve capacity and proton leak, whereas activation of mTORC1 had the opposite effects. Moreover, placental protein expression of ETC complexes was decreased and positively correlated to mTOR signaling activity in IUGR. By controlling trophoblast ATP production, mTORC1 links nutrient and O2 availability and growth factor signaling to placental function and fetal growth. Reduced placental mTOR activity may impair mitochondrial respiration and contribute to placental insufficiency in IUGR pregnancies.
Collapse
Affiliation(s)
- Fredrick J Rosario
- Division of Reproductive Sciences, Department of Obstetrics and Gynecology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA.
| | - Madhulika B Gupta
- Children's Health Research Institute and Department of Pediatrics and Biochemistry, University of Western Ontario, London, Ontario, N6A 5C1, Canada
| | - Leslie Myatt
- Department of Obstetrics and Gynecology, Oregon Health and Science University, Portland, USA
| | - Theresa L Powell
- Division of Reproductive Sciences, Department of Obstetrics and Gynecology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA.,Section of Neonatology, Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Jeremy P Glenn
- Department of Genetics, Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, TX, USA
| | - Laura Cox
- Department of Genetics, Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, TX, USA.,Department of Internal Medicine, Section of Molecular Medicine and Center for Precision Medicine, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Thomas Jansson
- Division of Reproductive Sciences, Department of Obstetrics and Gynecology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| |
Collapse
|
77
|
Fornes R, Manti M, Qi X, Vorontsov E, Sihlbom C, Nyström J, Jerlhag E, Maliqueo M, Hirschberg AL, Carlström M, Benrick A, Stener-Victorin E. Mice exposed to maternal androgen excess and diet-induced obesity have altered phosphorylation of catechol-O-methyltransferase in the placenta and fetal liver. Int J Obes (Lond) 2019; 43:2176-2188. [PMID: 30670847 DOI: 10.1038/s41366-018-0314-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2018] [Revised: 11/19/2018] [Accepted: 12/19/2018] [Indexed: 01/01/2023]
Abstract
BACKGROUND/OBJECTIVES Maternal obesity together with androgen excess in mice negatively affects placental function and maternal and fetal liver function as demonstrated by increased triglyceride content with dysfunctional expression of enzymes and transcription factors involved in de novo lipogenesis and fat storage. To identify changes in molecular pathways that might promote diseases in adulthood, we performed a global proteomic analysis using a liquid-chromatography/mass-spectrometry system to investigate total and phosphorylated proteins in the placenta and fetal liver in a mouse model that combines maternal obesity with maternal androgen excess. METHODS After ten weeks on a control diet (CD) or high fat/high sugar-diet, dams were mated with males fed the CD. Between gestational day (GD) 16.5 and GD 18.5, mice were injected with vehicle or dihydrotestosterone (DHT) and sacrificed at GD 18.5 prior to dissection of the placentas and fetal livers. Four pools of female placentas and fetal livers were subjected to a global proteomic analysis. Total and phosphorylated proteins were filtered by ANOVA q < 0.05, and this was followed by two-way ANOVA to determine the effect of maternal obesity and/or androgen exposure. RESULTS In placenta, phosphorylated ATP-citrate synthase was decreased due to maternal obesity, and phosphorylated catechol-O-methyltransferase (COMT) was differentially expressed due to the interaction between maternal diet and DHT exposure. In fetal liver, five total proteins and 48 proteins phosphorylated in one or more sites, were differentially expressed due to maternal obesity or androgen excess. In fetal liver, phosphorylated COMT expression was higher in fetus exposed to maternal obesity. CONCLUSION These results suggest a common regulatory mechanism of catecholamine metabolism in the placenta and the fetal liver as demonstrated by higher phosphorylated COMT expression in the placenta and fetal liver from animals exposed to diet-induced maternal obesity and lower expression of phosphorylated COMT in animals exposed to maternal androgen excess.
Collapse
Affiliation(s)
- Romina Fornes
- Department of Physiology and Pharmacology, Karolinska Institutet, Solna, Sweden
| | - Maria Manti
- Department of Physiology and Pharmacology, Karolinska Institutet, Solna, Sweden
| | - Xiaojuan Qi
- Department of Physiology, Qiqihar Medical University, Qiqihar, China
| | - Egor Vorontsov
- Proteomics Core Facility, University of Gothenburg, Gothenburg, Sweden
| | - Carina Sihlbom
- Proteomics Core Facility, University of Gothenburg, Gothenburg, Sweden
| | - Jenny Nyström
- Department of Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Elisabet Jerlhag
- Department of Pharmacology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Manuel Maliqueo
- Endocrinology and Metabolism, Faculty of Medicine, West division, University of Chile, Santiago, Chile
| | | | - Mattias Carlström
- Department of Physiology and Pharmacology, Karolinska Institutet, Solna, Sweden
| | - Anna Benrick
- Department of Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.,School of Health and Education, University of Skövde, Skövde, Sweden
| | | |
Collapse
|
78
|
Khamoui AV, Desai M, Ross MG, Rossiter HB. Sex-specific effects of maternal and postweaning high-fat diet on skeletal muscle mitochondrial respiration. J Dev Orig Health Dis 2018; 9:670-677. [PMID: 30111387 PMCID: PMC6363897 DOI: 10.1017/s2040174418000594] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Exposure to maternal over-nutrition in utero is linked with developmental programming of obesity, metabolic syndrome and cardiovascular disease in offspring, which may be exacerbated by postnatal high-fat (HF) diet. Skeletal muscle mitochondrial function contributes to substrate metabolism and is impaired in metabolic disease. We examined muscle mitochondrial respiration in male and female mice exposed to maternal HF diet in utero, followed by postweaning HF diet until middle age. After in utero exposure to maternal control (Con) or HF diet (45% kcal fat; 39.4% lard, 5.5% soybean oil), offspring were weaned to Con or HF, creating four groups: Con/Con (male/female (m/f), n=8/8), Con/HF (m/f, n=7/4), HF/Con (m/f, n=9/6) and HF/HF (m/f, n=4/4). Oxidative phosphorylation (OXPHOS) and electron transfer system (ETS) capacity were measured in permeabilized gastrocnemius bundles. Maternal HF diet increased fasting glucose and lean body mass in males and body fat percentage in both sexes (P⩽0.05). Maximal adenosine diphosphate-stimulated respiration (complex I OXPHOS) was decreased by maternal HF diet in female offspring (-21%, P=0.053), but not in male (-0%, P>0.05). Sexually divergent responses were exacerbated in offspring weaned to HF diet. In females, OXPHOS capacity was lower (-28%, P=0.041) when weaned to high-fat (HF/HF) v. control diet (HF/Con). In males, OXPHOS (+33%, P=0.009) and ETS (+42%, P=0.016) capacity increased. Our data suggest that maternal lard-based HF diet, rich in saturated fat, affects offspring skeletal muscle respiration in a sex-dependent manner, and these differences are exacerbated by HF diet in adulthood.
Collapse
Affiliation(s)
- Andy V. Khamoui
- Rehabilitation Clinical Trials Center, Division of Respiratory and Critical Care Physiology and Medicine, Department of Medicine, Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center, Torrance, California 90502, USA
- Department of Exercise Science and Health Promotion, Florida Atlantic University, Boca Raton, Florida 33431, USA
| | - Mina Desai
- Perinatal Research Laboratories, Department of Obstetrics and Gynecology, Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center, Torrance, California 90502, USA
| | - Michael G. Ross
- Perinatal Research Laboratories, Department of Obstetrics and Gynecology, Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center, Torrance, California 90502, USA
| | - Harry B. Rossiter
- Rehabilitation Clinical Trials Center, Division of Respiratory and Critical Care Physiology and Medicine, Department of Medicine, Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center, Torrance, California 90502, USA
- Faculty of Biological Sciences, University of Leeds, Leeds, LS1 9JT, United Kingdom
| |
Collapse
|
79
|
Thomas MM, Haghiac M, Grozav C, Minium J, Calabuig-Navarro V, O'Tierney-Ginn P. Oxidative Stress Impairs Fatty Acid Oxidation and Mitochondrial Function in the Term Placenta. Reprod Sci 2018; 26:972-978. [PMID: 30304995 DOI: 10.1177/1933719118802054] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Placental fatty acid oxidation (FAO) is impaired and lipid storage is increased in pregnancy states associated with chronic oxidative stress. The effect of acute oxidative stress, as seen in pregnancies complicated with asthma, on placental lipid metabolism is unknown. We hypothesized that induction of acute oxidative stress would decrease FAO and increase esterification. We assessed [3H]-palmitate oxidation and esterification in term placental explants from lean women after exposure to hydrogen peroxide (H2O2) for 4 hours. Fatty acid oxidation decreased 16% and 24% in placental explants exposed to 200 (P = .02) and 400 µM H2O2 (P = .01), respectively. Esterification was not altered with H2O2 exposure. Neither messenger RNA nor protein expression of key genes involved in FAO (eg, peroxisome proliferator-activated receptor α, carnitine palmitoyl transferase 1b) were altered. Adenosine triphosphate (ATP) levels decreased with induction of oxidative stress, without increasing cytotoxicity. Acute oxidative stress decreased FAO and ATP production in the term placenta without altering fatty acid esterification. As decreases in placental FAO and ATP production are associated with impaired fetal growth, pregnancies exposed to acute oxidative stress may be at risk for fetal growth restriction.
Collapse
Affiliation(s)
- Megan M Thomas
- 1 Department of Obstetrics and Gynecology, MetroHealth Medical Center, Cleveland, OH, USA
| | - Maricela Haghiac
- 2 Center for Reproductive Health, MetroHealth Medical Center, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Catalin Grozav
- 2 Center for Reproductive Health, MetroHealth Medical Center, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Judi Minium
- 2 Center for Reproductive Health, MetroHealth Medical Center, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Virtu Calabuig-Navarro
- 2 Center for Reproductive Health, MetroHealth Medical Center, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Perrie O'Tierney-Ginn
- 1 Department of Obstetrics and Gynecology, MetroHealth Medical Center, Cleveland, OH, USA.,2 Center for Reproductive Health, MetroHealth Medical Center, Case Western Reserve University School of Medicine, Cleveland, OH, USA.,Mother Infant Research Institute, Tufts Medical Center, Boston, MA, USA
| |
Collapse
|
80
|
Impact of Obesity and Hyperglycemia on Placental Mitochondria. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:2378189. [PMID: 30186542 PMCID: PMC6112210 DOI: 10.1155/2018/2378189] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Revised: 06/13/2018] [Accepted: 07/12/2018] [Indexed: 01/08/2023]
Abstract
A lipotoxic placental environment is recognized in maternal obesity, with increased inflammation and oxidative stress. These changes might alter mitochondrial function, with excessive production of reactive oxygen species, in a vicious cycle leading to placental dysfunction and impaired pregnancy outcomes. Here, we hypothesize that maternal pregestational body mass index (BMI) and glycemic levels can alter placental mitochondria. We measured mitochondrial DNA (mtDNA, real-time PCR) and morphology (electron microscopy) in placentas of forty-seven singleton pregnancies at elective cesarean section. Thirty-seven women were normoglycemic: twenty-one normal-weight women, NW, and sixteen obese women, OB/GDM(−). Ten obese women had gestational diabetes mellitus, OB/GDM(+). OB/GDM(−) presented higher mtDNA levels versus NW, suggesting increased mitochondrial biogenesis in the normoglycemic obese group. These mitochondria showed similar morphology to NW. On the contrary, in OB/GDM(+), mtDNA was not significantly increased versus NW. Nevertheless, mitochondria showed morphological abnormalities, indicating impaired functionality. The metabolic response of the placenta to impairment in obese pregnancies can possibly vary depending on several parameters, resulting in opposite strains acting when insulin resistance of GDM occurs in the obese environment, characterized by inflammation and oxidative stress. Therefore, mitochondrial alterations represent a feature of obese pregnancies with changes in placental energetics that possibly can affect pregnancy outcomes.
Collapse
|
81
|
Šimják P, Cinkajzlová A, Anderlová K, Pařízek A, Mráz M, Kršek M, Haluzík M. The role of obesity and adipose tissue dysfunction in gestational diabetes mellitus. J Endocrinol 2018; 238:R63-R77. [PMID: 29743342 DOI: 10.1530/joe-18-0032] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Accepted: 05/08/2018] [Indexed: 12/15/2022]
Abstract
Gestational diabetes mellitus is defined as diabetes diagnosed in the second or third trimester of pregnancy in patients with no history of diabetes prior to gestation. It is the most common complication of pregnancy. The underlying pathophysiology shares some common features with type 2 diabetes mellitus (T2DM) combining relatively insufficient insulin secretion with increased peripheral insulin resistance. While a certain degree of insulin resistance is the physiological characteristics of the second half of pregnancy, it is significantly more pronounced in patients with gestational diabetes. Adipose tissue dysfunction and subclinical inflammation in obesity are well-described causes of increased insulin resistance in non-pregnant subjects and are often observed in individuals with T2DM. Emerging evidence of altered adipokine expression and local inflammation in adipose tissue in patients with gestational diabetes suggests an important involvement of adipose tissue in its etiopathogenesis. This review aims to summarize current knowledge of adipose tissue dysfunction and its role in the development of gestational diabetes. We specifically focus on the significance of alterations of adipokines and immunocompetent cells number and phenotype in fat. Detailed understanding of the role of adipose tissue in gestational diabetes may provide new insights into its pathophysiology and open new possibilities of its prevention and treatment.
Collapse
Affiliation(s)
- Patrik Šimják
- Department of Gynaecology and Obstetrics, First Faculty of Medicine, Charles University and General University Hospital, Prague, Czech Republic
| | - Anna Cinkajzlová
- Institute of Medical Biochemistry and Laboratory Diagnostics, First Faculty of Medicine, Charles University and General University Hospital, Prague, Czech Republic
- Centre for Experimental Medicine, Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| | - Kateřina Anderlová
- Department of Gynaecology and Obstetrics, First Faculty of Medicine, Charles University and General University Hospital, Prague, Czech Republic
- 3rd Department of Medicine, First Faculty of Medicine, Charles University and General University Hospital, Prague, Czech Republic
| | - Antonín Pařízek
- Department of Gynaecology and Obstetrics, First Faculty of Medicine, Charles University and General University Hospital, Prague, Czech Republic
| | - Miloš Mráz
- Institute of Medical Biochemistry and Laboratory Diagnostics, First Faculty of Medicine, Charles University and General University Hospital, Prague, Czech Republic
- Diabetes Centre, Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| | - Michal Kršek
- 3rd Department of Medicine, First Faculty of Medicine, Charles University and General University Hospital, Prague, Czech Republic
- 2nd Internal Department, 3rd Faculty of Medicine, Charles University and University Hospital Královské Vinohrady, Prague, Czech Republic
| | - Martin Haluzík
- Institute of Medical Biochemistry and Laboratory Diagnostics, First Faculty of Medicine, Charles University and General University Hospital, Prague, Czech Republic
- Centre for Experimental Medicine, Institute for Clinical and Experimental Medicine, Prague, Czech Republic
- Diabetes Centre, Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| |
Collapse
|
82
|
Valgeirsdottir H, Vanky E, Sundström-Poromaa I, Roos N, Løvvik TS, Stephansson O, Wikström AK. Prenatal exposures and birth indices, and subsequent risk of polycystic ovary syndrome: a national registry-based cohort study. BJOG 2018; 126:244-251. [PMID: 29896923 DOI: 10.1111/1471-0528.15236] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/22/2018] [Indexed: 12/26/2022]
Abstract
OBJECTIVE To study the associations between prenatal exposures and risk of developing polycystic ovary syndrome (PCOS). DESIGN National registry-based cohort study. SETTING Sweden. POPULATION Girls born in Sweden during the years 1982-1995 (n = 681 123). METHODS The girls were followed until the year 2010 for a diagnosis of PCOS. We estimated the associations between maternal body mass index (BMI), smoking, and size at birth with the risk of developing a PCOS diagnosis. Risks were calculated by adjusted hazard ratio (aHR) and 95% confidence intervals (95% CIs). MAIN OUTCOME MEASURES A diagnosis of PCOS at 15 years of age or later. RESULTS During the follow-up period 3738 girls were diagnosed with PCOS (0.54%). Girls with mothers who were overweight or obese had 1.5-2.0 times higher risk of PCOS (aHR 1.52, 95% CI 1.36-1.70; aHR 1.97, 95% CI 1.61-2.41, respectively), compared with girls born to mothers of normal weight. The risk of PCOS was increased if the mother smoked during pregnancy (1-9 cigarettes/day, aHR 1.31, 95% CI 1.18-1.47; ≥10 cigarettes/day, aHR 1.44, 95% CI 1.27-1.64). Being born small for gestational age (SGA) was associated with a later diagnosis of PCOS in crude estimates, but the association was not significant after adjusting for maternal factors. CONCLUSIONS Maternal smoking and increased BMI appear to increase the risk of PCOS in offspring. The association between SGA and the development of PCOS appears to be mediated by maternal factors. TWEETABLE ABSTRACT Smoking during pregnancy and high maternal BMI are associated with PCOS diagnosis in the offspring.
Collapse
Affiliation(s)
- H Valgeirsdottir
- Department of Women's and Children's Health, Uppsala University, Uppsala, Sweden
| | - E Vanky
- Department of Obstetrics and Gynaecology, St Olav's Hospital, Trondheim University Hospital, Trondheim, Norway.,Department of Laboratory Medicine, Children's and Women's Health, Norwegian University of Science and Technology, Trondheim, Norway
| | - I Sundström-Poromaa
- Department of Women's and Children's Health, Uppsala University, Uppsala, Sweden
| | - N Roos
- Department of Medicine, Solna, Clinical Epidemiology Unit, Karolinska Institute, Stockholm, Sweden
| | - T S Løvvik
- Department of Obstetrics and Gynaecology, St Olav's Hospital, Trondheim University Hospital, Trondheim, Norway
| | - O Stephansson
- Department of Medicine, Solna, Clinical Epidemiology Unit, Karolinska Institute, Stockholm, Sweden.,Department of Women's and Children's Health, Karolinska Institute, Stockholm, Sweden
| | - A-K Wikström
- Department of Women's and Children's Health, Uppsala University, Uppsala, Sweden.,Department of Medicine, Solna, Clinical Epidemiology Unit, Karolinska Institute, Stockholm, Sweden
| |
Collapse
|
83
|
Glastras SJ, Chen H, Pollock CA, Saad S. Maternal obesity increases the risk of metabolic disease and impacts renal health in offspring. Biosci Rep 2018; 38:BSR20180050. [PMID: 29483369 PMCID: PMC5874265 DOI: 10.1042/bsr20180050] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Revised: 02/17/2018] [Accepted: 02/26/2018] [Indexed: 12/16/2022] Open
Abstract
Obesity, together with insulin resistance, promotes multiple metabolic abnormalities and is strongly associated with an increased risk of chronic disease including type 2 diabetes (T2D), hypertension, cardiovascular disease, non-alcoholic fatty liver disease (NAFLD) and chronic kidney disease (CKD). The incidence of obesity continues to rise in astronomical proportions throughout the world and affects all the different stages of the lifespan. Importantly, the proportion of women of reproductive age who are overweight or obese is increasing at an alarming rate and has potential ramifications for offspring health and disease risk. Evidence suggests a strong link between the intrauterine environment and disease programming. The current review will describe the importance of the intrauterine environment in the development of metabolic disease, including kidney disease. It will detail the known mechanisms of fetal programming, including the role of epigenetic modulation. The evidence for the role of maternal obesity in the developmental programming of CKD is derived mostly from our rodent models which will be described. The clinical implication of such findings will also be discussed.
Collapse
Affiliation(s)
- Sarah J Glastras
- Department of Medicine, Kolling Institute, University of Sydney, Sydney, Australia
- Department of Diabetes, Endocrinology and Metabolism, Royal North Shore Hospital, St Leonards, NSW 2065, Australia
| | - Hui Chen
- School of Life Sciences, Faculty of Science, University of Technology Sydney, Australia
| | - Carol A Pollock
- Department of Medicine, Kolling Institute, University of Sydney, Sydney, Australia
| | - Sonia Saad
- Department of Medicine, Kolling Institute, University of Sydney, Sydney, Australia
| |
Collapse
|
84
|
Muralimanoharan S, Gao X, Weintraub S, Myatt L, Maloyan A. Sexual dimorphism in activation of placental autophagy in obese women with evidence for fetal programming from a placenta-specific mouse model. Autophagy 2018; 12:752-69. [PMID: 26986453 DOI: 10.1080/15548627.2016.1156822] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
The incidence of maternal obesity and its co-morbidities (diabetes, cardiovascular disease) continues to increase at an alarming rate, with major public health implications. In utero exposure to maternal obesity has been associated with development of cardiovascular and metabolic diseases in the offspring as a result of developmental programming. The placenta regulates maternal-fetal metabolism and shows significant changes in its function with maternal obesity. Autophagy is a cell-survival process, which is responsible for the degradation of damaged organelles and misfolded proteins. Here we show an activation of autophagosomal formation and autophagosome-lysosome fusion in placentas of males but not females from overweight (OW) and obese (OB) women vs. normal weight (NW) women. However, total autophagic activity in these placentas appeared to be decreased as it showed an increase in SQSTM1/p62 and a decrease in lysosomal biogenesis. A mouse model with a targeted deletion of the essential autophagy gene Atg7 in placental tissue showed significant placental abnormalities comparable to those seen in human placenta with maternal obesity. These included a decrease in expression of mitochondrial genes and antioxidants, and decreased lysosomal biogenesis. Strikingly, the knockout mice were developmentally programmed as they showed an increased sensitivity to high-fat diet-induced obesity, hyperglycemia, hyperinsulinemia, increased adiposity, and cardiac remodeling. In summary, our results indicate a sexual dimorphism in placental autophagy in response to maternal obesity. We also show that autophagy plays an important role in placental function and that inhibition of placental autophagy programs the offspring to obesity, and to metabolic and cardiovascular diseases.
Collapse
Affiliation(s)
- Sribalasubashini Muralimanoharan
- a Center for Pregnancy and Newborn Research , Department of Obstetrics and Gynecology , University of Texas Health Science Center , San Antonio , TX , USA
| | - Xiaoli Gao
- b The Metabolomics Core Facility, Institutional Mass Spectrometry Laboratory, University of Texas Health Science Center , San Antonio , TX , USA
| | - Susan Weintraub
- b The Metabolomics Core Facility, Institutional Mass Spectrometry Laboratory, University of Texas Health Science Center , San Antonio , TX , USA
| | - Leslie Myatt
- a Center for Pregnancy and Newborn Research , Department of Obstetrics and Gynecology , University of Texas Health Science Center , San Antonio , TX , USA.,c Department of Ob/Gyn , Oregon Health and Science University , Portland , OR , USA
| | - Alina Maloyan
- a Center for Pregnancy and Newborn Research , Department of Obstetrics and Gynecology , University of Texas Health Science Center , San Antonio , TX , USA.,d Knight Cardiovascular Institute, Oregon Health and Science University , Portland , OR , USA
| |
Collapse
|
85
|
Iaffaldano L, Nardelli C, D'Alessio F, D'Argenio V, Nunziato M, Mauriello L, Procaccini C, Maruotti GM, Martinelli P, Matarese G, Pastore L, Del Vecchio L, Labruna G, Sacchetti L. Altered Bioenergetic Profile in Umbilical Cord and Amniotic Mesenchymal Stem Cells from Newborns of Obese Women. Stem Cells Dev 2018; 27:199-206. [DOI: 10.1089/scd.2017.0198] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Affiliation(s)
- Laura Iaffaldano
- CEINGE Biotecnologie Avanzate S.C.a R.L., Naples, Italy
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli Federico II, Naples, Italy
| | - Carmela Nardelli
- CEINGE Biotecnologie Avanzate S.C.a R.L., Naples, Italy
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli Federico II, Naples, Italy
| | | | - Valeria D'Argenio
- CEINGE Biotecnologie Avanzate S.C.a R.L., Naples, Italy
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli Federico II, Naples, Italy
| | - Marcella Nunziato
- CEINGE Biotecnologie Avanzate S.C.a R.L., Naples, Italy
- Dipartimento di Scienze Motorie e del Benessere, Università “Parthenope,” Naples, Italy
| | | | - Claudio Procaccini
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli Federico II, Naples, Italy
- Istituto di Endocrinologia e Oncologia Sperimentale, Consiglio Nazionale delle Ricerche (IEOS-CNR), Naples, Italy
| | - Giuseppe Maria Maruotti
- Dipartimento di Neuroscienze e Scienze Riproduttive ed Odontostomatologiche, Università degli Studi di Napoli Federico II, Naples, Italy
| | - Pasquale Martinelli
- Dipartimento di Neuroscienze e Scienze Riproduttive ed Odontostomatologiche, Università degli Studi di Napoli Federico II, Naples, Italy
| | - Giuseppe Matarese
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli Federico II, Naples, Italy
- Istituto di Endocrinologia e Oncologia Sperimentale, Consiglio Nazionale delle Ricerche (IEOS-CNR), Naples, Italy
| | - Lucio Pastore
- CEINGE Biotecnologie Avanzate S.C.a R.L., Naples, Italy
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli Federico II, Naples, Italy
| | - Luigi Del Vecchio
- CEINGE Biotecnologie Avanzate S.C.a R.L., Naples, Italy
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli Federico II, Naples, Italy
| | | | | |
Collapse
|
86
|
Tain YL, Chan SHH, Chan JYH. Biochemical basis for pharmacological intervention as a reprogramming strategy against hypertension and kidney disease of developmental origin. Biochem Pharmacol 2018; 153:82-90. [PMID: 29309755 DOI: 10.1016/j.bcp.2018.01.014] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Accepted: 01/04/2018] [Indexed: 02/08/2023]
Abstract
The concept of "developmental origins of health and disease" (DOHaD) stipulates that both hypertension and kidney disease may take origin from early-life insults. The DOHaD concept also offers reprogramming strategies aiming at shifting therapeutic interventions from adulthood to early life, even before clinical symptoms are evident. Based on those two concepts, this review will present the evidence for the existence of, and the programming mechanisms in, kidney developmental programming that may lead to hypertension and kidney disease. This will be followed by potential pharmacological interventions that may serve as a reprogramming strategy to counter the rising epidemic of hypertension and kidney disease. We point out that before patients could benefit from this strategy, the most pressing issue is for the growing body of evidence from animal studies in support of pharmacological intervention as a reprogramming strategy to long-term protect against hypertension and kidney disease of developmental origins to be validated clinically and the critical window, drug dose, dosing regimen, and therapeutic duration identified.
Collapse
Affiliation(s)
- You-Lin Tain
- Department of Pediatrics, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 833, Taiwan; Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan.
| | - Samuel H H Chan
- Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan.
| | - Julie Y H Chan
- Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan.
| |
Collapse
|
87
|
Myatt L, Thornburg KL. Effects of Prenatal Nutrition and the Role of the Placenta in Health and Disease. Methods Mol Biol 2018; 1735:19-46. [PMID: 29380305 DOI: 10.1007/978-1-4939-7614-0_2] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Epidemiologic studies identified the linkage between exposures to stresses, including the type and plane of nutrition in utero with development of disease in later life. Given the critical roles of the placenta in mediating transport of nutrients between the mother and fetus and regulation of maternal metabolism, recent attention has focused on the role of the placenta in mediating the effect of altered nutritional exposures on the development of disease in later life. In this chapter we describe the mechanisms of nutrient transport in the placenta, the influence of placental metabolism on this, and how placental energetics influence placental function in response to a variety of stressors. Further the recent "recognition" that the placenta itself has a sex which affects its function may begin to help elucidate the mechanisms underlying the well-known dimorphism in development of disease in adult life.
Collapse
Affiliation(s)
- Leslie Myatt
- Department of Obstetrics & Gynecology, Oregon Health & Science University, Portland, OR, USA. .,Bob and Charlee Moore Institute for Nutrition & Wellness, Oregon Health & Science University, Portland, OR, USA.
| | - Kent L Thornburg
- Bob and Charlee Moore Institute for Nutrition & Wellness, Oregon Health & Science University, Portland, OR, USA.,Knight Cardiovascular Institute, Oregon Health & Science University, Portland, OR, USA
| |
Collapse
|
88
|
Simon B, Bucher M, Maloyan A. A Primary Human Trophoblast Model to Study the Effect of Inflammation Associated with Maternal Obesity on Regulation of Autophagy in the Placenta. J Vis Exp 2017. [PMID: 28994813 DOI: 10.3791/56484] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Maternal obesity is associated with an increased risk of adverse perinatal outcomes that are likely mediated by compromised placental function that can be attributed to, in part, the dysregulation of autophagy. Aberrant changes in the expression of autophagy regulators in the placentas from obese pregnancies may be regulated by inflammatory processes associated with both obesity and pregnancy. Described here is a protocol for sampling of villous tissue and isolation of villous cytotrophoblasts from the term human placenta for primary cell culture. This is followed by a method for simulating the inflammatory milieu in the obese intrauterine environment by treating primary trophoblasts from lean pregnancies with tumor necrosis factor alpha (TNFα), a proinflammatory cytokine that is elevated in obesity and in pregnancy. Through the implementation of the protocol described here, it is found that exposure to exogenous TNFα regulates the expression of Rubicon, a negative regulator of autophagy, in trophoblasts from lean pregnancies with female fetuses. While a variety of biological factors in the obese intrauterine environment maintain the potential to modulate critical pathways in trophoblasts, this ex vivo system is especially useful for determining if expression patterns observed in vivo in human placentas with maternal obesity are a direct result of TNFα signaling. Ultimately, this approach affords the opportunity to parse out the regulatory and molecular implications of inflammation associated with maternal obesity on autophagy and other critical cellular pathways in trophoblasts that have the potential to impact placental function.
Collapse
Affiliation(s)
- Bailey Simon
- Knight Cardiovascular Institute, Oregon Health and Science University
| | - Matthew Bucher
- Department of Obstetrics and Gynecology, Oregon Health and Science University
| | - Alina Maloyan
- Knight Cardiovascular Institute, Oregon Health and Science University;
| |
Collapse
|
89
|
Haidar ZA, Viteri OA, Hosseini Nasab S, Moussa HN, Sibai BM, Whitty JE. Composite neonatal and maternal morbidities with small- versus appropriate- for gestational age among uncomplicated obese women undergoing repeat cesarean delivery . J Matern Fetal Neonatal Med 2017; 32:562-567. [PMID: 28942717 DOI: 10.1080/14767058.2017.1384808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
PURPOSE Our goal was to compare composite neonatal and maternal morbidities (composite neonatal morbidity (CNM), composite maternal morbidity (CMM)) among deliveries with small for age (SGA) versus appropriate for gestational age (AGA; birthweight 10-89%) among obese versus non-obese women undergoing repeat cesarean delivery (CD). STUDY DESIGN This is a secondary analysis of a prospective observational study. Women who had elective CD ≥37 weeks were studied. We excluded multiple gestations, fetal anomalies, > 1 prior CD, and medical diseases. Patients were divided into BMI ≥30 versus <30 kg/m2. CNM included respiratory distress syndrome, necrotizing enterocolitis, severe intraventricular hemorrhage, seizure, or death; CMM included transfusion, hysterectomy, operative injury, coagulopathy, thromboembolism, pulmonary edema, or death. Multivariate logistic regression was used to control for confounding factors. RESULTS Of 7561 women, we included 65% were obese and 35% were not. SGA rates differed significantly: 8 versus 12% (p < .001). Overall, CNM was significantly higher in patients with SGA versus AGA (adjusted odds ratio (aOR) 2.04, 95% CI 1.19-3.49). CMM of SGA in obese versus non-obese was statistically different (aOR 0.11, 95% CI 0.02-0.68). Among obese mothers, SGA neonates had significantly higher CNM compared with AGA ones (aOR 2.17, 95% CI 1.03-4.59). CONCLUSIONS SGA occurred in 8% of low-risk obese women with prior CD. CNM of SGA babies in obese versus non-obese women were similar. Paradoxically, CMM was lower in obese cases, possibly reflecting the caution that obese patients receive preoperatively. Our findings may assist in counseling patients and designing trials.
Collapse
Affiliation(s)
- Ziad A Haidar
- a Department of Obstetrics, Gynecology and Reproductive Sciences , McGovern Medical School at the University of Texas Health Science Center , Houston , TX , USA
| | - Oscar A Viteri
- a Department of Obstetrics, Gynecology and Reproductive Sciences , McGovern Medical School at the University of Texas Health Science Center , Houston , TX , USA
| | - Susan Hosseini Nasab
- a Department of Obstetrics, Gynecology and Reproductive Sciences , McGovern Medical School at the University of Texas Health Science Center , Houston , TX , USA
| | - Hind N Moussa
- a Department of Obstetrics, Gynecology and Reproductive Sciences , McGovern Medical School at the University of Texas Health Science Center , Houston , TX , USA
| | - Baha M Sibai
- a Department of Obstetrics, Gynecology and Reproductive Sciences , McGovern Medical School at the University of Texas Health Science Center , Houston , TX , USA
| | - Janice E Whitty
- a Department of Obstetrics, Gynecology and Reproductive Sciences , McGovern Medical School at the University of Texas Health Science Center , Houston , TX , USA
| |
Collapse
|
90
|
Calabuig-Navarro V, Haghiac M, Minium J, Glazebrook P, Ranasinghe GC, Hoppel C, Hauguel de-Mouzon S, Catalano P, O’Tierney-Ginn P. Effect of Maternal Obesity on Placental Lipid Metabolism. Endocrinology 2017; 158:2543-2555. [PMID: 28541534 PMCID: PMC5551552 DOI: 10.1210/en.2017-00152] [Citation(s) in RCA: 95] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Accepted: 05/17/2017] [Indexed: 02/06/2023]
Abstract
Obese women, on average, give birth to babies with high fat mass. Placental lipid metabolism alters fetal lipid delivery, potentially moderating neonatal adiposity, yet how it is affected by maternal obesity is poorly understood. We hypothesized that fatty acid (FA) accumulation (esterification) is higher and FA β-oxidation (FAO) is lower in placentas from obese, compared with lean women. We assessed acylcarnitine profiles (lipid oxidation intermediates) in mother-baby-placenta triads, in addition to lipid content, and messenger RNA (mRNA)/protein expression of key regulators of FA metabolism pathways in placentas of lean and obese women with normal glucose tolerance recruited at scheduled term Cesarean delivery. In isolated trophoblasts, we measured [3H]-palmitate metabolism. Placentas of obese women had 17.5% (95% confidence interval: 6.1, 28.7%) more lipid than placentas of lean women, and higher mRNA and protein expression of FA esterification regulators (e.g., peroxisome proliferator-activated receptor γ, acetyl-CoA carboxylase, steroyl-CoA desaturase 1, and diacylglycerol O-acyltransferase-1). [3H]-palmitate esterification rates were increased in trophoblasts from obese compared with lean women. Placentas of obese women had fewer mitochondria and a lower concentration of acylcarnitines, suggesting a decrease in mitochondrial FAO capacity. Conversely, peroxisomal FAO was greater in placentas of obese women. Altogether, these changes in placental lipid metabolism may serve to limit the amount of maternal lipid transferred to the fetus, restraining excess fetal adiposity in this population of glucose-tolerant women.
Collapse
Affiliation(s)
- Virtu Calabuig-Navarro
- Center for Reproductive Health, MetroHealth Medical Center, Cleveland, Ohio 44109
- Center for Reproductive Biology, Case Western Reserve University, Cleveland, Ohio 44106
| | - Maricela Haghiac
- Center for Reproductive Health, MetroHealth Medical Center, Cleveland, Ohio 44109
| | - Judi Minium
- Center for Reproductive Health, MetroHealth Medical Center, Cleveland, Ohio 44109
| | - Patricia Glazebrook
- Center for Reproductive Health, MetroHealth Medical Center, Cleveland, Ohio 44109
| | | | - Charles Hoppel
- Center for Mitochondrial Diseases, Department of Pharmacology, Case Western Reserve University School of Medicine, Cleveland, Ohio 44106
| | | | - Patrick Catalano
- Center for Reproductive Health, MetroHealth Medical Center, Cleveland, Ohio 44109
- Center for Reproductive Biology, Case Western Reserve University, Cleveland, Ohio 44106
| | - Perrie O’Tierney-Ginn
- Center for Reproductive Health, MetroHealth Medical Center, Cleveland, Ohio 44109
- Center for Reproductive Biology, Case Western Reserve University, Cleveland, Ohio 44106
| |
Collapse
|
91
|
Eidem HR, McGary KL, Capra JA, Abbot P, Rokas A. The transformative potential of an integrative approach to pregnancy. Placenta 2017; 57:204-215. [PMID: 28864013 DOI: 10.1016/j.placenta.2017.07.010] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Revised: 07/08/2017] [Accepted: 07/15/2017] [Indexed: 11/17/2022]
Abstract
BACKGROUND Complex traits typically involve diverse biological pathways and are shaped by numerous genetic and environmental factors. Pregnancy-associated traits and pathologies are further complicated by extensive communication across multiple tissues in two individuals, interactions between two genomes-maternal and fetal-that obscure causal variants and lead to genetic conflict, and rapid evolution of pregnancy-associated traits across mammals and in the human lineage. Given the multi-faceted complexity of human pregnancy, integrative approaches that synthesize diverse data types and analyses harbor tremendous promise to identify the genetic architecture and environmental influences underlying pregnancy-associated traits and pathologies. METHODS We review current research that addresses the extreme complexities of traits and pathologies associated with human pregnancy. RESULTS We find that successful efforts to address the many complexities of pregnancy-associated traits and pathologies often harness the power of many and diverse types of data, including genome-wide association studies, evolutionary analyses, multi-tissue transcriptomic profiles, and environmental conditions. CONCLUSION We propose that understanding of pregnancy and its pathologies will be accelerated by computational platforms that provide easy access to integrated data and analyses. By simplifying the integration of diverse data, such platforms will provide a comprehensive synthesis that transcends many of the inherent challenges present in studies of pregnancy.
Collapse
Affiliation(s)
- Haley R Eidem
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37235, USA
| | - Kriston L McGary
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37235, USA
| | - John A Capra
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37235, USA; Department of Biomedical Informatics, Vanderbilt University Medical Center, Nashville, TN 37235, USA
| | - Patrick Abbot
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37235, USA
| | - Antonis Rokas
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37235, USA; Department of Biomedical Informatics, Vanderbilt University Medical Center, Nashville, TN 37235, USA.
| |
Collapse
|
92
|
Prince CS, Maloyan A, Myatt L. Tropomyosin Receptor Kinase B Agonist, 7,8-Dihydroxyflavone, Improves Mitochondrial Respiration in Placentas From Obese Women. Reprod Sci 2017; 25:452-462. [PMID: 28677406 DOI: 10.1177/1933719117716776] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Maternal obesity negatively impacts the placenta, being associated with increased inflammation, decreased mitochondrial respiration, decreased expression of brain-derived neurotrophic factor (BDNF), and its receptor, tropomyosin receptor kinase B (TRKB). TRKB induction by 7,8-dihydroxyflavone (7,8-DHF) improves energy expenditure in an obesity animal model. We hypothesized that TRKB activation would improve mitochondrial respiration in trophoblasts from placentas of obese women. Placentas were collected from lean (pre-pregnancy BMI < 25) and obese (pre-pregnancy BMI > 30) women at term following cesarean section delivery without labor. Cytotrophoblasts were isolated and plated, permitting syncytialization. At 72 hours, syncytiotrophoblasts (STs) were treated for 1 hour with 7,8-DHF (10 nM-10 M), TRKB antagonists (ANA-12 (10 nM-1 M), Cyclotraxin B (1 nM-1M)), or vehicle. Mitochondrial respiration was measured using the XF24 Extracellular Flux Analyzer. TRKB, MAPK, and PGC1α were measured using Western blotting. Maternal obesity was associated with decreased mitochondrial respiration in STs; however, 7,8-DHF increased basal, ATP-coupled, maximal, spare capacity, and nonmitochondrial respiration. A 10 μM dose of 7,8-DHF reduced spare capacity in STs from lean women, with no effect on other respiration parameters. 7,8-DHF had no effect on TRKB phosphorylation; however, there was a concentration-dependent decrease of p38 MAPK phosphorylation and increase of PGC1α in STs from obese, but not in lean women. TRKB antagonism attenuated ATP-coupled respiration, maximal respiration, and spare capacity in STs from lean and obese women. 7,8-DHF improves mitochondrial respiration in STs from obese women, suggesting that the obese phenotype in the placenta can be rescued by TRKB activation.
Collapse
Affiliation(s)
- Calais S Prince
- 1 Center for Pregnancy and Newborn Research, Department of Obstetrics and Gynecology, University of Texas Health Science Center San Antonio, TX, USA
| | - Alina Maloyan
- 1 Center for Pregnancy and Newborn Research, Department of Obstetrics and Gynecology, University of Texas Health Science Center San Antonio, TX, USA.,2 Knight Cardiovascular Institute, Oregon Health & Science University, Portland, OR, USA
| | - Leslie Myatt
- 1 Center for Pregnancy and Newborn Research, Department of Obstetrics and Gynecology, University of Texas Health Science Center San Antonio, TX, USA.,3 Deparment of Obstetrics and Gynecology, School of Medicine, Oregon Health & Science University, Portland, OR, USA
| |
Collapse
|
93
|
Holland OJ, Hickey AJR, Alvsaker A, Moran S, Hedges C, Chamley LW, Perkins AV. Changes in mitochondrial respiration in the human placenta over gestation. Placenta 2017; 57:102-112. [PMID: 28863998 DOI: 10.1016/j.placenta.2017.06.011] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Revised: 05/24/2017] [Accepted: 06/14/2017] [Indexed: 12/19/2022]
Abstract
INTRODUCTION Placental mitochondria are subjected to micro-environmental changes throughout gestation, in particular large variations in oxygen. How placental mitochondrial respiration adapts to changing oxygen concentrations remains unexplored. Additionally, placental tissue is often studied in culture; however, the effect of culture on placental mitochondria is unclear. MATERIAL AND METHODS Placental tissue was obtained from first trimester and term (laboured and non-laboured) pregnancies, and selectively permeabilized to access mitochondria. Respirometry was used to compare respiration states and substrate use in mitochondria. Additionally, explants of placental tissue were cultured for four, 12, 24, 48, or 96 h and respiration measured. RESULTS Mitochondrial respiration decreased at 11 weeks compared to earlier gestations (p = 0.05-0.001), and mitochondrial content increased at 12-13 weeks compared to 7-10 weeks (p = 0.042). In term placentae, oxidative phosphorylation (OXPHOS) through mitochondrial complex IV (p < 0.001), the relative proportion of OXPHOS CI (p < 0.001), the total capacity of the respiratory system (p = 0.003), and mitochondrial content (p < 0.001) were higher compared to first trimester. Respiration was increased (p ≤ 0.006-0.001) in laboured compared to non-laboured placenta. After four hours of culture, respiration was depressed compared to fresh tissue from the same placenta and continued to decline with time in culture. Markers of apoptosis were increased, while markers of autophagy, mitochondrial biogenesis, and mitochondrial membrane potential were decreased after four hours of culture. DISCUSSION Respiration and mitochondrial content alter over gestation/with labour. Decreased respiration at 11 weeks and increased mitochondrial content at 12-13 weeks may relate to onset of maternal blood flow, and increased respiration as a result of labour may be an adaptation to ischaemia-reperfusion. At term, mitochondria were more susceptible to changes in respiratory function relative to first trimester when cultured in vitro, perhaps reflecting changes in metabolic demands as gestation progresses. Metabolic plasticity of placental mitochondria has relevance to placenta-mediated diseases.
Collapse
Affiliation(s)
- Olivia J Holland
- School of Medical Science, Menzies Health Institute Queensland, Griffith University, Gold Coast Campus, Southport, Queensland, Australia.
| | - Anthony J R Hickey
- School of Biological Sciences, Faculty of Sciences, The University of Auckland, New Zealand
| | - Anna Alvsaker
- School of Medical Science, Menzies Health Institute Queensland, Griffith University, Gold Coast Campus, Southport, Queensland, Australia
| | - Stephanie Moran
- School of Medical Science, Menzies Health Institute Queensland, Griffith University, Gold Coast Campus, Southport, Queensland, Australia
| | - Christopher Hedges
- School of Biological Sciences, Faculty of Sciences, The University of Auckland, New Zealand
| | - Lawrence W Chamley
- Department of Obstetrics and Gynaecology, The University of Auckland, New Zealand
| | - Anthony V Perkins
- School of Medical Science, Menzies Health Institute Queensland, Griffith University, Gold Coast Campus, Southport, Queensland, Australia
| |
Collapse
|
94
|
Jiang S, Teague AM, Tryggestad JB, Aston CE, Lyons T, Chernausek SD. Effects of maternal diabetes and fetal sex on human placenta mitochondrial biogenesis. Placenta 2017; 57:26-32. [PMID: 28864016 DOI: 10.1016/j.placenta.2017.06.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Revised: 05/12/2017] [Accepted: 06/04/2017] [Indexed: 12/24/2022]
Abstract
Abnormal placental function in maternal diabetes affects fetal health and can predispose offspring to metabolic diseases in later life. There are fetal sex-specific differences in placenta structure and gene expression, which may affect placental responses to maternal diabetes. The present study examined the effects of maternal diabetes on indices of mitochondrial biogenesis in placentae from male and female offspring. Mitochondrial DNA (mtDNA) copy number and expression of key regulators of mitochondrial biogenesis were assessed in placentae from 19 diabetic and 23 non-diabetic women. The abundance of peroxisome proliferator-activated receptor-γ coactivator-1α (PGC-1α) and mitochondria transcription factor A (TFAM) were lower in female placentae compared to males, but not mtDNA content. In male offspring, maternal diabetes was associated with decreased placental PGC-1α and TFAM, and mitochondrial DNA (mtDNA) content. Male placental TFAM levels were highly correlated with PGC-1α and mtDNA content. However, despite decreased PGC-1α, concomitant changes in TFAM and mtDNA content by diabetes were not observed in females. In addition, TFAM abundance in female placentae was not correlated with PGC-1α or mtDNA content. In summary, placental PGC-1α/TFAM/mitochondrial biogenesis pathway is affected by maternal diabetes and offspring sex. Decreased PGC-1α in response to maternal diabetes plausibly contributes to impaired mitochondrial biogenesis in placentae of male offspring, which may affect long-term health and explain some of enhanced risk of future metabolic diseases in males.
Collapse
Affiliation(s)
- Shaoning Jiang
- Department of Pediatrics, Section of Diabetes and Endocrinology, Harold Hamm Diabetes Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - April M Teague
- Department of Pediatrics, Section of Diabetes and Endocrinology, Harold Hamm Diabetes Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Jeanie B Tryggestad
- Department of Pediatrics, Section of Diabetes and Endocrinology, Harold Hamm Diabetes Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Christopher E Aston
- Department of Pediatrics, Biomedical and Behavioral Methodology Core, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Timothy Lyons
- Centre for Experimental Medicine, Queen's University of Belfast, Belfast, UK
| | - Steven D Chernausek
- Department of Pediatrics, Section of Diabetes and Endocrinology, Harold Hamm Diabetes Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.
| |
Collapse
|
95
|
Abstract
Epidemiological evidence links an individual's susceptibility to chronic disease in adult life to events during their intrauterine phase of development. Biologically this should not be unexpected, for organ systems are at their most plastic when progenitor cells are proliferating and differentiating. Influences operating at this time can permanently affect their structure and functional capacity, and the activity of enzyme systems and endocrine axes. It is now appreciated that such effects lay the foundations for a diverse array of diseases that become manifest many years later, often in response to secondary environmental stressors. Fetal development is underpinned by the placenta, the organ that forms the interface between the fetus and its mother. All nutrients and oxygen reaching the fetus must pass through this organ. The placenta also has major endocrine functions, orchestrating maternal adaptations to pregnancy and mobilizing resources for fetal use. In addition, it acts as a selective barrier, creating a protective milieu by minimizing exposure of the fetus to maternal hormones, such as glucocorticoids, xenobiotics, pathogens, and parasites. The placenta shows a remarkable capacity to adapt to adverse environmental cues and lessen their impact on the fetus. However, if placental function is impaired, or its capacity to adapt is exceeded, then fetal development may be compromised. Here, we explore the complex relationships between the placental phenotype and developmental programming of chronic disease in the offspring. Ensuring optimal placentation offers a new approach to the prevention of disorders such as cardiovascular disease, diabetes, and obesity, which are reaching epidemic proportions.
Collapse
Affiliation(s)
- Graham J Burton
- Centre for Trophoblast Research and Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom; and Department of Medicine, Knight Cardiovascular Institute, and Moore Institute for Nutrition and Wellness, Oregon Health and Science University, Portland, Oregon
| | - Abigail L Fowden
- Centre for Trophoblast Research and Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom; and Department of Medicine, Knight Cardiovascular Institute, and Moore Institute for Nutrition and Wellness, Oregon Health and Science University, Portland, Oregon
| | - Kent L Thornburg
- Centre for Trophoblast Research and Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom; and Department of Medicine, Knight Cardiovascular Institute, and Moore Institute for Nutrition and Wellness, Oregon Health and Science University, Portland, Oregon
| |
Collapse
|
96
|
Ireland KE, Maloyan A, Myatt L. Melatonin Improves Mitochondrial Respiration in Syncytiotrophoblasts From Placentas of Obese Women. Reprod Sci 2017; 25:120-130. [PMID: 28443479 DOI: 10.1177/1933719117704908] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Maternal obesity is associated with increased oxidative stress but decreased placental mitochondrial respiration and expression of mitochondrial electron transport chain (ETC) complexes I to V. Melatonin acts as an antioxidant and prevents oxidative stress-induced changes in cytotrophoblasts. Placentas were collected at term by cesarean delivery from obese (first trimester body mass index [BMI] ≥30, n = 10) or lean (BMI < 25, n = 6) women. Cytotrophoblasts were isolated and allowed to syncytialize for 72 hours with or without melatonin (0.1-100 µM) for the last 24 hours. Mitochondrial respiratory parameters were measured in a Seahorse XF24. Expression of ETC complexes I to V and antioxidant enzymes was measured by Western blot. Maternal clinical characteristics of patients were similar except for BMI. No significant improvement in mitochondrial respiration occurred with addition of melatonin to trophoblasts of lean women. However, in trophoblasts from obese women, melatonin (10 and 100 µmol/L) significantly increased maximal respiration ( P = .01 and P = .009, respectively) and spare capacity ( P = .02 and P = .003, respectively) compared to the untreated control. No differences were detected in the expression of ETC complexes and superoxide dismutase 1 or 2 in trophoblasts treated with melatonin. The expression of glutathione peroxidase, which was significantly greater in trophoblast of obese compared to lean women ( P < .05), was decreased back to the level seen in trophoblast of lean women with addition of melatonin ( P = .02). Improved spare respiratory capacity, the cellular reserve, could impart a protective effect to the placenta and fetus in an adverse intrauterine environment or in response to additional stressors.
Collapse
Affiliation(s)
- Kayla E Ireland
- 1 Division of Maternal Fetal Medicine, Department of Obstetrics and Gynecology, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Alina Maloyan
- 2 Center for Pregnancy and Newborn Research, Department of Obstetrics and Gynecology, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA.,3 Knight Cardiovascular Institute, Oregon Health & Science University, Portland, OR, USA
| | - Leslie Myatt
- 2 Center for Pregnancy and Newborn Research, Department of Obstetrics and Gynecology, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA.,4 Department of Obstetrics and Gynecology, Bob and Charlee Moore Institute for Nutrition and Wellness, Oregon Health & Science University, Portland, OR, USA
| |
Collapse
|
97
|
Jiang S, Teague AM, Tryggestad JB, Chernausek SD. Role of microRNA-130b in placental PGC-1α/TFAM mitochondrial biogenesis pathway. Biochem Biophys Res Commun 2017; 487:607-612. [PMID: 28433632 DOI: 10.1016/j.bbrc.2017.04.099] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2017] [Accepted: 04/18/2017] [Indexed: 11/30/2022]
Abstract
Diabetes during pregnancy is associated with abnormal placenta mitochondrial function and increased oxidative stress, which affect fetal development and offspring long-term health. Peroxisome proliferator-activated receptor-γ coactivator-1α (PGC-1α) is a master regulator of mitochondrial biogenesis and energy metabolism. The molecular mechanisms underlying the regulation of PGC-1α in placenta in the context of diabetes remain unclear. The present study examined the role of microRNA 130b (miR-130b-3p) in regulating PGC-1α expression and oxidative stress in a placental trophoblastic cell line (BeWo). Prolonged exposure of BeWo cells to high glucose mimicking hyperglycemia resulted in decreased protein abundance of PGC-1α and its downstream factor, mitochondrial transcription factor A (TFAM). High glucose treatment increased the expression of miR-130b-3p in BeWo cells, as well as exosomal secretion of miR-130b-3p. Transfection of BeWo cells with miR-130b-3p mimic reduced the abundance of PGC-1α, whereas inhibition of miR-130b-3p increased PGC-1α expression in response to high glucose, suggesting a role for miR-130b-3p in mediating high glucose-induced down regulation of PGC-1α expression. In addition, miR-130b-3p anti-sense inhibitor increased TFAM expression and reduced 4-hydroxynonenal (4-HNE)-induced production of reactive oxygen species (ROS). Taken together, these findings reveal that miR-130b-3p down-regulates PGC-1α expression in placental trophoblasts, and inhibition of miR-130b-3p appears to improve mitochondrial biogenesis signaling and protect placental trophoblast cells from oxidative stress.
Collapse
Affiliation(s)
- Shaoning Jiang
- Department of Pediatrics, Section of Diabetes and Endocrinology, Harold Hamm Diabetes Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.
| | - April M Teague
- Department of Pediatrics, Section of Diabetes and Endocrinology, Harold Hamm Diabetes Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Jeanie B Tryggestad
- Department of Pediatrics, Section of Diabetes and Endocrinology, Harold Hamm Diabetes Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Steven D Chernausek
- Department of Pediatrics, Section of Diabetes and Endocrinology, Harold Hamm Diabetes Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| |
Collapse
|
98
|
Evans L, Myatt L. Sexual dimorphism in the effect of maternal obesity on antioxidant defense mechanisms in the human placenta. Placenta 2017; 51:64-69. [PMID: 28292470 DOI: 10.1016/j.placenta.2017.02.004] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Revised: 01/30/2017] [Accepted: 02/04/2017] [Indexed: 12/22/2022]
Abstract
INTRODUCTION Maternal obesity creates an adverse intrauterine environment, negatively impacts placental respiration, is associated with a higher incidence of pregnancy complications and programs the offspring for disease in adult life in a sexually dimorphic manner. We defined the effect of maternal obesity and fetal sex on pro- and anti-oxidant status in placenta and placental mitochondria. METHODS Placental villous tissue was collected at term via c-section prior to labor from four groups of patients based on fetal sex and prepregnancy/1st trimester body mass index: lean - BMI 22.1 ± 0.3 (6 male, 6 female) and obese - BMI 36.3 ± 0.4 (6 male, 6 female). Antioxidant enzyme activity, mitochondrial protein carbonyls, nitrotyrosine residues, total and nitrated superoxide dismutase (SOD) and nitric oxide synthesis were measured. RESULTS Maternal obesity was associated with decreased SOD and catalase activity, and total antioxidant capacity (TAC), but increased oxidative (protein carbonyls) and nitrative (nitrotyrosine) stress in a sexually dimorphic manner. Placentas of lean women with a male fetus had higher SOD activity and TAC (p < 0.05) than other groups whereas obese women with a male fetus had highest carbonyls and nitrotyrosine (p < 0.05). Glutathione peroxidase and thioredoxin reductase activity increased with obesity, significantly with a male fetus, perhaps as a compensatory response. CONCLUSION Maternal obesity affects oxidative stress and antioxidant activity in the placenta in a sexually dimorphic manner. The male fetus of a lean women has the highest antioxidant activity, a protection which is lost with obesity perhaps contributing to the increased incidence of adverse outcomes with a male fetus.
Collapse
Affiliation(s)
- LaShauna Evans
- Center for Pregnancy and Newborn Research, University of Texas Health Science Center at San Antonio, San Antonio, TX, United States
| | - Leslie Myatt
- Department of Obstetrics and Gynecology, Oregon Health & Science University, Portland, OR, United States.
| |
Collapse
|
99
|
Review: Placental mitochondrial function and structure in gestational disorders. Placenta 2016; 54:2-9. [PMID: 28024805 DOI: 10.1016/j.placenta.2016.12.012] [Citation(s) in RCA: 134] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2016] [Revised: 12/05/2016] [Accepted: 12/08/2016] [Indexed: 12/13/2022]
Abstract
The aetiology of many gestational disorders is still unknown. However, insufficient trans-placental nutrient and oxygen transfer due to abnormal placentation is characteristic of several pathologies, and may alter the function of placental mitochondria. Mitochondria are multifunctional organelles that respond to a wide range of stimuli - such as physiological changes in cellular energy demands or various pathologies - by reshaping via fusion or fission, increasing/decreasing in number, altering oxidative phosphorylation, and signalling cellular functions such as apoptosis. Mitochondrial function is integral to tissue functions including energy production, metabolism, and regulation of various cellular responses including response to oxidative stress. This review details the functions of placental mitochondria and investigates mitochondrial function and structure in gestational disorders including preeclampsia, intrauterine growth restriction, diabetes mellitus, and obesity. Placental mitochondrial dysfunction may be critical in a range of gestational disorders which have important implications for maternal and fetal/offspring health.
Collapse
|
100
|
Cheong JN, Wlodek ME, Moritz KM, Cuffe JSM. Programming of maternal and offspring disease: impact of growth restriction, fetal sex and transmission across generations. J Physiol 2016; 594:4727-40. [PMID: 26970222 PMCID: PMC5009791 DOI: 10.1113/jp271745] [Citation(s) in RCA: 106] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2015] [Accepted: 01/16/2016] [Indexed: 12/16/2022] Open
Abstract
Babies born small are at an increased risk of developing myriad adult diseases. While growth restriction increases disease risk in all individuals, often a second hit is required to unmask 'programmed' impairments in physiology. Programmed disease outcomes are demonstrated more commonly in male offspring compared with females, with these sex-specific outcomes partly attributed to different placenta-regulated growth strategies of the male and female fetus. Pregnancy is known to be a major risk factor for unmasking a number of conditions and can be considered a 'second hit' for women who were born small. As such, female offspring often develop impairments of physiology for the first time during pregnancy that present as pregnancy complications. Numerous maternal stressors can further increase the risk of developing a maternal complication during pregnancy. Importantly, these maternal complications can have long-term consequences for both the mother after pregnancy and the developing fetus. Conditions such as preeclampsia, gestational diabetes and hypertension as well as thyroid, liver and kidney diseases are all conditions that can complicate pregnancy and have long-term consequences for maternal and offspring health. Babies born to mothers who develop these conditions are often at a greater risk of developing disease in adulthood. This has implications as a mechanism for transmission of disease across generations. In this review, we discuss the evidence surrounding long-term intergenerational implications of being born small and/or experiencing stress during pregnancy on programming outcomes.
Collapse
Affiliation(s)
- Jean N Cheong
- Department of Physiology, Faculty of Medicine, Dentistry and Health Sciences, School of Biomedical Sciences, University of Melbourne, Parkville, Victoria, 3010, Australia
| | - Mary E Wlodek
- Department of Physiology, Faculty of Medicine, Dentistry and Health Sciences, School of Biomedical Sciences, University of Melbourne, Parkville, Victoria, 3010, Australia
| | - Karen M Moritz
- School of Biomedical Sciences, University of Queensland, St Lucia, Queensland, 4072, Australia
| | - James S M Cuffe
- School of Biomedical Sciences, University of Queensland, St Lucia, Queensland, 4072, Australia
| |
Collapse
|