51
|
Massart J, Begriche K, Moreau C, Fromenty B. Role of nonalcoholic fatty liver disease as risk factor for drug-induced hepatotoxicity. J Clin Transl Res 2017; 3:212-232. [PMID: 28691103 PMCID: PMC5500243 DOI: 10.18053/jctres.03.2017s1.006] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Obesity is often associated with nonalcoholic fatty liver disease (NAFLD), which refers to a large spectrum of hepatic lesions including fatty liver, nonalcoholic steatohepatitis (NASH) and cirrhosis. Different investigations showed or suggested that obesity and NAFLD are able to increase the risk of hepatotoxicity of different drugs. Some of these drugs could induce more frequently an acute hepatitis in obese individuals whereas others could worsen pre-existing NAFLD. AIM The main objective of the present review was to collect the available information regarding the role of NAFLD as risk factor for drug-induced hepatotoxicity. For this purpose, we performed a data-mining analysis using different queries including drug-induced liver injury (or DILI), drug-induced hepatotoxicity, fatty liver, nonalcoholic fatty liver disease (or NAFLD), steatosis and obesity. The main data from the collected articles are reported in this review and when available, some pathophysiological hypotheses are put forward. RELEVANCE FOR PATIENTS Drugs that could pose a potential risk in obese patients include compounds belonging to different pharmacological classes such as acetaminophen, halothane, methotrexate, rosiglitazone, stavudine and tamoxifen. For some of these drugs, experimental investigations in obese rodents confirmed the clinical observations and unveiled different pathophysiological mechanisms which could explain why these pharmaceuticals are particularly hepatotoxic in obesity and NAFLD. Other drugs such as pentoxifylline, phenobarbital and omeprazole might also pose a risk but more investigations are required to determine whether this risk is significant or not. Because obese people often take several drugs for the treatment of different obesity-related diseases such as type 2 diabetes, hyperlipidemia and coronary heart disease, it is urgent to identify the main pharmaceuticals that can cause acute hepatitis on a fatty liver background or induce NAFLD worsening.
Collapse
Affiliation(s)
- Julie Massart
- Department of Molecular Medicine and Surgery, Karolinska University Hospital, Karolinska Institutet, SE-171 77 Stockholm, Sweden
| | | | - Caroline Moreau
- INSERM, U991, Université de Rennes 1, Rennes, France.,Service de Biochimie et Toxicologie, CHU Pontchaillou, Rennes, France
| | | |
Collapse
|
52
|
Chen X, Ward SC, Cederbaum AI, Xiong H, Lu Y. Alcoholic fatty liver is enhanced in CYP2A5 knockout mice: The role of the PPARα-FGF21 axis. Toxicology 2017; 379:12-21. [PMID: 28131861 DOI: 10.1016/j.tox.2017.01.016] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Revised: 01/16/2017] [Accepted: 01/23/2017] [Indexed: 01/05/2023]
Abstract
BACKGROUND & AIMS Cytochrome P450 2A5 (CYP2A5) is induced by ethanol, and the ethanol induction of CYP2A5 is regulated by nuclear factor-erythroid 2-related factor 2 (NRF2). Cyp2a5 knockout (Cyp2a5-/-) mice develop more severe alcoholic fatty liver than Cyp2a5+/+ mice. Fibroblast growth factor 21 (FGF21), a PPARα-regulated liver hormone, is involved in hepatic lipid metabolism. Alcoholic and non-alcoholic fatty liver are enhanced in Pparα knockout (Pparα-/-) mice. This study investigates the relationship between the PPARα-FGF21 axis and the enhanced alcoholic fatty liver in Cyp2a5-/- mice. METHODS Mice were fed the Lieber-Decarli ethanol diet to induce alcoholic fatty liver. RESULTS More severe alcoholic fatty liver disease was developed in Cyp2a5-/- mice than in Cyp2a5+/+ mice. Basal FGF21 levels were higher in Cyp2a5-/- mice than in Cyp2a5+/+ mice, but ethanol did not further increase the elevated FGF21 levels in Cyp2a5-/- mice while FGF21 was induced by ethanol in Cyp2a5+/+ mice. Basal levels of serum FGF21 were lower in Pparα-/- mice than in Pparα+/+ mice; ethanol induced FGF21 in Pparα+/+ mice but not in Pparα-/- mice, whereas ethanol induced hypertriglyceridemia in Pparα-/- mice but not in Pparα+/+ mice. Administration of recombinant FGF21 normalized serum FGF21 and triglyceride in Pparα-/- mice. Alcoholic fatty liver was enhanced in liver-specific Fgf21 knockout mice. Pparα and Cyp2a5 double knockout (Pparα-/-/Cyp2a5-/-) mice developed more severe alcoholic fatty liver than Pparα+/+/Cyp2a5-/- mice. CONCLUSIONS These results suggest that CYP2A5 protects against the development of alcoholic fatty liver disease, and the PPARα-FGF21 axis contributes to the protective effects of CYP2A5 on alcoholic fatty liver disease.
Collapse
Affiliation(s)
- Xue Chen
- Department of Health Sciences, College of Public Health, East Tennessee State University, Johnson City, TN, United States
| | - Stephen C Ward
- Department of Pathology, Icahn School of Medicine at Mount Sinai, New York, New York, United States
| | - Arthur I Cederbaum
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, United States
| | - Huabao Xiong
- Division of Immunology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, United States
| | - Yongke Lu
- Department of Health Sciences, College of Public Health, East Tennessee State University, Johnson City, TN, United States; Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, United States.
| |
Collapse
|
53
|
Mansueto G, Armani A, Viscomi C, D'Orsi L, De Cegli R, Polishchuk EV, Lamperti C, Di Meo I, Romanello V, Marchet S, Saha PK, Zong H, Blaauw B, Solagna F, Tezze C, Grumati P, Bonaldo P, Pessin JE, Zeviani M, Sandri M, Ballabio A. Transcription Factor EB Controls Metabolic Flexibility during Exercise. Cell Metab 2017; 25:182-196. [PMID: 28011087 PMCID: PMC5241227 DOI: 10.1016/j.cmet.2016.11.003] [Citation(s) in RCA: 222] [Impact Index Per Article: 31.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Revised: 06/24/2016] [Accepted: 11/05/2016] [Indexed: 11/28/2022]
Abstract
The transcription factor EB (TFEB) is an essential component of lysosomal biogenesis and autophagy for the adaptive response to food deprivation. To address the physiological function of TFEB in skeletal muscle, we have used muscle-specific gain- and loss-of-function approaches. Here, we show that TFEB controls metabolic flexibility in muscle during exercise and that this action is independent of peroxisome proliferator-activated receptor-γ coactivator1α (PGC1α). Indeed, TFEB translocates into the myonuclei during physical activity and regulates glucose uptake and glycogen content by controlling expression of glucose transporters, glycolytic enzymes, and pathways related to glucose homeostasis. In addition, TFEB induces the expression of genes involved in mitochondrial biogenesis, fatty acid oxidation, and oxidative phosphorylation. This coordinated action optimizes mitochondrial substrate utilization, thus enhancing ATP production and exercise capacity. These findings identify TFEB as a critical mediator of the beneficial effects of exercise on metabolism.
Collapse
Affiliation(s)
- Gelsomina Mansueto
- Telethon Institute of Genetics and Medicine (TIGEM), Via Campi Flegrei 34, 80078 Pozzuoli, Naples, Italy
| | - Andrea Armani
- Department of Biomedical Science, University of Padova, Padova 35121, Italy
| | - Carlo Viscomi
- MRC Mitochondrial Biology Unit, Cambridge CB2 0XY, UK; Fondazione IRCCS Istituto Neurologico "C. Besta," 20133 Milan, Italy
| | - Luca D'Orsi
- Telethon Institute of Genetics and Medicine (TIGEM), Via Campi Flegrei 34, 80078 Pozzuoli, Naples, Italy
| | - Rossella De Cegli
- Telethon Institute of Genetics and Medicine (TIGEM), Via Campi Flegrei 34, 80078 Pozzuoli, Naples, Italy
| | - Elena V Polishchuk
- Telethon Institute of Genetics and Medicine (TIGEM), Via Campi Flegrei 34, 80078 Pozzuoli, Naples, Italy
| | - Costanza Lamperti
- Fondazione IRCCS Istituto Neurologico "C. Besta," 20133 Milan, Italy
| | - Ivano Di Meo
- Fondazione IRCCS Istituto Neurologico "C. Besta," 20133 Milan, Italy
| | - Vanina Romanello
- Department of Biomedical Science, University of Padova, Padova 35121, Italy; Venetian Institute of Molecular Medicine, Padova 35129, Italy
| | - Silvia Marchet
- Fondazione IRCCS Istituto Neurologico "C. Besta," 20133 Milan, Italy
| | - Pradip K Saha
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Haihong Zong
- Hepatobiliary, Pancreatic, and Intestinal Research Institute, North Sichuan Medical College, Nanchong, Sichuan 637000, China; Departments of Medicine and Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Bert Blaauw
- Department of Biomedical Science, University of Padova, Padova 35121, Italy
| | - Francesca Solagna
- Department of Biomedical Science, University of Padova, Padova 35121, Italy
| | - Caterina Tezze
- Department of Biomedical Science, University of Padova, Padova 35121, Italy
| | - Paolo Grumati
- Department of Molecular Medicine, University of Padova, Padova 35121, Italy
| | - Paolo Bonaldo
- Department of Molecular Medicine, University of Padova, Padova 35121, Italy
| | - Jeffrey E Pessin
- Departments of Medicine and Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Massimo Zeviani
- MRC Mitochondrial Biology Unit, Cambridge CB2 0XY, UK; Fondazione IRCCS Istituto Neurologico "C. Besta," 20133 Milan, Italy
| | - Marco Sandri
- Telethon Institute of Genetics and Medicine (TIGEM), Via Campi Flegrei 34, 80078 Pozzuoli, Naples, Italy; Department of Biomedical Science, University of Padova, Padova 35121, Italy; Venetian Institute of Molecular Medicine, Padova 35129, Italy.
| | - Andrea Ballabio
- Telethon Institute of Genetics and Medicine (TIGEM), Via Campi Flegrei 34, 80078 Pozzuoli, Naples, Italy; Medical Genetics, Department of Pediatrics, Federico II University, Via Pansini 5, 80131 Naples, Italy; Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX 77030, USA.
| |
Collapse
|
54
|
Cytochrome P450-2E1 promotes fast food-mediated hepatic fibrosis. Sci Rep 2017; 7:39764. [PMID: 28051126 PMCID: PMC5209674 DOI: 10.1038/srep39764] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Accepted: 11/28/2016] [Indexed: 02/08/2023] Open
Abstract
Cytochrome P450-2E1 (CYP2E1) increases oxidative stress. High hepatic cholesterol causes non-alcoholic steatohepatitis (NASH) and fibrosis. Thus, we aimed to study the role of CYP2E1 in promoting liver fibrosis by high cholesterol-containing fast-food (FF). Male wild-type (WT) and Cyp2e1-null mice were fed standard chow or FF for 2, 12, and 24 weeks. Various parameters of liver fibrosis and potential mechanisms such as oxidative and endoplasmic reticulum (ER) stress, inflammation, and insulin resistance (IR) were studied. Indirect calorimetry was also used to determine metabolic parameters. Liver histology showed that only WT fed FF (WT-FF) developed NASH and fibrosis. Hepatic levels of fibrosis protein markers were significantly increased in WT-FF. The nitroxidative stress marker iNOS, but not CYP2E1, was significantly elevated only in FF-fed WT. Serum endotoxin, TLR-4 levels, and inflammatory markers were highest in WT-FF. FAS, PPAR-α, PPAR-γ, and CB1-R were markedly altered in WT-FF. Electron microscopy and immunoblot analyses showed significantly higher levels of ER stress in FF-fed WT. Indirect calorimetry showed that Cyp2e1-null-mice fed FF exhibited consistently higher total energy expenditure (TEE) than their corresponding WT. These results demonstrate that CYP2E1 is important in fast food-mediated liver fibrosis by promoting nitroxidative and ER stress, endotoxemia, inflammation, IR, and low TEE.
Collapse
|
55
|
Xu X, Li R, Chen G, Hoopes SL, Zeldin DC, Wang DW. The Role of Cytochrome P450 Epoxygenases, Soluble Epoxide Hydrolase, and Epoxyeicosatrienoic Acids in Metabolic Diseases. Adv Nutr 2016; 7:1122-1128. [PMID: 28140329 PMCID: PMC5105036 DOI: 10.3945/an.116.012245] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Metabolic diseases are associated with an increased risk of developing cardiovascular disease. The features comprising metabolic diseases include obesity, insulin resistance, hyperglycemia, hyperlipidemia, and hypertension. Recent evidence has emerged showcasing a role for cytochrome P450 epoxygenases, soluble epoxide hydrolase, and epoxyeicosatrienoic acids (EETs) in the development and progression of metabolic diseases. This review discusses the current knowledge related to the modulation of cytochrome P450 epoxygenases and soluble epoxide hydrolase to alter concentrations of biologically active EETs, resulting in effects on insulin resistance, lipid metabolism, obesity, and diabetes. Future areas of research to address current deficiencies in the understanding of these enzymes and their eicosanoid metabolites in various aspects of metabolic diseases are also discussed.
Collapse
Affiliation(s)
- Xizhen Xu
- Department of Internal Medicine and the Institute of Hypertension, Tongji Hospital, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, China; and
| | - Rui Li
- Department of Internal Medicine and the Institute of Hypertension, Tongji Hospital, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, China; and
| | - Guangzhi Chen
- Department of Internal Medicine and the Institute of Hypertension, Tongji Hospital, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, China; and
| | - Samantha L Hoopes
- Division of Intramural Research, National Institute of Environmental Health Sciences, NIH, Research Triangle Park, NC
| | - Darryl C Zeldin
- Division of Intramural Research, National Institute of Environmental Health Sciences, NIH, Research Triangle Park, NC
| | - Dao Wen Wang
- Department of Internal Medicine and the Institute of Hypertension, Tongji Hospital, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, China; and
| |
Collapse
|
56
|
Choi Y, Abdelmegeed MA, Song BJ. Preventive effects of dietary walnuts on high-fat-induced hepatic fat accumulation, oxidative stress and apoptosis in mice. J Nutr Biochem 2016; 38:70-80. [PMID: 27732911 DOI: 10.1016/j.jnutbio.2016.08.013] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2016] [Revised: 05/16/2016] [Accepted: 08/10/2016] [Indexed: 01/20/2023]
Abstract
We hypothesized that dietary walnut would prevent high-fat-diet (HFD)-induced hepatic apoptosis based on its antioxidant properties. Male C57BL/6J mice were fed a rodent chow or HFD (45% energy-derived)±walnuts (21.5% energy-derived) for 6 weeks. Liver histological and biochemical analyses revealed significantly elevated fat accumulation in mice fed HFD compared to mice fed the chow or HFD±walnuts. Walnut supplementation prevented HFD-mediated alteration of the levels of key proteins in lipid homeostasis such as Sirt1, AMPK and FAS, leading to decreased fat accumulation. In addition, walnut supplementation to HFD significantly decreased the hepatic levels of cytochrome P450-2E1, nitrated proteins and lipid peroxidation. Furthermore, walnut supplementation decreased the activated cell-death-associated p-JNK and p-p38K accompanied with increased hepatocyte apoptosis in HFD group. The beneficial effects of dietary walnut likely result, at least partially, from its antioxidant ingredients and attenuating HFD-induced hepatic steatosis, nitroxidative stress and apoptosis.
Collapse
Affiliation(s)
- Youngshim Choi
- Section of Molecular Pharmacology and Toxicology, Laboratory of Membrane Biochemistry and Biophysics, National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD, USA
| | - Mohamed A Abdelmegeed
- Section of Molecular Pharmacology and Toxicology, Laboratory of Membrane Biochemistry and Biophysics, National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD, USA
| | - Byoung-Joon Song
- Section of Molecular Pharmacology and Toxicology, Laboratory of Membrane Biochemistry and Biophysics, National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD, USA.
| |
Collapse
|
57
|
Lee GH, Oh KJ, Kim HR, Han HS, Lee HY, Park KG, Nam KH, Koo SH, Chae HJ. Effect of BI-1 on insulin resistance through regulation of CYP2E1. Sci Rep 2016; 6:32229. [PMID: 27576594 PMCID: PMC5006057 DOI: 10.1038/srep32229] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Accepted: 08/04/2016] [Indexed: 12/21/2022] Open
Abstract
Diet-induced obesity is a major contributing factor to the progression of hepatic insulin resistance. Increased free fatty acids in liver enhances endoplasmic reticulum (ER) stress and production of reactive oxygen species (ROS), both are directly responsible for dysregulation of hepatic insulin signaling. BI-1, a recently studied ER stress regulator, was examined to investigate its association with ER stress and ROS in insulin resistance models. To induce obesity and insulin resistance, BI-1 wild type and BI-1 knock-out mice were fed a high-fat diet for 8 weeks. The BI-1 knock-out mice had hyperglycemia, was associated with impaired glucose and insulin tolerance under high-fat diet conditions. Increased activity of NADPH-dependent CYP reductase-associated cytochrome p450 2E1 (CYP2E1) and exacerbation of ER stress in the livers of BI-1 knock-out mice was also observed. Conversely, stable expression of BI-1 in HepG2 hepatocytes was shown to reduce palmitate-induced ER stress and CYP2E1-dependent ROS production, resulting in the preservation of intact insulin signaling. Stable expression of CYP2E1 led to increased ROS production and dysregulation of insulin signaling in hepatic cells, mimicking palmitate-mediated hepatic insulin resistance. We propose that BI-1 protects against obesity-induced hepatic insulin resistance by regulating CYP2E1 activity and ROS production.
Collapse
Affiliation(s)
- Geum-Hwa Lee
- Department of Pharmacology and New Drug Development Institute, Medical School, Chonbuk National University, Jeonju, 561-181, Republic of Korea
| | - Kyoung-Jin Oh
- Division of Life Sciences, Korea University, 145 Anam-Ro, Seongbuk-Gu, Seoul, 136-713, Republic of Korea.,Metabolic Regulation Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 305-806, Republic of Korea
| | - Hyung-Ryong Kim
- Department of Dental Pharmacology and Wonkwang Dental Research Institute, School of Dentistry, Wonkwang University, Iksan, 570-749, Republic of Korea
| | - Hye-Sook Han
- Division of Life Sciences, Korea University, 145 Anam-Ro, Seongbuk-Gu, Seoul, 136-713, Republic of Korea
| | - Hwa-Young Lee
- Department of Pharmacology and New Drug Development Institute, Medical School, Chonbuk National University, Jeonju, 561-181, Republic of Korea
| | - Keun-Gyu Park
- Department of Internal Medicine, Kyungpook National University School of Medicine, Daegu, 700-721, Republic of Korea
| | - Ki-Hoan Nam
- Laboratory Animal Resource Center, KRIBB, Ochang-eup, 363-883, Republic of Korea
| | - Seung-Hoi Koo
- Division of Life Sciences, Korea University, 145 Anam-Ro, Seongbuk-Gu, Seoul, 136-713, Republic of Korea
| | - Han-Jung Chae
- Department of Pharmacology and New Drug Development Institute, Medical School, Chonbuk National University, Jeonju, 561-181, Republic of Korea
| |
Collapse
|
58
|
Rao PSS, Midde NM, Miller DD, Chauhan S, Kumar A, Kumar S. Diallyl Sulfide: Potential Use in Novel Therapeutic Interventions in Alcohol, Drugs, and Disease Mediated Cellular Toxicity by Targeting Cytochrome P450 2E1. Curr Drug Metab 2016; 16:486-503. [PMID: 26264202 DOI: 10.2174/1389200216666150812123554] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Accepted: 08/05/2015] [Indexed: 12/16/2022]
Abstract
Diallyl sulfide (DAS) and other organosulfur compounds are chief constituents of garlic. These compounds have many health benefits, as they are very efficient in detoxifying natural agents. Therefore, these compounds may be useful for prevention/treatment of cancers. However, DAS has shown appreciable allergic reactions and toxicity, as they can also affect normal cells. Thus their use as in the prevention and treatment of cancer is limited. DAS is a selective inhibitor of cytochrome P450 2E1 (CYP2E1), which is known to metabolize many xenobiotics including alcohol and analgesic drugs in the liver. CYP2E1-mediated alcohol/drug metabolism produce reactive oxygen species and reactive metabolites, which damage DNA, protein, and lipid membranes, subsequently causing liver damage. Several groups have shown that DAS is not only capable of inhibiting alcohol- and drug-mediated cellular toxicities, but also HIV protein- and diabetes-mediated toxicities by selectively inhibiting CYP2E1 in various cell types. However, due to known DAS toxicities, its use as a treatment modality for alcohol/drug- and HIV/diabetes-mediated toxicity have only limited clinical relevance. Therefore, effort is being made to generate DAS analogs, which are potent and selective inhibitor of CYP2E1 and poor substrate of CYP2E1. This review summarizes current advances in the field of DAS, its anticancer properties, role as a CYP2E1 inhibitor, preventing agent of cellular toxicities from alcohol, analgesic drugs, xenobiotics, as well as, from diseases like HIV and diabetes. Finally, this review also provides insights toward developing novel DAS analogues for chemical intervention of many disease conditions by targeting CYP2E1 enzyme.
Collapse
Affiliation(s)
| | | | | | | | | | - Santosh Kumar
- College of Pharmacy, University of Tennessee Health Science Center, 881 Madison Ave, Rm 456, Memphis, TN 38163, USA.
| |
Collapse
|
59
|
Wang X, Tang Y, Lu J, Shao Y, Qin X, Li Y, Wang L, Li D, Liu M. Characterization of novel cytochrome P450 2E1 knockout rat model generated by CRISPR/Cas9. Biochem Pharmacol 2016; 105:80-90. [DOI: 10.1016/j.bcp.2016.03.001] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Accepted: 03/01/2016] [Indexed: 12/26/2022]
|
60
|
Miao L, Yao H, Li C, Pu M, Yao X, Yang H, Qi X, Ren J, Wang Y. A dual inhibition: microRNA-552 suppresses both transcription and translation of cytochrome P450 2E1. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2016; 1859:650-62. [PMID: 26926595 DOI: 10.1016/j.bbagrm.2016.02.016] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2015] [Revised: 02/05/2016] [Accepted: 02/25/2016] [Indexed: 01/22/2023]
Abstract
MicroRNAs (miRNAs) can direct post-transcriptional or transcriptional gene silencing. Here, we report that miR-552 is in the nucleus and cytosol and inhibits human cytochrome P450 (CYP) 2E1 expression at both transcriptional and post-transcriptional levels. MiR-552 via its non-seed sequence forms hybrids with a loop hairpin of the cruciform structure in CYP2E1 promoter region to inhibit SMARCE1 and RNA polymerase II binding to the promoter and CYP2E1 transcription. Expressing SMARCE1 reverses the inhibitory effects of miR-552 on CYP2E1 mRNA expression. MiR-552 with mutations in non-seed region losses its transcriptional, but retains its post-transcriptional repression to CYP2E1. In contrast, mutation in miR-552 seed sequence suppresses its inhibitory effects on CYP2E1 expression at protein, but not at mRNA, levels. Our results suggest that miR-552 is a miRNA with a dual inhibitory ability at transcriptional and post-transcriptional levels leading to an effective inhibition.
Collapse
Affiliation(s)
- Lingling Miao
- Center for Drug Safety Evaluation and Research, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Hailan Yao
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai Institutes of Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Chenggang Li
- Center for Drug Safety Evaluation and Research, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Mengfan Pu
- Center for Drug Safety Evaluation and Research, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Xuan Yao
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai Institutes of Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Hui Yang
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai Institutes of Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Xinming Qi
- Center for Drug Safety Evaluation and Research, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Jin Ren
- Center for Drug Safety Evaluation and Research, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China.
| | - Yizheng Wang
- The Brain Science Center, Beijing Institute of Basic Medical Sciences, 27 Taiping Road, Beijing 100850, China.
| |
Collapse
|
61
|
Song BJ, Akbar M, Jo I, Hardwick JP, Abdelmegeed MA. Translational Implications of the Alcohol-Metabolizing Enzymes, Including Cytochrome P450-2E1, in Alcoholic and Nonalcoholic Liver Disease. ADVANCES IN PHARMACOLOGY 2015; 74:303-72. [PMID: 26233911 DOI: 10.1016/bs.apha.2015.04.002] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Fat accumulation (hepatic steatosis) in alcoholic and nonalcoholic fatty liver disease is a potentially pathologic condition which can progress to steatohepatitis (inflammation), fibrosis, cirrhosis, and carcinogenesis. Many clinically used drugs or some alternative medicine compounds are also known to cause drug-induced liver injury, which can further lead to fulminant liver failure and acute deaths in extreme cases. During liver disease process, certain cytochromes P450 such as the ethanol-inducible cytochrome P450-2E1 (CYP2E1) and CYP4A isozymes can be induced and/or activated by alcohol and/or high-fat diets and pathophysiological conditions such as fasting, obesity, and diabetes. Activation of these P450 isozymes, involved in the metabolism of ethanol, fatty acids, and various drugs, can produce reactive oxygen/nitrogen species directly and/or indirectly, contributing to oxidative modifications of DNA/RNA, proteins and lipids. In addition, aldehyde dehydrogenases including the mitochondrial low Km aldehyde dehydrogenase-2 (ALDH2), responsible for the metabolism of acetaldehyde and lipid aldehydes, can be inactivated by various hepatotoxic agents. These highly reactive acetaldehyde and lipid peroxides, accumulated due to ALDH2 suppression, can interact with cellular macromolecules DNA/RNA, lipids, and proteins, leading to suppression of their normal function, contributing to DNA mutations, endoplasmic reticulum stress, mitochondrial dysfunction, steatosis, and cell death. In this chapter, we specifically review the roles of the alcohol-metabolizing enzymes including the alcohol dehydrogenase, ALDH2, CYP2E1, and other enzymes in promoting liver disease. We also discuss translational research opportunities with natural and/or synthetic antioxidants, which can prevent or delay the onset of inflammation and liver disease.
Collapse
Affiliation(s)
- Byoung-Joon Song
- Section of Molecular Pharmacology and Toxicology, Laboratory of Membrane Biochemistry and Biophysics, National Institute on Alcohol Abuse and Alcoholism, Bethesda, Maryland, USA.
| | - Mohammed Akbar
- Section of Molecular Pharmacology and Toxicology, Laboratory of Membrane Biochemistry and Biophysics, National Institute on Alcohol Abuse and Alcoholism, Bethesda, Maryland, USA
| | - Inho Jo
- Department of Molecular Medicine, Ewha Womans University School of Medicine, Seoul, South Korea
| | - James P Hardwick
- Biochemistry and Molecular Pathology in Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown, Ohio, USA
| | - Mohamed A Abdelmegeed
- Section of Molecular Pharmacology and Toxicology, Laboratory of Membrane Biochemistry and Biophysics, National Institute on Alcohol Abuse and Alcoholism, Bethesda, Maryland, USA
| |
Collapse
|
62
|
Carr RM, Correnti J. Insulin resistance in clinical and experimental alcoholic liver disease. Ann N Y Acad Sci 2015; 1353:1-20. [PMID: 25998863 DOI: 10.1111/nyas.12787] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Alcoholic liver disease (ALD) is the number one cause of liver failure worldwide; its management costs billions of healthcare dollars annually. Since the advent of the obesity epidemic, insulin resistance (IR) and diabetes have become common clinical findings in patients with ALD; and the development of IR predicts the progression from simple steatosis to cirrhosis in ALD patients. Both clinical and experimental data implicate the impairment of several mediators of insulin signaling in ALD, and experimental data suggest that insulin-sensitizing therapies improve liver histology. This review explores the contribution of impaired insulin signaling in ALD and summarizes the current understanding of the synergistic relationship between alcohol and nutrient excess in promoting hepatic inflammation and disease.
Collapse
Affiliation(s)
- Rotonya M Carr
- Division of Gastroenterology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Jason Correnti
- Division of Gastroenterology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| |
Collapse
|
63
|
Cai Z, Jiang X, Pan Y, Chen L, Zhang L, Zhu K, Cai Y, Ling Y, Chen F, Xu X, Chen M. Transcriptomic analysis of hepatic responses to testosterone deficiency in miniature pigs fed a high-cholesterol diet. BMC Genomics 2015; 16:59. [PMID: 25887406 PMCID: PMC4328429 DOI: 10.1186/s12864-015-1283-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2014] [Accepted: 01/26/2015] [Indexed: 12/15/2022] Open
Abstract
Background Recent studies have indicated that low serum testosterone levels are associated with increased risk of developing hepatic steatosis; however, the mechanisms mediating this phenomenon have not been fully elucidated. To gain insight into the role of testosterone in modulating hepatic steatosis, we investigated the effects of testosterone on the development of hepatic steatosis in pigs fed a high-fat and high-cholesterol (HFC) diet and profiled hepatic gene expression by RNA-Seq in HFC-fed intact male pigs (IM), castrated male pigs (CM), and castrated male pigs with testosterone replacement (CMT). Results Serum testosterone levels were significantly decreased in CM pigs, and testosterone replacement attenuated castration-induced testosterone deficiency. CM pigs showed increased liver injury accompanied by increased hepatocellular steatosis, inflammation, and elevated serum alanine aminotransferase levels compared with IM pigs. Moreover, serum levels of total cholesterol, low-density lipoprotein cholesterol, and triglycerides were markedly increased in CM pigs. Testosterone replacement decreased serum and hepatic lipid levels and improved liver injury in CM pigs. Compared to IM and CMT pigs, CM pigs had lower serum levels of superoxide dismutase but higher levels of malondialdehyde. Gene expression analysis revealed that upregulated genes in the livers of CM pigs were mainly enriched for genes mediating immune and inflammatory responses, oxidative stress, and apoptosis. Surprisingly, the downregulated genes mainly included those that regulate metabolism-related processes, including fatty acid oxidation, steroid biosynthesis, cholesterol and bile acid metabolism, and glucose metabolism. KEGG analysis showed that metabolic pathways, fatty acid degradation, pyruvate metabolism, the tricarboxylic acid cycle, and the nuclear factor-kappaB signaling pathway were the major pathways altered in CM pigs. Conclusions This study demonstrated that testosterone deficiency aggravated hypercholesterolemia and hepatic steatosis in pigs fed an HFC diet and that these effects could be reversed by testosterone replacement therapy. Impaired metabolic processes, enhanced immune and inflammatory responses, oxidative stress, and apoptosis may contribute to the increased hepatic steatosis induced by testosterone deficiency and an HFC diet. These results deepened our understanding of the molecular mechanisms of testosterone deficiency-induced hepatic steatosis and provided a foundation for future investigations. Electronic supplementary material The online version of this article (doi:10.1186/s12864-015-1283-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Zhaowei Cai
- Laboratory Animal Research Center, Zhejiang Chinese Medical University, Hangzhou, 310053, China.
| | - Xiaoling Jiang
- Department of Cancer Genetics, Roswell Park Cancer Institute, Elm and Carlton Streets, Buffalo, NY, 14263, USA.
| | - Yongming Pan
- Laboratory Animal Research Center, Zhejiang Chinese Medical University, Hangzhou, 310053, China.
| | - Liang Chen
- Laboratory Animal Research Center, Zhejiang Chinese Medical University, Hangzhou, 310053, China.
| | - Lifan Zhang
- College of Animal Science, Nanjing Agricultural University, Nanjing, 310058, China.
| | - Keyan Zhu
- Laboratory Animal Research Center, Zhejiang Chinese Medical University, Hangzhou, 310053, China.
| | - Yueqin Cai
- Laboratory Animal Research Center, Zhejiang Chinese Medical University, Hangzhou, 310053, China.
| | - Yun Ling
- Laboratory Animal Research Center, Zhejiang Chinese Medical University, Hangzhou, 310053, China.
| | - Fangming Chen
- Laboratory Animal Research Center, Zhejiang Chinese Medical University, Hangzhou, 310053, China.
| | - Xiaoping Xu
- Laboratory Animal Research Center, Zhejiang Chinese Medical University, Hangzhou, 310053, China.
| | - Minli Chen
- Laboratory Animal Research Center, Zhejiang Chinese Medical University, Hangzhou, 310053, China.
| |
Collapse
|
64
|
Shemesh A, Wang Y, Yang Y, Yang GS, Johnson DE, Backer JM, Pessin JE, Zong H. Suppression of mTORC1 activation in acid-α-glucosidase-deficient cells and mice is ameliorated by leucine supplementation. Am J Physiol Regul Integr Comp Physiol 2014; 307:R1251-9. [PMID: 25231351 DOI: 10.1152/ajpregu.00212.2014] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Pompe disease is due to a deficiency in acid-α-glucosidase (GAA) and results in debilitating skeletal muscle wasting, characterized by the accumulation of glycogen and autophagic vesicles. Given the role of lysosomes as a platform for mTORC1 activation, we examined mTORC1 activity in models of Pompe disease. GAA-knockdown C2C12 myoblasts and GAA-deficient human skin fibroblasts of infantile Pompe patients were found to have decreased mTORC1 activation. Treatment with the cell-permeable leucine analog L-leucyl-L-leucine methyl ester restored mTORC1 activation. In vivo, Pompe mice also displayed reduced basal and leucine-stimulated mTORC1 activation in skeletal muscle, whereas treatment with a combination of insulin and leucine normalized mTORC1 activation. Chronic leucine feeding restored basal and leucine-stimulated mTORC1 activation, while partially protecting Pompe mice from developing kyphosis and the decline in muscle mass. Leucine-treated Pompe mice showed increased spontaneous activity and running capacity, with reduced muscle protein breakdown and glycogen accumulation. Together, these data demonstrate that GAA deficiency results in reduced mTORC1 activation that is partly responsible for the skeletal muscle wasting phenotype. Moreover, mTORC1 stimulation by dietary leucine supplementation prevented some of the detrimental skeletal muscle dysfunction that occurs in the Pompe disease mouse model.
Collapse
Affiliation(s)
- Adi Shemesh
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, New York
| | - Yichen Wang
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, New York
| | - Yingjuan Yang
- Laboratory of Animal Fat Deposition and Muscle Development, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, People's Republic of China
| | - Gong-She Yang
- Laboratory of Animal Fat Deposition and Muscle Development, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, People's Republic of China
| | - Danielle E Johnson
- Program in Cell Biology, Hospital for Sick Children, Toronto, Ontario, Canada; and
| | - Jonathan M Backer
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, New York
| | - Jeffrey E Pessin
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, New York; Department of Medicine, Albert Einstein College of Medicine, Bronx, New York
| | - Haihong Zong
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, New York; Department of Medicine, Albert Einstein College of Medicine, Bronx, New York
| |
Collapse
|
65
|
Long-term supplementation of umbelliferone and 4-methylumbelliferone alleviates high-fat diet induced hypertriglyceridemia and hyperglycemia in mice. Chem Biol Interact 2014; 216:9-16. [DOI: 10.1016/j.cbi.2014.03.003] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2013] [Revised: 02/27/2014] [Accepted: 03/13/2014] [Indexed: 02/06/2023]
|
66
|
Merkestein M, McTaggart JS, Lee S, Kramer HB, McMurray F, Lafond M, Boutens L, Cox R, Ashcroft FM. Changes in gene expression associated with FTO overexpression in mice. PLoS One 2014; 9:e97162. [PMID: 24842286 PMCID: PMC4026227 DOI: 10.1371/journal.pone.0097162] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2014] [Accepted: 04/14/2014] [Indexed: 01/24/2023] Open
Abstract
Single nucleotide polymorphisms in the first intron of the fat-mass-and-obesity-related gene FTO are associated with increased body weight and adiposity. Increased expression of FTO is likely underlying this obesity phenotype, as mice with two additional copies of Fto (FTO-4 mice) exhibit increased adiposity and are hyperphagic. FTO is a demethylase of single stranded DNA and RNA, and one of its targets is the m6A modification in RNA, which might play a role in the regulation of gene expression. In this study, we aimed to examine the changes in gene expression that occur in FTO-4 mice in order to gain more insight into the underlying mechanisms by which FTO influences body weight and adiposity. Our results indicate an upregulation of anabolic pathways and a downregulation of catabolic pathways in FTO-4 mice. Interestingly, although genes involved in methylation were differentially regulated in skeletal muscle of FTO-4 mice, no effect of FTO overexpression on m6A methylation of total mRNA was detected.
Collapse
Affiliation(s)
- Myrte Merkestein
- Henry Wellcome Centre for Gene Function, Department of Physiology, Anatomy; and Genetics, University of Oxford, Parks Road, Oxford, United Kingdom
| | - James S. McTaggart
- Henry Wellcome Centre for Gene Function, Department of Physiology, Anatomy; and Genetics, University of Oxford, Parks Road, Oxford, United Kingdom
| | - Sheena Lee
- Henry Wellcome Centre for Gene Function, Department of Physiology, Anatomy; and Genetics, University of Oxford, Parks Road, Oxford, United Kingdom
| | - Holger B. Kramer
- Henry Wellcome Centre for Gene Function, Department of Physiology, Anatomy; and Genetics, University of Oxford, Parks Road, Oxford, United Kingdom
| | - Fiona McMurray
- Medical Research Council Harwell, Mammalian Genetics Unit, Harwell Science and Innovation Campus, Harwell, Oxford, United Kingdom
| | - Mathilde Lafond
- Henry Wellcome Centre for Gene Function, Department of Physiology, Anatomy; and Genetics, University of Oxford, Parks Road, Oxford, United Kingdom
| | - Lily Boutens
- Henry Wellcome Centre for Gene Function, Department of Physiology, Anatomy; and Genetics, University of Oxford, Parks Road, Oxford, United Kingdom
| | - Roger Cox
- Medical Research Council Harwell, Mammalian Genetics Unit, Harwell Science and Innovation Campus, Harwell, Oxford, United Kingdom
| | - Frances M. Ashcroft
- Henry Wellcome Centre for Gene Function, Department of Physiology, Anatomy; and Genetics, University of Oxford, Parks Road, Oxford, United Kingdom
- * E-mail:
| |
Collapse
|
67
|
Wang JJ, Zhao R, Liang JC, Chen Y. Antidiabetic and Anti-oxidative Effects of Honokiol on Diabetic Rats Induced by High-fat Diet and Streptozotocin. CHINESE HERBAL MEDICINES 2014. [DOI: 10.1016/s1674-6384(14)60005-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
|
68
|
Duale N, Steffensen IL, Andersen J, Brevik A, Brunborg G, Lindeman B. Impaired sperm chromatin integrity in obese mice. Andrology 2014; 2:234-43. [DOI: 10.1111/j.2047-2927.2013.00178.x] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2013] [Revised: 11/29/2013] [Accepted: 12/02/2013] [Indexed: 12/27/2022]
Affiliation(s)
- N. Duale
- Division of Environmental Medicine; Norwegian Institute of Public Health; Oslo Norway
| | - I.-L. Steffensen
- Division of Environmental Medicine; Norwegian Institute of Public Health; Oslo Norway
| | - J. Andersen
- Division of Environmental Medicine; Norwegian Institute of Public Health; Oslo Norway
| | - A. Brevik
- Faculty of Health Sciences; Oslo and Akershus University College of Applied Sciences; Oslo Norway
| | - G. Brunborg
- Division of Environmental Medicine; Norwegian Institute of Public Health; Oslo Norway
| | - B. Lindeman
- Division of Environmental Medicine; Norwegian Institute of Public Health; Oslo Norway
| |
Collapse
|
69
|
Zhou R, Lin J, Wu D. Sulforaphane induces Nrf2 and protects against CYP2E1-dependent binge alcohol-induced liver steatosis. BIOCHIMICA ET BIOPHYSICA ACTA 2014; 1840:209-18. [PMID: 24060752 PMCID: PMC3859691 DOI: 10.1016/j.bbagen.2013.09.018] [Citation(s) in RCA: 76] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2013] [Revised: 08/22/2013] [Accepted: 09/11/2013] [Indexed: 02/07/2023]
Abstract
BACKGROUND The mechanism(s) by which alcohol causes cell injury are still not clear but a major mechanism appears to be the role of lipid peroxidation and oxidative stress in alcohol toxicity. CYP2E1-generated ROS contributes to the ethanol-induced oxidant stress and inhibition of CYP2E1 activity decreases ethanol-induced fatty liver. The transcription factor Nrf2 regulates the expression of many cytoprotective enzymes which results in cellular protection against a variety of toxins. METHOD The current study was designed to evaluate the ability of sulforaphane, an activator of Nrf2, to blunt CYP2E1-dependent, ethanol-induced steatosis in vivo and in vitro. RESULTS The sulforaphane treatment activated Nrf2, increased levels of the Nrf2 target heme oxygenase-1 and subsequently lowered oxidant stress as shown by the decline in lipid peroxidation and 3-nitrotyrosine protein adducts and an increase in GSH levels after the acute ethanol treatment. It decreased ethanol-elevated liver levels of triglycerides and cholesterol and Oil Red O staining. Similar results were found in vitro as addition of sulforaphane to HepG2 E47 cells, which express CYP2E1, elevated Nrf2 levels and decreased the accumulation of lipid in cells cultured with ethanol. Sulforaphane treatment had no effect on levels of or activity of CYP2E1. CONCLUSIONS Sulforaphane proved to be an effective in vivo inhibitor of acute ethanol-induced fatty liver in mice. GENERAL SIGNIFICANCE The possible amelioration of liver injury which occurs under these conditions by chemical activators of Nrf2 is of clinical relevance and worthy of further study.
Collapse
Affiliation(s)
- Richard Zhou
- Depetment of Pharmacology and Systems Therapeutics, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - Jianjun Lin
- Liver Disease Center, Xiamen Chinese Medicine Hospital, Fujian Chinese Medicine University, Xiamen, China
| | - Defeng Wu
- Depetment of Pharmacology and Systems Therapeutics, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| |
Collapse
|
70
|
Non-alcoholic steatohepatitis and hepatocellular carcinoma: implications for lycopene intervention. Nutrients 2013; 6:124-62. [PMID: 24379011 PMCID: PMC3916853 DOI: 10.3390/nu6010124] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2013] [Revised: 12/09/2013] [Accepted: 12/11/2013] [Indexed: 02/06/2023] Open
Abstract
Increased prevalence of non-alcoholic fatty liver disease (NAFLD) is one of the consequences of the current obesity epidemic. NAFLD is a major form of chronic liver disease that is highly prevalent in obese and overweight adults and children. Nonalcoholic steatohepatitis (NASH) is the severe form of NAFLD, and uncontrolled inflammation as displayed in NASH has been identified as one of the key events in enhancing hepatic carcinogenesis. Lycopene is a non-provitamin A carotenoid and the pigment principally responsible for the characteristic deep-red color of ripe tomato and tomato products, as well as some fruits and vegetables. Lycopene's innate antioxidant and anti-inflammatory properties have generated research interests on its capacity to protect against human diseases that are associated with oxidative stress and inflammation. In addition, differential mechanisms of lycopene metabolism including endogenous cleavage by carotenoid cleavage oxygenases (BCOs), generate lycopene metabolites that may also have significant impact on human disease development. However, it remains to be elucidated as to whether lycopene or its metabolites apolycopenoids have protective effects against obesity-related complications including inflammation and tumorigenesis. This article summarizes the in vivo experiments that elucidated molecular mechanisms associated with obesity-related hepatic inflammation and carcinogenesis. This review also provides an overview of lycopene metabolism, and the molecular pathways involved in the potential beneficial properties of lycopene and apolycopenoids. More research is clearly needed to fully unravel the importance of BCOs in tomato carotenoid metabolism and the consequence on human health and diseases.
Collapse
|
71
|
Abdelmegeed MA, Banerjee A, Jang S, Yoo SH, Yun JW, Gonzalez FJ, Keshavarzian A, Song BJ. CYP2E1 potentiates binge alcohol-induced gut leakiness, steatohepatitis, and apoptosis. Free Radic Biol Med 2013; 65:1238-1245. [PMID: 24064383 PMCID: PMC3859835 DOI: 10.1016/j.freeradbiomed.2013.09.009] [Citation(s) in RCA: 147] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2013] [Revised: 09/12/2013] [Accepted: 09/17/2013] [Indexed: 02/07/2023]
Abstract
Ethanol-inducible cytochrome P450 2E1 (CYP2E1) contributes to increased oxidative stress and steatosis in chronic alcohol-exposure models. However, its role in binge ethanol-induced gut leakiness and hepatic injury is unclear. This study was aimed at investigating the role of CYP2E1 in binge alcohol-induced gut leakiness and the mechanisms of steatohepatitis. Female wild-type (WT) and Cyp2e1-null mice were treated with three doses of binge ethanol (WT-EtOH or Cyp2e1-null-EtOH) (6g/kg oral gavage at 12-h intervals) or dextrose (negative control). Intestinal histology of only WT-EtOH exhibited epithelial alteration and blebbing of lamina propria, and liver histology obtained at 6h after the last ethanol dose showed elevated steatosis with scattered inflammatory foci. These were accompanied by increased levels of serum endotoxin, hepatic enterobacteria, and triglycerides. All these changes, including the intestinal histology and hepatic apoptosis, determined by TUNEL assay, were significantly reversed when WT-EtOH mice were treated with the specific inhibitor of CYP2E1 chlormethiazole and the antioxidant N-acetylcysteine, both of which suppressed oxidative markers including intestinal CYP2E1. WT-EtOH also exhibited elevated amounts of serum TNF-α, hepatic cytokines, CYP2E1, and lipid peroxidation, with decreased levels of mitochondrial superoxide dismutase and suppressed aldehyde dehydrogenase 2 activity. Increased hepatocyte apoptosis with elevated levels of proapoptotic proteins and decreased levels of active (phosphorylated) p-AKT, p-AMPK, and peroxisome proliferator-activated receptor-α, all of which are involved in fat metabolism and inflammation, were observed in WT-EtOH. These changes were significantly attenuated in the corresponding Cyp2e1-null-EtOH mice. These data indicate that both intestinal and hepatic CYP2E1 induced by binge alcohol seems critical in binge alcohol-mediated increased nitroxidative stress, gut leakage, and endotoxemia; altered fat metabolism; and inflammation contributing to hepatic apoptosis and steatohepatitis.
Collapse
Affiliation(s)
- Mohamed A Abdelmegeed
- Laboratory of Membrane Biochemistry and Biophysics, National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD 20892-9410, USA
| | - Atrayee Banerjee
- Laboratory of Membrane Biochemistry and Biophysics, National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD 20892-9410, USA
| | - Sehwan Jang
- Laboratory of Membrane Biochemistry and Biophysics, National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD 20892-9410, USA
| | - Seong-Ho Yoo
- Department of Forensic Medicine, Seoul National University College of Medicine, Seoul, South Korea
| | - Jun-Won Yun
- Laboratory of Membrane Biochemistry and Biophysics, National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD 20892-9410, USA
| | - Frank J Gonzalez
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Ali Keshavarzian
- Division of Gastroenterology, Rush University Medical Center, Chicago, IL 60612, USA
| | - Byoung-Joon Song
- Laboratory of Membrane Biochemistry and Biophysics, National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD 20892-9410, USA.
| |
Collapse
|
72
|
Nteeba J, Ross JW, Perfield JW, Keating AF. High fat diet induced obesity alters ovarian phosphatidylinositol-3 kinase signaling gene expression. Reprod Toxicol 2013; 42:68-77. [PMID: 23954404 DOI: 10.1016/j.reprotox.2013.07.026] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2013] [Revised: 07/29/2013] [Accepted: 07/31/2013] [Indexed: 12/17/2022]
Abstract
Insulin regulates ovarian phosphatidylinositol-3-kinase (PI3 K) signaling, important for primordial follicle viability and growth activation. This study investigated diet-induced obesity impacts on: (1) insulin receptor (Insr) and insulin receptor substrate 1 (Irs1); (2) PI3K components (Kit ligand (Kitlg), kit (c-Kit), protein kinase B alpha (Akt1) and forkhead transcription factor subfamily 3 (Foxo3a)); (3) xenobiotic biotransformation (microsomal epoxide hydrolase (Ephx1), Cytochrome P450 isoform 2E1 (Cyp2e1), Glutathione S-transferase (Gst) isoforms mu (Gstm) and pi (Gstp)) and (4) microRNA's 184, 205, 103 and 21 gene expression. INSR, GSTM and GSTP protein levels were also measured. Obese mouse ovaries had decreased Irs1, Foxo3a, Cyp2e1, MiR-103, and MiR-21 but increased Kitlg, Akt1, and miR-184 levels relative to lean littermates. These results support that diet-induced obesity potentially impairs ovarian function through aberrant gene expression.
Collapse
Affiliation(s)
- J Nteeba
- Department of Animal Science, Iowa State University, Ames, IA 50011, USA.
| | | | | | | |
Collapse
|
73
|
In vitro and in vivo models of non-alcoholic fatty liver disease (NAFLD). Int J Mol Sci 2013; 14:11963-80. [PMID: 23739675 PMCID: PMC3709766 DOI: 10.3390/ijms140611963] [Citation(s) in RCA: 169] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2013] [Revised: 05/17/2013] [Accepted: 05/22/2013] [Indexed: 12/28/2022] Open
Abstract
By now, non-alcoholic fatty liver disease (NAFLD) is considered to be among the most common liver diseases world-wide. NAFLD encompasses a broad spectrum of pathological conditions ranging from simple steatosis to steatohepatitis, fibrosis and finally even cirrhosis; however, only a minority of patients progress to end-stages of the disease, and the course of the disease progression to the later stages seems to be slow, developing progressively over several years. Key risk factors including overweight, insulin resistance, a sedentary life-style and an altered dietary pattern, as well as genetic factors and disturbances of the intestinal barrier function have been identified in recent years. Despite intense research efforts that lead to the identification of these risk factors, knowledge about disease initiation and molecular mechanisms involved in progression is still limited. This review summarizes diet-induced and genetic animal models, as well as cell culture models commonly used in recent years to add to the understanding of the mechanisms involved in NAFLD, also referring to their advantages and disadvantages.
Collapse
|
74
|
Lee TWA, Kwon H, Zong H, Yamada E, Vatish M, Pessin JE, Bastie CC. Fyn deficiency promotes a preferential increase in subcutaneous adipose tissue mass and decreased visceral adipose tissue inflammation. Diabetes 2013; 62:1537-46. [PMID: 23321073 PMCID: PMC3636609 DOI: 10.2337/db12-0920] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Previous studies have demonstrated that Fyn knockout (FynKO) mice on a standard chow diet display increased glucose clearance and whole-body insulin sensitivity associated with decreased adiposity resulting from increased fatty acid use and energy expenditure. Surprisingly, however, despite a similar extent of adipose tissue (AT) mass accumulation on a high-fat diet, the FynKO mice remained fully glucose tolerant and insulin sensitive. Physiologic analyses demonstrated that the FynKO mice had a combination of skewed AT expansion into the subcutaneous compartment rather than to the visceral depot, reduced AT inflammation associated with reduced T-cell and macrophage infiltration, and increased proportion of anti-inflammatory M2 macrophages. These data demonstrate that Fyn is an important regulator of whole-body integrative metabolism that coordinates AT expansion, inflammation, and insulin sensitivity in states of nutrient excess. These data further suggest that inhibition of Fyn function may provide a novel target to prevent AT inflammation, insulin resistance, and the dyslipidemia components of the metabolic syndrome.
Collapse
Affiliation(s)
- Ting-Wen A. Lee
- Department of Medicine and Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, New York
- Division of Pediatric Endocrinology, Department of Pediatrics, Children’s Hospital at Montefiore, Bronx, New York
| | - Hyokjoon Kwon
- Department of Medicine and Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, New York
| | - Haihong Zong
- Department of Medicine and Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, New York
| | - Eijiro Yamada
- Department of Medicine and Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, New York
- Department of Medicine and Molecular Science, Gunma University Graduate School of Medicine, Gunma, Japan
| | - Manu Vatish
- Clinical Sciences Research Institute, Warwick Medical School, University of Warwick, Coventry, U.K
| | - Jeffrey E. Pessin
- Department of Medicine and Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, New York
| | - Claire C. Bastie
- Department of Medicine and Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, New York
- Division of Metabolic and Vascular Health, Warwick Medical School, University of Warwick, Coventry, U.K
- Corresponding author: Claire C. Bastie,
| |
Collapse
|
75
|
Leung TM, Nieto N. CYP2E1 and oxidant stress in alcoholic and non-alcoholic fatty liver disease. J Hepatol 2013; 58:395-8. [PMID: 22940046 DOI: 10.1016/j.jhep.2012.08.018] [Citation(s) in RCA: 360] [Impact Index Per Article: 32.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2012] [Revised: 07/30/2012] [Accepted: 08/05/2012] [Indexed: 12/20/2022]
Abstract
Alcoholic (ALD) and non-alcoholic fatty liver diseases (NAFLD) are clinical conditions leading to hepatocellular injury and inflammation resulting from alcohol consumption, high fat diet, obesity and diabetes, among others. Oxidant stress is a major contributing factor to the pathogenesis of ALD and NAFLD. Multiple studies have shown that generation of reactive oxygen species (ROS) is key for the progression of fatty liver to steatohepatitis. Cytochrome P450 2E1 (CYP2E1) plays a critical role in ROS generation and CYP2E1 is also induced by alcohol itself. This review summarizes the role of CYP2E1 in ALD and NAFLD.
Collapse
Affiliation(s)
- Tung-Ming Leung
- Division of Liver Diseases, Department of Medicine, Mount Sinai School of Medicine, New York, NY 10029, USA
| | | |
Collapse
|
76
|
Abstract
Non-alcoholic fatty liver disease (NAFLD) and its progression to steatohepatitis (NASH) and cirrhosis is a growing problem in most developed countries. Increased hepatic expression of CYP2E1, which carries out omega hydroxylation of fatty acids, was first shown in a mouse model of NASH and this was later also reported for human NASH, though not all studies agree with this finding and further larger studies are still needed. In view of its role in fatty acid metabolism which leads to increased levels of toxic lipid peroxides and its possible increased expression in NASH, CYP2E1 is an attractive candidate for a role as a genetic risk factor for both NAFLD generally including progression to NASH. Two studies have focused on the variant allele CYP2E1*5, which may be associated with increased CYP2E1 expression. Both reported increased frequencies of this allele in NASH patients, though statistical significance was not achieved because of small sample sizes. Some more indirect data also suggests a relationship between high CYP2E1 activity and progression to NASH. However, three recent genome-wide association studies on NAFLD have failed to find any evidence that single nucleotide polymorphisms in or adjacent to the CYP2E1 gene contribute to susceptibility. Further studies are needed to investigate a possible role in disease progression in addition to susceptibility and the possibility that statistical power in the existing studies was insufficient to detect a relatively small contribution to disease susceptibility.
Collapse
Affiliation(s)
- Ann K Daly
- Institute of Cellular Medicine, Newcastle University Medical School, Framlington Place, NE2 4HH, Newcastle upon Tyne, UK,
| |
Collapse
|
77
|
Almon RR, Dubois DC, Sukumaran S, Wang X, Xue B, Nie J, Jusko WJ. Effects of high fat feeding on liver gene expression in diabetic goto-kakizaki rats. GENE REGULATION AND SYSTEMS BIOLOGY 2012; 6:151-68. [PMID: 23236253 PMCID: PMC3516129 DOI: 10.4137/grsb.s10371] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Effects of high fat diet (HFD) on obesity and, subsequently, on diabetes are highly variable and modulated by genetics in both humans and rodents. In this report, we characterized the response of Goto-Kakizaki (GK) rats, a spontaneous polygenic model for lean diabetes and healthy Wistar-Kyoto (WKY) controls, to high fat feeding from weaning to 20 weeks of age. Animals fed either normal diet or HFD were sacrificed at 4, 8, 12, 16 and 20 weeks of age and a wide array of physiological measurements were made along with gene expression profiling using Affymetrix gene array chips. Mining of the microarray data identified differentially regulated genes (involved in inflammation, metabolism, transcription regulation, and signaling) in diabetic animals, as well as the response of both strains to HFD. Functional annotation suggested that HFD increased inflammatory differences between the two strains. Chronic inflammation driven by heightened innate immune response was identified to be present in GK animals regardless of diet. In addition, compensatory mechanisms by which WKY animals on HFD resisted the development of diabetes were identified, thus illustrating the complexity of diabetes disease progression.
Collapse
Affiliation(s)
- Richard R Almon
- Department of Biological Sciences, State University of New York at Buffalo, Buffalo, NY, USA. ; Department of Pharmaceutical Sciences, State University of New York at Buffalo, Buffalo, NY, USA. ; New York State Center of Excellence in Bioinformatics and Life Sciences
| | | | | | | | | | | | | |
Collapse
|
78
|
Abdelmegeed MA, Banerjee A, Yoo SH, Jang S, Gonzalez FJ, Song BJ. Critical role of cytochrome P450 2E1 (CYP2E1) in the development of high fat-induced non-alcoholic steatohepatitis. J Hepatol 2012; 57:860-6. [PMID: 22668639 PMCID: PMC3445664 DOI: 10.1016/j.jhep.2012.05.019] [Citation(s) in RCA: 191] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2012] [Revised: 05/22/2012] [Accepted: 05/25/2012] [Indexed: 02/06/2023]
Abstract
BACKGROUND & AIMS Ethanol-inducible cytochrome P450 2E1 (CYP2E1) activity contributes to oxidative stress. However, CYP2E1 may have an important role in the pathogenesis of high-fat mediated non-alcoholic steatohepatitis (NASH). Thus, the role of CYP2E1 in high-fat mediated NASH development was evaluated. METHODS Male wild type (WT) and Cyp2e1-null mice were fed a low-fat diet (LFD, 10% energy-derived) or a high-fat diet (HFD, 60% energy-derived) for 10 weeks. Liver histology and tissue homogenates were examined for various parameters of oxidative stress and inflammation. RESULTS Liver histology showed that only WT mice fed a HFD developed NASH despite the presence of increased steatosis in both WT and Cyp2e1-null mice fed HFD. Markers of oxidative stress such as elevated CYP2E1 activity and protein amounts, lipid peroxidation, protein carbonylation, nitration, and glycation with increased phospho-JNK were all markedly elevated only in the livers of HFD-fed WT mice. Furthermore, while the levels of inflammation markers osteopontin and F4/80 were higher in HFD-fed WT mice, TNFα and MCP-1 levels were lower compared to the corresponding LFD-fed WT. Finally, only HFD-fed WT mice exhibited increased insulin resistance and impaired glucose tolerance. CONCLUSIONS These data suggest that CYP2E1 is critically important in NASH development by promoting oxidative/nitrosative stress, protein modifications, inflammation, and insulin resistance.
Collapse
Affiliation(s)
- Mohamed A. Abdelmegeed
- Laboratory of Membrane Biochemistry and Biophysics, National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD, USA
| | - Atrayee Banerjee
- Laboratory of Membrane Biochemistry and Biophysics, National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD, USA
| | - Seong-Ho Yoo
- Laboratory of Membrane Biochemistry and Biophysics, National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD, USA,Department of Forensic Medicine, Seoul National University College of Medicine, Seoul, Korea
| | - Sehwan Jang
- Laboratory of Membrane Biochemistry and Biophysics, National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD, USA
| | - Frank J. Gonzalez
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Byoung-Joon Song
- Laboratory of Membrane Biochemistry and Biophysics, National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD, USA
| |
Collapse
|
79
|
Liu S, Liu Q, Sun S, Jiang Q, Peng J, Shen Z. The application of 2-NBDG as a fluorescent tracer for assessing hepatic glucose production in mice during hyperinsulinemic euglycemic clamp. Acta Pharm Sin B 2012. [DOI: 10.1016/j.apsb.2012.06.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
|
80
|
Fernández AI, Pérez-Montarelo D, Barragán C, Ramayo-Caldas Y, Ibáñez-Escriche N, Castelló A, Noguera JL, Silió L, Folch JM, Rodríguez MC. Genome-wide linkage analysis of QTL for growth and body composition employing the PorcineSNP60 BeadChip. BMC Genet 2012; 13:41. [PMID: 22607048 PMCID: PMC3432624 DOI: 10.1186/1471-2156-13-41] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2012] [Accepted: 04/30/2012] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND The traditional strategy to map QTL is to use linkage analysis employing a limited number of markers. These analyses report wide QTL confidence intervals, making very difficult to identify the gene and polymorphisms underlying the QTL effects. The arrival of genome-wide panels of SNPs makes available thousands of markers increasing the information content and therefore the likelihood of detecting and fine mapping QTL regions. The aims of the current study are to confirm previous QTL regions for growth and body composition traits in different generations of an Iberian x Landrace intercross (IBMAP) and especially identify new ones with narrow confidence intervals by employing the PorcineSNP60 BeadChip in linkage analyses. RESULTS Three generations (F3, Backcross 1 and Backcross 2) of the IBMAP and their related animals were genotyped with PorcineSNP60 BeadChip. A total of 8,417 SNPs equidistantly distributed across autosomes were selected after filtering by quality, position and frequency to perform the QTL scan. The joint and separate analyses of the different IBMAP generations allowed confirming QTL regions previously identified in chromosomes 4 and 6 as well as new ones mainly for backfat thickness in chromosomes 4, 5, 11, 14 and 17 and shoulder weight in chromosomes 1, 2, 9 and 13; and many other to the chromosome-wide signification level. In addition, most of the detected QTLs displayed narrow confidence intervals, making easier the selection of positional candidate genes. CONCLUSIONS The use of higher density of markers has allowed to confirm results obtained in previous QTL scans carried out with microsatellites. Moreover several new QTL regions have been now identified in regions probably not covered by markers in previous scans, most of these QTLs displayed narrow confidence intervals. Finally, prominent putative biological and positional candidate genes underlying those QTL effects are listed based on recent porcine genome annotation.
Collapse
Affiliation(s)
- Ana I Fernández
- Departamento de Mejora Genética Animal, INIA, Ctra, De la Coruña km, 7, Madrid, 28040, Spain.
| | | | | | | | | | | | | | | | | | | |
Collapse
|