51
|
Zhang X, Deeke SA, Ning Z, Starr AE, Butcher J, Li J, Mayne J, Cheng K, Liao B, Li L, Singleton R, Mack D, Stintzi A, Figeys D. Metaproteomics reveals associations between microbiome and intestinal extracellular vesicle proteins in pediatric inflammatory bowel disease. Nat Commun 2018; 9:2873. [PMID: 30030445 PMCID: PMC6054643 DOI: 10.1038/s41467-018-05357-4] [Citation(s) in RCA: 173] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Accepted: 06/29/2018] [Indexed: 12/16/2022] Open
Abstract
Alterations in gut microbiota have been implicated in the pathogenesis of inflammatory bowel disease (IBD), however factors that mediate the host–microbiota interactions remain largely unknown. Here we collected mucosal-luminal interface samples from a pediatric IBD inception cohort and characterized both the human and microbiota proteins using metaproteomics. We show that microbial proteins related to oxidative stress responses are upregulated in IBD cases compared to controls. In particular, we demonstrate that the expression of human proteins related to oxidative antimicrobial activities is increased in IBD cases and correlates with the alteration of microbial functions. Additionally, we reveal that many of these human proteins are present and show altered abundance in isolated free extracellular vesicles (EVs). Therefore, our study suggests that the alteration of intestinal EV proteomes is associated with the aberrant host–microbiota interactions in IBD. Gut microbial dysbiosis has been implicated in the pathogenesis of inflammatory bowel disease. Here, the authors examine host-microbiota protein interactions that occur in inflammatory bowel disease; they show an upregulation in proteins related to antimicrobial activities, and alterations in intestinal extracellular vesicles that are associated with aberrant microbiota-interactions.
Collapse
Affiliation(s)
- Xu Zhang
- Ottawa Institute of Systems Biology and Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, 451 Smyth Road, Ottawa, ON, K1H 8M5, Canada
| | - Shelley A Deeke
- Ottawa Institute of Systems Biology and Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, 451 Smyth Road, Ottawa, ON, K1H 8M5, Canada
| | - Zhibin Ning
- Ottawa Institute of Systems Biology and Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, 451 Smyth Road, Ottawa, ON, K1H 8M5, Canada
| | - Amanda E Starr
- Ottawa Institute of Systems Biology and Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, 451 Smyth Road, Ottawa, ON, K1H 8M5, Canada
| | - James Butcher
- Ottawa Institute of Systems Biology and Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, 451 Smyth Road, Ottawa, ON, K1H 8M5, Canada
| | - Jennifer Li
- Ottawa Institute of Systems Biology and Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, 451 Smyth Road, Ottawa, ON, K1H 8M5, Canada
| | - Janice Mayne
- Ottawa Institute of Systems Biology and Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, 451 Smyth Road, Ottawa, ON, K1H 8M5, Canada
| | - Kai Cheng
- Ottawa Institute of Systems Biology and Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, 451 Smyth Road, Ottawa, ON, K1H 8M5, Canada
| | - Bo Liao
- Ottawa Institute of Systems Biology and Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, 451 Smyth Road, Ottawa, ON, K1H 8M5, Canada
| | - Leyuan Li
- Ottawa Institute of Systems Biology and Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, 451 Smyth Road, Ottawa, ON, K1H 8M5, Canada
| | - Ruth Singleton
- Department of Paediatrics, Faculty of Medicine, University of Ottawa and Children's Hospital of Eastern Ontario Inflammatory Bowel Disease Centre and Research Institute, 401 Smyth Road, Ottawa, ON, K1H 8L1, Canada
| | - David Mack
- Department of Paediatrics, Faculty of Medicine, University of Ottawa and Children's Hospital of Eastern Ontario Inflammatory Bowel Disease Centre and Research Institute, 401 Smyth Road, Ottawa, ON, K1H 8L1, Canada.
| | - Alain Stintzi
- Ottawa Institute of Systems Biology and Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, 451 Smyth Road, Ottawa, ON, K1H 8M5, Canada.
| | - Daniel Figeys
- Ottawa Institute of Systems Biology and Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, 451 Smyth Road, Ottawa, ON, K1H 8M5, Canada. .,Department of Chemistry and Biomolecular Sciences, University of Ottawa, 10 Marie Curie, Ottawa, ON, K1N 6N5, Canada. .,Canadian Institute for Advanced Research, 661 University Ave, Toronto, ON, M5G 1M1, Canada.
| |
Collapse
|
52
|
Wang Y, Zhou J, Wang G, Cai S, Zeng X, Qiao S. Advances in low-protein diets for swine. J Anim Sci Biotechnol 2018; 9:60. [PMID: 30034802 PMCID: PMC6052556 DOI: 10.1186/s40104-018-0276-7] [Citation(s) in RCA: 137] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2017] [Accepted: 06/21/2018] [Indexed: 12/20/2022] Open
Abstract
Recent years have witnessed the great advantages of reducing dietary crude protein (CP) with free amino acids (AA) supplementation for sustainable swine industry, including saving protein ingredients, reducing nitrogen excretion, feed costs and the risk of gut disorders without impairing growth performance compared to traditional diets. However, a tendency toward increased fatness is a matter of concern when pigs are fed low-protein (LP) diets. In response, the use of the net energy system and balanced AA for formulation of LP diets has been proposed as a solution. Moreover, the extent to which dietary CP can be reduced is complicated. Meanwhile, the requirements for the first five limiting AA (lysine, threonine, sulfur-containing AA, tryptophan, and valine) that growing-finishing pigs fed LP diets were higher than pigs fed traditional diets, because the need for nitrogen for endogenous synthesis of non-essential AA to support protein synthesis may be increased when dietary CP is lowered. Overall, to address these concerns and give a better understanding of this nutritional strategy, this paper reviews recent advances in the study of LP diets for swine and provides some insights into future research directions.
Collapse
Affiliation(s)
- Yuming Wang
- 1State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193 China.,2Beijing Key Laboratory of Biological Feed Additive, China Agricultural University, Beijing, 100193 China
| | - Junyan Zhou
- 1State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193 China.,2Beijing Key Laboratory of Biological Feed Additive, China Agricultural University, Beijing, 100193 China
| | - Gang Wang
- 1State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193 China.,2Beijing Key Laboratory of Biological Feed Additive, China Agricultural University, Beijing, 100193 China
| | - Shuang Cai
- 1State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193 China.,2Beijing Key Laboratory of Biological Feed Additive, China Agricultural University, Beijing, 100193 China
| | - Xiangfang Zeng
- 1State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193 China.,2Beijing Key Laboratory of Biological Feed Additive, China Agricultural University, Beijing, 100193 China
| | - Shiyan Qiao
- 1State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193 China.,2Beijing Key Laboratory of Biological Feed Additive, China Agricultural University, Beijing, 100193 China
| |
Collapse
|
53
|
Xu T, Alharthi ASM, Batistel F, Helmbrecht A, Parys C, Trevisi E, Shen X, Loor JJ. Hepatic phosphorylation status of serine/threonine kinase 1, mammalian target of rapamycin signaling proteins, and growth rate in Holstein heifer calves in response to maternal supply of methionine. J Dairy Sci 2018; 101:8476-8491. [PMID: 29908807 DOI: 10.3168/jds.2018-14378] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Accepted: 04/24/2018] [Indexed: 12/23/2022]
Abstract
The study investigated whether methionine supply during late pregnancy is associated with liver mammalian target of rapamycin (MTOR) pathway phosphorylation, plasma biomarkers, and growth in heifer calves born to cows fed a control diet (CON) or the control diet plus ethylcellulose rumen-protected methionine (MET; 0.09% of dry matter intake) for the last 28 d prepartum. Calves were fed and managed similarly during the first 56 d of age. Plasma was harvested at birth and 2, 7, 21, 42, and 50 d of age and was used for biomarker profiling. Liver biopsies were harvested at 4, 14, 28, and 50 d of age and used for protein expression. Body weight, hip height, hip width, wither height, body length, rectal temperature, fecal score, and respiratory score were measured weekly. Starter intake was measured daily, and average daily gain was calculated during the first 8 wk of age. During the first 7 wk of age, compared with calves in the CON group, calves in the MET group had greater body weight, hip height, wither height, and average daily gain despite similar daily starter intake. Concentration of methionine in plasma was lower at birth but increased markedly at 2 and 7 d of age in MET calves. Plasma insulin, glucose, free fatty acids, and hydroxybutyrate did not differ. A greater ratio of phosphorylated α-serine/threonine kinase (AKT):total AKT protein expression was detected in MET calves, namely due to differences at 4 d of age. The phosphorylated MTOR:total MTOR ratio also was greater in MET calves due to differences at 28 and 50 d (8 d postweaning). The decrease in phosphorylated MTOR:total MTOR between 14 and 28 d in CON calves agreed with the increase in phosphorylated eukaryotic translation initiation factor 4E binding protein 1 (EIF4EBP1):total EIF4EBP1 ratio during the same time frame. The overall expression of phosphorylated ribosomal protein S6 kinase B1 (RPS6KB1):total RPS6KB1 and phosphorylated eukaryotic translation elongation factor 2 (EEF2):total EEF2 was lower in MET calves. Regardless of methionine supply prepartum, there was an 11-fold temporal decrease from 4 to 50 d in phosphorylated AKT:total AKT. Similarly, regardless of methionine supply, there were overall decreases in phosphorylation ratios of AKT, MTOR, RPS6KB1, and eukaryotic translation initiation factor 2A (EIF2A) over time. Data provide evidence of a positive effect of methionine supply during the last month of pregnancy on rates of growth during the first 7 wk of age. Phosphorylation status of some components of the MTOR pathway in neonatal calf liver also was associated with greater maternal supply of methionine. Thus, the data suggest that molecular mechanisms in the liver might be programmed by supply of methionine during late pregnancy. The exact mechanisms coordinating the observed responses remain to be determined.
Collapse
Affiliation(s)
- T Xu
- Department of Animal Sciences and Division of Nutritional Sciences, University of Illinois, Urbana 61801; College of Veterinary Medicine, Nanjing Agricultural University, 210095 Nanjing, PR China
| | - A S M Alharthi
- Department of Animal Sciences and Division of Nutritional Sciences, University of Illinois, Urbana 61801
| | - F Batistel
- Department of Animal Sciences and Division of Nutritional Sciences, University of Illinois, Urbana 61801
| | - A Helmbrecht
- Evonik Nutrition & Care GmbH, 63457 Hanau-Wolfgang, Germany
| | - C Parys
- Evonik Nutrition & Care GmbH, 63457 Hanau-Wolfgang, Germany
| | - E Trevisi
- Institute of Zootechnics, Faculty of Agriculture, Food and Environmental Science, Università Cattolica del Sacro Cuore, Piacenza 29122, Italy
| | - X Shen
- College of Veterinary Medicine, Nanjing Agricultural University, 210095 Nanjing, PR China
| | - J J Loor
- Department of Animal Sciences and Division of Nutritional Sciences, University of Illinois, Urbana 61801.
| |
Collapse
|
54
|
Kahindi RK, Regassa A, Htoo JK, Nyachoti CM. Growth performance and expression of genes encoding enzymes involved in methionine and cysteine metabolism in piglets fed increasing sulphur amino acid to lysine ratio during enterotoxigenic Escherichia coli challenge. CANADIAN JOURNAL OF ANIMAL SCIENCE 2018. [DOI: 10.1139/cjas-2017-0027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
A study was conducted to examine the effect of standardised ileal digestible (SID) sulphur amino acids/lysine ratio (SAA/Lys) on performance and expression of methionine adenosyltransferase 1 and 2 alpha (MAT1α and MAT2α), and cystathionine gamma-lyase (CTH) in piglets challenged with an enterotoxigenic Escherichia coli (ETEC). Thirty five [Duroc × (Yorkshire × Landrace)] piglets (6.9 ± 0.5 kg) were randomly assigned to five dietary treatments. The diets were antibiotic free with SID SAA/Lys of 48%, 54%, 60%, 66%, and 72%. Pigs were orally challenged with 6 and 15 mL of ciprofloxacin-resistant ETEC K88+ on days 7 and 10. Blood samples were collected before (BC) and 6, 24, and 48 h after challenge (AC). Body weight gain and feed intake were collected on days 0, 6, and 12 to determine average daily gain (ADG). Gain to feed ratio (G/F) was calculated by dividing ADG by average daily feed intake (ADFI). On day 13, all pigs were euthanized to collect liver and ileal samples to analyse gene expression using real-time polymerase chain reaction. Pigs fed the diet containing SAA/Lys of 66% had the highest ADG, ADFI, and G/F BC. However, ADG, ADFI, and G/F were similar across all ratios AC. Serum tumor necrosis factor alpha concentration at 6 h AC was higher (P < 0.05) than BC and was improved with increasing SAA/Lys. Increasing SAA/Lys quadratically increased (P < 0.01) CTH and MAT1α expression. Ileal expression of CTH and MAT2α were quadratically increased (P < 0.05) with increasing SAA/Lys. In conclusion, SAA/Lys of 60% is suggested to be optimum for piglets to tolerate ETEC pathogenic challenge.
Collapse
Affiliation(s)
- Roseline K. Kahindi
- Department of Animal Science, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - Alemu Regassa
- Department of Animal Science, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - John K. Htoo
- Evonik Industries AG, Rodenbacher Chaussee 4, Hanau 63457, Germany
| | | |
Collapse
|
55
|
Nashabat M, Al-Khenaizan S, Alfadhel M. Methionine adenosyltransferase I/III deficiency: beyond the central nervous system manifestations. Ther Clin Risk Manag 2018; 14:225-229. [PMID: 29440907 PMCID: PMC5798556 DOI: 10.2147/tcrm.s151732] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Methionine adenosyltransferase (MAT) I/III deficiency (OMIM # 250850) is caused by a mutation in MAT1A, which encodes the two hepatic MAT isozymes I and III. With the implementation of newborn screening program to discover hypermethioninemia due to cystathionine beta-synthase deficiency, more cases are being discovered. While the majority of patients are asymptomatic, some might have central nervous system (CNS) and extra-CNS manifestations. Although neurologic manifestations and demyelination have been correlated to MAT deficiency in many reported cases, none of the previous reports focused on extra-CNS manifestations associated with the disease. This is a retrospective chart review for a 40-month-old patient with confirmed diagnosis of MAT deficiency. He was found to have a novel homozygous disease-causing variant in MAT1A (NM_000429.2) c.1081G>T (p.Val361Phe). Interestingly, our patient had an unexplained zinc and iron deficiency in addition to mild speech delay. We reviewed the literature and summarized all the reported extra-CNS manifestations. In conclusion, MAT deficiency patients should be thoroughly investigated to check for CNS and extra-CNS manifestations associated with the disease. Keeping in consideration the challenge of assuming correlation, a scrutinized look at extra-CNS manifestations and their course with time might pave the way to understanding the pathophysiology of the disease and MAT1A function.
Collapse
Affiliation(s)
- Marwan Nashabat
- King Abdullah International Medical Research Centre, King Saud bin Abdulaziz University for Health Sciences, Division of Genetics, Department of Pediatrics, King Abdulaziz Medical City, Ministry of National Guard-Health Affairs (NGHA), Riyadh, Saudi Arabia
| | - Sultan Al-Khenaizan
- Department of Dermatology, King Abdullah International Medical Research Center, King Saud bin Abdulaziz University for Health Sciences, King Abdulaziz Medical City, Ministry of National Guard-Health Affairs (NGHA), Riyadh, Saudi Arabia
| | - Majid Alfadhel
- King Abdullah International Medical Research Centre, King Saud bin Abdulaziz University for Health Sciences, Division of Genetics, Department of Pediatrics, King Abdulaziz Medical City, Ministry of National Guard-Health Affairs (NGHA), Riyadh, Saudi Arabia
| |
Collapse
|
56
|
Li Z, Wang X, Zhang T, Si H, Nan W, Xu C, Guan L, Wright ADG, Li G. The Development of Microbiota and Metabolome in Small Intestine of Sika Deer ( Cervus nippon) from Birth to Weaning. Front Microbiol 2018; 9:4. [PMID: 29410651 PMCID: PMC5787063 DOI: 10.3389/fmicb.2018.00004] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Accepted: 01/03/2018] [Indexed: 02/05/2023] Open
Abstract
The dense and diverse community of microorganisms inhabiting the gastrointestinal tract of ruminant animals plays critical roles in the metabolism and absorption of nutrients, and gut associated immune function. Understanding microbial colonization in the small intestine of new born ruminants is a vital first step toward manipulating gut function through interventions during early life to produce long-term positive effects on host productivity and health. Yet the knowledge of microbiota colonization and its induced metabolites of small intestine during early life is still limited. In the present study, we examined the microbiota and metabolome in the jejunum and ileum of neonatal sika deer (Cervus nippon) from birth to weaning at days 1, 42, and 70. The microbial data showed that diversity and richness were increased with age, but a highly individual variation was observed at day 1. Principal coordinate analysis revealed significant differences in microbial community composition across three time points in the jejunum and ileum. The abundance of Halomonas spp., Lactobacillus spp., Escherichia–Shigella, and Bacteroides spp. tended to be decreased, while the proportion of Intestinibacter spp., Cellulosilyticum spp., Turicibacter spp., Clostridium sensu stricto 1 and Romboutsia spp. was significantly increased with age. For metabolome, metabolites separated from each other across the three time points in both jejunum and ileum. Moreover, the amounts of methionine, threonine, and putrescine were increased, while the amounts of myristic acid and pentadecanoic acid were decreased with age, respectively. The present study demonstrated that microbiota colonization and the metabolome becomes more developed in the small intestine with age. This may shed new light on the microbiota-metabolome-immune interaction during development.
Collapse
Affiliation(s)
- Zhipeng Li
- Jilin Provincial Key Laboratory for Molecular Biology of Special Economic Animals, Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Xiaoxu Wang
- Jilin Provincial Key Laboratory for Molecular Biology of Special Economic Animals, Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Ting Zhang
- Jilin Provincial Key Laboratory for Molecular Biology of Special Economic Animals, Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Huazhe Si
- Jilin Provincial Key Laboratory for Molecular Biology of Special Economic Animals, Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Weixiao Nan
- Jilin Provincial Key Laboratory for Molecular Biology of Special Economic Animals, Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Chao Xu
- Jilin Provincial Key Laboratory for Molecular Biology of Special Economic Animals, Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Leluo Guan
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, Canada
| | - André-Denis G Wright
- School of Animal and Comparative Biomedical Sciences, University of Arizona, Tucson, AZ, United States
| | - Guangyu Li
- Jilin Provincial Key Laboratory for Molecular Biology of Special Economic Animals, Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun, China
| |
Collapse
|
57
|
Cronje PB. Essential role of methyl donors in animal productivity. ANIMAL PRODUCTION SCIENCE 2018. [DOI: 10.1071/an15729] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Dietary requirements for the methyl donors, choline, betaine and folate, in livestock species are poorly defined and have not been included in diet formulation software or simulation models for animals. A deficiency of methyl donors may promote an inflammatory state, which is significant for the livestock industry because chronic low-grade inflammation is widespread among livestock under commercial conditions. Furthermore, recent evidence showing that methyl donors activate adenosine monophosphate-activated protein kinase, an anti-inflammatory master switch, indicates that dietary methyl-donor supplementation could be used to prevent or ameliorate chronic inflammation and its sequelae in livestock, which include fatty liver disease in dairy cows, fatty liver and kidney syndrome in broilers, fatty liver haemorrhagic syndrome in layers, gut ulcers in pigs, liver abscesses in feedlot cattle, enteritis in poultry and susceptibility to heat stress in all species. Because of the complexity of interactions among methyl donors, a modelling approach inclusive of a supporting research effort will be required to harness the potential of methyl-donor supplementation in livestock production.
Collapse
|
58
|
Oxidation Resistance of the Sulfur Amino Acids: Methionine and Cysteine. BIOMED RESEARCH INTERNATIONAL 2017; 2017:9584932. [PMID: 29445748 PMCID: PMC5763110 DOI: 10.1155/2017/9584932] [Citation(s) in RCA: 126] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Accepted: 11/20/2017] [Indexed: 02/08/2023]
Abstract
Sulfur amino acids are a kind of amino acids which contain sulfhydryl, and they play a crucial role in protein structure, metabolism, immunity, and oxidation. Our review demonstrates the oxidation resistance effect of methionine and cysteine, two of the most representative sulfur amino acids, and their metabolites. Methionine and cysteine are extremely sensitive to almost all forms of reactive oxygen species, which makes them antioxidative. Moreover, methionine and cysteine are precursors of S-adenosylmethionine, hydrogen sulfide, taurine, and glutathione. These products are reported to alleviate oxidant stress induced by various oxidants and protect the tissue from the damage. However, the deficiency and excess of methionine and cysteine in diet affect the normal growth of animals; thereby a new study about defining adequate levels of methionine and cysteine intake is important.
Collapse
|
59
|
Su W, Zhang H, Ying Z, Li Y, Zhou L, Wang F, Zhang L, Wang T. Effects of dietary l-methionine supplementation on intestinal integrity and oxidative status in intrauterine growth-retarded weanling piglets. Eur J Nutr 2017; 57:2735-2745. [DOI: 10.1007/s00394-017-1539-3] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Accepted: 09/18/2017] [Indexed: 01/12/2023]
|
60
|
The role of methionine on metabolism, oxidative stress, and diseases. Amino Acids 2017; 49:2091-2098. [DOI: 10.1007/s00726-017-2494-2] [Citation(s) in RCA: 152] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Accepted: 09/11/2017] [Indexed: 12/14/2022]
|
61
|
Jiang H, Bian F, Zhou H, Wang X, Wang K, Mai K, He G. Nutrient sensing and metabolic changes after methionine deprivation in primary muscle cells of turbot (Scophthalmus maximus L.). J Nutr Biochem 2017; 50:74-82. [PMID: 29040838 DOI: 10.1016/j.jnutbio.2017.08.015] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Revised: 04/11/2017] [Accepted: 08/29/2017] [Indexed: 12/23/2022]
Abstract
The low methionine content in plant-based diets is a major limiting factor for feed utilization by animals. However, the molecular consequences triggered by methionine deficiency have not been well characterized, especially in fish species, whose metabolism is unique in many aspects and important for aquaculture industry. In the present study, the primary muscle cells of turbot (Scophthalmus maximus L.) were isolated and treated with or without methionine for 12 h in culture. The responses of nutrient sensing pathways, the proteomic profiling of metabolic processes, and the expressions of key metabolic molecules were systematically examined. Methionine deprivation (MD) suppressed target of rapamycin (TOR) signaling, activated AMP-activated protein kinase (AMPK) and amino acid response (AAR) pathways. Reduced cellular protein synthesis and increased protein degradation by MD led to increased intracellular free amino acid levels and degradations. MD also reduced glycolysis and lipogenesis while stimulated lipolysis, thus resulted in decreased intracellular lipid pool. MD significantly enhanced energy expenditure through stimulated tricarboxylic acid (TCA) cycle and oxidative phosphorylation. Collectively, our results identified a comprehensive set of transcriptional, proteomic, and signaling responses generated by MD and provided the molecular insight into the integration of cell homeostasis and metabolic controls in fish species.
Collapse
Affiliation(s)
- Haowen Jiang
- Key Laboratory of Aquaculture Nutrition (Ministry of Agriculture), Ocean University of China, 5 Yushan Road, Qingdao 266003, China
| | - Fuyun Bian
- Key Laboratory of Aquaculture Nutrition (Ministry of Agriculture), Ocean University of China, 5 Yushan Road, Qingdao 266003, China
| | - Huihui Zhou
- Key Laboratory of Aquaculture Nutrition (Ministry of Agriculture), Ocean University of China, 5 Yushan Road, Qingdao 266003, China
| | - Xuan Wang
- Key Laboratory of Aquaculture Nutrition (Ministry of Agriculture), Ocean University of China, 5 Yushan Road, Qingdao 266003, China
| | - Kaidi Wang
- Key Laboratory of Aquaculture Nutrition (Ministry of Agriculture), Ocean University of China, 5 Yushan Road, Qingdao 266003, China
| | - Kangsen Mai
- Key Laboratory of Aquaculture Nutrition (Ministry of Agriculture), Ocean University of China, 5 Yushan Road, Qingdao 266003, China
| | - Gen He
- Key Laboratory of Aquaculture Nutrition (Ministry of Agriculture), Ocean University of China, 5 Yushan Road, Qingdao 266003, China.
| |
Collapse
|
62
|
Miousse IR, Pathak R, Garg S, Skinner CM, Melnyk S, Pavliv O, Hendrickson H, Landes RD, Lumen A, Tackett AJ, Deutz NE, Hauer-Jensen M, Koturbash I. Short-term dietary methionine supplementation affects one-carbon metabolism and DNA methylation in the mouse gut and leads to altered microbiome profiles, barrier function, gene expression and histomorphology. GENES & NUTRITION 2017; 12:22. [PMID: 28904640 PMCID: PMC5588631 DOI: 10.1186/s12263-017-0576-0] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Accepted: 08/28/2017] [Indexed: 12/24/2022]
Abstract
BACKGROUND Methionine, a central molecule in one-carbon metabolism, is an essential amino acid required for normal growth and development. Despite its importance to biological systems, methionine is toxic when administered at supra-physiological levels. The aim of this study was to investigate the effects of short-term methionine dietary modulation on the proximal jejunum, the section of the gut specifically responsible for amino acid absorption, in a mouse model. Eight-week-old CBA/J male mice were fed methionine-adequate (MAD; 6.5 g/kg) or methionine-supplemented (MSD; 19.5 g/kg) diets for 3.5 or 6 days (average food intake 100 g/kg body weight). The study design was developed in order to address the short-term effects of the methionine supplementation that corresponds to methionine dietary intake in Western populations. Biochemical indices in the blood as well as metabolic, epigenetic, transcriptomic, metagenomic, and histomorphological parameters in the gut were evaluated. RESULTS By day 6, feeding mice with MSD (protein intake <10% different from MAD) resulted in increased plasma (2.3-fold; p < 0.054), but decreased proximal jejunum methionine concentrations (2.2-fold; p < 0.05) independently of the expression of neutral amino acid transporters. MSD has also caused small bowel bacteria colonization, increased the abundance of pathogenic bacterial species Burkholderiales and decreased the gene expression of the intestinal transmembrane proteins-Cldn8 (0.18-fold, p < 0.05), Cldn9 (0.24-fold, p < 0.01) and Cldn10 (0.05-fold, p < 0.05). Feeding MSD led to substantial histomorphological alterations in the proximal jejunum exhibited as a trend towards decreased plasma citrulline concentrations (1.8-fold, p < 0.07), as well as loss of crypt depth (by 28%, p < 0.05) and mucosal surface (by 20%, p < 0.001). CONCLUSIONS Together, these changes indicate that short-term feeding of MSD substantially alters the normal gut physiology. These effects may contribute to the pathogenesis of intestinal inflammatory diseases and/or sensitize the gut to exposure to other stressors.
Collapse
Affiliation(s)
- Isabelle R. Miousse
- Department of Environmental and Occupational Health, University of Arkansas for Medical Sciences, 4301 W. Markham Str., Slot 820-11, Little Rock, AR 72205-7199 USA
| | - Rupak Pathak
- Department of Pharmaceutical Sciences, University of Arkansas for Medical Sciences, Little Rock, AR 72205 USA
| | - Sarita Garg
- Department of Pharmaceutical Sciences, University of Arkansas for Medical Sciences, Little Rock, AR 72205 USA
| | - Charles M. Skinner
- Department of Environmental and Occupational Health, University of Arkansas for Medical Sciences, 4301 W. Markham Str., Slot 820-11, Little Rock, AR 72205-7199 USA
| | - Stepan Melnyk
- Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, AR 72205 USA
| | - Oleksandra Pavliv
- Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, AR 72205 USA
| | - Howard Hendrickson
- Department of Pharmaceutical Sciences, University of Arkansas for Medical Sciences, Little Rock, AR 72205 USA
| | - Reid D. Landes
- Department of Biostatistics, University of Arkansas for Medical Sciences, Little Rock, AR 72205 USA
| | - Annie Lumen
- Division of Biochemical Toxicology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR USA
| | - Alan J. Tackett
- Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, AR 72205 USA
- Department of Biochemistry, University of Arkansas for Medical Sciences, Little Rock, AR USA
| | - Nicolaas E.P. Deutz
- Department of Health and Kinesiology, Center for Translational Research on Aging and Longevity, Texas A&M University, College Station, TX USA
| | - Martin Hauer-Jensen
- Department of Pharmaceutical Sciences, University of Arkansas for Medical Sciences, Little Rock, AR 72205 USA
| | - Igor Koturbash
- Department of Environmental and Occupational Health, University of Arkansas for Medical Sciences, 4301 W. Markham Str., Slot 820-11, Little Rock, AR 72205-7199 USA
| |
Collapse
|
63
|
Kahindi R, Regassa A, Htoo J, Nyachoti M. Optimal sulfur amino acid to lysine ratio for post weaning piglets reared under clean or unclean sanitary conditions. ACTA ACUST UNITED AC 2017; 3:380-385. [PMID: 29767080 PMCID: PMC5941268 DOI: 10.1016/j.aninu.2017.08.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Revised: 06/19/2017] [Accepted: 08/09/2017] [Indexed: 11/28/2022]
Abstract
Two 14-day experiments, each with 90 (Duroc × [Yorkshire × Landrace]; 7.3 ± 0.6 kg) piglets, were conducted to determine the optimum sulfur amino acid (SAA) to lysine (Lys) ratio (SAA:Lys) for piglets when reared under clean or unclean sanitary conditions using performance and non-performance response criteria. Piglets were randomly assigned to the following dietary treatments. The basal diet contained 1.18% standardized ileal digestible (SID) Lys, and the SAA:Lys was 52%. In diets 2 to 5, the basal diet was supplemented with 4 graded levels of dl-Met to make SAA:Lys of 56%, 60%, 64% and 68%. In Exp. 1, piglets were housed in disinfected clean room. In Exp. 2, piglets were housed in a room previously occupied by other pigs and was not disinfected. On the last day, blood was collected to measure plasma urea nitrogen (PUN) and one pig per pen was euthanized to collect jejunal tissue to measure villus height (VH), crypt depth (CD), and VH:CD. In Exp. 1, increasing SAA:Lys linearly and quadratically increased VH and VH:CD (P < 0.05). In Exp. 2, increasing SAA:Lys linearly increased (P < 0.05) VH and VH:CD and linearly and quadratically decreased PUN (P < 0.05). Estimated PUN and VH-based optimum SAA:Lys requirements for clean and unclean sanitary condition were 60%, 63% and 66%, respectively.
Collapse
Affiliation(s)
- Roselyn Kahindi
- Department of Animal Science, University of Manitoba, Winnipeg R3T 2N2, MB, Canada
| | - Alemu Regassa
- Department of Animal Science, University of Manitoba, Winnipeg R3T 2N2, MB, Canada
| | - John Htoo
- Evonik Industries AG, Rodenbacher Chaussee 4, Hanau 63457, Germany
| | - Martin Nyachoti
- Department of Animal Science, University of Manitoba, Winnipeg R3T 2N2, MB, Canada
| |
Collapse
|
64
|
Deutz NE, Simbo SY, Ligthart-Melis GC, Cynober L, Smriga M, Engelen MP. Tolerance to increased supplemented dietary intakes of methionine in healthy older adults. Am J Clin Nutr 2017; 106:675-683. [PMID: 28637772 DOI: 10.3945/ajcn.117.152520] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Accepted: 05/18/2017] [Indexed: 11/14/2022] Open
Abstract
Background: l-Methionine (Met) is an essential amino acid for humans and is important for protein synthesis and the formation of polyamines and is involved in the synthesis of many metabolites, including homocysteine. Free-Met supplements have been claimed to have multiple positive effects; however, it remains unclear what the exact tolerance level is. With aging, Met metabolism changes, and increased plasma homocysteine is more apparent. High plasma concentrations of homocysteine are assumed to be associated with a high risk of developing atherosclerosis.Objective: We estimated the no-observed-adverse-effect level (NOAEL) and the lowest-observed-adverse-effect level (LOAEL) of supplemented, oral, free Met in healthy older adults by examining the increase in plasma homocysteine as the primary determinant.Design: We provided capsules with free Met to 15 healthy older adult subjects for 4 wk at climbing dosages of, on average, 9.2, 22.5, 46.3 and 91 mg · kg body weight-1 · d-1 with washout periods of 2 wk between each intake. Before, at 2 and 4 wk during, and 2 wk after each dosage, we studied a complete panel of biochemical blood variables to detect possible intolerance to increased Met intake. Plasma homocysteine and body composition were measured, and tolerance, quality of life, and cognitive function were assessed via questionnaires.Results: Plasma homocysteine was elevated with the highest dose of supplemented Met. The estimated NOAEL of supplemented Met was set at 46.3 mg · kg body weight-1 · d-1, and the estimated LOAEL of supplemented Met was set at 91 mg · kg body weight-1 · d-1 (on the basis of the actual intakes) in subjects independent of sex. No signs of intolerance were observed via questionnaires or other blood variables at the LOAEL. There were no meaningful changes in body composition.Conclusions: On the basis of plasma homocysteine, the NOAEL of supplemented Met intake is 46.3 and the LOAEL is 91 mg · kg body weight-1 · d-1 in healthy older adults. Both the NOAEL and LOAEL are not associated with meaningful effects on health and wellbeing. This trial was registered at clinicaltrials.gov as NCT02566434.
Collapse
Affiliation(s)
- Nicolaas Ep Deutz
- Center for Translational Research in Aging and Longevity, Department of Health and Kinesiology, Texas A&M University, College Station, TX;
| | - Sunday Y Simbo
- Center for Translational Research in Aging and Longevity, Department of Health and Kinesiology, Texas A&M University, College Station, TX
| | - Gerdien C Ligthart-Melis
- Center for Translational Research in Aging and Longevity, Department of Health and Kinesiology, Texas A&M University, College Station, TX
| | - Luc Cynober
- Department of Clinical Chemistry, Cochin and Hotel-Dieu Hospitals, Assistance Publique - Hôpitaux de Paris, Paris, France.,Department of Biological Nutrition, Faculty of Pharmacy, Paris Descartes University, Paris, France; and
| | - Miro Smriga
- International Council on Amino Acid Science, Brussels, Belgium
| | - Mariëlle Pkj Engelen
- Center for Translational Research in Aging and Longevity, Department of Health and Kinesiology, Texas A&M University, College Station, TX
| |
Collapse
|
65
|
Zhao J, Wu P, Jiang W, Liu Y, Jiang J, Zhang Y, Zhou X, Feng L. Preventive and reparative effects of isoleucine against copper-induced oxidative damage in primary fish enterocytes. FISH PHYSIOLOGY AND BIOCHEMISTRY 2017; 43:1021-1032. [PMID: 28130733 DOI: 10.1007/s10695-017-0349-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2016] [Accepted: 01/16/2017] [Indexed: 06/06/2023]
Abstract
The present study aimed to assess the possible preventive and reparative effects of isoleucine (Ile) against copper (Cu)-induced oxidative stress in fish enterocytes in vitro. In experiment 1, enterocytes were preincubated with increasing concentrations of Ile (0, 50, 120, 190, 260, and 330 mg L-1) for 72 h followed by exposure to 6 mg L-1 Cu for 24 h. In experiment 2, the enterocytes were pretreated with 6 mg L-1 Cu for 24 h and then treated with 0-330 mg L-1 Ile for 72 h to investigate its potential reparative role. The results of experiment 1 showed that Cu exposure increased lactate dehydrogenase (LDH) activity and malondialdehyde and protein carbonyl (PC) content; these changes were completely suppressed by pretreatment with Ile at optimum concentrations (P < 0.05). Moreover, Ile pretreatment prevented the decrease in superoxide dismutase (SOD) and glutathione peroxidase (GPx) activities in the enterocytes exposed to Cu (P < 0.05). Additionally, cells exposed to Cu exhibited adaptive increases in glutathione-S-transferase (GST) activity. In experiment 2, the LDH activity and protein oxidation induced by Cu were completely reversed by Ile posttreatment. Meanwhile, the Cu-induced decrease in SOD, GPx, and GST activity was completely reversed by subsequent Ile treatment, but the reduced glutathione content was not restored. Collectively, these results indicate that Ile suppresses Cu-induced oxidative damage via preventive and reparative pathways in primary enterocytes and thus protects the structural integrity of enterocytes in fish.
Collapse
Affiliation(s)
- Juan Zhao
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Pei Wu
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
- Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Ya'an, Sichuan, 625014, China
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Ya'an, Sichuan, 625014, China
| | - Weidan Jiang
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
- Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Ya'an, Sichuan, 625014, China
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Ya'an, Sichuan, 625014, China
| | - Yang Liu
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
- Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Ya'an, Sichuan, 625014, China
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Ya'an, Sichuan, 625014, China
| | - Jun Jiang
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
- Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Ya'an, Sichuan, 625014, China
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Ya'an, Sichuan, 625014, China
| | - Yongan Zhang
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Xiaoqiu Zhou
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China.
- Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Ya'an, Sichuan, 625014, China.
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Ya'an, Sichuan, 625014, China.
- Animal Nutrition Institute, Sichuan Agricultural University, Ya'an, Sichuan, 625014, China.
| | - Lin Feng
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
- Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Ya'an, Sichuan, 625014, China
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Ya'an, Sichuan, 625014, China
| |
Collapse
|
66
|
Wu P, Tang L, Jiang W, Hu K, Liu Y, Jiang J, Kuang S, Tang L, Tang W, Zhang Y, Zhou X, Feng L. The relationship between dietary methionine and growth, digestion, absorption, and antioxidant status in intestinal and hepatopancreatic tissues of sub-adult grass carp ( Ctenopharyngodon idella). J Anim Sci Biotechnol 2017; 8:63. [PMID: 28781773 PMCID: PMC5537997 DOI: 10.1186/s40104-017-0194-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2016] [Accepted: 06/21/2017] [Indexed: 01/24/2023] Open
Abstract
BACKGROUND Methionine is an essential amino acid for fish. The present study was conducted to investigate the effects of dietary methionine on growth performance, digestive and absorptive ability, as well as antioxidant capacity in the intestine and hepatopancreas of sub-adult grass carp (Ctenopharyngodon idella). RESULTS Dietary methionine deficiency significantly decreased percentage weight gain (PWG), feed intake, feed efficiency and protein efficiency ratio, as well as activities of hepatopancreatic glutamate-oxaloacetate transaminase and muscle glutamate-pyruvate transaminase in sub-adult grass carp (P < 0.05). Furthermore, methionine deficiency significantly reduced activities of trypsin, lipase and amylase in the intestine, Na+/K+-ATPase, alkaline phosphatase and γ-glutamyl transpeptidase in three intestinal segments, and creatine kinase (CK) in the proximal intestine (P < 0.05). However, an unexplained and significant increase in CK activity in the mid intestine was associated with dietary methionine deficiency. Malondialdehyde and protein carbonyl contents in the intestine and hepatopancreas were significantly increased by methionine deficiency (P < 0.05), whereas anti-hydroxyl radical capacity in the hepatopancreas and intestine, and anti-superoxide anion capacity in the intestine, were significantly decreased by methionine deficiency (P < 0.05). Moreover, methionine deficiency significantly decreased superoxide dismutase and glutathione reductase activities, glutathione contents in the hepatopancreas and intestine, as well as glutathione peroxidase activity in the intestine (P < 0.05), whereas it significantly increased activities of catalase in the hepatopancreas and glutathione-S-transferase in the hepatopancreas and intestine (P < 0.05). CONCLUSIONS The present results demonstrated that dietary methionine deficiency induced poor growth, and decreased digestive and absorptive function and antioxidant capacity in the hepatopancreas and intestine of sub-adult grass carp. Methionine requirements for sub-adult grass carp (450-1, 170 g) based on PWG, intestinal trypsin, and hepatopancreatic anti-hydroxyl radical activities were estimated to be 6.12 g/kg diet (21.80 g/kg protein), 6.99 g/kg diet (24.90 g/kg protein) and 5.42 g/kg diet (19.31 g/kg protein), respectively, in the presence of 1.50 g cysteine/kg (5.35 g/kg protein).
Collapse
Affiliation(s)
- Pei Wu
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130 China
- Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130 China
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Chengdu, 611130 China
| | - Ling Tang
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130 China
| | - Weidan Jiang
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130 China
- Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130 China
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Chengdu, 611130 China
| | - Kai Hu
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130 China
| | - Yang Liu
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130 China
- Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130 China
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Chengdu, 611130 China
| | - Jun Jiang
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130 China
- Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130 China
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Chengdu, 611130 China
| | - Shengyao Kuang
- Animal Nutrition Institute, Sichuan Academy of Animal Science, Chengdu, 610066 China
| | - Ling Tang
- Animal Nutrition Institute, Sichuan Academy of Animal Science, Chengdu, 610066 China
| | - Wuneng Tang
- Animal Nutrition Institute, Sichuan Academy of Animal Science, Chengdu, 610066 China
| | - Yongan Zhang
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072 China
| | - Xiaoqiu Zhou
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130 China
- Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130 China
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Chengdu, 611130 China
| | - Lin Feng
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130 China
- Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130 China
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Chengdu, 611130 China
| |
Collapse
|
67
|
Nealon NJ, Yuan L, Yang X, Ryan EP. Rice Bran and Probiotics Alter the Porcine Large Intestine and Serum Metabolomes for Protection against Human Rotavirus Diarrhea. Front Microbiol 2017; 8:653. [PMID: 28484432 PMCID: PMC5399067 DOI: 10.3389/fmicb.2017.00653] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Accepted: 03/30/2017] [Indexed: 01/20/2023] Open
Abstract
Human rotavirus (HRV) is a leading cause of severe childhood diarrhea, and there is limited vaccine efficacy in the developing world. Neonatal gnotobiotic pigs consuming a prophylactic synbiotic combination of probiotics and rice bran (Pro+RB) did not exhibit HRV diarrhea after challenge. Multiple immune, gut barrier protective, and anti-diarrheal mechanisms contributed to the prophylactic efficacy of Pro+RB when compared to probiotics (Pro) alone. In order to understand the molecular signature associated with diarrheal protection by Pro+RB, a global non-targeted metabolomics approach was applied to investigate the large intestinal contents and serum of neonatal gnotobiotic pigs. The ultra-high performance liquid chromatography-tandem mass spectrometry platform revealed significantly different metabolites (293 in LIC and 84 in serum) in the pigs fed Pro+RB compared to Pro, and many of these metabolites were lipids and amino acid/peptides. Lipid metabolites included 2-oleoylglycerol (increased 293.40-fold in LIC of Pro+RB, p = 3.04E-10), which can modulate gastric emptying, andhyodeoxycholate (decreased 0.054-fold in the LIC of Pro+RB, p = 0.0040) that can increase colonic mucus production to improve intestinal barrier function. Amino acid metabolites included cysteine (decreased 0.40-fold in LIC, p = 0.033, and 0.62-fold in serum, p = 0.014 of Pro+RB), which has been found to reduce inflammation, lower oxidative stress and modulate mucosal immunity, and histamine (decreased 0.18-fold in LIC, p = 0.00030, of Pro+RB and 1.57-fold in serum, p = 0.043), which modulates local and systemic inflammatory responses as well as influences the enteric nervous system. Alterations to entire LIC and serum metabolic pathways further contributed to the anti-diarrheal and anti-viral activities of Pro+RB such as sphingolipid, mono/diacylglycerol, fatty acid, secondary bile acid, and polyamine metabolism. Sphingolipid and long chain fatty acid profiles influenced the ability of HRV to both infect and replicate within cells, suggesting that Pro+RB created a protective lipid profile that interferes with HRV activity. Polyamines act on enterocyte calcium-sensing receptors to modulate intracellular calcium levels, and may directly interfere with rotavirus replication. These results support that multiple host and probiotic metabolic networks, notably those involving lipid and amino acid/peptide metabolism, are important mechanisms through which Pro+RB protected against HRV diarrhea in neonatal gnotobiotic pigs.
Collapse
Affiliation(s)
- Nora Jean Nealon
- Nutrition and Toxicology Laboratory, Department of Environmental and Radiological Health Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort CollinsCO, USA
| | - Lijuan Yuan
- Yuan Laboratory, Department of Biomedical Sciences and Pathobiology, Virginia-Maryland Regional College of Veterinary Medicine, Virginia Polytechnic Institute and State University, BlacksburgVA, USA
| | - Xingdong Yang
- Laboratory of Infectious Diseases, Viral Pathogenesis and Evolution Section, National Institute of Allergy and Infectious Diseases, National Institute of Health, BethesdaMD, USA
| | - Elizabeth P Ryan
- Nutrition and Toxicology Laboratory, Department of Environmental and Radiological Health Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort CollinsCO, USA
| |
Collapse
|
68
|
Liu WC, Kim IH. Evaluation of various sulphur amino acid to lysine ratio for growing-finishing pigs fed antibiotic-free diets. ITALIAN JOURNAL OF ANIMAL SCIENCE 2017. [DOI: 10.1080/1828051x.2017.1291286] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Wen-Chao Liu
- Department of Animal Resource & Science, Dankook University, Cheonan, Chungnam, South Korea
| | - In-Ho Kim
- Department of Animal Resource & Science, Dankook University, Cheonan, Chungnam, South Korea
| |
Collapse
|
69
|
Zeitz JO, Kaltenböck S, Most E, Eder K. Antioxidant status and expression of inflammatory genes in gut and liver of piglets fed different dietary methionine concentrations. J Anim Physiol Anim Nutr (Berl) 2017; 101:1166-1174. [PMID: 28066942 DOI: 10.1111/jpn.12633] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Accepted: 10/08/2016] [Indexed: 11/30/2022]
Abstract
This study investigated the hypothesis that dietary concentrations of methionine (Met), as a precursor of cysteine which is a constituent of glutathione (GSH), affect tissue antioxidant concentrations and the antioxidant defence system in pigs. Forty-five piglets (DanZucht × Pietrain) were allotted to three groups of similar mean body weight (11.0 ± 0.9 kg). The basal diet was composed of barley, wheat, corn starch, soybean oil, sucrose, cellulose and a mineral supplement with suboptimal concentrations of Met and was supplemented with dl-Met to reach 0.16%, 0.20% and 0.24% of dietary Met and 0.40%, 0.44% and 0.48% of dietary Met and cysteine in groups 0.16, 0.20 and 0.24 respectively. After 3 weeks, at slaughter, samples of liver, jejunum mucosa and plasma were collected. Feed intake and weight gains increased and feed:gain ratio decreased when dietary Met concentrations increased. The Trolox equivalent antioxidant capacity (TEAC), concentrations of GSH and thiobarbituric acid reactive substances (TBA-RS) and the activity of the glutathione peroxidase (GPx) in liver and jejunum mucosa were similar in all groups (p > 0.05). Relative mRNA concentrations of selected target genes of the nuclear factor (erythroid-derived 2)-like 2 (Nrf2), the master regulator of the antioxidant response, and of the nuclear factor 'kappa-light-chain-enhancer' of activated B-cells (NF-κB), the master regulator of inflammation, were largely unaffected both in jejunum and liver. In conclusion, inflammation- and oxidative stress-related pathways on the molecular level, and concentrations of lipid peroxidation products, of antioxidants and of enzymes involved in the antioxidant defence system were mostly unaffected by dietary Met concentration in gut and liver. These findings suggest that suboptimal dietary Met concentrations did not influence the antioxidant defence system of gut and liver in healthy piglets.
Collapse
Affiliation(s)
- J O Zeitz
- Institute of Animal Nutrition and Nutritional Physiology, University of Giessen, Giessen, Germany
| | - S Kaltenböck
- Institute of Animal Nutrition and Nutritional Physiology, University of Giessen, Giessen, Germany
| | - E Most
- Institute of Animal Nutrition and Nutritional Physiology, University of Giessen, Giessen, Germany
| | - K Eder
- Institute of Animal Nutrition and Nutritional Physiology, University of Giessen, Giessen, Germany
| |
Collapse
|
70
|
Moran ET. Gastric digestion of protein through pancreozyme action optimizes intestinal forms for absorption, mucin formation and villus integrity. Anim Feed Sci Technol 2016. [DOI: 10.1016/j.anifeedsci.2016.05.015] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
71
|
Mastrototaro L, Sponder G, Saremi B, Aschenbach JR. Gastrointestinal methionine shuttle: Priority handling of precious goods. IUBMB Life 2016; 68:924-934. [PMID: 27753190 DOI: 10.1002/iub.1571] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Accepted: 09/22/2016] [Indexed: 01/05/2023]
Affiliation(s)
- Lucia Mastrototaro
- Institute of Veterinary Physiology, Department of Veterinary Medicine, Free University of Berlin; Berlin Germany
| | - Gerhard Sponder
- Institute of Veterinary Physiology, Department of Veterinary Medicine, Free University of Berlin; Berlin Germany
| | - Behnam Saremi
- Evonik Nutrition & Care GmbH; Animal Nutrition-Animal Nutrition Services; Hanau Germany
| | - Jörg R. Aschenbach
- Institute of Veterinary Physiology, Department of Veterinary Medicine, Free University of Berlin; Berlin Germany
| |
Collapse
|
72
|
Robinson JL, McBreairty LE, Randell EW, Brunton JA, Bertolo RF. Restriction of dietary methyl donors limits methionine availability and affects the partitioning of dietary methionine for creatine and phosphatidylcholine synthesis in the neonatal piglet. J Nutr Biochem 2016; 35:81-86. [DOI: 10.1016/j.jnutbio.2016.07.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2015] [Revised: 05/23/2016] [Accepted: 07/05/2016] [Indexed: 01/07/2023]
|
73
|
Dietary methyl donors affect in vivo methionine partitioning between transmethylation and protein synthesis in the neonatal piglet. Amino Acids 2016; 48:2821-2830. [DOI: 10.1007/s00726-016-2317-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Accepted: 08/17/2016] [Indexed: 12/31/2022]
|
74
|
Zhong H, Li H, Liu G, Wan H, Mercier Y, Zhang X, Lin Y, Che L, Xu S, Tang L, Tian G, Chen D, Wu D, Fang Z. Increased maternal consumption of methionine as its hydroxyl analog promoted neonatal intestinal growth without compromising maternal energy homeostasis. J Anim Sci Biotechnol 2016; 7:46. [PMID: 27499853 PMCID: PMC4975900 DOI: 10.1186/s40104-016-0103-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2015] [Accepted: 07/18/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND To determine responses of neonatal intestine to maternal increased consumption of DL-methionine (DLM) or DL-2-hydroxy-4-methylthiobutanoic acid (HMTBA), eighteen primiparous sows (Landrace × Yorkshire) were allocated based on body weight and backfat thickness to the control, DLM and HMTBA groups (n = 6), with the nutritional treatments introduced from postpartum d0 to d14. RESULTS The DLM-fed sows showed negative energy balance manifested by lost bodyweight, lower plasma glucose, subdued tricarboxylic acid cycle, and increased plasma lipid metabolites levels. Both villus height and ratio of villus height to crypt depth averaged across the small intestine of piglets were higher in the DLM and HMTBA groups than in the control group. Piglet jejunal oxidized glutathione concentration and ratio of oxidized to reduced glutathione were lower in the HMTBA group than in the DLM and control groups. However, piglet jejunal aminopeptidase A, carnitine transporter 2 and IGF-II precursor mRNA abundances were higher in the DLM group than in the HMTBA and control groups. CONCLUSION Increasing maternal consumption of methionine as DLM and HMTBA promoted neonatal intestinal growth by increasing morphological development or up-regulating expression of genes responsible for nutrient metabolism. And increasing maternal consumption of HMTBA promoted neonatal intestinal antioxidant capacity without compromising maternal energy homeostasis during early lactation.
Collapse
Affiliation(s)
- Heju Zhong
- Key Laboratory for Animal Disease Resistance Nutrition of the Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, Ya'an, 625014 China
| | - Hao Li
- Key Laboratory for Animal Disease Resistance Nutrition of the Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, Ya'an, 625014 China
| | - Guangmang Liu
- Key Laboratory for Animal Disease Resistance Nutrition of the Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, Ya'an, 625014 China
| | - Haifeng Wan
- Key Laboratory for Animal Disease Resistance Nutrition of the Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, Ya'an, 625014 China
| | | | - Xiaoling Zhang
- Key Laboratory for Animal Disease Resistance Nutrition of the Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, Ya'an, 625014 China
| | - Yan Lin
- Key Laboratory for Animal Disease Resistance Nutrition of the Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, Ya'an, 625014 China
| | - Lianqiang Che
- Key Laboratory for Animal Disease Resistance Nutrition of the Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, Ya'an, 625014 China
| | - Shengyu Xu
- Key Laboratory for Animal Disease Resistance Nutrition of the Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, Ya'an, 625014 China
| | - Li Tang
- Key Laboratory for Animal Disease Resistance Nutrition of the Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, Ya'an, 625014 China
| | - Gang Tian
- Key Laboratory for Animal Disease Resistance Nutrition of the Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, Ya'an, 625014 China
| | - Daiwen Chen
- Key Laboratory for Animal Disease Resistance Nutrition of the Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, Ya'an, 625014 China
| | - De Wu
- Key Laboratory for Animal Disease Resistance Nutrition of the Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, Ya'an, 625014 China
| | - Zhengfeng Fang
- Key Laboratory for Animal Disease Resistance Nutrition of the Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, Ya'an, 625014 China
| |
Collapse
|
75
|
Nosworthy MG, Dodge ME, Bertolo RF, Brunton JA. Enterally delivered dipeptides improve small intestinal inflammatory status in a piglet model of intestinal resection. Clin Nutr 2016; 35:852-8. [DOI: 10.1016/j.clnu.2015.05.013] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2014] [Revised: 04/23/2015] [Accepted: 05/24/2015] [Indexed: 11/24/2022]
|
76
|
Abstract
Supplemented protein or specific amino acids (AA) are proposed to help animals combat infection and inflammation. The current study investigates whole-body and splanchnic tissue metabolism in response to a lipopolysaccharide (LPS) challenge with or without a supplement of six AA (cysteine, glutamine, methionine, proline, serine and threonine). Eight sheep were surgically prepared with vascular catheters across the gut and liver. On two occasions, four sheep were infused through the jugular vein for 20 h with either saline or LPS from Escherichia coli (2 ng/kg body weight per min) in a random order, plus saline infused into the mesenteric vein; the other four sheep were treated with saline or LPS plus saline or six AA infused via the jugular vein into the mesenteric vein. Whole-body AA irreversible loss rate (ILR) and tissue protein metabolism were monitored by infusion of [ring-2H2]phenylalanine. LPS increased (P<0·001) ILR (+17 %), total plasma protein synthesis (+14 %) and lymphocyte protein synthesis (+386 %) but decreased albumin synthesis (-53 %, P=0·001), with no effect of AA infusion. Absorption of dietary AA was not reduced by LPS, except for glutamine. LPS increased the hepatic removal of leucine, lysine, glutamine and proline. Absolute hepatic extraction of supplemented AA increased, but, except for glutamine, this was less than the amount infused. This increased net appearance across the splanchnic bed restored arterial concentrations of five AA to, or above, values for the saline-infused period. Infusion of key AA does not appear to alter the acute period of endotoxaemic response, but it may have benefits for the chronic or recovery phases.
Collapse
|
77
|
Robinson JL, Bertolo RF. The Pediatric Methionine Requirement Should Incorporate Remethylation Potential and Transmethylation Demands. Adv Nutr 2016; 7:523-34. [PMID: 27184279 PMCID: PMC4863267 DOI: 10.3945/an.115.010843] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The metabolic demand for methionine is great in neonates. Indeed, methionine is the only indispensable sulfur amino acid and is required not only for protein synthesis and growth but is also partitioned to a greater extent to transsulfuration for cysteine and taurine synthesis and to >50 transmethylation reactions that serve to methylate DNA and synthesize metabolites, including creatine and phosphatidylcholine. Therefore, the pediatric methionine requirement must accommodate the demands of rapid protein turnover as well as vast nonprotein demands. Because cysteine spares the methionine requirement, it is likely that the dietary provision of transmethylation products can also feasibly spare methionine. However, understanding the requirement of methionine is further complicated because demethylated methionine can be remethylated by the dietary methyl donors folate and betaine (derived from choline). Intakes of dietary methyl donors are highly variable, which is of particular concern for newborns. It has been demonstrated that many populations have enhanced requirements for these nutrients, and nutrient fortification may exacerbate this phenomenon by selecting phenotypes that increase methyl requirements. Moreover, higher transmethylation rates can limit methyl supply and affect other transmethylation reactions as well as protein synthesis. Therefore, careful investigations are needed to determine how remethylation and transmethylation contribute to the methionine requirement. The purpose of this review is to support our hypothesis that dietary methyl donors and consumers can drive methionine availability for protein synthesis and transmethylation reactions. We argue that nutritional strategies in neonates need to ensure that methionine is available to meet requirements for growth as well as for transmethylation products.
Collapse
Affiliation(s)
| | - Robert F Bertolo
- Department of Biochemistry, Memorial University of Newfoundland, St. John's, Newfoundland and Labrador, Canada
| |
Collapse
|
78
|
McBreairty LE, Bertolo RF. The dynamics of methionine supply and demand during early development. Appl Physiol Nutr Metab 2016; 41:581-7. [PMID: 27177124 DOI: 10.1139/apnm-2015-0577] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Methionine is an indispensable amino acid that, when not incorporated into protein, is converted into the methyl donor S-adenosylmethionine as entry into the methionine cycle. Following transmethylation, homocysteine is either remethylated to reform methionine or irreversibly trans-sulfurated to form cysteine. Methionine flux to transmethylation and to protein synthesis are both high in the neonate and this review focuses on the dynamics of methionine supply and demand during early development, when growth requires expansion of pools of protein and transmethylation products such as creatine and phosphatidylcholine (PC). The nutrients folate and betaine (derived from choline) donate a methyl group during remethylation, providing an endogenous supply of methionine to meet the methionine demand. During early development, variability in the dietary supply of these methionine cycle-related nutrients can affect both the supply and the demand of methionine. For example, a greater need for creatine synthesis can limit methionine availability for protein and PC synthesis, whereas increased availability of remethylation nutrients can increase protein synthesis if dietary methionine is limiting. Moreover, changes to methyl group availability early in life can lead to permanent changes in epigenetic patterns of DNA methylation, which have been implicated in the early origins of adult disease phenomena. This review aims to summarize how changes in methyl supply and demand can affect the availability of methionine for various functions and highlights the importance of variability in methionine-related nutrients in the infant diet.
Collapse
Affiliation(s)
- Laura E McBreairty
- Department of Biochemistry, Memorial University of Newfoundland, St. John's, NL A1B 3X9, Canada.,Department of Biochemistry, Memorial University of Newfoundland, St. John's, NL A1B 3X9, Canada
| | - Robert F Bertolo
- Department of Biochemistry, Memorial University of Newfoundland, St. John's, NL A1B 3X9, Canada.,Department of Biochemistry, Memorial University of Newfoundland, St. John's, NL A1B 3X9, Canada
| |
Collapse
|
79
|
Hydrogen sulfide diminishes the levels of thymic stromal lymphopoietin in activated mast cells. Arch Dermatol Res 2016; 308:103-13. [DOI: 10.1007/s00403-016-1619-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2014] [Revised: 09/14/2015] [Accepted: 01/08/2016] [Indexed: 12/30/2022]
|
80
|
Huang J, Sun WL, Li CY, Liu HL, Zhang TT, Bao K, Fan YY, Li GY, Wang KY. Effects of DL-methionine supplement on growth performance and amino acid digestion and plasma concentrations in sika deer calves (Cervus nippon). ANIMAL PRODUCTION SCIENCE 2016. [DOI: 10.1071/an15042] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
This experiment was set to investigate the effects of DL-methionine (DL-met) supplement on growth performance and amino acid digestion and plasma concentrations in sika deer calves. Twelve healthy 5-month-old sika deer (29.44 ± 2.86 kg initial bodyweight) were randomly divided into three groups (4/group) and one sika deer per replicate. Levels of Met supplement in three treatments were 0, 1 g/kg and 2 g/kg, respectively. The results showed that the average daily gain for the early 35-day study period tended (P = 0.07) to increase linearly as the Met supplement increased, the feed to gain ratio (F : G) for the early period decreased (linearly and quadratically, P < 0.05), and, in the late 35-day study period, tended (linearly, P = 0.08) to decrease as dietary Met increased. The apparent digestibility of Met increased (linearly and quadratically, P < 0.01) with graded amounts of supplemental Met, and the apparent digestibilities of valine, leucine, isoleucine, phenylalanine, glycine, aspartic and cystine showed a linear increase (P < 0.05). Plasma glycine, proline and isoleucine concentrations increased linearly and quadratically (P < 0.01) with Met supplementation, plasma serine and leucine increased linearly (P < 0.05), and plasma histidine, lysine, arginine and NH3 increased quadratically (P < 0.01 or P < 0.05), with graded amounts of supplemental Met. Met supplementation in the diet improved feed utilisation and amino acid (AA) nutrient digestion, and affected plasma AA concentrations in sika deer calves.
Collapse
|
81
|
McBreairty LE, Robinson JL, Harding SV, Randell EW, Brunton JA, Bertolo RF. Betaine is as effective as folate at re-synthesizing methionine for protein synthesis during moderate methionine deficiency in piglets. Eur J Nutr 2015; 55:2423-2430. [DOI: 10.1007/s00394-015-1049-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2015] [Accepted: 09/16/2015] [Indexed: 01/04/2023]
|
82
|
Conde-Aguilera JA, Le Floc'h N, Le Huërou-Luron I, Mercier Y, Tesseraud S, Lefaucheur L, van Milgen J. Splanchnic tissues respond differently when piglets are offered a diet 30 % deficient in total sulfur amino acid for 10 days. Eur J Nutr 2015; 55:2209-19. [PMID: 26335055 DOI: 10.1007/s00394-015-1031-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2015] [Accepted: 08/26/2015] [Indexed: 01/04/2023]
Abstract
PURPOSE A deficient total sulfur amino acid (TSAA) supply has been reported to differently affect the amino acid composition of tissues, but limited information is available about its effects on the morphology and metabolic properties of splanchnic tissues. METHODS The amino acid composition, protein metabolism, glutathione concentration of the liver, proximal and distal jejunum, ileum and kidneys, and intestinal architecture were compared in 42-day-old piglets pair-fed either a diet deficient (TSAA-; 28 % deficiency) or sufficient (TSAA+) in TSAA for 10 days. RESULTS The supply of TSAA had no effect on tissue weights, but influenced the amino acid composition in a tissue-dependent manner. Compared with animals receiving diet TSAA+, the concentrations of Met and Ser were higher in liver protein of TSAA- animals while the Cys concentration in protein was lower in the liver but higher in the distal jejunum. The TSAA supply had no effect on protein synthesis and proteolytic activities of tissues. Villus width and surface, and crypt surface were lower in the proximal jejunum of TSAA- versus TSAA+ pigs. Crypt surface in the ileum of TSAA- pigs was higher. Pigs receiving diet TSAA- had lower GSH and GSSG concentrations in the liver and proximal jejunum, but the GSH/GSSG ratio was decreased only in the liver. CONCLUSIONS A greater nutritional priority appears to be given to splanchnic tissues so that its growth and protein metabolism can be maintained when the TSAA supply is limiting. The amino acid composition, glutathione status, and intestinal mucosa architecture are affected in a tissue-dependent manner.
Collapse
Affiliation(s)
| | - Nathalie Le Floc'h
- UMR1348 PEGASE, INRA, 35590, Saint-Gilles, France.,UMR1348 PEGASE, Agrocampus Ouest, 35000, Rennes, France
| | | | | | | | - Louis Lefaucheur
- UMR1348 PEGASE, INRA, 35590, Saint-Gilles, France.,UMR1348 PEGASE, Agrocampus Ouest, 35000, Rennes, France
| | - Jaap van Milgen
- UMR1348 PEGASE, INRA, 35590, Saint-Gilles, France. .,UMR1348 PEGASE, Agrocampus Ouest, 35000, Rennes, France.
| |
Collapse
|
83
|
Moon PD, Kim MH, Oh HA, Nam SY, Han NR, Jeong HJ, Kim HM. Cysteine induces longitudinal bone growth in mice by upregulating IGF-I. Int J Mol Med 2015; 36:571-6. [PMID: 26101100 DOI: 10.3892/ijmm.2015.2257] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Accepted: 06/16/2015] [Indexed: 11/06/2022] Open
Abstract
Cysteine (Cys) is known to exert various effects, such as antioxidant, antipancreatitic and antidiabetic effects. However, the effects of Cys on longitudinal bone growth have not been elucidate to date. Thus, the aim of the present study was to evaluate the effects of Cys on bone growth. Growth-plate thickness and bone parameters, such as bone volume/tissue volume (BV/TV), trabecular thickness (Tb.Th), trabecular number (Tb.N), connectivity density (Conn.D) and total porosity were analyzed by means of micro-computed tomography (μCT). The levels of serum insulin-like growth factor-I (IGF-I) were measured by enzyme-linked immunosorbent assay (ELISA). Hepatic IGF-I mRNA expression was analyzed by quantitative polymerase chain reaction (qPCR). The phosphorylation of Janus kinase 2 (JAK2) and signal transducer and activator of transcription 5 (STAT5) was investigated by western blot analysis. Our results revealed that Cys increased IGF-I mRNA expression in HepG2 cells. The thickness of the growth plates was increased following treatment with Cys. Moreover, BV/TV, Tb.Th, TbN, Conn.D and total porosity were improved following treatment with Cys. Hepatic IGF-I mRNA expression and serum IGF-I levels were increased by Cys. The levels of phosphorylated JAK2 and STAT5 were elevated by Cys. The findings of our study indicate that Cys increases the thickness of growth plates through the upregulation of IGF-I, which results from the phosphorylation of JAK2-STAT5. Thus, our data suggest that Cys may have potential for use as a growth-promoting agent.
Collapse
Affiliation(s)
- Phil-Dong Moon
- Department of Pharmacology, College of Korean Medicine, Kyung Hee University, Seoul 130‑701, Republic of Korea
| | - Min-Ho Kim
- Department of Computer Aided Mechanical Engineering, Sohae College, Gunsan, Jeonbuk, 573-717, Republic of Korea
| | - Hyun-A Oh
- Department of Pharmacology, College of Korean Medicine, Kyung Hee University, Seoul 130‑701, Republic of Korea
| | - Sun-Young Nam
- Department of Pharmacology, College of Korean Medicine, Kyung Hee University, Seoul 130‑701, Republic of Korea
| | - Na-Ra Han
- Department of Pharmacology, College of Korean Medicine, Kyung Hee University, Seoul 130‑701, Republic of Korea
| | - Hyun-Ja Jeong
- Biochip Research Center, Hoseo University, Asan, Chungnam 336‑795, Republic of Korea
| | - Hyung-Min Kim
- Department of Pharmacology, College of Korean Medicine, Kyung Hee University, Seoul 130‑701, Republic of Korea
| |
Collapse
|
84
|
Yin J, Ren W, Yang G, Duan J, Huang X, Fang R, Li C, Li T, Yin Y, Hou Y, Kim SW, Wu G. L-Cysteine metabolism and its nutritional implications. Mol Nutr Food Res 2015; 60:134-46. [PMID: 25929483 DOI: 10.1002/mnfr.201500031] [Citation(s) in RCA: 205] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2015] [Revised: 04/08/2015] [Accepted: 04/23/2015] [Indexed: 01/17/2023]
Abstract
L-Cysteine is a nutritionally semiessential amino acid and is present mainly in the form of L-cystine in the extracellular space. With the help of a transport system, extracellular L-cystine crosses the plasma membrane and is reduced to L-cysteine within cells by thioredoxin and reduced glutathione (GSH). Intracellular L-cysteine plays an important role in cellular homeostasis as a precursor for protein synthesis, and for production of GSH, hydrogen sulfide (H(2)S), and taurine. L-Cysteine-dependent synthesis of GSH has been investigated in many pathological conditions, while the pathway for L-cysteine metabolism to form H(2)S has received little attention with regard to prevention and treatment of disease in humans. The main objective of this review is to highlight the metabolic pathways of L-cysteine catabolism to GSH, H(2)S, and taurine, with special emphasis on therapeutic and nutritional use of L-cysteine to improve the health and well-being of animals and humans.
Collapse
Affiliation(s)
- Jie Yin
- Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Hunan Provincial Engineering Research Center of Healthy Livestock, Key Laboratory of Agro-Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Wenkai Ren
- Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Hunan Provincial Engineering Research Center of Healthy Livestock, Key Laboratory of Agro-Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Guan Yang
- Department of Animal Science, University of Florida, Gainesville, FL, USA
| | - Jielin Duan
- Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Hunan Provincial Engineering Research Center of Healthy Livestock, Key Laboratory of Agro-Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xingguo Huang
- Department of Animal Science, Hunan Agriculture University, Changsha, China
| | - Rejun Fang
- Department of Animal Science, Hunan Agriculture University, Changsha, China
| | - Chongyong Li
- Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Hunan Provincial Engineering Research Center of Healthy Livestock, Key Laboratory of Agro-Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan, China
| | - Tiejun Li
- Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Hunan Provincial Engineering Research Center of Healthy Livestock, Key Laboratory of Agro-Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan, China
| | - Yulong Yin
- Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Hunan Provincial Engineering Research Center of Healthy Livestock, Key Laboratory of Agro-Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan, China
- School of Life Sciences, Hunan Normal University, Changsha, China
| | - Yongqing Hou
- Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, Wuhan Polytechnic University, Wuhan, China
| | - Sung Woo Kim
- Department of Animal Science, North Carolina State University, Raleigh, NC, USA
| | - Guoyao Wu
- Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Hunan Provincial Engineering Research Center of Healthy Livestock, Key Laboratory of Agro-Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan, China
- Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, Wuhan Polytechnic University, Wuhan, China
- Department of Animal Science, Texas A&M University, College Station, TX, USA
| |
Collapse
|
85
|
Moon PD, Kim MH, Lim HS, Oh HA, Nam SY, Han NR, Kim MJ, Jeong HJ, Kim HM. Taurine, a major amino acid of oyster, enhances linear bone growth in a mouse model of protein malnutrition. Biofactors 2015; 41:190-7. [PMID: 25963419 DOI: 10.1002/biof.1213] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Accepted: 04/19/2015] [Indexed: 01/04/2023]
Abstract
Oysters (Oys) contain various beneficial components, such as, antioxidants and amino acids. However, the effects of Oys or taurine (Tau), a major amino acid in Oys on bone growth have not been determined. In the present study, we evaluated the effects of Oys or Tau on linear bone growth in a mouse model of protein malnutrition. To make the protein malnutrition in a mouse, we used a low protein diet. Growth plate thickness was increased by Oys or Tau. Bone volume/tissue volume, trabecular thickness, trabecular number, connection density, and total porosity were also improved by Oys or Tau. Oys or Tau increased insulin-like growth factor-1 (IGF-1) levels in serum, liver, and tibia-growth plate. Phosphorylations of Janus kinase 2 (JAK2) and signal transducer and activator of transcription 5 (STAT5) were increased by Oys and by Tau. These findings show that Oys or Tau may increase growth plate thickness by elevating IGF-1 levels and by promoting the phosphorylations of JAK2-STAT5, and suggest that Oys or Tau are growth-promoting substances of potential use in the food and pharmaceutical industries.
Collapse
Affiliation(s)
- Phil-Dong Moon
- Department of Pharmacology, College of Korean Medicine, Kyung Hee University, 1 Hoegi-dong, Dongdaemun-gu, Seoul, 130-701, Republic of Korea
| | - Min-Ho Kim
- Department of Computer Aided Mechanical Engineering, Sohae College, Gunsan, Jeonbuk, 573-717, Republic of Korea
| | - Hun-Sun Lim
- Du Wha Com., Deokjeong-ri, Samseong-myeon, Eumseong-gun, Chungbuk, 369-833, Republic of Korea
| | - Hyun-A Oh
- Department of Pharmacology, College of Korean Medicine, Kyung Hee University, 1 Hoegi-dong, Dongdaemun-gu, Seoul, 130-701, Republic of Korea
| | - Sun-Young Nam
- Department of Pharmacology, College of Korean Medicine, Kyung Hee University, 1 Hoegi-dong, Dongdaemun-gu, Seoul, 130-701, Republic of Korea
| | - Na-Ra Han
- Department of Pharmacology, College of Korean Medicine, Kyung Hee University, 1 Hoegi-dong, Dongdaemun-gu, Seoul, 130-701, Republic of Korea
| | - Myong-Jo Kim
- Oriental Bio-herb Research Institute, Kangwon National University, Chuncheon, 200-701, Republic of Korea
| | - Hyun-Ja Jeong
- Inflammatory Disease Research Center and Biochip Research Center, Hoseo University, 165 Sechul-ri, Baebang-myun, Asan, Chungnam, 336-795, Republic of Korea
| | - Hyung-Min Kim
- Department of Pharmacology, College of Korean Medicine, Kyung Hee University, 1 Hoegi-dong, Dongdaemun-gu, Seoul, 130-701, Republic of Korea
| |
Collapse
|
86
|
Differences in plasma metabolomics between sows feddl-methionine and its hydroxy analogue reveal a strong association of milk composition and neonatal growth with maternal methionine nutrition. Br J Nutr 2015; 113:585-95. [DOI: 10.1017/s0007114514004036] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The aim of the present study was to determine whether increased consumption of methionine asdl-methionine (DLM) or its hydroxy analoguedl-2-hydroxy-4-methylthiobutanoic acid (HMTBA) could benefit milk synthesis and neonatal growth. For this purpose, eighteen cross-bred (Landrace × Yorkshire) primiparous sows were fed a control (CON), DLM or HMTBA diet (n6 per diet) from 0 to 14 d post-partum. At postnatal day 14, piglets in the HMTBA group had higher body weight (P= 0·02) than those in the CON group, tended (P= 0·07) to be higher than those in the DLM group, and had higher (P< 0·05) mRNA abundance of jejunal fatty acid-binding protein 2, intestinal than those in the CON and DLM groups. Compared with the CON diet-fed sows, milk protein, non-fat solid, and lysine, histidine and ornithine concentrations decreased in the DLM diet-fed sows (P< 0·05), and milk fat, lactose, and cysteine and taurine concentrations increased in the HMTBA diet-fed sows (P< 0·05). Plasma homocysteine and urea N concentrations that averaged across time were increased (P< 0·05) in sows fed the DLM diet compared with those fed the CON diet. Metabolomic results based on1H NMR spectroscopy revealed that consumption of the HMTBA and DLM diets increased (P< 0·05) both sow plasma methionine and valine levels; however, consumption of the DLM diet led to lower (P< 0·05) plasma levels of lysine, tyrosine, glucose and acetate and higher (P< 0·05) plasma levels of citrate, lactate, formate, glycerol,myo-inositol andN-acetyl glycoprotein in sows. Collectively, neonatal growth and milk synthesis were regulated by dietary methionine levels and sources, which resulted in marked alterations in amino acid, lipid and glycogen metabolism.
Collapse
|
87
|
Skeletal muscles respond differently when piglets are offered a diet 30 % deficient in total sulfur amino acid for 10 days. Eur J Nutr 2015; 55:117-26. [DOI: 10.1007/s00394-014-0830-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2014] [Accepted: 12/30/2014] [Indexed: 11/30/2022]
|
88
|
Changes in plasma amino acid profiles, growth performance and intestinal antioxidant capacity of piglets following increased consumption of methionine as its hydroxy analogue. Br J Nutr 2014; 112:855-67. [DOI: 10.1017/s000711451400172x] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The aim of the present study was to determine whether early weaning-induced growth retardation could be attenuated by increased consumption of methionine as dl-methionine (DLM) or dl-2-hydroxy-4-methylthiobutyrate (HMTBA) in both lactating sows and weaned piglets. Therefore, diets containing DLM and HMTBA at 25 % of the total sulphur-containing amino acids (AA) present in the control (CON) diet were fed to lactating sows and weaned piglets and their responses were evaluated. Compared with the CON diet-fed sows, the HMTBA diet-fed sows exhibited a tendency (P< 0·10) towards higher plasma taurine concentrations and the DLM diet-fed sows had higher (P< 0·05) plasma taurine concentrations, but lower (P< 0·05) isoleucine concentrations. Suckling piglets in the HMTBA treatment group had higher (P< 0·05) intestinal reduced glutathione (GSH) content, lower (P< 0·05) oxidised glutathione (GSSG):GSH ratio, and higher (P< 0·05) plasma cysteine and glutathione peroxidase (GPx) activity than those in the CON and DLM treatment groups. The feed intake (P< 0·05) and body weight of piglets averaged across post-weaning (PW) days were higher (P< 0·05) in the HMTBA treatment group than in the DLM treatment group and were higher (P< 0·05) and tended (P< 0·10) to be higher, respectively, in the HMTBA treatment group than in the CON treatment group. Increased (P< 0·05) GSSG content and GSSG:GSH ratio and down-regulated (P< 0·05) expression of nutrient transport genes were observed in the jejunum of piglets on PW day 7 than on PW day 0. On PW day 14, the HMTBA diet-fed piglets had higher (P< 0·05) intestinal GSH content than the CON diet-fed piglets and higher (P< 0·05) plasma GPx activity, villus height and goblet cell numbers than the CON diet- and DLM diet-fed piglets. In conclusion, early weaning-induced growth retardation appears to be attenuated through changes in plasma AA profiles and elevation of growth performance and intestinal antioxidant capacity in piglets following increased consumption of methionine as HMTBA.
Collapse
|
89
|
Huang C, Guo Y, Yuan J. Dietary taurine impairs intestinal growth and mucosal structure of broiler chickens by increasing toxic bile acid concentrations in the intestine. Poult Sci 2014; 93:1475-83. [PMID: 24879697 DOI: 10.3382/ps.2013-03533] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Three experiments were conducted to determine the effect of taurine on the intestinal development, bile acid concentrations, and hormonal status of chickens. In experiment 1, a total of 250 one-day-old broilers were randomly allocated to 5 treatments and supplemented with 0, 0.25, 0.50, 1.00, and 2.00 g/kg of taurine, respectively. Growth performance, weight and length of the small intestine, and intestinal morphology were measured on d 7, 22, and 44. The gene expression levels of several hormones, including epidermal growth factor and cholecystokinin, were also evaluated. In experiment 2, 60 one-day-old broilers were supplemented with 0, 1.0, and 5.0 g/kg of taurine to assess cell proliferation in the jenunal crypt. In experiment 3, 100 newly hatched broilers were assigned randomly to 5 treatments (0, 0.10, 0.50, 2.00, 8.00 g/kg of taurine) to evaluate the bile acid concentrations in the jejunal mucosa. Our results indicated that dietary taurine decreased the length and weight of small intestine, the villus width, surface area, and crypt depth in the duodenum and jejunum (P < 0.05). Taurine also increased the expression of cholecystokinin and epidermal growth factor on the jejunal mucosa (P < 0.001). Taurine has little effect on stimulating the proliferation of intestinal crypt cells, except for 5 g/kg of taurine supplementation on d 14 (P < 0.05). Additionally, a linear increase in the jejunal concentrations of taurocholic acid, taurochenodeoxycholic acid, and taurolithocholic acid was observed on d 7 in broilers fed increasing levels of taurine. In conclusion, we suggested that taurine impairs intestinal mucosal development partly through generation of toxic bile acids.
Collapse
Affiliation(s)
- Chunxi Huang
- State Key Laboratory for Animal Nutrition, China Agricultural University, Beijing 100193, China
| | - Yuming Guo
- State Key Laboratory for Animal Nutrition, China Agricultural University, Beijing 100193, China
| | - Jianmin Yuan
- State Key Laboratory for Animal Nutrition, China Agricultural University, Beijing 100193, China
| |
Collapse
|
90
|
Methionine deficiency reduces autophagy and accelerates death in intestinal epithelial cells infected with enterotoxigenic Escherichia coli. Amino Acids 2014; 47:2199-204. [PMID: 24965529 DOI: 10.1007/s00726-014-1781-4] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2014] [Accepted: 06/05/2014] [Indexed: 12/22/2022]
Abstract
Infections by enterotoxigenic Escherichia coli (ETEC) result in large economic losses to the swine industry worldwide. Dietary supplementation with amino acids has been considered as a potential mechanism to improve host defenses against infection. The goal of this study was to determine whether methionine deprivation alters ETEC interactions with porcine intestinal epithelial cells. IPEC-1 cells were cultured in media with or without L-methionine. Methionine deprivation resulted in enhanced ETEC adhesion and increased both the cytotoxicity and apoptotic responses of IPEC-1 cells infected with ETEC. Methionine deprivation inhibited IPEC-1 cell autophagic responses, suggesting that the increased cytotoxicity of ETEC to methionine-deprived IPEC-1 cells might be due to defects in autophagy.
Collapse
|
91
|
l-Methionine supplementation maintains the integrity and barrier function of the small-intestinal mucosa in post-weaning piglets. Amino Acids 2014; 46:1131-42. [DOI: 10.1007/s00726-014-1675-5] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2013] [Accepted: 01/15/2014] [Indexed: 11/27/2022]
|
92
|
Abstract
BACKGROUND Mucosal healing (MH) decreases the relapse risk in patients with inflammatory bowel disease, but the role of dietary supplementation in this process has been poorly investigated. Here, we investigated the effect of an amino acid mixture supplement on rat MH. METHODS Colitis was induced using 5% of dextran sodium sulfate for 6 days. Then, rats received a mixture of threonine (0.50 g/d), methionine (0.31 g/d), and monosodium glutamate (0.57 g/d) or an isonitrogenous amount of alanine (control group). Colons were recovered after colitis induction and after dietary supplementation for measuring colon characteristics, myeloperoxidase, cytokine gene expression, glutathione content, protein synthesis rate, and for histological analysis. Short-chain fatty acids were measured in the colonic content. RESULTS Colitis induction resulted in anorexia, thickening and shortening of the colon, and ulceration. Colonic cytokine expression and neutrophil infiltration were increased. An increased amount of water and a decreased amount of butyrate, propionate, and acetate were measured in the colonic content. Supplementation with the amino acid mixture coincided with a reduced protein synthesis rate in the colon compatible with the observed increased colonic MH. Mucosal regeneration/re-epithelialization was visible within 3 days after colitis induction at a time when mucosal inflammation was severe. Histological analysis revealed an increased regeneration/re-epithelialization after 10-day supplementation. In contrast, the spontaneous resolution of inflammation was not affected by the supplementation. CONCLUSIONS Amino acid supplementation ameliorates colonic MH but not mucosal inflammatory status. Our data sustain the use of adjuvant dietary intervention on initiated intestinal MH.
Collapse
|
93
|
Zhao J, Liu Y, Jiang J, Wu P, Jiang W, Li S, Tang L, Kuang S, Feng L, Zhou X. Effects of dietary isoleucine on the immune response, antioxidant status and gene expression in the head kidney of juvenile Jian carp (Cyprinus carpio var. Jian). FISH & SHELLFISH IMMUNOLOGY 2013; 35:572-580. [PMID: 23742869 DOI: 10.1016/j.fsi.2013.05.027] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2012] [Revised: 05/25/2013] [Accepted: 05/26/2013] [Indexed: 06/02/2023]
Abstract
This study was conducted to evaluate the effects of dietary isoleucine (Ile) on the immune response, antioxidant status and gene expression in the head kidney of juvenile Jian carp (Cyprinus carpio var. Jian). Six semi-purified isonitrogenous diets (4.2, 7.0, 9.5, 11.9, 13.9 and 16.9 g Ile kg(-1) diet) were fed to Jian carp (6.9 ± 0.03 g) for 60 days. The results showed that Ile supplementation improved the head kidney index, red and white blood cell counts, anti-hydroxyl radical capacity and the activities of superoxide dismutase, catalase, glutathione peroxidase, glutathione reductase and glutathione-S-transferase (P < 0.05), and decreased the malondialdehyde, protein carbonyl and glutathione contents in the head kidney (P < 0.05). After a 60 day feeding trial, an Aeromonas hydrophila challenge study was conducted for 17 days. Differences in survival rate, leucocyte phagocytic activity, serum lysozyme activity, acid phosphatase activity, haemagglutination titre, complement components 3 and 4, immunoglobulin M level and A. hydrophila agglutination antibody titre followed the same trend as that of the head kidney index (P < 0.05). Furthermore, real time polymerase chain reaction revealed that relative mRNA expression of transforming growth factor β2 and target of rapamycin (TOR) in the head kidney significantly increased with increasing Ile levels (P < 0.05). Conversely, the relative mRNA expression of tumour necrosis factor α, interleukin 10 and eIF4E-binding protein (4E-BP) in the head kidney showed a downward trend (P < 0.05). Collectively, this study indicates that dietary Ile improves the fish immune response, regulates the antioxidant status and cytokine, TOR and 4E-BP gene expression in the head kidney.
Collapse
Affiliation(s)
- Juan Zhao
- Animal Nutrition Institute, Sichuan Agricultural University, Sichuan, Ya'an 625014, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
94
|
Ruth MR, Field CJ. The immune modifying effects of amino acids on gut-associated lymphoid tissue. J Anim Sci Biotechnol 2013; 4:27. [PMID: 23899038 PMCID: PMC3750756 DOI: 10.1186/2049-1891-4-27] [Citation(s) in RCA: 116] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2013] [Accepted: 07/29/2013] [Indexed: 12/11/2022] Open
Abstract
The intestine and the gut-associated lymphoid tissue (GALT) are essential components of whole body immune defense, protecting the body from foreign antigens and pathogens, while allowing tolerance to commensal bacteria and dietary antigens. The requirement for protein to support the immune system is well established. Less is known regarding the immune modifying properties of individual amino acids, particularly on the GALT. Both oral and parenteral feeding studies have established convincing evidence that not only the total protein intake, but the availability of specific dietary amino acids (in particular glutamine, glutamate, and arginine, and perhaps methionine, cysteine and threonine) are essential to optimizing the immune functions of the intestine and the proximal resident immune cells. These amino acids each have unique properties that include, maintaining the integrity, growth and function of the intestine, as well as normalizing inflammatory cytokine secretion and improving T-lymphocyte numbers, specific T cell functions, and the secretion of IgA by lamina propria cells. Our understanding of this area has come from studies that have supplemented single amino acids to a mixed protein diet and measuring the effect on specific immune parameters. Future studies should be designed using amino acid mixtures that target a number of specific functions of GALT in order to optimize immune function in domestic animals and humans during critical periods of development and various disease states.
Collapse
Affiliation(s)
- Megan R Ruth
- Department of Agricultural, Food and Nutritional Science, 4-126A Li Ka Shing Health Research Innovation Centre, University of Alberta, Edmonton, AB T6G 2E1, Canada.
| | | |
Collapse
|
95
|
McBreairty LE, McGowan RA, Brunton JA, Bertolo RF. Partitioning of [methyl-3H]methionine to methylated products and protein is altered during high methyl demand conditions in young Yucatan miniature pigs. J Nutr 2013; 143:804-9. [PMID: 23616507 DOI: 10.3945/jn.112.172593] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Methionine is the main source of methyl groups that are partitioned to synthesize various methylated products including creatine, phosphatidylcholine (PC), and methylated DNA. Whether increased methylation of 1 product can divert methionine from protein synthesis or other methylation products was the aim of this experiment. We used an excess of guanidinoacetate (GAA) to synthesize creatine to create a higher demand for available methyl groups in normal-weight (NW) (n = 10) and intrauterine growth-restricted (IUGR) (n = 10) piglets. Anesthetized piglets (15-18 d old) were intraportally infused with either GAA or saline for 2 h. A bolus of l-[methyl-(3)H]methionine was intraportally infused at 1 h, and hepatic metabolites were analyzed for methyl-(3)H incorporation 1 h later. Overall, 50-75% of label was recovered in creatine and PC with negligible amounts in DNA. In both NW and IUGR piglets, excess GAA led to an ≈ 80-120% increase in methyl incorporation into creatine (P < 0.05) with a concomitant decrease by ≈ 75-85% in methyl incorporation into PC (P < 0.05) as well as a 40% decrease in methyl incorporation into protein (P < 0.05), suggesting methyl groups were limited for PC synthesis and that methionine was diverted from protein synthesis. Compared with NW piglets, IUGR piglets had lower methyl incorporation into PC (P < 0.05), but not DNA or protein, suggesting IUGR affects methyl metabolism and could potentially impact lipid metabolism. The partitioning of methionine is sensitive to methyl supply in neonates, which has implications in infant diet composition and growth.
Collapse
Affiliation(s)
- Laura E McBreairty
- Department of Biochemistry, Memorial University of Newfoundland, St. John's, Canada
| | | | | | | |
Collapse
|
96
|
Abstract
OBJECTIVES Necrotizing enterocolitis (NEC) is complex disease thought to occur as a result of an immaturity of the gastrointestinal tract of preterm infants. Intestinal dysfunction induced by total parental nutrition (TPN) may increase the risk for NEC upon introduction of enteral feeding. We hypothesized that the intestinal trophic and anti-inflammatory actions previously ascribed to the gut hormone, glucagon-like peptide-2 (GLP-2), would reduce the incidence of NEC when given in combination with TPN in preterm piglets. METHODS Preterm, newborn piglets were nourished by TPN and infused continuously with either human GLP-2 (100 μg · kg⁻¹ · day⁻¹) or control saline for 2 days (n = 12/group). On day 3, TPN was discontinued and pigs were given orogastric formula feeding every 3 hours, and continued GLP-2 or control treatment until the onset of clinical signs of NEC for an additional 96 hours and tissue was collected for molecular and histological endpoints. RESULTS GLP-2 treatment delayed the onset of NEC but was unable to prevent a high NEC incidence (~70%) and severity that occurred in both groups. GLP-2-treated pigs had less histological injury and increased proximal intestinal weight and mucosal villus height, but not crypt depth or Ki-67-positive cells. Inflammatory markers of intestinal myeloperoxidase were unchanged and serum amyloid A levels were higher in GLP-2-treated pigs. CONCLUSIONS GLP-2 did not prevent NEC and a proinflammatory response despite some reduction in mucosal injury and increased trophic effect.
Collapse
|
97
|
Abstract
Sulfur is the seventh most abundant element measurable in the human body and is supplied mainly by the intake of methionine (Met), an indispensable amino acid found in plant and animal proteins. Met controls the initiation of protein synthesis, governs major metabolic and catalytic activities, and may undergo reversible redox processes safeguarding protein integrity. Withdrawal of Met from customary diets causes the greatest downsizing of lean body mass following either unachieved replenishment (malnutrition) or excessive losses (inflammation). These physiopathologically unrelated morbidities nevertheless stimulate comparable remethylation reactions from homocysteine, indicating that Met homeostasis benefits from high metabolic priority. Inhibition of cystathionine-β-synthase activity causes the upstream sequestration of homocysteine and the downstream drop in cysteine and glutathione. Consequently, the enzymatic production of hydrogen sulfide and the nonenzymatic reduction of elemental sulfur to hydrogen sulfide are impaired. Sulfur operates as cofactor of several enzymes critically involved in the regulation of oxidative processes. A combination of malnutrition and nutritional deprivation of sulfur maximizes the risk of cardiovascular disorders and stroke, constituting a novel clinical entity that threatens plant-eating population groups.
Collapse
Affiliation(s)
- Yves Ingenbleek
- Laboratory of Nutrition, Faculty of Pharmacy, University Louis Pasteur, Strasbourg, France.
| | | |
Collapse
|
98
|
Bauchart-Thevret C, Stoll B, Benight NM, Olutoye O, Lazar D, Burrin DG. Supplementing monosodium glutamate to partial enteral nutrition slows gastric emptying in preterm pigs(1-3). J Nutr 2013; 143:563-70. [PMID: 23446960 PMCID: PMC3970318 DOI: 10.3945/jn.112.167783] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Emerging evidence suggests that free glutamate may play a functional role in modulating gastroduodenal motor function. We hypothesized that supplementing monosodium glutamate (MSG) to partial enteral nutrition stimulates gastric emptying in preterm pigs. Ten-day-old preterm, parenterally fed pigs received partial enteral nutrition (25%) as milk-based formula supplemented with MSG at 0, 1.7, 3.0, and 4.3 times the basal protein-bound glutamate intake (468 mg·kg(-1)·d(-1)) from d 4 to 8 of life (n = 5-8). Whole-body respiratory calorimetry and (13)C-octanoic acid breath tests were performed on d 4, 6, and 8. Body weight gain, stomach and intestinal weights, and arterial plasma glutamate and glutamine concentrations were not different among the MSG groups. Arterial plasma glutamate concentrations were significantly higher at birth than after 8 d of partial enteral nutrition. Also at d 8, the significant portal-arterial concentration difference in plasma glutamate was substantial (∼500 μmol/L) among all treatment groups, suggesting that there was substantial net intestinal glutamate absorption in preterm pigs. MSG supplementation dose-dependently increased gastric emptying time and decreased breath (13)CO2 enrichments, (13)CO2 production, percentage of (13)CO2 recovery/h, and cumulative percentage recovery of (13)C-octanoic acid. Circulating glucagon-like peptide-2 (GLP-2) concentration was significantly increased by MSG but was not associated with an increase in intestinal mucosal growth. In contrast to our hypothesis, our results suggest that adding MSG to partial enteral nutrition slows the gastric emptying rate, which may be associated with an inhibitory effect of increased circulating GLP-2.
Collapse
Affiliation(s)
- Caroline Bauchart-Thevret
- USDA/Agricultural Research Service Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX
| | - Barbara Stoll
- USDA/Agricultural Research Service Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX
| | - Nancy M. Benight
- USDA/Agricultural Research Service Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX
| | - Oluyinka Olutoye
- Texas Children’s Hospital, Division of Pediatric Surgery, Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, TX; and
| | - David Lazar
- Texas Children’s Hospital, Division of Pediatric Surgery, Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, TX; and
| | - Douglas G. Burrin
- USDA/Agricultural Research Service Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX,Section of Pediatric Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, Baylor College of Medicine, Houston, TX,To whom correspondence should be addressed. E-mail:
| |
Collapse
|
99
|
Klunker LR, Kahlert S, Panther P, Diesing AK, Reinhardt N, Brosig B, Kersten S, Dänicke S, Rothkötter HJ, Kluess JW. Deoxynivalenol and E.coli lipopolysaccharide alter epithelial proliferation and spatial distribution of apical junction proteins along the small intestinal axis1. J Anim Sci 2013; 91:276-85. [DOI: 10.2527/jas.2012-5453] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Affiliation(s)
- L. R. Klunker
- Institute of Anatomy, Medical Faculty, Otto-von-Guericke University, 39120 Magdeburg, Germany
| | - S. Kahlert
- Institute of Anatomy, Medical Faculty, Otto-von-Guericke University, 39120 Magdeburg, Germany
| | - P. Panther
- Institute of Anatomy, Medical Faculty, Otto-von-Guericke University, 39120 Magdeburg, Germany
| | - A.-K. Diesing
- Institute of Anatomy, Medical Faculty, Otto-von-Guericke University, 39120 Magdeburg, Germany
| | - N. Reinhardt
- Institute of Anatomy, Medical Faculty, Otto-von-Guericke University, 39120 Magdeburg, Germany
| | - B. Brosig
- Institute of Animal Nutrition, Federal Research Institute for Animal Health, 38116 Braunschweig, Germany
| | - S. Kersten
- Institute of Animal Nutrition, Federal Research Institute for Animal Health, 38116 Braunschweig, Germany
| | - S. Dänicke
- Institute of Animal Nutrition, Federal Research Institute for Animal Health, 38116 Braunschweig, Germany
| | - H.-J. Rothkötter
- Institute of Anatomy, Medical Faculty, Otto-von-Guericke University, 39120 Magdeburg, Germany
| | - J. W. Kluess
- Institute of Anatomy, Medical Faculty, Otto-von-Guericke University, 39120 Magdeburg, Germany
| |
Collapse
|
100
|
Dwivedi S, Mishra A, Tripathi P, Dave R, Kumar A, Srivastava S, Chakrabarty D, Trivedi PK, Adhikari B, Norton GJ, Tripathi RD, Nautiyal CS. Arsenic affects essential and non-essential amino acids differentially in rice grains: inadequacy of amino acids in rice based diet. ENVIRONMENT INTERNATIONAL 2012; 46:16-22. [PMID: 22664651 DOI: 10.1016/j.envint.2012.04.012] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2012] [Revised: 04/18/2012] [Accepted: 04/29/2012] [Indexed: 05/13/2023]
Abstract
Recent breakthroughs in rice arsenic (As) research demonstrate that As accumulation significantly affects trace nutrients in rice grain. In the present study we analyzed the amino acid (AA) profile of sixteen rice genotypes differing in grain As accumulation, grown at three sites with different soil As concentrations, in ascending order, Chinsurah<Purbosthali<Birnagar. Grain As accumulation negatively correlated with essential amino acids (EAAs) which were more prominent in high As accumulating rice genotypes (HAARGs). Conversely, non-essential amino acids (NEAAs) showed an increase in low As accumulating rice genotypes (LAARGs) but a decrease in HAARGs. EAAs like isoleucine, leucine, valine, phenylalanine, and tyrosine also decreased in most of the genotypes. NEAAs like glutamic acid, glycine, proline, and histidine showed an increase in all LAARGs. Likewise, sulfur containing AAs (methionine and cysteine) increased in LAARGs but decreased in HAARGs. Among NEAAs in HAARGs, only arginine and serine showed some induction in most of the genotypes. At the highest As site (Birnagar) total EAAs and NEAAs show significant reduction in HAARGs compared to LAARGs. The study concluded that As accumulation in rice grain alters EAAs and NEAAs differentially, and reduction was more pronounced in HAARGs than in LAARGs. Thus, As tainted rice limits required levels of AAs in rice based diets and therefore cannot alone fulfill the recommended daily intake (RDI) of AAs.
Collapse
Affiliation(s)
- Sanjay Dwivedi
- CSIR- National Botanical Research Institute, Lucknow - 226 001, India
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|