51
|
Belkaid Y, Liesenfeld O, Maizels RM. 99th Dahlem conference on infection, inflammation and chronic inflammatory disorders: induction and control of regulatory T cells in the gastrointestinal tract: consequences for local and peripheral immune responses. Clin Exp Immunol 2010; 160:35-41. [PMID: 20415849 DOI: 10.1111/j.1365-2249.2010.04131.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Regulatory T cells play a crucial role in normal gut homeostasis, as well as during infection with microbial or parasitic pathogens. Prior to infection, interactions with the commensal microflora are essential to differentiation of a healthy steady-state level of immunoregulation, mediated through both Toll-like receptor-dependent and -independent pathways. The ingress of pathogenic organisms may, according to the context, promote or reverse the regulatory environment, with onward consequences for inflammation in both the intestinal and extra-intestinal settings. Appropriate regulation of gut immunity thus depends upon a complex three-way interplay between host cells, commensals and pathogens, and can exert a major impact on systemic responses including allergy and autoimmunity.
Collapse
Affiliation(s)
- Y Belkaid
- NIAID, National Institutes of Health, Laboratory of Parasitic Diseases, Bethesda, MD, USA
| | | | | |
Collapse
|
52
|
Noland GS, Chowdhury DR, Urban JF, Zavala F, Kumar N. Helminth infection impairs the immunogenicity of a Plasmodium falciparum DNA vaccine, but not irradiated sporozoites, in mice. Vaccine 2010; 28:2917-23. [PMID: 20188676 PMCID: PMC2846978 DOI: 10.1016/j.vaccine.2010.02.055] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2009] [Revised: 02/12/2010] [Accepted: 02/15/2010] [Indexed: 10/19/2022]
Abstract
Development of an effective vaccine against malaria remains a priority. However, a significant number of individuals living in tropical areas are also likely to be co-infected with helminths, which are known to adversely affect immune responses to a number of different existing vaccines. Here we compare the response to two prototype malaria vaccines: a transmission blocking DNA vaccine based on Pfs25, and a pre-erythrocytic malaria vaccine based on irradiated sporozoites in mice infected with the intestinal nematode Heligmosomoides polygyrus. Following primary immunization with Pfs25 DNA vaccine, levels of total IgG, as well as IgG1, IgG2a, IgG2b (all P=0.0002), and IgG3 (P=0.03) Pfs25 antibodies were significantly lower in H. polygyrus-infected mice versus worm-free controls. Similar results were observed even after two additional boosts, while clearance of worms with anthelmintic treatment 3 weeks prior to primary immunization significantly reversed the inhibitory effect of helminth infection. In contrast, helminth infection had no inhibitory effect on immunization with irradiated sporozoites. Mean anti-CSP antibody responses were similar between H. polygyrus-infected and worm-free control mice following immunization with a single dose (65,000 sporozoites) of live radiation attenuated (irradiated) Plasmodium yoelii sporozoites (17X, non-lethal strain), and protection upon sporozoite challenge was equivalent between groups. These results indicate that helminth infection may adversely affect certain anti-malarial vaccine strategies, and highlight the importance of these interactions for malaria vaccine development.
Collapse
Affiliation(s)
- Gregory S. Noland
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA
| | - Debabani Roy Chowdhury
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA
| | - Joseph F. Urban
- Diet, Genomics, and Immunology Laboratory, Beltsville Human Nutrition Research Center, Agricultural Research Service, United States Department of Agriculture, Beltsville, MD, USA
| | - Fidel Zavala
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA
| | - Nirbhay Kumar
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA
- Department of Tropical Medicine, Tulane University School of Public Health & Tropical Medicine, New Orleans, LA, 70112, USA
| |
Collapse
|
53
|
Rausch S, Huehn J, Loddenkemper C, Hepworth MR, Klotz C, Sparwasser T, Hamann A, Lucius R, Hartmann S. Establishment of nematode infection despite increased Th2 responses and immunopathology after selective depletion of Foxp3+ cells. Eur J Immunol 2010; 39:3066-77. [PMID: 19750483 DOI: 10.1002/eji.200939644] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Here, we show that Treg limit intestinal pathology during nematode infection and that they control the onset and magnitude of the anti-parasitic Th Th2 response. Using mice expressing the diphtheria toxin receptor under the control of the foxp3 locus, we removed Foxp3(+) Treg during the early phase of infection with Heligmosomoides polygyrus bakeri. Depletion of Treg in infected animals did not affect adult worm burden, but led to increased pathology at the site of infection. Infected, depleted mice displayed higher frequencies of activated CD4(+) T cells and increased levels of the Th2 cytokines IL-4 and IL-13. The stronger parasite-specific Th2 response was accompanied by higher levels of IL-10. Only a moderate change in Th1 (IFN-gamma) reactivity was detected in worm-infected, Treg-depleted mice. Furthermore, we detected an accelerated onset of parasite-specific Th2 and IL-10 responses in the transient absence of Foxp3(+) Treg. However, adult worm burdens were not affected by the increased Th2-reactivity in Treg-depleted mice. Hence, our data show that Treg restrict the onset and strength of Th2 responses during intestinal worm infection, while increasing primary Th2 responses does not necessarily lead to killing of larvae or accelerated expulsion of adult worms.
Collapse
Affiliation(s)
- Sebastian Rausch
- Department of Molecular Parasitology, Humboldt-University of Berlin, Berlin, Germany.
| | | | | | | | | | | | | | | | | |
Collapse
|
54
|
Helminthic therapy: using worms to treat immune-mediated disease. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2010; 666:157-66. [PMID: 20054982 DOI: 10.1007/978-1-4419-1601-3_12] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
There is an epidemic of immune-mediated disease in highly-developed industrialized countries. Such diseases, like inflammatory bowel disease, multiple sclerosis and asthma increase in prevalence as populations adopt modern hygienic practices. These practices prevent exposure to parasitic worms (helminths). Epidemiologic studies suggest that people who carry helminths have less immune-mediated disease. Mice colonized with helminths are protected from disease in models of colitis, encephalitis, Type 1 diabetes and asthma. Clinical trials show that exposure to helminths reduce disease activity in patients with ulcerative colitis or Crohn's disease. This chapter reviews some of the work showing that colonization with helminths alters immune responses, against dysregulated inflammation. These helminth-host immune interactions have potentially important implications for the treatment of immune-mediated diseases.
Collapse
|
55
|
Ince MN, Elliott DE, Setiawan T, Metwali A, Blum A, Chen HL, Urban JF, Flavell RA, Weinstock JV. Role of T cell TGF-beta signaling in intestinal cytokine responses and helminthic immune modulation. Eur J Immunol 2009; 39:1870-8. [PMID: 19544487 PMCID: PMC2882993 DOI: 10.1002/eji.200838956] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Colonization with helminthic parasites induces mucosal regulatory cytokines, like IL-10 or TGF-beta, that are important in suppressing colitis. Helminths induce mucosal T cell IL-10 secretion and regulate lamina propria mononuclear cell (LPMC) Th1 cytokine generation in an IL-10-dependent manner in WT mice. Helminths also stimulate mucosal TGF-beta release. As TGF-beta exerts major regulatory effects on T lymphocytes, we investigated the role of T lymphocyte TGF-beta signaling in helminthic modulation of intestinal immunity. T cell TGF-beta signaling is interrupted in TGF-beta receptor II dominant negative (TGF-betaRII DN) mice by T-cell-specific over-expression of a TGF-betaRII DN. We studied LPMC responses in WT and TGF-betaRII DN mice that were uninfected or colonized with the nematode, Heligmosomoides polygyrus. Our results indicate an essential role of T cell TGF-beta signaling in limiting mucosal Th1 and Th2 responses. Furthermore, we demonstrate that helminthic induction of intestinal T cell IL-10 secretion requires intact T cell TGF-beta-signaling pathway. Helminths fail to curtail robust, dysregulated intestinal Th1 cytokine production and chronic colitis in TGF-betaRII DN mice. Thus, T cell TGF-beta signaling is essential for helminthic stimulation of mucosal IL-10 production, helminthic modulation of intestinal IFN-gamma generation and H. polygyrus-mediated suppression of chronic colitis.
Collapse
MESH Headings
- Animals
- Cells, Cultured
- Colitis/immunology
- Colitis/metabolism
- Colitis/parasitology
- Cytokines/metabolism
- Enzyme-Linked Immunosorbent Assay
- Flow Cytometry
- Host-Parasite Interactions
- Interferon-gamma/metabolism
- Interleukin-10/metabolism
- Intestinal Diseases, Parasitic/immunology
- Intestinal Diseases, Parasitic/metabolism
- Intestinal Diseases, Parasitic/parasitology
- Intestine, Small/cytology
- Intestine, Small/metabolism
- Intestine, Small/parasitology
- Mice
- Mice, Inbred C57BL
- Mice, Transgenic
- Mutant Proteins/genetics
- Mutant Proteins/metabolism
- Nematospiroides dubius/physiology
- Protein Serine-Threonine Kinases/genetics
- Protein Serine-Threonine Kinases/metabolism
- Receptor, Transforming Growth Factor-beta Type II
- Receptors, Transforming Growth Factor beta/genetics
- Receptors, Transforming Growth Factor beta/metabolism
- Signal Transduction/genetics
- Signal Transduction/physiology
- Strongylida Infections/immunology
- Strongylida Infections/metabolism
- Strongylida Infections/parasitology
- T-Lymphocytes/cytology
- T-Lymphocytes/metabolism
- Transforming Growth Factor beta/genetics
- Transforming Growth Factor beta/metabolism
Collapse
Affiliation(s)
- M Nedim Ince
- Department of Internal Medicine, University of Iowa, Iowa City, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
56
|
Braus NA, Elliott DE. Advances in the pathogenesis and treatment of IBD. Clin Immunol 2009; 132:1-9. [PMID: 19321388 PMCID: PMC2693446 DOI: 10.1016/j.clim.2009.02.006] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2008] [Revised: 02/14/2009] [Accepted: 02/17/2009] [Indexed: 12/14/2022]
Abstract
Crohn's disease and ulcerative colitis are chronic remitting and relapsing inflammatory bowel diseases. We present a typical case of Crohn's disease in a young woman and discuss potential treatment options. Crohn's disease and ulcerative colitis likely result from interaction of multiple genetic and environmental risk and protective factors. Both are diseases ultimately caused by immune dysregulation. Medical therapy is with mesalamine compounds, corticosteroids, immunomodulators and/or biologics that target TNFalpha signaling or alpha4-integrin-mediated trafficking. Investigational agents include those targeted against other cytokines and costimulatory molecules or designed to promote immune regulation such as exposure to helminths which is a focus of this review.
Collapse
Affiliation(s)
- Nicholas A. Braus
- Doris Duke Clinical Research Fellowship Program Carver College of Medicine, University of Iowa, Iowa City, IA
| | - David E. Elliott
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, University of Iowa, Roy J. and Lucille A.Carver College of Medicine, Iowa City, IA and VAMC, Iowa City, IA
| |
Collapse
|
57
|
Jackson JA, Friberg IM, Bolch L, Lowe A, Ralli C, Harris PD, Behnke JM, Bradley JE. Immunomodulatory parasites and toll-like receptor-mediated tumour necrosis factor alpha responsiveness in wild mammals. BMC Biol 2009; 7:16. [PMID: 19386086 PMCID: PMC2685781 DOI: 10.1186/1741-7007-7-16] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2008] [Accepted: 04/22/2009] [Indexed: 01/07/2023] Open
Abstract
Background Immunological analyses of wild populations can increase our understanding of how vertebrate immune systems respond to 'natural' levels of exposure to diverse infections. A major recent advance in immunology has been the recognition of the central role of phylogenetically conserved toll-like receptors in triggering innate immunity and the subsequent recruitment of adaptive response programmes. We studied the cross-sectional associations between individual levels of systemic toll-like receptor-mediated tumour necrosis factor alpha responsiveness and macro- and microparasite infections in a natural wood mouse (Apodemus sylvaticus) population. Results Amongst a diverse group of macroparasites, only levels of the nematode Heligmosomoides polygyrus and the louse Polyplax serrata were correlated (negatively) with innate immune responsiveness (measured by splenocyte tumour necrosis factor alpha responses to a panel of toll-like receptor agonists). Polyplax serrata infection explained a strikingly high proportion of the total variation in innate responses. Contrastingly, faecal oocyst count in microparasitic Eimeria spp. was positively associated with innate immune responsiveness, most significantly for the endosomal receptors TLR7 and TLR9. Conclusion Analogy with relevant laboratory models suggests the underlying causality for the observed patterns may be parasite-driven immunomodulatory effects on the host. A subset of immunomodulatory parasite species could thus have a key role in structuring other infections in natural vertebrate populations by affecting the 'upstream' innate mediators, like toll-like receptors, that are important in initiating immunity. Furthermore, the magnitude of the present result suggests that populations free from immunosuppressive parasites may exist at 'unnaturally' elevated levels of innate immune activation, perhaps leading to an increased risk of immunopathology.
Collapse
Affiliation(s)
- Joseph A Jackson
- School of Biology, University of Nottingham, University Park, Nottingham, UK.
| | | | | | | | | | | | | | | |
Collapse
|
58
|
Jackson JA, Friberg IM, Little S, Bradley JE. Review series on helminths, immune modulation and the hygiene hypothesis: immunity against helminths and immunological phenomena in modern human populations: coevolutionary legacies? Immunology 2009; 126:18-27. [PMID: 19120495 DOI: 10.1111/j.1365-2567.2008.03010.x] [Citation(s) in RCA: 127] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Although the molecules and cells involved in triggering immune responses against parasitic worms (helminths) remain enigmatic, research has continued to implicate expansions of T-helper type 2 (Th2) cells and regulatory T-helper (T(reg)) cells as a characteristic response to these organisms. An intimate association has also emerged between Th2 responses and wound-healing functions. As helminth infections in humans are associated with a strong Th2/T(reg) immunoregulatory footprint (often termed a 'modified Th2' response), plausible links have been made to increased susceptibility to microbial pathogens in helminth-infected populations in the tropics and to the breakdowns in immunological control (allergy and autoimmunity) that are increasing in frequency in helminth-free developed countries. Removal of helminths and their anti-inflammatory influence may also have hazards for populations exposed to infectious agents, such as malaria and influenza, whose worst effects are mediated by excessive inflammatory reactions. The patterns seen in the control of helminth immunity are discussed from an evolutionary perspective. Whilst an inability to correctly regulate the immune system in the absence of helminth infection might seem highly counter-adaptive, the very ancient and pervasive relationship between vertebrates and helminths supports a view that immunological control networks have been selected to function within the context of a modified Th2 environment. The absence of immunoregulatory stimuli from helminths may therefore uncover maladaptations that were not previously exposed to selection.
Collapse
Affiliation(s)
- Joseph A Jackson
- School of Biology, The University of Nottingham, University Park, Nottingham, UK
| | | | | | | |
Collapse
|
59
|
Abstract
Helminths are parasitic animals that have evolved over 100,000,000 years to live in the intestinal track or other locations of their hosts. Colonization of humans with these organisms was nearly universal until the early 20th century. More than 1,000,000,000 people in less developed countries carry helminths even today. Helminths must quell their host's immune system to successfully colonize. It is likely that helminths sense hostile changes in the local host environment and take action to control such responses. Inflammatory bowel disease (IBD) probably results from an inappropriately vigorous immune response to contents of the intestinal lumen. Environmental factors strongly affect the risk for IBD. People living in less developed countries are protected from IBD. The "IBD hygiene hypothesis" states that raising children in extremely hygienic environments negatively affects immune development, which predisposes them to immunological diseases like IBD later in life. Modern day absence of exposure to intestinal helminths appears to be an important environmental factor contributing to development of these illnesses. Helminths interact with both host innate and adoptive immunity to stimulate immune regulatory circuitry and to dampen effector pathways that drive aberrant inflammation. The first prototype worm therapies directed against immunological diseases are now under study in the United States and various countries around the world. Additional studies are in the advanced planning stage.
Collapse
Affiliation(s)
- Joel V Weinstock
- Tufts New England Medical Center, Boston, Massachusetts 02111, USA.
| | | |
Collapse
|
60
|
Taylor MD, van der Werf N, Harris A, Graham AL, Bain O, Allen JE, Maizels RM. Early recruitment of natural CD4+ Foxp3+ Treg cells by infective larvae determines the outcome of filarial infection. Eur J Immunol 2009; 39:192-206. [PMID: 19089814 DOI: 10.1002/eji.200838727] [Citation(s) in RCA: 105] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Human helminth infections are synonymous with impaired immune responsiveness indicating suppression of host immunity. Using a permissive murine model of filariasis, Litomosoides sigmodontis infection of inbred mice, we demonstrate rapid recruitment and increased in vivo proliferation of CD4(+)Foxp3(+) Treg cells upon exposure to infective L3 larvae. Within 7 days post-infection this resulted in an increased percentage of CD4(+)T cells at the infection site expressing Foxp3. Antibody-mediated depletion of CD25(+) cells prior to infection to remove pre-existing 'natural' CD4(+)CD25(+)Foxp3(+) Treg cells, while not affecting initial larval establishment, significantly reduced the number of adult parasites recovered 60 days post-infection. Anti-CD25 pre-treatment also impaired the fecundity of the surviving female parasites, which had reduced numbers of healthy eggs and microfilaria within their uteri, translating to a reduced level of blood microfilaraemia. Enhanced parasite killing was associated with augmented in vitro production of antigen-specific IL-4, IL-5, IL-13 and IL-10. Thus, upon infection filarial larvae rapidly provoke a CD4(+)Foxp3(+) Treg-cell response, biasing the initial CD4(+) T-cell response towards a regulatory phenotype. These CD4(+)Foxp3(+) Treg cells are predominantly recruited from the 'natural' regulatory pool and act to inhibit protective immunity over the full course of infection.
Collapse
Affiliation(s)
- Matthew D Taylor
- Institute of Immunology and Infection Research, University of Edinburgh, Edinburgh, UK.
| | | | | | | | | | | | | |
Collapse
|
61
|
Abstract
PURPOSE OF REVIEW The intestinal immune system must orchestrate a complex balance between proinflammatory and anti-inflammatory responses to luminal antigens, and disruptions in this balance can result in inflammatory bowel disease (IBD). This review explores recent data that elucidate the role of regulatory T cells (Tregs) in the pathogenesis of IBD in mice and humans. RECENT FINDINGS Data from murine models of colitis implicate several novel mechanisms critical to Treg function and generation including the inhibitory cytokine interleukin-35, pericellular adenosine generation and cytokine deprivation-induced apoptosis. Although Tregs are essential in mice for the maintenance of intestinal homeostasis, their role in human IBD remains unclear. Patients with IBD appear to have relatively reduced numbers of Tregs in the blood and colon; however, Tregs from these patients are functional in vitro. SUMMARY Tregs are important for the maintenance of intestinal self-tolerance and will likely prove to be an important avenue for therapeutic manipulation in IBD.
Collapse
|
62
|
Abstract
There has been an alarming increase in the incidence of autoimmune and allergic diseases in Western countries in the past few decades. However, in countries endemic for parasitic helminth infections, such diseases remain relatively rare. Hence, it has been hypothesised that helminths may protect against the development of autoimmunity and allergy. This article reviews the evidence supporting this idea with respect to helminths of the phylum Nematoda (nematodes), considering data from human studies and animal models of inflammatory disease. The nature and mode of action of nematode-derived molecules with immunomodulatory properties are considered, and their therapeutic efficacy in models of autoimmunity and allergy described. The recent and future use of nematodes and their products in treating human disease are also discussed.
Collapse
Affiliation(s)
- William Harnett
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, UK.
| | | |
Collapse
|
63
|
Functional analysis of effector and regulatory T cells in a parasitic nematode infection. Infect Immun 2008; 76:1908-19. [PMID: 18316386 DOI: 10.1128/iai.01233-07] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Parasitic nematodes typically modulate T-cell reactivity, primarily during the chronic phase of infection. We analyzed the role of CD4-positive (CD4+) T effector (T(eff)) cells and regulatory T (T(reg)) cells derived from mice chronically infected with the intestinal nematode Heligmosomoides polygyrus. Different CD4+ T-cell subsets were transferred into naïve recipients that were subsequently infected with H. polygyrus. Adoptive transfer of conventional T(eff) cells conferred protection and led to a significant decrease in the worm burdens of H. polygyrus-infected recipients. Roughly 0.2% of the CD4+ T cells were H. polygyrus specific based on expression of CD154, and cells producing interleukin 4 (IL-4) and IL-13 were highly enriched within the CD154+ population. In contrast, adoptive transfer of T(reg) cells, characterized by the markers CD25 and CD103 and the transcription factor Foxp3, had no effect on the worm burdens of recipients. Further analysis showed that soon after infection, the number of Foxp3+ T(reg) cells temporarily increased in the inflamed tissue while effector/memory-like CD103+ Foxp+ T(reg) cells systemically increased in the draining lymph nodes and spleen. In addition, T(reg) cells represented a potential source of IL-10 and reduced the expression of IL-4. Finally, under in vitro conditions, T(reg) cells from infected mice were more potent suppressors than cells derived from naïve mice. In conclusion, our data indicate that small numbers of T(eff) cells have the ability to promote host protective immune responses, even in the presence of T(reg) cells.
Collapse
|
64
|
Khan IA, Hakak R, Eberle K, Sayles P, Weiss LM, Urban JF. Coinfection with Heligmosomoides polygyrus fails to establish CD8+ T-cell immunity against Toxoplasma gondii. Infect Immun 2008; 76:1305-13. [PMID: 18195022 PMCID: PMC2258819 DOI: 10.1128/iai.01236-07] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2007] [Revised: 10/04/2007] [Accepted: 01/07/2008] [Indexed: 11/20/2022] Open
Abstract
CD8+ T-cell immunity is important for long-term protection against Toxoplasma gondii infection. However, a Th1 cytokine environment, especially the presence of gamma interferon (IFN-), is essential for the development of primary CD8+ T-cell immunity against this obligate intracellular pathogen. Earlier studies from our laboratory have demonstrated that mice lacking optimal IFN- levels fail to develop robust CD8+ T-cell immunity against T. gondii. In the present study, induction of primary CD8+ T-cell immune response against T. gondii infection was evaluated in mice infected earlier with Heligmosomoides polygyrus, a gastrointestinal worm known to evoke a polarized Th2 response in the host. In the early stage of T. gondii infection, both CD4 and CD8+ T-cell responses against the parasite were suppressed in the dually infected mice. At the later stages, however, T. gondii-specific CD4+ T-cell immunity recovered, while CD8+ T-cell responses remained low. Unlike in mice infected with T. gondii alone, depletion of CD4+ T cells in the dually infected mice led to reactivation of chronic infection, leading to Toxoplasma-related encephalitis. Our observations strongly suggest that prior infection with a Th2 cytokine-polarizing pathogen can inhibit the development of CD8+ T-cell immune response against T. gondii, thus compromising long-term protection against a protozoan parasite. This is the first study to examine the generation of CD8+ T-cell immune response in a parasitic nematode and protozoan coinfection model that has important implications for infections where a CD8+ T-cell response is critical for host protection and reduced infection pathology.
Collapse
Affiliation(s)
- Imtiaz A Khan
- Department of Microbiology and Tropical Medicine and Immunology, George Washington University, Washington, DC 20037, USA.
| | | | | | | | | | | |
Collapse
|
65
|
Anthony RM, Rutitzky LI, Urban JF, Stadecker MJ, Gause WC. Protective immune mechanisms in helminth infection. Nat Rev Immunol 2007; 7:975-87. [PMID: 18007680 PMCID: PMC2258092 DOI: 10.1038/nri2199] [Citation(s) in RCA: 697] [Impact Index Per Article: 38.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Important insights have recently been gained in our understanding of how host immune responses mediate resistance to parasitic helminths and control associated pathological responses. Although similar cells and cytokines are evoked in response to infection by helminths as diverse as nematodes and schistosomes, the components of the response that mediate protection are dependent on the particular parasite. In this Review, we examine recent findings regarding the mechanisms of protection in helminth infections that have been elucidated in murine models and discuss the implications of these findings in terms of future therapies.
Collapse
Affiliation(s)
- Robert M Anthony
- The Laboratory of Molecular Genetics and Immunology, The Rockefeller University, 1230 York Avenue, New York, New York 10021, USA
| | | | | | | | | |
Collapse
|
66
|
Urban JF, Steenhard NR, Solano-Aguilar GI, Dawson HD, Iweala OI, Nagler CR, Noland GS, Kumar N, Anthony RM, Shea-Donohue T, Weinstock J, Gause WC. Infection with parasitic nematodes confounds vaccination efficacy. Vet Parasitol 2007; 148:14-20. [PMID: 17587500 PMCID: PMC1959410 DOI: 10.1016/j.vetpar.2007.05.006] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
T helper (Th) cells produce signature cytokine patterns, induced largely by intracellular versus extracellular pathogens that provide the cellular and molecular basis for counter regulatory expression of protective immunity during concurrent infections. The production of IL-12 and IFN-gamma, for example, resulting from exposure to many bacterial, viral, and protozoan pathogens is responsible for Th1-derived protective responses that also can inhibit development of Th2-cells expressing IL-4-dependent immunity to extracellular helminth parasites and vice versa. In a similar manner, concurrent helminth infection alters optimal vaccine-induced responses in humans and livestock; however, the consequences of this condition have not been adequately studied especially in the context of a challenge infection following vaccination. Demands for new and effective vaccines to control chronic and emerging diseases, and the need for rapid deployment of vaccines for bio security concerns requires a systematic evaluation of confounding factors that limit vaccine efficacy. One common albeit overlooked confounder is the presence of gastrointestinal nematode parasites in populations of humans and livestock targeted for vaccination. This is particularly important in areas of the world were helminth infections are prevalent, but the interplay between parasites and emerging diseases that can be transmitted worldwide make this a global issue. In addition, it is not clear if the epidemic in allergic disease in industrialized countries substitutes for geohelminth infection to interfere with effective vaccination regimens. This presentation will focus on recent vaccination studies in mice experimentally infected with Heligmosomoides polygyrus to model the condition of gastrointestinal parasite infestation in mammalian populations targeted for vaccination. In addition, a large animal vaccination and challenge model against Mycoplasma hyopneumonia in swine exposed to Ascaris suum will provide a specific example of the need for further work in this area, and for controlled field studies to assess the impact of other similar scenarios.
Collapse
Affiliation(s)
- Joseph F Urban
- Diet, Genomics, and Immunology Laboratory, Beltsville Human Nutrition Research Center, Agricultural Research Service, United States Department of Agriculture, Beltsville, MD 20705-2350, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
67
|
Abstract
Molecular and immunologic mechanisms underlying inflammation in inflammatory bowel disease (IBD) are largely unknown. Recent studies have helped better characterize genetic and environmental factors associated with colitis. Discoveries of genetic variants have confirmed that IBD is a bacteria and cytokine-driven pathologic immune response. Data have demonstrated that certain T cell subsets are important in executing the inflammatory cascade. Insufficient regulatory cell activity or modulatory cytokine production results in unrestrained inflammation. Biologic agents that block inflammatory cytokines (anti-TNFalpha antibodies) have been used successfully to treat IBD. Recent advances have also identified mucosal regulatory pathways.
Collapse
Affiliation(s)
- M Nedim Ince
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, University of Iowa, Carver College of Medicine, 4611 JCP, 200 Hawkins Drive, Iowa City, IA 52242, USA
| | | |
Collapse
|
68
|
Setiawan T, Metwali A, Blum AM, Ince MN, Urban JF, Elliott DE, Weinstock JV. Heligmosomoides polygyrus promotes regulatory T-cell cytokine production in the murine normal distal intestine. Infect Immun 2007; 75:4655-63. [PMID: 17606601 PMCID: PMC1951154 DOI: 10.1128/iai.00358-07] [Citation(s) in RCA: 98] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Helminths down-regulate inflammation and may prevent development of several autoimmune illnesses, such as inflammatory bowel disease. We determined if exposure to the duodenal helminth Heligmosomoides polygyrus establishes cytokine pathways in the distal intestine that may protect from intestinal inflammation. Mice received 200 H. polygyrus larvae and were studied 2 weeks later. Lamina propria mononuclear cells (LPMC) were isolated from the terminal ileum for analysis and in vitro experiments. Mice with H. polygyrus were resistant to trinitrobenzenesulfonic acid (TNBS)-induced colitis, a Th1 cytokine-dependent inflammation. Heligmosomoides polygyrus did not change the normal microscopic appearance of the terminal ileum and colon and minimally affected LPMC composition. However, colonization altered LPMC cytokine profiles, blocking gamma interferon (IFN-gamma) and interleukin 12 (IL-12) p40 release but promoting IL-4, IL-5, IL-13, and IL-10 secretion. IL-10 blockade in vitro with anti-IL-10 receptor (IL-10R) monoclonal antibody restored LPMC IFN-gamma and IL-12 p40 secretion. IL-10 blockade in vivo worsened TNBS colitis in H. polygyrus-colonized mice. Lamina propria CD4(+) T cells isolated from colonized mice inhibited IFN-gamma production by splenic T cells from worm-free mice. This inhibition did not require cell contact and was dependent on IL-10. Heligmosomoides polygyrus colonization inhibits Th1 and promotes Th2 and regulatory cytokine production in distant intestinal regions without changing histology or LPMC composition. IL-10 is particularly important for limiting the Th1 response. The T-cell origin of these cytokines demonstrates mucosal regulatory T-cell induction.
Collapse
Affiliation(s)
- Tommy Setiawan
- Division of Gastroenterology (4611 JCP), University of Iowa Hospital and Clinics, 200 Hawkins Drive, Iowa City, IA 52242-1009, USA
| | | | | | | | | | | | | |
Collapse
|
69
|
Persaud R, Wang A, Reardon C, McKay DM. Characterization of the immuno-regulatory response to the tapeworm Hymenolepis diminuta in the non-permissive mouse host. Int J Parasitol 2007; 37:393-403. [PMID: 17092505 DOI: 10.1016/j.ijpara.2006.09.012] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2006] [Revised: 09/15/2006] [Accepted: 09/19/2006] [Indexed: 12/15/2022]
Abstract
UNLABELLED Hymenolepis diminuta is spontaneously expelled from mice; concomitant with worm expulsion was protection against colitis induced by dinitrobenzene sulphonic acid (DNBS). Here we examined the immune response mobilized by Balb/c and C57Bl/6 male mice in response to H. diminuta and assessed the requirement for CD4+ cells (predominantly T cells) in worm expulsion and the anti-colitic effect. Wild-type (CD4+) or CD4 knock-out (CD4-/-) mice received five H. diminuta cysticercoids and segments of jejunum and mesenteric lymph nodes (MLNs), or spleen, were excised 5, 8 and 1l days later for mRNA analysis and cytokine production, respectively. In separate experiments uninfected and infected mice received DNBS by intra-rectal infusion and indices of inflammation were assessed 3 days later (i.e. 11 days p.i.). Infection of Balb/c mice resulted in a time-dependent increase in intestinal mRNA for Foxp3, a marker of natural regulatory T cells, and markers of alternatively activated macrophages (arginase-1, FIZZ1), while concanavalin-A activation of MLN cells revealed a significant increase in T helper 2 (TH2) type cytokines: IL-4, -5, -9, -10, -13. MLN cells showed a reduced ability to induce Foxp3 expression upon stimulation. CD4-/- mice did not display this response to infection, but surprisingly did expel H. diminuta. Moreover, DNBS-induced colitis in CD4-/- mice (wasting, tissue damage, elevated myeloperoxidase) was not reduced by H. diminuta infection, whereas time-matched infected CD4+ C57Bl/6 mice had significantly less DNBS-induced inflammation. IN CONCLUSION (i) in addition to stereotypical TH2 events, H. diminuta-infected Balb/c mice develop a local immuno-regulatory response; and (ii) CD4+ cells are not essential for H. diminuta expulsion from mice but are critical in mediating the anti-colitic effect that accompanies infection in this model.
Collapse
Affiliation(s)
- Robin Persaud
- Intestinal Disease Research Programme, McMaster University, Hamilton, Ont., Canada
| | | | | | | |
Collapse
|
70
|
Young Y, Abreu MT. Advances in the pathogenesis of inflammatory bowel disease. Curr Gastroenterol Rep 2007; 8:470-7. [PMID: 17105686 DOI: 10.1007/s11894-006-0037-1] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Most people do not develop inflammatory bowel disease (IBD) in spite of the density of the commensal flora. In the past few years, several areas of gut mucosal immunology have emerged that will permit advances in the management of IBD at the bedside. The commensal flora is only beginning to be fully appreciated as another metabolic organ in the body. Innate immunity as it relates to the gut has complemented our understanding of the adaptive immune response. The most important susceptibility gene described for Crohn's disease, the NOD2 gene, participates in the innate immune response to pathogens. Patients carrying NOD2 mutations have an increased adaptive immune response to commensal organisms as measured by higher titers of antimicrobial antibodies, such as anti-CBir and anti-Saccharomyces cerevisiae antibodies. Toll-like receptors expressed by antigen-presenting cells (APCs) in the gut and intestinal epithelial cells also play a role in recognition of intestinal flora. Within the APC category, dendritic cells link the innate and adaptive immune systems and shape the nature of the adaptive immune response to commensal bacteria. With respect to adaptive immunity, a new signaling pathway involving a distinct helper CD4 T-cell subset producing interleukin-17 may become a target for the treatment of chronic inflammatory diseases. This review focuses on developments likely to culminate in advances in patient care.
Collapse
Affiliation(s)
- Yuki Young
- Inflammatory Bowel Disease Center, Mount Sinai School of Medicine, 1425 Madison Avenue, 11-23, New York, NY 10029, USA
| | | |
Collapse
|
71
|
Elliott DE, Summers RW, Weinstock JV. Helminths as governors of immune-mediated inflammation. Int J Parasitol 2006; 37:457-64. [PMID: 17313951 DOI: 10.1016/j.ijpara.2006.12.009] [Citation(s) in RCA: 133] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2006] [Revised: 11/28/2006] [Accepted: 12/06/2006] [Indexed: 12/11/2022]
Abstract
Immune-mediated diseases (e.g. inflammatory bowel disease, asthma, multiple sclerosis and autoimmune diabetes) are increasing in prevalence and emerge as populations adopt meticulously hygienic lifestyles. This change in lifestyles precludes exposure to helminths (parasitic worms). Loss of natural helminth exposure removes a previously universal Th2 and regulatory immune biasing imparted by these organisms. Helminths protect animals from developing immune-mediated diseases (colitis, reactive airway disease, encephalitis and diabetes). Clinical trials show that exposure to helminths can reduce disease activity in patients with ulcerative colitis or Crohn's disease. This paper summarises work by multiple groups demonstrating that colonization with helminths alters immune reactivity and protects against disease from dysregulated inflammation.
Collapse
Affiliation(s)
- David E Elliott
- Department of Internal Medicine, University of Iowa, Roy J. and Lucille A. Carver College of Medicine, 200 Hawkins Drive, Iowa City, IA 52242-1009, USA.
| | | | | |
Collapse
|
72
|
Affiliation(s)
- Robert W. Summers
- Department of Internal Medicine University of Iowa Carver College of Medicine Iowa City, IA 52242
| | - David E. Elliott
- Department of Internal Medicine University of Iowa Carver College of Medicine Iowa City, IA 52242
| | - Joel V. Weinstock
- Department of Gastroenterology/ Hepatology Tufts-New England Medical Center Boston, MA 02111
| |
Collapse
|