51
|
Grubišić V, McClain JL, Fried DE, Grants I, Rajasekhar P, Csizmadia E, Ajijola OA, Watson RE, Poole DP, Robson SC, Christofi FL, Gulbransen BD. Enteric Glia Modulate Macrophage Phenotype and Visceral Sensitivity following Inflammation. Cell Rep 2020; 32:108100. [PMID: 32905782 PMCID: PMC7518300 DOI: 10.1016/j.celrep.2020.108100] [Citation(s) in RCA: 87] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Revised: 07/02/2020] [Accepted: 08/11/2020] [Indexed: 12/20/2022] Open
Abstract
Mechanisms resulting in abdominal pain include altered neuro-immune interactions in the gastrointestinal tract, but the signaling processes that link immune activation with visceral hypersensitivity are unresolved. We hypothesized that enteric glia link the neural and immune systems of the gut and that communication between enteric glia and immune cells modulates the development of visceral hypersensitivity. To this end, we manipulated a major mechanism of glial intercellular communication that requires connexin-43 and assessed the effects on acute and chronic inflammation, visceral hypersensitivity, and immune responses. Deleting connexin-43 in glia protected against the development of visceral hypersensitivity following chronic colitis. Mechanistically, the protective effects of glial manipulation were mediated by disrupting the glial-mediated activation of macrophages through the macrophage colony-stimulating factor. Collectively, our data identified enteric glia as a critical link between gastrointestinal neural and immune systems that could be harnessed by therapies to ameliorate abdominal pain.
Collapse
Affiliation(s)
- Vladimir Grubišić
- Department of Physiology and Neuroscience Program, Michigan State University, 567 Wilson Road, East Lansing, MI 48824, USA
| | - Jonathon L McClain
- Department of Physiology and Neuroscience Program, Michigan State University, 567 Wilson Road, East Lansing, MI 48824, USA
| | - David E Fried
- Department of Physiology and Neuroscience Program, Michigan State University, 567 Wilson Road, East Lansing, MI 48824, USA
| | - Iveta Grants
- Department of Anesthesiology, The Wexner Medical Center, The Ohio State University, 420 West 12th Avenue, Room 216, Columbus, OH 43210, USA
| | - Pradeep Rajasekhar
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, Australia; ARC Centre of Excellence in Convergent Bio-Nano Science & Technology, Melbourne, VIC, Australia
| | - Eva Csizmadia
- Division of Gastroenterology, Department of Medicine and of Anesthesia, Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Avenue, Boston, MA 02215, USA
| | - Olujimi A Ajijola
- Cardiac Arrhythmia Center, David Geffen School of Medicine at University of California, Los Angeles, Los Angeles, CA, USA
| | - Ralph E Watson
- Department of Medicine, Michigan State University, East Lansing, MI 48824, USA
| | - Daniel P Poole
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, Australia; ARC Centre of Excellence in Convergent Bio-Nano Science & Technology, Melbourne, VIC, Australia
| | - Simon C Robson
- Division of Gastroenterology, Department of Medicine and of Anesthesia, Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Avenue, Boston, MA 02215, USA
| | - Fievos L Christofi
- Department of Anesthesiology, The Wexner Medical Center, The Ohio State University, 420 West 12th Avenue, Room 216, Columbus, OH 43210, USA
| | - Brian D Gulbransen
- Department of Physiology and Neuroscience Program, Michigan State University, 567 Wilson Road, East Lansing, MI 48824, USA.
| |
Collapse
|
52
|
Antonioli L, Lucarini E, Lambertucci C, Fornai M, Pellegrini C, Benvenuti L, Di Cesare Mannelli L, Spinaci A, Marucci G, Blandizzi C, Ghelardini C, Volpini R, Dal Ben D. The Anti-Inflammatory and Pain-Relieving Effects of AR170, an Adenosine A 3 Receptor Agonist, in a Rat Model of Colitis. Cells 2020; 9:cells9061509. [PMID: 32575844 PMCID: PMC7348903 DOI: 10.3390/cells9061509] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 06/18/2020] [Accepted: 06/19/2020] [Indexed: 02/07/2023] Open
Abstract
The pharmacological activation of A3 receptors has shown potential usefulness in the management of bowel inflammation. However, the role of these receptors in the control of visceral hypersensitivity in the presence of intestinal inflammation has not been investigated. The effects of AR170, a potent and selective A3 receptor agonist, and dexamethasone (DEX) were tested in rats with 2,4-dinitrobenzene sulfonic acid (DNBS)-induced colitis to assess their tissue inflammatory parameters. The animals received AR170, DEX, or a vehicle intraperitoneally for 6 days, starting 1 day before the induction of colitis. Visceral pain was assessed by recording the abdominal responses to colorectal distension in animals with colitis. Colitis was associated with a decrease in body weight and an increase in spleen weight. The macroscopic damage score and tissue tumor necrosis factor (TNF), interleukin 1β (IL-1β), and myeloperoxidase (MPO) levels were also enhanced. AR170, but not DEX, improved body weight. Both drugs counteracted the increase in spleen weight, ameliorated macroscopic colonic damage, and decreased TNF, IL-1β, and MPO tissue levels. The enhanced visceromotor response (VMR) in rats with colitis was decreased via AR170 administration. In rats with colitis, AR170 counteracted colonic inflammatory cell infiltration and decreased pro-inflammatory cytokine levels, thereby relieving visceral hypersensitivity.
Collapse
Affiliation(s)
- Luca Antonioli
- Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy; (L.A.); (M.F.); (L.B.); (C.B.)
| | - Elena Lucarini
- Department of Neurosciences, Psychology, Drug Research and Child Health–Neurofarba–Section of Pharmacology and Toxicology, University of Florence, 50139 Florence, Italy; (E.L.); (L.D.C.M.); (C.G.)
| | - Catia Lambertucci
- School of Pharmacy, Medicinal Chemistry Unit, University of Camerino, 62032 Camerino (MC), Italy; (C.L.); (A.S.); (G.M.); (D.D.B.)
| | - Matteo Fornai
- Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy; (L.A.); (M.F.); (L.B.); (C.B.)
| | | | - Laura Benvenuti
- Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy; (L.A.); (M.F.); (L.B.); (C.B.)
| | - Lorenzo Di Cesare Mannelli
- Department of Neurosciences, Psychology, Drug Research and Child Health–Neurofarba–Section of Pharmacology and Toxicology, University of Florence, 50139 Florence, Italy; (E.L.); (L.D.C.M.); (C.G.)
| | - Andrea Spinaci
- School of Pharmacy, Medicinal Chemistry Unit, University of Camerino, 62032 Camerino (MC), Italy; (C.L.); (A.S.); (G.M.); (D.D.B.)
| | - Gabriella Marucci
- School of Pharmacy, Medicinal Chemistry Unit, University of Camerino, 62032 Camerino (MC), Italy; (C.L.); (A.S.); (G.M.); (D.D.B.)
| | - Corrado Blandizzi
- Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy; (L.A.); (M.F.); (L.B.); (C.B.)
| | - Carla Ghelardini
- Department of Neurosciences, Psychology, Drug Research and Child Health–Neurofarba–Section of Pharmacology and Toxicology, University of Florence, 50139 Florence, Italy; (E.L.); (L.D.C.M.); (C.G.)
| | - Rosaria Volpini
- School of Pharmacy, Medicinal Chemistry Unit, University of Camerino, 62032 Camerino (MC), Italy; (C.L.); (A.S.); (G.M.); (D.D.B.)
- Correspondence:
| | - Diego Dal Ben
- School of Pharmacy, Medicinal Chemistry Unit, University of Camerino, 62032 Camerino (MC), Italy; (C.L.); (A.S.); (G.M.); (D.D.B.)
| |
Collapse
|
53
|
Esquerre N, Basso L, Defaye M, Vicentini FA, Cluny N, Bihan D, Hirota SA, Schick A, Jijon HB, Lewis IA, Geuking MB, Sharkey KA, Altier C, Nasser Y. Colitis-Induced Microbial Perturbation Promotes Postinflammatory Visceral Hypersensitivity. Cell Mol Gastroenterol Hepatol 2020; 10:225-244. [PMID: 32289500 PMCID: PMC7301239 DOI: 10.1016/j.jcmgh.2020.04.003] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2020] [Revised: 04/01/2020] [Accepted: 04/03/2020] [Indexed: 02/06/2023]
Abstract
BACKGROUND & AIMS Despite achieving endoscopic remission, more than 20% of inflammatory bowel disease patients experience chronic abdominal pain. These patients have increased rectal transient receptor potential vanilloid-1 receptor (TRPV1) expression, a key transducer of inflammatory pain. Because inflammatory bowel disease patients in remission exhibit dysbiosis and microbial manipulation alters TRPV1 function, our goal was to examine whether microbial perturbation modulated transient receptor potential function in a mouse model. METHODS Mice were given dextran sodium sulfate (DSS) to induce colitis and were allowed to recover. The microbiome was perturbed by using antibiotics as well as fecal microbial transplant (FMT). Visceral and somatic sensitivity were assessed by recording visceromotor responses to colorectal distention and using hot plate/automated Von Frey tests, respectively. Calcium imaging of isolated dorsal root ganglia neurons was used as an in vitro correlate of nociception. The microbiome composition was evaluated via 16S rRNA gene variable region V4 amplicon sequencing, whereas fecal short-chain fatty acids (SCFAs) were assessed by using targeted mass spectrometry. RESULTS Postinflammatory DSS mice developed visceral and somatic hyperalgesia. Antibiotic administration during DSS recovery induced visceral, but not somatic, hyperalgesia independent of inflammation. FMT of postinflammatory DSS stool into antibiotic-treated mice increased visceral hypersensitivity, whereas FMT of control stool reversed antibiotics' sensitizing effects. Postinflammatory mice exhibited both increased SCFA-producing species and fecal acetate/butyrate content compared with controls. Capsaicin-evoked calcium responses were increased in naive dorsal root ganglion neurons incubated with both sodium butyrate/propionate alone and with colonic supernatants derived from postinflammatory mice. CONCLUSIONS The microbiome plays a central role in postinflammatory visceral hypersensitivity. Microbial-derived SCFAs can sensitize nociceptive neurons and may contribute to the pathogenesis of postinflammatory visceral pain.
Collapse
Affiliation(s)
- Nicolas Esquerre
- Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary
| | - Lilian Basso
- Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary; Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary
| | - Manon Defaye
- Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary; Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary
| | - Fernando A Vicentini
- Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary; Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary; Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary
| | - Nina Cluny
- Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary; Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary; Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary
| | | | - Simon A Hirota
- Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary; Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary
| | - Alana Schick
- International Microbiome Centre, Cumming School of Medicine, University of Calgary
| | - Humberto B Jijon
- Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary; Division of Gastroenterology and Hepatology, Department of Medicine, University of Calgary
| | - Ian A Lewis
- Department of Biological Sciences, University of Calgary
| | - Markus B Geuking
- Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary; Department of Microbiology, Immunity and Infectious Diseases, Cumming School of Medicine, University of Calgary
| | - Keith A Sharkey
- Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary; Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary; Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary
| | - Christophe Altier
- Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary; Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary; Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Yasmin Nasser
- Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary; Division of Gastroenterology and Hepatology, Department of Medicine, University of Calgary.
| |
Collapse
|
54
|
Casado-Bedmar M, Keita ÅV. Potential neuro-immune therapeutic targets in irritable bowel syndrome. Therap Adv Gastroenterol 2020; 13:1756284820910630. [PMID: 32313554 PMCID: PMC7153177 DOI: 10.1177/1756284820910630] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Accepted: 02/11/2020] [Indexed: 02/04/2023] Open
Abstract
Irritable bowel syndrome (IBS) is a functional gastrointestinal (GI) disorder characterized by recurring abdominal pain and disturbed bowel habits. The aetiology of IBS is unknown but there is evidence that genetic, environmental and immunological factors together contribute to the development of the disease. Current treatment of IBS includes lifestyle and dietary interventions, laxatives or antimotility drugs, probiotics, antispasmodics and antidepressant medication. The gut-brain axis comprises the central nervous system, the hypothalamic pituitary axis, the autonomic nervous system and the enteric nervous system. Within the intestinal mucosa there are close connections between immune cells and nerve fibres of the enteric nervous system, and signalling between, for example, mast cells and nerves has shown to be of great importance during GI disorders such as IBS. Communication between the gut and the brain is most importantly routed via the vagus nerve, where signals are transmitted by neuropeptides. It is evident that IBS is a disease of a gut-brain axis dysregulation, involving altered signalling between immune cells and neurotransmitters. In this review, we analyse the most novel and distinct neuro-immune interactions within the IBS mucosa in association with already existing and potential therapeutic targets.
Collapse
Affiliation(s)
- Maite Casado-Bedmar
- Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Åsa V. Keita
- Department of Biomedical and Clinical Sciences, Medical Faculty, Linköping University, Campus US, Linköping, 581 85, Sweden
| |
Collapse
|
55
|
Chen Y, Mu J, Zhu M, Mukherjee A, Zhang H. Transient Receptor Potential Channels and Inflammatory Bowel Disease. Front Immunol 2020; 11:180. [PMID: 32153564 PMCID: PMC7044176 DOI: 10.3389/fimmu.2020.00180] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Accepted: 01/23/2020] [Indexed: 02/05/2023] Open
Abstract
The transient receptor potential (TRP) cation channels are present in abundance across the gastrointestinal (GI) tract, serving as detectors for a variety of stimuli and secondary transducers for G-protein coupled receptors. The activation of TRP channels triggers neurogenic inflammation with related neuropeptides and initiates immune reactions by extra-neuronally regulating immune cells, contributing to the GI homeostasis. However, under pathological conditions, such as inflammatory bowel disease (IBD), TRP channels are involved in intestinal inflammation. An increasing number of human and animal studies have indicated that TRP channels are correlated to the visceral hypersensitivity (VHS) and immune pathogenesis in IBD, leading to an exacerbation or amelioration of the VHS or intestinal inflammation. Thus, TRP channels are a promising target for novel therapeutic methods for IBD. In this review, we comprehensively summarize the functions of TRP channels, especially their potential roles in immunity and IBD. Additionally, we discuss the contradictory findings of prior studies and offer new insights with regard to future research.
Collapse
Affiliation(s)
- Yiding Chen
- Department of Gastroenterology, West China Hospital, Sichuan University, Chengdu, China.,Centre for Inflammatory Bowel Disease, West China Hospital, Sichuan University, Chengdu, China
| | - Jingxi Mu
- Department of Gastroenterology, West China Hospital, Sichuan University, Chengdu, China.,Centre for Inflammatory Bowel Disease, West China Hospital, Sichuan University, Chengdu, China
| | - Min Zhu
- Department of Gastroenterology, West China Hospital, Sichuan University, Chengdu, China.,Centre for Inflammatory Bowel Disease, West China Hospital, Sichuan University, Chengdu, China
| | | | - Hu Zhang
- Department of Gastroenterology, West China Hospital, Sichuan University, Chengdu, China.,Centre for Inflammatory Bowel Disease, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
56
|
Roman K, Hall C, Schaeffer AJ, Thumbikat P. TRPV1 in experimental autoimmune prostatitis. Prostate 2020; 80:28-37. [PMID: 31573117 PMCID: PMC7313375 DOI: 10.1002/pros.23913] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Accepted: 09/18/2019] [Indexed: 12/27/2022]
Abstract
BACKGROUND Chronic prostatitis/chronic pelvic pain syndrome (CP/CPPS) is a disorder that is characterized by persistent pelvic pain in men of any age. Although several studies suggest that the transient receptor potential vanilloid 1 (TRPV1) channel is involved in various pathways of chronic pain, the TRPV1 channel has not been implicated in chronic pelvic pain associated with CP/CPPS. METHODS Male C57BL/6J (B6) and TRPV1 knockout (TRPV1 KO) mice (5-7 weeks old) were used to study the development of pelvic allodynia in a murine model of CP/CPPS called experimental autoimmune prostatitis (EAP). The prostate lobes, dorsal root ganglia (DRG), and spinal cord were excised at day 20. The prostate lobes were assessed for inflammation, TRPV1 expression, and mast cell activity. DRG and spinal cord, between the L6-S4 regions, were analyzed to determine the levels of phosphorylated ERK1/2 (p-ERK 1/2). To examine the therapeutic potential of TRPV1, B6 mice with EAP received intraurethral infusion of a TRPV1 antagonist at day 20 (repeated every 2 days) and pelvic pain was evaluated at days 20, 25, 30, and 35. RESULTS Our data showed that B6 mice with EAP developed pelvic tactile allodynia at days 7, 14, and 20. In contrast, TRPV1 KO mice with EAP do not develop pelvic tactile allodynia at any time point. Although we observed no change in the levels of TRPV1 protein expression in the prostate from B6 mice with EAP, there was evidence of significant inflammation and elevated mast cell activation. Interestingly, the prostate from TRPV1 KO mice with EAP showed a lack of mast cell activation despite evidence of prostate inflammation. Next, we observed a significant increase of p-ERK1/2 in the DRG and spinal cord from B6 mice with EAP; however, p-ERK1/2 expression was unaltered in TRPV1 KO mice with EAP. Finally, we confirmed that intraurethral administration of a TRPV1 antagonist peptide reduced pelvic tactile allodynia in B6 mice with EAP after day 20. CONCLUSIONS We demonstrated that in a murine model of CP/CPPS, the TRPV1 channel is key to persistent pelvic tactile allodynia and blocking TRPV1 in the prostate may be a promising strategy to quell chronic pelvic pain.
Collapse
Affiliation(s)
- Kenny Roman
- Department of Urology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Christel Hall
- Department of Urology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Anthony J. Schaeffer
- Department of Urology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Praveen Thumbikat
- Department of Urology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| |
Collapse
|
57
|
Accarie A, Vanuytsel T. Animal Models for Functional Gastrointestinal Disorders. Front Psychiatry 2020; 11:509681. [PMID: 33262709 PMCID: PMC7685985 DOI: 10.3389/fpsyt.2020.509681] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2019] [Accepted: 10/22/2020] [Indexed: 12/12/2022] Open
Abstract
Functional gastrointestinal disorders (FGID), such as functional dyspepsia (FD) and irritable bowel syndrome (IBS) are characterized by chronic abdominal symptoms in the absence of an organic, metabolic or systemic cause that readily explains these complaints. Their pathophysiology is still not fully elucidated and animal models have been of great value to improve the understanding of the complex biological mechanisms. Over the last decades, many animal models have been developed to further unravel FGID pathophysiology and test drug efficacy. In the first part of this review, we focus on stress-related models, starting with the different perinatal stress models, including the stress of the dam, followed by a discussion on neonatal stress such as the maternal separation model. We also describe the most commonly used stress models in adult animals which brought valuable insights on the brain-gut axis in stress-related disorders. In the second part, we focus more on models studying peripheral, i.e., gastrointestinal, mechanisms, either induced by an infection or another inflammatory trigger. In this section, we also introduce more recent models developed around food-related metabolic disorders or food hypersensitivity and allergy. Finally, we introduce models mimicking FGID as a secondary effect of medical interventions and spontaneous models sharing characteristics of GI and anxiety-related disorders. The latter are powerful models for brain-gut axis dysfunction and bring new insights about FGID and their comorbidities such as anxiety and depression.
Collapse
Affiliation(s)
- Alison Accarie
- Department of Chronic Diseases, Metabolism and Ageing (ChroMetA), Translational Research Center for Gastrointestinal Disorders (TARGID), KU Leuven, Leuven, Belgium
| | - Tim Vanuytsel
- Department of Chronic Diseases, Metabolism and Ageing (ChroMetA), Translational Research Center for Gastrointestinal Disorders (TARGID), KU Leuven, Leuven, Belgium.,Department of Gastroenterology and Hepatology, University Hospitals Leuven, Leuven, Belgium
| |
Collapse
|
58
|
DeMarco GJ, Nunamaker EA. A Review of the Effects of Pain and Analgesia on Immune System Function and Inflammation: Relevance for Preclinical Studies. Comp Med 2019; 69:520-534. [PMID: 31896389 PMCID: PMC6935697 DOI: 10.30802/aalas-cm-19-000041] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
One of the most significant challenges facing investigators, laboratory animal veterinarians, and IACUCs, is how to balance appropriate analgesic use, animal welfare, and analgesic impact on experimental results. This is particularly true for in vivo studies on immune system function and inflammatory disease. Often times the effects of analgesic drugs on a particular immune function or model are incomplete or don't exist. Further complicating the picture is evidence of the very tight integration and bidirectional functionality between the immune system and branches of the nervous system involved in nociception and pain. These relationships have advanced the concept of understanding pain as a protective neuroimmune function and recognizing pathologic pain as a neuroimmune disease. This review strives to summarize extant literature on the effects of pain and analgesia on immune system function and inflammation in the context of preclinical in vivo studies. The authors hope this work will help to guide selection of analgesics for preclinical studies of inflammatory disease and immune system function.
Collapse
Key Words
- cb,endocannabinoid receptor
- cd,crohn disease
- cfa, complete freund adjuvant
- cgrp,calcitonin gene-related peptide
- cox,cyclooxygenase
- ctl, cytotoxic t-lymphocytes
- damp,damage-associated molecular pattern molecules
- drg,dorsal root ganglion
- dss, dextran sodium sulphate
- ecs,endocannabinoid system
- ibd, inflammatory bowel disease
- ifa,incomplete freund adjuvant
- las, local anesthetics
- pamp,pathogen-associated molecular pattern molecules
- pge2, prostaglandin e2
- p2y, atp purine receptor y
- p2x, atp purine receptor x
- tnbs, 2,4,6-trinitrobenzene sulphonic acid
- trp, transient receptor potential ion channels
- trpv, transient receptor potential vanilloid
- tg,trigeminal ganglion
- uc,ulcerative colitis
Collapse
Affiliation(s)
- George J DeMarco
- Department of Animal Medicine, University of Massachusetts Medical School, Worcester, Massachusetts;,
| | | |
Collapse
|
59
|
Alaimo A, Rubert J. The Pivotal Role of TRP Channels in Homeostasis and Diseases throughout the Gastrointestinal Tract. Int J Mol Sci 2019; 20:ijms20215277. [PMID: 31652951 PMCID: PMC6862298 DOI: 10.3390/ijms20215277] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 10/20/2019] [Accepted: 10/22/2019] [Indexed: 12/12/2022] Open
Abstract
The transient receptor potential (TRP) channels superfamily are a large group of proteins that play crucial roles in cellular processes. For example, these cation channels act as sensors in the detection and transduction of stimuli of temperature, small molecules, voltage, pH, and mechanical constrains. Over the past decades, different members of the TRP channels have been identified in the human gastrointestinal (GI) tract playing multiple modulatory roles. Noteworthy, TRPs support critical functions related to the taste perception, mechanosensation, and pain. They also participate in the modulation of motility and secretions of the human gut. Last but not least, altered expression or activity and mutations in the TRP genes are often related to a wide range of disorders of the gut epithelium, including inflammatory bowel disease, fibrosis, visceral hyperalgesia, irritable bowel syndrome, and colorectal cancer. TRP channels could therefore be promising drug targets for the treatment of GI malignancies. This review aims at providing a comprehensive picture of the most recent advances highlighting the expression and function of TRP channels in the GI tract, and secondly, the description of the potential roles of TRPs in relevant disorders is discussed reporting our standpoint on GI tract–TRP channels interactions.
Collapse
Affiliation(s)
- Alessandro Alaimo
- Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Via Sommarive 9, 38123 Povo (Tn), Italy.
| | - Josep Rubert
- Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Via Sommarive 9, 38123 Povo (Tn), Italy.
| |
Collapse
|
60
|
Inhibition of Mast Cell Degranulation Relieves Visceral Hypersensitivity Induced by Pancreatic Carcinoma in Mice. J Mol Neurosci 2019; 69:235-245. [PMID: 31201657 PMCID: PMC6732154 DOI: 10.1007/s12031-019-01352-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Accepted: 05/29/2019] [Indexed: 12/14/2022]
Abstract
Cancer pain induced by pancreatic carcinoma is one of the most common symptoms and is difficult to endure, especially in the advanced stage. Evidence suggests that mast cells are recruited and degranulate in enteric disease-related visceral hypersensitivity. However, whether mast cells promote the visceral pain induced by pancreatic carcinoma remains unclear. Here, using toluidine blue staining and western blotting, we observed that mast cells were dramatically recruited to tissues surrounding pancreatic carcinoma, but not inside the carcinoma in patients with severe visceral pain. The levels of mast cell degranulation products, including tryptase, histamine, and nerve growth factor, were significantly increased in pericarcinoma tissues relative to their levels in normal controls, as evidenced by enzyme-linked immunosorbent assay. We determined that systemic administration of mast cell secretagogue compound 48/80 exacerbated pancreatic carcinoma-induced visceral hypersensitivity in a male BALB/c nude mouse model as assessed by measuring the hunching behavior scores and mechanical withdrawal response frequency evoked by von Frey stimulation. In contrast, the mast cell stabilizer ketotifen dose-dependently alleviated pancreatic cancer pain. In addition, we observed incomplete development of abdominal mechanical hyperalgesia and hunching behavior in mast cell–deficient mice with pancreatic carcinoma. However, ketotifen did not further attenuate visceral hypersensitivity in mast cell–deficient mice with carcinoma. Finally, we confirmed that intraplantar injection of pericarcinoma supernatants from BALB/c nude mice but not mast cell–deficient mice caused acute somatic nociception. In conclusion, our findings suggest that mast cells contribute to pancreatic carcinoma-induced visceral hypersensitivity through enrichment and degranulation in pericarcinoma tissues. The inhibition of mast cell degranulation may be a potential strategy for the therapeutic treatment of pancreatic carcinoma-induced chronic visceral pain.
Collapse
|
61
|
Salameh E, Meleine M, Gourcerol G, do Rego JC, do Rego JL, Legrand R, Breton J, Aziz M, Guérin C, Coëffier M, Savoye G, Marion-Letellier R. Chronic colitis-induced visceral pain is associated with increased anxiety during quiescent phase. Am J Physiol Gastrointest Liver Physiol 2019; 316:G692-G700. [PMID: 30735453 DOI: 10.1152/ajpgi.00248.2018] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Inflammatory bowel diseases (IBD) are characterized by repetition of flares and remission periods leading to chronic postinflammatory sequelae. Among postinflammatory sequelae, one-third of patients with IBD are suffering from functional symptoms or psychological comorbidities that persist during remission. The aim of our study was to assess functional and behavioral sequelae of chronic colitis in rats with quiescent intestinal inflammation. Chronic colitis was induced by a weekly intrarectal injection of increasing concentrations of trinitrobenzene sulfonic acid (TNBS) for 3 wk (15-45 mg of TNBS) in 30 rats, whereas the control rats (n = 24) received the vehicle. At 50 days post-TNBS, visceral sensitivity was assessed by visceromotor response to colorectal distension, and transient receptor potential vanilloid type 1 (TRPV1) expression was also quantified in the colon and dorsal root ganglia. Barrier function and inflammatory response were assessed by studying intestinal permeability, tight junction protein, myeloperoxidase activity, histological score, and cytokine production (IL-6, IL-10, and TNF-α). Anxiety behavioral tests were performed from 50 to 64 days after the last TNBS injection. Chronic TNBS induced 1) a visceral hypersensitivity (P = 0.03), 2) an increased colon weight-to-length ratio (P = 0.01), 3) higher inflammatory and fibrosis scores (P = 0.0390 and P = 0.0016, respectively), and 4) a higher colonic IL-6 and IL-10 production (P = 0.008 and P = 0.005, respectively) compared with control rats. Intestinal permeability, colonic production of TNF-α, myeloperoxidase activity, and TRPV1 expression did not differ among groups. Chronic TNBS increased anxiety-related behavior in the open-field test and in the acoustic stress test. In conclusion, chronic colitis induced functional sequelae such as visceral hypersensitivity and increased anxiety with a low-grade intestinal inflammation. Development of a representative animal model will allow defining novel therapeutic approaches to achieve a better management of IBD-related sequelae. NEW & NOTEWORTHY Patients with inflammatory bowel diseases have impaired quality of life. Therapeutic progress to control mucosal inflammation provides us an opportunity to develop novel approaches to understand mechanisms behind postinflammatory sequelae. We used a chronic colitis model to study long-term sequelae on visceral pain, gut barrier function, and psychological impact. Chronic colitis induced functional symptoms and increased anxiety in the remission period. It might define novel therapeutic approaches to achieve a better inflammatory bowel disease-related sequelae management.
Collapse
Affiliation(s)
- Emmeline Salameh
- Institut National de la Santé et de la Recherche Médicale Unit 1073 "Digestive Tract Environment and Nutrition," Normandie University, UNIROUEN, France.,Institute for Research and Innovation in Biomedicine, Normandie University, Union Nationale Inter-Universitaire Rouen , Rouen , France
| | - Mathieu Meleine
- Institut National de la Santé et de la Recherche Médicale Unit 1073 "Digestive Tract Environment and Nutrition," Normandie University, UNIROUEN, France.,Institute for Research and Innovation in Biomedicine, Normandie University, Union Nationale Inter-Universitaire Rouen , Rouen , France
| | - Guillaume Gourcerol
- Institut National de la Santé et de la Recherche Médicale Unit 1073 "Digestive Tract Environment and Nutrition," Normandie University, UNIROUEN, France.,Institute for Research and Innovation in Biomedicine, Normandie University, Union Nationale Inter-Universitaire Rouen , Rouen , France.,Digestive Physiology Department, Charles Nicolle Hospital, Rouen University Hospital , Rouen , France
| | - Jean-Claude do Rego
- Institute for Research and Innovation in Biomedicine, Normandie University, Union Nationale Inter-Universitaire Rouen , Rouen , France.,Behavioural Analysis Platform (Service Commun d'Analyse Comportementale), Institute for Research and Innovation in Biomedicine, University of Rouen-Normandy , Normandy , France
| | - Jean-Luc do Rego
- Institute for Research and Innovation in Biomedicine, Normandie University, Union Nationale Inter-Universitaire Rouen , Rouen , France.,Behavioural Analysis Platform (Service Commun d'Analyse Comportementale), Institute for Research and Innovation in Biomedicine, University of Rouen-Normandy , Normandy , France
| | - Romain Legrand
- Institut National de la Santé et de la Recherche Médicale Unit 1073 "Digestive Tract Environment and Nutrition," Normandie University, UNIROUEN, France.,Institute for Research and Innovation in Biomedicine, Normandie University, Union Nationale Inter-Universitaire Rouen , Rouen , France
| | - Jonathan Breton
- Institut National de la Santé et de la Recherche Médicale Unit 1073 "Digestive Tract Environment and Nutrition," Normandie University, UNIROUEN, France.,Institute for Research and Innovation in Biomedicine, Normandie University, Union Nationale Inter-Universitaire Rouen , Rouen , France
| | - Moutaz Aziz
- Department of Pathology, Charles Nicolle Hospital, Rouen University Hospital , Rouen , France
| | - Charlène Guérin
- Institut National de la Santé et de la Recherche Médicale Unit 1073 "Digestive Tract Environment and Nutrition," Normandie University, UNIROUEN, France.,Institute for Research and Innovation in Biomedicine, Normandie University, Union Nationale Inter-Universitaire Rouen , Rouen , France
| | - Moïse Coëffier
- Institut National de la Santé et de la Recherche Médicale Unit 1073 "Digestive Tract Environment and Nutrition," Normandie University, UNIROUEN, France.,Institute for Research and Innovation in Biomedicine, Normandie University, Union Nationale Inter-Universitaire Rouen , Rouen , France.,Department of Nutrition, Charles Nicolle Hospital, Rouen University Hospital , Rouen , France
| | - Guillaume Savoye
- Institut National de la Santé et de la Recherche Médicale Unit 1073 "Digestive Tract Environment and Nutrition," Normandie University, UNIROUEN, France.,Institute for Research and Innovation in Biomedicine, Normandie University, Union Nationale Inter-Universitaire Rouen , Rouen , France.,Gastroenterology Unit, Charles Nicolle Hospital, Rouen University Hospital , Rouen , France
| | - Rachel Marion-Letellier
- Institut National de la Santé et de la Recherche Médicale Unit 1073 "Digestive Tract Environment and Nutrition," Normandie University, UNIROUEN, France.,Institute for Research and Innovation in Biomedicine, Normandie University, Union Nationale Inter-Universitaire Rouen , Rouen , France
| |
Collapse
|
62
|
Wu Y, Wang Y, Wang J, Fan Q, Zhu J, Yang L, Rong W. TLR4 mediates upregulation and sensitization of TRPV1 in primary afferent neurons in 2,4,6-trinitrobenzene sulfate-induced colitis. Mol Pain 2019; 15:1744806919830018. [PMID: 30672380 PMCID: PMC6378437 DOI: 10.1177/1744806919830018] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Elevated excitability of primary afferent neurons underlies chronic pain in patients with functional or inflammatory bowel diseases. Recent studies have established an essential role for an enhanced transient receptor potential vanilloid subtype 1 (TRPV1) signaling in mediating peripheral hyperalgesia in inflammatory conditions. Since colocalization of Toll-like receptor 4 (TLR4) and TRPV1 has been observed in primary afferents including the trigeminal sensory neurons and the dorsal root ganglion neurons, we test the hypothesis that TLR4 might regulate the expression and function of TRPV1 in primary afferent neurons in 2,4,6-trinitrobenzene sulfate (TNBS)-induced colitis using the TLR4-deficient and the wild-type C57 mice. Despite having a higher disease activity index following administration of 2,4,6-trinitrobenzene sulfate, the TLR4-deficient mice showed less inflammatory infiltration in the colon than the wild-type mice. Increased expression of TLR4 and TRPV1 as well as increased density of capsaicin-induced TRPV1 current was observed in L4–S2 dorsal root ganglion neurons of the wild-type colitis mice till two weeks post 2,4,6-trinitrobenzene sulfate treatment. In comparison, the TLR4-deficient colitis mice had lower TRPV1 expression and TRPV1 current density in dorsal root ganglion neurons with lower abdominal withdrawal response scores during noxious colonic distensions. In the wild type but not in the TLR4-deficient dorsal root ganglion neurons, acute administration of the TLR4 agonist lipopolysaccharide increased the capsaicin-evoked TRPV1 current. In addition, we found that the canonical signaling downstream of TLR4 was activated in 2,4,6-trinitrobenzene sulfate-induced colitis in the wild type but not in the TLR4-deficient mice. These results indicate that TLR4 may play a major role in regulation of TRPV1 signaling and peripheral hyperalgesia in inflammatory conditions.
Collapse
Affiliation(s)
- Yingwei Wu
- 1 Department of Anatomy and Physiology, Shanghai Jiaotong University School of Medicine, Shanghai, China.,2 Department of Radiology, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Yingping Wang
- 1 Department of Anatomy and Physiology, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Juan Wang
- 1 Department of Anatomy and Physiology, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Qi Fan
- 2 Department of Radiology, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Jinyu Zhu
- 2 Department of Radiology, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Liu Yang
- 3 Core Laboratory, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Weifang Rong
- 1 Department of Anatomy and Physiology, Shanghai Jiaotong University School of Medicine, Shanghai, China
| |
Collapse
|
63
|
Basso L, Aboushousha R, Fan CY, Iftinca M, Melo H, Flynn R, Agosti F, Hollenberg MD, Thompson R, Bourinet E, Trang T, Altier C. TRPV1 promotes opioid analgesia during inflammation. Sci Signal 2019; 12:12/575/eaav0711. [PMID: 30940767 DOI: 10.1126/scisignal.aav0711] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Pain and inflammation are inherently linked responses to injury, infection, or chronic diseases. Given that acute inflammation in humans or mice enhances the analgesic properties of opioids, there is much interest in determining the inflammatory transducers that prime opioid receptor signaling in primary afferent nociceptors. Here, we found that activation of the transient receptor potential vanilloid type 1 (TRPV1) channel stimulated a mitogen-activated protein kinase (MAPK) signaling pathway that was accompanied by the shuttling of the scaffold protein β-arrestin2 to the nucleus. The nuclear translocation of β-arrestin2 in turn prevented its recruitment to the μ-opioid receptor (MOR), the subsequent internalization of agonist-bound MOR, and the suppression of MOR activity that occurs upon receptor desensitization. Using the complete Freund's adjuvant (CFA) inflammatory pain model to examine the role of TRPV1 in regulating endogenous opioid analgesia in mice, we found that naloxone methiodide (Nal-M), a peripherally restricted, nonselective, and competitive opioid receptor antagonist, slowed the recovery from CFA-induced hypersensitivity in wild-type, but not TRPV1-deficient, mice. Furthermore, we showed that inflammation prolonged morphine-induced antinociception in a mouse model of opioid receptor desensitization, a process that depended on TRPV1. Together, our data reveal a TRPV1-mediated signaling pathway that serves as an endogenous pain-resolution mechanism by promoting the nuclear translocation of β-arrestin2 to minimize MOR desensitization. This previously uncharacterized mechanism may underlie the peripheral opioid control of inflammatory pain. Dysregulation of the TRPV1-β-arrestin2 axis may thus contribute to the transition from acute to chronic pain.
Collapse
Affiliation(s)
- Lilian Basso
- Department of Physiology and Pharmacology, Inflammation Research Network-Snyder Institute for Chronic Diseases and Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta T2N4N1, Canada
| | - Reem Aboushousha
- Department of Physiology and Pharmacology, Inflammation Research Network-Snyder Institute for Chronic Diseases and Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta T2N4N1, Canada
| | - Churmy Yong Fan
- Hotchkiss Brain Institute, Cumming School of Medicine, Faculty of Veterinary Medicine, University of Calgary, Calgary, Alberta T2N4N1, Canada
| | - Mircea Iftinca
- Department of Physiology and Pharmacology, Inflammation Research Network-Snyder Institute for Chronic Diseases and Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta T2N4N1, Canada
| | - Helvira Melo
- Department of Physiology and Pharmacology, Inflammation Research Network-Snyder Institute for Chronic Diseases and Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta T2N4N1, Canada
| | - Robyn Flynn
- Department of Physiology and Pharmacology, Inflammation Research Network-Snyder Institute for Chronic Diseases and Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta T2N4N1, Canada
| | - Francina Agosti
- Institute for Functional Genomics, CNRS UMR5203, INSERM U1191, University of Montpellier, LABEX ICST, Montpellier, France
| | - Morley D Hollenberg
- Department of Physiology and Pharmacology, Inflammation Research Network-Snyder Institute for Chronic Diseases and Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta T2N4N1, Canada
| | - Roger Thompson
- Hotchkiss Brain Institute, Cumming School of Medicine, Faculty of Veterinary Medicine, University of Calgary, Calgary, Alberta T2N4N1, Canada
| | - Emmanuel Bourinet
- Institute for Functional Genomics, CNRS UMR5203, INSERM U1191, University of Montpellier, LABEX ICST, Montpellier, France
| | - Tuan Trang
- Hotchkiss Brain Institute, Cumming School of Medicine, Faculty of Veterinary Medicine, University of Calgary, Calgary, Alberta T2N4N1, Canada
| | - Christophe Altier
- Department of Physiology and Pharmacology, Inflammation Research Network-Snyder Institute for Chronic Diseases and Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta T2N4N1, Canada.
| |
Collapse
|
64
|
Ion Channels Involved in Substance P-Mediated Nociception and Antinociception. Int J Mol Sci 2019; 20:ijms20071596. [PMID: 30935032 PMCID: PMC6479580 DOI: 10.3390/ijms20071596] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 03/26/2019] [Accepted: 03/27/2019] [Indexed: 02/07/2023] Open
Abstract
Substance P (SP), an 11-amino-acid neuropeptide, has long been considered an effector of pain. However, accumulating studies have proposed a paradoxical role of SP in anti-nociception. Here, we review studies of SP-mediated nociception and anti-nociception in terms of peptide features, SP-modulated ion channels, and differential effector systems underlying neurokinin 1 receptors (NK1Rs) in differential cell types to elucidate the effect of SP and further our understanding of SP in anti-nociception. Most importantly, understanding the anti-nociceptive SP-NK1R pathway would provide new insights for analgesic drug development.
Collapse
|
65
|
Csekő K, Beckers B, Keszthelyi D, Helyes Z. Role of TRPV1 and TRPA1 Ion Channels in Inflammatory Bowel Diseases: Potential Therapeutic Targets? Pharmaceuticals (Basel) 2019; 12:E48. [PMID: 30935063 PMCID: PMC6630403 DOI: 10.3390/ph12020048] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 03/26/2019] [Accepted: 03/27/2019] [Indexed: 12/20/2022] Open
Abstract
Inflammatory bowel diseases (IBD) have long been recognized to be accompanied by pain resulting in high morbidity. Transient receptor potential vanilloid 1 (TRPV1) and ankyrin 1 (TRPA1) ion channels located predominantly on the capsaicin-sensitive sensory neurons play a complex role in hyperalgesia and neurogenic inflammation. This review provides an overview of their expression and role in intestinal inflammation, in particular colitis, that appears to be virtually inconsistent based on the thorough investigations of the last twenty years. However, preclinical results with pharmacological interventions, as well as scarcely available human studies, more convincingly point out the potential therapeutic value of TRPV1 and TRPA1 antagonists in colitis and visceral hypersensitivity providing future therapeutical perspectives through a complex, unique mechanism of action for drug development in IBD.
Collapse
Affiliation(s)
- Kata Csekő
- Department of Pharmacology and Pharmacotherapy, Medical School and Molecular Pharmacology Research Group, Szentágothai Research Centre, University of Pécs, H-7624 Pécs, Hungary.
| | - Bram Beckers
- Division of Gastroenterology-Hepatology, Department of Internal Medicine, Maastricht University Medical Center (MUMC+), 6202 AZ Maastricht, The Netherlands.
- NUTRIM, School of Nutrition and Translational Research in Metabolism, Maastricht University, 6202 AZ Maastricht, The Netherlands.
| | - Daniel Keszthelyi
- Division of Gastroenterology-Hepatology, Department of Internal Medicine, Maastricht University Medical Center (MUMC+), 6202 AZ Maastricht, The Netherlands.
- NUTRIM, School of Nutrition and Translational Research in Metabolism, Maastricht University, 6202 AZ Maastricht, The Netherlands.
| | - Zsuzsanna Helyes
- Department of Pharmacology and Pharmacotherapy, Medical School and Molecular Pharmacology Research Group, Szentágothai Research Centre, University of Pécs, H-7624 Pécs, Hungary.
- PharmInVivo Ltd., H-7629 Pécs, Hungary.
| |
Collapse
|
66
|
Mobilization of CD4+ T lymphocytes in inflamed mucosa reduces pain in colitis mice: toward a vaccinal strategy to alleviate inflammatory visceral pain. Pain 2019; 159:331-341. [PMID: 29140925 DOI: 10.1097/j.pain.0000000000001103] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
T lymphocytes play a pivotal role in endogenous regulation of inflammatory visceral pain. The analgesic activity of T lymphocytes is dependent on their production of opioids, a property acquired on antigen activation. Accordingly, we investigated whether an active recruitment of T lymphocytes within inflamed colon mucosa via a local vaccinal strategy may counteract inflammation-induced visceral pain in mice. Mice were immunized against ovalbumin (OVA). One month after immunization, colitis was induced by adding 3% (wt/vol) dextran sulfate sodium into drinking water containing either cognate antigen OVA or control antigen bovine serum albumin for 5 days. Noncolitis OVA-primed mice were used as controls. Visceral sensitivity was then determined by colorectal distension. Oral administration of OVA but not bovine serum albumin significantly reduced dextran sulfate sodium-induced abdominal pain without increasing colitis severity in OVA-primed mice. Analgesia was dependent on local release of enkephalins by effector anti-OVA T lymphocytes infiltrating the inflamed mucosa. The experiments were reproduced with the bacillus Calmette-Guerin vaccine as antigen. Similarly, inflammatory visceral pain was dramatically alleviated in mice vaccinated against bacillus Calmette-Guerin and then locally administered with live Mycobacterium bovis. Together, these results show that the induction of a secondary adaptive immune response against vaccine antigens in inflamed mucosa may constitute a safe noninvasive strategy to relieve from visceral inflammatory pain.
Collapse
|
67
|
Activation of Peripheral Blood CD4+ T-Cells in IBS is not Associated with Gastrointestinal or Psychological Symptoms. Sci Rep 2019; 9:3710. [PMID: 30842618 PMCID: PMC6403230 DOI: 10.1038/s41598-019-40124-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Accepted: 02/08/2019] [Indexed: 02/07/2023] Open
Abstract
Immune activation may underlie the pathogenesis of irritable bowel syndrome (IBS), but the evidence is conflicting. We examined whether peripheral CD4+ T-cells from IBS patients demonstrated immune activation and changes in cytokine production. To gain mechanistic insight, we examined whether immune activation correlated with psychological stress and changing symptoms over time. IBS patients (n = 29) and healthy volunteers (HV; n = 29) completed symptom and psychological questionnaires. IBS patients had a significant increase in CD4+ T-cells expressing the gut homing marker integrin β7 (p = 0.023) and lymphoid marker CD62L (p = 0.026) compared to HV. Furthermore, phytohaemagglutinin stimulated CD4+ T-cells from IBS-D patients demonstrated increased TNFα secretion when compared to HV (p = 0.044). Increased psychological scores in IBS did not correlate with TNFα production, while stress hormones inhibited cytokine secretion from CD4+ T-cells of HV in vitro. IBS symptoms, but not markers of immune activation, decreased over time. CD4+ T-cells from IBS-D patients exhibit immune activation, but this did not appear to correlate with psychological stress measurements or changing symptoms over time. This could suggest that immune activation is a surrogate of an initial trigger and/or ongoing parallel peripheral mechanisms.
Collapse
|
68
|
Nyuyki KD, Cluny NL, Swain MG, Sharkey KA, Pittman QJ. Altered Brain Excitability and Increased Anxiety in Mice With Experimental Colitis: Consideration of Hyperalgesia and Sex Differences. Front Behav Neurosci 2018; 12:58. [PMID: 29670513 PMCID: PMC5893896 DOI: 10.3389/fnbeh.2018.00058] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Accepted: 03/13/2018] [Indexed: 12/28/2022] Open
Abstract
Crohn’s disease (CD) and ulcerative colitis (UC) are incurable lifelong inflammatory bowel diseases (IBD) with a rising worldwide incidence. IBD is characterized by diarrhea, rectal bleeding, severe cramping and weight loss. However, there is a growing evidence that IBD is also associated with anxiety- and depression-related disorders, which further increase the societal burden of these diseases. Given the limited knowledge of central nervous system (CNS) changes in IBD, we investigated CNS-related comorbidities in a mouse model of experimental colitis induced by dextran sulfate sodium (DSS) administration in drinking water for 5 days. In male and female C57BL6J mice, DSS treatment caused increased brain excitability, revealed by a decrease in seizure onset times after intraperitoneal administration of kainic acid. Moreover, both sexes showed increased anxiety-related behavior in the elevated plus-maze (EPM) and open field (OF) paradigms. We assessed somatic pain levels, because they may influence behavioral responses. Only male mice were hyperalgesic when tested with calibrated von Frey hairs and on the hotplate for mechanical and thermal pain sensitivity respectively. Administration of diazepam (DZP; ip, 1 mg/kg) 30 min before EPM rescued the anxious phenotype and improved locomotion, even though it significantly increased thermal sensitivity in both sexes. This indicates that the altered behavioral response is unlikely attributable to an interference with movement due to somatic pain in females. We show that experimental colitis increases CNS excitability in response to administration of kainic acid, and increases anxiety-related behavior as revealed using the EPM and OF tests.
Collapse
Affiliation(s)
- Kewir D Nyuyki
- Hotchkiss Brain Institute, Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Nina L Cluny
- Hotchkiss Brain Institute, Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.,Calvin, Phoebe and Joan Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Mark G Swain
- Calvin, Phoebe and Joan Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.,Calgary Liver Unit, Division of Gastroenterology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Keith A Sharkey
- Hotchkiss Brain Institute, Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.,Calvin, Phoebe and Joan Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Quentin J Pittman
- Hotchkiss Brain Institute, Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.,Calvin, Phoebe and Joan Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
69
|
Holzer P, Farzi A, Hassan AM, Zenz G, Jačan A, Reichmann F. Visceral Inflammation and Immune Activation Stress the Brain. Front Immunol 2017; 8:1613. [PMID: 29213271 PMCID: PMC5702648 DOI: 10.3389/fimmu.2017.01613] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2017] [Accepted: 11/07/2017] [Indexed: 12/20/2022] Open
Abstract
Stress refers to a dynamic process in which the homeostasis of an organism is challenged, the outcome depending on the type, severity, and duration of stressors involved, the stress responses triggered, and the stress resilience of the organism. Importantly, the relationship between stress and the immune system is bidirectional, as not only stressors have an impact on immune function, but alterations in immune function themselves can elicit stress responses. Such bidirectional interactions have been prominently identified to occur in the gastrointestinal tract in which there is a close cross-talk between the gut microbiota and the local immune system, governed by the permeability of the intestinal mucosa. External stressors disturb the homeostasis between microbiota and gut, these disturbances being signaled to the brain via multiple communication pathways constituting the gut-brain axis, ultimately eliciting stress responses and perturbations of brain function. In view of these relationships, the present article sets out to highlight some of the interactions between peripheral immune activation, especially in the visceral system, and brain function, behavior, and stress coping. These issues are exemplified by the way through which the intestinal microbiota as well as microbe-associated molecular patterns including lipopolysaccharide communicate with the immune system and brain, and the mechanisms whereby overt inflammation in the GI tract impacts on emotional-affective behavior, pain sensitivity, and stress coping. The interactions between the peripheral immune system and the brain take place along the gut-brain axis, the major communication pathways of which comprise microbial metabolites, gut hormones, immune mediators, and sensory neurons. Through these signaling systems, several transmitter and neuropeptide systems within the brain are altered under conditions of peripheral immune stress, enabling adaptive processes related to stress coping and resilience to take place. These aspects of the impact of immune stress on molecular and behavioral processes in the brain have a bearing on several disturbances of mental health and highlight novel opportunities of therapeutic intervention.
Collapse
Affiliation(s)
- Peter Holzer
- Research Unit of Translational Neurogastroenterology, Institute of Experimental and Clinical Pharmacology, Medical University of Graz, Graz, Austria.,BioTechMed-Graz, Graz, Austria
| | - Aitak Farzi
- Research Unit of Translational Neurogastroenterology, Institute of Experimental and Clinical Pharmacology, Medical University of Graz, Graz, Austria
| | - Ahmed M Hassan
- Research Unit of Translational Neurogastroenterology, Institute of Experimental and Clinical Pharmacology, Medical University of Graz, Graz, Austria
| | - Geraldine Zenz
- Research Unit of Translational Neurogastroenterology, Institute of Experimental and Clinical Pharmacology, Medical University of Graz, Graz, Austria
| | - Angela Jačan
- CBmed GmbH-Center for Biomarker Research in Medicine, Graz, Austria
| | - Florian Reichmann
- Research Unit of Translational Neurogastroenterology, Institute of Experimental and Clinical Pharmacology, Medical University of Graz, Graz, Austria
| |
Collapse
|
70
|
Artemin transiently increases iNOS expression in primary cultured trigeminal ganglion neurons. Neurosci Lett 2017; 660:34-38. [DOI: 10.1016/j.neulet.2017.09.016] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Revised: 09/08/2017] [Accepted: 09/08/2017] [Indexed: 12/29/2022]
|
71
|
Beckers AB, Weerts ZZRM, Helyes Z, Masclee AAM, Keszthelyi D. Review article: transient receptor potential channels as possible therapeutic targets in irritable bowel syndrome. Aliment Pharmacol Ther 2017; 46:938-952. [PMID: 28884838 DOI: 10.1111/apt.14294] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Revised: 06/06/2017] [Accepted: 08/17/2017] [Indexed: 12/12/2022]
Abstract
BACKGROUND Abdominal pain in irritable bowel syndrome (IBS) remains challenging to treat effectively. Researchers have attempted to elucidate visceral nociceptive processes in order to guide treatment development. Transient receptor potential (TRP) channels have been implied in the generation (TRPV1, TRPV4, TRPA1) and inhibition (TRPM8) of visceral pain signals. Pathological changes in their functioning have been demonstrated in inflammatory conditions, and appear to be present in IBS as well. AIM To provide a comprehensive review of the current literature on TRP channels involved in visceral nociception. In particular, we emphasise the clinical implications of these nociceptors in the treatment of IBS. METHODS Evidence to support this review was obtained from an electronic database search via PubMed using the search terms "visceral nociception," "visceral hypersensitivity," "irritable bowel syndrome" and "transient receptor potential channels." After screening the abstracts the articles deemed relevant were cross-referenced for additional manuscripts. RESULTS Recent studies have resulted in significant advances in our understanding of TRP channel mediated visceral nociception. The diversity of TRP channel sensitization pathways is increasingly recognised. Endogenous TRP agonists, including poly-unsaturated fatty acid metabolites and hydrogen sulphide, have been implied in augmented visceral pain generation in IBS. New potential targets for treatment development have been identified (TRPA1 and TRPV4,) and alternative means of affecting TRP channel signalling (partial antagonists, downstream targeting and RNA-based therapy) are currently being explored. CONCLUSIONS The improved understanding of mechanisms involved in visceral nociception provides a solid basis for the development of new treatment strategies for abdominal pain in IBS.
Collapse
Affiliation(s)
- A B Beckers
- Division of Gastroenterology-Hepatology, Department of Internal Medicine, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center, Maastricht, Limburg, The Netherlands
| | - Z Z R M Weerts
- Division of Gastroenterology-Hepatology, Department of Internal Medicine, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center, Maastricht, Limburg, The Netherlands
| | - Z Helyes
- Department of Pharmacology and Pharmacotherapy, Molecular Pharmacology Research Team, University of Pécs Medical School, János Szentágothai Research Centre, University of Pécs, Pécs, Baranya, Hungary
| | - A A M Masclee
- Division of Gastroenterology-Hepatology, Department of Internal Medicine, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center, Maastricht, Limburg, The Netherlands
| | - D Keszthelyi
- Division of Gastroenterology-Hepatology, Department of Internal Medicine, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center, Maastricht, Limburg, The Netherlands
| |
Collapse
|
72
|
Evidence for long-term sensitization of the bowel in patients with post-infectious-IBS. Sci Rep 2017; 7:13606. [PMID: 29051514 PMCID: PMC5648751 DOI: 10.1038/s41598-017-12618-7] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Accepted: 09/07/2017] [Indexed: 12/22/2022] Open
Abstract
Post-infectious irritable bowel syndrome (PI-IBS) is a common gastrointestinal disorder characterized by persistent abdominal pain despite recovery from acute gastroenteritis. The underlying mechanisms are unclear, although long-term changes in neuronal function, and low grade inflammation of the bowel have been hypothesized. We investigated the presence and mechanism of neuronal sensitization in a unique cohort of individuals who developed PI-IBS following exposure to contaminated drinking water 7 years ago. We provide direct evidence of ongoing sensitization of neuronal signaling in the bowel of patients with PI-IBS. These changes occur in the absence of any detectable tissue inflammation, and instead appear to be driven by pro-nociceptive changes in the gut micro-environment. This is evidenced by the activation of murine colonic afferents, and sensitization responses to capsaicin in dorsal root ganglia (DRGs) following application of supernatants generated from tissue biopsy of patients with PI-IBS. We demonstrate that neuronal signaling within the bowel of PI-IBS patients is sensitized 2 years after the initial infection has resolved. This sensitization appears to be mediated by a persistent pro-nociceptive change in the gut micro-environment, that has the capacity to stimulate visceral afferents and facilitate neuronal TRPV1 signaling.
Collapse
|
73
|
Granulocyte-colony-stimulating factor (G-CSF) signaling in spinal microglia drives visceral sensitization following colitis. Proc Natl Acad Sci U S A 2017; 114:11235-11240. [PMID: 28973941 DOI: 10.1073/pnas.1706053114] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Pain is a main symptom of inflammatory diseases and often persists beyond clinical remission. Although we have a good understanding of the mechanisms of sensitization at the periphery during inflammation, little is known about the mediators that drive central sensitization. Recent reports have identified hematopoietic colony-stimulating factors as important regulators of tumor- and nerve injury-associated pain. Using a mouse model of colitis, we identify the proinflammatory cytokine granulocyte-colony-stimulating factor (G-CSF or Csf-3) as a key mediator of visceral sensitization. We report that G-CSF is specifically up-regulated in the thoracolumbar spinal cord of colitis-affected mice. Our results show that resident spinal microglia express the G-CSF receptor and that G-CSF signaling mediates microglial activation following colitis. Furthermore, healthy mice subjected to intrathecal injection of G-CSF exhibit pronounced visceral hypersensitivity, an effect that is abolished by microglial depletion. Mechanistically, we demonstrate that G-CSF injection increases Cathepsin S activity in spinal cord tissues. When cocultured with microglia BV-2 cells exposed to G-CSF, dorsal root ganglion (DRG) nociceptors become hyperexcitable. Blocking CX3CR1 or nitric oxide production during G-CSF treatment reduces excitability and G-CSF-induced visceral pain in vivo. Finally, administration of G-CSF-neutralizing antibody can prevent the establishment of persistent visceral pain postcolitis. Overall, our work uncovers a DRG neuron-microglia interaction that responds to G-CSF by engaging Cathepsin S-CX3CR1-inducible NOS signaling. This interaction represents a central step in visceral sensitization following colonic inflammation, thereby identifying spinal G-CSF as a target for treating chronic abdominal pain.
Collapse
|
74
|
Kong WL, Peng YY, Peng BW. Modulation of neuroinflammation: Role and therapeutic potential of TRPV1 in the neuro-immune axis. Brain Behav Immun 2017; 64:354-366. [PMID: 28342781 DOI: 10.1016/j.bbi.2017.03.007] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Revised: 03/04/2017] [Accepted: 03/14/2017] [Indexed: 02/07/2023] Open
Abstract
Transient receptor potential vanilloid type 1 channel (TRPV1), as a ligand-gated non-selective cation channel, has recently been demonstrated to have wide expression in the neuro-immune axis, where its multiple functions occur through regulation of both neuronal and non-neuronal activities. Growing evidence has suggested that TRPV1 is functionally expressed in glial cells, especially in the microglia and astrocytes. Glial cells perform immunological functions in response to pathophysiological challenges through pro-inflammatory or anti-inflammatory cytokines and chemokines in which TRPV1 is involved. Sustaining inflammation might mediate a positive feedback loop of neuroinflammation and exacerbate neurological disorders. Accumulating evidence has suggested that TRPV1 is closely related to immune responses and might be recognized as a molecular switch in the neuroinflammation of a majority of seizures and neurodegenerative diseases. In this review, we evidenced that inflammation modulates the expression and activity of TRPV1 in the central nervous system (CNS) and TRPV1 exerts reciprocal actions over neuroinflammatory processes. Together, the literature supports the hypothesis that TRPV1 may represent potential therapeutic targets in the neuro-immune axis.
Collapse
Affiliation(s)
- Wei-Lin Kong
- Department of Physiology, Hubei Provincial Key Laboratory of Developmentally Originated Disorder, Hubei Province Key Laboratory of Allergy and Immunology, School of Basic Medical Sciences, Wuhan University, Wuhan, Hubei, China
| | - Yuan-Yuan Peng
- Department of Physiology, Hubei Provincial Key Laboratory of Developmentally Originated Disorder, Hubei Province Key Laboratory of Allergy and Immunology, School of Basic Medical Sciences, Wuhan University, Wuhan, Hubei, China
| | - Bi-Wen Peng
- Department of Physiology, Hubei Provincial Key Laboratory of Developmentally Originated Disorder, Hubei Province Key Laboratory of Allergy and Immunology, School of Basic Medical Sciences, Wuhan University, Wuhan, Hubei, China.
| |
Collapse
|
75
|
Lai NY, Mills K, Chiu IM. Sensory neuron regulation of gastrointestinal inflammation and bacterial host defence. J Intern Med 2017; 282:5-23. [PMID: 28155242 PMCID: PMC5474171 DOI: 10.1111/joim.12591] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Sensory neurons in the gastrointestinal tract have multifaceted roles in maintaining homeostasis, detecting danger and initiating protective responses. The gastrointestinal tract is innervated by three types of sensory neurons: dorsal root ganglia, nodose/jugular ganglia and intrinsic primary afferent neurons. Here, we examine how these distinct sensory neurons and their signal transducers participate in regulating gastrointestinal inflammation and host defence. Sensory neurons are equipped with molecular sensors that enable neuronal detection of diverse environmental signals including thermal and mechanical stimuli, inflammatory mediators and tissue damage. Emerging evidence shows that sensory neurons participate in host-microbe interactions. Sensory neurons are able to detect pathogenic and commensal bacteria through specific metabolites, cell-wall components, and toxins. Here, we review recent work on the mechanisms of bacterial detection by distinct subtypes of gut-innervating sensory neurons. Upon activation, sensory neurons communicate to the immune system to modulate tissue inflammation through antidromic signalling and efferent neural circuits. We discuss how this neuro-immune regulation is orchestrated through transient receptor potential ion channels and sensory neuropeptides including substance P, calcitonin gene-related peptide, vasoactive intestinal peptide and pituitary adenylate cyclase-activating polypeptide. Recent studies also highlight a role for sensory neurons in regulating host defence against enteric bacterial pathogens including Salmonella typhimurium, Citrobacter rodentium and enterotoxigenic Escherichia coli. Understanding how sensory neurons respond to gastrointestinal flora and communicate with immune cells to regulate host defence enhances our knowledge of host physiology and may form the basis for new approaches to treat gastrointestinal diseases.
Collapse
Affiliation(s)
- N Y Lai
- Division of Immunology, Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA, USA
| | - K Mills
- Division of Immunology, Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA, USA
| | - I M Chiu
- Division of Immunology, Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
76
|
Shen S, Al-Thumairy HW, Hashmi F, Qiao LY. Regulation of transient receptor potential cation channel subfamily V1 protein synthesis by the phosphoinositide 3-kinase/Akt pathway in colonic hypersensitivity. Exp Neurol 2017; 295:104-115. [PMID: 28587873 DOI: 10.1016/j.expneurol.2017.06.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Revised: 04/22/2017] [Accepted: 06/02/2017] [Indexed: 02/08/2023]
Abstract
The transient receptor potential cation channel subfamily V member 1 (TRPV1), also known as the capsaicin receptor or vanilloid receptor 1 (VR1), is expressed in nociceptive neurons in the dorsal root ganglia (DRG) and participates in the transmission of pain. The present study investigated the underlying molecular mechanisms by which TRPV1 was regulated by nerve growth factor (NGF) signaling pathways in colonic hypersensitivity in response to colitis. We found that during colitis TRPV1 protein levels were significantly increased in specifically labeled colonic afferent neurons in both L1 and S1 DRGs. TRPV1 protein up-regulation in DRG was also enhanced by NGF treatment. We then found that TRPV1 protein up-regulation in DRG was regulated by activation of the phosphoinositide 3-kinase (PI3K)/Akt pathway both in vivo and in vitro. Suppression of endogenous PI3K/Akt activity during colitis or NGF treatment with a specific PI3K inhibitor LY294002 reduced TRPV1 protein production in DRG neurons, and also reduced colitis-evoked TRPV1-mediated visceral hypersensitivity tested by hyper-responsiveness to colorectal distention (CRD) and von Frey filament stimulation of abdomen. Further studies showed that TRPV1 mRNA levels in the DRG were not regulated by either colitis or NGF. We then found that an up-regulation of the protein synthesis pathway was involved by which both colitis and NGF caused a PI3K-dependent increase in the phosphorylation level of eukaryotic translation initiation factor 4E-binding protein (4E-BP)1. These results suggest a novel mechanism in colonic hypersensitivity which involves PI3K/Akt-mediated TRPV1 protein, not mRNA, up-regulation in primary afferent neurons, likely through activation of the protein synthesis pathways.
Collapse
Affiliation(s)
- Shanwei Shen
- Departments of Physiology and Biophysics, Internal Medicine Gastroenterology, Virginia Commonwealth University, Richmond, VA, USA
| | - Hamad W Al-Thumairy
- Departments of Physiology and Biophysics, Internal Medicine Gastroenterology, Virginia Commonwealth University, Richmond, VA, USA
| | - Fiza Hashmi
- Departments of Physiology and Biophysics, Internal Medicine Gastroenterology, Virginia Commonwealth University, Richmond, VA, USA
| | - Li-Ya Qiao
- Departments of Physiology and Biophysics, Internal Medicine Gastroenterology, Virginia Commonwealth University, Richmond, VA, USA.
| |
Collapse
|
77
|
Balemans D, Boeckxstaens GE, Talavera K, Wouters MM. Transient receptor potential ion channel function in sensory transduction and cellular signaling cascades underlying visceral hypersensitivity. Am J Physiol Gastrointest Liver Physiol 2017; 312:G635-G648. [PMID: 28385695 DOI: 10.1152/ajpgi.00401.2016] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Revised: 03/21/2017] [Accepted: 04/01/2017] [Indexed: 01/31/2023]
Abstract
Visceral hypersensitivity is an important mechanism underlying increased abdominal pain perception in functional gastrointestinal disorders including functional dyspepsia, irritable bowel syndrome, and inflammatory bowel disease in remission. Although the exact pathophysiological mechanisms are poorly understood, recent studies described upregulation and altered functions of nociceptors and their signaling pathways in aberrant visceral nociception, in particular the transient receptor potential (TRP) channel family. A variety of TRP channels are present in the gastrointestinal tract (TRPV1, TRPV3, TRPV4, TRPA1, TRPM2, TRPM5, and TRPM8), and modulation of their function by increased activation or sensitization (decreased activation threshold) or altered expression in visceral afferents have been reported in visceral hypersensitivity. TRP channels directly detect or transduce osmotic, mechanical, thermal, and chemosensory stimuli. In addition, pro-inflammatory mediators released in tissue damage or inflammation can activate receptors of the G protein-coupled receptor superfamily leading to TRP channel sensitization and activation, which amplify pain and neurogenic inflammation. In this review, we highlight the present knowledge on the functional roles of neuronal TRP channels in visceral hypersensitivity and discuss the signaling pathways that underlie TRP channel modulation. We propose that a better understanding of TRP channels and their modulators may facilitate the development of more selective and effective therapies to treat visceral hypersensitivity.
Collapse
Affiliation(s)
- Dafne Balemans
- Translational Research Center for Gastrointestinal Disorders, University of Leuven, Leuven, Belgium; and
| | - Guy E Boeckxstaens
- Translational Research Center for Gastrointestinal Disorders, University of Leuven, Leuven, Belgium; and
| | - Karel Talavera
- Laboratory of Ion Channel Research and TRP Research Platform Leuven, Department of Cellular and Molecular Medicine, University of Leuven, Leuven Belgium
| | - Mira M Wouters
- Translational Research Center for Gastrointestinal Disorders, University of Leuven, Leuven, Belgium; and
| |
Collapse
|
78
|
Regueiro M, Greer JB, Szigethy E. Etiology and Treatment of Pain and Psychosocial Issues in Patients With Inflammatory Bowel Diseases. Gastroenterology 2017; 152:430-439.e4. [PMID: 27816599 DOI: 10.1053/j.gastro.2016.10.036] [Citation(s) in RCA: 78] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Revised: 10/07/2016] [Accepted: 10/27/2016] [Indexed: 12/15/2022]
Abstract
There is increasing evidence that brain-gut interactions are altered during development of inflammatory bowel diseases (IBDs). Understanding the relationship between the neurobiology, psychological symptoms, and social ramifications of IBD can guide comprehensive care for the whole patient. The most common psychological conditions in patients with IBD are chronic abdominal pain, anxiety, and depression. We review the evidence-based data and rates of these conditions and their respective relationship to IBD and the diagnostic approaches to identify patients with these conditions. Different treatment options for pain and psychosocial conditions are discussed, and new models of team-based IBD care are introduced. Providing the health care provider with tools to diagnose and manage psychological conditions in patients with Crohn's disease or ulcerative colitis is necessary for their total care and should be part of quality-improvement initiatives.
Collapse
Affiliation(s)
- Miguel Regueiro
- Division of Gastroenterology, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Julia B Greer
- Division of Gastroenterology, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Eva Szigethy
- Division of Gastroenterology, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania; Department of Psychiatry, University of Pittsburgh, Pittsburgh, Pennsylvania.
| |
Collapse
|
79
|
Sakakibara A, Sakakibara S, Kusumoto J, Takeda D, Hasegawa T, Akashi M, Minamikawa T, Hashikawa K, Terashi H, Komori T. Upregulated Expression of Transient Receptor Potential Cation Channel Subfamily V Receptors in Mucosae of Patients with Oral Squamous Cell Carcinoma and Patients with a History of Alcohol Consumption or Smoking. PLoS One 2017; 12:e0169723. [PMID: 28081185 PMCID: PMC5230781 DOI: 10.1371/journal.pone.0169723] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Accepted: 12/07/2016] [Indexed: 01/06/2023] Open
Abstract
Objectives Transient receptor potential cation channel (subfamily V, members 1–4) (TRPV1–4) are expressed in skin and neurons and activated by external stimuli in normal mucosae of all oral cavity sites. The oral cavity is exposed to various stimuli, including temperature, mechanical stimuli, chemical substances, and changes in pH, and, notably, the risk factors for oncogenic transformation in oral squamous epithelium are the same as the external stimuli received by TRPV1–4 receptors. Hence, we examined the relationship between oral squamous cell carcinoma (SCC) and TRPV1–4 expression. Materials and Methods Oral SCC patients (n = 37) who underwent surgical resection were included in this study. We investigated the expression of TRPV1–4 by immunohistochemical staining and quantification of TRPV1–4 mRNA in human oral mucosa. In addition, we compared the TRPV1–4 levels in mucosa from patients with SCC to those in normal oral mucosa. Results The receptors were expressed in oral mucosa at all sites (tongue, buccal mucosa, gingiva, and oral floor) and the expression was stronger in epithelia from patients with SCC than in normal epithelia. Furthermore, alcohol consumption and tobacco use were strongly associated with the occurrence of oral cancer and were found to have a remarkable influence on TRPV1–4 receptor expression in normal oral mucosa. In particular, patients with a history of alcohol consumption demonstrated significantly higher expression levels. Conclusion Various external stimuli may influence the behavior of cancer cells. Overexpression of TRPV1-4 is likely to be a factor in enhanced sensitivity to external stimuli. These findings could contribute to the establishment of novel strategies for cancer therapy or prevention.
Collapse
Affiliation(s)
- Akiko Sakakibara
- Department of Oral and Maxillofacial Surgery, Kobe University Graduate School of Medicine, Kobe, Japan
- * E-mail:
| | - Shunsuke Sakakibara
- Department of Plastic Surgery, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Junya Kusumoto
- Department of Oral and Maxillofacial Surgery, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Daisuke Takeda
- Department of Oral and Maxillofacial Surgery, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Takumi Hasegawa
- Department of Oral and Maxillofacial Surgery, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Masaya Akashi
- Department of Oral and Maxillofacial Surgery, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Tsutomu Minamikawa
- Department of Oral and Maxillofacial Surgery, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Kazunobu Hashikawa
- Department of Plastic Surgery, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Hiroto Terashi
- Department of Plastic Surgery, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Takahide Komori
- Department of Oral and Maxillofacial Surgery, Kobe University Graduate School of Medicine, Kobe, Japan
| |
Collapse
|
80
|
Abstract
Neuroimmune communications are facilitated by the production of neurotransmitters by immune cells and the generation of immune mediators by immune cells, which form a functional entity called the "neuroimmune synapse." There are several mechanisms that further facilitate neuroimmune interactions including the anatomic proximity between immune cells and nerves, the expression of receptors for neurotransmitters on immune cells and for immune mediators on nerves, and the receptor-mediated activation of intracellular signaling pathways that modulate nerve and immune phenotype and function. The bidirectional communication between nerves and immune cells is implicated in allostasis, a process that describes the continuous adaptation to an ever-changing environment. Neuroimmune interactions are amplified during inflammation by the influx of activated immune cells that significantly alter the microenvironment. In this context, the types of neurotransmitters released by activated neurons or immune cells can exert pro- or anti-inflammatory effects. Dysregulation of the enteric nervous system control of gastrointestinal functions, such as epithelial permeability and secretion as well as smooth muscle contractility, also contribute to the chronicity of inflammation. Persistent active inflammation in the gut leads to neuroimmune plasticity, which is a structural and functional remodeling in both the neural and immune systems. The importance of neuroimmune interactions has made them an emerging target in the development of novel therapies for GI pathologies.
Collapse
Affiliation(s)
- Terez Shea-Donohue
- Department of Radiation Oncology, University of Maryland School of Medicine, DTRS, MSTF Rm 700C, 10 Pine Street, Baltimore, MD, 21201, USA.
- Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, 21201, USA.
| | - Joseph F Urban
- U.S. Department of Agriculture, Agricultural Research Service, Beltsville Human Nutrition Research Center, Diet, Genomics, and Immunology Laboratory, Beltsville, MD, 20705, USA
| |
Collapse
|
81
|
Li Q, Guo CH, Chowdhury MA, Dai TL, Han W. TRPA1 in the spinal dorsal horn is involved in post-inflammatory visceral hypersensitivity: in vivo study using TNBS-treated rat model. J Pain Res 2016; 9:1153-1160. [PMID: 27980434 PMCID: PMC5144908 DOI: 10.2147/jpr.s118581] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Introduction The transient receptor potential ankyrin-1 (TRPA1) channel, a pain transducer and amplifier, is drawing increasing attention in the field of visceral hypersensitivity, commonly seen in irritable bowel syndrome and inflammatory bowel disease. However, the role of TRPA1 in visceral nociception during post-inflammatory states is not well defined. Here, we explore the correlation between TRPA1 expression in the spinal dorsal horn (SDH) and persistent post-inflammatory visceral hypersensitivity. Methods We injected rats intracolonically with 2,4,6-trinitrobenzene sulfonic acid (TNBS) or vehicle (n=12 per group). Post-inflammatory visceral hypersensitivity was assessed by recording the electromyographic activity of the external oblique muscle in response to colorectal distension. TRPA1 expression and distribution in the spinal cord and colon were examined by Western blotting and immunohistochemistry. Results Animals exposed to TNBS had more abdominal contractions than vehicle-injected controls (P<0.05), which corresponded to a lower nociceptive threshold. Expression of TRPA1 in the SDH (especially in the substantia gelatinosa) and the colon was significantly greater in the TNBS-treated group than in controls (P<0.05). In the SDH, the number of TRPA1-immunopositive neurons was 25.75±5.12 in the control group and 34.25±7.89 in the TNBS-treated group (P=0.023), and integrated optical density values of TRPA1 in the control and TNBS-treated groups were 14,544.63±6,525.54 and 22,532.75±7,608.11, respectively (P=0.041). Conclusion Our results indicate that upregulation of TRPA1 expression in the SDH is associated with persistent post-inflammatory visceral hypersensitivity in the rat and provides insight into potential therapeutic targets for the control of persistent visceral hypersensitivity.
Collapse
Affiliation(s)
- Qian Li
- Department of Gastroenterology, Qilu Hospital of Shandong University
| | - Cheng-Hao Guo
- Department of Pathology, Medical School of Shandong University
| | | | - Tao-Li Dai
- Department of Gastroenterology, Qilu Hospital of Shandong University
| | - Wei Han
- Department of Gastroenterology, Qilu Hospital of Shandong University; Laboratory of Translational Gastroenterology, Shandong University, Qilu Hospital, Jinan, Shandong Province, People's Republic of China
| |
Collapse
|
82
|
Feng MH, He ZG, Liu BW, Li ZX, Wu DZ, Liu SG, Xiang HB. Parafascicular nucleus circuits: Implications for the alteration of gastrointestinal functions during epileptogenesis. Epilepsy Behav 2016; 64:295-298. [PMID: 27773642 DOI: 10.1016/j.yebeh.2016.07.022] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2016] [Accepted: 07/14/2016] [Indexed: 11/16/2022]
Affiliation(s)
- Mao-Hui Feng
- Department of Oncology, Wuhan Peritoneal Cancer Clinical Medical Research Center, Zhongnan Hospital of Wuhan University, Hubei Key Laboratory of Tumor Biological Behaviors & Hubei Cancer Clinical Study Center, No. 169 Donghu Road, Wuhan, Hubei 430071, PR China.
| | - Zhi-Gang He
- Department of Anesthesiology and Pain Medicine, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, PR China
| | - Bao-Wen Liu
- Department of Anesthesiology and Pain Medicine, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, PR China
| | - Zhi-Xiao Li
- Department of Anesthesiology and Pain Medicine, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, PR China
| | - Duo-Zhi Wu
- Department of Anesthesiology, People's Hospital of Hainan Province, Haikou, Hainan 570311, PR China.
| | - San-Guang Liu
- Department of Hepatobiliary Surgery, The Second Hospital, Hebei Medical University, Shijiazhuang 050000, Hebei, PR China.
| | - Hong-Bing Xiang
- Department of Anesthesiology and Pain Medicine, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, PR China
| |
Collapse
|
83
|
Iftinca M, Flynn R, Basso L, Melo H, Aboushousha R, Taylor L, Altier C. The stress protein heat shock cognate 70 (Hsc70) inhibits the Transient Receptor Potential Vanilloid type 1 (TRPV1) channel. Mol Pain 2016; 12:12/0/1744806916663945. [PMID: 27558883 PMCID: PMC5006304 DOI: 10.1177/1744806916663945] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Accepted: 07/11/2016] [Indexed: 01/02/2023] Open
Abstract
Background Specialized cellular defense mechanisms prevent damage from chemical, biological, and physical hazards. The heat shock proteins have been recognized as key chaperones that maintain cell survival against a variety of exogenous and endogenous stress signals including noxious temperature. However, the role of heat shock proteins in nociception remains poorly understood. We carried out an expression analysis of the constitutively expressed 70 kDa heat-shock cognate protein, a member of the stress-induced HSP70 family in lumbar dorsal root ganglia from a mouse model of Complete Freund’s Adjuvant-induced chronic inflammatory pain. We used immunolabeling of dorsal root ganglion neurons, behavioral analysis and patch clamp electrophysiology in both dorsal root ganglion neurons and HEK cells transfected with Hsc70 and Transient Receptor Potential Channels to examine their functional interaction in heat shock stress condition. Results We report an increase in protein levels of Hsc70 in mouse dorsal root ganglia, 3 days post Complete Freund’s Adjuvant injection in the hind paw. Immunostaining of Hsc70 was observed in most of the dorsal root ganglion neurons, including the small size nociceptors immunoreactive to the TRPV1 channel. Standard whole-cell patch-clamp technique was used to record Transient Receptor Potential Vanilloid type 1 current after exposure to heat shock. We found that capsaicin-evoked currents are inhibited by heat shock in dorsal root ganglion neurons and transfected HEK cells expressing Hsc70 and TRPV1. Blocking Hsc70 with matrine or spergualin compounds prevented heat shock-induced inhibition of the channel. We also found that, in contrast to TRPV1, both the cold sensor channels TRPA1 and TRPM8 were unresponsive to heat shock stress. Finally, we show that inhibition of TRPV1 depends on the ATPase activity of Hsc70 and involves the rho-associated protein kinase. Conclusions Our work identified Hsc70 and its ATPase activity as a central cofactor of TRPV1 channel function and points to the role of this stress protein in pain associated with neurodegenerative and/or metabolic disorders, including aging.
Collapse
Affiliation(s)
- Mircea Iftinca
- Department of Physiology and Pharmacology and Snyder Institute for Chronic Diseases, University of Calgary, Calgary, Canada
| | - Robyn Flynn
- Department of Physiology and Pharmacology and Snyder Institute for Chronic Diseases, University of Calgary, Calgary, Canada
| | - Lilian Basso
- Department of Physiology and Pharmacology and Snyder Institute for Chronic Diseases, University of Calgary, Calgary, Canada
| | - Helvira Melo
- Department of Physiology and Pharmacology and Snyder Institute for Chronic Diseases, University of Calgary, Calgary, Canada
| | - Reem Aboushousha
- Department of Physiology and Pharmacology and Snyder Institute for Chronic Diseases, University of Calgary, Calgary, Canada
| | - Lauren Taylor
- Department of Physiology and Pharmacology and Snyder Institute for Chronic Diseases, University of Calgary, Calgary, Canada
| | - Christophe Altier
- Department of Physiology and Pharmacology and Snyder Institute for Chronic Diseases, University of Calgary, Calgary, Canada
| |
Collapse
|
84
|
Xiao Y, Chen X, Zhang PA, Xu Q, Zheng H, Xu GY. TRPV1-mediated presynaptic transmission in basolateral amygdala contributes to visceral hypersensitivity in adult rats with neonatal maternal deprivation. Sci Rep 2016; 6:29026. [PMID: 27364923 PMCID: PMC4929564 DOI: 10.1038/srep29026] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2016] [Accepted: 06/14/2016] [Indexed: 12/27/2022] Open
Abstract
The central mechanisms of visceral hypersensitivity remain largely unknown. It's reported that there are highest densities of TRPV1 labeled neurons within basolateral amygdala (BLA). The aim of this study was to explore the role and mechanisms of TRPV1 in BLA in development of visceral hypersensitivity. Visceral hypersensitivity was induced by neonatal maternal deprivation (NMD) and was quantified by abdominal withdrawal reflex. Expression of TRPV1 was determined by Western blot. The synaptic transmission of neurons in BLA was recorded by patch clamping. It was found that the expression of TRPV1 in BLA was significantly upregulated in NMD rats; glutamatergic synaptic activities in BLA were increased in NMD rats; application of capsazepine (TRPV1 antagonist) decreased glutamatergic synaptic activities of BLA neurons in NMD slices through a presynaptic mechanism; application of capsaicin (TRPV1 agonist) increased glutamatergic synaptic activities of BLA neurons in control slices through presynaptic mechanism without affecting GABAergic synaptic activities; microinjecting capsazepine into BLA significantly increased colonic distension threshold both in control and NMD rats. Our data suggested that upregulation of TRPV1 in BLA contributes to visceral hypersensitivity of NMD rats through enhancing excitation of BLA, thus identifying a potential target for treatment of chronic visceral pain.
Collapse
Affiliation(s)
- Ying Xiao
- Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases, Laboratory of Translational Pain Medicine, Institute of Neuroscience, Soochow University, Suzhou 215123, P.R. China
| | - Xiaoqi Chen
- Department of Gastroenterology, the First Affiliated Hospital of Henan College of Traditional Chinese Medicine, Zhengzhou 45000, P.R. China
| | - Ping-An Zhang
- Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases, Laboratory of Translational Pain Medicine, Institute of Neuroscience, Soochow University, Suzhou 215123, P.R. China
| | - Qiya Xu
- Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases, Laboratory of Translational Pain Medicine, Institute of Neuroscience, Soochow University, Suzhou 215123, P.R. China
| | - Hang Zheng
- Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases, Laboratory of Translational Pain Medicine, Institute of Neuroscience, Soochow University, Suzhou 215123, P.R. China
| | - Guang-Yin Xu
- Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases, Laboratory of Translational Pain Medicine, Institute of Neuroscience, Soochow University, Suzhou 215123, P.R. China
| |
Collapse
|
85
|
Fattori V, Hohmann MSN, Rossaneis AC, Pinho-Ribeiro FA, Verri WA. Capsaicin: Current Understanding of Its Mechanisms and Therapy of Pain and Other Pre-Clinical and Clinical Uses. Molecules 2016; 21:E844. [PMID: 27367653 PMCID: PMC6273101 DOI: 10.3390/molecules21070844] [Citation(s) in RCA: 229] [Impact Index Per Article: 28.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Accepted: 04/27/2016] [Indexed: 02/06/2023] Open
Abstract
In this review, we discuss the importance of capsaicin to the current understanding of neuronal modulation of pain and explore the mechanisms of capsaicin-induced pain. We will focus on the analgesic effects of capsaicin and its clinical applicability in treating pain. Furthermore, we will draw attention to the rationale for other clinical therapeutic uses and implications of capsaicin in diseases such as obesity, diabetes, cardiovascular conditions, cancer, airway diseases, itch, gastric, and urological disorders.
Collapse
Affiliation(s)
- Victor Fattori
- Departamento de Ciências Patológicas, Centro de Ciências Biológicas, Universidade Estadual de Londrina, Rodovia Celso Garcia Cid KM480 PR445, Caixa Postal 10.011, 86057-970 Londrina, Paraná, Brazil.
| | - Miriam S N Hohmann
- Departamento de Ciências Patológicas, Centro de Ciências Biológicas, Universidade Estadual de Londrina, Rodovia Celso Garcia Cid KM480 PR445, Caixa Postal 10.011, 86057-970 Londrina, Paraná, Brazil.
| | - Ana C Rossaneis
- Departamento de Ciências Patológicas, Centro de Ciências Biológicas, Universidade Estadual de Londrina, Rodovia Celso Garcia Cid KM480 PR445, Caixa Postal 10.011, 86057-970 Londrina, Paraná, Brazil.
| | - Felipe A Pinho-Ribeiro
- Departamento de Ciências Patológicas, Centro de Ciências Biológicas, Universidade Estadual de Londrina, Rodovia Celso Garcia Cid KM480 PR445, Caixa Postal 10.011, 86057-970 Londrina, Paraná, Brazil.
| | - Waldiceu A Verri
- Departamento de Ciências Patológicas, Centro de Ciências Biológicas, Universidade Estadual de Londrina, Rodovia Celso Garcia Cid KM480 PR445, Caixa Postal 10.011, 86057-970 Londrina, Paraná, Brazil.
| |
Collapse
|
86
|
Olesen AE, Farmer AD, Olesen SS, Aziz Q, Drewes AM. Management of chronic visceral pain. Pain Manag 2016; 6:469-86. [PMID: 27256577 DOI: 10.2217/pmt-2015-0011] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Despite marked differences in underlying pathophysiology, the current management of visceral pain largely follows the guidelines derived from the somatic pain literature. The effective management of patients with chronic visceral pain should be multifaceted, including both pharmacological and psychological interventions, thereby providing a mechanism-orientated approach to treatment. Patients can frequently become disenfranchised, and subsequently disengaged, with healthcare providers leading to repeated consultations. Thus, a key aspect of management is to break this cycle by validating patients' symptoms, adopting an empathic approach and taking time to educate patients. To optimize treatment and outcomes in chronic visceral pain we need to move away from approaches exclusively based on dealing with peripheral nociceptive input toward more holistic strategies, taking into account alterations in central pain processing.
Collapse
Affiliation(s)
- Anne E Olesen
- Mech-Sense, Department of Gastroenterology & Hepatology, Aalborg University Hospital, Aalborg, Denmark.,Department of Drug Design & Pharmacology, Faculty of Health & Medical Sciences, University of Copenhagen, Copenhagen, Denmark.,Department of Clinical Medicine, Aalborg University, Aalborg, Denmark
| | - Adam D Farmer
- Mech-Sense, Department of Gastroenterology & Hepatology, Aalborg University Hospital, Aalborg, Denmark.,University Hospitals of North Midlands, Stoke on Trent, UK
| | - Søren S Olesen
- Mech-Sense, Department of Gastroenterology & Hepatology, Aalborg University Hospital, Aalborg, Denmark.,Department of Clinical Medicine, Aalborg University, Aalborg, Denmark
| | - Qasim Aziz
- University Hospitals of North Midlands, Stoke on Trent, UK
| | - Asbjørn M Drewes
- Mech-Sense, Department of Gastroenterology & Hepatology, Aalborg University Hospital, Aalborg, Denmark.,Department of Clinical Medicine, Aalborg University, Aalborg, Denmark
| |
Collapse
|
87
|
Jardí F, Fernández-Blanco JA, Martínez V, Vergara P. Persistent alterations in colonic afferent innervation in a rat model of postinfectious gut dysfunction: Role for changes in peripheral neurotrophic factors. Neurogastroenterol Motil 2016; 28:693-704. [PMID: 26768324 DOI: 10.1111/nmo.12766] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2015] [Accepted: 12/02/2015] [Indexed: 01/08/2023]
Abstract
BACKGROUND Visceral hypersensitivity in the inflamed gut is related partly to the effects of peripheral neurotrophic factors (NTFs) on local afferent neurons. However, alterations in sensory afferents of distant areas remain unexplored. Using the Trichinella spiralis infection model, which causes a jejunitis, we investigated the remodeling of colonic afferents and the potential role of NTFs. METHODS Rats were infected with T. spiralis. Inflammatory-like changes, mucosal mast cells (MMCs) dynamics, and expression of nerve growth factor and glial cell line-derived NTFs (glial cell-derived neurotrophic factor, artemin, and neurturin) were determined in the colon up to day 30 postinfection. Functional responses of colonic afferents were determined assessing changes in the expression of sensory-related markers in thoracolumbar (TL)/lumbosacral (LS) dorsal root ganglias (DRGs) following intracolonic capsaicin. KEY RESULTS Trichinella spiralis induced an inflammatory-like response within the colon, partly resolved at day 30 postinfection, except for a persistent MMC infiltrate. While the jejunum of infected animals showed an up-regulation in the expression of NTFs, a transitory down-regulation was observed in the colon. Overall, T. spiralis effects on DRGs gene expression were restricted to a transient down-regulation of TPRV1. Stimulation with intracolonic capsaicin induced a down-regulation of TRPV1 levels in TL and LS DRGs, an effect enhanced in LS DRGs of infected animals, regardless the postinfection time considered. CONCLUSIONS & INFERENCES During intestinal inflammation, spread morphological and functional alterations, including remodeling of visceral afferents, are observed outside the primary region affected by the insult. Similar mechanisms might be operating in states of widespread alterations of visceral sensitivity.
Collapse
Affiliation(s)
- F Jardí
- Department of Cell Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - J A Fernández-Blanco
- Department of Cell Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - V Martínez
- Department of Cell Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, Barcelona, Spain.,Instituto de Neurociencias, Universitat Autònoma de Barcelona, Barcelona, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, Madrid, Spain
| | - P Vergara
- Department of Cell Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, Barcelona, Spain.,Instituto de Neurociencias, Universitat Autònoma de Barcelona, Barcelona, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
88
|
RamaKrishnan AM, Sankaranarayanan K. Understanding autoimmunity: The ion channel perspective. Autoimmun Rev 2016; 15:585-620. [PMID: 26854401 DOI: 10.1016/j.autrev.2016.02.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2016] [Accepted: 01/29/2016] [Indexed: 12/11/2022]
Abstract
Ion channels are integral membrane proteins that orchestrate the passage of ions across the cell membrane and thus regulate various key physiological processes of the living system. The stringently regulated expression and function of these channels hold a pivotal role in the development and execution of various cellular functions. Malfunction of these channels results in debilitating diseases collectively termed channelopathies. In this review, we highlight the role of these proteins in the immune system with special emphasis on the development of autoimmunity. The role of ion channels in various autoimmune diseases is also listed out. This comprehensive review summarizes the ion channels that could be used as molecular targets in the development of new therapeutics against autoimmune disorders.
Collapse
Affiliation(s)
| | - Kavitha Sankaranarayanan
- AU-KBC Research Centre, Madras Institute of Technology, Anna University, Chrompet, Chennai 600 044, India.
| |
Collapse
|
89
|
Trautmann SM, Sharkey KA. The Endocannabinoid System and Its Role in Regulating the Intrinsic Neural Circuitry of the Gastrointestinal Tract. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2015; 125:85-126. [PMID: 26638765 DOI: 10.1016/bs.irn.2015.10.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Endocannabinoids are important neuromodulators in the central nervous system. They regulate central transmission through pre- and postsynaptic actions on neurons and indirectly through effects on glial cells. Cannabinoids (CBs) also regulate neurotransmission in the enteric nervous system (ENS) of the gastrointestinal (GI) tract. The ENS consists of intrinsic primary afferent neurons, interneurons, and motor neurons arranged in two ganglionated plexuses which control all the functions of the gut. Increasing evidence suggests that endocannabinoids are potent neuromodulators in the ENS. In this review, we will highlight key observations on the localization of CB receptors and molecules involved in the synthesis and degradation of endocannabinoids in the ENS. We will discuss endocannabinoid signaling mechanisms, endocannabinoid tone and concepts of CB receptor metaplasticity in the ENS. We will also touch on some examples of enteric neural signaling in relation neuromuscular, secretomotor, and enteroendocrine transmission in the ENS. Finally, we will briefly discuss some key future directions.
Collapse
Affiliation(s)
- Samantha M Trautmann
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada; Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada; Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Keith A Sharkey
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada; Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada; Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada.
| |
Collapse
|