51
|
Rodríguez‐Cantano R, Sundnes J, Rognes ME. Uncertainty in cardiac myofiber orientation and stiffnesses dominate the variability of left ventricle deformation response. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN BIOMEDICAL ENGINEERING 2019; 35:e3178. [PMID: 30632711 PMCID: PMC6618163 DOI: 10.1002/cnm.3178] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Accepted: 12/15/2018] [Indexed: 05/26/2023]
Abstract
Computational cardiac modelling is a mature area of biomedical computing and is currently evolving from a pure research tool to aiding in clinical decision making. Assessing the reliability of computational model predictions is a key factor for clinical use, and uncertainty quantification (UQ) and sensitivity analysis are important parts of such an assessment. In this study, we apply UQ in computational heart mechanics to study uncertainty both in material parameters characterizing global myocardial stiffness and in the local muscle fiber orientation that governs tissue anisotropy. The uncertainty analysis is performed using the polynomial chaos expansion (PCE) method, which is a nonintrusive meta-modeling technique that surrogates the original computational model with a series of orthonormal polynomials over the random input parameter space. In addition, in order to study variability in the muscle fiber architecture, we model the uncertainty in orientation of the fiber field as an approximated random field using a truncated Karhunen-Loéve expansion. The results from the UQ and sensitivity analysis identify clear differences in the impact of various material parameters on global output quantities. Furthermore, our analysis of random field variations in the fiber architecture demonstrate a substantial impact of fiber angle variations on the selected outputs, highlighting the need for accurate assignment of fiber orientation in computational heart mechanics models.
Collapse
Affiliation(s)
- Rocío Rodríguez‐Cantano
- Department of Numerical Analysis and Scientific ComputingSimula Research Laboratory ASBærumNorway
| | - Joakim Sundnes
- Center for Cardiological InnovationSimula Research LaboratoryBærumNorway
| | - Marie E. Rognes
- Department of Numerical Analysis and Scientific ComputingSimula Research Laboratory ASBærumNorway
| |
Collapse
|
52
|
Lohr D, Terekhov M, Weng AM, Schroeder A, Walles H, Schreiber LM. Spin echo based cardiac diffusion imaging at 7T: An ex vivo study of the porcine heart at 7T and 3T. PLoS One 2019; 14:e0213994. [PMID: 30908510 PMCID: PMC6433440 DOI: 10.1371/journal.pone.0213994] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Accepted: 03/05/2019] [Indexed: 02/03/2023] Open
Abstract
Purpose of this work was to assess feasibility of cardiac diffusion tensor imaging (cDTI) at 7 T in a set of healthy, unfixed, porcine hearts using various parallel imaging acceleration factors and to compare SNR and derived cDTI metrics to a reference measured at 3 T. Magnetic resonance imaging was performed on 7T and 3T whole body systems using a spin echo diffusion encoding sequence with echo planar imaging readout. Five reference (b = 0 s/mm2) images and 30 diffusion directions (b = 700 s/mm2) were acquired at both 7 T and 3 T using a GRAPPA acceleration factor R = 1. Scans at 7 T were repeated using R = 2, R = 3, and R = 4. SNR evaluation was based on 30 reference (b = 0 s/mm2) images of 30 slices of the left ventricle and cardiac DTI metrics were compared within AHA segmentation. The number of hearts scanned at 7 T and 3 T was n = 11. No statistically significant differences were found for evaluated helix angle, secondary eigenvector angle, fractional anisotropy and apparent diffusion coefficient at the different field strengths, given sufficiently high SNR and geometrically undistorted images. R≥3 was needed to reduce susceptibility induced geometric distortions to an acceptable amount. On average SNR in myocardium of the left ventricle was increased from 29±3 to 44±6 in the reference image (b = 0 s/mm2) when switching from 3 T to 7 T. Our study demonstrates that high resolution, ex vivo cDTI is feasible at 7 T using commercial hardware.
Collapse
Affiliation(s)
- David Lohr
- Chair of Cellular and Molecular Imaging, Comprehensive Heart Failure Center (CHFC), University Hospital Wuerzburg, Wuerzburg, Germany
| | - Maxim Terekhov
- Chair of Cellular and Molecular Imaging, Comprehensive Heart Failure Center (CHFC), University Hospital Wuerzburg, Wuerzburg, Germany
| | - Andreas Max Weng
- Department of Diagnostic and Interventional Radiology, University of Wuerzburg, Wuerzburg, Germany
| | - Anja Schroeder
- Chair Tissue Engineering and Regenerative Medicine (TERM), University Hospital Wuerzburg, Wuerzburg, Germany
| | - Heike Walles
- Translational Center Regenerative Therapies (TLC-RT), Fraunhofer Institute for Silicate Research (ISC), Wuerzburg, Germany
| | - Laura Maria Schreiber
- Chair of Cellular and Molecular Imaging, Comprehensive Heart Failure Center (CHFC), University Hospital Wuerzburg, Wuerzburg, Germany
| |
Collapse
|
53
|
Abstract
There has been an increasing interest in studying cardiac fibers in order to improve the current knowledge regarding the mechanical and physiological properties of the heart during heart failure (HF), particularly early HF. Having a thorough understanding of the changes in cardiac fiber orientation may provide new insight into the mechanisms behind the progression of left ventricular (LV) remodeling and HF. We conducted a systematic review on various technologies for imaging cardiac fibers and its link to HF. This review covers literature reports from 1900 to 2017. PubMed and Google Scholar databases were searched using the keywords "cardiac fiber" and "heart failure" or "myofiber" and "heart failure." This review highlights imaging methodologies, including magnetic resonance diffusion tensor imaging (MR-DTI), ultrasound, and other imaging technologies as well as their potential applications in basic and translational research on the development and progression of HF. MR-DTI and ultrasound have been most useful and significant in evaluating cardiac fibers and HF. New imaging technologies that have the ability to measure cardiac fiber orientations and identify structural and functional information of the heart will advance basic research and clinical diagnoses of HF.
Collapse
Affiliation(s)
- Shana R Watson
- Department of Radiology and Imaging Sciences, Emory University School of Medicine, Atlanta, GA, USA
| | - James D Dormer
- Department of Radiology and Imaging Sciences, Emory University School of Medicine, Atlanta, GA, USA
| | - Baowei Fei
- Department of Radiology and Imaging Sciences, Emory University School of Medicine, Atlanta, GA, USA. .,Winship Cancer Institute of Emory University, Atlanta, GA, USA. .,Department of Mathematics and Computer Science, Emory University, Atlanta, GA, USA. .,Department of Biomedical Engineering, Emory University and Georgia Institute of Technology, Atlanta, GA, USA. .,Quantitative Bioimaging Laboratory, Department of Radiology and Imaging Sciences, School of Medicine, Emory University, Atlanta, United States.
| |
Collapse
|
54
|
Sack KL, Aliotta E, Choy JS, Ennis DB, Davies NH, Franz T, Kassab GS, Guccione JM. Effect of intra-myocardial Algisyl-LVR™ injectates on fibre structure in porcine heart failure. J Mech Behav Biomed Mater 2018; 87:172-179. [PMID: 30071487 DOI: 10.1016/j.jmbbm.2018.07.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Revised: 06/29/2018] [Accepted: 07/02/2018] [Indexed: 11/30/2022]
Abstract
Recent preclinical trials have shown that alginate injections are a promising treatment for ischemic heart disease. Although improvements in heart function and global structure have been reported following alginate implants, the underlying structure is poorly understood. Using high resolution ex vivo MRI and DT-MRI of the hearts of normal control swine (n = 8), swine with induced heart failure (n = 5), and swine with heart failure and alginate injection treatment (n = 6), we visualized and quantified the fibre distribution and implant material geometry. Our findings show that the alginate injectates form solid ellipsoids with a retention rate of 68.7% ± 21.3% (mean ± SD) and a sphericity index of 0.37 ± 0.03. These ellipsoidal shapes solidified predominantly at the mid-wall position with an inclination of -4.9° ± 31.4° relative to the local circumferential direction. Overall, the change to left ventricular wall thickness and myofiber orientation was minor and was associated with heart failure and not the presence of injectates. These results show that alginate injectates conform to the pre-existing tissue structure, likely expanding along directions of least resistance as mass is added to the injection sites. The alginate displaces the myocardial tissue predominantly in the longitudinal direction, causing minimal disruption to the surrounding myofiber orientations.
Collapse
Affiliation(s)
- K L Sack
- Division of Biomedical Engineering, Department of Human Biology, University of Cape Town, Cape Town, South Africa; Department of Surgery, University of California at San Francisco, San Francisco, CA, USA
| | - E Aliotta
- Department of Radiological Sciences, University of California, Los Angeles, CA, USA
| | - J S Choy
- California Medical Innovations Institute, Inc., San Diego, CA, USA
| | - D B Ennis
- Department of Radiological Sciences, University of California, Los Angeles, CA, USA
| | - N H Davies
- Division of Biomedical Engineering, Department of Human Biology, University of Cape Town, Cape Town, South Africa
| | - T Franz
- Division of Biomedical Engineering, Department of Human Biology, University of Cape Town, Cape Town, South Africa; Bioengineering Science Research Group, Engineering Sciences, Faculty of Engineering and the Environment, University of Southampton, Southampton, UK
| | - G S Kassab
- California Medical Innovations Institute, Inc., San Diego, CA, USA
| | - J M Guccione
- Department of Surgery, University of California at San Francisco, San Francisco, CA, USA.
| |
Collapse
|
55
|
Hoffman JIE. Will the real ventricular architecture please stand up? Physiol Rep 2018; 5:5/18/e13404. [PMID: 28947592 PMCID: PMC5617926 DOI: 10.14814/phy2.13404] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Accepted: 07/23/2017] [Indexed: 12/28/2022] Open
Abstract
Ventricular twisting, essential for cardiac function, is attributed to the contraction of myocardial helical fibers. The exact relationship between ventricular anatomy and function remains to be determined, but one commonly used explanatory model is the helical ventricular myocardial band (HVMB) model of Torrent‐Guasp. This model has been successful in explaining many aspects of ventricular function, (Torrent‐Guasp et al. Eur. J. Cardiothorac. Surg., 25, 376, 2004; Buckberg et al. Eur. J. Cardiothorac. Surg., 47, 587, 2015; Buckberg et al. Eur. J. Cardiothorac. Surg. 47, 778, 2015) but the model ignores important aspects of ventricular anatomy and should probably be replaced. The purpose of this review is to compare the HVMB model with a different model (nested layers). A complication when interpreting experimental observations that relate anatomy to function is that, in the myocardium, shortening does not always imply activation and lengthening does not always imply inactivation.
Collapse
Affiliation(s)
- Julien I E Hoffman
- Department of Pediatrics, University of California, San Francisco, California
| |
Collapse
|
56
|
Sack KL, Aliotta E, Ennis DB, Choy JS, Kassab GS, Guccione JM, Franz T. Construction and Validation of Subject-Specific Biventricular Finite-Element Models of Healthy and Failing Swine Hearts From High-Resolution DT-MRI. Front Physiol 2018; 9:539. [PMID: 29896107 PMCID: PMC5986944 DOI: 10.3389/fphys.2018.00539] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Accepted: 04/26/2018] [Indexed: 12/15/2022] Open
Abstract
Predictive computational modeling has revolutionized classical engineering disciplines and is in the process of transforming cardiovascular research. This is particularly relevant for investigating emergent therapies for heart failure, which remains a leading cause of death globally. The creation of subject-specific biventricular computational cardiac models has been a long-term endeavor within the biomedical engineering community. Using high resolution (0.3 × 0.3 × 0.8 mm) ex vivo data, we constructed a precise fully subject-specific biventricular finite-element model of healthy and failing swine hearts. Each model includes fully subject-specific geometries, myofiber architecture and, in the case of the failing heart, fibrotic tissue distribution. Passive and active material properties are prescribed using hyperelastic strain energy functions that define a nearly incompressible, orthotropic material capable of contractile function. These materials were calibrated using a sophisticated multistep approach to match orthotropic tri-axial shear data as well as subject-specific hemodynamic ventricular targets for pressure and volume to ensure realistic cardiac function. Each mechanically beating heart is coupled with a lumped-parameter representation of the circulatory system, allowing for a closed-loop definition of cardiovascular flow. The circulatory model incorporates unidirectional fluid exchanges driven by pressure gradients of the model, which in turn are driven by the mechanically beating heart. This creates a computationally meaningful representation of the dynamic beating of the heart coupled with the circulatory system. Each model was calibrated using subject-specific experimental data and compared with independent in vivo strain data obtained from echocardiography. Our methods produced highly detailed representations of swine hearts that function mechanically in a remarkably similar manner to the in vivo subject-specific strains on a global and regional comparison. The degree of subject-specificity included in the models represents a milestone for modeling efforts that captures realism of the whole heart. This study establishes a foundation for future computational studies that can apply these validated methods to advance cardiac mechanics research.
Collapse
Affiliation(s)
- Kevin L. Sack
- Division of Biomedical Engineering, Department of Human Biology, University of Cape Town, Cape Town, South Africa
- Department of Surgery, University of California, San Francisco, San Francisco, CA, United States
| | - Eric Aliotta
- Department of Radiological Sciences, University of California, Los Angeles, Los Angeles, CA, United States
| | - Daniel B. Ennis
- Department of Radiological Sciences, University of California, Los Angeles, Los Angeles, CA, United States
| | - Jenny S. Choy
- California Medical Innovations Institute, Inc., San Diego, CA, United States
| | - Ghassan S. Kassab
- California Medical Innovations Institute, Inc., San Diego, CA, United States
| | - Julius M. Guccione
- Department of Surgery, University of California, San Francisco, San Francisco, CA, United States
| | - Thomas Franz
- Division of Biomedical Engineering, Department of Human Biology, University of Cape Town, Cape Town, South Africa
- Bioengineering Science Research Group, Engineering Sciences, Faculty of Engineering and the Environment, University of Southampton, Southampton, United Kingdom
| |
Collapse
|
57
|
Verzhbinsky IA, Magrath P, Aliotta E, Ennis DB, Perotti LE. TIME RESOLVED DISPLACEMENT-BASED REGISTRATION OF IN VIVO CDTI CARDIOMYOCYTE ORIENTATIONS. PROCEEDINGS. IEEE INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING 2018; 2018:474-478. [PMID: 30559922 PMCID: PMC6294325 DOI: 10.1109/isbi.2018.8363619] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
In vivo cardiac microstructure acquired using cardiac diffusion tensor imaging (cDTI) is a critical component of patient-specific models of cardiac electrophysiology and mechanics. In order to limit bulk motion artifacts and acquisition time, cDTI microstructural data is acquired at a single cardiac phase necessitating registration to the reference configuration on which the patient-specific computational models are based. Herein, we propose a method to register subject-specific microstructural data to an arbitrary cardiac phase using measured cardiac displacements. We validate our approach using a subject-specific computational phantom based on data from human subjects. Compared to a geometry-based non-rigid registration method, the displacement-based registration leads to improved accuracy (less than 1° versus 10° average median error in cardiomyocyte angular differences) and tighter confidence interval (3° versus 65° average upper limit of the 95% confidence interval).
Collapse
Affiliation(s)
- Ilya A Verzhbinsky
- Department of Radiological Sciences, University of California, Los Angeles, USA
| | - Patrick Magrath
- Department of Bioengineering, University of California, Los Angeles, USA
| | - Eric Aliotta
- Biomedical Physics Inter-Departmental Program, University of California, Los Angeles, USA
| | - Daniel B Ennis
- Department of Radiological Sciences, University of California, Los Angeles, USA
- Department of Bioengineering, University of California, Los Angeles, USA
- Biomedical Physics Inter-Departmental Program, University of California, Los Angeles, USA
| | - Luigi E Perotti
- Department of Radiological Sciences, University of California, Los Angeles, USA
- Department of Bioengineering, University of California, Los Angeles, USA
| |
Collapse
|
58
|
Lee AWC, Costa CM, Strocchi M, Rinaldi CA, Niederer SA. Computational Modeling for Cardiac Resynchronization Therapy. J Cardiovasc Transl Res 2018; 11:92-108. [PMID: 29327314 PMCID: PMC5908824 DOI: 10.1007/s12265-017-9779-4] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Accepted: 12/18/2017] [Indexed: 11/21/2022]
Abstract
Cardiac resynchronization therapy (CRT) is an effective treatment for heart failure (HF) patients with an electrical substrate pathology causing ventricular dyssynchrony. However 40-50% of patients do not respond to treatment. Cardiac modeling of the electrophysiology, electromechanics, and hemodynamics of the heart has been used to study mechanisms behind HF pathology and CRT response. Recently, multi-scale dyssynchronous HF models have been used to study optimal device settings and optimal lead locations, investigate the underlying cardiac pathophysiology, as well as investigate emerging technologies proposed to treat cardiac dyssynchrony. However the breadth of patient and experimental data required to create and parameterize these models and the computational resources required currently limits the use of these models to small patient numbers. In the future, once these technical challenges are overcome, biophysically based models of the heart have the potential to become a clinical tool to aid in the diagnosis and treatment of HF.
Collapse
Affiliation(s)
- Angela W C Lee
- School of Biomedical Engineering and Imaging Sciences, King's College London, London, UK.
| | | | - Marina Strocchi
- School of Biomedical Engineering and Imaging Sciences, King's College London, London, UK
| | | | - Steven A Niederer
- School of Biomedical Engineering and Imaging Sciences, King's College London, London, UK
| |
Collapse
|
59
|
Nilsson M, Larsson J, Lundberg D, Szczepankiewicz F, Witzel T, Westin C, Bryskhe K, Topgaard D. Liquid crystal phantom for validation of microscopic diffusion anisotropy measurements on clinical MRI systems. Magn Reson Med 2018; 79:1817-1828. [PMID: 28686785 PMCID: PMC5756689 DOI: 10.1002/mrm.26814] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Revised: 05/21/2017] [Accepted: 06/08/2017] [Indexed: 01/05/2023]
Abstract
PURPOSE To develop a phantom for validating MRI pulse sequences and data processing methods to quantify microscopic diffusion anisotropy in the human brain. METHODS Using a liquid crystal consisting of water, detergent, and hydrocarbon, we designed a 0.5-L spherical phantom showing the theoretically highest possible degree of microscopic anisotropy. Data were acquired on the Connectome scanner using echo-planar imaging signal readout and diffusion encoding with axisymmetric b-tensors of varying magnitude, anisotropy, and orientation. The mean diffusivity, fractional anisotropy (FA), and microscopic FA (µFA) parameters were estimated. RESULTS The phantom was observed to have values of mean diffusivity similar to brain tissue, and relaxation times compatible with echo-planar imaging echo times on the order of 100 ms. The estimated values of µFA were at the theoretical maximum of 1.0, whereas the values of FA spanned the interval from 0.0 to 0.8 as a result of varying orientational order of the anisotropic domains within each voxel. CONCLUSIONS The proposed phantom can be manufactured by mixing three widely available chemicals in volumes comparable to a human head. The acquired data are in excellent agreement with theoretical predictions, showing that the phantom is ideal for validating methods for measuring microscopic diffusion anisotropy on clinical MRI systems. Magn Reson Med 79:1817-1828, 2018. © 2017 The Authors Magnetic Resonance in Medicine published by Wiley Periodicals, Inc. on behalf of International Society for Magnetic Resonance in Medicine. This is an open access article under the terms of the Creative Commons Attribution-NonCommercial License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited and is not used for commercial purposes.
Collapse
Affiliation(s)
- Markus Nilsson
- Diagnostic Radiology, Department of Clinical SciencesLund UniversityLundSweden
| | - Johan Larsson
- Physical Chemistry, Department of ChemistryLund UniversityLundSweden
| | | | | | - Thomas Witzel
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General HospitalHarvard Medical SchoolBostonMassachusettsUSA
| | | | | | - Daniel Topgaard
- Physical Chemistry, Department of ChemistryLund UniversityLundSweden
| |
Collapse
|
60
|
Mekkaoui C, Jackowski MP, Kostis WJ, Stoeck CT, Thiagalingam A, Reese TG, Reddy VY, Ruskin JN, Kozerke S, Sosnovik DE. Myocardial Scar Delineation Using Diffusion Tensor Magnetic Resonance Tractography. J Am Heart Assoc 2018; 7:JAHA.117.007834. [PMID: 29420216 PMCID: PMC5850260 DOI: 10.1161/jaha.117.007834] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Background Late gadolinium enhancement (LGE) is the current standard for myocardial scar delineation. In this study, we introduce the tractographic propagation angle (PA), a metric of myofiber curvature (degrees/unit distance) derived from diffusion tensor imaging (DTI), and compare its use to LGE and invasive scar assessment by endocardial voltage mapping. Methods and Results DTI was performed on 7 healthy human volunteers, 5 patients with myocardial infarction, 6 normal mice, and 7 mice with myocardial infarction. LGE to delineate the infarct and border zones was performed with a 2‐dimensional inversion recovery gradient‐echo sequence. Ex vivo DTI was performed on 5 normal human and 5 normal sheep hearts. Endocardial electroanatomic mapping and subsequent ex vivo DTI was performed on 5 infarcted sheep hearts. PA in the normal human hearts varied smoothly and was generally <4. The mean PA in the infarct zone was significantly elevated (10.34±1.02 versus 4.05±0.45, P<0.05). Regions with a PA ≤4 consistently had a bipolar voltage ≥1.5 mV, whereas those with PA values between 4 and 10 had voltages between 0.5 and 1.5 mV. A PA threshold >4 was the most accurate DTI‐derived measure of infarct size and demonstrated the greatest correlation with LGE (r=0.95). Conclusions We found a strong correlation between infarct size by PA and LGE in both mice and humans. There was also an inverse relationship between PA values and endocardial voltage. The use of PA may enable myocardial scar delineation and characterization of arrhythmogenic substrate without the need for exogenous contrast agents.
Collapse
Affiliation(s)
- Choukri Mekkaoui
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital Harvard Medical School, Boston, MA
| | - Marcel P Jackowski
- Department of Computer Science, Institute of Mathematics and Statistics, University of São Paulo, Brazil
| | - William J Kostis
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital Harvard Medical School, Boston, MA.,Cardiovascular Institute, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ
| | - Christian T Stoeck
- Institute for Biomedical Engineering, University and ETH Zurich, Zurich, Switzerland
| | | | - Timothy G Reese
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital Harvard Medical School, Boston, MA
| | - Vivek Y Reddy
- Cardiac Arrhythmia Service, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Jeremy N Ruskin
- Cardiac Arrhythmia Service, Department of Medicine, Massachusetts General Hospital Harvard Medical School, Boston, MA
| | - Sebastian Kozerke
- Institute for Biomedical Engineering, University and ETH Zurich, Zurich, Switzerland
| | - David E Sosnovik
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital Harvard Medical School, Boston, MA.,Cardiology Division, Cardiovascular Research Center, Massachusetts General Hospital Harvard Medical School, Boston, MA
| |
Collapse
|
61
|
Avazmohammadi R, Li DS, Leahy T, Shih E, Soares JS, Gorman JH, Gorman RC, Sacks MS. An integrated inverse model-experimental approach to determine soft tissue three-dimensional constitutive parameters: application to post-infarcted myocardium. Biomech Model Mechanobiol 2018; 17:31-53. [PMID: 28861630 PMCID: PMC5809201 DOI: 10.1007/s10237-017-0943-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Accepted: 07/17/2017] [Indexed: 10/19/2022]
Abstract
Knowledge of the complete three-dimensional (3D) mechanical behavior of soft tissues is essential in understanding their pathophysiology and in developing novel therapies. Despite significant progress made in experimentation and modeling, a complete approach for the full characterization of soft tissue 3D behavior remains elusive. A major challenge is the complex architecture of soft tissues, such as myocardium, which endows them with strongly anisotropic and heterogeneous mechanical properties. Available experimental approaches for quantifying the 3D mechanical behavior of myocardium are limited to preselected planar biaxial and 3D cuboidal shear tests. These approaches fall short in pursuing a model-driven approach that operates over the full kinematic space. To address these limitations, we took the following approach. First, based on a kinematical analysis and using a given strain energy density function (SEDF), we obtained an optimal set of displacement paths based on the full 3D deformation gradient tensor. We then applied this optimal set to obtain novel experimental data from a 1-cm cube of post-infarcted left ventricular myocardium. Next, we developed an inverse finite element (FE) simulation of the experimental configuration embedded in a parameter optimization scheme for estimation of the SEDF parameters. Notable features of this approach include: (i) enhanced determinability and predictive capability of the estimated parameters following an optimal design of experiments, (ii) accurate simulation of the experimental setup and transmural variation of local fiber directions in the FE environment, and (iii) application of all displacement paths to a single specimen to minimize testing time so that tissue viability could be maintained. Our results indicated that, in contrast to the common approach of conducting preselected tests and choosing an SEDF a posteriori, the optimal design of experiments, integrated with a chosen SEDF and full 3D kinematics, leads to a more robust characterization of the mechanical behavior of myocardium and higher predictive capabilities of the SEDF. The methodology proposed and demonstrated herein will ultimately provide a means to reliably predict tissue-level behaviors, thus facilitating organ-level simulations for efficient diagnosis and evaluation of potential treatments. While applied to myocardium, such developments are also applicable to characterization of other types of soft tissues.
Collapse
Affiliation(s)
- Reza Avazmohammadi
- Center for Cardiovascular Simulation, Institute for Computational Engineering and Sciences, Department of Biomedical Engineering, The University of Texas at Austin, 201 East 24th St, Stop C0200, Austin, Texas, 78712-1229, USA
| | - David S Li
- Center for Cardiovascular Simulation, Institute for Computational Engineering and Sciences, Department of Biomedical Engineering, The University of Texas at Austin, 201 East 24th St, Stop C0200, Austin, Texas, 78712-1229, USA
| | - Thomas Leahy
- Center for Cardiovascular Simulation, Institute for Computational Engineering and Sciences, Department of Biomedical Engineering, The University of Texas at Austin, 201 East 24th St, Stop C0200, Austin, Texas, 78712-1229, USA
| | - Elizabeth Shih
- Center for Cardiovascular Simulation, Institute for Computational Engineering and Sciences, Department of Biomedical Engineering, The University of Texas at Austin, 201 East 24th St, Stop C0200, Austin, Texas, 78712-1229, USA
| | - João S Soares
- Center for Cardiovascular Simulation, Institute for Computational Engineering and Sciences, Department of Biomedical Engineering, The University of Texas at Austin, 201 East 24th St, Stop C0200, Austin, Texas, 78712-1229, USA
| | - Joseph H Gorman
- Gorman Cardiovascular Research Group, Smilow Center for Translational Research, 3400 Civic Center Blvd - Building 421 11th Floor, Room 112, Philadelphia, PA, 19104-5156, USA
| | - Robert C Gorman
- Gorman Cardiovascular Research Group, Smilow Center for Translational Research, 3400 Civic Center Blvd - Building 421 11th Floor, Room 112, Philadelphia, PA, 19104-5156, USA
| | - Michael S Sacks
- Center for Cardiovascular Simulation, Institute for Computational Engineering and Sciences, Department of Biomedical Engineering, The University of Texas at Austin, 201 East 24th St, Stop C0200, Austin, Texas, 78712-1229, USA.
| |
Collapse
|
62
|
Avazmohammadi R, Hill M, Simon M, Sacks M. Transmural remodeling of right ventricular myocardium in response to pulmonary arterial hypertension. APL Bioeng 2017; 1:016105. [PMID: 30417163 PMCID: PMC6224170 DOI: 10.1063/1.5011639] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Accepted: 09/12/2017] [Indexed: 12/22/2022] Open
Abstract
Pulmonary arterial hypertension (PAH) imposes substantial pressure overload on the right ventricular free wall (RVFW), leading to myofiber hypertrophy and remodeling of its collagen fiber architecture. The transmural nature of these adaptations and their effects on the macroscopic mechanical behavior of the RVFW remain largely unexplored. In the present work, we extended our constitutive model for RVFW myocardium to investigate the transmural mechanical and structural remodeling post-PAH. Recent murine experimental studies provided us with comprehensive histomorphological and biaxial mechanical data for viable, passive myocardium for normal and post hypertensive cases. Multiple fiber-level remodeling events were found to be localized in the midwall region (40% < depth < 60%): (i) reorientation and alignment of both myo- and collagen fibers towards longitudinal (apex-to-outflow tract) direction, (ii) substantial increase in the rate of the recruitment of collagen fibers with strain, and (iii) a corresponding increase in the mechanical interactions between the collagen and myofibers. These adaptations suggest a denser and more fibrous connective tissue in the midwall region, and led to a substantially stiffer mechanical response along the longitudinal direction in post-PAH tissues. Moreover, using a Laplace-type mechanical equilibrium analysis of the right ventricle to approximate the wall stress state, we estimated that the longitudinal component of stress remained higher in the hypertensive state while the circumferential component approximately maintained homeostasis values. This result was consistent with our observation from the fiber- and tissue-level remodeling that longitudinally oriented collagen fibers, localized in the midwall region, dominated the remodeling process. The findings of this study highlight the need for more integrated cellular-tissue-organ analysis to better understand the remodeling events during PAH and design interventions.
Collapse
Affiliation(s)
- Reza Avazmohammadi
- Willerson Center for Cardiovascular Modeling and Simulation, Institute for Computational Engineering and Sciences, Department of Biomedical Engineering, The University of Texas at Austin, Austin, Texas 78712, USA
| | - Michael Hill
- School of Mathematical Sciences, University of Nottingham, Nottingham NG7 2RD, United Kingdom
| | - Marc Simon
- Departments of Cardiology and Bioengineering, Heart and Vascular Institute, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, USA
| | - Michael Sacks
- Willerson Center for Cardiovascular Modeling and Simulation, Institute for Computational Engineering and Sciences, Department of Biomedical Engineering, The University of Texas at Austin, Austin, Texas 78712, USA
| |
Collapse
|
63
|
Agger P, Ilkjær C, Laustsen C, Smerup M, Frandsen JR, Ringgaard S, Pedersen M, Partridge JB, Anderson RH, Hjortdal V. Changes in overall ventricular myocardial architecture in the setting of a porcine animal model of right ventricular dilation. J Cardiovasc Magn Reson 2017; 19:93. [PMID: 29178894 PMCID: PMC5702974 DOI: 10.1186/s12968-017-0404-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Accepted: 10/18/2017] [Indexed: 12/01/2022] Open
Abstract
BACKGROUND Chronic pulmonary regurgitation often leads to myocardial dysfunction and heart failure. It is not fully known why secondary hypertrophy cannot fully protect against the increase in wall stress brought about by the increased end-diastolic volume in ventricular dilation. It has been assumed that mural architecture is not deranged in this situation, but we hypothesised that there might be a change in the pattern of orientation of the aggregations of cardiomyocytes, which would contribute to contractile impairment. METHODS We created pulmonary valvular regurgitation by open chest, surgical suturing of its leaflets in seven piglets, performing sham operations in seven control animals. Using cardiovascular magnetic resonance imaging after 12 weeks of recovery, we demonstrated significantly increased right ventricular volumes in the test group. After sacrifice, diffusion tensor imaging of their hearts permitted measurement of the orientation of the cardiomyocytes. RESULTS The helical angles in the right ventricle approached a more circumferential orientation in the setting of right ventricular RV dilation (p = 0.007), with an increased proportion of surface-parallel cardiomyocytes. In contrast, this proportion decreased in the left ventricle. Also in the left ventricle a higher proportion of E3 angles with a value around zero was found, and conversely a lower proportion of angles was found with a numerical higher value. In the dilated right ventricle the proportion of E3 angles around -90° is increased, while the proportion around 90° is decreased. CONCLUSION Contrary to traditional views, there is a change in the orientation of both the left ventricular and right ventricular cardiomyocytes subsequent to right ventricular dilation. This will change their direction of contraction and hinder the achievement of normalisation of cardiomyocytic strain, affecting overall contractility. We suggest that the aetiology of the cardiac failure induced by right vetricular dilation may be partly explained by morphological changes in the myocardium itself.
Collapse
Affiliation(s)
- Peter Agger
- Department of Cardiothoracic & Vascular Surgery, Aarhus University Hospital, Skejby, Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Christine Ilkjær
- Department of Cardiothoracic & Vascular Surgery, Aarhus University Hospital, Skejby, Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Christoffer Laustsen
- MR Research Center, Aarhus University Hospital, Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Morten Smerup
- Department of Cardiothoracic Surgery, Rigshospitalet, Copenhagen, Denmark
| | - Jesper R. Frandsen
- Center for Functionally Integrative Neuroscience, Aarhus University Hospital, Aarhus, Denmark
| | - Steffen Ringgaard
- MR Research Center, Aarhus University Hospital, Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Michael Pedersen
- Comparative Medicine Lab, Aarhus University Hospital, Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - John B. Partridge
- Eurobodalla Unit, Rural Clinical School of the ANU College of Medicine, Biology & Environment, Batemans Bay, NSW Australia
| | - Robert H. Anderson
- Institute of Genetic Medicine, Newcastle University, Newcastle-upon-Tyne, UK
| | - Vibeke Hjortdal
- Department of Cardiothoracic & Vascular Surgery, Aarhus University Hospital, Skejby, Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| |
Collapse
|
64
|
McClymont D, Teh I, Schneider JE. The impact of signal-to-noise ratio, diffusion-weighted directions and image resolution in cardiac diffusion tensor imaging - insights from the ex-vivo rat heart. J Cardiovasc Magn Reson 2017; 19:90. [PMID: 29157268 PMCID: PMC5695094 DOI: 10.1186/s12968-017-0395-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Accepted: 10/09/2017] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND Cardiac diffusion tensor imaging (DTI) is limited by scan time and signal-to-noise (SNR) restrictions. This invariably leads to a trade-off between the number of averages, diffusion-weighted directions (ND), and image resolution. Systematic evaluation of these parameters is therefore important for adoption of cardiac DTI in clinical routine where time is a key constraint. METHODS High quality reference DTI data were acquired in five ex-vivo rat hearts. We then retrospectively set 2 ≤ SNR ≤ 97, 7 ≤ ND ≤ 61, varied the voxel volume by up to 192-fold and investigated the impact on the accuracy and precision of commonly derived parameters. RESULTS For maximal scan efficiency, the accuracy and precision of the mean diffusivity is optimised when SNR is maximised at the expense of ND. With typical parameter settings used clinically, we estimate that fractional anisotropy may be overestimated by up to 13% with an uncertainty of ±30%, while the precision of the sheetlet angles may be as poor as ±31°. Although the helix angle has better precision of ±14°, the transmural range of helix angles may be under-estimated by up to 30° in apical and basal slices, due to partial volume and tapering myocardial geometry. CONCLUSIONS These findings inform a baseline of understanding upon which further issues inherent to in-vivo cardiac DTI, such as motion, strain and perfusion, can be considered. Furthermore, the reported bias and reproducibility provides a context in which to assess cardiac DTI biomarkers.
Collapse
Affiliation(s)
- Darryl McClymont
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Irvin Teh
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
- Leeds Institute of Cardiovascular & Metabolic Medicine, University of Leeds, Leeds, UK
| | - Jürgen E. Schneider
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
- Leeds Institute of Cardiovascular & Metabolic Medicine, University of Leeds, Leeds, UK
| |
Collapse
|
65
|
Goergen CJ, Chen HH, Sakadžić S, Srinivasan VJ, Sosnovik DE. Microstructural characterization of myocardial infarction with optical coherence tractography and two-photon microscopy. Physiol Rep 2017; 4:4/18/e12894. [PMID: 27650248 PMCID: PMC5037910 DOI: 10.14814/phy2.12894] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Accepted: 07/07/2016] [Indexed: 11/24/2022] Open
Abstract
Myocardial infarction leads to complex changes in the fiber architecture of the heart. Here, we present a novel optical approach to characterize these changes in intact hearts in three dimensions. Optical coherence tomography (OCT) was used to derive a depth‐resolved field of orientation on which tractography was performed. Tractography of healthy myocardium revealed a smooth linear transition in fiber inclination or helix angle from the epicardium to endocardium. Conversely, in infarcted hearts, no coherent microstructure could be identified in the infarct with OCT. Additional characterization of the infarct was performed by the measurement of light attenuation and with two‐photon microscopy. Myofibers were imaged using autofluorescence and collagen fibers using second harmonic generation. This revealed the presence of two distinct microstructural patterns in areas of the infarct with high light attenuation. In the presence of residual myofibers, the surrounding collagen fibers were aligned in a coherent manner parallel to the myofibers. In the absence of residual myofibers, the collagen fibers were randomly oriented and lacked any microstructural coherence. The presence of residual myofibers thus exerts a profound effect on the microstructural properties of the infarct scar and consequently the risk of aneurysm formation and arrhythmias. Catheter‐based approaches to segment and image myocardial microstructure in humans are feasible and could play a valuable role in guiding the development of strategies to improve infarct healing.
Collapse
Affiliation(s)
- Craig J Goergen
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital Harvard Medical School, Charlestown, Massachusetts
| | - Howard H Chen
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital Harvard Medical School, Charlestown, Massachusetts Cardiovascular Research Center, Department of Medicine, Massachusetts General Hospital Harvard Medical School, Charlestown, Massachusetts
| | - Sava Sakadžić
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital Harvard Medical School, Charlestown, Massachusetts
| | - Vivek J Srinivasan
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital Harvard Medical School, Charlestown, Massachusetts Department of Biomedical Engineering, University of California Davis, Davis, California
| | - David E Sosnovik
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital Harvard Medical School, Charlestown, Massachusetts Cardiovascular Research Center, Department of Medicine, Massachusetts General Hospital Harvard Medical School, Charlestown, Massachusetts
| |
Collapse
|
66
|
Pervolaraki E, Dachtler J, Anderson RA, Holden AV. Ventricular myocardium development and the role of connexins in the human fetal heart. Sci Rep 2017; 7:12272. [PMID: 28947768 PMCID: PMC5612926 DOI: 10.1038/s41598-017-11129-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Accepted: 08/18/2017] [Indexed: 11/08/2022] Open
Abstract
The developmental timeline of the human heart remains elusive. The heart takes on its characteristic four chambered appearance by ~56 days gestational age (DGA). However, owing to the complexities (both technical and logistical) of exploring development in utero, we understand little of how the ventricular walls develop. To address this, we employed diffusion tensor magnetic resonance imaging to explore the architecture and tissue organization of the developing heart aged 95-143 DGA. We show that fractional anisotropy increases (from ~0.1 to ~0.5), diffusion coefficients decrease (from ~1 × 10-3mm2/sec to ~0.4 × 10-3mm2/sec), and fiber paths, extracted by tractography, increase linearly with gestation, indicative of the increasing organization of the ventricular myocytes. By 143 DGA, the developing heart has the classical helical organization observed in mature mammalian tissue. This was accompanied by an increase in connexin 43 and connexin 40 expression levels, suggesting their role in the development of the ventricular conduction system and that electrical propagation across the heart is facilitated in later gestation. Our findings highlight a key developmental window for the structural organization of the fetal heart.
Collapse
Affiliation(s)
| | - James Dachtler
- Department of Psychology, Durham University, Durham, DH1 3LE, UK
| | - Richard A Anderson
- MRC Centre for Reproductive Health, University of Edinburgh, Edinburgh, EH16 4TJ, UK
| | - Arun V Holden
- School of Biomedical Sciences, University of Leeds, Leeds, LS2 9JT, UK
| |
Collapse
|
67
|
Stoeck CT, von Deuster C, Fleischmann T, Lipiski M, Cesarovic N, Kozerke S. Direct comparison of in vivo versus postmortem second‐order motion‐compensated cardiac diffusion tensor imaging. Magn Reson Med 2017; 79:2265-2276. [DOI: 10.1002/mrm.26871] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Revised: 07/21/2017] [Accepted: 07/25/2017] [Indexed: 12/12/2022]
Affiliation(s)
- Christian T. Stoeck
- Institute for Biomedical EngineeringUniversity and ETH ZurichZurich Switzerland
- Division of Imaging Sciences and Biomedical EngineeringKing's College LondonLondon United Kingdom
| | - Constantin von Deuster
- Institute for Biomedical EngineeringUniversity and ETH ZurichZurich Switzerland
- Division of Imaging Sciences and Biomedical EngineeringKing's College LondonLondon United Kingdom
| | - Thea Fleischmann
- Division of Surgical ResearchUniversity Hospital Zurich, University of ZurichZurich Switzerland
| | - Miriam Lipiski
- Division of Surgical ResearchUniversity Hospital Zurich, University of ZurichZurich Switzerland
| | - Nikola Cesarovic
- Division of Surgical ResearchUniversity Hospital Zurich, University of ZurichZurich Switzerland
| | - Sebastian Kozerke
- Institute for Biomedical EngineeringUniversity and ETH ZurichZurich Switzerland
- Division of Imaging Sciences and Biomedical EngineeringKing's College LondonLondon United Kingdom
| |
Collapse
|
68
|
Ferreira PF, Nielles-Vallespin S, Scott AD, de Silva R, Kilner PJ, Ennis DB, Auger DA, Suever JD, Zhong X, Spottiswoode BS, Pennell DJ, Arai AE, Firmin DN. Evaluation of the impact of strain correction on the orientation of cardiac diffusion tensors with in vivo and ex vivo porcine hearts. Magn Reson Med 2017; 79:2205-2215. [PMID: 28734017 DOI: 10.1002/mrm.26850] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Revised: 06/07/2017] [Accepted: 07/02/2017] [Indexed: 11/11/2022]
Abstract
PURPOSE To evaluate the importance of strain-correcting stimulated echo acquisition mode echo-planar imaging cardiac diffusion tensor imaging. METHODS Healthy pigs (n = 11) were successfully scanned with a 3D cine displacement-encoded imaging with stimulated echoes and a monopolar-stimulated echo-planar imaging diffusion tensor imaging sequence at 3 T during diastasis, peak systole, and strain sweet spots in a midventricular short-axis slice. The same diffusion tensor imaging sequence was repeated ex vivo after arresting the hearts in either a relaxed (KCl-induced) or contracted (BaCl2 -induced) state. The displacement-encoded imaging with stimulated echoes data were used to strain-correct the in vivo cardiac diffusion tensor imaging in diastole and systole. The orientation of the primary (helix angles) and secondary (E2A) diffusion eigenvectors was compared with and without strain correction and to the strain-free ex vivo data. RESULTS Strain correction reduces systolic E2A significantly when compared without strain correction and ex vivo (median absolute E2A = 34.3° versus E2A = 57.1° (P = 0.01), E2A = 60.5° (P = 0.006), respectively). The systolic distribution of E2A without strain correction is closer to the contracted ex vivo distribution than with strain correction, root mean square deviation of 0.027 versus 0.038. CONCLUSIONS The current strain-correction model amplifies the contribution of microscopic strain to diffusion resulting in an overcorrection of E2A. Results show that a new model that considers cellular rearrangement is required. Magn Reson Med 79:2205-2215, 2018. © 2017 International Society for Magnetic Resonance in Medicine.
Collapse
Affiliation(s)
- Pedro F Ferreira
- Cardiovascular BRU, Royal Brompton Hospital, London, United Kingdom.,National Heart and Lung Institute, Imperial College, London, United Kingdom
| | | | - Andrew D Scott
- Cardiovascular BRU, Royal Brompton Hospital, London, United Kingdom.,National Heart and Lung Institute, Imperial College, London, United Kingdom
| | - Ranil de Silva
- Cardiovascular BRU, Royal Brompton Hospital, London, United Kingdom.,National Heart and Lung Institute, Imperial College, London, United Kingdom
| | - Philip J Kilner
- Cardiovascular BRU, Royal Brompton Hospital, London, United Kingdom.,National Heart and Lung Institute, Imperial College, London, United Kingdom
| | - Daniel B Ennis
- Department of Radiological Sciences, University of California, Los Angeles, California, USA
| | - Daniel A Auger
- Biomedical Engineering, University of Virginia, Charlottesville, Virginia, USA
| | | | | | | | - Dudley J Pennell
- Cardiovascular BRU, Royal Brompton Hospital, London, United Kingdom.,National Heart and Lung Institute, Imperial College, London, United Kingdom
| | - Andrew E Arai
- NHLBI, National Institutes of Health, Bethesda, Maryland, USA
| | - David N Firmin
- Cardiovascular BRU, Royal Brompton Hospital, London, United Kingdom.,National Heart and Lung Institute, Imperial College, London, United Kingdom
| |
Collapse
|
69
|
Ghonim S, Voges I, Gatehouse PD, Keegan J, Gatzoulis MA, Kilner PJ, Babu-Narayan SV. Myocardial Architecture, Mechanics, and Fibrosis in Congenital Heart Disease. Front Cardiovasc Med 2017; 4:30. [PMID: 28589126 PMCID: PMC5440586 DOI: 10.3389/fcvm.2017.00030] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Accepted: 04/28/2017] [Indexed: 01/15/2023] Open
Abstract
Congenital heart disease (CHD) is the most common category of birth defect, affecting 1% of the population and requiring cardiovascular surgery in the first months of life in many patients. Due to advances in congenital cardiovascular surgery and patient management, most children with CHD now survive into adulthood. However, residual and postoperative defects are common resulting in abnormal hemodynamics, which may interact further with scar formation related to surgical procedures. Cardiovascular magnetic resonance (CMR) has become an important diagnostic imaging modality in the long-term management of CHD patients. It is the gold standard technique to assess ventricular volumes and systolic function. Besides this, advanced CMR techniques allow the acquisition of more detailed information about myocardial architecture, ventricular mechanics, and fibrosis. The left ventricle (LV) and right ventricle have unique myocardial architecture that underpins their mechanics; however, this becomes disorganized under conditions of volume and pressure overload. CMR diffusion tensor imaging is able to interrogate non-invasively the principal alignments of microstructures in the left ventricular wall. Myocardial tissue tagging (displacement encoding using stimulated echoes) and feature tracking are CMR techniques that can be used to examine the deformation and strain of the myocardium in CHD, whereas 3D feature tracking can assess the twisting motion of the LV chamber. Late gadolinium enhancement imaging and more recently T1 mapping can help in detecting fibrotic myocardial changes and evolve our understanding of the pathophysiology of CHD patients. This review not only gives an overview about available or emerging CMR techniques for assessing myocardial mechanics and fibrosis but it also describes their clinical value and how they can be used to detect abnormalities in myocardial architecture and mechanics in CHD patients.
Collapse
Affiliation(s)
- Sarah Ghonim
- Adult Congenital Heart Unit, Royal Brompton Hospital, London, UK
- Cardiovascular Magnetic Resonance Unit, Royal Brompton Hospital, London, UK
- National Heart and Lung Institute, Imperial College, London, UK
| | - Inga Voges
- Adult Congenital Heart Unit, Royal Brompton Hospital, London, UK
- Cardiovascular Magnetic Resonance Unit, Royal Brompton Hospital, London, UK
| | - Peter D. Gatehouse
- Cardiovascular Magnetic Resonance Unit, Royal Brompton Hospital, London, UK
| | - Jennifer Keegan
- Cardiovascular Magnetic Resonance Unit, Royal Brompton Hospital, London, UK
| | - Michael A. Gatzoulis
- Adult Congenital Heart Unit, Royal Brompton Hospital, London, UK
- National Heart and Lung Institute, Imperial College, London, UK
| | - Philip J. Kilner
- Cardiovascular Magnetic Resonance Unit, Royal Brompton Hospital, London, UK
| | - Sonya V. Babu-Narayan
- Adult Congenital Heart Unit, Royal Brompton Hospital, London, UK
- Cardiovascular Magnetic Resonance Unit, Royal Brompton Hospital, London, UK
- National Heart and Lung Institute, Imperial College, London, UK
| |
Collapse
|
70
|
von Deuster C, Sammut E, Asner L, Nordsletten D, Lamata P, Stoeck CT, Kozerke S, Razavi R. Studying Dynamic Myofiber Aggregate Reorientation in Dilated Cardiomyopathy Using In Vivo Magnetic Resonance Diffusion Tensor Imaging. Circ Cardiovasc Imaging 2017; 9:CIRCIMAGING.116.005018. [PMID: 27729361 PMCID: PMC5068188 DOI: 10.1161/circimaging.116.005018] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Accepted: 08/26/2016] [Indexed: 11/30/2022]
Abstract
Supplemental Digital Content is available in the text. Background— The objective of this study is to assess the dynamic alterations of myocardial microstructure and strain between diastole and systole in patients with dilated cardiomyopathy relative to healthy controls using the magnetic resonance diffusion tensor imaging, myocardial tagging, and biomechanical modeling. Methods and Results— Dual heart-phase diffusion tensor imaging was successfully performed in 9 patients and 9 controls. Tagging data were acquired for the diffusion tensor strain correction and cardiac motion analysis. Mean diffusivity, fractional anisotropy, and myocyte aggregate orientations were compared between both cohorts. Cardiac function was assessed by left ventricular ejection fraction, torsion, and strain. Computational modeling was used to study the impact of cardiac shape on fiber reorientation and how fiber orientations affect strain. In patients with dilated cardiomyopathy, a more longitudinal orientation of diastolic myofiber aggregates was measured compared with controls. Although a significant steepening of helix angles (HAs) during contraction was found in the controls, consistent change in HAs during contraction was absent in patients. Left ventricular ejection fraction, cardiac torsion, and strain were significantly lower in the patients compared with controls. Computational modeling revealed that the dilated heart results in reduced HA changes compared with a normal heart. Reduced torsion was found to be exacerbated by steeper HAs. Conclusions— Diffusion tensor imaging revealed reduced reorientation of myofiber aggregates during cardiac contraction in patients with dilated cardiomyopathy relative to controls. Left ventricular remodeling seems to be an important factor in the changes to myocyte orientation. Steeper HAs are coupled with a worsening in strain and torsion. Overall, the findings provide new insights into the structural alterations in patients with dilated cardiomyopathy.
Collapse
Affiliation(s)
- Constantin von Deuster
- From the Department for Biomedical Engineering, Division of Imaging Sciences and Biomedical Engineering, King's College London, United Kingdom (C.v.D., E.S., L.A., D.N., P.L., C.T.S, S.K., R.R.); and Department of Information Technology and Electrical Engineering, Institute for Biomedical Engineering, University and ETH Zurich, Switzerland (C.v.D., C.T.S., S.K.)
| | - Eva Sammut
- From the Department for Biomedical Engineering, Division of Imaging Sciences and Biomedical Engineering, King's College London, United Kingdom (C.v.D., E.S., L.A., D.N., P.L., C.T.S, S.K., R.R.); and Department of Information Technology and Electrical Engineering, Institute for Biomedical Engineering, University and ETH Zurich, Switzerland (C.v.D., C.T.S., S.K.)
| | - Liya Asner
- From the Department for Biomedical Engineering, Division of Imaging Sciences and Biomedical Engineering, King's College London, United Kingdom (C.v.D., E.S., L.A., D.N., P.L., C.T.S, S.K., R.R.); and Department of Information Technology and Electrical Engineering, Institute for Biomedical Engineering, University and ETH Zurich, Switzerland (C.v.D., C.T.S., S.K.)
| | - David Nordsletten
- From the Department for Biomedical Engineering, Division of Imaging Sciences and Biomedical Engineering, King's College London, United Kingdom (C.v.D., E.S., L.A., D.N., P.L., C.T.S, S.K., R.R.); and Department of Information Technology and Electrical Engineering, Institute for Biomedical Engineering, University and ETH Zurich, Switzerland (C.v.D., C.T.S., S.K.)
| | - Pablo Lamata
- From the Department for Biomedical Engineering, Division of Imaging Sciences and Biomedical Engineering, King's College London, United Kingdom (C.v.D., E.S., L.A., D.N., P.L., C.T.S, S.K., R.R.); and Department of Information Technology and Electrical Engineering, Institute for Biomedical Engineering, University and ETH Zurich, Switzerland (C.v.D., C.T.S., S.K.)
| | - Christian T Stoeck
- From the Department for Biomedical Engineering, Division of Imaging Sciences and Biomedical Engineering, King's College London, United Kingdom (C.v.D., E.S., L.A., D.N., P.L., C.T.S, S.K., R.R.); and Department of Information Technology and Electrical Engineering, Institute for Biomedical Engineering, University and ETH Zurich, Switzerland (C.v.D., C.T.S., S.K.)
| | - Sebastian Kozerke
- From the Department for Biomedical Engineering, Division of Imaging Sciences and Biomedical Engineering, King's College London, United Kingdom (C.v.D., E.S., L.A., D.N., P.L., C.T.S, S.K., R.R.); and Department of Information Technology and Electrical Engineering, Institute for Biomedical Engineering, University and ETH Zurich, Switzerland (C.v.D., C.T.S., S.K.).
| | - Reza Razavi
- From the Department for Biomedical Engineering, Division of Imaging Sciences and Biomedical Engineering, King's College London, United Kingdom (C.v.D., E.S., L.A., D.N., P.L., C.T.S, S.K., R.R.); and Department of Information Technology and Electrical Engineering, Institute for Biomedical Engineering, University and ETH Zurich, Switzerland (C.v.D., C.T.S., S.K.)
| |
Collapse
|
71
|
Imaging the dynamics of cardiac fiber orientation in vivo using 3D Ultrasound Backscatter Tensor Imaging. Sci Rep 2017; 7:830. [PMID: 28400606 PMCID: PMC5429761 DOI: 10.1038/s41598-017-00946-7] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Accepted: 03/20/2017] [Indexed: 01/23/2023] Open
Abstract
The assessment of myocardial fiber disarray is of major interest for the study of the progression of myocardial disease. However, time-resolved imaging of the myocardial structure remains unavailable in clinical practice. In this study, we introduce 3D Backscatter Tensor Imaging (3D-BTI), an entirely novel ultrasound-based imaging technique that can map the myocardial fibers orientation and its dynamics with a temporal resolution of 10 ms during a single cardiac cycle, non-invasively and in vivo in entire volumes. 3D-BTI is based on ultrafast volumetric ultrasound acquisitions, which are used to quantify the spatial coherence of backscattered echoes at each point of the volume. The capability of 3D-BTI to map the fibers orientation was evaluated in vitro in 5 myocardial samples. The helicoidal transmural variation of fiber angles was in good agreement with the one obtained by histological analysis. 3D-BTI was then performed to map the fiber orientation dynamics in vivo in the beating heart of an open-chest sheep at a volume rate of 90 volumes/s. Finally, the clinical feasibility of 3D-BTI was shown on a healthy volunteer. These initial results indicate that 3D-BTI could become a fully non-invasive technique to assess myocardial disarray at the bedside of patients.
Collapse
|
72
|
Teh I, McClymont D, Zdora MC, Whittington HJ, Davidoiu V, Lee J, Lygate CA, Rau C, Zanette I, Schneider JE. Validation of diffusion tensor MRI measurements of cardiac microstructure with structure tensor synchrotron radiation imaging. J Cardiovasc Magn Reson 2017; 19:31. [PMID: 28279178 PMCID: PMC5345150 DOI: 10.1186/s12968-017-0342-x] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2016] [Accepted: 02/16/2017] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Diffusion tensor imaging (DTI) is widely used to assess tissue microstructure non-invasively. Cardiac DTI enables inference of cell and sheetlet orientations, which are altered under pathological conditions. However, DTI is affected by many factors, therefore robust validation is critical. Existing histological validation is intrinsically flawed, since it requires further tissue processing leading to sample distortion, is routinely limited in field-of-view and requires reconstruction of three-dimensional volumes from two-dimensional images. In contrast, synchrotron radiation imaging (SRI) data enables imaging of the heart in 3D without further preparation following DTI. The objective of the study was to validate DTI measurements based on structure tensor analysis of SRI data. METHODS One isolated, fixed rat heart was imaged ex vivo with DTI and X-ray phase contrast SRI, and reconstructed at 100 μm and 3.6 μm isotropic resolution respectively. Structure tensors were determined from the SRI data and registered to the DTI data. RESULTS Excellent agreement in helix angles (HA) and transverse angles (TA) was observed between the DTI and structure tensor synchrotron radiation imaging (STSRI) data, where HADTI-STSRI = -1.4° ± 23.2° and TADTI-STSRI = -1.4° ± 35.0° (mean ± 1.96 standard deviation across all voxels in the left ventricle). STSRI confirmed that the primary eigenvector of the diffusion tensor corresponds with the cardiomyocyte long-axis across the whole myocardium. CONCLUSIONS We have used STSRI as a novel and high-resolution gold standard for the validation of DTI, allowing like-with-like comparison of three-dimensional tissue structures in the same intact heart free of distortion. This represents a critical step forward in independently verifying the structural basis and informing the interpretation of cardiac DTI data, thereby supporting the further development and adoption of DTI in structure-based electro-mechanical modelling and routine clinical applications.
Collapse
Affiliation(s)
- Irvin Teh
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
- Leeds Institute of Cardiovascular & Metabolic Medicine, University of Leeds, Leeds, UK
| | - Darryl McClymont
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Marie-Christine Zdora
- Diamond Light Source, Didcot, UK
- Department of Physics and Astronomy, University College London, London, UK
| | - Hannah J. Whittington
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Valentina Davidoiu
- Division of Imaging Sciences and Biomedical Engineering, King’s College London, London, UK
| | - Jack Lee
- Division of Imaging Sciences and Biomedical Engineering, King’s College London, London, UK
| | - Craig A. Lygate
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Christoph Rau
- Diamond Light Source, Didcot, UK
- University of Manchester, Manchester, UK
- Feinberg School of Medicine, Northwestern University, Chicago, USA
| | | | - Jürgen E. Schneider
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
- Leeds Institute of Cardiovascular & Metabolic Medicine, University of Leeds, Leeds, UK
| |
Collapse
|
73
|
Dormer JD, Meng Y, Zhang X, Jiang R, Wagner MB, Fei B. Estimating cardiac fiber orientations in pig hearts using registered ultrasound and MR image volumes. PROCEEDINGS OF SPIE--THE INTERNATIONAL SOCIETY FOR OPTICAL ENGINEERING 2017; 10139. [PMID: 30220771 DOI: 10.1117/12.2255515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
Heart fiber mechanics can be important predictors in current and future cardiac function. Accurate knowledge of these mechanics could enable cardiologists to provide a diagnosis before conditions progress. Magnetic resonance diffusion tensor imaging (MR-DTI) has been used to determine cardiac fiber orientations. Ultrasound is capable of providing anatomical information in real time, enabling a physician to quickly adjust parameters to optimize image scans. If known fiber orientations from a template heart measured using DTI can be accurately deformed onto a cardiac ultrasound volume, fiber orientations could be estimated for the patient without the need for a costly MR scan while still providing cardiologists valuable information about the heart mechanics. In this study, we apply the method to pig hearts, which are a close representation of human heart anatomy. Experiments from pig hearts show that the registration method achieved an average Dice similarity coefficient (DSC) of 0.819 ± 0.050 between the ultrasound and deformed MR volumes and that the proposed ultrasound-based method is able to estimate the cardiac fiber orientation in pig hearts.
Collapse
Affiliation(s)
- James D Dormer
- Department of Radiology and Imaging Sciences, Emory University, Atlanta, GA
| | - Yuguang Meng
- Yerkes National Primate Research Center, Emory University, Atlanta, GA
| | - Xiaodong Zhang
- Yerkes National Primate Research Center, Emory University, Atlanta, GA
| | - Rong Jiang
- Department of Pediatrics, Emory University, Atlanta, GA
| | - Mary B Wagner
- Department of Pediatrics, Emory University, Atlanta, GA
| | - Baowei Fei
- Department of Radiology and Imaging Sciences, Emory University, Atlanta, GA.,Department of Biomedical Engineering, Emory University and Georgia Institute of Technology, Atlanta, GA
| |
Collapse
|
74
|
Robini MC, Ozon M, Frindel C, Yang F, Zhu Y. Global Diffusion Tractography by Simulated Annealing. IEEE Trans Biomed Eng 2017; 64:649-660. [PMID: 28113211 DOI: 10.1109/tbme.2016.2570900] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
OBJECTIVE Our goal is to develop a robust global tractography method for cardiac diffusion imaging. METHODS A graph is stretched over the whole myocardium to represent the fiber structure, and the solutions are minima of a graph energy measuring the fidelity to the data along with the fiber density and curvature. The optimization is performed by a variant of simulated annealing that offers increased design freedom without sacrificing theoretical convergence guarantees. RESULTS Numerical experiments on synthetic and real data demonstrate the capability of our tractography algorithm to deal with low angular resolution, highly noisy data. In particular, our algorithm outperforms the Bayesian model-based algorithm of Reisert et al. (NeuroImage, vol. 54, no. 2, 2011) and the graph-based algorithm of Frindel et al. (Magn. Reson. Med., vol. 64, no. 4, 2010) at the noise levels typical of in vivo imaging. CONCLUSION The proposed algorithm avoids the drawbacks of local techniques and is very robust to noise, which makes it a promising tool for in vivo diffusion imaging of moving organs. SIGNIFICANCE Our approach is global in terms of both the fiber structure representation and the minimization problem. It also allows us to adjust the trajectory density by simply changing the vertex-lattice spacing in the graph model, a desirable feature for multiresolution tractography analysis.
Collapse
|
75
|
Carruth ED, McCulloch AD, Omens JH. Transmural gradients of myocardial structure and mechanics: Implications for fiber stress and strain in pressure overload. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2016; 122:215-226. [PMID: 27845176 DOI: 10.1016/j.pbiomolbio.2016.11.004] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Although a truly complete understanding of whole heart activation, contraction, and deformation is well beyond our current reach, a significant amount of effort has been devoted to discovering and understanding the mechanisms by which myocardial structure determines cardiac function to better treat patients with cardiac disease. Several experimental studies have shown that transmural fiber strain is relatively uniform in both diastole and systole, in contrast to predictions from traditional mechanical theory. Similarly, mathematical models have largely predicted uniform fiber stress across the wall. The development of this uniform pattern of fiber stress and strain during filling and ejection is due to heterogeneous transmural distributions of several myocardial structures. This review summarizes these transmural gradients, their contributions to fiber mechanics, and the potential functional effects of their remodeling during pressure overload hypertrophy.
Collapse
Affiliation(s)
- Eric D Carruth
- Department of Bioengineering, University of California San Diego, La Jolla, CA, USA.
| | - Andrew D McCulloch
- Department of Bioengineering, University of California San Diego, La Jolla, CA, USA.
| | - Jeffrey H Omens
- Department of Bioengineering, University of California San Diego, La Jolla, CA, USA; Department of Medicine, University of California San Diego, La Jolla, CA, USA.
| |
Collapse
|
76
|
Nguyen C, Fan Z, Xie Y, Pang J, Speier P, Bi X, Kobashigawa J, Li D. In vivo diffusion-tensor MRI of the human heart on a 3 tesla clinical scanner: An optimized second order (M2) motion compensated diffusion-preparation approach. Magn Reson Med 2016; 76:1354-1363. [PMID: 27550078 PMCID: PMC5067209 DOI: 10.1002/mrm.26380] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2016] [Revised: 06/23/2016] [Accepted: 07/22/2016] [Indexed: 12/13/2022]
Abstract
PURPOSE To optimize a diffusion-prepared balanced steady-state free precession cardiac MRI (CMR) technique to perform diffusion-tensor CMR (DT-CMR) in humans on a 3 Tesla clinical scanner METHODS: A previously developed second order motion compensated (M2) diffusion-preparation scheme was significantly shortened (40%) yielding sufficient signal-to-noise ratio for DT-CMR imaging. In 20 healthy volunteers and 3 heart failure (HF) patients, DT-CMR was performed comparing no motion compensation (M0), first order motion compensation (M1), and the optimized M2. Mean diffusivity (MD), fractional anisotropy (FA), helix angle (HA), and HA transmural slope (HATS) were calculated. Reproducibility and success rate (SR) were investigated. RESULTS M2-derived left ventricular (LV) MD, FA, and HATS (1.4 ± 0.2 μm2 /ms, 0.28 ± 0.06, -1.0 ± 0.2 °/%trans) were significantly (P < 0.001) less than M1 (1.8 ± 0.3 μm2 /ms, 0.46 ± 0.14, -0.1 ± 0.3 °/%trans) and M0 (4.8 ± 1.0 μm2 /ms, 0.70 ± 0.14, 0.1 ± 0.3 °/%trans) indicating less motion corruption and yielding values more consistent with previous literature. M2-derived DT-CMR parameters had higher reproducible (ICC > 0.85) and SR (82%) than M1 (ICC = 0.20-0.85; SR = 37%) and M0 (ICC = 0.20-0.30; SR = 11%). M2 DT-CMR was able to yield HA maps with smooth transmural transition from endocardium to epicardium. CONCLUSION The proposed M2 DT-CMR reproducibly yielded bulk motion robust estimations of mean LV MD, FA, HA, and HATS on a 3T clinical scanner. Magn Reson Med 76:1354-1363, 2016. © 2016 International Society for Magnetic Resonance in Medicine.
Collapse
Affiliation(s)
- Christopher Nguyen
- Biomedical Imaging Research Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Zhaoyang Fan
- Biomedical Imaging Research Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Yibin Xie
- Biomedical Imaging Research Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Jianing Pang
- Biomedical Imaging Research Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | | | - Xiaoming Bi
- Siemens Healthcare, Los Angeles, California, USA
| | - Jon Kobashigawa
- Heart Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Debiao Li
- Biomedical Imaging Research Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA.
- Department of Bioengineering, University of California Los Angeles, Los Angeles, California, USA.
| |
Collapse
|
77
|
Mekkaoui C, Reese TG, Jackowski MP, Cauley SF, Setsompop K, Bhat H, Sosnovik DE. Diffusion Tractography of the Entire Left Ventricle by Using Free-breathing Accelerated Simultaneous Multisection Imaging. Radiology 2016; 282:850-856. [PMID: 27681278 DOI: 10.1148/radiol.2016152613] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Purpose To develop a clinically feasible whole-heart free-breathing diffusion-tensor (DT) magnetic resonance (MR) imaging approach with an imaging time of approximately 15 minutes to enable three-dimensional (3D) tractography. Materials and Methods The study was compliant with HIPAA and the institutional review board and required written consent from the participants. DT imaging was performed in seven healthy volunteers and three patients with pulmonary hypertension by using a stimulated echo sequence. Twelve contiguous short-axis sections and six four-chamber sections that covered the entire left ventricle were acquired by using simultaneous multisection (SMS) excitation with a blipped-controlled aliasing in parallel imaging readout. Rate 2 and rate 3 SMS excitation was defined as two and three times accelerated in the section axis, respectively. Breath-hold and free-breathing images with and without SMS acceleration were acquired. Diffusion-encoding directions were acquired sequentially, spatiotemporally registered, and retrospectively selected by using an entropy-based approach. Myofiber helix angle, mean diffusivity, fractional anisotropy, and 3D tractograms were analyzed by using paired t tests and analysis of variance. Results No significant differences (P > .63) were seen between breath-hold rate 3 SMS and free-breathing rate 2 SMS excitation in transmural myofiber helix angle, mean diffusivity (mean ± standard deviation, [0.89 ± 0.09] × 10-3 mm2/sec vs [0.9 ± 0.09] × 10-3 mm2/sec), or fractional anisotropy (0.43 ± 0.05 vs 0.42 ± 0.06). Three-dimensional tractograms of the left ventricle with no SMS and rate 2 and rate 3 SMS excitation were qualitatively similar. Conclusion Free-breathing DT imaging of the entire human heart can be performed in approximately 15 minutes without section gaps by using SMS excitation with a blipped-controlled aliasing in parallel imaging readout, followed by spatiotemporal registration and entropy-based retrospective image selection. This method may lead to clinical translation of whole-heart DT imaging, enabling broad application in patients with cardiac disease. © RSNA, 2016 Online supplemental material is available for this article.
Collapse
Affiliation(s)
- Choukri Mekkaoui
- From the Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology (C.M., T.G.R., S.F.C., K.S., D.E.S.), and Cardiovascular Research Center, Cardiology Division (D.E.S.), Massachusetts General Hospital, Harvard Medical School, 149 13th St, Charlestown, MA 02129; Department of Computer Science, Institute of Mathematics and Statistics, University of São Paulo, São Paulo, Brazil (M.P.J.); and Siemens Healthcare, Charlestown, Mass (H.B.)
| | - Timothy G Reese
- From the Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology (C.M., T.G.R., S.F.C., K.S., D.E.S.), and Cardiovascular Research Center, Cardiology Division (D.E.S.), Massachusetts General Hospital, Harvard Medical School, 149 13th St, Charlestown, MA 02129; Department of Computer Science, Institute of Mathematics and Statistics, University of São Paulo, São Paulo, Brazil (M.P.J.); and Siemens Healthcare, Charlestown, Mass (H.B.)
| | - Marcel P Jackowski
- From the Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology (C.M., T.G.R., S.F.C., K.S., D.E.S.), and Cardiovascular Research Center, Cardiology Division (D.E.S.), Massachusetts General Hospital, Harvard Medical School, 149 13th St, Charlestown, MA 02129; Department of Computer Science, Institute of Mathematics and Statistics, University of São Paulo, São Paulo, Brazil (M.P.J.); and Siemens Healthcare, Charlestown, Mass (H.B.)
| | - Stephen F Cauley
- From the Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology (C.M., T.G.R., S.F.C., K.S., D.E.S.), and Cardiovascular Research Center, Cardiology Division (D.E.S.), Massachusetts General Hospital, Harvard Medical School, 149 13th St, Charlestown, MA 02129; Department of Computer Science, Institute of Mathematics and Statistics, University of São Paulo, São Paulo, Brazil (M.P.J.); and Siemens Healthcare, Charlestown, Mass (H.B.)
| | - Kawin Setsompop
- From the Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology (C.M., T.G.R., S.F.C., K.S., D.E.S.), and Cardiovascular Research Center, Cardiology Division (D.E.S.), Massachusetts General Hospital, Harvard Medical School, 149 13th St, Charlestown, MA 02129; Department of Computer Science, Institute of Mathematics and Statistics, University of São Paulo, São Paulo, Brazil (M.P.J.); and Siemens Healthcare, Charlestown, Mass (H.B.)
| | - Himanshu Bhat
- From the Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology (C.M., T.G.R., S.F.C., K.S., D.E.S.), and Cardiovascular Research Center, Cardiology Division (D.E.S.), Massachusetts General Hospital, Harvard Medical School, 149 13th St, Charlestown, MA 02129; Department of Computer Science, Institute of Mathematics and Statistics, University of São Paulo, São Paulo, Brazil (M.P.J.); and Siemens Healthcare, Charlestown, Mass (H.B.)
| | - David E Sosnovik
- From the Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology (C.M., T.G.R., S.F.C., K.S., D.E.S.), and Cardiovascular Research Center, Cardiology Division (D.E.S.), Massachusetts General Hospital, Harvard Medical School, 149 13th St, Charlestown, MA 02129; Department of Computer Science, Institute of Mathematics and Statistics, University of São Paulo, São Paulo, Brazil (M.P.J.); and Siemens Healthcare, Charlestown, Mass (H.B.)
| |
Collapse
|
78
|
Rodriguez B, Carusi A, Abi-Gerges N, Ariga R, Britton O, Bub G, Bueno-Orovio A, Burton RAB, Carapella V, Cardone-Noott L, Daniels MJ, Davies MR, Dutta S, Ghetti A, Grau V, Harmer S, Kopljar I, Lambiase P, Lu HR, Lyon A, Minchole A, Muszkiewicz A, Oster J, Paci M, Passini E, Severi S, Taggart P, Tinker A, Valentin JP, Varro A, Wallman M, Zhou X. Human-based approaches to pharmacology and cardiology: an interdisciplinary and intersectorial workshop. Europace 2016; 18:1287-98. [PMID: 26622055 PMCID: PMC5006958 DOI: 10.1093/europace/euv320] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Accepted: 08/20/2015] [Indexed: 12/12/2022] Open
Abstract
Both biomedical research and clinical practice rely on complex datasets for the physiological and genetic characterization of human hearts in health and disease. Given the complexity and variety of approaches and recordings, there is now growing recognition of the need to embed computational methods in cardiovascular medicine and science for analysis, integration and prediction. This paper describes a Workshop on Computational Cardiovascular Science that created an international, interdisciplinary and inter-sectorial forum to define the next steps for a human-based approach to disease supported by computational methodologies. The main ideas highlighted were (i) a shift towards human-based methodologies, spurred by advances in new in silico, in vivo, in vitro, and ex vivo techniques and the increasing acknowledgement of the limitations of animal models. (ii) Computational approaches complement, expand, bridge, and integrate in vitro, in vivo, and ex vivo experimental and clinical data and methods, and as such they are an integral part of human-based methodologies in pharmacology and medicine. (iii) The effective implementation of multi- and interdisciplinary approaches, teams, and training combining and integrating computational methods with experimental and clinical approaches across academia, industry, and healthcare settings is a priority. (iv) The human-based cross-disciplinary approach requires experts in specific methodologies and domains, who also have the capacity to communicate and collaborate across disciplines and cross-sector environments. (v) This new translational domain for human-based cardiology and pharmacology requires new partnerships supported financially and institutionally across sectors. Institutional, organizational, and social barriers must be identified, understood and overcome in each specific setting.
Collapse
Affiliation(s)
- Blanca Rodriguez
- Department of Computer Science, University of Oxford, Oxford, UK
| | | | - Najah Abi-Gerges
- AnaBios Corporation, San Diego Science Center, San Diego, CA 92109, USA
| | - Rina Ariga
- Radcliffe Department of Medicine, University of Oxford, John Radcliffe Hospital, Oxford, UK
| | - Oliver Britton
- Department of Computer Science, University of Oxford, Oxford, UK
| | - Gil Bub
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
| | | | - Rebecca A B Burton
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
| | | | | | - Matthew J Daniels
- Radcliffe Department of Medicine, University of Oxford, John Radcliffe Hospital, Oxford, UK
| | | | - Sara Dutta
- Department of Computer Science, University of Oxford, Oxford, UK
| | - Andre Ghetti
- AnaBios Corporation, San Diego Science Center, San Diego, CA 92109, USA
| | - Vicente Grau
- Department of Engineering Science, University of Oxford, Oxford, UK
| | - Stephen Harmer
- William Harvey Heart Centre, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, Charterhouse Square, London, UK
| | - Ivan Kopljar
- Discovery Sciences, Dis&Dev Research, Janssen Pharmaceutical NV, Beerse, Belgium
| | - Pier Lambiase
- Institute of Cardiovascular Science, University College London, Bars Heart Centre, London, UK
| | - Hua Rong Lu
- Discovery Sciences, Dis&Dev Research, Janssen Pharmaceutical NV, Beerse, Belgium
| | - Aurore Lyon
- Department of Computer Science, University of Oxford, Oxford, UK
| | - Ana Minchole
- Department of Computer Science, University of Oxford, Oxford, UK
| | - Anna Muszkiewicz
- Department of Computer Science, University of Oxford, Oxford, UK
| | - Julien Oster
- Department of Engineering Science, University of Oxford, Oxford, UK
| | - Michelangelo Paci
- Department of Electronics and Communications Engineering, Tampere University of Technology, BioMediTech, Tampere, Finland
| | - Elisa Passini
- Department of Computer Science, University of Oxford, Oxford, UK
| | - Stefano Severi
- Department of Electrical, Electronic and Information Engineering, University of Bologna, Cesena 47521, Italy
| | - Peter Taggart
- Institute of Cardiovascular Science, University College London, Bars Heart Centre, London, UK
| | - Andy Tinker
- William Harvey Heart Centre, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, Charterhouse Square, London, UK
| | | | | | | | - Xin Zhou
- Department of Computer Science, University of Oxford, Oxford, UK
| |
Collapse
|
79
|
Determinants of biventricular cardiac function: a mathematical model study on geometry and myofiber orientation. Biomech Model Mechanobiol 2016; 16:721-729. [PMID: 27581324 PMCID: PMC5350259 DOI: 10.1007/s10237-016-0825-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Accepted: 08/24/2016] [Indexed: 11/19/2022]
Abstract
In patient-specific mathematical models of cardiac electromechanics, usually a patient-specific geometry and a generic myofiber orientation field are used as input, upon which myocardial tissue properties are tuned to clinical data. It remains unclear to what extent deviations in myofiber orientation and geometry between model and patient influence model predictions on cardiac function. Therefore, we evaluated the sensitivity of cardiac function for geometry and myofiber orientation in a biventricular (BiV) finite element model of cardiac mechanics. Starting out from a reference geometry in which myofiber orientation had no transmural component, two new geometries were defined with either a 27 % decrease in LV short- to long-axis ratio, or a 16 % decrease of RV length, but identical LV and RV cavity and wall volumes. These variations in geometry caused differences in both local myofiber and global pump work below 6 %. Variation of fiber orientation was induced through adaptive myofiber reorientation that caused an average change in fiber orientation of \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${\sim }8^\circ $$\end{document}∼8∘ predominantly through the formation of a component in transmural direction. Reorientation caused a considerable increase in local myofiber work \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$({\sim }18\,\%)$$\end{document}(∼18%) and in global pump work \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$({\sim }17\,\%)$$\end{document}(∼17%) in all three geometries, while differences between geometries were below 5 %. The findings suggest that implementing a realistic myofiber orientation is at least as important as defining a patient-specific geometry. The model for remodeling of myofiber orientation seems a useful approach to estimate myofiber orientation in the absence of accurate patient-specific information.
Collapse
|
80
|
Pashakhanloo F, Herzka DA, Ashikaga H, Mori S, Gai N, Bluemke DA, Trayanova NA, McVeigh ER. Myofiber Architecture of the Human Atria as Revealed by Submillimeter Diffusion Tensor Imaging. Circ Arrhythm Electrophysiol 2016; 9:e004133. [PMID: 27071829 DOI: 10.1161/circep.116.004133] [Citation(s) in RCA: 135] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Accepted: 03/15/2016] [Indexed: 11/16/2022]
Abstract
BACKGROUND Accurate knowledge of the human atrial fibrous structure is paramount in understanding the mechanisms of atrial electric function in health and disease. Thus far, such knowledge has been acquired from destructive sectioning, and there is a paucity of data about atrial fiber architecture variability in the human population. METHODS AND RESULTS In this study, we have developed a customized 3-dimensional diffusion tensor magnetic resonance imaging sequence on a clinical scanner that makes it possible to image an entire intact human heart specimen ex vivo at submillimeter resolution. The data from 8 human atrial specimens obtained with this technique present complete maps of the fibrous organization of the human atria. The findings demonstrate that the main features of atrial anatomy are mostly preserved across subjects although the exact location and orientation of atrial bundles vary. Using the full tractography data, we were able to cluster, visualize, and characterize the distinct major bundles in the human atria. Furthermore, quantitative characterization of the fiber angles across the atrial wall revealed that the transmural fiber angle distribution is heterogeneous throughout different regions of the atria. CONCLUSIONS The application of submillimeter diffusion tensor magnetic resonance imaging provides an unprecedented level of information on both human atrial structure, as well as its intersubject variability. The high resolution and fidelity of this data could enhance our understanding of structural contributions to atrial rhythm and pump disorders and lead to improvements in their targeted treatment.
Collapse
Affiliation(s)
- Farhad Pashakhanloo
- From the Departments of Biomedical Engineering (F.P., D.A.H., N.A.T., E.R.M.), Medicine (H.A.), and Radiology (S.M., E.R.M), Johns Hopkins University, Baltimore, MD; Radiology and Imaging Sciences, National Institutes of Health Clinical Center, Bethesda, MD (N.G, D.A.B.); and Departments of Bioengineering, Medicine, and Radiology, University of California, San Diego (E.R.M.)
| | - Daniel A Herzka
- From the Departments of Biomedical Engineering (F.P., D.A.H., N.A.T., E.R.M.), Medicine (H.A.), and Radiology (S.M., E.R.M), Johns Hopkins University, Baltimore, MD; Radiology and Imaging Sciences, National Institutes of Health Clinical Center, Bethesda, MD (N.G, D.A.B.); and Departments of Bioengineering, Medicine, and Radiology, University of California, San Diego (E.R.M.)
| | - Hiroshi Ashikaga
- From the Departments of Biomedical Engineering (F.P., D.A.H., N.A.T., E.R.M.), Medicine (H.A.), and Radiology (S.M., E.R.M), Johns Hopkins University, Baltimore, MD; Radiology and Imaging Sciences, National Institutes of Health Clinical Center, Bethesda, MD (N.G, D.A.B.); and Departments of Bioengineering, Medicine, and Radiology, University of California, San Diego (E.R.M.)
| | - Susumu Mori
- From the Departments of Biomedical Engineering (F.P., D.A.H., N.A.T., E.R.M.), Medicine (H.A.), and Radiology (S.M., E.R.M), Johns Hopkins University, Baltimore, MD; Radiology and Imaging Sciences, National Institutes of Health Clinical Center, Bethesda, MD (N.G, D.A.B.); and Departments of Bioengineering, Medicine, and Radiology, University of California, San Diego (E.R.M.)
| | - Neville Gai
- From the Departments of Biomedical Engineering (F.P., D.A.H., N.A.T., E.R.M.), Medicine (H.A.), and Radiology (S.M., E.R.M), Johns Hopkins University, Baltimore, MD; Radiology and Imaging Sciences, National Institutes of Health Clinical Center, Bethesda, MD (N.G, D.A.B.); and Departments of Bioengineering, Medicine, and Radiology, University of California, San Diego (E.R.M.)
| | - David A Bluemke
- From the Departments of Biomedical Engineering (F.P., D.A.H., N.A.T., E.R.M.), Medicine (H.A.), and Radiology (S.M., E.R.M), Johns Hopkins University, Baltimore, MD; Radiology and Imaging Sciences, National Institutes of Health Clinical Center, Bethesda, MD (N.G, D.A.B.); and Departments of Bioengineering, Medicine, and Radiology, University of California, San Diego (E.R.M.)
| | - Natalia A Trayanova
- From the Departments of Biomedical Engineering (F.P., D.A.H., N.A.T., E.R.M.), Medicine (H.A.), and Radiology (S.M., E.R.M), Johns Hopkins University, Baltimore, MD; Radiology and Imaging Sciences, National Institutes of Health Clinical Center, Bethesda, MD (N.G, D.A.B.); and Departments of Bioengineering, Medicine, and Radiology, University of California, San Diego (E.R.M.)
| | - Elliot R McVeigh
- From the Departments of Biomedical Engineering (F.P., D.A.H., N.A.T., E.R.M.), Medicine (H.A.), and Radiology (S.M., E.R.M), Johns Hopkins University, Baltimore, MD; Radiology and Imaging Sciences, National Institutes of Health Clinical Center, Bethesda, MD (N.G, D.A.B.); and Departments of Bioengineering, Medicine, and Radiology, University of California, San Diego (E.R.M.).
| |
Collapse
|
81
|
Teh I, McClymont D, Burton RAB, Maguire ML, Whittington HJ, Lygate CA, Kohl P, Schneider JE. Resolving Fine Cardiac Structures in Rats with High-Resolution Diffusion Tensor Imaging. Sci Rep 2016; 6:30573. [PMID: 27466029 PMCID: PMC4964346 DOI: 10.1038/srep30573] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Accepted: 07/04/2016] [Indexed: 02/03/2023] Open
Abstract
Cardiac architecture is fundamental to cardiac function and can be assessed non-invasively with diffusion tensor imaging (DTI). Here, we aimed to overcome technical challenges in ex vivo DTI in order to extract fine anatomical details and to provide novel insights in the 3D structure of the heart. An integrated set of methods was implemented in ex vivo rat hearts, including dynamic receiver gain adjustment, gradient system scaling calibration, prospective adjustment of diffusion gradients, and interleaving of diffusion-weighted and non-diffusion-weighted scans. Together, these methods enhanced SNR and spatial resolution, minimised orientation bias in diffusion-weighting, and reduced temperature variation, enabling detection of tissue structures such as cell alignment in atria, valves and vessels at an unprecedented level of detail. Improved confidence in eigenvector reproducibility enabled tracking of myolaminar structures as a basis for segmentation of functional groups of cardiomyocytes. Ex vivo DTI facilitates acquisition of high quality structural data that complements readily available in vivo cardiac functional and anatomical MRI. The improvements presented here will facilitate next generation virtual models integrating micro-structural and electro-mechanical properties of the heart.
Collapse
Affiliation(s)
- Irvin Teh
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, OX3 7BN, United Kingdom
| | - Darryl McClymont
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, OX3 7BN, United Kingdom
| | - Rebecca A. B. Burton
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, OX1 3PT, United Kingdom
| | - Mahon L. Maguire
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, OX3 7BN, United Kingdom
| | - Hannah J. Whittington
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, OX3 7BN, United Kingdom
| | - Craig A. Lygate
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, OX3 7BN, United Kingdom
| | - Peter Kohl
- National Heart and Lung Institute, Imperial College London, London, SW3 6NP, United Kingdom
- Institute for Experimental Cardiovascular Medicine, University Heart Centre Freiburg · Bad Krozingen, Medical School of the University of Freiburg, Freiburg, 79110, Germany
| | - Jürgen E. Schneider
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, OX3 7BN, United Kingdom
| |
Collapse
|
82
|
Dibb R, Liu C. Joint eigenvector estimation from mutually anisotropic tensors improves susceptibility tensor imaging of the brain, kidney, and heart. Magn Reson Med 2016; 77:2331-2346. [PMID: 27385561 DOI: 10.1002/mrm.26321] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Revised: 05/18/2016] [Accepted: 06/02/2016] [Indexed: 01/29/2023]
Abstract
PURPOSE To develop a susceptibility-based MRI technique for probing microstructure and fiber architecture of magnetically anisotropic tissues-such as central nervous system white matter, renal tubules, and myocardial fibers-in three dimensions using susceptibility tensor imaging (STI) tools. THEORY AND METHODS STI can probe tissue microstructure, but is limited by reconstruction artifacts because of absent phase information outside the tissue and noise. STI accuracy may be improved by estimating a joint eigenvector from mutually anisotropic susceptibility and relaxation tensors. Gradient-recalled echo image data were simulated using a numerical phantom and acquired from the ex vivo mouse brain, kidney, and heart. Susceptibility tensor data were reconstructed using STI, regularized STI, and the proposed algorithm of mutually anisotropic and joint eigenvector STI (MAJESTI). Fiber map and tractography results from each technique were compared with diffusion tensor data. RESULTS MAJESTI reduced the estimated susceptibility tensor orientation error by 30% in the phantom, 36% in brain white matter, 40% in the inner medulla of the kidney, and 45% in myocardium. This improved the continuity and consistency of susceptibility-based fiber tractography in each tissue. CONCLUSION MAJESTI estimation of the susceptibility tensors yields lower orientation errors for susceptibility-based fiber mapping and tractography in the intact brain, kidney, and heart. Magn Reson Med 77:2331-2346, 2017. © 2016 International Society for Magnetic Resonance in Medicine.
Collapse
Affiliation(s)
- Russell Dibb
- Center for In Vivo Microscopy, Duke University Medical Center, Durham, North Carolina, USA.,Biomedical Engineering, Duke University, Durham, North Carolina, USA
| | - Chunlei Liu
- Center for In Vivo Microscopy, Duke University Medical Center, Durham, North Carolina, USA.,Biomedical Engineering, Duke University, Durham, North Carolina, USA.,Brain Imaging & Analysis Center, Duke University Medical Center, Durham, North Carolina, USA.,Radiology, Duke University Medical Center, Durham, North Carolina, USA
| |
Collapse
|
83
|
Teh I, Burton RAB, McClymont D, Capel RA, Aston D, Kohl P, Schneider JE. Mapping cardiac microstructure of rabbit heart in different mechanical states by high resolution diffusion tensor imaging: A proof-of-principle study. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2016; 121:85-96. [PMID: 27320383 PMCID: PMC4959513 DOI: 10.1016/j.pbiomolbio.2016.06.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Accepted: 06/13/2016] [Indexed: 01/27/2023]
Abstract
Myocardial microstructure and its macroscopic materialisation are fundamental to the function of the heart. Despite this importance, characterisation of cellular features at the organ level remains challenging, and a unifying description of the structure of the heart is still outstanding. Here, we optimised diffusion tensor imaging data to acquire high quality data in ex vivo rabbit hearts in slack and contractured states, approximating diastolic and systolic conditions. The data were analysed with a suite of methods that focused on different aspects of the myocardium. In the slack heart, we observed a similar transmural gradient in helix angle of the primary eigenvector of up to 23.6°/mm in the left ventricle and 24.2°/mm in the right ventricle. In the contractured heart, the same transmural gradient remained largely linear, but was offset by up to +49.9° in the left ventricle. In the right ventricle, there was an increase in the transmural gradient to 31.2°/mm and an offset of up to +39.0°. The application of tractography based on each eigenvector enabled visualisation of streamlines that depict cardiomyocyte and sheetlet organisation over large distances. We observed multiple V- and N-shaped sheetlet arrangements throughout the myocardium, and insertion of sheetlets at the intersection of the left and right ventricle. This study integrates several complementary techniques to visualise and quantify the heart's microstructure, projecting parameter representations across different length scales. This represents a step towards a more comprehensive characterisation of myocardial microstructure at the whole organ level.
Collapse
Affiliation(s)
- Irvin Teh
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Rebecca A B Burton
- Department of Pharmacology, University of Oxford, Oxford, United Kingdom
| | - Darryl McClymont
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Rebecca A Capel
- Department of Pharmacology, University of Oxford, Oxford, United Kingdom
| | - Daniel Aston
- Department of Pharmacology, University of Oxford, Oxford, United Kingdom
| | - Peter Kohl
- National Heart and Lung Institute, Imperial College London, London, United Kingdom; Institute for Experimental Cardiovascular Medicine, University Heart Centre Freiburg - Bad Krozingen, Medical School of the University of Freiburg, Germany
| | - Jürgen E Schneider
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, United Kingdom.
| |
Collapse
|
84
|
Magtibay K, Beheshti M, Foomany FH, Massé S, Lai PF, Zamiri N, Asta J, Nanthakumar K, Jaffray D, Krishnan S, Umapathy K. Feature-based MRI data fusion for cardiac arrhythmia studies. Comput Biol Med 2016; 72:13-21. [DOI: 10.1016/j.compbiomed.2016.02.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2015] [Revised: 01/25/2016] [Accepted: 02/10/2016] [Indexed: 11/24/2022]
|
85
|
Qin X, Fei B. DTI template-based estimation of cardiac fiber orientations from 3D ultrasound. Med Phys 2016; 42:2915-24. [PMID: 26127045 DOI: 10.1118/1.4921121] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
PURPOSE Cardiac muscle fibers directly affect the mechanical, physiological, and pathological properties of the heart. Patient-specific quantification of cardiac fiber orientations is an important but difficult problem in cardiac imaging research. In this study, the authors proposed a cardiac fiber orientation estimation method based on three-dimensional (3D) ultrasound images and a cardiac fiber template that was obtained from magnetic resonance diffusion tensor imaging (DTI). METHODS A DTI template-based framework was developed to estimate cardiac fiber orientations from 3D ultrasound images using an animal model. It estimated the cardiac fiber orientations of the target heart by deforming the fiber orientations of the template heart, based on the deformation field of the registration between the ultrasound geometry of the target heart and the MRI geometry of the template heart. In the experiments, the animal hearts were imaged by high-frequency ultrasound, T1-weighted MRI, and high-resolution DTI. RESULTS The proposed method was evaluated by four different parameters: Dice similarity coefficient (DSC), target errors, acute angle error (AAE), and inclination angle error (IAE). Its ability of estimating cardiac fiber orientations was first validated by a public database. Then, the performance of the proposed method on 3D ultrasound data was evaluated by an acquired database. Their average values were 95.4% ± 2.0% for the DSC of geometric registrations, 21.0° ± 0.76° for AAE, and 19.4° ± 1.2° for IAE of fiber orientation estimations. Furthermore, the feasibility of this framework was also performed on 3D ultrasound images of a beating heart. CONCLUSIONS The proposed framework demonstrated the feasibility of using 3D ultrasound imaging to estimate cardiac fiber orientation of in vivo beating hearts and its further improvements could contribute to understanding the dynamic mechanism of the beating heart and has the potential to help diagnosis and therapy of heart disease.
Collapse
Affiliation(s)
- Xulei Qin
- Department of Radiology and Imaging Sciences, Emory University School of Medicine, Atlanta, Georgia 30329
| | - Baowei Fei
- Department of Radiology and Imaging Sciences, Emory University School of Medicine, Atlanta, Georgia 30329; Department of Biomedical Engineering, Emory University and Georgia Institute of Technology, Atlanta, Georgia 30329; Winship Cancer Institute of Emory University, Atlanta, Georgia 30329; and Department of Mathematics and Computer Science, Emory University, Atlanta, Georgia 30329
| |
Collapse
|
86
|
Dormer J, Qin X, Shen M, Wang S, Zhang X, Jiang R, Wagner MB, Fei B. Determining Cardiac Fiber Orientation Using FSL and Registered Ultrasound/DTI volumes. PROCEEDINGS OF SPIE--THE INTERNATIONAL SOCIETY FOR OPTICAL ENGINEERING 2016; 9790. [PMID: 27660384 DOI: 10.1117/12.2217296] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
Accurate extraction of cardiac fiber orientation from diffusion tensor imaging is important for determining heart structure and function. However, the acquisition of magnetic resonance (MR) diffusion tensor images is costly and time consuming. By comparison, cardiac ultrasound imaging is rapid and relatively inexpensive, but it lacks the capability to directly measure fiber orientations. In order to create a detailed heart model from ultrasound data, a three-dimensional (3D) diffusion tensor imaging (DTI) with known fiber orientations can be registered to an ultrasound volume through a geometric mask. After registration, the cardiac orientations from the template DTI can be mapped to the heart using a deformable transformation field. This process depends heavily on accurate fiber orientation extraction from the DTI. In this study, we use the FMRIB Software Library (FSL) to determine cardiac fiber orientations in diffusion weighted images. For the registration between ultrasound and MRI volumes, we achieved an average Dice similarity coefficient (DSC) of 81.6±2.1%. For the estimation of fiber orientations from the proposed method, we achieved an acute angle error (AAE) of 22.7±3.1° as compared to the direct measurements from DTI. This work provides a new approach to generate cardiac fiber orientation that may be used for many cardiac applications.
Collapse
Affiliation(s)
- James Dormer
- Department of Nuclear and Radiological Engineering, George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA
| | - Xulei Qin
- Department of Radiology and Imaging Sciences, Emory University, Atlanta, GA
| | - Ming Shen
- Department of Pediatrics, Emory University, Atlanta, GA
| | - Silun Wang
- Yerkes National Primate Research Center, Emory University, Atlanta, GA
| | - Xiaodong Zhang
- Yerkes National Primate Research Center, Emory University, Atlanta, GA
| | - Rong Jiang
- Department of Pediatrics, Emory University, Atlanta, GA
| | - Mary B Wagner
- Department of Pediatrics, Emory University, Atlanta, GA
| | - Baowei Fei
- Department of Radiology and Imaging Sciences, Emory University, Atlanta, GA; Department of Biomedical Engineering, Emory University and Georgia Institute of Technology, Atlanta, GA
| |
Collapse
|
87
|
Agger P, Lakshminrusimha S, Laustsen C, Gugino S, Frandsen JR, Smerup M, Anderson RH, Hjortdal V, Steinhorn RH. The myocardial architecture changes in persistent pulmonary hypertension of the newborn in an ovine animal model. Pediatr Res 2016; 79:565-74. [PMID: 26679151 PMCID: PMC4837009 DOI: 10.1038/pr.2015.263] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Accepted: 09/28/2015] [Indexed: 12/28/2022]
Abstract
BACKGROUND Persistent pulmonary hypertension in the newborn remains a syndrome with high mortality. Knowledge of changes in myocardial architecture in the setting of heart failure in persistent pulmonary hypertension is lacking, and could aid in the explanation of the prevailing high mortality. METHODS Persistent pulmonary hypertension was induced by antenatal ligation of the arterial duct in six ovine fetuses. The hearts were compared ex vivo with five matched control hearts, using diffusion tensor imaging to provide the overall anatomical arrangement, and assessment of the angulations and course of the cardiomyocytes. Fibrosis was assessed with histology. RESULTS We found an overall increase in heart size in pulmonary hypertension, with myocardial thickening confined to the interventricular septum. An increase of 3.5° in angulation of myocyte aggregations was found in hypertensive hearts. In addition, we observed a 2.2% increase in collagen content in the right ventricular free wall. Finally, we found a previously undescribed subepicardial layer of strictly longitudinally oriented cardiomyocytes confined to the right ventricle in all hearts. CONCLUSION Myocardial fibrosis and possibly changes in angulations of myocytes seem to play a part in the etiology of persistent pulmonary hypertension. Moreover, a new anatomical arrangement of right ventricular mural architecture is described.
Collapse
Affiliation(s)
- Peter Agger
- Department of Cardiothoracic and Vascular Surgery, Aarhus University Hospital, Aarhus, Denmark,Department of Clinical Medicine, Aarhus University Hospital, Aarhus, Denmark
| | - Satyan Lakshminrusimha
- Division of Neonatology, Women and Children’s Hospital of Buffalo, State University of New York at Buffalo, Buffalo, New York
| | - Christoffer Laustsen
- Department of Clinical Medicine, Aarhus University Hospital, Aarhus, Denmark,MR Research Centre, Aarhus University Hospital, Aarhus, Denmark
| | - Sylvia Gugino
- Department of Physiology and Biophysics, State University of New York at Buffalo, Buffalo, New York
| | - Jesper R. Frandsen
- Center for Functionally Integrative Neuroscience, Aarhus University Hospital, Aarhus, Denmark
| | - Morten Smerup
- Department of Cardiothoracic and Vascular Surgery, Aarhus University Hospital, Aarhus, Denmark
| | - Robert H. Anderson
- Institute of Genetic Medicine, University of Newcastle, Newcastle-upon-Tyne, UK
| | - Vibeke Hjortdal
- Department of Cardiothoracic and Vascular Surgery, Aarhus University Hospital, Aarhus, Denmark,Department of Clinical Medicine, Aarhus University Hospital, Aarhus, Denmark
| | - Robin H. Steinhorn
- Division of Neonatology, UC Davis Children’s Hospital, Sacramento, California
| |
Collapse
|
88
|
Merchant SS, Gomez AD, Morgan JL, Hsu EW. Parametric Modeling of the Mouse Left Ventricular Myocardial Fiber Structure. Ann Biomed Eng 2016; 44:2661-73. [PMID: 26942586 DOI: 10.1007/s10439-016-1574-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Accepted: 02/17/2016] [Indexed: 12/26/2022]
Abstract
Magnetic resonance diffusion tensor imaging (DTI) has greatly facilitated detailed quantifications of myocardial structures. However, structural patterns, such as the distinctive transmural rotation of the fibers, remain incompletely described. To investigate the validity and practicality of pattern-based analysis, 3D DTI was performed on 13 fixed mouse hearts and fiber angles in the left ventricle were transformed and fitted to parametric expressions constructed from elementary functions of the prolate spheroidal spatial variables. It was found that, on average, the myocardial fiber helix angle could be represented to 6.5° accuracy by the equivalence of a product of 10th-order polynomials of the radial and longitudinal variables, and 17th-order Fourier series of the circumferential variable. Similarly, the fiber imbrication angle could be described by 10th-order polynomials and 24th-order Fourier series, to 5.6° accuracy. The representations, while relatively concise, did not adversely affect the information commonly derived from DTI datasets including the whole-ventricle mean fiber helix angle transmural span and atlases constructed for the group. The unique ability of parametric models for predicting the 3D myocardial fiber structure from finite number of 2D slices was also demonstrated. These findings strongly support the principle of parametric modeling for characterizing myocardial structures in the mouse and beyond.
Collapse
Affiliation(s)
- Samer S Merchant
- Department of Bioengineering, University of Utah, 36 S Wasatch Dr Rm 3100, Salt Lake City, UT, 84112, USA.
| | - Arnold David Gomez
- Department of Bioengineering, University of Utah, 36 S Wasatch Dr Rm 3100, Salt Lake City, UT, 84112, USA
- Division of Cardiothoracic Surgery, University of Utah, Salt Lake City, UT, USA
| | - James L Morgan
- Department of Bioengineering, University of Utah, 36 S Wasatch Dr Rm 3100, Salt Lake City, UT, 84112, USA
| | - Edward W Hsu
- Department of Bioengineering, University of Utah, 36 S Wasatch Dr Rm 3100, Salt Lake City, UT, 84112, USA
| |
Collapse
|
89
|
Mazumder R, Choi S, Clymer BD, White RD, Kolipaka A. Diffusion Tensor Imaging of Healthy and Infarcted Porcine Hearts: Study on the Impact of Formalin Fixation. J Med Imaging Radiat Sci 2016; 47:74-85. [PMID: 26989451 PMCID: PMC4790101 DOI: 10.1016/j.jmir.2015.10.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
BACKGROUND Due to complexities of in-vivo cardiac diffusion tensor imaging (DTI), ex-vivo formalin-fixed specimens are used to investigate cardiac remodeling in diseases, and reported results have shown conflicting trends. This study investigates the impact of formalin-fixation on diffusion properties and optimizes tracking parameters based on controls to understand remodeling in myocardial-infarction (MI). METHODS DTI was performed on 4 healthy (controls) and 4 MI induced formalin-fixed (PoMI) ex-vivo porcine hearts. Controls were scanned pre-fixation (PrCtrl) and re-scanned (PoCtrl) after formalin-fixation. Fractional anisotropy (FA) and apparent diffusion coefficient (ADC) were estimated in all hearts. Tracking parameters (FA, tract termination angle (TTA), fiber-length) were optimized in controls and then used to investigate structural remodeling in PoMI hearts. RESULTS Fixation increased ADC and decreased FA. PoMI showed increased ADC but decreased FA in infarcted zone compared to remote zone. TTA showed sharp increase in slope from 5°-10°, which flattened after 25° in all groups. Mean fiber-length for different tracking length range showed that PoCtrl had shorter fibers compared to PrCtrl. Fibers around infarction were shorter in length and disarrayed compared to PoCtrl group. CONCLUSION Formalin-fixation affects diffusion properties and hence DTI parametric trends observed in pathology may be influenced by the fixation process which can cause contradictory findings.
Collapse
Affiliation(s)
- Ria Mazumder
- Department of Electrical and Computer Engineering, 205
Dreese Laboratories, 2015 Neil Avenue, The Ohio State University, Columbus, Ohio
43210, USA
| | - Seongjin Choi
- Department of Radiology, Room 460, 395 W. 12th Avenue, The
Ohio State University, Columbus, Ohio 43210, USA
| | - Bradley D. Clymer
- Department of Electrical and Computer Engineering, 205
Dreese Laboratories, 2015 Neil Avenue, The Ohio State University, Columbus, Ohio
43210, USA
| | - Richard D. White
- Department of Radiology, Room 460, 395 W. 12th Avenue, The
Ohio State University, Columbus, Ohio 43210, USA
- Department of Internal Medicine-Division of Cardiovascular
Medicine, 244 Davis Heart & Lung Research Institute, 473 W. 12th Avenue, The
Ohio State University, Columbus, Ohio 43210, USA
| | - Arunark Kolipaka
- Department of Radiology, Room 460, 395 W. 12th Avenue, The
Ohio State University, Columbus, Ohio 43210, USA
- Department of Internal Medicine-Division of Cardiovascular
Medicine, 244 Davis Heart & Lung Research Institute, 473 W. 12th Avenue, The
Ohio State University, Columbus, Ohio 43210, USA
| |
Collapse
|
90
|
Mazumder R, Clymer BD, Mo X, White RD, Kolipaka A. Adaptive anisotropic gaussian filtering to reduce acquisition time in cardiac diffusion tensor imaging. Int J Cardiovasc Imaging 2016; 32:921-34. [PMID: 26843150 DOI: 10.1007/s10554-016-0848-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Accepted: 01/28/2016] [Indexed: 10/22/2022]
Abstract
Diffusion tensor imaging (DTI) is used to quantify myocardial fiber orientation based on helical angles (HA). Accurate HA measurements require multiple excitations (NEX) and/or several diffusion encoding directions (DED). However, increasing NEX and/or DED increases acquisition time (TA). Therefore, in this study, we propose to reduce TA by implementing a 3D adaptive anisotropic Gaussian filter (AAGF) on the DTI data acquired from ex-vivo healthy and infarcted porcine hearts. DTI was performed on ex-vivo hearts [9-healthy, 3-myocardial infarction (MI)] with several combinations of DED and NEX. AAGF, mean (AVF) and median filters (MF) were applied on the primary eigenvectors of the diffusion tensor prior to HA estimation. The performance of AAGF was compared against AVF and MF. Root mean square error (RMSE), concordance correlation-coefficients and Bland-Altman's technique was used to determine optimal combination of DED and NEX that generated the best HA maps in the least possible TA. Lastly, the effect of implementing AAGF on the infarcted porcine hearts was also investigated. RMSE in HA estimation for AAGF was lower compared to AVF or MF. Post-filtering (AAGF) fewer DED and NEX were required to achieve HA maps with similar integrity as those obtained from higher NEX and/or DED. Pathological alterations caused in HA orientation in the MI model were preserved post-filtering (AAGF). Our results demonstrate that AAGF reduces TA without affecting the integrity of the myocardial microstructure.
Collapse
Affiliation(s)
- Ria Mazumder
- Department of Electrical and Computer Engineering, The Ohio State University, 205 Dreese Laboratories, 2015 Neil Avenue, Columbus, OH, 43210, USA.,Department of Radiology, The Ohio State University, Room 460, 395 West 12th Avenue, 4th Floor, Columbus, OH, 43210, USA
| | - Bradley D Clymer
- Department of Electrical and Computer Engineering, The Ohio State University, 205 Dreese Laboratories, 2015 Neil Avenue, Columbus, OH, 43210, USA
| | - Xiaokui Mo
- Department of Biomedical Informatics, Center for Biostatistics, Room 320D, Lincoln Tower, 1800 Cannon Drive, Columbus, OH, 43210, USA
| | - Richard D White
- Department of Radiology, The Ohio State University, Room 460, 395 West 12th Avenue, 4th Floor, Columbus, OH, 43210, USA.,Division of Cardiovascular Medicine, Department of Internal Medicine, The Ohio State University, 244 Davis Heart and Lung Research Institute, 473 W. 12th Avenue, Columbus, OH, 43210, USA
| | - Arunark Kolipaka
- Department of Radiology, The Ohio State University, Room 460, 395 West 12th Avenue, 4th Floor, Columbus, OH, 43210, USA. .,Division of Cardiovascular Medicine, Department of Internal Medicine, The Ohio State University, 244 Davis Heart and Lung Research Institute, 473 W. 12th Avenue, Columbus, OH, 43210, USA.
| |
Collapse
|
91
|
McGill LA, Ferreira PF, Scott AD, Nielles-Vallespin S, Giannakidis A, Kilner PJ, Gatehouse PD, de Silva R, Firmin DN, Pennell DJ. Relationship between cardiac diffusion tensor imaging parameters and anthropometrics in healthy volunteers. J Cardiovasc Magn Reson 2016; 18:2. [PMID: 26738482 PMCID: PMC4704390 DOI: 10.1186/s12968-015-0215-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2015] [Accepted: 12/03/2015] [Indexed: 11/20/2022] Open
Abstract
BACKGROUND In vivo cardiac diffusion tensor imaging (cDTI) is uniquely capable of interrogating laminar myocardial dynamics non-invasively. A comprehensive dataset of quantative parameters and comparison with subject anthropometrics is required. METHODS cDTI was performed at 3T with a diffusion weighted STEAM sequence. Data was acquired from the mid left ventricle in 43 subjects during the systolic and diastolic pauses. Global and regional values were determined for fractional anisotropy (FA), mean diffusivity (MD), helix angle gradient (HAg, degrees/%depth) and the secondary eigenvector angulation (E2A). Regression analysis was performed between global values and subject anthropometrics. RESULTS All cDTI parameters displayed regional heterogeneity. The RR interval had a significant, but clinically small effect on systolic values for FA, HAg and E2A. Male sex and increasing left ventricular end diastolic volume were associated with increased systolic HAg. Diastolic HAg and systolic E2A were both directly related to left ventricular mass and body surface area. There was an inverse relationship between E2A mobility and both age and ejection fraction. CONCLUSIONS Future interpretations of quantitative cDTI data should take into account anthropometric variations observed with patient age, body surface area and left ventricular measurements. Further work determining the impact of technical factors such as strain and SNR is required.
Collapse
Affiliation(s)
- L A McGill
- NIHR Cardiovascular Biomedical Research Unit, Royal Brompton Hospital, Sydney Street, London, SW3 6NP, UK.
- National Heart and Lung Institute, Imperial College, London, UK.
| | - P F Ferreira
- NIHR Cardiovascular Biomedical Research Unit, Royal Brompton Hospital, Sydney Street, London, SW3 6NP, UK.
- National Heart and Lung Institute, Imperial College, London, UK.
| | - A D Scott
- NIHR Cardiovascular Biomedical Research Unit, Royal Brompton Hospital, Sydney Street, London, SW3 6NP, UK.
- National Heart and Lung Institute, Imperial College, London, UK.
| | - S Nielles-Vallespin
- NIHR Cardiovascular Biomedical Research Unit, Royal Brompton Hospital, Sydney Street, London, SW3 6NP, UK.
- National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD, USA.
| | - A Giannakidis
- NIHR Cardiovascular Biomedical Research Unit, Royal Brompton Hospital, Sydney Street, London, SW3 6NP, UK.
- National Heart and Lung Institute, Imperial College, London, UK.
| | - P J Kilner
- NIHR Cardiovascular Biomedical Research Unit, Royal Brompton Hospital, Sydney Street, London, SW3 6NP, UK.
- National Heart and Lung Institute, Imperial College, London, UK.
| | - P D Gatehouse
- NIHR Cardiovascular Biomedical Research Unit, Royal Brompton Hospital, Sydney Street, London, SW3 6NP, UK.
- National Heart and Lung Institute, Imperial College, London, UK.
| | - R de Silva
- NIHR Cardiovascular Biomedical Research Unit, Royal Brompton Hospital, Sydney Street, London, SW3 6NP, UK.
- National Heart and Lung Institute, Imperial College, London, UK.
| | - D N Firmin
- NIHR Cardiovascular Biomedical Research Unit, Royal Brompton Hospital, Sydney Street, London, SW3 6NP, UK.
- National Heart and Lung Institute, Imperial College, London, UK.
| | - D J Pennell
- NIHR Cardiovascular Biomedical Research Unit, Royal Brompton Hospital, Sydney Street, London, SW3 6NP, UK.
- National Heart and Lung Institute, Imperial College, London, UK.
| |
Collapse
|
92
|
Piuze E, Sporring J, Siddiqi K. Maurer-Cartan Forms for Fields on Surfaces: Application to Heart Fiber Geometry. IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 2015; 37:2492-2504. [PMID: 26539853 DOI: 10.1109/tpami.2015.2408352] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
We study the space of first order models of smooth frame fields using the method of moving frames. By exploiting the Maurer-Cartan matrix of connection forms we develop geometrical embeddings for frame fields which lie on spherical, ellipsoidal and generalized helicoid surfaces. We design methods for optimizing connection forms in local neighborhoods and apply these to a statistical analysis of heart fiber geometry, using diffusion magnetic resonance imaging. This application of moving frames corroborates and extends recent characterizations of muscle fiber orientation in the heart wall, but also provides for a rich geometrical interpretation. In particular, we can now obtain direct local measurements of the variation of the helix and transverse angles, of fiber fanning and twisting, and of the curvatures of the heart wall in which these fibers lie.
Collapse
|
93
|
von Deuster C, Stoeck CT, Genet M, Atkinson D, Kozerke S. Spin echo versus stimulated echo diffusion tensor imaging of the in vivo human heart. Magn Reson Med 2015; 76:862-72. [PMID: 26445426 PMCID: PMC4989478 DOI: 10.1002/mrm.25998] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2015] [Revised: 07/29/2015] [Accepted: 09/01/2015] [Indexed: 12/13/2022]
Abstract
Purpose To compare signal‐to‐noise ratio (SNR) efficiency and diffusion tensor metrics of cardiac diffusion tensor mapping using acceleration‐compensated spin‐echo (SE) and stimulated echo acquisition mode (STEAM) imaging. Methods Diffusion weighted SE and STEAM sequences were implemented on a clinical 1.5 Tesla MR system. The SNR efficiency of SE and STEAM was measured (b = 50–450 s/mm2) in isotropic agar, anisotropic diffusion phantoms and the in vivo human heart. Diffusion tensor analysis was performed on mean diffusivity, fractional anisotropy, helix and transverse angles. Results In the isotropic phantom, the ratio of SNR efficiency for SE versus STEAM, SNRt(SE/STEAM), was 2.84 ± 0.08 for all tested b‐values. In the anisotropic diffusion phantom the ratio decreased from 2.75 ± 0.05 to 2.20 ± 0.13 with increasing b‐value, similar to the in vivo decrease from 2.91 ± 0.43 to 2.30 ± 0.30. Diffusion tensor analysis revealed reduced deviation of helix angles from a linear transmural model and reduced transverse angle standard deviation for SE compared with STEAM. Mean diffusivity and fractional anisotropy were measured to be statistically different (P < 0.001) between SE and STEAM. Conclusion Cardiac DTI using motion‐compensated SE yields a 2.3–2.9× increase in SNR efficiency relative to STEAM and improved accuracy of tensor metrics. The SE method hence presents an attractive alternative to STEAM based approaches. Magn Reson Med 76:862–872, 2016. © 2015 The Authors. Magnetic Resonance in Medicine published by Wiley Periodicals, Inc. on behalf of International Society for Magnetic Resonance in Medicine. This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
Collapse
Affiliation(s)
- Constantin von Deuster
- Imaging Sciences and Biomedical Engineering, King's College London, London, United Kingdom.,Institute for Biomedical Engineering, University and ETH Zurich, Zurich, Switzerland
| | - Christian T Stoeck
- Imaging Sciences and Biomedical Engineering, King's College London, London, United Kingdom.,Institute for Biomedical Engineering, University and ETH Zurich, Zurich, Switzerland
| | - Martin Genet
- Institute for Biomedical Engineering, University and ETH Zurich, Zurich, Switzerland
| | - David Atkinson
- Centre for Medical Imaging, University College London, London, United Kingdom
| | - Sebastian Kozerke
- Imaging Sciences and Biomedical Engineering, King's College London, London, United Kingdom.,Institute for Biomedical Engineering, University and ETH Zurich, Zurich, Switzerland
| |
Collapse
|
94
|
Agger P, Lass T, Smerup M, Frandsen J, Pedersen M. Optimal preservation of porcine cardiac tissue prior to diffusion tensor magnetic resonance imaging. J Anat 2015; 227:695-701. [PMID: 26391195 DOI: 10.1111/joa.12377] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/13/2015] [Indexed: 11/26/2022] Open
Abstract
The effects of ex vivo preservation techniques on the quality of diffusion tensor magnetic resonance imaging in hearts are poorly understood, and the optimal handling procedure prior to investigation remains to be determined. Therefore, 24 porcine hearts were examined in six groups treated with different preservation techniques, including chemical fixation and freezing. Diffusion properties of each heart were assessed with diffusion tensor imaging in terms of fractional anisotropy (FA), mean diffusivity (MD), axial diffusivity (Da) and radial diffusivity (Dr). Tractography was performed to visualize the course of the cardiomyocytes, assuming greater diffusivity in the longitudinal than the transverse axis of individual cardiomyocytes. Significant differences in MD, Da and Dr were found, as well as in FA between groups (P < 0.001). Freezing of specimens resulted in the lowest mean FA of 0.21 (0.06) and highest Dr of 8.92 (1.5) mm2 s(-1) . The highest mean FA was found to be 0.43 (0.11) in hearts perfusion-fixed with formalin. Calculated tractographies were indistinguishable among groups except in frozen specimens, where no fibres could be tracked. Perfusion fixation with formalin provided the best tractography, but immersion fixation yielded diffusion data most similar to fresh hearts. These findings suggest that parameters derived from diffusion tensor imaging in ex vivo hearts are sensitive to fixation and storage methods. In particular, freezing of specimens should be avoided prior to diffusion tensor imaging investigation due to significant changes in diffusion parameters and subsequent image deteriorations.
Collapse
Affiliation(s)
- Peter Agger
- Department of Cardiothoracic & Vascular Surgery, Aarhus University Hospital, Aarhus, Denmark.,Comparative Medicine Lab, Aarhus University Hospital, Aarhus, Denmark.,Department of Clinical Medicine, Aarhus University Hospital, Aarhus, Denmark
| | - Thomas Lass
- Department of Cardiothoracic & Vascular Surgery, Aarhus University Hospital, Aarhus, Denmark
| | - Morten Smerup
- Department of Cardiothoracic & Vascular Surgery, Aarhus University Hospital, Aarhus, Denmark
| | - Jesper Frandsen
- Center for Functionally Integrative Neuroscience, Aarhus University Hospital, Aarhus, Denmark
| | - Michael Pedersen
- Comparative Medicine Lab, Aarhus University Hospital, Aarhus, Denmark.,Department of Clinical Medicine, Aarhus University Hospital, Aarhus, Denmark.,MR Research Center, Aarhus University Hospital, Aarhus, Denmark
| |
Collapse
|
95
|
Saeed M, Van TA, Krug R, Hetts SW, Wilson MW. Cardiac MR imaging: current status and future direction. Cardiovasc Diagn Ther 2015; 5:290-310. [PMID: 26331113 DOI: 10.3978/j.issn.2223-3652.2015.06.07] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2015] [Accepted: 06/17/2015] [Indexed: 12/12/2022]
Abstract
Coronary artery disease is currently a worldwide epidemic with increasing impact on healthcare systems. Magnetic resonance imaging (MRI) sequences give complementary information on LV function, regional perfusion, angiogenesis, myocardial viability and orientations of myocytes. T2-weighted short-tau inversion recovery (T2-STIR), fat suppression and black blood sequences have been frequently used for detecting edematous area at risk (AAR) of infarction. T2 mapping, however, indicated that the edematous reaction in acute myocardial infarct (AMI) is not stable and warranted the use of edematous area in evaluating therapies. On the other hand, cine MRI demonstrated reproducible data on LV function in healthy volunteers and LV remodeling in patients. Noninvasive first pass perfusion, using exogenous tracer (gadolinium-based contrast media) and arterial spin labeling MRI, using endogenous tracer (water), are sensitive and useful techniques for evaluating myocardial perfusion and angiogenesis. Recently, new strategies have been developed to quantify myocardial viability using T1-mapping and equilibrium contrast enhanced MR techniques because existing delayed contrast enhancement MRI (DE-MRI) sequences are limited in detecting patchy microinfarct and diffuse fibrosis. These new techniques were successfully used for characterizing diffuse myocardial fibrosis associated with myocarditis, amyloidosis, sarcoidosis heart failure, aortic hypertrophic cardiomyopathy, congenital heart disease, restrictive cardiomyopathy, arrhythmogenic right ventricular dysplasia and hypertension). Diffusion MRI provides information regarding microscopic tissue structure, while diffusion tensor imaging (DTI) helps to characterize the myocardium and monitor the process of LV remodeling after AMI. Novel trends in hybrid imaging, such as cardiac positron emission tomography (PET)/MRI and optical imaging/MRI, are recently under intensive investigation. With the promise of higher spatial-temporal resolution and 3D coverage in the near future, cardiac MRI will be an indispensible tool in the diagnosis of cardiac diseases, coronary intervention and myocardial therapeutic delivery.
Collapse
Affiliation(s)
- Maythem Saeed
- 1 Department of Radiology and Biomedical Imaging, School of Medicine, University of California San Francisco, San Francisco, CA, USA ; 2 Zentralinstitut für Medizintechnik, Technical University of Munich, Munich, Germany
| | - Tu Anh Van
- 1 Department of Radiology and Biomedical Imaging, School of Medicine, University of California San Francisco, San Francisco, CA, USA ; 2 Zentralinstitut für Medizintechnik, Technical University of Munich, Munich, Germany
| | - Roland Krug
- 1 Department of Radiology and Biomedical Imaging, School of Medicine, University of California San Francisco, San Francisco, CA, USA ; 2 Zentralinstitut für Medizintechnik, Technical University of Munich, Munich, Germany
| | - Steven W Hetts
- 1 Department of Radiology and Biomedical Imaging, School of Medicine, University of California San Francisco, San Francisco, CA, USA ; 2 Zentralinstitut für Medizintechnik, Technical University of Munich, Munich, Germany
| | - Mark W Wilson
- 1 Department of Radiology and Biomedical Imaging, School of Medicine, University of California San Francisco, San Francisco, CA, USA ; 2 Zentralinstitut für Medizintechnik, Technical University of Munich, Munich, Germany
| |
Collapse
|
96
|
David Gomez A, Bull DA, Hsu EW. Finite-Element Extrapolation of Myocardial Structure Alterations Across the Cardiac Cycle in Rats. J Biomech Eng 2015; 137:101010. [PMID: 26299478 DOI: 10.1115/1.4031419] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2015] [Indexed: 11/08/2022]
Abstract
Myocardial microstructures are responsible for key aspects of cardiac mechanical function. Natural myocardial deformation across the cardiac cycle induces measurable structural alteration, which varies across disease states. Diffusion tensor magnetic resonance imaging (DT-MRI) has become the tool of choice for myocardial structural analysis. Yet, obtaining the comprehensive structural information of the whole organ, in 3D and time, for subject-specific examination is fundamentally limited by scan time. Therefore, subject-specific finite-element (FE) analysis of a group of rat hearts was implemented for extrapolating a set of initial DT-MRI to the rest of the cardiac cycle. The effect of material symmetry (isotropy, transverse isotropy, and orthotropy), structural input, and warping approach was observed by comparing simulated predictions against in vivo MRI displacement measurements and DT-MRI of an isolated heart preparation at relaxed, inflated, and contracture states. Overall, the results indicate that, while ventricular volume and circumferential strain are largely independent of the simulation strategy, structural alteration predictions are generally improved with the sophistication of the material model, which also enhances torsion and radial strain predictions. Moreover, whereas subject-specific transversely isotropic models produced the most accurate descriptions of fiber structural alterations, the orthotropic models best captured changes in sheet structure. These findings underscore the need for subject-specific input data, including structure, to extrapolate DT-MRI measurements across the cardiac cycle.
Collapse
|
97
|
Dibb R, Qi Y, Liu C. Magnetic susceptibility anisotropy of myocardium imaged by cardiovascular magnetic resonance reflects the anisotropy of myocardial filament α-helix polypeptide bonds. J Cardiovasc Magn Reson 2015; 17:60. [PMID: 26177899 PMCID: PMC4504227 DOI: 10.1186/s12968-015-0159-4] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Accepted: 06/23/2015] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND A key component of evaluating myocardial tissue function is the assessment of myofiber organization and structure. Studies suggest that striated muscle fibers are magnetically anisotropic, which, if measurable in the heart, may provide a tool to assess myocardial microstructure and function. METHODS To determine whether this weak anisotropy is observable and spatially quantifiable with cardiovascular magnetic resonance (CMR), both gradient-echo and diffusion-weighted data were collected from intact mouse heart specimens at 9.4 Tesla. Susceptibility anisotropy was experimentally calculated using a voxelwise analysis of myocardial tissue susceptibility as a function of myofiber angle. A myocardial tissue simulation was developed to evaluate the role of the known diamagnetic anisotropy of the peptide bond in the observed susceptibility contrast. RESULTS The CMR data revealed that myocardial tissue fibers that were parallel and perpendicular to the magnetic field direction appeared relatively paramagnetic and diamagnetic, respectively. A linear relationship was found between the magnetic susceptibility of the myocardial tissue and the squared sine of the myofiber angle with respect to the field direction. The multi-filament model simulation yielded susceptibility anisotropy values that reflected those found in the experimental data, and were consistent that this anisotropy decreased as the echo time increased. CONCLUSIONS Though other sources of susceptibility anisotropy in myocardium may exist, the arrangement of peptide bonds in the myofilaments is a significant, and likely the most dominant source of susceptibility anisotropy. This anisotropy can be further exploited to probe the integrity and organization of myofibers in both healthy and diseased heart tissue.
Collapse
Affiliation(s)
- Russell Dibb
- Center for In Vivo Microscopy, Duke University Medical Center, Box 3302, Durham, NC, 27710, USA.
- Biomedical Engineering, Duke University Medical Center, Campus Box 90281, Durham, NC, 27708, USA.
| | - Yi Qi
- Center for In Vivo Microscopy, Duke University Medical Center, Box 3302, Durham, NC, 27710, USA.
| | - Chunlei Liu
- Brain Imaging & Analysis Center, Duke University Medical Center, Box 3918, Durham, NC, 27710, USA.
- Radiology, Duke University Medical Center, Box 3808, Durham, NC, 27710, USA.
| |
Collapse
|
98
|
Heterogeneity of Fractional Anisotropy and Mean Diffusivity Measurements by In Vivo Diffusion Tensor Imaging in Normal Human Hearts. PLoS One 2015; 10:e0132360. [PMID: 26177211 PMCID: PMC4503691 DOI: 10.1371/journal.pone.0132360] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2015] [Accepted: 06/14/2015] [Indexed: 11/19/2022] Open
Abstract
Background Cardiac diffusion tensor imaging (cDTI) by cardiovascular magnetic resonance has the potential to assess microstructural changes through measures of fractional anisotropy (FA) and mean diffusivity (MD). However, normal variation in regional and transmural FA and MD is not well described. Methods Twenty normal subjects were scanned using an optimised cDTI sequence at 3T in systole. FA and MD were quantified in 3 transmural layers and 4 regional myocardial walls. Results FA was higher in the mesocardium (0.46 ±0.04) than the endocardium (0.40 ±0.04, p≤0.001) and epicardium (0.39 ±0.04, p≤0.001). On regional analysis, the FA in the septum was greater than the lateral wall (0.44 ±0.03 vs 0.40 ±0.05 p = 0.04). There was a transmural gradient in MD increasing towards the endocardium (epicardium 0.87 ±0.07 vs endocardium 0.91 ±0.08×10-3 mm2/s, p = 0.04). With the lateral wall (0.87 ± 0.08×10-3 mm2/s) as the reference, the MD was higher in the anterior wall (0.92 ±0.08×10-3 mm2/s, p = 0.016) and septum (0.92 ±0.07×10-3 mm2/s, p = 0.028). Transmurally the signal to noise ratio (SNR) was greatest in the mesocardium (14.5 ±2.5 vs endocardium 13.1 ±2.2, p<0.001; vs epicardium 12.0 ± 2.4, p<0.001) and regionally in the septum (16.0 ±3.4 vs lateral wall 11.5 ± 1.5, p<0.001). Transmural analysis suggested a relative reduction in the rate of change in helical angle (HA) within the mesocardium. Conclusions In vivo FA and MD measurements in normal human heart are heterogeneous, varying significantly transmurally and regionally. Contributors to this heterogeneity are many, complex and interactive, but include SNR, variations in cardiac microstructure, partial volume effects and strain. These data indicate that the potential clinical use of FA and MD would require measurement standardisation by myocardial region and layer, unless pathological changes substantially exceed the normal variation identified.
Collapse
|
99
|
Burton RAB, Lee P, Casero R, Garny A, Siedlecka U, Schneider JE, Kohl P, Grau V. Three-dimensional histology: tools and application to quantitative assessment of cell-type distribution in rabbit heart. Europace 2015; 16 Suppl 4:iv86-iv95. [PMID: 25362175 PMCID: PMC4217519 DOI: 10.1093/europace/euu234] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Aims Cardiac histo-anatomical organization is a major determinant of function. Changes in tissue structure are a relevant factor in normal and disease development, and form targets of therapeutic interventions. The purpose of this study was to test tools aimed to allow quantitative assessment of cell-type distribution from large histology and magnetic resonance imaging- (MRI) based datasets. Methods and results Rabbit heart fixation during cardioplegic arrest and MRI were followed by serial sectioning of the whole heart and light-microscopic imaging of trichrome-stained tissue. Segmentation techniques developed specifically for this project were applied to segment myocardial tissue in the MRI and histology datasets. In addition, histology slices were segmented into myocytes, connective tissue, and undefined. A bounding surface, containing the whole heart, was established for both MRI and histology. Volumes contained in the bounding surface (called ‘anatomical volume’), as well as that identified as containing any of the above tissue categories (called ‘morphological volume’), were calculated. The anatomical volume was 7.8 cm3 in MRI, and this reduced to 4.9 cm3 after histological processing, representing an ‘anatomical’ shrinkage by 37.2%. The morphological volume decreased by 48% between MRI and histology, highlighting the presence of additional tissue-level shrinkage (e.g. an increase in interstitial cleft space). The ratio of pixels classified as containing myocytes to pixels identified as non-myocytes was roughly 6:1 (61.6 vs. 9.8%; the remaining fraction of 28.6% was ‘undefined’). Conclusion Qualitative and quantitative differentiation between myocytes and connective tissue, using state-of-the-art high-resolution serial histology techniques, allows identification of cell-type distribution in whole-heart datasets. Comparison with MRI illustrates a pronounced reduction in anatomical and morphological volumes during histology processing.
Collapse
Affiliation(s)
- Rebecca A B Burton
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford OX1 3PT, UK
| | - Peter Lee
- Department of Physics, University of Oxford, Oxford OX1 3RH, UK
| | - Ramón Casero
- Institute of Biomedical Engineering, Department of Engineering Science, University of Oxford, Oxford OX3 7DQ, UK
| | - Alan Garny
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford OX1 3PT, UK
| | - Urszula Siedlecka
- The Heart Science Centre, National Heart and Lung Institute, Imperial College London, Harefield UB9 6JH, UK
| | - Jürgen E Schneider
- British Heart Foundation Experimental MR Unit, Radcliffe Department of Medicine, Division of Cardiovascular Medicine, University of Oxford, Oxford OX3 7BN, UK
| | - Peter Kohl
- The Heart Science Centre, National Heart and Lung Institute, Imperial College London, Harefield UB9 6JH, UK
| | - Vicente Grau
- Institute of Biomedical Engineering, Department of Engineering Science, University of Oxford, Oxford OX3 7DQ, UK
| |
Collapse
|
100
|
Bernus O, Radjenovic A, Trew ML, LeGrice IJ, Sands GB, Magee DR, Smaill BH, Gilbert SH. Comparison of diffusion tensor imaging by cardiovascular magnetic resonance and gadolinium enhanced 3D image intensity approaches to investigation of structural anisotropy in explanted rat hearts. J Cardiovasc Magn Reson 2015; 17:31. [PMID: 25926126 PMCID: PMC4414435 DOI: 10.1186/s12968-015-0129-x] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2014] [Accepted: 03/11/2015] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Cardiovascular magnetic resonance (CMR) can through the two methods 3D FLASH and diffusion tensor imaging (DTI) give complementary information on the local orientations of cardiomyocytes and their laminar arrays. METHODS Eight explanted rat hearts were perfused with Gd-DTPA contrast agent and fixative and imaged in a 9.4T magnet by two types of acquisition: 3D fast low angle shot (FLASH) imaging, voxels 50 × 50 × 50 μm, and 3D spin echo DTI with monopolar diffusion gradients of 3.6 ms duration at 11.5 ms separation, voxels 200 × 200 × 200 μm. The sensitivity of each approach to imaging parameters was explored. RESULTS The FLASH data showed laminar alignments of voxels with high signal, in keeping with the presumed predominance of contrast in the interstices between sheetlets. It was analysed, using structure-tensor (ST) analysis, to determine the most (v1(ST)), intermediate (v2(ST)) and least (v3(ST)) extended orthogonal directions of signal continuity. The DTI data was analysed to determine the most (e1(DTI)), intermediate (e2(DTI)) and least (e3(DTI)) orthogonal eigenvectors of extent of diffusion. The correspondence between the FLASH and DTI methods was measured and appraised. The most extended direction of FLASH signal (v1(ST)) agreed well with that of diffusion (e1(DTI)) throughout the left ventricle (representative discrepancy in the septum of 13.3 ± 6.7°: median ± absolute deviation) and both were in keeping with the expected local orientations of the long-axis of cardiomyocytes. However, the orientation of the least directions of FLASH signal continuity (v3(ST)) and diffusion (e3(ST)) showed greater discrepancies of up to 27.9 ± 17.4°. Both FLASH (v3(ST)) and DTI (e3(DTI)) where compared to directly measured laminar arrays in the FLASH images. For FLASH the discrepancy between the structure-tensor calculated v3(ST) and the directly measured FLASH laminar array normal was of 9 ± 7° for the lateral wall and 7 ± 9° for the septum (median ± inter quartile range), and for DTI the discrepancy between the calculated v3(DTI) and the directly measured FLASH laminar array normal was 22 ± 14° and 61 ± 53.4°. DTI was relatively insensitive to the number of diffusion directions and to time up to 72 hours post fixation, but was moderately affected by b-value (which was scaled by modifying diffusion gradient pulse strength with fixed gradient pulse separation). Optimal DTI parameters were b = 1000 mm/s(2) and 12 diffusion directions. FLASH acquisitions were relatively insensitive to the image processing parameters explored. CONCLUSIONS We show that ST analysis of FLASH is a useful and accurate tool in the measurement of cardiac microstructure. While both FLASH and the DTI approaches appear promising for mapping of the alignments of myocytes throughout myocardium, marked discrepancies between the cross myocyte anisotropies deduced from each method call for consideration of their respective limitations.
Collapse
Affiliation(s)
- Olivier Bernus
- Inserm U1045 - Centre de Recherche Cardio-Thoracique, L'Institut de rythmologie et modélisation cardiaque LIRYC, Université de Bordeaux, PTIB - campus Xavier Arnozan, Avenue du Haut Leveque, 33604, Pessac, France.
| | - Aleksandra Radjenovic
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, BHF Glasgow Cardiovascular Research Centre, 126 University Place, Glasgow, G12 8TA, UK.
| | - Mark L Trew
- Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand.
| | - Ian J LeGrice
- Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand.
- Department of Physiology, University of Auckland, Auckland, New Zealand.
| | - Gregory B Sands
- Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand.
| | - Derek R Magee
- School of Computing, The University of Leeds, Leeds, LS2 9JT, UK.
| | - Bruce H Smaill
- Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand.
- Department of Physiology, University of Auckland, Auckland, New Zealand.
| | - Stephen H Gilbert
- Mathematical Cell Physiology, Max-Delbrück-Center for Molecular Medicine (MDC), Robert-Rössle-Straße 10, 13125, Berlin, Germany.
| |
Collapse
|