51
|
Marchant DJ, Boyd JH, Lin DC, Granville DJ, Garmaroudi FS, McManus BM. Inflammation in myocardial diseases. Circ Res 2012; 110:126-44. [PMID: 22223210 DOI: 10.1161/circresaha.111.243170] [Citation(s) in RCA: 215] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Inflammatory processes underlie a broad spectrum of conditions that injure the heart muscle and cause both structural and functional deficits. In this article, we address current knowledge regarding 4 common forms of myocardial inflammation: myocardial ischemia and reperfusion, sepsis, viral myocarditis, and immune rejection. Each of these pathological states has its own unique features in pathogenesis and disease evolution, but all reflect inflammatory mechanisms that are partially shared. From the point of injury to the mobilization of innate and adaptive immune responses and inflammatory amplification, the cellular and soluble mediators and mechanisms examined in this review will be discussed with a view that both beneficial and adverse consequences arise in these human conditions.
Collapse
Affiliation(s)
- David J Marchant
- James Hogg Research Centre and Institute for Heart + Lung Health, Department of Pathology and Laboratory Medicine, University of British Columbia, Providence Health Care, Vancouver, Canada
| | | | | | | | | | | |
Collapse
|
52
|
Goldklang M, Golovatch P, Zelonina T, Trischler J, Rabinowitz D, Lemaître V, D'Armiento J. Activation of the TLR4 signaling pathway and abnormal cholesterol efflux lead to emphysema in ApoE-deficient mice. Am J Physiol Lung Cell Mol Physiol 2012; 302:L1200-8. [PMID: 22447954 DOI: 10.1152/ajplung.00454.2010] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Smokers with airflow obstruction have an increased risk of atherosclerosis, but the relationship between the pathogenesis of these diseases is not well understood. To determine whether hypercholesterolemia alters lung inflammation and emphysema formation, we examined the lung phenotype of two hypercholesterolemic murine models of atherosclerosis at baseline and on a high-fat diet. Airspace enlargement developed in the lungs of apolipoprotein E-deficient (Apoe(-/-)) mice exposed to a Western-type diet for 10 wk. An elevated number of macrophages and lymphocytes accompanied by an increase in matrix metalloproteinase-9 (MMP-9) activity and MMP-12 expression was observed in the lungs of Apoe(-/-) mice on a Western-type diet. In contrast, low-density lipoprotein receptor-deficient (Ldlr(-/-)) mice did not exhibit lung destruction or inflammatory changes. Most importantly, we revealed augmented expression of the downstream targets of the Toll-like receptor (TLR) pathway, interleukin-1 receptor-associated kinase 1, and granulocyte colony-stimulating factor, in the lungs of Apoe(-/-) mice fed with a Western-type diet. In addition, we demonstrated overexpression of MMP-9 in Apoe(-/-) macrophages treated with TLR4 ligand, augmented with the addition of oxidized LDL, suggesting that emphysema in these mice results from the activation of the TLR pathway secondary to known abnormal cholesterol efflux. Our findings indicate that, in Apoe(-/-) mice fed with an atherogenic diet, abnormal cholesterol efflux leads to increased systemic inflammation with subsequent lung damage and emphysema formation.
Collapse
Affiliation(s)
- Monica Goldklang
- Department of Medicine, Division of Molecular Medicine, Columbia University College of Physicians and Surgeons, New York, NY 10032, USA
| | | | | | | | | | | | | |
Collapse
|
53
|
Schneberger D, Aharonson-Raz K, Singh B. Pulmonary intravascular macrophages and lung health: what are we missing? Am J Physiol Lung Cell Mol Physiol 2012; 302:L498-503. [PMID: 22227203 DOI: 10.1152/ajplung.00322.2011] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Pulmonary intravascular macrophages (PIMs) are constitutively found in species such as cattle, horse, pig, sheep, goat, cats, and whales and can be induced in species such as rats, which normally lack them. It is believed that human lung lacks PIMs, but there are previous suggestions of their induction in patients suffering from liver dysfunction. Recent data show induction of PIMs in bile-duct ligated rats and humans suffering from hepato-pulmonary syndrome. Because constitutive and induced PIMs are pro-inflammatory in response to endotoxins and bacteria, there is a need to study their biology in inflammatory lung diseases such as sepsis, asthma, chronic obstructive pulmonary diseases, or hepato-pulmonary syndrome. We provide a review of PIM biology to make an argument for increased emphasis and better focus on the study of human PIMs to better understand their potential role in the pathophysiology and mechanisms of pulmonary diseases.
Collapse
Affiliation(s)
- David Schneberger
- Department of Veterinary Biomedical Sciences, University of Saskatchewan, Saskatoon, Canada
| | | | | |
Collapse
|
54
|
Kossenkov AV, Vachani A, Chang C, Nichols C, Billouin S, Horng W, Rom WN, Albelda SM, Showe MK, Showe LC. Resection of non-small cell lung cancers reverses tumor-induced gene expression changes in the peripheral immune system. Clin Cancer Res 2011; 17:5867-77. [PMID: 21807633 DOI: 10.1158/1078-0432.ccr-11-0737] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE To characterize the interactions of non-small cell lung cancer (NSCLC) tumors with the immune system at the level of mRNA and microRNA (miRNA) expression and to define expression signatures that characterize the presence of a malignant tumor versus a nonmalignant nodule. EXPERIMENTAL DESIGN We have examined the changes of both mRNA and miRNA expression levels in peripheral blood mononuclear cells (PBMC) between paired samples collected from NSCLC patients before and after tumor removal using Illumina gene expression arrays. RESULTS We found that malignant tumor removal significantly changes expression of more than 3,000 protein-coding genes, especially genes in pathways associated with suppression of the innate immune response, including natural killer cell signaling and apoptosis-associated ceramide signaling. Binding sites for the ETS domain transcription factors ELK1, ELK4, and SPI1 were enriched in promoter regions of genes upregulated in the presence of a tumor. Additional important regulators included five miRNAs expressed at significantly higher levels before tumor removal. Repressed protein-coding targets of those miRNAs included many transcription factors, several involved in immunologically important pathways. Although there was a significant overlap in the effects of malignant tumors and benign lung nodules on PBMC gene expression, we identified one gene panel which indicates a tumor or nodule presence and a second panel that can distinguish malignant from nonmalignant nodules. CONCLUSIONS A tumor presence in the lung influences mRNA and miRNA expression in PBMC and this influence is reversed by tumor removal. These results suggest that PBMC gene expression signatures could be used for lung cancer diagnosis.
Collapse
|
55
|
Erdmann J, Vitale G, van Koetsveld PM, Croze E, Sprij-Mooij DM, Hofland LJ, van Eijck CH. Effects of Interferons α/β on the Proliferation of Human Micro- and Macrovascular Endothelial Cells. J Interferon Cytokine Res 2011; 31:451-8. [DOI: 10.1089/jir.2009.0103] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Affiliation(s)
- Joris Erdmann
- Department of Surgery, Erasmus MC, Rotterdam, The Netherlands
- Department of Internal Medicine, Division Endocrinology, Erasmus MC, Rotterdam, The Netherlands
| | - Giovanni Vitale
- Department of Internal Medicine, Division Endocrinology, Erasmus MC, Rotterdam, The Netherlands
- Chair of Endocrinology, Department of Medical Sciences, Faculty of Medicine, University of Milan, Milan, Italy
- IRCCS, Instituto Auxologico Italiano, Milan, Italy
| | - Peter M. van Koetsveld
- Department of Internal Medicine, Division Endocrinology, Erasmus MC, Rotterdam, The Netherlands
| | - Ed Croze
- Department of Immunology, Berlex Bioscience, Inc., Richmond, California
| | - Diane M. Sprij-Mooij
- Department of Internal Medicine, Division Endocrinology, Erasmus MC, Rotterdam, The Netherlands
| | - Leo J. Hofland
- Department of Internal Medicine, Division Endocrinology, Erasmus MC, Rotterdam, The Netherlands
| | | |
Collapse
|
56
|
|
57
|
Ckless K, Hodgkins SR, Ather JL, Martin R, Poynter ME. Epithelial, dendritic, and CD4(+) T cell regulation of and by reactive oxygen and nitrogen species in allergic sensitization. Biochim Biophys Acta Gen Subj 2011; 1810:1025-34. [PMID: 21397661 DOI: 10.1016/j.bbagen.2011.03.005] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2010] [Revised: 02/28/2011] [Accepted: 03/03/2011] [Indexed: 12/15/2022]
Abstract
BACKGROUND While many of the contributing cell types and mediators of allergic asthma are known, less well understood are the factors that induce allergy in the first place. Amongst the mediators speculated to affect initial allergen sensitization and the development of pathogenic allergic responses to innocuous inhaled antigens and allergens are exogenously or endogenously generated reactive oxygen species (ROS) and reactive nitrogen species (RNS). SCOPE OF REVIEW The interactions between ROS/RNS, dendritic cells (DCs), and CD4(+) T cells, as well as their modulation by lung epithelium, are of critical importance for the genesis of allergies that later manifest in allergic asthma. Therefore, this review will primarily focus on the initiation of pulmonary allergies and the role that ROS/RNS may play in the steps therein, using examples from our own work on the roles of NO(2) exposure and airway epithelial NF-κB activation. MAJOR CONCLUSIONS Endogenously generated ROS/RNS and those encountered from environmental sources interact with epithelium, DCs, and CD4(+) T cells to orchestrate allergic sensitization through modulation of the activities of each of these cell types, which quantitiatively and qualitatively dictate the degree and type of the allergic asthma phenotype. GENERAL SIGNIFICANCE Knowledge of the effects of ROS/RNS at the molecular and cellular levels has the potential to provide powerful insight into the balance between inhalational tolerance (the typical immunologic response to an innocuous inhaled antigen) and allergy, as well as to potentially provide mechanistic targets for the prevention and treatment of asthma.
Collapse
Affiliation(s)
- Karina Ckless
- Department of Chemistry, SUNY Plattsburgh, Plattsburgh, NY, United States
| | | | | | | | | |
Collapse
|
58
|
Meng L, He X, Zhu W, Yang X, Jiang C, Sun Q, Raza M.B. A, Zhang S, Xue Q, Xie X, Lu S. TLR3 and TLR7 modulate IgE production in antigen induced pulmonary inflammation via influencing IL-4 expression in immune organs. PLoS One 2011; 6:e17252. [PMID: 21364926 PMCID: PMC3045401 DOI: 10.1371/journal.pone.0017252] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2010] [Accepted: 01/23/2011] [Indexed: 02/06/2023] Open
Abstract
Background Toll-like receptors (TLRs) as pattern recognition receptors, participate in both innate and adaptive immune responses, and seem to play an important role in the pathogenesis of asthma. This study aimed to identify key TLRs involved in antigen induced pulmonary inflammation (AIPI), a rat model for asthma, and to explore the role of TLRs in the disease development. Methods and Findings E3 rats were sensitized with ovalbumin (OVA)/alum intraperitoneally and intranasally challenged with OVA to induce AIPI model. TLR1-9 and cytokine mRNA expression in spleen, lung and mediastinal lymph node (mLN) tissues were screened by quantitative real-time polymerase chain reaction. TLR7 expression was found to be significantly down-regulated in spleen while TLR3 and TLR8 expression was up-regulated in mLN of AIPI rats. Furthermore, imiquimod (a ligand of TLR7) and TLR3 specific short-hairpin RNA plasmid for RNA interference were administrated, respectively, in vivo to AIPI rats to observe their effects on the disease by assessing various asthmatic parameters. The numbers of total cells, eosinophils, macrophages and lymphocytes were counted according to differential morphology in bronchoalveolar lavage fluid. Serum IgE and OVA specific IgG1 concentration was detected by enzyme-linked immunosorbent assay. The results showed that both TLR7 ligand treatment and TLR3 RNAi in vivo decreased serum IgE level and interleukin-4 mRNA expression. Conclusion/Significance TLR3 in mLN and TLR7 in spleen both systemically modulate disease development in AIPI rats via altering serum IgE concentration relevant to Th2 responses. And these findings may provide an important clue for further research in the asthma pathogenesis and suggest a new remedy for asthma treatment.
Collapse
Affiliation(s)
- Liesu Meng
- Department of Genetics and Molecular Biology, Xi'an Jiaotong University School of Medicine, Xi'an, Shaanxi, China
- Key Laboratory of Environment and Genes Related to Diseases, Xi'an Jiaotong University, Ministry of Education, Xi'an, Shaanxi, China
| | - Xiaojing He
- Department of Genetics and Molecular Biology, Xi'an Jiaotong University School of Medicine, Xi'an, Shaanxi, China
- Key Laboratory of Environment and Genes Related to Diseases, Xi'an Jiaotong University, Ministry of Education, Xi'an, Shaanxi, China
| | - Wenhua Zhu
- Department of Genetics and Molecular Biology, Xi'an Jiaotong University School of Medicine, Xi'an, Shaanxi, China
- Key Laboratory of Environment and Genes Related to Diseases, Xi'an Jiaotong University, Ministry of Education, Xi'an, Shaanxi, China
| | - Xudong Yang
- Department of Genetics and Molecular Biology, Xi'an Jiaotong University School of Medicine, Xi'an, Shaanxi, China
- Key Laboratory of Environment and Genes Related to Diseases, Xi'an Jiaotong University, Ministry of Education, Xi'an, Shaanxi, China
| | - Congshan Jiang
- Department of Genetics and Molecular Biology, Xi'an Jiaotong University School of Medicine, Xi'an, Shaanxi, China
- Key Laboratory of Environment and Genes Related to Diseases, Xi'an Jiaotong University, Ministry of Education, Xi'an, Shaanxi, China
| | - Qingzhu Sun
- Department of Genetics and Molecular Biology, Xi'an Jiaotong University School of Medicine, Xi'an, Shaanxi, China
- Key Laboratory of Environment and Genes Related to Diseases, Xi'an Jiaotong University, Ministry of Education, Xi'an, Shaanxi, China
| | - Asim Raza M.B.
- Department of Genetics and Molecular Biology, Xi'an Jiaotong University School of Medicine, Xi'an, Shaanxi, China
- Key Laboratory of Environment and Genes Related to Diseases, Xi'an Jiaotong University, Ministry of Education, Xi'an, Shaanxi, China
| | - Simeng Zhang
- Department of Genetics and Molecular Biology, Xi'an Jiaotong University School of Medicine, Xi'an, Shaanxi, China
| | - Qian Xue
- Department of Genetics and Molecular Biology, Xi'an Jiaotong University School of Medicine, Xi'an, Shaanxi, China
| | - Xinfang Xie
- Department of Genetics and Molecular Biology, Xi'an Jiaotong University School of Medicine, Xi'an, Shaanxi, China
| | - Shemin Lu
- Department of Genetics and Molecular Biology, Xi'an Jiaotong University School of Medicine, Xi'an, Shaanxi, China
- Key Laboratory of Environment and Genes Related to Diseases, Xi'an Jiaotong University, Ministry of Education, Xi'an, Shaanxi, China
- * E-mail:
| |
Collapse
|
59
|
Shoji N, Asano K, Furuta A, Hirano K, Suzaki H. Effect of Histamine H1 Receptor Antagonists on TARC/CCL17 and MDC/CCL22 Production from CD14+ Cells Induced by Antigenic Stimulation in vitro. Int Arch Allergy Immunol 2011; 155:38-51. [DOI: 10.1159/000318720] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2009] [Accepted: 06/17/2010] [Indexed: 11/19/2022] Open
|
60
|
Abstract
Our understanding of vitamin D metabolism and biological effects has grown exponentially in recent years and it has become clear that vitamin D has extensive immunomodulatory effects. The active vitamin D generating enzyme, 1α-hydroxylase, is expressed by the airway epithelium, alveolar macrophages, dendritic cells, and lymphocytes indicating that active vitamin D can be produced locally within the lungs. Vitamin D generated in tissues is responsible for many of the immunomodulatory actions of vitamin D. The effects of vitamin D within the lungs include increased secretion of the antimicrobial peptide cathelicidin, decreased chemokine production, inhibition of dendritic cell activation, and alteration of T-cell activation. These cellular effects are important for host responses against infection and the development of allergic lung diseases like asthma. Epidemiological studies do suggest that vitamin D deficiency predisposes to viral respiratory tract infections and mycobacterial infections and that vitamin D may play a role in the development and treatment of asthma. Randomized, placebo-controlled trials are lacking but ongoing.
Collapse
Affiliation(s)
- Sif Hansdottir
- Department of Medicine, University of Iowa Carver College of Medicine and Veterans Administration Medical Center, Iowa City, IA 52242
| | - Martha M. Monick
- Department of Medicine, University of Iowa Carver College of Medicine and Veterans Administration Medical Center, Iowa City, IA 52242
| |
Collapse
|
61
|
Dodrill MW, Beezhold DH, Meighan T, Kashon ML, Fedan JS. Lipopolysaccharide increases Na+,K+-pump, but not ENaC, expression in guinea-pig airway epithelium. Eur J Pharmacol 2011; 651:176-86. [DOI: 10.1016/j.ejphar.2010.10.088] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2010] [Revised: 10/18/2010] [Accepted: 10/31/2010] [Indexed: 10/18/2022]
|
62
|
Awasthi S, Brown K, King C, Awasthi V, Bondugula R. A toll-like receptor-4-interacting surfactant protein-A-derived peptide suppresses tumor necrosis factor-α release from mouse JAWS II dendritic cells. J Pharmacol Exp Ther 2010; 336:672-81. [PMID: 21159752 DOI: 10.1124/jpet.110.173765] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Surfactant protein-A (SP-A) and Toll-like receptor-4 (TLR4) proteins are recognized as pathogen-recognition receptors. An exaggerated activation of TLR4 induces inflammatory response, whereas SP-A protein down-regulates inflammation. We hypothesized that SP-A-TLR4 interaction may lead to inhibition of inflammation. In this study, we investigated interaction between native baboon lung SP-A and baboon and human TLR4-MD2 proteins by coimmunoprecipitation/immunoblotting and microwell-based methods. The interaction between SP-A and TLR4-MD2 proteins was then analyzed using a bioinformatics approach. In the in silico model of SP-A-TLR4-MD2 complex, we identified potential binding regions and amino acids at the interface of SP-A-TLR4. Using this information, we synthesized a library of human SP-A-derived peptides that contained interacting amino acids. Next, we tested whether the TLR4-interacting SP-A peptides would suppress inflammatory cytokines. The peptides were screened for any changes in the tumor necrosis factor-α (TNF-α) response against lipopolysaccharide (LPS) stimuli in the mouse JAWS II dendritic cell line. Different approaches used in this study suggested binding between SP-A and TLR4-MD2 proteins. In cells pretreated with peptides, three of seven peptides increased TNF-α production against LPS. However, two of these peptides (SPA4: GDFRYSDGTPVNYTNWYRGE and SPA5: YVGLTEGPSPGDFRYSDFTP) decreased the TNF-α production in LPS-challenged JAWS II dendritic cells; SPA4 peptide showed more pronounced inhibitory effect than SPA5 peptide. In conclusion, we identify a human SP-A-derived peptide (SPA4 peptide) that interacts with TLR4-MD2 protein and inhibits the LPS-stimulated release of TNF-α in JAWS II dendritic cells.
Collapse
Affiliation(s)
- Shanjana Awasthi
- Department of Pharmaceutical Sciences, University of Oklahoma Health Science Center, Oklahoma City, OK, USA.
| | | | | | | | | |
Collapse
|
63
|
Abstract
Toll-like receptors (TLRs) are critical components of the innate immune system, acting as pattern recognition molecules and triggering an inflammatory response. TLR associated gene products are of interest in modulating inflammatory-related pulmonary diseases of the neonate. The ontogeny of TLR-related genes in human fetal lung has not been previously described and could elucidate additional functions and identify strategies for attenuating the effects of fetal inflammation. We examined the expression of 84 TLR-related genes on 23 human fetal lung samples from three groups with estimated ages of 60 (57-59 d), 90 (89-91 d), and 130 (117-154 d) d. By using a false detection rate algorithm, we identified 32 genes displaying developmental regulation with TLR2 having the greatest up-regulation of TLR genes (9.2-fold increase) and TLR4 unchanged. We confirmed the TLR2 up-regulation by examining an additional 133 fetal lung tissue samples with a fluorogenic polymerase chain reaction assay (TaqMan) and found an exponential best-fit curve during the study time. The best-fit curve predicts a 6.1-fold increase from 60 to 130 d. We conclude that TLR2 is developmentally expressed from the early pseudoglandular stage of lung development to the canalicular stage.
Collapse
Affiliation(s)
- Joshua E Petrikin
- Department of Pediatrics, University of Missouri-Kansas City School of Medicine, Kansas City, Missouri 64108, USA.
| | - Roger Gaedigk
- Division of Pediatric Pharmacology and Medical Toxicology, University of Missouri-Kansas City School of Medicine, Kansas City, MO 64108
| | - J Steven Leeder
- Division of Pediatric Pharmacology and Medical Toxicology, University of Missouri-Kansas City School of Medicine, Kansas City, MO 64108
| | - William E Truog
- Department of Pediatrics, University of Missouri-Kansas City School of Medicine, Kansas City, MO 64108
| |
Collapse
|
64
|
Association of Toll-like receptor signaling and reactive oxygen species: a potential therapeutic target for posttrauma acute lung injury. Mediators Inflamm 2010; 2010. [PMID: 20706658 PMCID: PMC2913855 DOI: 10.1155/2010/916425] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2009] [Revised: 06/01/2010] [Accepted: 06/08/2010] [Indexed: 02/06/2023] Open
Abstract
Acute lung injury (ALI) frequently occurs in traumatic patients and serves as an important component of systemic inflammatory response syndrome (SIRS). Hemorrhagic shock (HS) that results from major trauma promotes the development of SIRS and ALI by priming the innate immune system for an exaggerated inflammatory response. Recent studies have reported that the mechanism underlying the priming of pulmonary inflammation involves the complicated cross-talk between Toll-like receptors (TLRs) and interactions between neutrophils (PMNs) and alveolar macrophages (AMvarphi) as well as endothelial cells (ECs), in which reactive oxygen species (ROS) are the key mediator. This paper summarizes some novel mechanisms underlying HS-primed lung inflammation focusing on the role of TLRs and ROS, and therefore suggests a new therapeutic target for posttrauma ALI.
Collapse
|
65
|
Wu YL, Kou YR, Ou HL, Chien HY, Chuang KH, Liu HH, Lee TS, Tsai CY, Lu ML. Glucosamine regulation of LPS-mediated inflammation in human bronchial epithelial cells. Eur J Pharmacol 2010; 635:219-26. [DOI: 10.1016/j.ejphar.2010.02.044] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2009] [Revised: 01/28/2010] [Accepted: 02/23/2010] [Indexed: 12/23/2022]
|
66
|
Anas A, van der Poll T, de Vos AF. Role of CD14 in lung inflammation and infection. CRITICAL CARE : THE OFFICIAL JOURNAL OF THE CRITICAL CARE FORUM 2010; 14:209. [PMID: 20236452 PMCID: PMC2887102 DOI: 10.1186/cc8850] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
This article is one of ten reviews selected from the Yearbook of Intensive Care and Emergency Medicine 2010 (Springer Verlag) and co-published as a series in Critical Care. Other articles in the series can be found online at http://ccforum.com/series/yearbook. Further information about the Yearbook of Intensive Care and Emergency Medicine is available from http://www.springer.com/series/2855.
Collapse
Affiliation(s)
- Adam Anas
- Center for Experimental and Molecular Medicine, Center of Infection and Immunity, Academic Medical Center, Meibergdreef 9, Amsterdam, Netherlands
| | | | | |
Collapse
|
67
|
Oliveira M, Gleeson M. The influence of prolonged cycling on monocyte Toll-like receptor 2 and 4 expression in healthy men. Eur J Appl Physiol 2010; 109:251-7. [PMID: 20063104 DOI: 10.1007/s00421-009-1350-9] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/28/2009] [Indexed: 11/26/2022]
Abstract
Several studies have reported that some immune cell functions including monocyte Toll-like receptor (TLR) expression and antigen presentation are temporarily impaired following acute bouts of strenuous exercise, which could represent an 'open window' to upper respiratory tract infection (URTI). However, we do not know the time course of effects of acute exercise on human monocyte TLR expression. The purpose of the present study was to examine the effects of 1.5 h cycling at 75% VO(2peak) on human monocyte TLR2 and TLR4 expression and how long it takes for TLR expression to return to pre-exercise values. Nine healthy endurance trained males (age 25 +/- 5 years) had blood samples taken before and for up to 24 h after exercise and analysed using flow cytometry. Although there was an increase in the total monocyte cell count at 0, 1 and 4 h post-exercise (P < 0.01), exercise reduced monocyte TLR4 expression (geometric mean fluorescence intensity, corrected for non-specific binding; P < 0.05) by 32 and 45% at 0 and 1 h post-exercise, respectively, compared with pre-exercise values but had returned to baseline values by 4 h post-exercise. There were no statistically significant changes in TLR2 expression after exercise. In addition, a control resting study was conducted on six healthy endurance trained men (age 25 +/- 2 years) to analyse any diurnal changes on monocyte TLR2 and TLR4 expression but no changes were found across time (P > 0.05). This study showed that prolonged cycling at 75% VO(2peak) temporarily reduces TLR4 expression, which may in part be responsible for post-exercise immunodepression.
Collapse
|
68
|
Expression of toll‐like receptor 2 mRNA in bronchial epithelial cells is not induced in RAO‐affected horses. Equine Vet J 2010; 41:76-81. [DOI: 10.2746/042516408x347592] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
69
|
Anas A, Van Der Poll T, De Vas AF. Role of CD14 in Lung Inflammation and Infection. Intensive Care Med 2010. [PMCID: PMC7120299 DOI: 10.1007/978-1-4419-5562-3_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Toll-like receptors (TLR) on the surface of cells of the respiratory tract play an essential role in sensing the presence of microorganisms in the airways and lungs. These receptors trigger inflammatory responses, activate innate immune responses, and prime adaptive immune responses to eradicate invading microbes [1]. TLR are members of a family of pattern-recognition receptors, which recognize molecular structures of bacteria, viruses, fungi and protozoa (pathogen-associated molecular patterns or PAMPs), as well as endogenous structures and proteins released during inflammation (damage/danger-associated molecular patterns or DAMPs). To date, ten different TLR have been identified in humans and twelve in mice. TLR are expressed on all cells of the immune system, but also on parenchymal cells of many organs and tissues. The binding of a PAMP to a TLR results in cellular activation and initiates a variety of effector functions, including cytokine secretion, proliferation’ co-stimulation or phagocyte maturation. To facilitate microbial recognition and to amplify cellular responses, certain TLR require additional proteins, such as lipopolysaccharide (LPS) binding protein (LBP), CD14, CD36 and high mobility group box-l protein (HMGB-l). In this chapter, the role of CD14 as an accessory receptor for TLR in lung inflammation and infection is discussed. The central role of CD14 in the recognition of various PAMPs and amplification of immune and inflammatory responses in the lung is depicted in Fig. 1. Central role of CD14 in pathogen- and pathogen-associated molecular pattern (PAMP)-induced responses in the lung. CD14, which lacks an intracellular domain for signal transduction, is expressed on the surface of alveolar macrophages, infiltrating monocytes and neutrophils, and at lower levels also on epithelial and endothelial cells in the lung. CD14 recognizes and binds various structures from invading microbes, such as lipopolysaccharide (LPS) from Gram-negative bacteria, lipoteichoic acid (LTA) from Gram-positive bacteria, lipoarabinomannan (LAM) from mycobacteria, viral double stranded (ds) RNA and F glycoprotein (F-gp) from respiratory syncytial virus (RSV). CD14 subsequently transfers these bound components to Toll-like receptors (TLR) which than trigger cell activation. Binding of LPS to CD14 is regulated by additional accessory receptors in the lung, including LPS-binding protein (LBP) and a number of surfactant proteins (SP). Furthermore, soluble CD14 (sCD14) enhances LPS-induced activation of cells with low CD14 expression. Depending on the microbe and the PAMPs it expresses, CD14-amplified responses can either be beneficial to the host by induction of an adequate inflammatory and immune response to eradicate the invading microbe, or detrimental to the host by excessive inflammation and/or dissemination of the pathogen. ![]()
Collapse
|
70
|
Role of CD14 in Lung Inflammation and Infection. YEARBOOK OF INTENSIVE CARE AND EMERGENCY MEDICINE 2010. [PMCID: PMC7124092 DOI: 10.1007/978-3-642-10286-8_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Toll-like receptors (TLR) on the surface of cells of the respiratory tract play an essential role in sensing the presence of microorganisms in the airways and lungs. These receptors trigger inflammatory responses, activate innate immune responses, and prime adaptive immune responses to eradicate invading microbes [1]. TLR are members of a family of pattern-recognition receptors, which recognize molecular structures of bacteria, viruses, fungi and protozoa (pathogen-associated molecular patterns or PAMPs), as well as endogenous structures and proteins released during inflammation (damage/danger-associated molecular patterns or DAMPs). To date, ten different TLR have been identified in humans and twelve in mice. TLR are expressed on all cells of the immune system, but also on parenchymal cells of many organs and tissues. The binding of a PAMP to a TLR results in cellular activation and initiates a variety of effector functions, including cytokine secretion, proliferation, co-stimulation or phagocyte maturation. To facilitate microbial recognition and to amplify cellular responses, certain TLR require additional proteins, such as lipopolysaccharide (LPS) binding protein (LBP), CD14, CD36 and high mobility group box-1 protein (HMGB-1). In this chapter, the role of CD14 as an accessory receptor for TLR in lung inflammation and infection is discussed. The central role of CD14 in the recognition of various PAMPs and amplification of immune and inflammatory responses in the lung is depicted in Figure 1.
Central role of CD14 in pathogen- and pathogen-associated molecular pattern (PAMP)-induced responses in the lung. CD14, which lacks an intracellular domain for signal transduction, is expressed on the surface of alveolar macrophages, infiltrating monocytes and neutrophils, and at lower levels also on epithelial and endothelial cells in the lung. CD14 recognizes and binds various structures from invading microbes, such as lipopolysaccharide (LPS) from Gram-negative bacteria, lipoteichoic acid (LTA) from Grampositive bacteria, lipoarabinomannan (LAM) from mycobacteria, viral double stranded (ds) RNA and F glycoprotein (F-gp) from respiratory syncytial virus (RSV). CD14 subsequently transfers these bound components to Toll-like receptors (TLR) which than trigger cell activation. Binding of LPS to CD14 is regulated by additional accessory receptors in the lung, including LPS-binding protein (LBP) and a number of surfactant proteins (SP). Furthermore, soluble CD14 (sCD14) enhances LPS-induced activation of cells with low CD14 expression. Depending on the microbe and the PAMPs it expresses, CD14-amplified responses can either be beneficial to the host by induction of an adequate inflammatory and immune response to eradicate the invading microbe, or detrimental to the host by excessive inflammation and/or dissemination of the pathogen. ![]()
Collapse
|
71
|
Hansdottir S, Monick MM, Lovan N, Powers L, Gerke A, Hunninghake GW. Vitamin D decreases respiratory syncytial virus induction of NF-kappaB-linked chemokines and cytokines in airway epithelium while maintaining the antiviral state. THE JOURNAL OF IMMUNOLOGY 2009; 184:965-74. [PMID: 20008294 DOI: 10.4049/jimmunol.0902840] [Citation(s) in RCA: 248] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Epidemiological studies suggest that low vitamin D levels may increase the risk or severity of respiratory viral infections. In this study, we examined the effect of vitamin D on respiratory syncytial virus (RSV)-infected human airway epithelial cells. Airway epithelium converts 25-hydroxyvitamin D3 (storage form) to 1,25-dihydroxyvitamin D3 (active form). Active vitamin D, generated locally in tissues, is important for the nonskeletal actions of vitamin D, including its effects on immune responses. We found that vitamin D induces IkappaBalpha, an NF-kappaB inhibitor, in airway epithelium and decreases RSV induction of NF-kappaB-driven genes such as IFN-beta and CXCL10. We also found that exposing airway epithelial cells to vitamin D reduced induction of IFN-stimulated proteins with important antiviral activity (e.g., myxovirus resistance A and IFN-stimulated protein of 15 kDa). In contrast to RSV-induced gene expression, vitamin D had no effect on IFN signaling, and isolated IFN induced gene expression. Inhibiting NF-kappaB with an adenovirus vector that expressed a nondegradable form of IkappaBalpha mimicked the effects of vitamin D. When the vitamin D receptor was silenced with small interfering RNA, the vitamin D effects were abolished. Most importantly we found that, despite inducing IkappaBalpha and dampening chemokines and IFN-beta, there was no increase in viral mRNA or protein or in viral replication. We conclude that vitamin D decreases the inflammatory response to viral infections in airway epithelium without jeopardizing viral clearance. This suggests that adequate vitamin D levels would contribute to reduced inflammation and less severe disease in RSV-infected individuals.
Collapse
Affiliation(s)
- Sif Hansdottir
- Department of Medicine, University of Iowa Carver College of Medicine and Veterans Administration Medical Center, Iowa City, IA 52242-1081, USA.
| | | | | | | | | | | |
Collapse
|
72
|
Kukulski F, Ben Yebdri F, Bahrami F, Lévesque SA, Martín-Satué M, Sévigny J. The P2 receptor antagonist PPADS abrogates LPS-induced neutrophil migration in the murine air pouch via inhibition of MIP-2 and KC production. Mol Immunol 2009; 47:833-9. [PMID: 19889460 DOI: 10.1016/j.molimm.2009.09.037] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2009] [Revised: 09/23/2009] [Accepted: 09/30/2009] [Indexed: 12/15/2022]
Abstract
In this work, we show that P2 nucleotide receptors control lipopolysaccharide (LPS)-induced neutrophil migration in the mouse air pouch model. Neutrophil infiltration in LPS-treated air pouches was reduced by the intravenous (iv) administration of the non-selective P2 receptor antagonist PPADS but not by suramin and RB-2. In addition, the iv administration of a P2 receptor ligand, UTP, enhanced LPS-induced neutrophil migration. In contrast, the iv injection of UDP had no effect on neutrophil migration. These data suggest that LPS-induced neutrophil migration in the air pouch could involve P2Y(4) receptor which is antagonized by PPADS, activated by UTP, but not UDP, and insensitive to suramin. The inhibition of neutrophil migration by PPADS correlated with a diminished secretion of chemokines macrophage inflammatory protein-2 (MIP-2) and keratinocyte-derived chemokine (KC) in the air pouch exudates. As determined in vitro, PPADS did not affect MIP-2 and KC release from air pouch resident cells nor from accumulated neutrophils. MIP-2 and KC production in the LPS-treated air pouches correlated with an early neutrophil migration (1h after LPS injection), and both of these effects were significantly reduced in mice administered with PPADS. Altogether, these data suggest that P2Y(4) receptor expressed in circulating leukocytes and/or endothelium controls LPS-induced acute neutrophil recruitment in mouse air pouch.
Collapse
Affiliation(s)
- Filip Kukulski
- Centre de Recherche en Rhumatologie et Immunologie, Centre Hospitalier Universitaire de Québec, Université Laval, 2705 Boulevard Laurier, Local T1-49, Québec, QC G1V 4G2, Canada
| | | | | | | | | | | |
Collapse
|
73
|
Xiang M, Fan J. Pattern recognition receptor-dependent mechanisms of acute lung injury. Mol Med 2009; 16:69-82. [PMID: 19949486 PMCID: PMC2785474 DOI: 10.2119/molmed.2009.00097] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2009] [Accepted: 10/30/2009] [Indexed: 12/23/2022] Open
Abstract
Acute lung injury (ALI) that clinically manifests as acute respiratory distress syndrome is caused by an uncontrolled systemic inflammatory response resulting from clinical events including sepsis, major surgery and trauma. Innate immunity activation plays a central role in the development of ALI. Innate immunity is activated through families of related pattern recognition receptors (PRRs), which recognize conserved microbial motifs or pathogen-associated molecular patterns (PAMPs). Toll-like receptors were the first major family of PRRs discovered in mammals. Recently, NACHT-leucine-rich repeat (LRR) receptors and retinoic acid-inducible gene-like receptors have been added to the list. It is now understood that in addition to recognizing infectious stimuli, both Toll-like receptors and NACHT-LRR receptors can also respond to endogenous molecules released in response to stress, trauma and cell damage. These molecules have been termed damage-associated molecular patterns (DAMPs). It has been clinically observed for a long time that infectious and noninfectious insults initiate inflammation, so confirmation of overlapping receptor-signal pathways of activation between PAMPs and DAMPs is no surprise. This review provides an overview of the PRR-dependent mechanisms of ALI and clinical implication. Modification of PRR pathways is likely to be a logical therapeutic target for ALI/acute respiratory distress syndrome.
Collapse
Affiliation(s)
- Meng Xiang
- Department of Surgery, School of Medicine, University of Pittsburgh and Surgical Research, VA Pittsburgh Healthcare System, Pittsburgh, Pennsylvania 15240, United States of America
| | | |
Collapse
|
74
|
Langefeld T, Mohamed W, Ghai R, Chakraborty T. Toll-like receptors and NOD-like receptors: domain architecture and cellular signalling. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2009; 653:48-57. [PMID: 19799111 DOI: 10.1007/978-1-4419-0901-5_4] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/27/2023]
Abstract
The innate immune system forms the first line of defense against pathogens. The Toll-like receptors and the Nod-like receptors are at the forefront of both extracellular and intracellular pathogen recognition. They recognize the most conserved structures of microbes and initiate the response to infection. In addition to the microbial stimuli, they are now also being implicated in the recognition of danger-associated stimuli, making them pivotal in disorders unrelated to microbial pathogenesis. Toll-like receptors and the Nod-like receptors share commonalities in structure, ligands and downstream signalling but they differ in their localization, and extent of influence on a wide variety of cellular processes including apoptosis. Here we discuss the common ligand recognition and signalling modules in both these classes of receptors.
Collapse
|
75
|
Sim SH, Liu Y, Wang D, Novem V, Sivalingam SP, Thong TW, Ooi EE, Tan G. Innate immune responses of pulmonary epithelial cells to Burkholderia pseudomallei infection. PLoS One 2009; 4:e7308. [PMID: 19806192 PMCID: PMC2751829 DOI: 10.1371/journal.pone.0007308] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2009] [Accepted: 09/15/2009] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Burkholderia pseudomallei, a facultative intracellular pathogen, causes systemic infection in humans with high mortality especially when infection occurs through an infectious aerosol. Previous studies indicated that the epithelial cells in the lung are an active participant in host immunity. In this study, we aimed to investigate the innate immune responses of lung epithelial cells against B. pseudomallei. METHODOLOGY AND PRINCIPAL FINDINGS Using a murine lung epithelial cell line, primary lung epithelial cells and an inhalational murine infection model, we characterized the types of innate immunity proteins and peptides produced upon B. pseudomallei infection. Among a wide panel of immune components studied, increased levels of major pro-inflammatory cytokines IL-6 and TNFalpha, chemokine MCP-1, and up-regulation of secretory leukocyte protease inhibitor (SLPI) and chemokine (C-C motif) ligand 20 (CCL20) were observed. Inhibition assays using specific inhibitors suggested that NF-kappaB and p38 MAPK pathways were responsible for these B. pseudomallei-induced antimicrobial peptides. CONCLUSIONS Our findings indicate that the respiratory epithelial cells, which form the majority of the cells lining the epithelial tract and the lung, have important roles in the innate immune response against B. pseudomallei infection.
Collapse
Affiliation(s)
- Siew Hoon Sim
- Defence Medical and Environmental Research Institute, DSO National Laboratories, Singapore, Republic of Singapore
| | - Yichun Liu
- Defence Medical and Environmental Research Institute, DSO National Laboratories, Singapore, Republic of Singapore
| | - Dongling Wang
- Defence Medical and Environmental Research Institute, DSO National Laboratories, Singapore, Republic of Singapore
| | - Vidhya Novem
- Defence Medical and Environmental Research Institute, DSO National Laboratories, Singapore, Republic of Singapore
| | | | - Tuck Weng Thong
- Defence Medical and Environmental Research Institute, DSO National Laboratories, Singapore, Republic of Singapore
| | - Eng Eong Ooi
- Defence Medical and Environmental Research Institute, DSO National Laboratories, Singapore, Republic of Singapore
- Program in Emerging Infectious Diseases, Duke-NUS Graduate Medical School, Singapore, Republic of Singapore
| | - Gladys Tan
- Defence Medical and Environmental Research Institute, DSO National Laboratories, Singapore, Republic of Singapore
| |
Collapse
|
76
|
Doi K, Leelahavanichkul A, Yuen PST, Star RA. Animal models of sepsis and sepsis-induced kidney injury. J Clin Invest 2009; 119:2868-78. [PMID: 19805915 DOI: 10.1172/jci39421] [Citation(s) in RCA: 415] [Impact Index Per Article: 27.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Sepsis is characterized by a severe inflammatory response to infection, and its complications, including acute kidney injury, can be fatal. Animal models that correctly mimic human disease are extremely valuable because they hasten the development of clinically useful therapeutics. Too often, however, animal models do not properly mimic human disease. In this Review, we outline a bedside-to-bench-to-bedside approach that has resulted in improved animal models for the study of sepsis - a complex disease for which preventive and therapeutic strategies are unfortunately lacking. We also highlight a few of the promising avenues for therapeutic advances and biomarkers for sepsis and sepsis-induced acute kidney injury. Finally, we review how the study of drug targets and biomarkers are affected by and in turn have influenced these evolving animal models.
Collapse
Affiliation(s)
- Kent Doi
- Department of Nephrology and Endocrinology, University of Tokyo, Tokyo, Japan
| | | | | | | |
Collapse
|
77
|
Pahwa P, Karunanayake CP, Rennie DC, Chen Y, Schwartz DA, Dosman JA. Association of the TLR4 Asp299Gly polymorphism with lung function in relation to body mass index. BMC Pulm Med 2009; 9:46. [PMID: 19772581 PMCID: PMC2759902 DOI: 10.1186/1471-2466-9-46] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2008] [Accepted: 09/21/2009] [Indexed: 12/20/2022] Open
Abstract
Background Previous studies have shown conflicting results for the association between TLR4 polymorphism (Asp299Gly) and lung function. We investigated the influence of TLR4 Asp299Gly, a polymorphism, on lung function in a community population. Methods In 2003, a cross-sectional survey was conducted to assess the respiratory health of residents living in and around the town of Humboldt, Saskatchewan, Canada. There were 2090 adults age 18-79 years who completed a questionnaire that included a medical and smoking history, as well as socio-economic and lifestyle variables. Genetic information and lung function test measurements were available on 1725 subjects (754 males and 971 females) of the 2090 respondents. These subjects were selected for further analysis to investigate the association between TLR4 Asp299Gly genotype and forced expiratory volume in the first second in liters (FEV1), forced vital capacity in liters (FVC), FEV1/FVC ratio, and forced expiratory flow rate in liters/second (FEF25-75). Multivariable linear regression analysis was used to investigate associations. Results Adjusted mean values of FEV1 and FVC were significantly different between TLR4 wild type and TLR4 variant groups [Mean ± S.E.: (TLR4 wild type - FEV1: 3.18 ± 0.02, FVC: 3.95 ± 0.03; TLR4 variant - FEV1: 3.31 ± 0.06, FVC: 4.14 ± 0.07)]. Based on multivariable regression analysis, we observed that body mass index (BMI) was associated with decreased FEV1/FVC ratio and FEF25-75 in TLR4 variant group but not in wild type group. Conclusion BMI may modify the associations of TLR4 Asp299Gly polymorphism with FEV1/FVC ratio and FEF25-75.
Collapse
Affiliation(s)
- Punam Pahwa
- Canadian Centre for Health and Safety in Agriculture, R.U.H., Saskatchewan, Canada.
| | | | | | | | | | | |
Collapse
|
78
|
Snell NJC. HOST DEFENSES AGAINST RESPIRATORY TRACT INFECTION—IMPLICATIONS FOR ANTI-INFLAMMATORY DRUG DEVELOPMENT AND TREATMENT. Exp Lung Res 2009; 33:529-36. [DOI: 10.1080/01902140701756661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
79
|
Ainsworth DM, Matychak M, Reyner CL, Erb HN, Young JC. Effects of in vitro exposure to hay dust on the gene expression of chemokines and cell-surface receptors in primary bronchial epithelial cell cultures established from horses with chronic recurrent airway obstruction. Am J Vet Res 2009; 70:365-72. [PMID: 19254149 DOI: 10.2460/ajvr.70.3.365] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
OBJECTIVE To examine effects of in vitro exposure to solutions of hay dust, lipopolysaccharide (LPS), or beta-glucan on chemokine and cell-surface receptor (CSR) gene expression in primary bronchial epithelial cell cultures (BECCs) established from healthy horses and horses with recurrent airway obstruction (RAO). SAMPLE POPULATION BECCs established from bronchial biopsy specimens of 6 RAO-affected horses and 6 healthy horses. PROCEDURES 5-day-old BECCs were treated with PBS solution, hay dust solutions, LPS, or beta-glucan for 6 or 24 hours. Gene expression of interleukin (IL)-8, chemokine (C-X-C motif) ligand 2 (CXCL2), IL-1beta, toll-like receptor 2, toll-like receptor 4, IL-1 receptor 1, and glyceraldehyde 3-phosphate dehydrogenase was measured with a kinetic PCR assay. RESULTS Treatment with PBS solution for 6 or 24 hours was not associated with a significant difference in chemokine or CSR expression between BECCs from either group of horses. In all BECCs, treatment with hay dust or LPS for 6 hours increased IL-8, CXCL2, and IL-1beta gene expression > 3-fold; at 24 hours, only IL-1beta expression was upregulated by > 3-fold. In all BECCs, CSR gene expression was not increased following any treatment. With the exception of a 3.7-fold upregulation of CXCL2 in BECCs from RAO-affected horses (following 6-hour hay dust treatment), no differences in chemokine or CSR gene expression were detected between the 2 groups. At 24 hours, CXCL2 gene expression in all BECCs was downregulated. CONCLUSIONS AND CLINICAL RELEVANCE Epithelial CXCL2 upregulation in response to hay dust particulates may incite early airway neutrophilia in horses with RAO.
Collapse
|
80
|
Lane AP. The role of innate immunity in the pathogenesis of chronic rhinosinusitis. Curr Allergy Asthma Rep 2009; 9:205-12. [PMID: 19348720 DOI: 10.1007/s11882-009-0030-5] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Chronic rhinosinusitis (CRS) is a heterogeneous inflammatory condition with a multifactorial basis. Infectious triggers of CRS have been proposed, but demonstration remains elusive. Evolving research suggests that abnormal host mucosal immune responses, rather than specific pathogens themselves, may underlie the chronic inflammatory state. Despite constant contact with airborne particulates and microorganisms, the sinonasal epithelium maintains mucosal homeostasis through innate and adaptive immune mechanisms that eliminate potential threats. Innate immunity encompasses a broad collection of constitutive and inducible processes that can be nonspecific or pathogen directed. Some innate immune pathways are closely intertwined with tissue growth and repair. The persistent inflammation observed in CRS may result from a pathologic imbalance in innate immune interactions between the host and the environment. Impairment of critical innate immune protection renders the sinonasal mucosal surface susceptible to colonization and potential injury, stimulating the prominent adaptive immune response that characterizes CRS.
Collapse
Affiliation(s)
- Andrew P Lane
- Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins School of Medicine Outpatient Center, Sixth Floor, 601 North Caroline Street, Baltimore, MD 21287-0910, USA.
| |
Collapse
|
81
|
Regulation of TLR2 expression and function in human airway epithelial cells. J Membr Biol 2009; 229:101-13. [PMID: 19513781 DOI: 10.1007/s00232-009-9175-3] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2008] [Accepted: 05/13/2009] [Indexed: 01/14/2023]
Abstract
Toll-like receptor (TLR1-6) mRNAs are expressed in normal human bronchial epithelial cells with higher basal levels of TLR3. TLR2 mRNA and plasma membrane protein expression was enhanced by pretreatment with Poly IC, a synthetic double-stranded RNA (dsRNA) known to activate TLR3. Poly IC also enhanced mRNA expression of adaptor molecules (MyD88 and TIRAP) and coreceptors (Dectin-1 and CD14) involved in TLR2 signaling. Additionally, mRNA expression of TLR3 and dsRNA-sensing proteins MDA5 and RIG-I increased following Poly IC treatment. In contrast, basal mRNA expression of TLR5 and TLR2 coreceptor CD36 was reduced by 77% and 62%, respectively. ELISA of apical and basolateral solutions from Poly IC-stimulated monolayers revealed significantly higher levels of IL-6 and GM-CSF compared with the TLR2 ligand PAM(3)CSK(4). Pretreatment with anti-TLR2 blocking antibody inhibited the PAM(3)CSK(4)-induced increase in IL-6 secretion after Poly IC exposure. An increase in IL-6 secretion was also observed in cells stimulated with Alternaria extract after pretreatment with Poly IC. However, IL-6 secretion was not stimulated by zymosan or lipothechoic acid (LTA). These data demonstrated that upregulation of TLR2 following exposure to dsRNA enhances functional responses of the airway epithelium to certain (PAM(3)CSK(4)), but not all (zymosan, LTA) TLR2 ligands and that this is likely due to differences in coreceptor expression.
Collapse
|
82
|
Wegmann M. Th2 cells as targets for therapeutic intervention in allergic bronchial asthma. Expert Rev Mol Diagn 2009; 9:85-100. [PMID: 19099351 DOI: 10.1586/14737159.9.1.85] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Th2 cells play a central role in the pathogenesis of allergic bronchial asthma, since each of their characteristic cytokines such as IL-4, IL-5, IL-9 and IL-13 contributes to hallmarks of this disease, including airway eosinophilia, increased mucus production, production of allergen-specific IgE and development of airway hyper-responsiveness. Therefore, these cells are predisposed as target cells for therapeutic intervention. Experimental approaches targeted Th2-type effector cytokines, Th2-cell recruitment and Th2-cell development. Another strategy uses the immunomodulatory potential of tolerance-inducing cytokines such as IL-10 or of cytokines such as IL-12, IL-18 and IFN-gamma that are able to induce a counterbalancing Th1 immune response.
Collapse
Affiliation(s)
- Michael Wegmann
- Bereich Experimentelle Pneumologie, Forschungszentrum Borstel, Leibniz-Zentrum für Medizin und Biowissenschaften, Parkallee 1, D-23845 Borstel, Germany.
| |
Collapse
|
83
|
Sarir H, Mortaz E, Karimi K, Kraneveld AD, Rahman I, Caldenhoven E, Nijkamp FP, Folkerts G. Cigarette smoke regulates the expression of TLR4 and IL-8 production by human macrophages. JOURNAL OF INFLAMMATION-LONDON 2009; 6:12. [PMID: 19409098 PMCID: PMC2683828 DOI: 10.1186/1476-9255-6-12] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/05/2008] [Accepted: 05/01/2009] [Indexed: 12/26/2022]
Abstract
BACKGROUND Toll-like receptors (TLRs) are present on monocytes and alveolar macrophages that form the first line of defense against inhaled particles. The importance of those cells in the pathophysiology of chronic obstructive pulmonary disease (COPD) has well been documented. Cigarette smoke contains high concentration of oxidants which can stimulate immune cells to produce reactive oxygen species, cytokines and chemokines. METHODS In this study, we evaluated the effects of cigarette smoke medium (CSM) on TLR4 expression and interleukin (IL)-8 production by human macrophages investigating the involvement of ROS. RESULTS AND DISCUSSION TLR4 surface expression was downregulated on short term exposure (1 h) of CSM. The downregulation could be explained by internalization of the TLR4 and the upregulation by an increase in TLR4 mRNA. IL-8 mRNA and protein were also increased by CSM. CSM stimulation increased intracellular ROS-production and decreased glutathione (GSH) levels. The modulation of TLR4 mRNA and surface receptors expression, IRAK activation, IkappaB-alpha degradation, IL-8 mRNA and protein, GSH depletion and ROS production were all prevented by antioxidants such as N-acetyl-L-cysteine (NAC). CONCLUSION TLR4 may be involved in the pathogenesis of lung emphysema and oxidative stress and seems to be a crucial contributor in lung inflammation.
Collapse
Affiliation(s)
- Hadi Sarir
- Division of Pharmacology and Pathophysiology, Departement of Pharmaceutical Sciences, Faculty of Sciences, Utrecht University, the Netherlands.
| | | | | | | | | | | | | | | |
Collapse
|
84
|
Toll-like receptors and cytokines as surrogate biomarkers for evaluating vaginal immune response following microbicide administration. Mediators Inflamm 2008; 2008:534532. [PMID: 19125187 PMCID: PMC2607029 DOI: 10.1155/2008/534532] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2008] [Revised: 08/05/2008] [Accepted: 08/20/2008] [Indexed: 12/03/2022] Open
Abstract
Topical microbicides are intended for frequent use by women in reproductive age. Hence, it is essential to evaluate their impact on mucosal immune function in the vagina. In the present study, we evaluated nisin, a naturally occurring antimicrobial peptide (AMP), for its efficacy as an intravaginal microbicide. Its effect on the vaginal immune function was determined by localizing Toll-like receptors (TLRs-3, 9) and cytokines (IL-4, 6 , 10 and TNF-α) in the rabbit cervicovaginal epithelium following intravaginal administration of high dose of nisin gel for 14 consecutive days. The results revealed no alteration in the expression of TLRs and cytokines at both protein and mRNA levels. However, in SDS gel-treated group, the levels were significantly upregulated with the induction of NF-κB signalling cascade. Thus, TLRs and cytokines appear as sensitive indicators for screening immunotoxic potential of candidate microbicides.
Collapse
|
85
|
Hajishengallis G, Wang M, Bagby GJ, Nelson S. Importance of TLR2 in early innate immune response to acute pulmonary infection with Porphyromonas gingivalis in mice. THE JOURNAL OF IMMUNOLOGY 2008; 181:4141-9. [PMID: 18768871 DOI: 10.4049/jimmunol.181.6.4141] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The periodontal pathogen Porphyromonas gingivalis is implicated in certain systemic diseases including atherosclerosis and aspiration pneumonia. This organism induces innate responses predominantly through TLR2, which also mediates its ability to induce experimental periodontitis and accelerate atherosclerosis. Using a validated mouse model of intratracheal challenge, we investigated the role of TLR2 in the control of P. gingivalis acute pulmonary infection. TLR2-deficient mice elicited reduced proinflammatory or antimicrobial responses (KC, MIP-1alpha, TNF-alpha, IL-6, IL-12p70, and NO) in the lung and exhibited impaired clearance of P. gingivalis compared with normal controls. However, the influx of polymorphonuclear leukocytes into the lung and the numbers of resident alveolar macrophages (AM) were comparable between the two groups. TLR2 signaling was important for in vitro killing of P. gingivalis by polymorphonuclear leukocytes or AM and, moreover, the AM bactericidal activity required NO production. Strikingly, AM were more potent than peritoneal or splenic macrophages in P. gingivalis killing, attributed to diminished AM expression of complement receptor-3 (CR3), which is exploited by P. gingivalis to promote its survival. The selective expression of CR3 by tissue macrophages and the requirement of TLR2 inside-out signaling for CR3 exploitation by P. gingivalis suggest that the role of TLR2 in host protection may be contextual. Thus, although TLR2 may mediate destructive effects, as seen in models of experimental periodontitis and atherosclerosis, we have now shown that the same receptor confers protection against P. gingivalis in acute lung infection.
Collapse
Affiliation(s)
- George Hajishengallis
- Department of Periodontics/Oral Health & Systemic Disease, University of Louisville Health Sciences Center, Louisville, KY 40292, USA.
| | | | | | | |
Collapse
|
86
|
Balloy V, Sallenave JM, Wu Y, Touqui L, Latgé JP, Si-Tahar M, Chignard M. Aspergillus fumigatus-induced interleukin-8 synthesis by respiratory epithelial cells is controlled by the phosphatidylinositol 3-kinase, p38 MAPK, and ERK1/2 pathways and not by the toll-like receptor-MyD88 pathway. J Biol Chem 2008; 283:30513-21. [PMID: 18703508 PMCID: PMC2662144 DOI: 10.1074/jbc.m803149200] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2008] [Revised: 07/29/2008] [Indexed: 12/18/2022] Open
Abstract
Previous studies have established that phagocytes are key cells of the pulmonary innate immune defense against A. fumigatus, an opportunistic fungus responsible of invasive pulmonary aspergillosis. Macrophages detect A. fumigatus via Toll-like receptors 2 and 4 (TLR2 and -4) and respond by the MyD88-NF-kappaB-dependent synthesis of inflammatory mediators. In the present study, we demonstrate that respiratory epithelial cells also sense A. fumigatus and participate in the host defense. Thus, the interaction of respiratory epithelial cells with germinating but not resting conidia of A. fumigatus results in interleukin (IL)-8 synthesis that is controlled by phosphatidylinositol 3-kinase, p38 MAPK, and ERK1/2. Using MyD88-dominant negative transfected cells, we also show that IL-8 production is not dependent on the TLR-MyD88 pathway, although the MyD88 pathway is activated by A. fumigatus and leads to NF-kappaB activation. Thus, our results provide evidence for the existence of two independent signaling pathways activated in respiratory epithelial cells by A. fumigatus, one that is MyD88-dependent and another that is My88-independent and involved in IL-8 synthesis.
Collapse
Affiliation(s)
- Viviane Balloy
- Unité de Défense Innée et Inflammation, Institut Pasteur, Paris 75015, France
| | | | | | | | | | | | | |
Collapse
|
87
|
Philippakis GE, Lazaris AC, Papathomas TG, Zissis C, Agrogiannis G, Thomopoulou G, Nonni A, Xiromeritis K, Nikolopoulou-Stamati P, Bramis J, Patsouris E, Perrea D, Bellenis I. Adrenaline Attenuates the Acute Lung Injury After Intratracheal Lipopolysaccharide Instillation: an Experimental Study. Inhal Toxicol 2008; 20:445-53. [DOI: 10.1080/08958370801903891] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
88
|
Lee HY, Takeshita T, Shimada J, Akopyan A, Woo JI, Pan H, Moon SK, Andalibi A, Park RK, Kang SH, Kang SS, Gellibolian R, Lim DJ. Induction of beta defensin 2 by NTHi requires TLR2 mediated MyD88 and IRAK-TRAF6-p38MAPK signaling pathway in human middle ear epithelial cells. BMC Infect Dis 2008; 8:87. [PMID: 18578886 PMCID: PMC2447838 DOI: 10.1186/1471-2334-8-87] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2008] [Accepted: 06/25/2008] [Indexed: 01/22/2023] Open
Abstract
Background All mucosal epithelia, including those of the tubotympanium, are secreting a variety of antimicrobial innate immune molecules (AIIMs). In our previous study, we showed the bactericidal/bacteriostatic functions of AIIMs against various otitis media pathogens. Among the AIIMs, human β-defensin 2 is the most potent molecule and is inducible by exposure to inflammatory stimuli such as bacterial components or proinflammatory cytokines. Even though the β-defensin 2 is an important AIIM, the induction mechanism of this molecule has not been clearly established. We believe that this report is the first attempt to elucidate NTHi induced β-defensin expression in airway mucosa, which includes the middle ear. Methods Monoclonal antibody blocking method was employed in monitoring the TLR-dependent NTHi response. Two gene knock down methods – dominant negative (DN) plasmid and small interfering RNA (siRNA) – were employed to detect and confirm the involvement of several key genes in the signaling cascade resulting from the NTHi stimulated β-defensin 2 expression in human middle ear epithelial cell (HMEEC-1). The student's t-test was used for the statistical analysis of the data. Results The experimental results showed that the major NTHi-specific receptor in HMEEC-1 is the Toll-like receptor 2 (TLR2). Furthermore, recognition of NTHi component(s)/ligand(s) by TLR2, activated the Toll/IL-1 receptor (TIR)-MyD88-IRAK1-TRAF6-MKK3/6-p38 MAPK signal transduction pathway, ultimately leading to the induction of β-defensin 2. Conclusion This study found that the induction of β-defensin 2 is highest in whole cell lysate (WCL) preparations of NTHi, suggesting that the ligand(s) responsible for this up-regulation may be soluble macromolecule(s). We also found that this induction takes place through the TLR2 dependent MyD88-IRAK1-TRAF6-p38 MAPK pathway, with the primary response occurring within the first hour of stimulation. In combination with our previous studies showing that IL-1α-induced β-defensin 2 expression takes place through a MyD88-independent Raf-MEK1/2-ERK MAPK pathway, we found that both signaling cascades act synergistically to up-regulate β-defensin 2 levels. We propose that this confers an essential evolutionary advantage to the cells in coping with infections and may serve to amplify the innate immune response through paracrine signaling.
Collapse
Affiliation(s)
- Haa-Yung Lee
- The Gonda Department of Cell and Molecular Biology, House Ear Institute, Los Angeles, CA, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
89
|
Yao H, Edirisinghe I, Yang SR, Rajendrasozhan S, Kode A, Caito S, Adenuga D, Rahman I. Genetic ablation of NADPH oxidase enhances susceptibility to cigarette smoke-induced lung inflammation and emphysema in mice. THE AMERICAN JOURNAL OF PATHOLOGY 2008; 172:1222-37. [PMID: 18403597 PMCID: PMC2329832 DOI: 10.2353/ajpath.2008.070765] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 02/12/2008] [Indexed: 11/20/2022]
Abstract
Cigarette smoke (CS) induces recruitment of inflammatory cells in the lungs leading to the generation of reactive oxygen species (ROS), which are involved in lung inflammation and injury. Nicotinamide adenine dinucleotide phosphate (NADPH) oxidase is a multimeric system that is responsible for ROS production in mammalian cells. We hypothesized that NADPH oxidase-derived ROS play an important role in lung inflammation and injury and that targeted ablation of components of NADPH oxidase (p47(phox) and gp91(phox)) would protect lungs against the detrimental effects of CS. To test this hypothesis, we exposed p47(phox-/-) and gp91(phox-/-) mice to CS and examined inflammatory response and injury in the lung. Surprisingly, although CS-induced ROS production was decreased in the lungs of p47(phox-/-) and gp91(phox-/-) mice compared with wild-type mice, the inflammatory response was significantly increased and was accompanied by development of distal airspace enlargement and alveolar destruction. This pathological abnormality was associated with enhanced activation of the TLR4-nuclear factor-kappaB pathway in response to CS exposure in p47(phox-/-) and gp91(phox-/-) mice. This phenomenon was confirmed by in vitro studies in which treatment of peritoneal macrophages with a nuclear factor-kappaB inhibitor reversed the CS-induced release of proinflammatory mediators. Thus, these data suggest that genetic ablation of components of NADPH oxidase enhances susceptibility to the proinflammatory effects of CS leading to airspace enlargement and alveolar damage.
Collapse
Affiliation(s)
- Hongwei Yao
- Department of Environmental Medicine, Lung Biology and Disease Program, University of Rochester Medical Center, Box 850, 601 Elmwood Ave., Rochester, NY 14642, USA
| | | | | | | | | | | | | | | |
Collapse
|
90
|
Bailey KL, Poole JA, Mathisen TL, Wyatt TA, Von Essen SG, Romberger DJ. Toll-like receptor 2 is upregulated by hog confinement dust in an IL-6-dependent manner in the airway epithelium. Am J Physiol Lung Cell Mol Physiol 2008; 294:L1049-54. [PMID: 18359883 DOI: 10.1152/ajplung.00526.2007] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Hog confinement workers are at high risk to develop chronic bronchitis as a result of their exposure to organic dust. Chronic bronchitis is characterized by inflammatory changes of the airway epithelium. A key mediator in inflammation is Toll-like receptor 2 (TLR2). We investigated the role of TLR2 in pulmonary inflammation induced by hog confinement dust. Normal human bronchial epithelial cells (NHBE) were grown in culture and exposed to hog confinement dust extract. Hog confinement dust upregulated airway epithelial cell TLR2 mRNA in a concentration- and time-dependent manner using real-time PCR. There was a similar increase in TLR2 protein at 48 h as shown by Western blot. TLR2 was upregulated on the surface of airway epithelial cells as shown by flow cytometry. A similar upregulation of pulmonary TLR2 mRNA and protein was shown in a murine model of hog confinement dust exposure. Hog confinement dust is known to stimulate epithelial cells to produce IL-6. To determine whether TLR2 expression was being regulated by IL-6, the production of IL-6 was blocked using an IL-6-neutralizing antibody. This resulted in attenuation of the dust-induced upregulation of TLR2. To further demonstrate the importance of IL-6 in the regulation of TLR2, NHBE were directly stimulated with recombinant human IL-6. IL-6 alone was able to upregulate TLR2 in airway epithelial cells. Hog confinement dust upregulates TLR2 in the airway epithelium through an IL-6-dependent mechanism.
Collapse
Affiliation(s)
- K L Bailey
- Pulmonary, Critical Care, Sleep and Allergy Section, Deptartment of Internal Medicine, University of Nebraska Medical Center, Omaha, Nebraska 68198-5300, USA.
| | | | | | | | | | | |
Collapse
|
91
|
Awasthi S, Cropper J, Brown KM. Developmental expression of Toll-like receptors-2 and -4 in preterm baboon lung. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2008; 32:1088-1098. [PMID: 18377992 DOI: 10.1016/j.dci.2008.02.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2007] [Revised: 01/14/2008] [Accepted: 02/16/2008] [Indexed: 05/26/2023]
Abstract
Preterm babies are susceptible to respiratory infection due to immature lung and immune system. Immune cells express Toll-like receptors (TLRs), which may be important in local host defense of preterm infants. We studied the expression of TLR2 and TLR4 in lung tissues of fetal baboons delivered at 125, 140, and 175 days of gestation (dGA; term=185+/-2 days) and preterm baboons that became naturally infected with bacterial/fungal pathogens. The TLR-mRNA and protein were quantified by Northern and Western blotting, respectively. The expression of both TLRs was significantly low at 125 and 140dGA. At 175dGA, the levels reached equivalent to those in adult baboons. However, in naturally infected baboons, the TLR4-mRNA was reduced (p<0.05); TLR2-mRNA expression remained unaltered. The protein expression of both TLRs was found increased in naturally infected baboons. Our results suggest that the lung TLR expression is developmentally regulated and altered during respiratory infection in preterm babies.
Collapse
Affiliation(s)
- Shanjana Awasthi
- Department of Pharmaceutical Sciences, University of Oklahoma Health Science Center, 1110 N. Stonewall Avenue, Oklahoma City, OK 73117, USA.
| | | | | |
Collapse
|
92
|
Sarir H, Henricks PAJ, van Houwelingen AH, Nijkamp FP, Folkerts G. Cells, mediators and Toll-like receptors in COPD. Eur J Pharmacol 2008; 585:346-53. [PMID: 18410916 DOI: 10.1016/j.ejphar.2008.03.009] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2008] [Accepted: 03/11/2008] [Indexed: 12/13/2022]
Abstract
Chronic obstructive pulmonary disease (COPD) is a global health problem. Being a progressive disease characterized by inflammation, it deteriorates pulmonary functioning. Research has focused on airway inflammation, oxidative stress, and remodelling of the airways. Macrophages, neutrophils and T cells are thought to be important key players. A number of new research topics received special attention in the last years. The combined use of inhaled corticosteroids and long-acting beta(2)-adrenoceptor agonists produces better control of symptoms and lung function than that of the use of either compound alone. Furthermore, collagen breakdown products might be involved in the recruitment and activation of inflammatory cells by which the process of airway remodelling becomes self-sustaining. Also, TLR (Toll-like receptor)-based signalling pathways seem to be involved in the pathogenesis of COPD. These new findings may lead to new therapeutic strategies to stop the process of inflammation and self-destruction in the airways of COPD patients.
Collapse
Affiliation(s)
- Hadi Sarir
- Department of Pharmacology and Pathophysiology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, The Netherlands
| | | | | | | | | |
Collapse
|
93
|
Cheung PFY, Wong CK, Ip WK, Lam CWK. FAK-mediated activation of ERK for eosinophil migration: a novel mechanism for infection-induced allergic inflammation. Int Immunol 2008; 20:353-63. [PMID: 18182379 DOI: 10.1093/intimm/dxm146] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Bacterial and viral infections often induce the exacerbation of allergic diseases. In this study, we investigated the activation of human eosinophils by different microbial products via Toll-like receptors (TLRs). The underlying intracellular mechanism involving activation of extracellular signal-regulated kinase (ERK) and focal adhesion kinase (FAK), an integrin-associated focal adhesion molecule, was also examined. Seven TLR ligands were studied for their abilities in promoting survival, modulating the expression of adhesion molecules and facilitating chemotactic migration of eosinophils. While peptidoglycan (PGN) (TLR2 ligand) showed the most prominent effects, flagellin (TLR5 ligand) and imiquimod R837 (TLR7 ligand) were also effective in activating eosinophils. However, little or no effect was observed for double-stranded polyinosinic-polycytidylic acid (TLR3 ligand), ultra-purified LPS (TLR4 ligand), single-stranded RNA (ssRNA) (TLR8 ligand) and CpG-DNA (TLR9 ligand). Further investigation confirmed that PGN, flagellin and R837 commonly transmitted signals through ERK activation that required prior phosphorylation of tyrosine 925, but not tyrosine 577, on FAK. Moreover, the inhibition of ERK activation by selective inhibitor PD98059 and FAK expression by FAK-specific RNA interference could significantly abolish the stimulatory effects induced by PGN, flagellin and R837. Taken together, our findings indicate the involvement of FAK-dependent activation of ERK1 in TLR-mediated eosinophil stimulation. A potential role of eosinophils was also suggested in exacerbating allergic inflammation in response to microbial infections.
Collapse
Affiliation(s)
- Phyllis Fung-Yi Cheung
- Department of Chemical Pathology, Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, NT, Hong Kong
| | | | | | | |
Collapse
|
94
|
Jacquot J, Tabary O, Le Rouzic P, Clement A. Airway epithelial cell inflammatory signalling in cystic fibrosis. Int J Biochem Cell Biol 2008; 40:1703-15. [DOI: 10.1016/j.biocel.2008.02.002] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2007] [Revised: 02/01/2008] [Accepted: 02/07/2008] [Indexed: 01/14/2023]
|
95
|
Ueno K, Koga T, Kato K, Golenbock DT, Gendler SJ, Kai H, Kim KC. MUC1 mucin is a negative regulator of toll-like receptor signaling. Am J Respir Cell Mol Biol 2007; 38:263-8. [PMID: 18079492 DOI: 10.1165/rcmb.2007-0336rc] [Citation(s) in RCA: 127] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
MUC1 (MUC1 in humans and Muc1 in nonhuman species) is a transmembrane mucin-like glycoprotein expressed in epithelial cells lining various mucosal surfaces as well as hematopoietic cells. Recently, we showed that Muc1(-/-) mice exhibited greater inflammatory responses to Pseudomonas aeruginosa or its flagellin compared with their wild-type littermates, and our studies with cultured cells revealed that MUC1/Muc1 suppressed the Toll-like receptor (TLR) 5 signaling pathway, suggesting its anti-inflammatory role. Here we demonstrate that other TLR signaling (TLR2, 3, 4, 7, and 9) is also suppressed by MUC1/Muc1. The results from this study suggest that MUC1/Muc1 may play a crucial role during airway infection and inflammation by various pathogenic bacteria and viruses.
Collapse
Affiliation(s)
- Keiko Ueno
- Lovelace Respiratory Research Institute, 2425 Ridgecrest Dr., S.E., Albuquerque, NM 87108-5127, USA
| | | | | | | | | | | | | |
Collapse
|
96
|
Chen K, Huang J, Gong W, Iribarren P, Dunlop NM, Wang JM. Toll-like receptors in inflammation, infection and cancer. Int Immunopharmacol 2007; 7:1271-85. [PMID: 17673142 DOI: 10.1016/j.intimp.2007.05.016] [Citation(s) in RCA: 248] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2007] [Accepted: 05/25/2007] [Indexed: 01/11/2023]
Abstract
Members of the Toll-like receptor (TLR) family play key roles in both innate and adaptive immune responses. TLR proteins enable host to recognize a large number of pathogen-associated molecular patterns such as bacterial lipopolysaccharides, viral RNA, CPG-containing DNA, and flagellin, among others. TLRs are also apparently able to mediate responses to host molecules, including one defensin, ROS, HMGB1 (high-mobility group box protein 1), surfactant protein A, fibrinogen, breakdown products of tissue matrix, heat shock proteins (hsp) and eosinophil-derived neurotoxin (EDN). Thus, TLR are involved in the development of many pathological conditions including infectious diseases, tissue damage, autoimmune and neurodegenerative diseases and cancer. In this review, the contribution of TLRs to diseases of the central nervous system (CNS), lung, gastrointestinal tract, kidney and skin as well as cancer is evaluated. We hope to provide new insight into the pathogenesis and progression of diseases and more importantly, into the potential for TLRs as targets of therapeutics.
Collapse
Affiliation(s)
- Keqiang Chen
- Laboratory of Molecular Immunoregulation, Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute-Frederick, Frederick, MD 21702, USA.
| | | | | | | | | | | |
Collapse
|
97
|
Koch A, Knobloch J, Dammhayn C, Raidl M, Ruppert A, Hag H, Rottlaender D, Müller K, Erdmann E. Effect of bacterial endotoxin LPS on expression of INF-gamma and IL-5 in T-lymphocytes from asthmatics. Clin Immunol 2007; 125:194-204. [PMID: 17884733 DOI: 10.1016/j.clim.2007.07.012] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2007] [Revised: 07/25/2007] [Accepted: 07/25/2007] [Indexed: 12/19/2022]
Abstract
Epidemiological evidence, in vitro studies and animal models suggest that exposure to the bacterial endotoxin lipopolysaccharide (LPS) can influence the development and severity of asthma. Although it is known that signaling through Toll-like receptors (TLR) is required for adaptive T helper cell type 1 and 2 responses, it is unclear whether the LPS ligand TLR 4 is expressed on CD4(+) and CD8(+) T-lymphocytes and if so, whether LPS could modulate the T(H)1 or T(H)2 response in this context. The present authors have, therefore, examined the expression of TLR 4 on peripheral blood CD4(+) and CD8(+) T-lymphocytes using RT-PCR method and FACS analyses. Furthermore, the authors have studied the IL-12-induced expression of the T(H)1-associated cytokine INF-gamma and the IL-4-induced expression of the T(H)2-specific cytokine IL-5 in the presence of LPS using ELISA and compared nine atopic asthmatic subjects and eleven nonatopic normal volunteers. There was an increased anti-CD3/anti-CD28-induced IL-5 expression in T cells of asthmatics compared with normals (p<0.01). In the presence of IL-4 (10 ng/ml), there was an additional increase in IL-5 expression and this additional increase was greater in T cells of normals compared with asthmatics (p<0.05). There was an expression of INF-gamma in anti-CD3/anti-CD28-induced T-lymphocytes without differences between both groups (NS). In the presence of IL-12 (10 ng/ml), there was an increase in INF-gamma release without differences between normals and asthmatics (NS). In the presence of different concentrations of LPS (10 ng/ml, 1 mug/ml), there was a decrease in IL-4-induced IL-5 expression without differences in both groups, indicating an intact T(H)2 response to bacterial endotoxin LPS in asthma. Interestingly, LPS increased the IL-12-induced INF-gamma release in a concentration-dependent manner in T-lymphocytes of normals but this could not be found in T cells of asthmatics, indicating an impaired T(H)1 response to bacterial endotoxin LPS in asthma. In addition, there was a TLR 4 expression on CD4(+) T-lymphocytes of normals and to a lesser extent in asthmatics but this TLR 4 expression could not be found on CD8(+) T cells of both groups. In conclusion, there may be an impaired concentration-dependent LPS-induced T(H)1 rather than a T(H)2 response in allergic adult asthmatics compared with normal volunteers. One reason for this could be a reduced TLR 4 expression on CD4(+) T-lymphocytes of asthmatic subjects.
Collapse
Affiliation(s)
- Andrea Koch
- Department of Pneumology, University of Cologne, Clinic III for Internal Medicine, Joseph-Stelzmann-Str. 9, 50924 Köln (Cologne), Germany.
| | | | | | | | | | | | | | | | | |
Collapse
|
98
|
Chignard M, Balloy V, Sallenave JM, Si-Tahar M. Role of Toll-like receptors in lung innate defense against invasive aspergillosis. Distinct impact in immunocompetent and immunocompromized hosts. Clin Immunol 2007; 124:238-43. [PMID: 17604224 DOI: 10.1016/j.clim.2007.05.004] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2006] [Revised: 05/04/2007] [Accepted: 05/04/2007] [Indexed: 01/16/2023]
Abstract
Toll-like receptors are key to pathogen recognition by a host and to the subsequent triggering of an innate immune response. Experimental and clinical evidence shows that defects in Toll-like receptors or in signaling pathways downstream from these receptors render hosts susceptible to various types of infection, including aspergillosis. Patients receiving an immunosuppressive regimen, including corticosteroid therapy or cytotoxic chemotherapy, are also susceptible to infections. Aspergillus fumigatus is an opportunistic pathogen that infects the lungs of immunosuppressed hosts. Here, we review the evidence that experimental inactivation of various Toll-like receptors and of their signaling pathways may worsen cases of invasive pulmonary aspergillosis. Moreover, the literature clearly indicates that the type of immunosuppression is very important, as it influences whether or not Toll-like receptors contribute to infection. The involvement of Toll-like receptors, based on the immunological status of the patient, should be considered if an immunosuppressive treatment must be administered.
Collapse
Affiliation(s)
- Michel Chignard
- Institut Pasteur, Unité de Défense Innée et Inflammation, Paris, France; Inserm, U874, Paris, France.
| | | | | | | |
Collapse
|
99
|
Henao-Tamayo M, Junqueira-Kipnis AP, Ordway D, Gonzales-Juarrero M, Stewart GR, Young DB, Wilkinson RJ, Basaraba RJ, Orme IM. A mutant of Mycobacterium tuberculosis lacking the 19-kDa lipoprotein Rv3763 is highly attenuated in vivo but retains potent vaccinogenic properties. Vaccine 2007; 25:7153-9. [PMID: 17804126 PMCID: PMC2180418 DOI: 10.1016/j.vaccine.2007.07.042] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2007] [Revised: 07/12/2007] [Accepted: 07/16/2007] [Indexed: 11/27/2022]
Abstract
A mutant of Mycobacterium tuberculosis (Delta 19) lacking the 19-kDa lipoprotein grows well in culture in vitro but was shown here to be essentially incapable of any significant replication in mice, even in mice lacking the gamma interferon gene. Despite this, mice inoculated with Delta 19 were equally protected against an aerosol delivered challenge with M. tuberculosis compared to the conventional BCG vaccine. Cellular responses, including the generation of activated CD4 and CD8 cells secreting gamma interferon, were produced in similar numbers, and lung cells, particularly dendritic macrophages, exhibited high levels of Class-II MHC expression. These data show that despite being highly attenuated, the Delta 19 mutant strongly retained vaccinogenic properties.
Collapse
Affiliation(s)
- Marcela Henao-Tamayo
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO 80524, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
100
|
Valdivia-Arenas M, Amer A, Henning L, Wewers M, Schlesinger L. Lung infections and innate host defense. ACTA ACUST UNITED AC 2007; 4:73-81. [PMID: 18592001 DOI: 10.1016/j.ddmec.2007.10.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Ma Valdivia-Arenas
- Center for Microbial Interface Biology, Dorothy M. Davis Heart and Lung Research Institute, Divisions of Infectious Diseases and Pulmonary, Allergy, Critical Care & Sleep Medicine, Department of Internal Medicine, The Ohio State University, Columbus, OH 43210
| | | | | | | | | |
Collapse
|