51
|
Aghapour M, Tulen CBM, Abdi Sarabi M, Weinert S, Müsken M, Relja B, van Schooten FJ, Jeron A, Braun-Dullaeus R, Remels AH, Bruder D. Cigarette Smoke Extract Disturbs Mitochondria-Regulated Airway Epithelial Cell Responses to Pneumococci. Cells 2022; 11:1771. [PMID: 35681466 PMCID: PMC9179351 DOI: 10.3390/cells11111771] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 05/21/2022] [Accepted: 05/24/2022] [Indexed: 01/04/2023] Open
Abstract
Mitochondrial functionality is crucial for the execution of physiologic functions of metabolically active cells in the respiratory tract including airway epithelial cells (AECs). Cigarette smoke is known to impair mitochondrial function in AECs. However, the potential contribution of mitochondrial dysfunction in AECs to airway infection and airway epithelial barrier dysfunction is unknown. In this study, we used an in vitro model based on AECs exposed to cigarette smoke extract (CSE) followed by an infection with Streptococcus pneumoniae (Sp). The levels of oxidative stress as an indicator of mitochondrial stress were quantified upon CSE and Sp treatment. In addition, expression of proteins associated with mitophagy, mitochondrial content, and biogenesis as well as mitochondrial fission and fusion was quantified. Transcriptional AEC profiling was performed to identify the potential changes in innate immune pathways and correlate them with indices of mitochondrial function. We observed that CSE exposure substantially altered mitochondrial function in AECs by suppressing mitochondrial complex protein levels, reducing mitochondrial membrane potential and increasing mitochondrial stress and mitophagy. Moreover, CSE-induced mitochondrial dysfunction correlated with reduced enrichment of genes involved in apical junctions and innate immune responses to Sp, particularly type I interferon responses. Together, our results demonstrated that CSE-induced mitochondrial dysfunction may contribute to impaired innate immune responses to Sp.
Collapse
Affiliation(s)
- Mahyar Aghapour
- Infection Immunology Group, Institute of Medical Microbiology, Infection Control and Prevention, Health Campus Immunology, Infectiology and Inflammation, Otto-von-Guericke University, 39120 Magdeburg, Germany; (M.A.); (A.J.)
- Immune Regulation Group, Helmholtz Centre for Infection Research, 38124 Braunschweig, Germany
| | - Christy B. M. Tulen
- Department of Pharmacology and Toxicology, School of Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University Medical Center, 6229 ER Maastricht, The Netherlands; (C.B.M.T.); (F.-J.v.S.); (A.H.R.)
| | - Mohsen Abdi Sarabi
- Department of Internal Medicine/Cardiology and Angiology, Otto-von-Guericke University, 39120 Magdeburg, Germany; (M.A.S.); (S.W.)
| | - Sönke Weinert
- Department of Internal Medicine/Cardiology and Angiology, Otto-von-Guericke University, 39120 Magdeburg, Germany; (M.A.S.); (S.W.)
| | - Mathias Müsken
- Central Facility for Microscopy, Helmholtz Centre for Infection Research, 38124 Braunschweig, Germany;
| | - Borna Relja
- Experimental Radiology, Department of Radiology and Nuclear Medicine, 39120 Magdeburg, Germany;
| | - Frederik-Jan van Schooten
- Department of Pharmacology and Toxicology, School of Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University Medical Center, 6229 ER Maastricht, The Netherlands; (C.B.M.T.); (F.-J.v.S.); (A.H.R.)
| | - Andreas Jeron
- Infection Immunology Group, Institute of Medical Microbiology, Infection Control and Prevention, Health Campus Immunology, Infectiology and Inflammation, Otto-von-Guericke University, 39120 Magdeburg, Germany; (M.A.); (A.J.)
- Immune Regulation Group, Helmholtz Centre for Infection Research, 38124 Braunschweig, Germany
| | - Rüdiger Braun-Dullaeus
- Department of Internal Medicine/Cardiology and Angiology, Otto-von-Guericke University, 39120 Magdeburg, Germany; (M.A.S.); (S.W.)
| | - Alexander H. Remels
- Department of Pharmacology and Toxicology, School of Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University Medical Center, 6229 ER Maastricht, The Netherlands; (C.B.M.T.); (F.-J.v.S.); (A.H.R.)
| | - Dunja Bruder
- Infection Immunology Group, Institute of Medical Microbiology, Infection Control and Prevention, Health Campus Immunology, Infectiology and Inflammation, Otto-von-Guericke University, 39120 Magdeburg, Germany; (M.A.); (A.J.)
- Immune Regulation Group, Helmholtz Centre for Infection Research, 38124 Braunschweig, Germany
| |
Collapse
|
52
|
Kanti MM, Striessnig-Bina I, Wieser BI, Schauer S, Leitinger G, Eichmann TO, Schweiger M, Winkler M, Winter E, Lana A, Kufferath I, Marsh LM, Kwapiszewska G, Zechner R, Hoefler G, Vesely PW. Adipose triglyceride lipase-mediated lipid catabolism is essential for bronchiolar regeneration. JCI Insight 2022; 7:e149438. [PMID: 35349484 PMCID: PMC9090255 DOI: 10.1172/jci.insight.149438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 03/23/2022] [Indexed: 01/18/2023] Open
Abstract
The lung airways are constantly exposed to inhaled toxic substances, resulting in cellular damage that is repaired by local expansion of resident bronchiolar epithelial club cells. Disturbed bronchiolar epithelial damage repair lies at the core of many prevalent lung diseases, including chronic obstructive pulmonary disease, asthma, pulmonary fibrosis, and lung cancer. However, it is still not known how bronchiolar club cell energy metabolism contributes to this process. Here, we show that adipose triglyceride lipase (ATGL), the rate-limiting enzyme for intracellular lipolysis, is critical for normal club cell function in mice. Deletion of the gene encoding ATGL, Pnpla2 (also known as Atgl), induced substantial triglyceride accumulation, decreased mitochondrial numbers, and decreased mitochondrial respiration in club cells. This defect manifested as bronchiolar epithelial thickening and increased airway resistance under baseline conditions. After naphthalene‑induced epithelial denudation, a regenerative defect was apparent. Mechanistically, dysfunctional PPARα lipid-signaling underlies this phenotype because (a) ATGL was needed for PPARα lipid-signaling in regenerating bronchioles and (b) administration of the specific PPARα agonist WY14643 restored normal bronchiolar club cell ultrastructure and regenerative potential. Our data emphasize the importance of the cellular energy metabolism for lung epithelial regeneration and highlight the significance of ATGL-mediated lipid catabolism for lung health.
Collapse
Affiliation(s)
- Manu Manjunath Kanti
- Diagnostic and Research Institute of Pathology, Medical University of Graz, Graz, Austria
- BioTechMed-Graz, Graz, Austria
| | - Isabelle Striessnig-Bina
- Diagnostic and Research Institute of Pathology, Medical University of Graz, Graz, Austria
- BioTechMed-Graz, Graz, Austria
| | - Beatrix Irene Wieser
- Diagnostic and Research Institute of Pathology, Medical University of Graz, Graz, Austria
- BioTechMed-Graz, Graz, Austria
| | - Silvia Schauer
- Diagnostic and Research Institute of Pathology, Medical University of Graz, Graz, Austria
| | - Gerd Leitinger
- BioTechMed-Graz, Graz, Austria
- Division of Cell Biology, Histology, and Embryology, Gottfried Schatz Research Center, Medical University of Graz, Graz, Austria
| | - Thomas O. Eichmann
- BioTechMed-Graz, Graz, Austria
- Institute of Molecular Biosciences, University of Graz, Graz, Austria
- Core Facility Mass Spectrometry, Medical University of Graz, Graz, Austria
| | - Martina Schweiger
- BioTechMed-Graz, Graz, Austria
- Institute of Molecular Biosciences, University of Graz, Graz, Austria
| | - Margit Winkler
- BioTechMed-Graz, Graz, Austria
- Institute of Molecular Biotechnology, NAWI Graz, Graz University of Technology, Graz, Austria
| | - Elke Winter
- Diagnostic and Research Institute of Pathology, Medical University of Graz, Graz, Austria
| | - Andrea Lana
- Diagnostic and Research Institute of Pathology, Medical University of Graz, Graz, Austria
| | - Iris Kufferath
- Diagnostic and Research Institute of Pathology, Medical University of Graz, Graz, Austria
| | - Leigh Matthew Marsh
- BioTechMed-Graz, Graz, Austria
- Ludwig Boltzmann Institute for Lung Vascular Research, Graz, Austria
- Otto Loewi Research Center, Medical University of Graz, Graz, Austria
| | - Grazyna Kwapiszewska
- BioTechMed-Graz, Graz, Austria
- Ludwig Boltzmann Institute for Lung Vascular Research, Graz, Austria
- Otto Loewi Research Center, Medical University of Graz, Graz, Austria
- Institute for Lung Health, Giessen, Germany
| | - Rudolf Zechner
- BioTechMed-Graz, Graz, Austria
- Institute of Molecular Biosciences, University of Graz, Graz, Austria
| | - Gerald Hoefler
- Diagnostic and Research Institute of Pathology, Medical University of Graz, Graz, Austria
- BioTechMed-Graz, Graz, Austria
| | - Paul Willibald Vesely
- Diagnostic and Research Institute of Pathology, Medical University of Graz, Graz, Austria
- BioTechMed-Graz, Graz, Austria
| |
Collapse
|
53
|
Berdnikovs S, Newcomb DC, Gebretsadik T, Snyder BM, Wiggins DA, Poleon KS, Hartert TV. Cellular and systemic energy metabolic dysregulation in asthma development-a hypothesis-generating approach. J Allergy Clin Immunol 2022; 149:1802-1806.e2. [PMID: 34740605 PMCID: PMC10080213 DOI: 10.1016/j.jaci.2021.10.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 10/20/2021] [Accepted: 10/26/2021] [Indexed: 11/17/2022]
Abstract
BACKGROUND The roles of systemic and airway-specific epithelial energy metabolism in altering the developmental programming of airway epithelial cells (AECs) in early life are poorly understood. OBJECTIVE Our aim was to assess carbohydrate metabolism in developing AECs among children with and without wheeze and test the association of infant plasma energy biomarkers with subsequent recurrent wheeze and asthma outcomes. METHODS We measured cellular carbohydrate metabolism in live nasal AECs collected at age 2 years from 15 male subjects with and without a history of wheeze and performed a principal component analysis to visually assess clustering of data on AEC metabolism of glycolitic metabolites and simple sugars. Among 237 children with available year 1 plasma samples, we tested the associations of year 1 plasma energy biomarkers and recurrent wheeze and asthma by using generalized estimating equations and logistic regression. RESULTS Children with a history of wheeze had lower utilization of glucose in their nasal AECs than did children with no wheeze. Systemically, a higher plasma glucose concentration at year 1 (within the normal range) was associated with decreased odds of asthma at age 5 years (adjusted odds ratio = 0.56; 95% CI = 0.35-0.90). Insulin concentration, glucose-to-insulin ratio, C-peptide concentration, and leptin concentration at year 1 were associated with recurrent wheeze from age 2 years to age 5 years. CONCLUSION These results suggest that there is significant energy metabolism dysregulation in early life, which likely affects AEC development. These pertubations of epithelial cell metabolism in infancy may have lasting effects on lung development that could render the airway more susceptible to allergic sensitization.
Collapse
Affiliation(s)
- Sergejs Berdnikovs
- Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Ill.
| | - Dawn C Newcomb
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tenn; Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tenn
| | - Tebeb Gebretsadik
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, Tenn
| | - Brittney M Snyder
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tenn
| | - Derek A Wiggins
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tenn
| | - Kadijah S Poleon
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tenn
| | - Tina V Hartert
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tenn
| |
Collapse
|
54
|
Bhat SM, Massey N, Shrestha D, Karriker LA, Jelesijević T, Wang C, Charavaryamath C. Transcriptomic and ultrastructural evidence indicate that anti-HMGB1 antibodies rescue organic dust-induced mitochondrial dysfunction. Cell Tissue Res 2022; 388:373-398. [PMID: 35244775 PMCID: PMC10155187 DOI: 10.1007/s00441-022-03602-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 02/22/2022] [Indexed: 11/02/2022]
Abstract
Exposure to organic dust (OD) in agriculture is known to cause respiratory symptoms including loss of lung function. OD exposure activates multiple signaling pathways since it contains a variety of microbial products and particulate matter. Previously, we have shown how OD exposure leads to the secretion of HMGB1 and HMGB1-RAGE signaling, and how this can be a possible therapeutic target to reduce inflammation. Cellular mitochondria are indispensable for homeostasis and are emerging targets to curtail inflammation. Recently, we have also observed that OD exposure induces mitochondrial dysfunction characterized by loss of structural integrity and deficits in bioenergetics. However, the role of HMGB1 in OD-induced mitochondrial dysfunction in human bronchial epithelial (NHBE) cells remains elusive. Therefore, we aimed to study whether decreased levels of intracellular HMGB1 or antibody-mediated neutralization of secreted HMGB1 would rescue mitochondrial dysfunction. Single and repeated ODE exposure showed an elongated mitochondrial network and cristolysis whereas HMGB1 neutralization or the lack thereof promotes mitochondrial biogenesis evidenced by increased mitochondrial fragmentation, increased DRP1 expression, decreased MFN2 expression, and increased PGC1α expression. Repeated 5-day ODE exposure significantly downregulated transcripts encoding mitochondrial respiration and metabolism (ATP synthase, NADUF, and UQCR) as well as glucose uptake. This was reversed by the antibody-mediated neutralization of HMGB1. Our results support our hypothesis that, in NHBE cells, neutralization of ODE-induced HMGB1 secretion rescues OD-induced mitochondrial dysfunction.
Collapse
Affiliation(s)
- Sanjana Mahadev Bhat
- Department of Biomedical Sciences, Iowa State University, Ames, IA, USA
- Immunobiology Interdepartmental Graduate Program, Iowa State University, Ames, IA, USA
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA
| | - Nyzil Massey
- Department of Biomedical Sciences, Iowa State University, Ames, IA, USA
| | - Denusha Shrestha
- Department of Biomedical Sciences, Iowa State University, Ames, IA, USA
| | - Locke A Karriker
- Department of Veterinary Diagnostic and Production Animal Medicine, Iowa State University, Ames, IA, USA
| | - Tomislav Jelesijević
- Department of Comparative Biological Sciences, Louisiana State University, Baton Rouge, LA, USA
| | - Chong Wang
- Department of Veterinary Diagnostic and Production Animal Medicine, Iowa State University, Ames, IA, USA
- Department of Statistics, Iowa State University, Ames, IA, USA
| | | |
Collapse
|
55
|
Doolittle LM, Binzel K, Nolan KE, Craig K, Rosas LE, Bernier MC, Joseph LM, Woods PS, Knopp MV, Davis IC. CDP-choline Corrects Alveolar Type II Cell Mitochondrial Dysfunction in Influenza-infected Mice. Am J Respir Cell Mol Biol 2022; 66:682-693. [PMID: 35442170 PMCID: PMC9163648 DOI: 10.1165/rcmb.2021-0512oc] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Development of ARDS in influenza A virus (IAV)-infected mice is associated with inhibition of alveolar type II (ATII) epithelial cell de novo phosphatidylcholine synthesis and administration of the phosphatidylcholine precursor CDP-choline attenuates IAV-induced ARDS in mice. We hypothesized inhibition of phosphatidylcholine synthesis would also impact the function of ATII cell mitochondria. To test this hypothesis, adult C57BL/6 mice of both sexes were inoculated intranasally with 10,000 p.f.u./mouse influenza A/WSN/33 (H1N1). Controls were mock-infected with virus diluent. Mice were treated with saline vehicle or CDP-choline (100 μg/mouse, i.p.) once daily from 1-5 days post-inoculation (dpi). ATII cells were isolated by a standard lung digestion protocol at 6 dpi for analysis of mitochondrial function. IAV infection increased uptake of the glucose analog 18F-FDG by the lungs and caused a switch from oxidative phosphorylation to aerobic glycolysis as a primary means of ATII cell ATP synthesis by 6 dpi. Infection also induced ATII cell mitochondrial depolarization and shrinkage, upregulation of PGC-1α, decreased cardiolipin content, and reduced expression of mitofusin 1, OPA1, DRP1, Complexes I and IV of the electron transport chain, and enzymes involved in cardiolipin synthesis. Daily CDP-choline treatment prevented the declines in oxidative phosphorylation, mitochondrial membrane potential, and cardiolipin synthesis resulting from IAV infection but did not fully reverse the glycolytic shift. CDP-choline also did not prevent the alterations in mitochondrial protein expression resulting from infection. Taken together, our data show ATII cell mitochondrial dysfunction following IAV infection results from impaired de novo phospholipid synthesis, but the glycolytic shift does not.
Collapse
Affiliation(s)
- Lauren M Doolittle
- OHIO STATE UNIVERSITY, COLLEGE OF VETERINARY MEDICINE, Columbus, Ohio, United States
| | - Katherine Binzel
- OHIO STATE UNIVERSITY, Wright Center of Innovation in Biomedical Imaging, Columbus, Ohio, United States
| | - Katherine E Nolan
- The Ohio State University, 2647, Veterinary Biosciences, Columbus, Ohio, United States
| | - Kelsey Craig
- The Ohio State University, 2647, Veterinary Biosciences, Columbus, Ohio, United States
| | - Lucia E Rosas
- The Ohio State University, 2647, Veterinary Biosciences, Columbus, Ohio, United States
| | - Matthew C Bernier
- The Ohio State University, 2647, CCIC Mass Spectrometry & Proteomics Facility, Columbus, Ohio, United States
| | - Lisa M Joseph
- The Ohio State University, 2647, Veterinary Biosciences, Columbus, Ohio, United States
| | - Parker S Woods
- The Ohio State University, 2647, Veterinary Biosciences, Columbus, Ohio, United States
| | - Michael V Knopp
- OHIO STATE UNIVERSITY, Wright Center of Innovation in Biomedical Imaging, Columbus, Ohio, United States
| | - Ian C Davis
- OHIO STATE UNIVERSITY, COLLEGE OF VETERINARY MEDICINE, Columbus, Ohio, United States;
| |
Collapse
|
56
|
Aghapour M, Ubags ND, Bruder D, Hiemstra PS, Sidhaye V, Rezaee F, Heijink IH. Role of air pollutants in airway epithelial barrier dysfunction in asthma and COPD. Eur Respir Rev 2022; 31:31/163/210112. [PMID: 35321933 PMCID: PMC9128841 DOI: 10.1183/16000617.0112-2021] [Citation(s) in RCA: 51] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 11/13/2021] [Indexed: 12/12/2022] Open
Abstract
Chronic exposure to environmental pollutants is a major contributor to the development and progression of obstructive airway diseases, including asthma and COPD. Understanding the mechanisms underlying the development of obstructive lung diseases upon exposure to inhaled pollutants will lead to novel insights into the pathogenesis, prevention and treatment of these diseases. The respiratory epithelial lining forms a robust physicochemical barrier protecting the body from inhaled toxic particles and pathogens. Inhalation of airborne particles and gases may impair airway epithelial barrier function and subsequently lead to exaggerated inflammatory responses and airway remodelling, which are key features of asthma and COPD. In addition, air pollutant-induced airway epithelial barrier dysfunction may increase susceptibility to respiratory infections, thereby increasing the risk of exacerbations and thus triggering further inflammation. In this review, we discuss the molecular and immunological mechanisms involved in physical barrier disruption induced by major airborne pollutants and outline their implications in the pathogenesis of asthma and COPD. We further discuss the link between these pollutants and changes in the lung microbiome as a potential factor for aggravating airway diseases. Understanding these mechanisms may lead to identification of novel targets for therapeutic intervention to restore airway epithelial integrity in asthma and COPD. Exposure to air pollution induces airway epithelial barrier dysfunction through several mechanisms including increased oxidative stress, exaggerated cytokine responses and impaired host defence, which contributes to development of asthma and COPD. https://bit.ly/3DHL1CA
Collapse
Affiliation(s)
- Mahyar Aghapour
- Infection Immunology Group, Institute of Medical Microbiology, Infection Control and Prevention, Health Campus Immunology, Infectiology and Inflammation, Otto-von-Guericke University, Magdeburg, Germany.,Immune Regulation Group, Helmholtz Center for Infection Research, Braunschweig, Germany
| | - Niki D Ubags
- Faculty of Biology and Medicine, University of Lausanne, Service de Pneumologie, CHUV, Epalinges, Switzerland
| | - Dunja Bruder
- Infection Immunology Group, Institute of Medical Microbiology, Infection Control and Prevention, Health Campus Immunology, Infectiology and Inflammation, Otto-von-Guericke University, Magdeburg, Germany.,Immune Regulation Group, Helmholtz Center for Infection Research, Braunschweig, Germany
| | - Pieter S Hiemstra
- Dept of Pulmonology, Leiden University Medical Center, Leiden, The Netherlands
| | - Venkataramana Sidhaye
- Pulmonary and Critical Care Medicine, Environmental Health and Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Fariba Rezaee
- Center for Pediatric Pulmonary Medicine, Cleveland Clinic Children's, Cleveland, OH, USA.,Dept of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH, USA
| | - Irene H Heijink
- University of Groningen, University Medical Center Groningen, Depts of Pathology and Medical Biology and Pulmonology, Groningen Research Institute for Asthma and COPD (GRIAC), Groningen, The Netherlands
| |
Collapse
|
57
|
Tulen CBM, Snow SJ, Leermakers PA, Kodavanti UP, van Schooten FJ, Opperhuizen A, Remels AHV. Acrolein inhalation acutely affects the regulation of mitochondrial metabolism in rat lung. Toxicology 2022; 469:153129. [PMID: 35150775 PMCID: PMC9201729 DOI: 10.1016/j.tox.2022.153129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 02/07/2022] [Accepted: 02/08/2022] [Indexed: 10/19/2022]
Abstract
Exposure of the airways to cigarette smoke (CS) is the primary risk factor for developing several lung diseases such as Chronic Obstructive Pulmonary Disease (COPD). CS consists of a complex mixture of over 6000 chemicals including the highly reactive α,β-unsaturated aldehyde acrolein. Acrolein is thought to be responsible for a large proportion of the non-cancer disease risk associated with smoking. Emerging evidence suggest a key role for CS-induced abnormalities in mitochondrial morphology and function in airway epithelial cells in COPD pathogenesis. Although in vitro studies suggest acrolein-induced mitochondrial dysfunction in airway epithelial cells, it is unknown if in vivo inhalation of acrolein affects mitochondrial content or the pathways controlling this. In this study, rats were acutely exposed to acrolein by inhalation (nose-only; 0-4 ppm), 4 h/day for 1 or 2 consecutive days (n = 6/group). Subsequently, the activity and abundance of key constituents of mitochondrial metabolic pathways as well as expression of critical proteins and genes controlling mitochondrial biogenesis and mitophagy were investigated in lung homogenates. A transient decreasing response in protein and transcript abundance of subunits of the electron transport chain complexes was observed following acrolein inhalation. Moreover, acrolein inhalation caused a decreased abundance of key regulators associated with mitochondrial biogenesis, respectively a differential response on day 1 versus day 2. Abundance of components of the mitophagy machinery was in general unaltered in response to acrolein exposure in rat lung. Collectively, this study demonstrates that acrolein inhalation acutely and dose-dependently disrupts the molecular regulation of mitochondrial metabolism in rat lung. Hence, understanding the effect of acrolein on mitochondrial function will provide a scientifically supported reasoning to shortlist aldehydes regulation in tobacco smoke.
Collapse
Affiliation(s)
- C B M Tulen
- School of Nutrition and Translational Research in Metabolism (NUTRIM), Department of Pharmacology and Toxicology, Maastricht University Medical Center+, Maastricht, the Netherlands.
| | - S J Snow
- Public Health and Integrated Toxicology Division, Center for Public Health and Environmental Assessment, US Environmental Protection Agency, Durham, NC, United States; ICF, Durham, NC, United States
| | - P A Leermakers
- School of Nutrition and Translational Research in Metabolism (NUTRIM), Department of Pharmacology and Toxicology, Maastricht University Medical Center+, Maastricht, the Netherlands
| | - U P Kodavanti
- Public Health and Integrated Toxicology Division, Center for Public Health and Environmental Assessment, US Environmental Protection Agency, Durham, NC, United States; Curriculum in Toxicology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - F J van Schooten
- School of Nutrition and Translational Research in Metabolism (NUTRIM), Department of Pharmacology and Toxicology, Maastricht University Medical Center+, Maastricht, the Netherlands
| | - A Opperhuizen
- School of Nutrition and Translational Research in Metabolism (NUTRIM), Department of Pharmacology and Toxicology, Maastricht University Medical Center+, Maastricht, the Netherlands; Netherlands Food and Consumer Product Safety Authority (NVWA), Utrecht, the Netherlands
| | - A H V Remels
- School of Nutrition and Translational Research in Metabolism (NUTRIM), Department of Pharmacology and Toxicology, Maastricht University Medical Center+, Maastricht, the Netherlands
| |
Collapse
|
58
|
Tulen CBM, Wang Y, Beentjes D, Jessen PJJ, Ninaber DK, Reynaert NL, van Schooten FJ, Opperhuizen A, Hiemstra PS, Remels AHV. Dysregulated mitochondrial metabolism upon cigarette smoke exposure in various human bronchial epithelial cell models. Dis Model Mech 2022; 15:dmm049247. [PMID: 35344036 PMCID: PMC8990921 DOI: 10.1242/dmm.049247] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 12/29/2021] [Indexed: 01/13/2023] Open
Abstract
Exposure to cigarette smoke (CS) is the primary risk factor for developing chronic obstructive pulmonary disease. The impact of CS exposure on the molecular mechanisms involved in mitochondrial quality control in airway epithelial cells is incompletely understood. Undifferentiated or differentiated primary bronchial epithelial cells were acutely/chronically exposed to whole CS (WCS) or CS extract (CSE) in submerged or air-liquid interface conditions. Abundance of key regulators controlling mitochondrial biogenesis, mitophagy and mitochondrial dynamics was assessed. Acute exposure to WCS or CSE increased the abundance of components of autophagy and receptor-mediated mitophagy in all models. Although mitochondrial content and dynamics appeared to be unaltered in response to CS, changes in both the molecular control of mitochondrial biogenesis and a shift toward an increased glycolytic metabolism were observed in particular in differentiated cultures. These alterations persisted, at least in part, after chronic exposure to WCS during differentiation and upon subsequent discontinuation of WCS exposure. In conclusion, smoke exposure alters the regulation of mitochondrial metabolism in airway epithelial cells, but observed alterations may differ between various culture models used. This article has an associated First Person interview with the joint first authors of the paper.
Collapse
Affiliation(s)
- Christy B. M. Tulen
- Department of Pharmacology and Toxicology, School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center+, PO Box 616, 6200 MD Maastricht, The Netherlands
| | - Ying Wang
- Department of Pulmonology, Leiden University Medical Center, PO Box 9600, 2300 RC Leiden, The Netherlands
| | - Daan Beentjes
- Department of Pulmonology, Leiden University Medical Center, PO Box 9600, 2300 RC Leiden, The Netherlands
| | - Phyllis J. J. Jessen
- Department of Pharmacology and Toxicology, School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center+, PO Box 616, 6200 MD Maastricht, The Netherlands
| | - Dennis K. Ninaber
- Department of Pulmonology, Leiden University Medical Center, PO Box 9600, 2300 RC Leiden, The Netherlands
| | - Niki L. Reynaert
- Department of Respiratory Medicine, School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center+, PO Box 616, 6200 MD Maastricht, The Netherlands
- Primary Lung Culture Facility, Maastricht University Medical Center+, PO Box 616, 6200 MD Maastricht, The Netherlands
| | - Frederik-Jan van Schooten
- Department of Pharmacology and Toxicology, School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center+, PO Box 616, 6200 MD Maastricht, The Netherlands
| | - Antoon Opperhuizen
- Department of Pharmacology and Toxicology, School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center+, PO Box 616, 6200 MD Maastricht, The Netherlands
- Office of Risk Assessment and Research, Netherlands Food and Consumer Product Safety Authority, PO Box 8433, 3503 RK Utrecht, The Netherlands
| | - Pieter S. Hiemstra
- Department of Pulmonology, Leiden University Medical Center, PO Box 9600, 2300 RC Leiden, The Netherlands
| | - Alexander H. V. Remels
- Department of Pharmacology and Toxicology, School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center+, PO Box 616, 6200 MD Maastricht, The Netherlands
| |
Collapse
|
59
|
Giordano L, Gregory AD, Pérez Verdaguer M, Ware SA, Harvey H, DeVallance E, Brzoska T, Sundd P, Zhang Y, Sciurba FC, Shapiro SD, Kaufman BA. Extracellular Release of Mitochondrial DNA: Triggered by Cigarette Smoke and Detected in COPD. Cells 2022; 11:369. [PMID: 35159179 PMCID: PMC8834490 DOI: 10.3390/cells11030369] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 01/13/2022] [Accepted: 01/18/2022] [Indexed: 12/17/2022] Open
Abstract
Cigarette smoke (CS) is the most common risk factor for chronic obstructive pulmonary disease (COPD). The present study aimed to elucidate whether mtDNA is released upon CS exposure and is detected in the plasma of former smokers affected by COPD as a possible consequence of airway damage. We measured cell-free mtDNA (cf-mtDNA) and nuclear DNA (cf-nDNA) in COPD patient plasma and mouse serum with CS-induced emphysema. The plasma of patients with COPD and serum of mice with CS-induced emphysema showed increased cf-mtDNA levels. In cell culture, exposure to a sublethal dose of CSE decreased mitochondrial membrane potential, increased oxidative stress, dysregulated mitochondrial dynamics, and triggered mtDNA release in extracellular vesicles (EVs). Mitochondrial DNA release into EVs occurred concomitantly with increased expression of markers that associate with DNA damage responses, including DNase III, DNA-sensing receptors (cGAS and NLRP3), proinflammatory cytokines (IL-1β, IL-6, IL-8, IL-18, and CXCL2), and markers of senescence (p16 and p21); the majority of the responses are also triggered by cytosolic DNA delivery in vitro. Exposure to a lethal CSE dose preferentially induced mtDNA and nDNA release in the cell debris. Collectively, the results of this study associate markers of mitochondrial stress, inflammation, and senescence with mtDNA release induced by CSE exposure. Because high cf-mtDNA is detected in the plasma of COPD patients and serum of mice with emphysema, our findings support the future study of cf-mtDNA as a marker of mitochondrial stress in response to CS exposure and COPD pathology.
Collapse
Affiliation(s)
- Luca Giordano
- Center for Metabolism and Mitochondrial Medicine, Division of Cardiology, Department of Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA; (S.A.W.); (H.H.)
- Heart, Lung, and Blood Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA 15261, USA; (E.D.); (T.B.); (P.S.)
| | - Alyssa D. Gregory
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA; (A.D.G.); (Y.Z.); (F.C.S.); (S.D.S.)
| | - Mireia Pérez Verdaguer
- Department of Cell Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA;
| | - Sarah A. Ware
- Center for Metabolism and Mitochondrial Medicine, Division of Cardiology, Department of Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA; (S.A.W.); (H.H.)
| | - Hayley Harvey
- Center for Metabolism and Mitochondrial Medicine, Division of Cardiology, Department of Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA; (S.A.W.); (H.H.)
| | - Evan DeVallance
- Heart, Lung, and Blood Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA 15261, USA; (E.D.); (T.B.); (P.S.)
| | - Tomasz Brzoska
- Heart, Lung, and Blood Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA 15261, USA; (E.D.); (T.B.); (P.S.)
- Division of Hematology/Oncology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Prithu Sundd
- Heart, Lung, and Blood Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA 15261, USA; (E.D.); (T.B.); (P.S.)
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA; (A.D.G.); (Y.Z.); (F.C.S.); (S.D.S.)
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Yingze Zhang
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA; (A.D.G.); (Y.Z.); (F.C.S.); (S.D.S.)
| | - Frank C. Sciurba
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA; (A.D.G.); (Y.Z.); (F.C.S.); (S.D.S.)
| | - Steven D. Shapiro
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA; (A.D.G.); (Y.Z.); (F.C.S.); (S.D.S.)
| | - Brett A. Kaufman
- Center for Metabolism and Mitochondrial Medicine, Division of Cardiology, Department of Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA; (S.A.W.); (H.H.)
- Heart, Lung, and Blood Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA 15261, USA; (E.D.); (T.B.); (P.S.)
| |
Collapse
|
60
|
Caldeira DDAF, Weiss DJ, Rocco PRM, Silva PL, Cruz FF. Mitochondria in Focus: From Function to Therapeutic Strategies in Chronic Lung Diseases. Front Immunol 2021; 12:782074. [PMID: 34887870 PMCID: PMC8649841 DOI: 10.3389/fimmu.2021.782074] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 10/29/2021] [Indexed: 01/14/2023] Open
Abstract
Mitochondria are essential organelles for cell metabolism, growth, and function. Mitochondria in lung cells have important roles in regulating surfactant production, mucociliary function, mucus secretion, senescence, immunologic defense, and regeneration. Disruption in mitochondrial physiology can be the central point in several pathophysiologic pathways of chronic lung diseases such as chronic obstructive pulmonary disease, idiopathic pulmonary fibrosis, and asthma. In this review, we summarize how mitochondria morphology, dynamics, redox signaling, mitophagy, and interaction with the endoplasmic reticulum are involved in chronic lung diseases and highlight strategies focused on mitochondrial therapy (mito-therapy) that could be tested as a potential therapeutic target for lung diseases.
Collapse
Affiliation(s)
- Dayene de Assis Fernandes Caldeira
- Laboratory of Pulmonary Investigation, Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Daniel J Weiss
- Department of Medicine, College of Medicine, University of Vermont, Burlington, VT, United States
| | - Patricia Rieken Macêdo Rocco
- Laboratory of Pulmonary Investigation, Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil.,National Institute of Science and Technology for Regenerative Medicine, Rio de Janeiro, Brazil.,Rio de Janeiro Innovation Network in Nanosystems for Health-NanoSAÚDE/FAPERJ, Rio de Janeiro, Brazil
| | - Pedro Leme Silva
- Laboratory of Pulmonary Investigation, Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil.,National Institute of Science and Technology for Regenerative Medicine, Rio de Janeiro, Brazil.,Rio de Janeiro Innovation Network in Nanosystems for Health-NanoSAÚDE/FAPERJ, Rio de Janeiro, Brazil
| | - Fernanda Ferreira Cruz
- Laboratory of Pulmonary Investigation, Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil.,National Institute of Science and Technology for Regenerative Medicine, Rio de Janeiro, Brazil.,Rio de Janeiro Innovation Network in Nanosystems for Health-NanoSAÚDE/FAPERJ, Rio de Janeiro, Brazil
| |
Collapse
|
61
|
Role of Lysocardiolipin Acyltransferase in Cigarette Smoke-Induced Lung Epithelial Cell Mitochondrial ROS, Mitochondrial Dynamics, and Apoptosis. Cell Biochem Biophys 2021; 80:203-216. [PMID: 34724158 DOI: 10.1007/s12013-021-01043-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/20/2021] [Indexed: 02/07/2023]
Abstract
Cigarette smoke is the primary cause of Chronic Obstructive Pulmonary Disorder (COPD). Cigarette smoke extract (CSE)-induced oxidative damage of the lungs results in mitochondrial dysfunction and apoptosis of epithelium. Mitochondrial cardiolipin (CL) present in the inner mitochondrial membrane plays an important role in mitochondrial function, wherein its fatty acid composition is regulated by lysocardiolipin acyltransferase (LYCAT). In this study, we investigated the role of LYCAT expression and activity in mitochondrial oxidative stress, mitochondrial dynamics, and lung epithelial cell apoptosis. LYCAT expression was increased in human lung specimens from smokers, and cigarette smoke-exposed-mouse lung tissues. Cigarette smoke extract (CSE) increased LYCAT mRNA levels and protein expression, modulated cardiolipin fatty acid composition, and enhanced mitochondrial fission in the bronchial epithelial cell line, BEAS-2B in vitro. Inhibition of LYCAT activity with a peptide mimetic, attenuated CSE-mediated mitochondrial (mt) reactive oxygen species (ROS), mitochondrial fragmentation, and apoptosis, while MitoTEMPO attenuated CSE-induced MitoROS, mitochondrial fission and apoptosis of BEAS-2B cells. Collectively, these findings suggest that increased LYCAT expression promotes MitoROS, mitochondrial dynamics and apoptosis of lung epithelial cells. Given the key role of LYCAT in mitochondrial cardiolipin remodeling and function, strategies aimed at inhibiting LYCAT activity and ROS may offer an innovative approach to minimize lung inflammation caused by cigarette smoke.
Collapse
|
62
|
Burgoyne RA, Fisher AJ, Borthwick LA. The Role of Epithelial Damage in the Pulmonary Immune Response. Cells 2021; 10:cells10102763. [PMID: 34685744 PMCID: PMC8534416 DOI: 10.3390/cells10102763] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 10/05/2021] [Accepted: 10/12/2021] [Indexed: 12/14/2022] Open
Abstract
Pulmonary epithelial cells are widely considered to be the first line of defence in the lung and are responsible for coordinating the innate immune response to injury and subsequent repair. Consequently, epithelial cells communicate with multiple cell types including immune cells and fibroblasts to promote acute inflammation and normal wound healing in response to damage. However, aberrant epithelial cell death and damage are hallmarks of pulmonary disease, with necrotic cell death and cellular senescence contributing to disease pathogenesis in numerous respiratory diseases such as idiopathic pulmonary fibrosis (IPF), chronic obstructive pulmonary disease (COPD) and coronavirus disease (COVID)-19. In this review, we summarise the literature that demonstrates that epithelial damage plays a pivotal role in the dysregulation of the immune response leading to tissue destruction and abnormal remodelling in several chronic diseases. Specifically, we highlight the role of epithelial-derived damage-associated molecular patterns (DAMPs) and senescence in shaping the immune response and assess their contribution to inflammatory and fibrotic signalling pathways in the lung.
Collapse
Affiliation(s)
- Rachel Ann Burgoyne
- Fibrosis Research Group, Biosciences Institute, Newcastle University, Newcastle upon Tyne NE2 4HH, UK;
| | - Andrew John Fisher
- Regenerative Medicine, Stem Cells and Transplantation Theme, Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne NE2 4HH, UK;
- Institute of Transplantation, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne NE7 7DN, UK
| | - Lee Anthony Borthwick
- Fibrosis Research Group, Biosciences Institute, Newcastle University, Newcastle upon Tyne NE2 4HH, UK;
- Fibrofind, Medical School, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
- Correspondence: ; Tel.: +44-191-208-3112
| |
Collapse
|
63
|
Han YK, Kim JS, Lee GB, Lim JH, Park KM. Oxidative stress following acute kidney injury causes disruption of lung cell cilia and their release into the bronchoaveolar lavage fluid and lung injury, which are exacerbated by Idh2 deletion. Redox Biol 2021; 46:102077. [PMID: 34315110 PMCID: PMC8326422 DOI: 10.1016/j.redox.2021.102077] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 07/16/2021] [Accepted: 07/19/2021] [Indexed: 01/02/2023] Open
Abstract
Acute kidney injury (AKI) induces distant organ injury, which is a serious concern in patients with AKI. Recent studies have demonstrated that distant organ injury is associated with oxidative stress of organ and damage of cilium, an axoneme-based cellular organelle. However, the role of oxidative stress and cilia damage in AKI-induced lung injury remains to be defined. Here, we investigated whether AKI-induced lung injury is associated with mitochondrial oxidative stress and cilia disruption in lung cells. AKI was induced in isocitrate dehydrogenase 2 (Idh2, a mitochondrial antioxidant enzyme)-deleted (Idh2−/−) and wild-type (Idh2+/+) mice by kidney ischemia-reperfusion (IR). A group of mice were treated with Mito-TEMPO, a mitochondria-specific antioxidant. Kidney IR caused lung injuries, including alveolar septal thickening, alveolar damage, and neutrophil accumulation in the lung, and increased protein concentration and total cell number in bronchoalveolar lavage fluid (BALF). In addition, kidney IR caused fragmentation of lung epithelial cell cilia and the release of fragments into BALF. Kidney IR also increased the production of superoxide, lipid peroxidation, and mitochondrial and nuclei DNA oxidation in lungs and decreased IDH2 expression. Lung oxidative stress and injury relied on the degree of kidney injury. Idh2 deletion exacerbated kidney IR-induced lung injuries. Treatment with Mito-TEMPO attenuated kidney IR-induced lung injuries, with greater attenuation in Idh2−/− than Idh2+/+ mice. Our data demonstrate that AKI induces the disruption of cilia and damages cells via oxidative stress in lung epithelial cells, which leads to the release of disrupted ciliary fragments into BALF.
Collapse
Affiliation(s)
- Yong Kwon Han
- Department of Anatomy, Cardiovascular Research Institute and BK21 Plus, School of Medicine, Kyungpook National University, 680 Gukchaebosang-ro, Junggu, Daegu, 41944, Republic of Korea
| | - Ji Su Kim
- Department of Anatomy, Cardiovascular Research Institute and BK21 Plus, School of Medicine, Kyungpook National University, 680 Gukchaebosang-ro, Junggu, Daegu, 41944, Republic of Korea
| | - Gwan Beom Lee
- Department of Anatomy, Cardiovascular Research Institute and BK21 Plus, School of Medicine, Kyungpook National University, 680 Gukchaebosang-ro, Junggu, Daegu, 41944, Republic of Korea
| | - Jae Hang Lim
- Department of Microbiology, School of Medicine, Ihwa Woman's University, 25 Magokdong-ro 2-gil, Gangseo-gu, Seoul, 07804, Republic of Korea
| | - Kwon Moo Park
- Department of Anatomy, Cardiovascular Research Institute and BK21 Plus, School of Medicine, Kyungpook National University, 680 Gukchaebosang-ro, Junggu, Daegu, 41944, Republic of Korea.
| |
Collapse
|
64
|
Chen L, Xu J, Deng M, Liang Y, Ma J, Zhang L, Wang Y, Zhang J. Telmisartan mitigates lipopolysaccharide (LPS)-induced production of mucin 5AC (MUC5AC) through increasing suppressor of cytokine signaling 1 (SOCS1). Bioengineered 2021; 12:3912-3923. [PMID: 34281463 PMCID: PMC8806622 DOI: 10.1080/21655979.2021.1943605] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Acute lung injury (ALI) is a serious clinical pulmonary disease. The pathogenesis of ALI is related to the excessive release of inflammatory factors and upregulation of mucin 5AC (MUC5AC). Telmisartan is a novel antihypertension agent that exerts promising anti-inflammatory effects. The purpose of this study is to investigate whether Telmisartan has a protective role in lipopolysaccharide (LPS)-induced MUC5AC expression and to explore the underlying mechanism in human bronchial epithelial cells. Firstly, the decreased cell viability, elevated release of lactate dehydrogenase (LDH), and excessively released inflammatory factors tumor necrosis factor-α (TNF-α), interleukin- 6 (IL-6), and transforming growth factor-β (TGF)-β in bronchial BEAS-2B epithelial cells induced by stimulation with LPS were significantly reversed by the introduction of Telmisartan. Secondly, the upregulated MUC5AC and downregulated suppressor of cytokine signaling 1 (SOCS1) caused by stimulation with LPS were dramatically reversed by Telmisartan. Notably, treatment with Telmisartan attenuated LPS-induced activation of nuclear factor κ-B (NF-κB). Lastly, silencing of SOCS1 abolished the protective effects of Telmisartan against LPS-induced production of MUC5AC and the activation of NF-κB. Based on these findings, we conclude that Telmisartan displayed a protective effect against LPS by improving mitochondrial function, mitigating inflammatory response, and reducing the production of mucin 5AC by regulating the SOCS1/NF-κB axis in human bronchial epithelial cells.
Collapse
Affiliation(s)
- Ling Chen
- Department of Respiration, Hospital of PLA, Beijing, China
| | - Jiajia Xu
- Department of Pathology, Zhongda Hospital Southeast University, Nanjing, Jiangsu, China
| | - Meiyu Deng
- Department of Respiration, Hospital of PLA, Beijing, China
| | - Yanling Liang
- Department of Endocrinology, Hospital of PLA, Beijing, China
| | - Jinfu Ma
- Department of Respiration, Hospital of PLA, Beijing, China
| | - Linghui Zhang
- Department of Respiration, Hospital of PLA, Beijing, China
| | - Yijie Wang
- Department of Respiration, Hospital of PLA, Beijing, China
| | - Jinping Zhang
- Department of Gerontology, Hospital of PLA, Beijing, China
| |
Collapse
|
65
|
Mitochondrial-Targeting Antioxidant SS-31 Suppresses Airway Inflammation and Oxidative Stress Induced by Cigarette Smoke. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:6644238. [PMID: 34221235 PMCID: PMC8219423 DOI: 10.1155/2021/6644238] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 03/21/2021] [Accepted: 04/26/2021] [Indexed: 02/05/2023]
Abstract
This study investigated whether the mitochondrial-targeted peptide SS-31 can protect against cigarette smoke- (CS-) induced airway inflammation and oxidative stress in vitro and in vivo. Mice were exposed to CS for 4 weeks to establish a CS-induced airway inflammation model, and those in the experimental group were pretreated with SS-31 1 h before CS exposure. Pathologic changes and oxidative stress in lung tissue, inflammatory cell counts, and proinflammatory cytokine levels in bronchoalveolar lavage fluid (BALF) were examined. The mechanistic basis for the effects of SS-31 on CS extract- (CSE-) induced airway inflammation and oxidative stress was investigated using BEAS-2B bronchial epithelial cells and by RNA sequencing and western blot analysis of lung tissues. SS-31 attenuated CS-induced inflammatory injury of the airway and reduced total cell, neutrophil, and macrophage counts and tumor necrosis factor- (TNF-) α, interleukin- (IL-) 6, and matrix metalloproteinase (MMP) 9 levels in BALF. SS-31 also attenuated CS-induced oxidative stress by decreasing malondialdehyde (MDA) and myeloperoxidase (MPO) activities and increasing that of superoxide dismutase (SOD). It also reversed CS-induced changes in the expression of mitochondrial fission protein (MFF) and optic atrophy (OPA) 1 and reduced the amount of cytochrome c released into the cytosol. Pretreatment with SS-31 normalized TNF-α, IL-6, and MMP9 expression, MDA and SOD activities, and ROS generation in CSE-treated BEAS-2B cells and reversed the changes in MFF and OPA1 expression. RNA sequencing and western blot analysis showed that SS-31 inhibited CS-induced activation of the mitogen-activated protein kinase (MAPK) signaling pathway in vitro and in vivo. Thus, SS-31 alleviates CS-induced airway inflammation and oxidative stress via modulation of mitochondrial function and regulation of MAPK signaling and thus has therapeutic potential for the treatment of airway disorders caused by smoking.
Collapse
|
66
|
Chen Q, de Vries M, Nwozor KO, Noordhoek JA, Brandsma CA, Boezen HM, Heijink IH. A Protective Role of FAM13A in Human Airway Epithelial Cells Upon Exposure to Cigarette Smoke Extract. Front Physiol 2021; 12:690936. [PMID: 34163376 PMCID: PMC8215130 DOI: 10.3389/fphys.2021.690936] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Accepted: 05/11/2021] [Indexed: 12/26/2022] Open
Abstract
Background Chronic Obstructive Pulmonary Disease (COPD) is a progressive lung disease characterized by chronic inflammation upon inhalation of noxious particles, e.g., cigarette smoke. FAM13A is one of the genes often found to be associated with COPD, however its function in the pathophysiology of COPD is incompletely understood. We studied its role in airway epithelial barrier integrity and cigarette smoke-induced epithelial responses. Materials and Methods Protein level and localization of FAM13A was assessed with immunohistochemistry in lung tissue from COPD patients and non-COPD controls. In vitro, FAM13A expression was determined in the absence or presence of cigarette smoke extract (CSE) in primary airway epithelial cells (AECs) from COPD patients and controls by western blotting. FAM13A was overexpressed in cell line 16HBE14o- and its effect on barrier function was monitored real-time by electrical resistance. Expression of junctional protein E-cadherin and β-catenin was assessed by western blotting. The secretion of neutrophil attractant CXCL8 upon CSE exposure was measured by ELISA. Results FAM13A was strongly expressed in airway epithelium, but significantly weaker in airways of COPD patients compared to non-COPD controls. In COPD-derived AECs, but not those of controls, FAM13A was significantly downregulated by CSE. 16HBE14o- cells overexpressing FAM13A built up epithelial resistance significantly more rapidly, which was accompanied by higher E-cadherin expression and reduced CSE-induced CXCL8 levels. Conclusion Our data indicate that the expression of FAM13A is lower in airway epithelium of COPD patients compared to non-COPD controls. In addition, cigarette smoking selectively downregulates airway epithelial expression of FAM13A in COPD patients. This may have important consequences for the pathophysiology of COPD, as the more rapid build-up of epithelial resistance upon FAM13A overexpression suggests improved (re)constitution of barrier function. The reduced epithelial secretion of CXCL8 upon CSE-induced damage suggests that lower FAM13A expression upon cigarette smoking may facilitate epithelial-driven neutrophilia.
Collapse
Affiliation(s)
- Qing Chen
- Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands.,Groningen Research Institute for Asthma and COPD (GRIAC), University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Maaike de Vries
- Groningen Research Institute for Asthma and COPD (GRIAC), University Medical Center Groningen, University of Groningen, Groningen, Netherlands.,Department of Epidemiology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Kingsley Okechukwu Nwozor
- Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands.,Groningen Research Institute for Asthma and COPD (GRIAC), University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Jacobien A Noordhoek
- Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands.,Groningen Research Institute for Asthma and COPD (GRIAC), University Medical Center Groningen, University of Groningen, Groningen, Netherlands.,Department of Pulmonology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Corry-Anke Brandsma
- Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands.,Groningen Research Institute for Asthma and COPD (GRIAC), University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - H Marike Boezen
- Groningen Research Institute for Asthma and COPD (GRIAC), University Medical Center Groningen, University of Groningen, Groningen, Netherlands.,Department of Epidemiology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Irene H Heijink
- Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands.,Groningen Research Institute for Asthma and COPD (GRIAC), University Medical Center Groningen, University of Groningen, Groningen, Netherlands.,Department of Pulmonology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| |
Collapse
|
67
|
Shui JE, Wang W, Liu H, Stepanova A, Liao G, Qian J, Ai X, Ten V, Lu J, Cardoso WV. Prematurity alters the progenitor cell program of the upper respiratory tract of neonates. Sci Rep 2021; 11:10799. [PMID: 34031475 PMCID: PMC8144386 DOI: 10.1038/s41598-021-90093-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Accepted: 04/29/2021] [Indexed: 11/09/2022] Open
Abstract
The impact of prematurity on human development and neonatal diseases, such as bronchopulmonary dysplasia, has been widely reported. However, little is known about the effects of prematurity on the programs of stem cell self-renewal and differentiation of the upper respiratory epithelium, which is key for adaptation to neonatal life. We developed a minimally invasive methodology for isolation of neonatal basal cells from nasopharyngeal (NP) aspirates and performed functional analysis in organotypic cultures to address this issue. We show that preterm NP progenitors have a markedly distinct molecular signature of abnormal proliferation and mitochondria quality control compared to term progenitors. Preterm progenitors had lower oxygen consumption at baseline and were unable to ramp up consumption to the levels of term cells when challenged. Although they formed a mucociliary epithelium, ciliary function tended to decline in premature cells as they differentiated, compared to term cells. Together, these differences suggested increased sensitivity of preterm progenitors to environmental stressors under non-homeostatic conditions.
Collapse
Affiliation(s)
- Jessica E Shui
- Division of Neonatology and Newborn Medicine, Department of Pediatrics, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Wei Wang
- Division of Neonatology and Newborn Medicine, Department of Pediatrics, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Helu Liu
- Columbia Center for Human Development, Pulmonary Allergy & Critical Care Medicine, Department of Medicine, Columbia University Irving Medical Center, 650 West 168th Street, BB 8-812, New York, NY, 10032, USA
| | - Anna Stepanova
- Division of Neonatology, Department of Pediatrics, Columbia University Irving Medical Center, New York, NY, USA
| | - Grace Liao
- Columbia Center for Human Development, Pulmonary Allergy & Critical Care Medicine, Department of Medicine, Columbia University Irving Medical Center, 650 West 168th Street, BB 8-812, New York, NY, 10032, USA
- Division of Neonatology, Department of Pediatrics, Columbia University Irving Medical Center, New York, NY, USA
| | - Jun Qian
- Columbia Center for Human Development, Pulmonary Allergy & Critical Care Medicine, Department of Medicine, Columbia University Irving Medical Center, 650 West 168th Street, BB 8-812, New York, NY, 10032, USA
| | - Xingbin Ai
- Division of Neonatology and Newborn Medicine, Department of Pediatrics, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Vadim Ten
- Division of Neonatology, Department of Pediatrics, Columbia University Irving Medical Center, New York, NY, USA
| | - Jining Lu
- Division of Lung Diseases, NHLBI, NIH, Bethesda, MD, USA
| | - Wellington V Cardoso
- Columbia Center for Human Development, Pulmonary Allergy & Critical Care Medicine, Department of Medicine, Columbia University Irving Medical Center, 650 West 168th Street, BB 8-812, New York, NY, 10032, USA.
| |
Collapse
|
68
|
Frye RE, Cakir J, Rose S, Palmer RF, Austin C, Curtin P, Arora M. Mitochondria May Mediate Prenatal Environmental Influences in Autism Spectrum Disorder. J Pers Med 2021; 11:218. [PMID: 33803789 PMCID: PMC8003154 DOI: 10.3390/jpm11030218] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 03/17/2021] [Accepted: 03/17/2021] [Indexed: 12/13/2022] Open
Abstract
We propose that the mitochondrion, an essential cellular organelle, mediates the long-term prenatal environmental effects of disease in autism spectrum disorder (ASD). Many prenatal environmental factors which increase the risk of developing ASD influence mitochondria physiology, including toxicant exposures, immune activation, and nutritional factors. Unique types of mitochondrial dysfunction have been associated with ASD and recent studies have linked prenatal environmental exposures to long-term changes in mitochondrial physiology in children with ASD. A better understanding of the role of the mitochondria in the etiology of ASD can lead to targeted therapeutics and strategies to potentially prevent the development of ASD.
Collapse
Affiliation(s)
- Richard E. Frye
- Barrow Neurological Institute at Phoenix Children’s Hospital, Phoenix, AZ 85016, USA
| | - Janet Cakir
- Department of Applied Ecology, North Carolina State University, Raleigh, NC 27695, USA;
| | - Shannon Rose
- Department of Pediatrics, Arkansas Children’s Research Institute, University of Arkansas for Medical Sciences, Little Rock, AR 72202, USA;
| | - Raymond F. Palmer
- Department of Family and Community Medicine, University of Texas Health Science Center, San Antonio, TX 78229, USA;
| | - Christine Austin
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; (C.A.); (P.C.); (M.A.)
| | - Paul Curtin
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; (C.A.); (P.C.); (M.A.)
| | - Manish Arora
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; (C.A.); (P.C.); (M.A.)
| |
Collapse
|
69
|
Nguyen JMK, Robinson DN, Sidhaye VK. Why new biology must be uncovered to advance therapeutic strategies for chronic obstructive pulmonary disease. Am J Physiol Lung Cell Mol Physiol 2021; 320:L1-L11. [PMID: 33174444 PMCID: PMC7847061 DOI: 10.1152/ajplung.00367.2020] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 10/22/2020] [Accepted: 11/06/2020] [Indexed: 12/13/2022] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is characterized by the destruction of alveolar tissue (in emphysema) and airway remodeling (leading to chronic bronchitis), which cause difficulties in breathing. It is a growing public health concern with few therapeutic options that can reverse disease progression or mortality. This is in part because current treatments mainly focus on ameliorating symptoms induced by inflammatory pathways as opposed to curing disease. Hence, emerging research focused on upstream pathways are likely to be beneficial in the development of efficient therapeutics to address the root causes of disease. Some of these pathways include mitochondrial function, cytoskeletal structure and maintenance, and airway hydration, which are all affected by toxins that contribute to COPD. Because of the complexity of COPD and unknown targets for disease onset, simpler model organisms have proved to be useful tools in identifying disease-relevant pathways and targets. This review summarizes COPD pathology, current treatments, and therapeutic discovery research, with a focus on the aforementioned pathways that can advance the therapeutic landscape of COPD.
Collapse
Affiliation(s)
- Jennifer M K Nguyen
- Department of Cell Biology, Johns Hopkins School of Medicine, Baltimore, Maryland
- Department of Pharmacology and Molecular Sciences, Johns Hopkins School of Medicine, Baltimore, Maryland
| | - Douglas N Robinson
- Department of Cell Biology, Johns Hopkins School of Medicine, Baltimore, Maryland
- Department of Pharmacology and Molecular Sciences, Johns Hopkins School of Medicine, Baltimore, Maryland
- Department of Medicine, Johns Hopkins School of Medicine, Baltimore, Maryland
| | | |
Collapse
|
70
|
Ray A, Jaiswal A, Dutta J, Singh S, Mabalirajan U. A looming role of mitochondrial calcium in dictating the lung epithelial integrity and pathophysiology of lung diseases. Mitochondrion 2020; 55:111-121. [PMID: 32971294 PMCID: PMC7505072 DOI: 10.1016/j.mito.2020.09.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Revised: 08/20/2020] [Accepted: 09/10/2020] [Indexed: 12/20/2022]
Abstract
With the increasing appreciation of mitochondria in modulating cellular homeostasis, various disease biology researchers have started exploring the detailed role of mitochondria in multiple diseases beyond neuronal and muscular diseases. In this context, emerging shreds of evidence in lung biology indicated the meticulous role of lung epithelia in provoking a plethora of lung diseases in contrast to earlier beliefs. As lung epithelia are ceaselessly exposed to the environment, they need to have multiple protective mechanisms to maintain the integrity of lung structure and function. As ciliated airway epithelium and type 2 alveolar epithelia require intense energy for executing their key functions like ciliary beating and surfactant production, it is no surprise that defects in mitochondrial function in these cells could perturb lung homeostasis and engage in the pathophysiology of lung diseases. On one hand, intracellular calcium plays the central role in executing key functions of lung epithelia, and on the other hand maintenance of intracellular calcium needs the buffering role of mitochondria. Thus, the regulation of mitochondrial calcium in lung epithelia seems to be critical in lung homeostasis and could be decisive in the pathogenesis of various lung diseases.
Collapse
Affiliation(s)
- Archita Ray
- Molecular Pathobiology of Respiratory Diseases, Cell Biology and Physiology Division, CSIR-Indian Institute of Chemical Biology, Kolkata, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Ashish Jaiswal
- Molecular Pathobiology of Respiratory Diseases, Cell Biology and Physiology Division, CSIR-Indian Institute of Chemical Biology, Kolkata, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Joytri Dutta
- Molecular Pathobiology of Respiratory Diseases, Cell Biology and Physiology Division, CSIR-Indian Institute of Chemical Biology, Kolkata, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Sabita Singh
- Molecular Pathobiology of Respiratory Diseases, Cell Biology and Physiology Division, CSIR-Indian Institute of Chemical Biology, Kolkata, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Ulaganathan Mabalirajan
- Molecular Pathobiology of Respiratory Diseases, Cell Biology and Physiology Division, CSIR-Indian Institute of Chemical Biology, Kolkata, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India.
| |
Collapse
|
71
|
Pouwels SD, Wiersma VR, Fokkema IE, Berg M, Ten Hacken NHT, van den Berge M, Heijink I, Faiz A. Acute cigarette smoke-induced eQTL affects formyl peptide receptor expression and lung function. Respirology 2020; 26:233-240. [PMID: 33078507 PMCID: PMC7983955 DOI: 10.1111/resp.13960] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 09/23/2020] [Accepted: 09/24/2020] [Indexed: 02/07/2023]
Abstract
Background and objective Cigarette smoking is one of the most prevalent causes of preventable deaths worldwide, leading to chronic diseases, including chronic obstructive pulmonary disease (COPD). Cigarette smoke is known to induce significant transcriptional modifications throughout the respiratory tract. However, it is largely unknown how genetic profiles influence the smoking‐related transcriptional changes and how changes in gene expression translate into altered alveolar epithelial repair responses. Methods We performed a candidate‐based acute cigarette smoke‐induced eQTL study, investigating the association between SNP and differential gene expression of FPR family members in bronchial epithelial cells isolated 24 h after smoking and after 48 h without smoking. The effects FPR1 on lung epithelial integrity and repair upon damage in the presence and absence of cigarette smoke were studied in CRISPR‐Cas9‐generated lung epithelial knockout cells. Results One significant (FDR < 0.05) inducible eQTL (rs3212855) was identified that induced a >2‐fold change in gene expression. The minor allele of rs3212855 was associated with significantly higher gene expression of FPR1, FPR2 and FPR3 upon smoking. Importantly, the minor allele of rs3212855 was also associated with lower lung function. Alveolar epithelial FPR1 knockout cells were protected against CSE‐induced reduction in repair capacity upon wounding. Conclusion We identified a novel smoking‐related inducible eQTL that is associated with a smoke‐induced increase in the expression of FPR1, FPR2 and FPR3, and with lowered lung function. in vitro FPR1 down‐regulation protects against smoke‐induced reduction in lung epithelial repair.
Collapse
Affiliation(s)
- Simon D Pouwels
- Department of Pathology and Medical Biology, University Medical Center Groningen (UMCG), University of Groningen, Groningen, The Netherlands.,Department of Pulmonology, University Medical Center Groningen (UMCG), University of Groningen, Groningen, The Netherlands.,Groningen Research Institute for Asthma and COPD (GRIAC), University Medical Center Groningen (UMCG), University of Groningen, Groningen, The Netherlands
| | - Valerie R Wiersma
- Department of Hematology, Cancer Research Center Groningen, University Medical Center Groningen (UMCG), University of Groningen, Groningen, The Netherlands
| | - Immeke E Fokkema
- Department of Pathology and Medical Biology, University Medical Center Groningen (UMCG), University of Groningen, Groningen, The Netherlands
| | - Marijn Berg
- Department of Pathology and Medical Biology, University Medical Center Groningen (UMCG), University of Groningen, Groningen, The Netherlands.,Groningen Research Institute for Asthma and COPD (GRIAC), University Medical Center Groningen (UMCG), University of Groningen, Groningen, The Netherlands
| | - Nick H T Ten Hacken
- Department of Pulmonology, University Medical Center Groningen (UMCG), University of Groningen, Groningen, The Netherlands
| | - Maarten van den Berge
- Department of Pulmonology, University Medical Center Groningen (UMCG), University of Groningen, Groningen, The Netherlands.,Groningen Research Institute for Asthma and COPD (GRIAC), University Medical Center Groningen (UMCG), University of Groningen, Groningen, The Netherlands
| | - Irene Heijink
- Department of Pathology and Medical Biology, University Medical Center Groningen (UMCG), University of Groningen, Groningen, The Netherlands.,Department of Pulmonology, University Medical Center Groningen (UMCG), University of Groningen, Groningen, The Netherlands.,Groningen Research Institute for Asthma and COPD (GRIAC), University Medical Center Groningen (UMCG), University of Groningen, Groningen, The Netherlands
| | - Alen Faiz
- Respiratory Bioinformatics and Molecular Biology, University of Technology Sydney, Sydney, NSW, Australia
| |
Collapse
|
72
|
Liu JY, Zhang MY, Qu YQ. The Underlying Role of Mitophagy in Different Regulatory Mechanisms of Chronic Obstructive Pulmonary Disease. Int J Chron Obstruct Pulmon Dis 2020; 15:2167-2177. [PMID: 32982209 PMCID: PMC7501977 DOI: 10.2147/copd.s265728] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 08/12/2020] [Indexed: 12/17/2022] Open
Abstract
COPD is a common disease of the respiratory system. Inflammation, cellular senescence and necroptosis are all pathological alterations of this disease, which may lead to emphysema and infection that aggravate disease progression. Mitochondria acting as respiration-related organelles is usually observed with abnormal changes in morphology and function in CS-stimulated models and COPD patients. Damaged mitochondria can activate mitophagy, a vital mechanism for mitochondrial quality control, whereas under the persistent stimulus of CS or other forms of oxidative stress, mitophagy is impaired, resulting in insufficient clearance of damaged mitochondria. However, the excessive activation of mitophagy also seems to disturb the pathology of COPD. In this review, we demonstrate the variations in mitochondria and mitophagy in CS-induced models and COPD patients and discuss the underlying regulatory mechanism of mitophagy and COPD, including the roles of inflammation, senescence, emphysema and infection.
Collapse
Affiliation(s)
- Jian-Yu Liu
- Department of Pulmonary and Critical Care Medicine, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, People's Republic of China
| | - Meng-Yu Zhang
- Department of Pulmonary and Critical Care Medicine, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, People's Republic of China
| | - Yi-Qing Qu
- Department of Pulmonary and Critical Care Medicine, Qilu Hospital of Shandong University, Jinan, Shandong, People's Republic of China
| |
Collapse
|
73
|
Sirtuin 3 Inhibits Airway Epithelial Mitochondrial Oxidative Stress in Cigarette Smoke-Induced COPD. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:7582980. [PMID: 33005288 PMCID: PMC7503124 DOI: 10.1155/2020/7582980] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 08/24/2020] [Accepted: 08/27/2020] [Indexed: 02/06/2023]
Abstract
Mitochondrial damage in airway epithelial cells plays an important role in the pathogenesis of chronic obstructive pulmonary disease (COPD). Sirtuin 3 (Sirt3) is a mitochondrial deacetylase regulating mitochondrial function, but its role in the pathogenesis of COPD is still unknown. The aim of the present study was to investigate the effect of Sirt3 on airway epithelial mitochondria in cigarette smoke-induced COPD. Our present study has shown serious airway inflammation, alveolar space enlargement, and mitochondrial damage of the airway epithelium in COPD rats. Compared to the control rats, Sirt3 protein expression was significantly decreased in the airway epithelium and lung tissue homogenate from COPD rats. In airway epithelial cells (BEAS-2B), cigarette smoke extract (CSE) treatment significantly decreased mRNA and protein expression of Sirt3 and manganese superoxide dismutase (MnSOD), as well as MnSOD activity in a concentration and time-dependent manner. Sirt3 siRNA further significantly intensified the decreases in MnSOD expression and activity and aggravated mitochondrial oxidative stress and cell injury when airway epithelial cells were treated with 7.5% CSE. In contrast, Sirt3 overexpression significantly prevented the decrease of MnSOD expression and activity and improved mitochondrial oxidative stress and cell injury in CSE-treated airway epithelial cells. These data suggest that Sirt3 inhibits airway epithelial mitochondrial oxidative stress possibly through the regulation of MnSOD, thereby contributing to the pathogenesis of COPD.
Collapse
|
74
|
Rehman R, Vijayakumar VE, Jaiswal A, Jain V, Mukherjee S, Vellarikkal SK, Dieffenbach PB, Fredenburgh LE, Prakash YS, Ghosh B, Agrawal A, Mabalirajan U. Noncanonical role for Ku70/80 in the prevention of allergic airway inflammation via maintenance of airway epithelial cell organelle homeostasis. Am J Physiol Lung Cell Mol Physiol 2020; 319:L728-L741. [PMID: 32877223 DOI: 10.1152/ajplung.00522.2019] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Airway epithelial homeostasis is under constant threat due to continuous exposure to the external environment, and abnormally robust sensitivity to external stimuli is critical to the development of airway diseases, including asthma. Ku is a key nonhomologous end-joining DNA repair protein with diverse cellular functions such as VDJ recombination and telomere length maintenance. Here, we show a novel function of Ku in alleviating features of allergic airway inflammation via the regulation of mitochondrial and endoplasmic reticulum (ER) stress. We first determined that airway epithelial cells derived from both asthmatic lungs and murine asthma models demonstrate increased expression of 8-hydroxy-deoxyguanosine (8-OHdG), a marker of oxidative DNA damage. Ku protein expression was dramatically reduced in the bronchial epithelium of patients with asthma as well as in human bronchial epithelial cells exposed to oxidative stress. Knockdown of Ku70 or Ku80 in naïve mice elicited mitochondrial collapse or ER stress, leading to bronchial epithelial cell apoptosis and spontaneous development of asthma-like features, including airway hyperresponsiveness, airway inflammation, and subepithelial fibrosis. These findings demonstrate an essential noncanonical role for Ku proteins in asthma pathogenesis, likely via maintenance of organelle homeostasis. This novel function of Ku proteins may also be important in other disease processes associated with organelle stress.
Collapse
Affiliation(s)
- Rakhshinda Rehman
- Molecular Pathobiology of Respiratory Diseases, Council of Scientific and Industrial Research-Institute of Genomics and Integrative Biology, Delhi, India.,Academy of Scientific and Innovative Research, Ghaziabad, India.,Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts
| | - Vijay Elakkya Vijayakumar
- Molecular Pathobiology of Respiratory Diseases, Council of Scientific and Industrial Research-Institute of Genomics and Integrative Biology, Delhi, India
| | - Ashish Jaiswal
- Molecular Pathobiology of Respiratory Diseases, Council of Scientific and Industrial Research-Institute of Genomics and Integrative Biology, Delhi, India.,Academy of Scientific and Innovative Research, Ghaziabad, India.,Molecular Pathobiology of Respiratory Diseases, Cell Biology and Physiology Division, Council of Scientific and Industrial Research-Indian Institute of Chemical Biology, Kolkata, India
| | - Vaibhav Jain
- Molecular Pathobiology of Respiratory Diseases, Council of Scientific and Industrial Research-Institute of Genomics and Integrative Biology, Delhi, India.,Academy of Scientific and Innovative Research, Ghaziabad, India
| | - Shravani Mukherjee
- Molecular Pathobiology of Respiratory Diseases, Council of Scientific and Industrial Research-Institute of Genomics and Integrative Biology, Delhi, India.,Academy of Scientific and Innovative Research, Ghaziabad, India
| | - Shamsudheen Karuthedath Vellarikkal
- Academy of Scientific and Innovative Research, Ghaziabad, India.,Broad Institute of the Massachusetts Institute of Technology and Harvard University, Cambridge, Massachusetts
| | - Paul B Dieffenbach
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts
| | - Laura E Fredenburgh
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts
| | - Y S Prakash
- Departments of Anesthesiology and Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota
| | - Balaram Ghosh
- Molecular Pathobiology of Respiratory Diseases, Council of Scientific and Industrial Research-Institute of Genomics and Integrative Biology, Delhi, India.,Academy of Scientific and Innovative Research, Ghaziabad, India
| | - Anurag Agrawal
- Molecular Pathobiology of Respiratory Diseases, Council of Scientific and Industrial Research-Institute of Genomics and Integrative Biology, Delhi, India.,Academy of Scientific and Innovative Research, Ghaziabad, India
| | - Ulaganathan Mabalirajan
- Molecular Pathobiology of Respiratory Diseases, Council of Scientific and Industrial Research-Institute of Genomics and Integrative Biology, Delhi, India.,Academy of Scientific and Innovative Research, Ghaziabad, India.,Molecular Pathobiology of Respiratory Diseases, Cell Biology and Physiology Division, Council of Scientific and Industrial Research-Indian Institute of Chemical Biology, Kolkata, India
| |
Collapse
|
75
|
Yuan Y, Yang S, Deng D, Chen Y, Zhang C, Zhou R, Su Z. Effects of genetic variations in Acads gene on the risk of chronic obstructive pulmonary disease. IUBMB Life 2020; 72:1986-1996. [PMID: 32593204 DOI: 10.1002/iub.2336] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 05/28/2020] [Accepted: 05/29/2020] [Indexed: 02/05/2023]
Abstract
Short-chain acyl-CoA dehydrogenase (SCAD), encoded by the Acads gene, functions in the mitochondrial β-oxidation of saturated short-chain fatty acids. SCAD deficiency results in mitochondrial dysfunction, which is one underlying biological mechanism of chronic obstructive pulmonary disease (COPD) pathogenesis. In this case-control study, we aimed to examine the effects of Acads gene polymorphisms on the susceptibility to COPD. A total of 16 tagging single-nucleotide polymorphisms (SNPs) in Acads gene region was identified and genotyped in 646 unrelated ethnic Chinese Han individuals including 279 patients with COPD and 367 healthy controls, their allelic and genotypic associations with COPD were determined by different genetic models. Furthermore, we estimated the linkage disequilibrium and haplotypes from these tested variants and determined the effects of haplotypes on the risk of COPD. The allelic and genotypic frequencies of SNPs rs2239686 and rs487915 in Acads gene were significantly different between COPD patients and controls, no statistically significant results were observed for other SNPs. Minor alleles A of rs2239686 and T of rs487915 were associated with a decreased pulmonary function and an increased COPD risk in a dominant manner. Functional analysis indicated that the risk allele A of rs2239686 could increase Acads expressions and the intracellular reactive oxygen species content. Haplotype analysis revealed that the haplotypes CTCCT in block 2 (rs3794216-rs3794215-rs34491494-rs558314-rs7312316) as well as GC in block 3 (rs2239686-rs487915) were protective against COPD, while haplotypes CTCGC in block 2 and AT in block 3 exhibited significant associations with the increased susceptibility to COPD. Our results suggest that Acads gene could potentially be a risk factor of COPD and thus its genetic variants might be as genetic biomarkers to predict the COPD susceptibility.
Collapse
Affiliation(s)
- Yiming Yuan
- Molecular Medicine Research Center and National Clinical Research Center for Geriatrics, West China Hospital, State Key Laboratory of Biotherapy, Sichuan University, Chengdu, China
| | - Shanshan Yang
- Molecular Medicine Research Center and National Clinical Research Center for Geriatrics, West China Hospital, State Key Laboratory of Biotherapy, Sichuan University, Chengdu, China
| | - Dan Deng
- Molecular Medicine Research Center and National Clinical Research Center for Geriatrics, West China Hospital, State Key Laboratory of Biotherapy, Sichuan University, Chengdu, China
| | - Yulong Chen
- Molecular Medicine Research Center and National Clinical Research Center for Geriatrics, West China Hospital, State Key Laboratory of Biotherapy, Sichuan University, Chengdu, China
| | - Caixia Zhang
- Molecular Medicine Research Center and National Clinical Research Center for Geriatrics, West China Hospital, State Key Laboratory of Biotherapy, Sichuan University, Chengdu, China
| | - Ruixue Zhou
- Molecular Medicine Research Center and National Clinical Research Center for Geriatrics, West China Hospital, State Key Laboratory of Biotherapy, Sichuan University, Chengdu, China
| | - Zhiguang Su
- Molecular Medicine Research Center and National Clinical Research Center for Geriatrics, West China Hospital, State Key Laboratory of Biotherapy, Sichuan University, Chengdu, China
| |
Collapse
|
76
|
Prakash YS. Asthma without borders. Am J Physiol Lung Cell Mol Physiol 2020; 318:L1001-L1003. [PMID: 32233787 PMCID: PMC7272744 DOI: 10.1152/ajplung.00114.2020] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Accepted: 03/26/2020] [Indexed: 12/12/2022] Open
Affiliation(s)
- Y S Prakash
- Department of Anesthesiology and Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota
| |
Collapse
|
77
|
Janssen-Heininger Y, Reynaert NL, van der Vliet A, Anathy V. Endoplasmic reticulum stress and glutathione therapeutics in chronic lung diseases. Redox Biol 2020; 33:101516. [PMID: 32249209 PMCID: PMC7251249 DOI: 10.1016/j.redox.2020.101516] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 03/20/2020] [Accepted: 03/20/2020] [Indexed: 02/07/2023] Open
Affiliation(s)
- Yvonne Janssen-Heininger
- Department of Pathology and Laboratory Medicine, University of Vermont, Larner College of Medicine, Burlington, VT, 05405, USA.
| | - Niki L Reynaert
- Department of Respiratory Medicine and School of Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University Medical Center, Maastricht, the Netherlands
| | - Albert van der Vliet
- Department of Pathology and Laboratory Medicine, University of Vermont, Larner College of Medicine, Burlington, VT, 05405, USA
| | - Vikas Anathy
- Department of Pathology and Laboratory Medicine, University of Vermont, Larner College of Medicine, Burlington, VT, 05405, USA
| |
Collapse
|