51
|
Haque MZ, Caceres PS, Ortiz PA. β-Adrenergic receptor stimulation increases surface NKCC2 expression in rat thick ascending limbs in a process inhibited by phosphodiesterase 4. Am J Physiol Renal Physiol 2012; 303:F1307-14. [PMID: 22933300 DOI: 10.1152/ajprenal.00019.2012] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The thick ascending limb of the loop of Henle (THAL) reabsorbs ∼30% of the filtered NaCl in a process mediated by the apical Na-K-2Cl cotransporter NKCC2. Stimulation of β-adrenergic receptors in the THAL enhances NaCl reabsorption and increases intracellular cAMP. We found that intracellular cAMP stimulates NKCC2 trafficking to the apical membrane via protein kinase A (PKA). Several cAMP-specific phosphodiesterases (PDE) have been identified in rat THALs, and PDE4 decreases cAMP generated by β-adrenergic stimulation in other cells. However, it is not known whether β-adrenergic receptors activation stimulates NKCC2 trafficking. Thus we hypothesized that β-adrenergic receptor stimulation enhances THAL apical membrane NKCC2 expression via the PKA pathway and PDE4 blunts this effect. THAL suspensions were obtained from Sprague-Dawley rats, and surface NKCC2 expression was measured by surface biotinylation and Western blot. Incubation of THALs with the β-adrenergic receptor agonist isoproterenol at 0.5 and 1.0 μM increased surface NKCC2 by 17 ± 1 and 29 ± 5% respectively (P < 0.05). Preventing cAMP degradation with 3-isobutyl-methylxanthine (IBMX; a nonselective phosphodiesterase inhibitor) enhanced isoproterenol-stimulated surface NKCC2 expression to 51 ± 7% (P < 0.05 vs. isoproterenol). The β-adrenergic receptor antagonist propranolol or the PKA inhibitor H-89 completely blocked isoproterenol + IBMX-induced increase on surface NKCC2, while propranolol or H-89 alone had no effect. Selective inhibition of PDE4 with rolipram (20 μM) potentiated the effect of isoproterenol on surface NKCC2 and increased cAMP levels. We concluded that β-adrenergic receptor stimulation enhances surface NKCC2 expression in the THALs via PKA and PDE4 blunts this effect.
Collapse
Affiliation(s)
- Mohammed Z Haque
- Hypertension and Vascular Research, Department of Internal Medicine, Henry Ford Hospital, Detroit, MI 48202, USA
| | | | | |
Collapse
|
52
|
Carmosino M, Rizzo F, Procino G, Zolla L, Timperio AM, Basco D, Barbieri C, Torretta S, Svelto M. Identification of moesin as NKCC2-interacting protein and analysis of its functional role in the NKCC2 apical trafficking. Biol Cell 2012; 104:658-76. [PMID: 22708623 DOI: 10.1111/boc.201100074] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2011] [Accepted: 06/15/2012] [Indexed: 12/16/2022]
Abstract
BACKGROUND INFORMATION The renal Na(+) -K(+) -2Cl(-) co-transporter (NKCC2) is expressed in kidney thick ascending limb cells, where it mediates NaCl re-absorption regulating body salt levels and blood pressure. RESULTS In this study, we used a well-characterised NKCC2 construct (c-NKCC2) to identify NKCC2-interacting proteins by an antibody shift assay coupled with blue native/SDS-PAGE and mass spectrometry. Among the interacting proteins, we identified moesin, a protein belonging to ezrin, eadixin and moesin family. Co-immunoprecipitation experiments confirmed that c-NKCC2 interacts with the N-terminal domain of moesin in LLC-PK1 cells. Moreover, c-NKCC2 accumulates in intracellular and sub-apical vesicles in cells transfected with a moesin dominant negative green fluorescent protien (GFP)-tagged construct. In addition, moesin knock-down by short interfering RNA decreases by about 50% c-NKCC2 surface expression. Specifically, endocytosis and exocytosis assays showed that moesin knock-down does not affect c-NKCC2 internalisation but strongly reduces exocytosis of the co-transporter. CONCLUSIONS Our data clearly demonstrate that moesin plays a critical role in apical membrane insertion of NKCC2, suggesting a possible involvement of moesin in regulation of Na(+) and Cl(-) absorption in the kidney.
Collapse
Affiliation(s)
- Monica Carmosino
- Department of Biosciences, Biotechnologies and Pharmacological Sciences, University of Bari, 70126 Bari, Italy.
| | | | | | | | | | | | | | | | | |
Collapse
|
53
|
Carmosino M, Procino G, Svelto M. Na+-K+-2Cl- cotransporter type 2 trafficking and activity: the role of interacting proteins. Biol Cell 2012; 104:201-12. [PMID: 22211456 DOI: 10.1111/boc.201100049] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2011] [Accepted: 12/28/2011] [Indexed: 11/30/2022]
Abstract
The central role of Na+-K+-2Cl- cotransporter type 2 (NKCC2) in vectorial transepithelial salt reabsorption in thick ascending limb cells from Henle's loop in the kidney is evidenced by the effects of loop diuretics, the pharmacological inhibitors of NKCC2, that are amongst the most powerful antihypertensive drugs available to date. Moreover, genetic mutations of the NKCC2 encoding gene resulting in impaired apical targeting and function of NKCC2 transporter give rise to a pathological phenotype known as type I Bartter syndrome, characterised by a severe volume depletion, hypokalaemia and metabolic alkalosis with high prenatal mortality. On the contrary, excessive NKCC2 activity has been linked with inherited hypertension in humans and in rodent models. Interestingly, in animal models of hypertension, NKCC2 upregulation is achieved by post-translational mechanisms underlining the need to analyse the molecular mechanisms involved in the regulation of NKCC2 trafficking and activity to gain insights in the pathogenesis of hypertension.
Collapse
Affiliation(s)
- Monica Carmosino
- Department of Biosciences, Biotechnologies and Pharmacological Sciences, University of Bari, Bari, Italy.
| | | | | |
Collapse
|
54
|
Ares GR, Caceres PS, Ortiz PA. Molecular regulation of NKCC2 in the thick ascending limb. Am J Physiol Renal Physiol 2011; 301:F1143-59. [PMID: 21900458 DOI: 10.1152/ajprenal.00396.2011] [Citation(s) in RCA: 131] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The kidney plays an essential role in blood pressure regulation by controlling short-term and long-term NaCl and water balance. The thick ascending limb of the loop of Henle (TAL) reabsorbs 25-30% of the NaCl filtered by the glomeruli in a process mediated by the apical Na(+)-K(+)-2Cl(-) cotransporter NKCC2, which allows Na(+) and Cl(-) entry from the tubule lumen into TAL cells. In humans, mutations in the gene coding for NKCC2 result in decreased or absent activity characterized by severe salt and volume loss and decreased blood pressure (Bartter syndrome type 1). Opposite to Bartter's syndrome, enhanced NaCl absorption by the TAL is associated with human hypertension and animal models of salt-sensitive hypertension. TAL NaCl reabsorption is subject to exquisite control by hormones like vasopressin, parathyroid, glucagon, and adrenergic agonists (epinephrine and norepinephrine) that stimulate NaCl reabsorption. Atrial natriuretic peptides or autacoids like nitric oxide and prostaglandins inhibit NaCl reabsorption, promoting salt excretion. In general, the mechanism by which hormones control NaCl reabsorption is mediated directly or indirectly by altering the activity of NKCC2 in the TAL. Despite the importance of NKCC2 in renal physiology, the molecular mechanisms by which hormones, autacoids, physical factors, and intracellular ions regulate NKCC2 activity are largely unknown. During the last 5 years, it has become apparent that at least three molecular mechanisms determine NKCC2 activity. As such, membrane trafficking, phosphorylation, and protein-protein interactions have recently been described in TALs and heterologous expression systems as mechanisms that modulate NKCC2 activity. The focus of this review is to summarize recent data regarding NKCC2 regulation and discuss their potential implications in physiological control of TAL function, renal physiology, and blood pressure regulation.
Collapse
Affiliation(s)
- Gustavo R Ares
- Hypertension and Vascular Research Division, Dept. of Internal Medicine, Henry Ford Hospital, 2799 West Grand Blvd., Detroit, MI 48202, USA
| | | | | |
Collapse
|
55
|
Mutig K, Kahl T, Saritas T, Godes M, Persson P, Bates J, Raffi H, Rampoldi L, Uchida S, Hille C, Dosche C, Kumar S, Castañeda-Bueno M, Gamba G, Bachmann S. Activation of the bumetanide-sensitive Na+,K+,2Cl- cotransporter (NKCC2) is facilitated by Tamm-Horsfall protein in a chloride-sensitive manner. J Biol Chem 2011; 286:30200-10. [PMID: 21737451 DOI: 10.1074/jbc.m111.222968] [Citation(s) in RCA: 133] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Active transport of NaCl across thick ascending limb (TAL) epithelium is accomplished by Na(+),K(+),2Cl(-) cotransporter (NKCC2). The activity of NKCC2 is determined by vasopressin (AVP) or intracellular chloride concentration and includes its amino-terminal phosphorylation. Co-expressed Tamm-Horsfall protein (THP) has been proposed to interact with NKCC2. We hypothesized that THP modulates NKCC2 activity in TAL. THP-deficient mice (THP(-/-)) showed an increased abundance of intracellular NKCC2 located in subapical vesicles (+47% compared with wild type (WT) mice), whereas base-line phosphorylation of NKCC2 was significantly decreased (-49% compared with WT mice), suggesting reduced activity of the transporter in the absence of THP. Cultured TAL cells with low endogenous THP levels and low base-line phosphorylation of NKCC2 displayed sharp increases in NKCC2 phosphorylation (+38%) along with a significant change of intracellular chloride concentration upon transfection with THP. In NKCC2-expressing frog oocytes, co-injection with THP cRNA significantly enhanced the activation of NKCC2 under low chloride hypotonic stress (+112% versus +235%). Short term (30 min) stimulation of the vasopressin V2 receptor pathway by V2 receptor agonist (deamino-cis-D-Arg vasopressin) resulted in enhanced NKCC2 phosphorylation in WT mice and cultured TAL cells transfected with THP, whereas in the absence of THP, NKCC2 phosphorylation upon deamino-cis-D-Arg vasopressin was blunted in both systems. Attenuated effects of furosemide along with functional and structural adaptation of the distal convoluted tubule in THP(-/-) mice supported the notion that NaCl reabsorption was impaired in TAL lacking THP. In summary, these results are compatible with a permissive role for THP in the modulation of NKCC2-dependent TAL salt reabsorptive function.
Collapse
Affiliation(s)
- Kerim Mutig
- Department of Anatomy, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
56
|
Mendez M, Gross KW, Glenn ST, Garvin JL, Carretero OA. Vesicle-associated membrane protein-2 (VAMP2) mediates cAMP-stimulated renin release in mouse juxtaglomerular cells. J Biol Chem 2011; 286:28608-18. [PMID: 21708949 PMCID: PMC3151102 DOI: 10.1074/jbc.m111.225839] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Renin is essential for blood pressure control. Renin is stored in granules in juxtaglomerular (JG) cells, located in the pole of the renal afferent arterioles. The second messenger cAMP stimulates renin release. However, it is unclear whether fusion and exocytosis of renin-containing granules is involved. In addition, the role of the fusion proteins, SNAREs (soluble N-ethylmaleimide-sensitive factor attachment proteins), in renin release from JG cells has not been studied. The vesicle SNARE proteins VAMP2 (vesicle associated membrane protein 2) and VAMP3 mediate cAMP-stimulated exocytosis in other endocrine cells. Thus, we hypothesized that VAMP2 and/or -3 mediate cAMP-stimulated renin release from JG cells. By fluorescence-activated cell sorting, we isolated JG cells expressing green fluorescent protein and compared the relative abundance of VAMP2/3 in JG cells versus total mouse kidney mRNA by quantitative PCR. We found that VAMP2 and VAMP3 mRNA are expressed and enriched in JG cells. Confocal imaging of primary cultures of JG cells showed that VAMP2 (but not VAMP3) co-localized with renin-containing granules. Cleavage of VAMP2 and VAMP3 with tetanus toxin blocked cAMP-stimulated renin release from JG cells by ∼50% and impaired cAMP-stimulated exocytosis by ∼50%, as monitored with FM1–43. Then we specifically knocked down VAMP2 or VAMP3 by adenoviral-mediated delivery of short hairpin silencing RNA. We found that silencing VAMP2 blocked cAMP-induced renin release by ∼50%. In contrast, silencing VAMP3 had no effect on basal or cAMP-stimulated renin release. We conclude that VAMP2 and VAMP3 are expressed in JG cells, but only VAMP2 is targeted to renin-containing granules and mediates the stimulatory effect of cAMP on renin exocytosis.
Collapse
Affiliation(s)
- Mariela Mendez
- Hypertension and Vascular Research Division, Department of Internal Medicine, Henry Ford Hospital, Detroit, Michigan 48202, USA.
| | | | | | | | | |
Collapse
|
57
|
Battula S, Hao S, Pedraza PL, Stier CT, Ferreri NR. Tumor necrosis factor-alpha is an endogenous inhibitor of Na+-K+-2Cl- cotransporter (NKCC2) isoform A in the thick ascending limb. Am J Physiol Renal Physiol 2011; 301:F94-100. [PMID: 21511694 DOI: 10.1152/ajprenal.00650.2010] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The effects of TNF gene deletion on renal Na(+)-K(+)-2Cl(-) cotransporter (NKCC2) expression and activity were determined. Outer medulla from TNF(-/-) mice exhibited a twofold increase in total NKCC2 protein expression compared with wild-type (WT) mice. This increase was not observed in TNF(-/-) mice treated with recombinant human TNF (hTNF) for 7 days. Administration of hTNF had no effect on total NKCC2 expression in WT mice. A fourfold increase in NKCC2A mRNA accumulation was observed in outer medulla from TNF(-/-) compared with WT mice; NKCC2F and NKCC2B mRNA accumulation was similar between genotypes. The increase in NKCC2A mRNA accumulation was attenuated when TNF(-/-) mice were treated with hTNF. Bumetanide-sensitive O(2) consumption, an in vitro correlate of NKCC2 activity, was 2.8 ± 0.2 nmol·min(-1)·mg(-1) in medullary thick ascending limb tubules from WT, representing ∼40% of total O(2) consumption, whereas, in medullary thick ascending limb tubules from TNF(-/-) mice, it was 5.6 ± 0.3 nmol·min(-1)·mg(-1), representing ∼60% of total O(2) consumption. Administration of hTNF to TNF(-/-) mice restored the bumetanide-sensitive component to ∼30% of total O(2) consumption. Ambient urine osmolality was higher in TNF(-/-) compared with WT mice (2,072 ± 104 vs. 1,696 ± 153 mosmol/kgH(2)O, P < 0.05). The diluting ability of the kidney, assessed by measuring urine osmolality before and after 1 h of water loading also was greater in TNF(-/-) compared with WT mice (174 ± 38 and 465 ± 81 mosmol/kgH(2)O, respectively, P < 0.01). Collectively, these findings suggest that TNF plays a role as an endogenous inhibitor of NKCC2 expression and function.
Collapse
Affiliation(s)
- Sailaja Battula
- Dept. of Pharmacology, New York Medical College, Valhalla, NY 10595, USA
| | | | | | | | | |
Collapse
|
58
|
Tresguerres M, Levin LR, Buck J. Intracellular cAMP signaling by soluble adenylyl cyclase. Kidney Int 2011; 79:1277-88. [PMID: 21490586 DOI: 10.1038/ki.2011.95] [Citation(s) in RCA: 156] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Soluble adenylyl cyclase (sAC) is a recently identified source of the ubiquitous second messenger cyclic adenosine 3',5' monophosphate (cAMP). sAC is distinct from the more widely studied source of cAMP, the transmembrane adenylyl cyclases (tmACs); its activity is uniquely regulated by bicarbonate anions, and it is distributed throughout the cytoplasm and in cellular organelles. Due to its unique localization and regulation, sAC has various functions in a variety of physiological systems that are distinct from tmACs. In this review, we detail the known functions of sAC, and we reassess commonly held views of cAMP signaling inside cells.
Collapse
Affiliation(s)
- Martin Tresguerres
- Marine Biology Research Division, Scripps Institution of Oceanography, University of California San Diego, La Jolla, California, USA
| | | | | |
Collapse
|
59
|
Haque MZ, Ares GR, Caceres PS, Ortiz PA. High salt differentially regulates surface NKCC2 expression in thick ascending limbs of Dahl salt-sensitive and salt-resistant rats. Am J Physiol Renal Physiol 2011; 300:F1096-104. [PMID: 21307126 DOI: 10.1152/ajprenal.00600.2010] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
NaCl reabsorption by the thick ascending limb of the loop of Henle (THAL) occurs via the apical Na-K-2Cl cotransporter, NKCC2. Overall, NKCC2 activity and NaCl reabsorption are regulated by the amount of NKCC2 at the apical surface, and also by phosphorylation. Dahl salt-sensitive rats (SS) exhibit higher NaCl reabsorption by the THAL compared with Dahl salt-resistant rats (SR), and they become hypertensive during high-salt (HS) intake. However, the effect of HS on THAL transport, surface NKCC2 expression, and NKCC2 NH(2)-terminus phosphorylation has not been studied. We hypothesized that HS enhances surface NKCC2 and its phosphorylation in THALs from Dahl SS. THAL suspensions were obtained from a group of SS and SR rats on normal-salt (NS) or HS intake. In SR rats THAL NaCl transport measured as furosemide-sensitive oxygen consumption was decreased by HS (-34%, P < 0.05). In contrast, HS did not affect THAL transport in SS rats. As expected, HS increased systolic blood pressure only in SS rats (Δ 23 ± 2 mmHg, P < 0.002) but not in SR rats (Δ 5 ± 3 mmHg). We next tested the effect of HS intake on apical surface NKCC2 and its NH(2)-terminus threonine phosphorylation (P-NKCC2) in SS and SR rats. HS intake decreased surface NKCC2 by 15 ± 2% (P < 0.03) in THALs from SR without affecting total NKCC2 or NH(2)-terminus P-NKCC2. In contrast, in SS rats HS intake increased surface NKCC2 by 54 ± 6% (P < 0.01) without affecting total NKCC2 expression or P-NKCC2. We conclude that HS intake causes different effects on surface NKCC2 in SS and SR rats. Our data suggest that enhanced surface NKCC2 in SS rats might contribute to enhanced NaCl reabsorption in SS rats during HS intake.
Collapse
Affiliation(s)
- Mohammed Ziaul Haque
- Department of Internal Medicine, Hypertension and Vascular Research, Henry Ford Hospital, Detroit, MI 48202, USA
| | | | | | | |
Collapse
|
60
|
Zaarour N, Defontaine N, Demaretz S, Azroyan A, Cheval L, Laghmani K. Secretory carrier membrane protein 2 regulates exocytic insertion of NKCC2 into the cell membrane. J Biol Chem 2011; 286:9489-502. [PMID: 21205824 DOI: 10.1074/jbc.m110.166546] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The renal-specific Na-K-2Cl co-transporter, NKCC2, plays a pivotal role in regulating body salt levels and blood pressure. NKCC2 mutations lead to type I Bartter syndrome, a life-threatening kidney disease. Regulation of NKCC2 trafficking behavior serves as a major mechanism in controlling NKCC2 activity across the plasma membrane. However, the identities of the protein partners involved in cell surface targeting of NKCC2 are largely unknown. To gain insight into these processes, we used a yeast two-hybrid system to screen a kidney cDNA library for proteins that interact with the NKCC2 C terminus. One binding partner we identified was SCAMP2 (secretory carrier membrane protein 2). Microscopic confocal imaging and co-immunoprecipitation assays confirmed NKCC2-SCAMP2 interaction in renal cells. SCAMP2 associated also with the structurally related co-transporter NCC, suggesting that the interaction with SCAMP2 is a common feature of sodium-dependent chloride co-transporters. Heterologous expression of SCAMP2 specifically decreased cell surface abundance as well as transport activity of NKCC2 across the plasma membrane. Co-immunolocalization experiments revealed that intracellularly retained NKCC2 co-localizes with SCAMP2 in recycling endosomes. The rate of NKCC2 endocytic retrieval, assessed by the sodium 2-mercaptoethane sulfonate cleavage assay, was not affected by SCAMP2. The surface-biotinylatable fraction of newly inserted NKCC2 in the plasma membrane was reduced by SCAMP2, demonstrating that SCAMP2-induced decrease in surface NKCC2 is due to decreased exocytotic trafficking. Finally, a single amino acid mutation, cysteine 201 to alanine, within the conserved cytoplasmic E peptide of SCAMP2, which is believed to regulate exocytosis, abolished SCAMP2-mediated down-regulation of the co-transporter. Taken together, these data are consistent with a model whereby SCAMP2 regulates NKCC2 transit through recycling endosomes and limits the cell surface targeting of the co-transporter by interfering with its exocytotic trafficking.
Collapse
Affiliation(s)
- Nancy Zaarour
- INSERM, Centre de Recherche des Cordeliers, UMRS 872, CNRS, ERL7226, 75006 Paris, France
| | | | | | | | | | | |
Collapse
|
61
|
Cabral PD, Silva GB, Baigorria ST, Juncos LA, Juncos LI, García NH. 8-iso-prostaglandin-F2α stimulates chloride transport in thick ascending limbs: role of cAMP and protein kinase A. Am J Physiol Renal Physiol 2010; 299:F1396-400. [PMID: 20861077 DOI: 10.1152/ajprenal.00225.2010] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Salt reabsorption by the loop of Henle controls NaCl handling and blood pressure regulation. Increased oxidative stress stimulates NaCl transport in one specific segment of the loop of Henle called the thick ascending limb (TAL). The isoprostane 8-iso-prostaglandin-F2α (8-iso-PGF2α) is one of the most abundant nonenzymatic lipid oxidation products and has been implicated in the development of hypertension. However, it is not known whether 8-iso-PGF2α regulates transport or the mechanisms involved. Because protein kinase A (PKA) stimulates NaCl transport in several nephron segments, we hypothesized that 8-iso-PGF2α increases NaCl transport in the cortical TAL (cTAL) via a PKA-dependent mechanism. We examined the effect of luminal 8-iso-PGF2α on NaCl transport by measuring chloride absorption (J(Cl)) in isolated microperfused cTALs. Adding 8-iso-PGF2α to the lumen increased J(Cl) by 54% (from 288.7 ± 30.6 to 446.5 ± 44.3 pmol·min(-1)·mm(-1); P < 0.01), while adding it to the bath enhanced J(Cl) by 35% (from 236.3 ± 35.3 to 319.2 ± 39.8 pmol·min(-1)·mm(-1); P < 0.05). This stimulation was blocked by Na-K-2Cl cotransporter inhibition. Next, we tested the role of cAMP. Basal cAMP in the cTAL was 18.6 ± 1.6 fmol·min(-1)·mm(-1), and 8-iso-PGF2α raised it to 35.1 ± 1.4 fmol·min(-1)·mm(-1), an increase of 94% (P < 0.01). Because cAMP stimulates PKA, we measured J(Cl) using the PKA-selective inhibitor H89. In the presence of H89 (10 μM), 8-iso-PGF2α failed to increase transport regardless of whether it was added to the lumen (216.1 ± 16.7 vs. 209.7 ± 23.8 pmol·min(-1)·mm(-1); NS) or the bath (150.4 ± 32.9 vs. 127.1 ± 28.6 pmol·min(-1)·mm(-1); NS). We concluded that 8-iso-PGF2α stimulates cAMP and increases Cl transport in cTALs via a PKA-dependent mechanism.
Collapse
Affiliation(s)
- Pablo D Cabral
- Hypertension and Vascular Research Division, Department of Internal Medicine, Henry Ford Hospital, Detroit, Michigan, USA
| | | | | | | | | | | |
Collapse
|
62
|
Ares GR, Ortiz PA. Constitutive endocytosis and recycling of NKCC2 in rat thick ascending limbs. Am J Physiol Renal Physiol 2010; 299:F1193-202. [PMID: 20719977 DOI: 10.1152/ajprenal.00307.2010] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
The Na-K-2Cl cotransporter (NKCC2) mediates NaCl absorption by the thick ascending limb of Henle's loop (THAL). Exocytosis and endocytosis regulates surface expression of most transporters. However, little is known about the mechanism of NKCC2 trafficking in the absence of stimulating hormones and whether this mechanism contributes to regulation of steady-state surface expression of apical NKCC2 in the THAL. We tested whether NKCC2 undergoes constitutive endocytosis that regulates steady-state surface NKCC2 and NaCl reabsorption in THALs. We measured steady-state surface NKCC2 levels and the rate of NKCC2 endocytosis by surface biotinylation and Western blot and confocal microscopy of isolated perfused rat THALs. We observed constitutive NKCC2 endocytosis over 30 min that averaged 21.5 ± 2.7% of the surface pool. We then tested whether methyl-β-cyclodextrin (MβCD), a compound that inhibits endocytosis by chelating membrane cholesterol, blocked NKCC2 endocytic retrieval. We found that 30-min treatment with MβCD (5 mM) blocked NKCC2 endocytosis by 81% (P < 0.01). Blockade of endocytosis by MβCD induced accumulation of NKCC2 at the apical membrane as demonstrated by a 60 ± 16% (P < 0.05) increase in steady-state surface expression and enhanced apical surface NKCC2 immunostaining in isolated, perfused THALs. Acute treatment with MβCD did not change the total pool of NKCC2. MβCD did not affect NKCC2 trafficking when it was complexed with cholesterol before treatment. Inhibition endocytosis with MβCD enhanced NKCC2-dependent NaCl entry by 57 ± 16% (P < 0.05). Finally, we observed that a fraction of retrieved NKCC2 recycles back to the plasma membrane (36 ± 7%) over 30 min. We concluded that constitutive NKCC2 trafficking maintains steady-state surface NKCC2 and regulates NaCl reabsorption in THALs. These are the first data showing an increase in apical membrane NKCC2 in THALs by altering the rates of constitutive NKCC2 trafficking, rather than by stimulation of hormone-dependent signaling.
Collapse
Affiliation(s)
- Gustavo R Ares
- Hypertension and Vascular Research Div., Dept. of Internal Medicine, Henry Ford Hospital, 2799 West Grand Blvd., Detroit, MI 48202, USA
| | | |
Collapse
|
63
|
Kemter E, Rathkolb B, Bankir L, Schrewe A, Hans W, Landbrecht C, Klaften M, Ivandic B, Fuchs H, Gailus-Durner V, Hrabé de Angelis M, Wolf E, Wanke R, Aigner B. Mutation of the Na+-K+-2Cl−cotransporter NKCC2 in mice is associated with severe polyuria and a urea-selective concentrating defect without hyperreninemia. Am J Physiol Renal Physiol 2010; 298:F1405-15. [DOI: 10.1152/ajprenal.00522.2009] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The bumetanide-sensitive Na+-K+-2Cl−cotransporter NKCC2, located in the thick ascending limb of Henle's loop, plays a critical role in the kidney's ability to concentrate urine. In humans, loss-of-function mutations of the solute carrier family 12 member 1 gene ( SLC12A1), coding for NKCC2, cause type I Bartter syndrome, which is characterized by prenatal onset of a severe polyuria, salt-wasting tubulopathy, and hyperreninemia. In this study, we describe a novel chemically induced, recessive mutant mouse line termed Slc12a1I299Fexhibiting late-onset manifestation of type I Bartter syndrome. Homozygous mutant mice are viable and exhibit severe polyuria, metabolic alkalosis, marked increase in plasma urea but close to normal creatininemia, hypermagnesemia, hyperprostaglandinuria, hypotension,, and osteopenia. Fractional excretion of urea is markedly decreased. In addition, calcium and magnesium excretions are more than doubled compared with wild-type mice, while uric acid excretion is twofold lower. In contrast to hyperreninemia present in human disease, plasma renin concentration in homozygotes is not increased. The polyuria observed in homozygotes may be due to the combination of two additive factors, a decrease in activity of mutant NKCC2 and an increase in medullary blood flow, due to prostaglandin-induced vasodilation, that impairs countercurrent exchange of urea in the medulla. In conclusion, this novel viable mouse line with a missense Slc12a1 mutation exhibits most of the features of type I Bartter syndrome and may represent a new model for the study of this human disease.
Collapse
Affiliation(s)
- Elisabeth Kemter
- Chair for Molecular Animal Breeding and Biotechnology, and Laboratory for Functional Genome Analysis (LAFUGA), Gene Center, and
- Institute of Veterinary Pathology, Center for Clinical Veterinary Medicine, LMU Munich, Munich
| | - Birgit Rathkolb
- Chair for Molecular Animal Breeding and Biotechnology, and Laboratory for Functional Genome Analysis (LAFUGA), Gene Center, and
| | - Lise Bankir
- INSERM Unité 872, Centre de Recherche des Cordeliers, Paris, France
| | - Anja Schrewe
- Department of Medicine III, Division of Cardiology, University of Heidelberg, Heidelberg; and
- Institute of Experimental Genetics, Helmholtz Zentrum München, Neuherberg, and Chair for Experimental Genetics, Technische Universität München, Munich, Germany
| | - Wolfgang Hans
- Institute of Experimental Genetics, Helmholtz Zentrum München, Neuherberg, and Chair for Experimental Genetics, Technische Universität München, Munich, Germany
| | - Christina Landbrecht
- Chair for Molecular Animal Breeding and Biotechnology, and Laboratory for Functional Genome Analysis (LAFUGA), Gene Center, and
| | - Matthias Klaften
- Institute of Experimental Genetics, Helmholtz Zentrum München, Neuherberg, and Chair for Experimental Genetics, Technische Universität München, Munich, Germany
| | - Boris Ivandic
- Department of Medicine III, Division of Cardiology, University of Heidelberg, Heidelberg; and
| | - Helmut Fuchs
- Institute of Experimental Genetics, Helmholtz Zentrum München, Neuherberg, and Chair for Experimental Genetics, Technische Universität München, Munich, Germany
| | - Valérie Gailus-Durner
- Institute of Experimental Genetics, Helmholtz Zentrum München, Neuherberg, and Chair for Experimental Genetics, Technische Universität München, Munich, Germany
| | - Martin Hrabé de Angelis
- Institute of Experimental Genetics, Helmholtz Zentrum München, Neuherberg, and Chair for Experimental Genetics, Technische Universität München, Munich, Germany
| | - Eckhard Wolf
- Chair for Molecular Animal Breeding and Biotechnology, and Laboratory for Functional Genome Analysis (LAFUGA), Gene Center, and
| | - Ruediger Wanke
- Institute of Veterinary Pathology, Center for Clinical Veterinary Medicine, LMU Munich, Munich
| | - Bernhard Aigner
- Chair for Molecular Animal Breeding and Biotechnology, and Laboratory for Functional Genome Analysis (LAFUGA), Gene Center, and
| |
Collapse
|
64
|
Tresguerres M, Levin LR, Buck J, Grosell M. Modulation of NaCl absorption by [HCO(3)(-)] in the marine teleost intestine is mediated by soluble adenylyl cyclase. Am J Physiol Regul Integr Comp Physiol 2010; 299:R62-71. [PMID: 20410468 DOI: 10.1152/ajpregu.00761.2009] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Intestinal HCO(3)(-) secretion and NaCl absorption are essential for counteracting dehydration in marine teleost fish. We investigated how these two processes are coordinated in toadfish. HCO(3)(-) stimulated a luminal positive short-circuit current (I(sc)) in intestine mounted in Ussing chamber, bathed with the same saline solution on the external and internal sides of the epithelium. The I(sc) increased proportionally to the [HCO(3)(-)] in the bath up to 80 mM NaHCO(3), and it did not occur when NaHCO(3) was replaced with Na(+)-gluconate or with NaHCO(3) in Cl(-)-free saline. HCO(3)(-) (20 mM) induced a approximately 2.5-fold stimulation of I(sc), and this [HCO(3)(-)] was used in all subsequent experiments. The HCO(3)(-)-stimulated I(sc) was prevented or abolished by apical application of 10 muM bumetanide (a specific inhibitor of NKCC) and by 30 microM 4-catechol estrogen [CE; an inhibitor of soluble adenylyl cyclase (sAC)]. The inhibitory effects of bumetanide and CE were not additive. The HCO(3)(-)-stimulated I(sc) was prevented by apical bafilomycin (1 microM) and etoxolamide (1 mM), indicating involvement of V-H(+)-ATPase and carbonic anhydrases, respectively. Immunohistochemistry and Western blot analysis confirmed the presence of an NKCC2-like protein in the apical membrane and subapical area of epithelial intestinal cells, of Na(+)/K(+)-ATPase in basolateral membranes, and of an sAC-like protein in the cytoplasm. We propose that sAC regulates NKCC activity in response to luminal HCO(3)(-), and that V-H(+)-ATPase and intracellular carbonic anhydrase are essential for transducing luminal HCO(3)(-) into the cell by CO(2)/HCO(3)(-) hydration/dehydration. This mechanism putatively coordinates HCO(3)(-) secretion with NaCl and water absorption in toadfish intestine.
Collapse
Affiliation(s)
- Martin Tresguerres
- Department of Pharmacology, Weill Cornell Medical College, New York, New York 10065, USA.
| | | | | | | |
Collapse
|
65
|
SORLA/SORL1 functionally interacts with SPAK to control renal activation of Na(+)-K(+)-Cl(-) cotransporter 2. Mol Cell Biol 2010; 30:3027-37. [PMID: 20385770 DOI: 10.1128/mcb.01560-09] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Proper control of NaCl excretion in the kidney is central to bodily functions, yet many mechanisms that regulate reabsorption of sodium and chloride in the kidney remain incompletely understood. Here, we identify an important role played by the intracellular sorting receptor SORLA (sorting protein-related receptor with A-type repeats) in functional activation of renal ion transporters. We demonstrate that SORLA is expressed in epithelial cells of the thick ascending limb (TAL) of Henle's loop and that lack of receptor expression in this cell type in SORLA-deficient mice results in an inability to properly reabsorb sodium and chloride during osmotic stress. The underlying cellular defect was correlated with an inability of the TAL to phosphorylate Na(+)-K(+)-Cl(-) cotransporter 2 (NKCC2), the major sodium transporter in the distal nephron. SORLA functionally interacts with Ste-20-related proline-alanine-rich kinase (SPAK), an activator of NKCC2, and receptor deficiency is associated with missorting of SPAK. Our data suggest a novel regulatory pathway whereby intracellular trafficking of SPAK by the sorting receptor SORLA is crucial for proper NKCC2 activation and for maintenance of renal ion balance.
Collapse
|
66
|
Hsu YJ, Dimke H, Hoenderop JGJ, Bindels RJM. Calcitonin-stimulated renal Ca2+ reabsorption occurs independently of TRPV5. Nephrol Dial Transplant 2009; 25:1428-35. [PMID: 19965988 DOI: 10.1093/ndt/gfp645] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND Calcitonin (CT) is known to affect renal Ca(2+) handling. However, it remains unclear how CT affects Ca(2+) transport in the distal convolutions. The aim of this study was to investigate the contribution of the renal epithelial Ca(2+) channel, transient receptor potential vanilloid 5 (TRPV5), to renal Ca(2+) handling in response to CT. METHODS C57BL/6 mice received a single overnight (16 hr) injection of CT. In addition, TRPV5 knockout (TRPV5(-/-)) mice and their wild type (TRPV5(+/+)) controls, received three bolus injections of CT over a 40 hr study period. All experimental groups were placed in metabolic cages. RESULTS C57BL/6 mice received a single bolus injection of CT, which significantly reduced the urinary Ca(2+) excretion. In addition, urinary Na(+) and K(+) excretion also decreased after CT administration. No apparent changes in renal expression of TRPV5, calbindin-D(28K) (CaBP28K) or TRPV6 could be detected between CT- and vehicle-treated mice. To evaluate whether TRPV5 activity is needed for the CT-induced increase in Ca(2+) reabsorption, mice with genetic ablation of TRPV5 (TRPV5(-/-)) were employed. TRPV5(-/-) mice as well as their wild-type (TRPV5(+/+)) controls received three bolus injections of CT over a 40-hr study period. Overnight (16 hrs) as well as the subsequent 24-hr urine was collected. Overnight urinary Ca(2+) excretion was reduced in both TRPV5(-/-) and TRPV5(+/+) mice after a bolus injection of CT. The subsequent 24-hr urinary excretion of Ca(2+) which was collected after the third bolus injection showed no effect of CT on renal Ca(2+) handling in either mice group. Accordingly, CT did not alter the intrarenal protein abundance of TRPV5 and CaBP28K after three bolus injections of CT. CONCLUSION CT augments the renal reabsorptive capacity for Ca(2+). This increase is likely to occur independently of TRPV5.
Collapse
Affiliation(s)
- Yu-Juei Hsu
- 1Department of Physiology, Radboud University Nijmegen Medical Centre, The Netherlands
| | | | | | | |
Collapse
|
67
|
Geis C, Beck M, Jablonka S, Weishaupt A, Toyka KV, Sendtner M, Sommer C. Stiff person syndrome associated anti-amphiphysin antibodies reduce GABA associated [Ca(2+)]i rise in embryonic motoneurons. Neurobiol Dis 2009; 36:191-9. [PMID: 19631746 DOI: 10.1016/j.nbd.2009.07.011] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2009] [Revised: 07/05/2009] [Accepted: 07/16/2009] [Indexed: 10/20/2022] Open
Abstract
Autoantibodies to the synaptic protein amphiphysin play a crucial pathogenic role in paraneoplastic stiff-person syndrome. Impairment of GABAergic inhibition is the presumed pathophysiological mechanism by which these autoantibodies become pathogenic. Here we used calcium imaging on rat embryonic motor neurons to investigate whether antibodies to amphiphysin directly hinder GABAergic signaling. We found that the immunoglobulin G fraction from a patient with stiff-person syndrome, containing high titer antibodies to amphiphysin and inducing stiffness in rats upon passive transfer, reduced GABA-induced calcium influx in embryonic motor neurons. Depletion of the anti-amphiphysin fraction from the patient's IgG by selective affinity chromatography abolished this effect, showing its specificity for amphiphysin. Quantification of the surface expression of the Na(+)/K(+)/2Cl(2-) cotransporter revealed a reduction after incubation with anti-amphiphysin IgG, which is concordant with a lower intracellular chloride concentration and thus impairment of GABA mediated calcium influx. Thus, anti-amphiphysin antibodies exert a direct effect on GABA signaling, which is likely to contribute to the pathogenesis of SPS.
Collapse
Affiliation(s)
- C Geis
- Department of Neurology, University of Würzburg, Josef-Schneider-Strasse 11, 97080 Würzburg, Germany.
| | | | | | | | | | | | | |
Collapse
|
68
|
da Silva CA, de Bragança AC, Shimizu MHM, Sanches TR, Fortes MAZ, Giorgi RR, Andrade L, Seguro AC. Rosiglitazone prevents sirolimus-induced hypomagnesemia, hypokalemia, and downregulation of NKCC2 protein expression. Am J Physiol Renal Physiol 2009; 297:F916-22. [PMID: 19656910 DOI: 10.1152/ajprenal.90256.2008] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Sirolimus, an antiproliferative immunosuppressant, induces hypomagnesemia and hypokalemia. Rosiglitazone activates renal sodium- and water-reabsorptive pathways. We evaluated whether sirolimus induces renal wasting of magnesium and potassium, attempting to identify the tubule segments in which this occurs. We tested the hypothesis that reduced expression of the cotransporter NKCC2 forms the molecular basis of this effect and evaluated the possible association between increased urinary excretion of magnesium and renal expression of the epithelial Mg2+ channel TRPM6. We then analyzed whether rosiglitazone attenuates these sirolimus-induced tubular effects. Wistar rats were treated for 14 days with sirolimus (3 mg/kg body wt in drinking water), with or without rosiglitazone (92 mg/kg body wt in food). Protein abundance of NKCC2, aquaporin-2 (AQP2), and TRPM6 was assessed using immunoblotting. Sirolimus-treated animals presented no change in glomerular filtration rate, although there were marked decreases in plasma potassium and magnesium. Sirolimus treatment reduced expression of NKCC2, and this was accompanied by greater urinary excretion of sodium, potassium, and magnesium. In sirolimus-treated animals, AQP2 expression was reduced. Expression of TRPM6 was increased, which might represent a direct stimulatory effect of sirolimus or a compensatory response. The finding that rosiglitazone prevented or attenuated all sirolimus-induced renal tubular defects has potential clinical implications.
Collapse
Affiliation(s)
- Cristianne Alexandre da Silva
- Laboratório de Pesquisa Básica LIM-12, Faculdade de Medicina da USP, Av. Dr. Arnaldo 455, Sala 3310, CEP 01246-903, São Paulo, Brazil
| | | | | | | | | | | | | | | |
Collapse
|
69
|
Caceres PS, Ares GR, Ortiz PA. cAMP stimulates apical exocytosis of the renal Na(+)-K(+)-2Cl(-) cotransporter NKCC2 in the thick ascending limb: role of protein kinase A. J Biol Chem 2009; 284:24965-71. [PMID: 19592485 PMCID: PMC2757200 DOI: 10.1074/jbc.m109.037135] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The apical renal Na(+)-K(+)-2Cl(-) cotransporter NKCC2 mediates NaCl absorption by the thick ascending limb (TAL) of Henle's loop. cAMP stimulates NKCC2 by enhancing steady-state apical membrane levels of this protein; however, the trafficking and signaling mechanisms by which this occurs have not been studied. Here, we report that stimulation of endogenous cAMP levels with either forskolin/3-isobutyl-1-methylxanthine (IBMX) or the V2 receptor agonist [deamino-Cys(1),d-Arg(8)]vasopressin increases steady-state surface NKCC2 and that the protein kinase A (PKA) inhibitor H-89 blocks this effect. Confocal imaging of apical surface NKCC2 in isolated perfused TALs confirmed a stimulatory effect of cAMP on apical trafficking that was blocked by PKA inhibition. Selective stimulation of PKA with the agonist N(6)-benzoyl-cAMP (500 microm) stimulated steady-state surface NKCC2, whereas the Epac-selective agonist 8-p-chlorophenylthio-2'-O-methyl-cAMP (100 and 250 microm) had no effect. To explore the trafficking mechanism by which cAMP increases apical NKCC2, we measured cumulative apical membrane exocytosis and NKCC2 exocytic insertion in TALs. By monitoring apical FM1-43 fluorescence, we observed rapid stimulation of apical exocytosis (2 min) by forskolin/IBMX. We also found constitutive exocytic insertion of NKCC2 in TALs over time, which was increased by 3-fold in the presence of forskolin/IBMX. PKA inhibition blunted cAMP-stimulated exocytic insertion but did not affect the rate of constitutive exocytosis. We conclude that cAMP stimulates steady-state apical surface NKCC2 by stimulating exocytic insertion and that this process is highly dependent on PKA but not Epac.
Collapse
Affiliation(s)
- Paulo S Caceres
- Hypertension and Vascular Research Division, Henry Ford Hospital, Wayne State University, Detroit, Michigan 48202, USA
| | | | | |
Collapse
|
70
|
Gamba G, Friedman PA. Thick ascending limb: the Na(+):K (+):2Cl (-) co-transporter, NKCC2, and the calcium-sensing receptor, CaSR. Pflugers Arch 2009; 458:61-76. [PMID: 18982348 PMCID: PMC3584568 DOI: 10.1007/s00424-008-0607-1] [Citation(s) in RCA: 104] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2008] [Accepted: 10/21/2008] [Indexed: 01/12/2023]
Abstract
The thick ascending limb of Henle's loop is a nephron segment that is vital to the formation of dilute and concentrated urine. This ability is accomplished by a consortium of functionally coupled proteins consisting of the apical Na(+):K(+):2Cl(-) co-transporter, the K(+) channel, and basolateral Cl(-) channel that mediate electroneutral salt absorption. In thick ascending limbs, salt absorption is importantly regulated by the calcium-sensing receptor. Genetic or pharmacological disruption impairing the function of any of these proteins results in Bartter syndrome. The thick ascending limb is also an important site of Ca(2+) and Mg(2+) absorption. Calcium-sensing receptor activation inhibits cellular Ca(2+) absorption induced by parathyroid hormone, as well as passive paracellular Ca(2+) transport. The present review discusses these functions and their genetic and molecular regulation.
Collapse
Affiliation(s)
- Gerardo Gamba
- Molecular Physiology Unit, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Tlalpan, 14000 Mexico City, Mexico
| | - Peter A. Friedman
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| |
Collapse
|
71
|
Price TJ, Cervero F, Gold MS, Hammond DL, Prescott SA. Chloride regulation in the pain pathway. BRAIN RESEARCH REVIEWS 2009; 60:149-70. [PMID: 19167425 PMCID: PMC2903433 DOI: 10.1016/j.brainresrev.2008.12.015] [Citation(s) in RCA: 191] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 12/29/2008] [Indexed: 12/18/2022]
Abstract
Melzack and Wall's Gate Control Theory of Pain laid the theoretical groundwork for a role of spinal inhibition in endogenous pain control. While the Gate Control Theory was based on the notion that spinal inhibition is dynamically regulated, mechanisms underlying the regulation of inhibition have turned out to be far more complex than Melzack and Wall could have ever imagined. Recent evidence indicates that an exquisitely sensitive form of regulation involves changes in anion equilibrium potential (E(anion)), which subsequently impacts fast synaptic inhibition mediated by GABA(A), and to a lesser extent, glycine receptor activation, the prototypic ligand gated anion channels. The cation-chloride co-transporters (in particular NKCC1 and KCC2) have emerged as proteins that play a critical role in the dynamic regulation of E(anion) which in turn appears to play a critical role in hyperalgesia and allodynia following peripheral inflammation or nerve injury. This review summarizes the current state of knowledge in this area with particular attention to how such findings relate to endogenous mechanisms of hyperalgesia and allodynia and potential applications for therapeutics based on modulation of intracellular Cl(-) gradients or pharmacological interventions targeting GABA(A) receptors.
Collapse
Affiliation(s)
| | - Fernando Cervero
- McGill University, Department of Anesthesia, McGill Centre for Research on Pain,
| | | | - Donna L Hammond
- University of Iowa, Department of Anesthesia, Department of Pharmacology,
| | | |
Collapse
|
72
|
Welker P, Böhlick A, Mutig K, Salanova M, Kahl T, Schlüter H, Blottner D, Ponce-Coria J, Gamba G, Bachmann S. Renal Na+-K+-Cl- cotransporter activity and vasopressin-induced trafficking are lipid raft-dependent. Am J Physiol Renal Physiol 2008; 295:F789-802. [PMID: 18579701 PMCID: PMC2536870 DOI: 10.1152/ajprenal.90227.2008] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2008] [Accepted: 06/17/2008] [Indexed: 11/22/2022] Open
Abstract
Apical bumetanide-sensitive Na(+)-K(+)-2Cl(-) cotransporter (NKCC2), the kidney-specific member of a cation-chloride cotransporter superfamily, is an integral membrane protein responsible for the transepithelial reabsorption of NaCl. The role of NKCC2 is essential for renal volume regulation. Vasopressin (AVP) controls NKCC2 surface expression in cells of the thick ascending limb of the loop of Henle (TAL). We found that 40-70% of Triton X-100-insoluble NKCC2 was present in cholesterol-enriched lipid rafts (LR) in rat kidney and cultured TAL cells. The related Na(+)-Cl(-) cotransporter (NCC) from rat kidney was distributed in LR as well. NKCC2-containing LR were detected both intracellularly and in the plasma membrane. Bumetanide-sensitive transport of NKCC2 as analyzed by (86)Rb(+) influx in Xenopus laevis oocytes was markedly reduced by methyl-beta-cyclodextrin (MbetaCD)-induced cholesterol depletion. In TAL, short-term AVP application induced apical vesicular trafficking along with a shift of NKCC2 from non-raft to LR fractions. In parallel, increased colocalization of NKCC2 with the LR ganglioside GM1 and their polar translocation were assessed by confocal analysis. Apical biotinylation showed twofold increases in NKCC2 surface expression. These effects were blunted by mevalonate-lovastatin/MbetaCD-induced cholesterol deprivation. Collectively, these findings demonstrate that a pool of NKCC2 distributes in rafts. Results are consistent with a model in which LR mediate polar insertion, activity, and AVP-induced trafficking of NKCC2 in the control of transepithelial NaCl transport.
Collapse
Affiliation(s)
- Pia Welker
- Institute of Anatomy, Charité-Universitätsmedizin Berlin, Philippstrasse 12, Berlin, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
73
|
Ares GR, Caceres P, Alvarez-Leefmans FJ, Ortiz PA. cGMP decreases surface NKCC2 levels in the thick ascending limb: role of phosphodiesterase 2 (PDE2). Am J Physiol Renal Physiol 2008; 295:F877-87. [PMID: 18684888 DOI: 10.1152/ajprenal.00449.2007] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
NaCl absorption in the medullary thick ascending limb of the loop of Henle (THAL) is mediated by the apical Na/K/2Cl cotransporter (NKCC2). Hormones that increase cGMP, such as nitric oxide (NO) and natriuretic peptides, decrease NaCl absorption by the THAL. However, the mechanism by which cGMP decreases NaCl absorption in THALs is not known. We hypothesized that cGMP decreases surface NKCC2 levels in the THAL. We used surface biotinylation to measure surface NKCC2 levels in rat THAL suspensions. We tested the effect of the membrane-permeant cGMP analog dibutyryl-cGMP (db-cGMP) on surface NKCC2 levels. Incubating THALs with db-cGMP for 20 min decreased surface NKCC2 levels in a concentration-dependent manner (basal=100%; db-cGMP 100 microM=77+/-7%; 500 microM=54+/-10% and 1,000 microM=61+/-8%). A different cGMP analog 8-bromo-cGMP (8-Br-cGMP) also decreased surface NKCC2 levels by 25%, (basal=100%; 8-Br-cGMP=75+/-5%). Incubation of isolated, perfused THALs with db-cGMP decreased apical surface NKCC2 labeling levels as measured by immunofluorescence and confocal microscopy. cGMP-stimulated phosphodiesterase 2 (PDE2) mediates the inhibitory effect of NO on NaCl absorption by THALs. Thus we examined the role of PDE2 and found that PDE2 inhibitors blocked the effect of db-cGMP on surface NKCC2. Also, a nonstimulatory concentration of db-cAMP blocked the cGMP-induced decrease in surface NKCC2. Finally, db-cGMP inhibited THAL net Cl absorption by 48+/-4%, and this effect was completely blocked by PDE2 inhibition. We conclude that cGMP decreases NKCC2 levels in the apical membrane of THALs and that this effect is mediated by PDE2. This is an important mechanism by which cGMP inhibits NaCl absorption by the THAL.
Collapse
Affiliation(s)
- Gustavo R Ares
- Hypertension and Vascular Research Division, Department of Internal Medicine, Henry Ford Hospital, and Department of Physiology, Wayne State University, 2799 West Grand Blvd., Detroit, MI 48202, USA
| | | | | | | |
Collapse
|
74
|
Morla L, Crambert G, Mordasini D, Favre G, Doucet A, Imbert-Teboul M. Proteinase-activated receptor 2 stimulates Na,K-ATPase and sodium reabsorption in native kidney epithelium. J Biol Chem 2008; 283:28020-8. [PMID: 18678869 DOI: 10.1074/jbc.m804399200] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Proteinase-activated receptors 2 (PAR2) are expressed in kidney, but their function is mostly unknown. Since PAR2 control ion transport in several epithelia, we searched for an effect on sodium transport in the cortical thick ascending limb of Henle's loop, a nephron segment that avidly reabsorbs NaCl, and for its signaling. Activation of PAR2, by either trypsin or a specific agonist peptide, increased the maximal activity of Na,K-ATPase, its apparent affinity for sodium, the sodium permeability of the paracellular pathway, and the lumen-positive transepithelial voltage, featuring increased NaCl reabsorption. PAR2 activation induced calcium signaling and phosphorylation of ERK1,2. PAR2-induced stimulation of Na,K-ATPase Vmax was fully prevented by inhibition of phospholipase C, of changes in intracellular concentration of calcium, of classical protein kinases C, and of ERK1,2 phosphorylation. PAR2-induced increase in paracellular sodium permeability was mediated by the same signaling cascade. In contrast, increase in the apparent affinity of Na,K-ATPase for sodium, although dependent on phospholipase C, was independent of calcium signaling, was insensitive to inhibitors of classical protein kinases C and of ERK1,2 phosphorylation, but was fully prevented by the nonspecific protein kinase inhibitor staurosporine, as was the increase in transepithelial voltage. In conclusion, PAR2 increases sodium reabsorption in rat thick ascending limb of Henle's loop along both the transcellular and the paracellular pathway. PAR2 effects are mediated in part by a phospholipase C/protein kinase C/ERK1,2 cascade, which increases Na,K-ATPase maximal activity and the paracellular sodium permeability, and by a different phospholipase C-dependent, staurosporine-sensitive cascade that controls the sodium affinity of Na,K-ATPase.
Collapse
Affiliation(s)
- Luciana Morla
- Université Pierre et Marie Curie, Univ Paris 06, UMR 7134, 75005 Paris
| | | | | | | | | | | |
Collapse
|
75
|
Carmosino M, Giménez I, Caplan M, Forbush B. Exon loss accounts for differential sorting of Na-K-Cl cotransporters in polarized epithelial cells. Mol Biol Cell 2008; 19:4341-51. [PMID: 18667527 DOI: 10.1091/mbc.e08-05-0478] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
The renal Na-K-Cl cotransporter (NKCC2) is selectively expressed in the apical membranes of cells of the mammalian kidney, where it is the target of the clinically important loop diuretics. In contrast, the "secretory" NKCC1 cotransporter is localized in the basolateral membranes of many epithelia. To identify the sorting signal(s) that direct trafficking of NKCCs, we generated chimeras between the two isoforms and expressed these constructs in polarized renal epithelial cell lines. This analysis revealed an amino acid stretch in NKCC2 containing apical sorting information. The NKCC1 C terminus contains a dileucine motif that constitutes the smallest essential component of its basolateral sorting signal. NKCC1 lacking this motif behaves as an apical protein. Examination of the NKCC gene structure reveals that this dileucine motif is encoded by an additional exon in NKCC1 absent in NKCC2. Phylogenetic analysis of this exon suggests that the evolutionary loss of this exon from the gene encoding the basolateral NKCC1 constitutes a novel mechanism that accounts for the apical sorting of the protein encoded by the NKCC2 gene.
Collapse
Affiliation(s)
- Monica Carmosino
- Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, CT 06520, USA.
| | | | | | | |
Collapse
|
76
|
Yang LE, Sandberg MB, Can AD, Pihakaski-Maunsbach K, McDonough AA. Effects of dietary salt on renal Na+ transporter subcellular distribution, abundance, and phosphorylation status. Am J Physiol Renal Physiol 2008; 295:F1003-16. [PMID: 18653479 DOI: 10.1152/ajprenal.90235.2008] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
During high-salt (HS) diet the kidney increases urinary Na+ and volume excretion to match intake. We recently reported that HS provokes a redistribution of distal convoluted tubule Na+-Cl- cotransporter (NCC) from apical to subapical vesicles and decreases NCC abundance. This study aimed to test the hypothesis that the other renal Na+ transporters' abundance and or subcellular distribution is decreased by HS diet. Six-week-old Sprague-Dawley rats were fed a normal (NS) 0.4% NaCl diet or a HS 4% NaCl diet for 3 wk or overnight. Kidneys excised from anesthetized rats were fractionated on density gradients or analyzed by microscopy; transporters and associated regulators were detected with specific antibodies. Three-week HS doubled Na+/H+ exchanger (NHE)3 phosphorylation at serine 552 and provoked a redistribution of NHE3, dipeptidyl peptidase IV (DPPIV), myosin VI, Na+-Pi cotransporter (NaPi)-2, ANG II type 2 receptor (AT2R), aminopeptidase N (APN), Na+-K+-2Cl- cotransporter (NKCC2), epithelial Na+ channel (ENaC) beta-subunit, and Na+-K+-ATPase (NKA) alpha1- and beta1-subunits from low-density plasma membrane-enriched fractions to higher-density intracellular membrane-enriched fractions. NHE3, myosin VI, and AT2R retraction to the base of the microvilli (MV) during HS was evident by confocal microscopy. HS did not change abundance of NHE3, NKCC, or NKA alpha1- or beta1-subunits but increased ENaC-beta in high-density intracellular enriched membranes. Responses to HS were fully apparent after just 18 h. We propose that retraction of NHE3 to the base of the MV, driven by myosin VI and NHE3 phosphorylation and accompanied by redistribution of the NHE3 regulator DPPIV, contributes to a decrease in proximal tubule Na+ reabsorption during HS and that redistribution of transporters out of low-density plasma membrane-enriched fractions in the thick ascending limb of the loop of Henle and distal nephron may also contribute to the homeostatic natriuretic response to HS diet.
Collapse
Affiliation(s)
- Li E Yang
- Department of Physiology and Biophysics, University of Southern California Keck School of Medicine, 1333 San Pablo St., MMR 626, Los Angeles, CA 90089-9142, USA
| | | | | | | | | |
Collapse
|
77
|
Frindt G, Ergonul Z, Palmer LG. Surface expression of epithelial Na channel protein in rat kidney. ACTA ACUST UNITED AC 2008; 131:617-27. [PMID: 18504317 PMCID: PMC2391254 DOI: 10.1085/jgp.200809989] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Expression of epithelial Na channel (ENaC) protein in the apical membrane of rat kidney tubules was assessed by biotinylation of the extracellular surfaces of renal cells and by membrane fractionation. Rat kidneys were perfused in situ with solutions containing NHS-biotin, a cell-impermeant biotin derivative that attaches covalently to free amino groups on lysines. Membranes were solubilized and labeled proteins were isolated using neutravidin beads, and surface β and γENaC subunits were assayed by immunoblot. Surface αENaC was assessed by membrane fractionation. Most of the γENaC at the surface was smaller in molecular mass than the full-length subunit, consistent with cleavage of this subunit in the extracellular moiety close to the first transmembrane domains. Insensitivity of the channels to trypsin, measured in principal cells of the cortical collecting duct by whole-cell patch-clamp recording, corroborated this finding. ENaC subunits could be detected at the surface under all physiological conditions. However increasing the levels of aldosterone in the animals by feeding a low-Na diet or infusing them directly with hormone via osmotic minipumps for 1 wk before surface labeling increased the expression of the subunits at the surface by two- to fivefold. Salt repletion of Na-deprived animals for 5 h decreased surface expression. Changes in the surface density of ENaC subunits contribute significantly to the regulation of Na transport in renal cells by mineralocorticoid hormone, but do not fully account for increased channel activity.
Collapse
Affiliation(s)
- Gustavo Frindt
- Department of Physiology and Biophysics, Weill Medical College of Cornell University, New York, NY 10065, USA
| | | | | |
Collapse
|
78
|
Welker P, Böhlick A, Mutig K, Salanova M, Kahl T, Schlüter H, Blottner D, Ponce-Coria J, Gamba G, Bachmann S. Renal Na+-K+-Cl- cotransporter activity and vasopressin-induced trafficking are lipid raft-dependent. Am J Physiol Renal Physiol 2008. [PMID: 18579701 DOI: 10.1152/ajprenal.90227] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Apical bumetanide-sensitive Na(+)-K(+)-2Cl(-) cotransporter (NKCC2), the kidney-specific member of a cation-chloride cotransporter superfamily, is an integral membrane protein responsible for the transepithelial reabsorption of NaCl. The role of NKCC2 is essential for renal volume regulation. Vasopressin (AVP) controls NKCC2 surface expression in cells of the thick ascending limb of the loop of Henle (TAL). We found that 40-70% of Triton X-100-insoluble NKCC2 was present in cholesterol-enriched lipid rafts (LR) in rat kidney and cultured TAL cells. The related Na(+)-Cl(-) cotransporter (NCC) from rat kidney was distributed in LR as well. NKCC2-containing LR were detected both intracellularly and in the plasma membrane. Bumetanide-sensitive transport of NKCC2 as analyzed by (86)Rb(+) influx in Xenopus laevis oocytes was markedly reduced by methyl-beta-cyclodextrin (MbetaCD)-induced cholesterol depletion. In TAL, short-term AVP application induced apical vesicular trafficking along with a shift of NKCC2 from non-raft to LR fractions. In parallel, increased colocalization of NKCC2 with the LR ganglioside GM1 and their polar translocation were assessed by confocal analysis. Apical biotinylation showed twofold increases in NKCC2 surface expression. These effects were blunted by mevalonate-lovastatin/MbetaCD-induced cholesterol deprivation. Collectively, these findings demonstrate that a pool of NKCC2 distributes in rafts. Results are consistent with a model in which LR mediate polar insertion, activity, and AVP-induced trafficking of NKCC2 in the control of transepithelial NaCl transport.
Collapse
Affiliation(s)
- Pia Welker
- Institute of Anatomy, Charité-Universitätsmedizin Berlin, Philippstrasse 12, Berlin, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
79
|
Abstract
PURPOSE OF REVIEW Studies of inherited conditions characterized by high or low blood pressure reveal the importance of a new signalling cascade, With no Lysine kinases (WNK) --> ste20/SPS1-related proline/alanine-rich kinase (SPAK)/oxidative stress-responsive kinase-1 (OSR1) --> Cation-Chloride Cotransporters (CCC), in regulating blood pressure and in the pathogenesis of essential hypertension. This review explores how these molecules interact to co-ordinate sodium homeostasis and how errors in these interactions may result in hypertension. RECENT FINDINGS Studies using transgenic animals and gene knockins have clarified the role of mutant WNK4 in hypertension, by revealing its main action to be increasing the expression and activity of sodium-chloride cotransporter (NCC) in the kidney. Functional studies show how phosphorylation of WNK1 regulates both its activity and ability to interact with SPAK/OSR1, and clearly place it upstream of SPAK/OSR1 in the cascade. The structural basis for the interactions between SPAK/OSR1 and targets has been identified. SUMMARY WNKs, activated by upstream kinases or autophosphorylation, bind and phosphorylate SPAK/OSR1, which in turn phosphorylate and activate NCCs and Na-K-Cl cotransporters (NKCCs). This increases sodium retention in the kidney (NKCC2, NCC) and vascular resistance (NKCC1), but decreases renin release (NKCC1). Hypertension-associated mutant WNKs increase surface expression and activation of renal tubular NKCC2 and NCC. Whether this adequately explains the hypertension awaits studies of these mutants in other tissues.
Collapse
|
80
|
Abstract
Alterations in intracellular calcium homeostasis and cyclic adenosine 3',5'-phosphate likely underlie the increased cell proliferation and fluid secretion in polycystic kidney disease. Hormone receptors that affect cyclic adenosine 3',5'-phosphate and are preferentially expressed in affected tissues are logical treatment targets. There is a sound rationale for considering the arginine vasopressin V2 receptor as a target. The arginine vasopressin V2 receptor antagonists OPC-31260 and tolvaptan inhibit the development of polycystic kidney disease in cpk mice and in three animal orthologs to human autosomal recessive polycystic kidney disease (PCK rat), autosomal dominant polycystic kidney disease (Pkd2-/WS25 mice), and nephronophthisis(pcy mouse). PCK rats that are homozygous for an arginine vasopressin mutation and lack circulating vasopressin are markedly protected. Administration of V2 receptor agonist 1-deamino-8-D-arginine vasopressin to these animals completely recovers the cystic phenotype. Administration of 1-deamino-8-D-arginine vasopressin to PCK rats with normal arginine vasopressin aggravates the disease. Suppression of arginine vasopressin release by high water intake is protective. V2 receptor antagonists may have additional beneficial effects on hypertension and chronic kidney disease progression. A number of clinical studies in polycystic kidney disease have been performed or are currently active. The results of phase 2 and 2-3 studies indicate that tolvaptan seems to be safe and well tolerated in autosomal dominant polycystic kidney disease. A phase 3,placebo-controlled, double-blind study in 18- to 50-yr-old patients with autosomal dominant polycystic kidney disease and preserved renal function but relatively rapid progression, as indicated by a total kidney volume >750 ml, has been initiated.
Collapse
Affiliation(s)
- Vicente E Torres
- Division of Nephrology and Hypertension, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA.
| |
Collapse
|
81
|
Fenton RA, Knepper MA. Mouse models and the urinary concentrating mechanism in the new millennium. Physiol Rev 2007; 87:1083-112. [PMID: 17928581 DOI: 10.1152/physrev.00053.2006] [Citation(s) in RCA: 152] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Our understanding of urinary concentrating and diluting mechanisms at the end of the 20th century was based largely on data from renal micropuncture studies, isolated perfused tubule studies, tissue analysis studies and anatomical studies, combined with mathematical modeling. Despite extensive data, several key questions remained to be answered. With the advent of the 21st century, a new approach, transgenic and knockout mouse technology, is providing critical new information about urinary concentrating processes. The central goal of this review is to summarize findings in transgenic and knockout mice pertinent to our understanding of the urinary concentrating mechanism, focusing chiefly on mice in which expression of specific renal transporters or receptors has been deleted. These include the major renal water channels (aquaporins), urea transporters, ion transporters and channels (NHE3, NKCC2, NCC, ENaC, ROMK, ClC-K1), G protein-coupled receptors (type 2 vasopressin receptor, prostaglandin receptors, endothelin receptors, angiotensin II receptors), and signaling molecules. These studies shed new light on several key questions concerning the urinary concentrating mechanism including: 1) elucidation of the role of water absorption from the descending limb of Henle in countercurrent multiplication, 2) an evaluation of the feasibility of the passive model of Kokko-Rector and Stephenson, 3) explication of the role of inner medullary collecting duct urea transport in water conservation, 4) an evaluation of the role of tubuloglomerular feedback in maintenance of appropriate distal delivery rates for effective regulation of urinary water excretion, and 5) elucidation of the importance of water reabsorption in the connecting tubule versus the collecting duct for maintenance of water balance.
Collapse
Affiliation(s)
- Robert A Fenton
- Water and Salt Research Center, Institute of Anatomy, University of Aarhus, Aarhus, Denmark.
| | | |
Collapse
|
82
|
Mutig K, Paliege A, Kahl T, Jöns T, Müller-Esterl W, Bachmann S. Vasopressin V2 receptor expression along rat, mouse, and human renal epithelia with focus on TAL. Am J Physiol Renal Physiol 2007; 293:F1166-77. [PMID: 17626156 DOI: 10.1152/ajprenal.00196.2007] [Citation(s) in RCA: 118] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
In renal epithelia, vasopressin influences salt and water transport, chiefly via vasopressin V(2) receptors (V(2)Rs) linked to adenylyl cyclase. A combination of vasopressin-induced effects along several distinct portions of the nephron and collecting duct system may help balance the net effects of antidiuresis in cortex and medulla. Previous studies of the intrarenal distribution of V(2)Rs have been inconclusive with respect to segment- and cell-type-related V(2)R expression. Our study therefore aimed to present a high-resolution analysis of V(2)R mRNA expression in rat, mouse, and human kidney epithelia, supplemented with immunohistochemical data. Cell types of the renal tubule were identified histochemically using specific markers. Pronounced V(2)R signal in thick ascending limb (TAL) was corroborated functionally; phosphorylation of Na(+)-K(+)-2Cl(-) cotransporter type 2 (NKCC2) was established in cultured TAL cells from rabbit and in rats with diabetes insipidus that were treated with the V(2)R agonist desmopressin. We found solid expression of V(2)R mRNA in medullary TAL (MTAL), macula densa, connecting tubule, and cortical and medullary collecting duct and weaker expression in cortical TAL and distal convoluted tubule in all three species. Additional V(2)R immunostaining of kidneys and rabbit TAL cells confirmed our findings. In agreement with strong V(2)R expression in MTAL, kidneys from rats with diabetes insipidus and cultured TAL cells revealed sharp, selective increases in NKCC2 phosphorylation upon desmopressin treatment. Macula densa cells constitutively showed strong NKCC2 phosphorylation. Results suggest comparably significant effects of vasopressin-induced V(2)R signaling in MTAL and in connecting tubule/collecting duct principal cells across the three species. Strong V(2)R expression in macula densa may be related to tubulovascular signal transfer.
Collapse
Affiliation(s)
- K Mutig
- Department of Anatomy, Charité Universitätsmedizin, Berlin, Germany
| | | | | | | | | | | |
Collapse
|
83
|
Sonalker PA, Jackson EK. Norepinephrine, via beta-adrenoceptors, regulates bumetanide-sensitive cotransporter type 1 expression in thick ascending limb cells. Hypertension 2007; 49:1351-7. [PMID: 17438304 DOI: 10.1161/hypertensionaha.107.088732] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The sympathetic nervous system, via norepinephrine, regulates renal sodium transport, and chronic sympathetic activation causes sustained increases in blood pressure by reducing sodium excretion. Our previous studies show that chronic norepinephrine infusion increases the abundance of the bumetanide-sensitive cotransporter type 1, the apical sodium transporter of the thick ascending limb of Henle's loop. The present study was initiated to elucidate the mechanisms by which norepinephrine regulates the protein levels of this transporter in an immortalized thick ascending limb epithelial cell line. Treatment with norepinephrine, either alone or in the presence of actinomycin D or cycloheximide, had no effect on cotransporter mRNA levels. Treatment with norepinephrine, however, increased bumetanide-sensitive cotransporter type 1 protein levels (70% increase versus control; P=0.012), and pretreatment with cycloheximide blocked the effect of norepinephrine on bumetanide-sensitive cotransporter type 1 protein levels. To further elucidate the mechanism, thick ascending limb cells were treated with norepinephrine in the presence of phentolamine (alpha-adrenoceptor blocker), propranolol (beta-adrenoceptor blocker), SQ22536 (adenylyl cyclase inhibitor), PD098059 (mitogen-activated protein kinase pathway inhibitor), H-89 (protein kinase A inhibitor), or staurosporine (protein kinase C inhibitor). Treatment with propranolol, SQ22536, and H-89 abolished the effects of norepinephrine on bumetanide-sensitive cotransporter type 1 protein levels, whereas staurosporine had no effect. Treatment with PD098059 partially inhibited the effects of norepinephrine (40% decrease versus norepinephrine; P=0.03), and treatment with phentolamine potentiated the effects of norepinephrine (30% increase versus norepinephrine; P=0.02) on bumetanide-sensitive cotransporter type 1 protein levels. We conclude that regulation of bumetanide-sensitive cotransporter type 1 by norepinephrine proceeds via the beta-adrenoceptor receptor-cAMP-protein kinase A pathway that involves in part mitogen-activated protein kinases and that alpha-adrenoceptor activation negatively regulates bumetanide-sensitive cotransporter type 1 protein levels.
Collapse
MESH Headings
- 8-Bromo Cyclic Adenosine Monophosphate/pharmacology
- Animals
- Bumetanide/pharmacology
- Cell Line
- Colforsin/pharmacology
- Cyclic AMP/physiology
- Cyclic AMP-Dependent Protein Kinases/drug effects
- Cyclic AMP-Dependent Protein Kinases/physiology
- Gene Expression Regulation/drug effects
- Gene Expression Regulation/physiology
- Loop of Henle/cytology
- Loop of Henle/metabolism
- Mice
- Mice, Transgenic
- Mitogen-Activated Protein Kinases/physiology
- Norepinephrine/physiology
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Receptors, Adrenergic, alpha/drug effects
- Receptors, Adrenergic, alpha/physiology
- Receptors, Adrenergic, beta/drug effects
- Receptors, Adrenergic, beta/physiology
- Sodium Potassium Chloride Symporter Inhibitors/pharmacology
- Sodium-Potassium-Chloride Symporters/metabolism
- Solute Carrier Family 12, Member 1
- Vasopressins/pharmacology
Collapse
Affiliation(s)
- Prajakta A Sonalker
- Department of Pharmacology, Center for Clinical Pharmacology, University of Pittsburgh, School of Medicine, PA 15219, USA
| | | |
Collapse
|
84
|
Tiwari S, Nordquist L, Halagappa VKM, Ecelbarger CA. Trafficking of ENaC subunits in response to acute insulin in mouse kidney. Am J Physiol Renal Physiol 2007; 293:F178-85. [PMID: 17389677 DOI: 10.1152/ajprenal.00447.2006] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Studies done in cell culture have demonstrated that insulin activates the epithelial sodium channel (ENaC) via a variety of mechanisms. However, to date, upregulation of ENaC in native renal tissue by in vivo administration of insulin has not been demonstrated. To address this, we injected 6-mo-old male C57BL/CBA mice (n = 14/group) intraperitoneally with vehicle or 0.5 U/kg body wt insulin and examined short-term (1-2 h) sodium excretion and kidney ENaC subunits (alpha, beta, and gamma) and serum and glucocorticoid-induced kinase (SGK-1) regulation. Insulin resulted in a significant reduction in urine sodium (by approximately 80%) that was restored by intraperitoneal administration of the ENaC antagonist, benzamil (1.4 mg/kg body wt). Differential centrifugation followed by Western blotting of whole kidney revealed significantly increased band densities (by 26-103%) for insulin- relative to vehicle-treated mice for alpha- and gamma-ENaC in the homogenate (H), and plasma membrane-enriched fraction (MF), with no difference in the vesicle-enriched fraction (VF). Similarly, beta-ENaC was significantly increased in MF (by 45%) but no change in the H. It was, however, significantly decreased in the VF (by 28%) with insulin. In agreement, immunoperoxidase labeling demonstrated relatively stronger apical, relative to cytosolic, localization of alpha-, beta-, and gamma-ENaC with insulin, whereas, with vehicle, labeling was fairly evenly dispersed throughout collecting duct principal cells. Furthermore, Western blotting showed insulin increased SGK-1 (by 75%) and phosphorylated-SGK band densities (by 30%) but only in the MF. These studies demonstrate novel in vivo regulation of renal ENaC activity and subunit proteins and SGK-1 by insulin in the acute time frame in the mouse.
Collapse
Affiliation(s)
- Swasti Tiwari
- Dept. of Medicine, Georgetown University, Box 571412, Washington, DC 20057-1412, USA
| | | | | | | |
Collapse
|
85
|
Giménez I. Molecular mechanisms and regulation of furosemide-sensitive Na-K-Cl cotransporters. Curr Opin Nephrol Hypertens 2007; 15:517-23. [PMID: 16914965 DOI: 10.1097/01.mnh.0000242178.44576.b0] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
PURPOSE OF REVIEW Relevant advances towards understanding how furosemide-sensitive Na-K-Cl cotransporters (NKCC) are regulated by alternative splicing, phosphorylation and membrane expression have been made, which are critical to comprehending the role of NKCCs in blood pressure homeostasis. RECENT FINDINGS A major breakthrough has been the description of a macromolecular complex responsible for the regulatory phosphorylation of NKCCs, involving members of two families of novel serine-threonine kinases: WNK kinases and Ste-20-related kinases SPAK and OSR1. A new regulatory pathway has been defined, with WNK lying upstream of SPAK-OSR1 and the latter kinases directly phosphorylating NKCC. New evidence has arisen supporting regulation of NKCC membrane expression, possibly through the same mechanisms regulating phosphorylation. Alternative splicing of kidney-specific NKCC2 also appears to be a regulated process. Renal roles for NKCC1 have been described, including an unexpected role in controlling renin secretion. SUMMARY We now begin to understand the biochemical pathways mediating NKCC regulatory phosphorylation, which are governed by kinases that, like NKCCs, have been linked to the genesis of hypertension. Complementary long-term regulation of NKCC membrane expression, alternative splicing or gene transcription, however, should not be overlooked. Deciphering the relationships between these processes will enhance our understanding of the pathogenesis of hypertension.
Collapse
Affiliation(s)
- Ignacio Giménez
- Department of Pharmacology and Physiology, University of Zaragoza, Zaragoza, Spain.
| |
Collapse
|
86
|
Abstract
Acid-base homeostasis to a great extent relies on renal ammonia metabolism. In the past several years, seminal studies have generated important new insights into the mechanisms of renal ammonia transport. In particular, the theory that ammonia transport occurs almost exclusively through nonionic NH(3) diffusion and NH(4)(+) trapping has given way to a model postulating that a variety of proteins specifically transport NH(3) and NH(4)(+) and that this transport is critical for normal ammonia metabolism. Many of these proteins transport primarily H(+) or K(+) but also transport NH(4)(+). Nonerythroid Rh glycoproteins transport ammonia and may represent critical facilitators of ammonia transport in the kidney. This review discusses the underlying aspects of renal ammonia transport as well as specific proteins with important roles in renal ammonia transport.
Collapse
Affiliation(s)
- I. David Weiner
- Nephrology Section, North Florida/South Georgia Veterans Health System, University of Florida, Gainesville, Florida 32608
- Division of Nephrology, Hypertension and Transplantation, University of Florida, Gainesville, Florida 32608
| | - L. Lee Hamm
- Department of Medicine, Tulane University School of Medicine, New Orleans, Louisiana 70112
| |
Collapse
|
87
|
Herrera M, Ortiz PA, Garvin JL. Regulation of thick ascending limb transport: role of nitric oxide. Am J Physiol Renal Physiol 2006; 290:F1279-84. [PMID: 16682483 DOI: 10.1152/ajprenal.00465.2005] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Nitric oxide (NO) plays a role in many physiological and pathophysiological processes. In the kidney, NO reduces renal vascular resistance, increases glomerular filtration rate, alters renin release, and inhibits transport along the nephron. The thick ascending limb is responsible for absorbing 20-30% of the filtered load of NaCl, much of the bicarbonate that escapes the proximal nephron, and a significant fraction of the divalent cations reclaimed from the forming urine. Additionally, this nephron segment plays a role in K+ homeostasis. This article will review recent advances in our understanding of the role NO plays in regulating the transport processes of the thick ascending limb. NO has been shown to inhibit NaCl absorption primarily by reducing Na+-K+-2Cl- cotransport activity. NO also inhibits bicarbonate absorption by reducing Na+/H+ exchange activity. It has also been reported to enhance luminal K+ channel activity and thus is likely to alter K+ secretion. The source of NO may be vascular structures such as the afferent arteriole or vasa recta, or the thick ascending limb itself. NO is produced by NO synthase 3 in this segment, and several factors that regulate its activity both acutely and chronically have recently been identified. Although the effects of NO on thick ascending limb transport have received a great deal of attention recently, its effects on divalent ion absorption and many other issues remain unexplored.
Collapse
Affiliation(s)
- Marcela Herrera
- Hypertension and Vascular Research Div., Henry Ford Hospital, 2799 West Grand Blvd., Detroit, MI 48202-2689, USA
| | | | | |
Collapse
|
88
|
|