51
|
Liu X, Wang B, Ding H, Shi H, Liu J, Sun H. Low-intensity pulsed ultrasound in combination with SonoVue induces cytotoxicity of human renal glomerular endothelial cells via repression of the ERK1/2 signaling pathway. Ren Fail 2018; 40:458-465. [PMID: 30122107 PMCID: PMC6104615 DOI: 10.1080/0886022x.2018.1487868] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/30/2022] Open
Abstract
OBJECTIVES Low-intensity pulsed ultrasound (LIPUS) and SonoVue have been used widely for diagnosis and therapeutic treatment. The effects of LIPUS and SonoVue on the microvascular system and underlying molecular mechanisms have not been established. METHODS Cultured human renal glomerular endothelial cells (HRGECs) were treated with 5-min ultrasonic irradiation, 20% SonoVue or the combination of both treatments. Cell proliferation, viablity, and apoptosis were measured by MTT assay, Trypan blue exclusion assay and flow cytometry, respectively. Activation of extracellular regulated protein kinases (ERK) were examined by Western blot. RESULTS We found that LIPUS and SonoVue alone do not induce cytotoxicity of HRGECs; however, the combination of the two treatments reduces cell proliferation and increases cell death. In addition, the combination of LIPUS and SonoVue suppressed the activation of ERK 1/2 in HRGRCs. With pretreatment of the inhibitor of ERK1/2 signaling, PD98059, LIPUS, and SonoVue does not induce additional cell death and inhibition of proliferation. CONCLUSIONS LIPUS combined with SonoVue induces cytotoxicity of HRGECs via repression of the ERK1/2 signaling pathway.
Collapse
Affiliation(s)
- Xiu Liu
- a Shandong Provincial Qianfoshan Hospital, Shandong University , Jinan , China.,b Department of Cardiography , Yantai Affiliated Hospital of Binzhou Medical University , Yantai , China
| | - Bei Wang
- c Department of Ultrasonography , Shandong Provincial Qianfoshan Hospital, Shandong University , Jinan , China
| | - Hongyu Ding
- c Department of Ultrasonography , Shandong Provincial Qianfoshan Hospital, Shandong University , Jinan , China
| | - Hao Shi
- d Department of Radiology, Shandong Provincial Qianfoshan Hospital , Shandong University , Jinan , China
| | - Ju Liu
- e Medical Research Center, Shandong Provincial Qianfoshan Hospital, Shandong University , Jinan , China
| | - Hongjun Sun
- e Medical Research Center, Shandong Provincial Qianfoshan Hospital, Shandong University , Jinan , China
| |
Collapse
|
52
|
Navar LG, Richfield O. Why until Just Now? Undiscovered Uniqueness of the Human Glomerulus! Am J Physiol Renal Physiol 2018; 315:F1345-F1346. [PMID: 30110573 PMCID: PMC6293291 DOI: 10.1152/ajprenal.00369.2018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Revised: 08/14/2018] [Accepted: 08/14/2018] [Indexed: 11/22/2022] Open
Affiliation(s)
- L Gabriel Navar
- Department of Physiology, SL39, Tulane University Health Sciences Center, United States
| | - Owen Richfield
- Physiology, Tulane University School of Medicine, United States
| |
Collapse
|
53
|
Abstract
Women with chronic kidney disease (CKD) are at risk for adverse pregnancy-associated outcomes, including progression of their underlying renal dysfunction, a flare of their kidney disease, and adverse pregnancy complications such as preeclampsia and preterm delivery. Earlier-stage CKD, as a rule, is a safer time to have a pregnancy, but even women with end-stage kidney disease have attempted pregnancy in recent years. As such, nephrologists need to be comfortable with pregnancy preparation and management at all stages of CKD. In this article, we review the renal physiologic response to pregnancy and the literature with respect to both expected maternal and fetal outcomes among young women at various stages of CKD, including those who attempt to conceive while on dialysis. The general management of young women with CKD and associated complications, including hypertension and proteinuria are discussed. Finally, the emotional impact these pregnancies may have on young women with a chronic disease and the potential benefits of care in a multidisciplinary environment are highlighted.
Collapse
|
54
|
Bourquin J, Milosevic A, Hauser D, Lehner R, Blank F, Petri-Fink A, Rothen-Rutishauser B. Biodistribution, Clearance, and Long-Term Fate of Clinically Relevant Nanomaterials. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2018; 30:e1704307. [PMID: 29389049 DOI: 10.1002/adma.201704307] [Citation(s) in RCA: 240] [Impact Index Per Article: 34.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Revised: 10/20/2017] [Indexed: 05/18/2023]
Abstract
Realization of the immense potential of nanomaterials for biomedical applications will require a thorough understanding of how they interact with cells, tissues, and organs. There is evidence that, depending on their physicochemical properties and subsequent interactions, nanomaterials are indeed taken up by cells. However, the subsequent release and/or intracellular degradation of the materials, transfer to other cells, and/or translocation across tissue barriers are still poorly understood. The involvement of these cellular clearance mechanisms strongly influences the long-term fate of used nanomaterials, especially if one also considers repeated exposure. Several nanomaterials, such as liposomes and iron oxide, gold, or silica nanoparticles, are already approved by the American Food and Drug Administration for clinical trials; however, there is still a huge gap of knowledge concerning their fate in the body. Herein, clinically relevant nanomaterials, their possible modes of exposure, as well as the biological barriers they must overcome to be effective are reviewed. Furthermore, the biodistribution and kinetics of nanomaterials and their modes of clearance are discussed, knowledge of the long-term fates of a selection of nanomaterials is summarized, and the critical points that must be considered for future research are addressed.
Collapse
Affiliation(s)
- Joël Bourquin
- Adolphe Merkle InstituteUniversity of Fribourg, Chemin des Verdiers 4, 1700, Fribourg, Switzerland
| | - Ana Milosevic
- Adolphe Merkle InstituteUniversity of Fribourg, Chemin des Verdiers 4, 1700, Fribourg, Switzerland
| | - Daniel Hauser
- Adolphe Merkle InstituteUniversity of Fribourg, Chemin des Verdiers 4, 1700, Fribourg, Switzerland
| | - Roman Lehner
- Adolphe Merkle InstituteUniversity of Fribourg, Chemin des Verdiers 4, 1700, Fribourg, Switzerland
| | - Fabian Blank
- Respiratory Medicine, Department of Biomedical Research, University of Bern, Murtenstrasse 50, 3008, Bern
| | - Alke Petri-Fink
- Adolphe Merkle InstituteUniversity of Fribourg, Chemin des Verdiers 4, 1700, Fribourg, Switzerland
- Department of Chemistry, University of Fribourg, Chemin du Musée 9, 1700, Fribourg, Switzerland
| | | |
Collapse
|
55
|
den Bakker E, Gemke RJBJ, Bökenkamp A. Endogenous markers for kidney function in children: a review. Crit Rev Clin Lab Sci 2018; 55:163-183. [DOI: 10.1080/10408363.2018.1427041] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Emil den Bakker
- Department of Pediatric Nephrology, VU Medical Centre, Amsterdam, The Netherlands
| | | | - Arend Bökenkamp
- Department of Pediatric Nephrology, VU Medical Centre, Amsterdam, The Netherlands
| |
Collapse
|
56
|
Tran VL, Thakare V, Rossetti F, Baudouin A, Ramniceanu G, Doan BT, Mignet N, Comby-Zerbino C, Antoine R, Dugourd P, Boschetti F, Denat F, Louis C, Roux S, Doussineau T, Tillement O, Lux F. One-pot direct synthesis for multifunctional ultrasmall hybrid silica nanoparticles. J Mater Chem B 2018; 6:4821-4834. [DOI: 10.1039/c8tb00195b] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
A novel and simple route to synthesize ultrasmall silica nanoparticles having hydrodynamic diameters under 10 nm for imaging and therapeutic applications.
Collapse
|
57
|
Zinc oxide nanoparticles: a promising nanomaterial for biomedical applications. Drug Discov Today 2017; 22:1825-1834. [DOI: 10.1016/j.drudis.2017.08.006] [Citation(s) in RCA: 368] [Impact Index Per Article: 46.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Revised: 07/07/2017] [Accepted: 08/22/2017] [Indexed: 11/21/2022]
|
58
|
Yang J, Sun JF, Wang TT, Guo XH, Wei JX, Jia LT, Yang AG. Targeted inhibition of hantavirus replication and intracranial pathogenesis by a chimeric protein-delivered siRNA. Antiviral Res 2017; 147:107-115. [DOI: 10.1016/j.antiviral.2017.10.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Revised: 10/01/2017] [Accepted: 10/06/2017] [Indexed: 11/25/2022]
|
59
|
Cai T, Yang F. Strategies for Characterization of Low-Abundant Intact or Truncated Low-Molecular-Weight Proteins From Human Plasma. Enzymes 2017; 42:105-123. [PMID: 29054267 PMCID: PMC7102702 DOI: 10.1016/bs.enz.2017.08.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Low-molecular-weight region (LMW, MW≤30kDa) of human serum/plasma proteins, including small intact proteins, truncated fragments of larger proteins, along with some other small components, has been associated with the ongoing physiological and pathological events, and thereby represent a treasure trove of diagnostic molecules. Great progress in the mining of novel biomarkers from this diagnostic treasure trove for disease diagnosis and health monitoring has been achieved based on serum samples from healthy individuals and patients and powerful new approaches in biochemistry and systems biology. However, cumulative evidence indicates that many potential LMW protein biomarkers might still have escaped from detection due to their low abundance, the dynamic complexity of serum/plasma, and the limited efficiency of characterization approaches. Here, we provide an overview of the current state of knowledge with respect to strategies for the characterization of low-abundant LMW proteins (small intact or truncated proteins) from human serum/plasma, involving prefractionation or enrichment methods to reduce dynamic range and mass spectrometry-based characterization of low-abundant LMW proteins.
Collapse
Affiliation(s)
- Tanxi Cai
- Laboratory of Protein and Peptide Pharmaceuticals & Laboratory of Proteomics, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.
| | - Fuquan Yang
- Laboratory of Protein and Peptide Pharmaceuticals & Laboratory of Proteomics, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
60
|
Lu VM, McDonald KL, Townley HE. Realizing the therapeutic potential of rare earth elements in designing nanoparticles to target and treat glioblastoma. Nanomedicine (Lond) 2017; 12:2389-2401. [DOI: 10.2217/nnm-2017-0193] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
The prognosis of brain cancer glioblastoma (GBM) is poor, and despite intense research, there have been no significant improvements within the last decade. This stasis implicates the need for more novel therapeutic investigation. One such option is the use of nanoparticles (NPs), which can be beneficial due to their ability to penetrate the brain, overcome the blood–brain barrier and take advantage of the enhanced permeation and retention effect of GBM to improve specificity. Rare earth elements possess a number of interesting natural properties due to their unique electronic configuration, which may prove therapeutically advantageous in an NP formulation. The underexplored exciting potential for rare earth elements to augment the therapeutic potential of NPs in GBM treatment is discussed in this review.
Collapse
Affiliation(s)
- Victor M Lu
- Cure Brain Cancer Foundation Biomarkers & Translational Research Group, Prince of Wales Clinical School, Lowy Cancer Research Centre, University of New South Wales, Sydney, New South Wales, Australia
- Medical Sciences Division, University of Oxford, Oxford, UK
| | - Kerrie L McDonald
- Cure Brain Cancer Foundation Biomarkers & Translational Research Group, Prince of Wales Clinical School, Lowy Cancer Research Centre, University of New South Wales, Sydney, New South Wales, Australia
| | - Helen E Townley
- Nuffield Department of Obstetrics & Gynaecology, University of Oxford, John Radcliffe Hospital, Oxford, UK
- Department of Engineering Sciences, University of Oxford, Oxford, UK
| |
Collapse
|
61
|
Endlich K, Kliewe F, Endlich N. Stressed podocytes-mechanical forces, sensors, signaling and response. Pflugers Arch 2017; 469:937-949. [PMID: 28687864 DOI: 10.1007/s00424-017-2025-8] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Accepted: 06/22/2017] [Indexed: 02/07/2023]
Abstract
Increased glomerular capillary pressure (glomerular hypertension) and increased glomerular filtration rate (glomerular hyperfiltration) have been proven to cause glomerulosclerosis in animal models and are likely to be operative in patients. Since podocytes cover the glomerular basement membrane, they are exposed to tensile stress due to circumferential wall tension and to fluid shear stress arising from filtrate flow through the narrow filtration slits and through Bowman's space. In vitro evidence documents that podocytes respond to tensile stress as well as to fluid shear stress. Several proteins are discussed in this review that are expressed in podocytes and could act as mechanosensors converting mechanical force via a conformational change into a biochemical signal. The cation channels P2X4 and TRPC6 were shown to be involved in mechanosignaling in podocytes. P2X4 is activated by stretch-induced ATP release, while TRPC6 might be inherently mechanosensitive. Membrane, slit diaphragm and cell-matrix contact proteins are connected to the sublemmal actin network in podocytes via various linker proteins. Therefore, actin-associated proteins, like the proven mechanosensor filamin, are ideal candidates to sense forces in the podocyte cytoskeleton. Furthermore, podocytes express talin, p130Cas, and fibronectin that are known to undergo a conformational change in response to mechanical force exposing cryptic binding sites. Downstream of mechanosensors, experimental evidence suggests the involvement of MAP kinases, Ca2+ and COX2 in mechanosignaling and an emerging role of YAP/TAZ. In summary, our understanding of mechanotransduction in podocytes is still sketchy, but future progress holds promise to identify targets to alleviate conditions of increased mechanical load.
Collapse
Affiliation(s)
- Karlhans Endlich
- Department of Anatomy and Cell Biology, University Medicine Greifswald, 17489, Greifswald, Germany.
- Institut für Anatomie and Zellbiologie, Universitätsmedizin Greifswald, Friedrich-Loeffler-Str. 23c, 17489, Greifswald, Germany.
| | - Felix Kliewe
- Department of Anatomy and Cell Biology, University Medicine Greifswald, 17489, Greifswald, Germany
| | - Nicole Endlich
- Department of Anatomy and Cell Biology, University Medicine Greifswald, 17489, Greifswald, Germany
| |
Collapse
|
62
|
Kostka L, Etrych T. High-molecular-weight HPMA-based polymer drug carriers for delivery to tumor. Physiol Res 2017; 65:S179-S190. [PMID: 27762584 DOI: 10.33549/physiolres.933420] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
In this work, design and synthesis of high-molecular-weight N-(2-hydroxypropyl)methacrylamide-based polymer drug delivery systems tailored for cancer therapy is summarized. Moreover, the influence of their architecture on tumor accumulation and in vivo anti-cancer efficacy is discussed. Mainly, the high-molecular-weight delivery systems, such as branched, grafted, multi-block, star-like or micellar systems, with molecular weights greater than the renal threshold are discussed and reviewed in detail.
Collapse
Affiliation(s)
- L Kostka
- Department of Biomedicinal Polymers, Institute of Macromolecular Chemistry of the Czech Academy of Sciences, Prague, Czech Republic.
| | | |
Collapse
|
63
|
Mendez N, Liberman A, Corbeil J, Barback C, Viveros R, Wang J, Wang-Rodriguez J, Blair SL, Mattrey R, Vera D, Trogler W, Kummel AC. Assessment of in vivo systemic toxicity and biodistribution of iron-doped silica nanoshells. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2017; 13:933-942. [DOI: 10.1016/j.nano.2016.10.018] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Revised: 10/10/2016] [Accepted: 10/18/2016] [Indexed: 01/09/2023]
|
64
|
Parvani JG, Jackson MW. Silencing the roadblocks to effective triple-negative breast cancer treatments by siRNA nanoparticles. Endocr Relat Cancer 2017; 24:R81-R97. [PMID: 28148541 PMCID: PMC5471497 DOI: 10.1530/erc-16-0482] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Accepted: 02/01/2017] [Indexed: 12/12/2022]
Abstract
Over the past decade, RNA interference (RNAi) has been ubiquitously utilized to study biological function in vitro; however, limitations were associated with its utility in vivo More recently, small interfering RNA (siRNA) nanoparticles with improved biocompatibility have gained prevalence as a potential therapeutic option for the treatment of various diseases. The adaptability of siRNA nanoparticles enables the delivery of virtually any siRNA, which is especially advantageous for therapeutic applications in heterogeneous diseases that lack unifying molecular features, such as triple-negative breast cancer (TNBC). TNBC is an aggressive subtype of breast cancer that is stratified by the lack of estrogen receptor/progesterone receptor expression and HER2 amplification. There are currently no FDA-approved targeted therapies for the treatment of TNBCs, making cytotoxic chemotherapy the only treatment option available to these patients. In this review, we outline the current status of siRNA nanoparticles in clinical trials for cancer treatment and discuss the promising preclinical approaches that have utilized siRNA nanoparticles for TNBC treatment. Next, we address TNBC subtype-specific therapeutic interventions and highlight where and how siRNA nanoparticles fit into these strategies. Lastly, we point out ongoing challenges in the field of siRNA nanoparticle research that, if addressed, would significantly improve the efficacy of siRNA nanoparticles as a therapeutic option for cancer treatment.
Collapse
Affiliation(s)
- Jenny G Parvani
- Department of Biomedical EngineeringCase Western Reserve University, Cleveland, Ohio, USA
- Case Comprehensive Cancer CenterCase Western Reserve University, Cleveland, Ohio, USA
| | - Mark W Jackson
- Case Comprehensive Cancer CenterCase Western Reserve University, Cleveland, Ohio, USA
| |
Collapse
|
65
|
Gold nanoparticles, radiations and the immune system: Current insights into the physical mechanisms and the biological interactions of this new alliance towards cancer therapy. Pharmacol Ther 2017; 178:1-17. [PMID: 28322970 DOI: 10.1016/j.pharmthera.2017.03.006] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Considering both cancer's serious impact on public health and the side effects of cancer treatments, strategies towards targeted cancer therapy have lately gained considerable interest. Employment of gold nanoparticles (GNPs), in combination with ionizing and non-ionizing radiations, has been shown to improve the effect of radiation treatment significantly. GNPs, as high-Z particles, possess the ability to absorb ionizing radiation and enhance the deposited dose within the targeted tumors. Furthermore, they can convert non-ionizing radiation into heat, due to plasmon resonance, leading to hyperthermic damage to cancer cells. These observations, also supported by experimental evidence both in vitro and in vivo systems, reveal the capacity of GNPs to act as radiosensitizers for different types of radiation. In addition, they can be chemically modified to selectively target tumors, which renders them suitable for future cancer treatment therapies. Herein, a current review of the latest data on the physical properties of GNPs and their effects on GNP circulation time, biodistribution and clearance, as well as their interactions with plasma proteins and the immune system, is presented. Emphasis is also given with an in depth discussion on the underlying physical and biological mechanisms of radiosensitization. Furthermore, simulation data are provided on the use of GNPs in photothermal therapy upon non-ionizing laser irradiation treatment. Finally, the results obtained from the application of GNPs at clinical trials and pre-clinical experiments in vivo are reported.
Collapse
|
66
|
Jiang W, von Roemeling CA, Chen Y, Qie Y, Liu X, Chen J, Kim BYS. Designing nanomedicine for immuno-oncology. Nat Biomed Eng 2017. [DOI: 10.1038/s41551-017-0029] [Citation(s) in RCA: 149] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
67
|
Shang J, Zhang Y, Jiang Y, Li Z, Duan Y, Wang L, Xiao J, Zhao Z. NOD2 promotes endothelial-to-mesenchymal transition of glomerular endothelial cells via MEK/ERK signaling pathway in diabetic nephropathy. Biochem Biophys Res Commun 2017; 484:435-441. [PMID: 28137583 DOI: 10.1016/j.bbrc.2017.01.155] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2017] [Accepted: 01/26/2017] [Indexed: 12/22/2022]
Abstract
Endothelial-to-mesenchymal transition (EndMT) of glomerular vascular endothelial cells (GEnCs) is now considered to play a critical role in diabetic nephropathy (DN). NOD2 is newly discovered to be closely related to DN renal injury. However, the relationship between NOD2 and EndMT of GEnCs has never been reported. In the present study, we found that NOD2 over-expression was positively correlated with the severity of DN injury in human renal biopsy samples. Immunohistochemical staining of DN renal slices showed gradual absence of endothelial character and gain of mesenchymal character, both of which were associated with NOD2 over-expression. In high glucose stimulated GEnCs, NOD2 was increased. What's more, over-expression and activation of NOD2 could both promote EndMT of GEnCs. On the other hand, silencing of NOD2 markedly attenuated EndMT induced by high glucose. Mechanically, we further found that MEK/ERK signaling pathway was involved in NOD2-regulated EndMT. Collectively, our results indicate that NOD2 has a regulatory role in EndMT via activation of MEK/ERK in high glucose-treated GEnCs. Targeting this pathway is a promising strategy for intervention of DN endothelial dysfunction.
Collapse
Affiliation(s)
- Jin Shang
- Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Ya Zhang
- Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yumin Jiang
- Department of Emergency, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Zhenzhen Li
- Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yiqi Duan
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Luyao Wang
- Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Jing Xiao
- Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Zhanzheng Zhao
- Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.
| |
Collapse
|
68
|
Abstract
Treatment and management of kidney disease currently presents an enormous global burden, and the application of nanotechnology principles to renal disease therapy, although still at an early stage, has profound transformative potential. The increasing translation of nanomedicines to the clinic, alongside research efforts in tissue regeneration and organ-on-a-chip investigations, are likely to provide novel solutions to treat kidney diseases. Our understanding of renal anatomy and of how the biological and physico-chemical properties of nanomedicines (the combination of a nanocarrier and a drug) influence their interactions with renal tissues has improved dramatically. Tailoring of nanomedicines in terms of kidney retention and binding to key membranes and cell populations associated with renal diseases is now possible and greatly enhances their localization, tolerability, and efficacy. This Review outlines nanomedicine characteristics central to improved targeting of renal cells and highlights the prospects, challenges, and opportunities of nanotechnology-mediated therapies for renal diseases.
Collapse
|
69
|
Iavicoli I, Fontana L, Nordberg G. The effects of nanoparticles on the renal system. Crit Rev Toxicol 2016; 46:490-560. [DOI: 10.1080/10408444.2016.1181047] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Ivo Iavicoli
- Section of Occupational Medicine, Department of Public Health, University of Naples Federico II, Naples, Italy
| | - Luca Fontana
- Department of Occupational and Environmental Medicine, Epidemiology and Hygiene INAIL-Italian Workers’ Compensation Authority, Monte Porzio Catone (Rome), Italy
| | - Gunnar Nordberg
- Occupational and Environmental Medicine, Department of Public Health and Clinical Medicine, Umea University, Umea, Sweden
| |
Collapse
|
70
|
Kasztan M, Piwkowska A, Kreft E, Rogacka D, Audzeyenka I, Szczepanska-Konkel M, Jankowski M. Extracellular purines' action on glomerular albumin permeability in isolated rat glomeruli: insights into the pathogenesis of albuminuria. Am J Physiol Renal Physiol 2016; 311:F103-11. [PMID: 27076649 DOI: 10.1152/ajprenal.00567.2015] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Accepted: 04/12/2016] [Indexed: 12/20/2022] Open
Abstract
Purinoceptors (adrengeric receptors and P2 receptors) are expressed on the cellular components of the glomerular filtration barrier, and their activation may affect glomerular permeability to albumin, which may ultimately lead to albuminuria, a well-established risk factor for the progression of chronic kidney disease and development of cardiovascular diseases. We investigated the mechanisms underlying the in vitro and in vivo purinergic actions on glomerular filter permeability to albumin by measuring convectional albumin permeability (Palb) in a single isolated rat glomerulus based on the video microscopy method. Primary cultured rat podocytes were used for the analysis of Palb, cGMP accumulation, PKG-Iα dimerization, and immunofluorescence. In vitro, natural nucleotides (ATP, ADP, UTP, and UDP) and nonmetabolized ATP analogs (2-meSATP and ATP-γ-S) increased Palb in a time- and concentration-dependent manner. The effects were dependent on P2 receptor activation, nitric oxide synthase, and cytoplasmic guanylate cyclase. ATP analogs significantly increased Palb, cGMP accumulation, and subcortical actin reorganization in a PKG-dependent but nondimer-mediated route in cultured podocytes. In vivo, 2-meSATP and ATP-γ-S increased Palb but did not significantly affect urinary albumin excretion. Both agonists enhanced the clathrin-mediated endocytosis of albumin in podocytes. A product of adenine nucleotides hydrolysis, adenosine, increased the permeability of the glomerular barrier via adrenergic receptors in a dependent and independent manner. Our results suggest that the extracellular nucleotides that stimulate an increase of glomerular Palb involve nitric oxide synthase and cytoplasmic guanylate cyclase with actin reorganization in podocytes.
Collapse
Affiliation(s)
- Małgorzata Kasztan
- Department of Therapy Monitoring and Pharmacogenetics, Medical University of Gdansk, Gdansk, Poland
| | - Agnieszka Piwkowska
- Laboratory of Molecular and Cellular Nephrology, Mossakowski Medical Research Centre Polish Academy of Sciences, Gdansk, Poland
| | - Ewelina Kreft
- Department of Therapy Monitoring and Pharmacogenetics, Medical University of Gdansk, Gdansk, Poland
| | - Dorota Rogacka
- Laboratory of Molecular and Cellular Nephrology, Mossakowski Medical Research Centre Polish Academy of Sciences, Gdansk, Poland
| | - Irena Audzeyenka
- Laboratory of Molecular and Cellular Nephrology, Mossakowski Medical Research Centre Polish Academy of Sciences, Gdansk, Poland
| | | | - Maciej Jankowski
- Department of Clinical Chemistry, Medical University of Gdansk, Gdansk, Poland; and Laboratory of Molecular and Cellular Nephrology, Mossakowski Medical Research Centre Polish Academy of Sciences, Gdansk, Poland
| |
Collapse
|
71
|
Zarschler K, Rocks L, Licciardello N, Boselli L, Polo E, Garcia KP, De Cola L, Stephan H, Dawson KA. Ultrasmall inorganic nanoparticles: State-of-the-art and perspectives for biomedical applications. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2016; 12:1663-701. [PMID: 27013135 DOI: 10.1016/j.nano.2016.02.019] [Citation(s) in RCA: 182] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Revised: 02/08/2016] [Accepted: 02/15/2016] [Indexed: 12/31/2022]
Abstract
Ultrasmall nanoparticulate materials with core sizes in the 1-3nm range bridge the gap between single molecules and classical, larger-sized nanomaterials, not only in terms of spatial dimension, but also as regards physicochemical and pharmacokinetic properties. Due to these unique properties, ultrasmall nanoparticles appear to be promising materials for nanomedicinal applications. This review overviews the different synthetic methods of inorganic ultrasmall nanoparticles as well as their properties, characterization, surface modification and toxicity. We moreover summarize the current state of knowledge regarding pharmacokinetics, biodistribution and targeting of nanoscale materials. Aside from addressing the issue of biomolecular corona formation and elaborating on the interactions of ultrasmall nanoparticles with individual cells, we discuss the potential diagnostic, therapeutic and theranostic applications of ultrasmall nanoparticles in the emerging field of nanomedicine in the final part of this review.
Collapse
Affiliation(s)
- Kristof Zarschler
- Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden - Rossendorf, Bautzner Landstraße 400, Dresden, Germany.
| | - Louise Rocks
- Centre For BioNano Interactions (CBNI), School of Chemistry and Chemical Biology, University College Dublin, Belfield, Dublin 4, Ireland
| | - Nadia Licciardello
- Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden - Rossendorf, Bautzner Landstraße 400, Dresden, Germany; Laboratoire de Chimie et des Biomatériaux Supramoléculaires, Institut de Science et d'Ingénierie Supramoléculaires (ISIS), 8 allée Gaspard Monge, Strasbourg, France; Institut für Nanotechnologie (INT), Karlsruher Institut für Technologie (KIT) Campus North, Hermann-von-Helmholtz-Platz 1, Eggenstein-Leopoldshafen, Germany
| | - Luca Boselli
- Centre For BioNano Interactions (CBNI), School of Chemistry and Chemical Biology, University College Dublin, Belfield, Dublin 4, Ireland
| | - Ester Polo
- Centre For BioNano Interactions (CBNI), School of Chemistry and Chemical Biology, University College Dublin, Belfield, Dublin 4, Ireland
| | - Karina Pombo Garcia
- Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden - Rossendorf, Bautzner Landstraße 400, Dresden, Germany
| | - Luisa De Cola
- Laboratoire de Chimie et des Biomatériaux Supramoléculaires, Institut de Science et d'Ingénierie Supramoléculaires (ISIS), 8 allée Gaspard Monge, Strasbourg, France; Institut für Nanotechnologie (INT), Karlsruher Institut für Technologie (KIT) Campus North, Hermann-von-Helmholtz-Platz 1, Eggenstein-Leopoldshafen, Germany
| | - Holger Stephan
- Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden - Rossendorf, Bautzner Landstraße 400, Dresden, Germany
| | - Kenneth A Dawson
- Centre For BioNano Interactions (CBNI), School of Chemistry and Chemical Biology, University College Dublin, Belfield, Dublin 4, Ireland
| |
Collapse
|
72
|
Grubb A, Lindström V, Jonsson M, Bäck SE, Åhlund T, Rippe B, Christensson A. Reduction in glomerular pore size is not restricted to pregnant women. Evidence for a new syndrome: 'Shrunken pore syndrome'. Scandinavian Journal of Clinical and Laboratory Investigation 2016; 75:333-40. [PMID: 25919022 PMCID: PMC4487590 DOI: 10.3109/00365513.2015.1025427] [Citation(s) in RCA: 91] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The plasma levels of cystatin C, β2-microglobulin, beta-trace protein, retinol binding protein (RBP) and creatinine were determined in plasma samples from 111 randomly selected patients with eGFRcystatin C ≤ 60% of eGFRcreatinine and from 55 control patients with 0.9eGFRcreatinine ≤ eGFRcystatin C ≤ 1.1eGFRcreatinine (eGFRcystatin C ≈ eGFRcreatinine). The concentration ratios of cystatin C/creatinine, β2-microglobulin/creatinine, beta-trace protein/creatinine and RBP/creatinine were significantly higher in patients with eGFRcystatin C ≤ 60% of eGFRcreatinine than in patients with eGFRcystatin C ≈ eGFRcreatinine. When the patients were divided into three groups with different estimated GFR intervals (≤ 40, 40–60 and ≥ 60 mL/min/1.73m2) the concentration ratios of cystatin C/creatinine, β2-microglobulin/creatinine, and beta-trace protein/creatinine were significantly higher in patients with eGFRcystatin C ≤ 60% of eGFRcreatinine than in patients with eGFRcystatin C ≈ eGFRcreatinine for all GFR intervals. Similar results were obtained when the population without pregnant women was studied as well as the subpopulations of men or of non-pregnant women. Populations of pre-eclamptic women and pregnant women in the third trimester display similar results. Since the production of these four proteins with sizes similar to that of cystatin C is not co-regulated, the most likely explanation for the simultaneous increase of their creatinine-ratios in patients with eGFRcystatin C ≤ 60% of eGFRcreatinine is that their elimination by glomerular filtration is decreased. We suggest that this is due to a reduction in pore diameter of the glomerular membrane and propose the designation ‘Shrunken pore syndrome’ for this pathophysiological state.
Collapse
Affiliation(s)
- Anders Grubb
- Department of Clinical Chemistry, Skåne University Hospital , Lund
| | | | | | | | | | | | | |
Collapse
|
73
|
Wangpradit O, Adamcakova-Dodd A, Heitz K, Robertson L, Thorne PS, Luthe G. PAMAM dendrimers as nano carriers to investigate inflammatory responses induced by pulmonary exposure of PCB metabolites in Sprague-Dawley rats. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2016; 23:2128-2137. [PMID: 26400242 PMCID: PMC4803647 DOI: 10.1007/s11356-015-5022-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2015] [Accepted: 07/02/2015] [Indexed: 05/29/2023]
Abstract
Polychlorinated biphenyls (PCBs) persist and accumulate in the ecosystem depending upon the degree of chlorination of the biphenyl rings. Airborne PCBs are especially susceptible to oxidative metabolism, yielding mono- and di-hydroxy metabolites. We have previously demonstrated that 4-chlorobiphenyl hydroquinones (4-CB-HQs) acted as cosubstrates for arachidonic acid metabolism by prostaglandin H synthase (PGHS) and resulted in an increase of prostaglandin production in vitro. In the present study, we tested the capability of 4-CB-HQ to act as a co-substrate for PGHS catalysis in vivo. BQ and 4-CB-2',5'-HQ were administered intratracheally to male Sprague-Dawley rats (2.5 μmol/kg body weight) using nanosized polyamidoamine (PAMAM) dendrimers as carriers. We found that 24 h post application, PGE2 metabolites in kidney of rats treated with 4-CB-2',5'-HQ were significantly increased compared to the controls. The increase of PGE2 metabolites was correlated with increased alveolar macrophages in lung lavage fluid. The elevation of PGE2 synthesis is of great interest since it plays a crucial role in balancing homeostasis and inflammation where a chronic disturbance may increase risk of cancer. PAMAM dentrimers proved to be an effective transport medium and did not stimulate an inflammatory response themselves.
Collapse
Affiliation(s)
- Orarat Wangpradit
- Interdisciplinary Graduate Program in Human Toxicology, The University of Iowa, 100 Oakdale Campus, Iowa City, IA, 52242, USA
- Department of Occupational and Environmental Health, The University of Iowa, UI Research Park, Iowa City, IA, 52242, USA
- Sirindhorn College of Public Health, Bansuan, Muang, Chonburi, 20000, Thailand
| | - Andrea Adamcakova-Dodd
- Department of Occupational and Environmental Health, The University of Iowa, UI Research Park, Iowa City, IA, 52242, USA
- Pulmonary Toxicology Facility, Environmental Health Science Research Center, The University of Iowa, UI Research Park, Iowa City, IA, 52242, USA
| | - Katharina Heitz
- Department of Occupational and Environmental Health, The University of Iowa, UI Research Park, Iowa City, IA, 52242, USA
| | - Larry Robertson
- Interdisciplinary Graduate Program in Human Toxicology, The University of Iowa, 100 Oakdale Campus, Iowa City, IA, 52242, USA
- Department of Occupational and Environmental Health, The University of Iowa, UI Research Park, Iowa City, IA, 52242, USA
| | - Peter S Thorne
- Interdisciplinary Graduate Program in Human Toxicology, The University of Iowa, 100 Oakdale Campus, Iowa City, IA, 52242, USA
- Department of Occupational and Environmental Health, The University of Iowa, UI Research Park, Iowa City, IA, 52242, USA
- Pulmonary Toxicology Facility, Environmental Health Science Research Center, The University of Iowa, UI Research Park, Iowa City, IA, 52242, USA
| | - Gregor Luthe
- Interdisciplinary Graduate Program in Human Toxicology, The University of Iowa, 100 Oakdale Campus, Iowa City, IA, 52242, USA.
- Department of Occupational and Environmental Health, The University of Iowa, UI Research Park, Iowa City, IA, 52242, USA.
- Saxion University of Applied Sciences, Institute for Life Science and Technology, Enschede, The Netherlands.
- Luthe-Pharma, Fabrikstrasse 3, 48599, Gronau, Germany.
| |
Collapse
|
74
|
Xu C, Wu X, Hack BK, Bao L, Cunningham PN. TNF causes changes in glomerular endothelial permeability and morphology through a Rho and myosin light chain kinase-dependent mechanism. Physiol Rep 2015; 3:3/12/e12636. [PMID: 26634902 PMCID: PMC4760430 DOI: 10.14814/phy2.12636] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
A key function of the endothelium is to serve as a regulated barrier between tissue compartments. We have previously shown that tumor necrosis factor (TNF) plays a crucial role in lipopolysaccharide (LPS)‐induced acute kidney injury, in part by causing injury to the renal endothelium through its receptor TNFR1. Here, we report that TNF increased permeability to albumin in primary culture mouse renal endothelial cells, as well as human glomerular endothelial cells. This process occurred in association with changes in the actin cytoskeleton and was associated with gaps between previously confluent cells in culture and decreases in the tight junction protein occludin. This process was dependent on myosin light chain activation, as seen by its prevention with Rho‐associated kinase and myosin light chain kinase (MLCK) inhibitors. Surprisingly, permeability was not blocked by inhibition of apoptosis with caspase inhibitors. Additionally, we found that the renal glycocalyx, which plays an important role in barrier function, was also degraded by TNF in a Rho and MLCK dependent fashion. TNF treatment caused a decrease in the size of endothelial fenestrae, dependent on Rho and MLCK, although the relevance of this to changes in permeability is uncertain. In summary, TNF‐induced barrier dysfunction in renal endothelial cells is crucially dependent upon the Rho/MLCK signaling pathway.
Collapse
Affiliation(s)
- Chang Xu
- Section of Nephrology, Department of Medicine, University of Chicago, Chicago, Illinois
| | - Xiaoyan Wu
- Department of Pediatrics, Baylor College of Medicine, Houston, Texas
| | - Bradley K Hack
- Section of Nephrology, Department of Medicine, University of Chicago, Chicago, Illinois
| | - Lihua Bao
- Section of Nephrology, Department of Medicine, University of Chicago, Chicago, Illinois
| | - Patrick N Cunningham
- Section of Nephrology, Department of Medicine, University of Chicago, Chicago, Illinois
| |
Collapse
|
75
|
Ma Y, Fujimoto M, Watari H, Kimura M, Shimada Y. The renoprotective effect of shichimotsukokato on hypertension-induced renal dysfunction in spontaneously hypertensive rats. J Nat Med 2015; 70:152-62. [DOI: 10.1007/s11418-015-0945-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Accepted: 10/04/2015] [Indexed: 10/22/2022]
|
76
|
Xinaris C, Benedetti V, Novelli R, Abbate M, Rizzo P, Conti S, Tomasoni S, Corna D, Pozzobon M, Cavallotti D, Yokoo T, Morigi M, Benigni A, Remuzzi G. Functional Human Podocytes Generated in Organoids from Amniotic Fluid Stem Cells. J Am Soc Nephrol 2015; 27:1400-11. [PMID: 26516208 DOI: 10.1681/asn.2015030316] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2015] [Accepted: 08/03/2015] [Indexed: 12/11/2022] Open
Abstract
Generating kidney organoids using human stem cells could offer promising prospects for research and therapeutic purposes. However, no cell-based strategy has generated nephrons displaying an intact three-dimensional epithelial filtering barrier. Here, we generated organoids using murine embryonic kidney cells, and documented that these tissues recapitulated the complex three-dimensional filtering structure of glomerular slits in vivo and accomplished selective glomerular filtration and tubular reabsorption. Exploiting this technology, we mixed human amniotic fluid stem cells with mouse embryonic kidney cells to establish three-dimensional chimeric organoids that engrafted in vivo and grew to form vascularized glomeruli and tubular structures. Human cells contributed to the formation of glomerular structures, differentiated into podocytes with slit diaphragms, and internalized exogenously infused BSA, thus attaining in vivo degrees of specialization and function unprecedented for donor stem cells. In conclusion, human amniotic fluid stem cell chimeric organoids may offer new paths for studying renal development and human podocyte disease, and for facilitating drug discovery and translational research.
Collapse
Affiliation(s)
- Christodoulos Xinaris
- IRCCS-Istituto di Ricerche Farmacologiche 'Mario Negri', Centro Anna Maria Astori, Science and Technology Park Kilometro Rosso, Bergamo, Italy;
| | - Valentina Benedetti
- IRCCS-Istituto di Ricerche Farmacologiche 'Mario Negri', Centro Anna Maria Astori, Science and Technology Park Kilometro Rosso, Bergamo, Italy
| | - Rubina Novelli
- IRCCS-Istituto di Ricerche Farmacologiche 'Mario Negri', Centro Anna Maria Astori, Science and Technology Park Kilometro Rosso, Bergamo, Italy
| | - Mauro Abbate
- IRCCS-Istituto di Ricerche Farmacologiche 'Mario Negri', Centro Anna Maria Astori, Science and Technology Park Kilometro Rosso, Bergamo, Italy
| | - Paola Rizzo
- IRCCS-Istituto di Ricerche Farmacologiche 'Mario Negri', Centro Anna Maria Astori, Science and Technology Park Kilometro Rosso, Bergamo, Italy
| | - Sara Conti
- IRCCS-Istituto di Ricerche Farmacologiche 'Mario Negri', Centro Anna Maria Astori, Science and Technology Park Kilometro Rosso, Bergamo, Italy
| | - Susanna Tomasoni
- IRCCS-Istituto di Ricerche Farmacologiche 'Mario Negri', Centro Anna Maria Astori, Science and Technology Park Kilometro Rosso, Bergamo, Italy
| | - Daniela Corna
- IRCCS-Istituto di Ricerche Farmacologiche 'Mario Negri', Centro Anna Maria Astori, Science and Technology Park Kilometro Rosso, Bergamo, Italy
| | - Michela Pozzobon
- Stem Cells and Regenerative Medicine Laboratory, Foundation Institute of Pediatric Research Fondazione Città della Speranza, Padua, Italy
| | - Daniela Cavallotti
- IRCCS-Istituto di Ricerche Farmacologiche 'Mario Negri', Centro Anna Maria Astori, Science and Technology Park Kilometro Rosso, Bergamo, Italy
| | - Takashi Yokoo
- The Jikei University School of Medicine, Tokyo, Japan
| | - Marina Morigi
- IRCCS-Istituto di Ricerche Farmacologiche 'Mario Negri', Centro Anna Maria Astori, Science and Technology Park Kilometro Rosso, Bergamo, Italy
| | - Ariela Benigni
- IRCCS-Istituto di Ricerche Farmacologiche 'Mario Negri', Centro Anna Maria Astori, Science and Technology Park Kilometro Rosso, Bergamo, Italy
| | - Giuseppe Remuzzi
- IRCCS-Istituto di Ricerche Farmacologiche 'Mario Negri', Centro Anna Maria Astori, Science and Technology Park Kilometro Rosso, Bergamo, Italy; Unit of Nephrology and Dialysis, Azienda Ospedaliera Papa Giovanni XXIII, Bergamo, Italy; and Department of Biomedical and Clinical Sciences, University of Milan, Milan, Italy
| |
Collapse
|
77
|
Kelly P, McClean PL, Ackermann M, Konerding MA, Hölscher C, Mitchell CA. Restoration of cerebral and systemic microvascular architecture in APP/PS1 transgenic mice following treatment with Liraglutide™. Microcirculation 2015; 22:133-45. [PMID: 25556713 DOI: 10.1111/micc.12186] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2014] [Accepted: 12/23/2014] [Indexed: 12/18/2022]
Abstract
OBJECTIVE Cerebral microvascular impairments occurring in AD may reduce Aβ peptide clearance and impact upon circulatory ultrastructure and function. We hypothesized that microvascular pathologies occur in organs responsible for systemic Aβ peptide clearance in a model of AD and that Liraglutide (Victoza(®)) improves vessel architecture. METHODS Seven-month-old APP/PS1 and age-matched wild-type mice received once-daily intraperitoneal injections of either Liraglutide or saline (n = 4 per group) for eight weeks. Casts of cerebral, splenic, hepatic, and renal microanatomy were analyzed using SEM. RESULTS Casts from wild-type mice showed regularly spaced microvasculature with smooth lumenal profiles, whereas APP/PS1 mice revealed evidence of microangiopathies including cerebral microanuerysms, intracerebral microvascular leakage, extravasation from renal glomerular microvessels, and significant reductions in both splenic sinus density (p = 0.0286) and intussusceptive microvascular pillars (p = 0.0412). Quantification of hepatic vascular ultrastructure in APP/PS1 mice revealed that vessel parameters (width, length, branching points, intussusceptive pillars and microaneurysms) were not significantly different from wild-type mice. Systemic administration of Liraglutide reduced the incidence of cerebral microanuerysms and leakage, restored renal microvascular architecture and significantly increased both splenic venous sinus number (p = 0.0286) and intussusceptive pillar formation (p = 0.0129). CONCLUSION Liraglutide restores cerebral, splenic, and renal architecture in APP/PS1 mice.
Collapse
Affiliation(s)
- Patricia Kelly
- School of Biomedical Sciences, University of Ulster, Coleraine, UK
| | | | | | | | | | | |
Collapse
|
78
|
Vinluan RD, Zheng J. Serum protein adsorption and excretion pathways of metal nanoparticles. Nanomedicine (Lond) 2015; 10:2781-94. [PMID: 26377047 PMCID: PMC4714949 DOI: 10.2217/nnm.15.97] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
While the synthesis of metal nanoparticles (NPs) with fascinating optical and electronic properties have progressed dramatically and their potential biomedical applications were also well demonstrated in the past decade, translation of metal NPs into the clinical practice still remains a challenge due to their severe accumulation in the body. Herein, we give a brief review on size-dependent material properties of metal NPs and their potential biomedical applications, followed by a summary of how structural parameters such as size, shape and charge influence their interactions with serum protein adsorption, cellular uptake and excretion pathways. Finally, the future challenges in minimizing serum protein adsorption and expediting clinical translation of metal NPs were also discussed.
Collapse
Affiliation(s)
- Rodrigo D Vinluan
- Department of Chemistry, The University of Texas at Dallas, Richardson, TX 75080, USA
| | - Jie Zheng
- Department of Chemistry, The University of Texas at Dallas, Richardson, TX 75080, USA
| |
Collapse
|
79
|
Liu D, Auguste DT. Cancer targeted therapeutics: From molecules to drug delivery vehicles. J Control Release 2015; 219:632-643. [PMID: 26342659 DOI: 10.1016/j.jconrel.2015.08.041] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2015] [Revised: 08/19/2015] [Accepted: 08/20/2015] [Indexed: 02/07/2023]
Abstract
The pitfall of all chemotherapeutics lies in drug resistance and the severe side effects experienced by patients. One way to reduce the off-target effects of chemotherapy on healthy tissues is to alter the biodistribution of drug. This can be achieved in two ways: Passive targeting utilizes shape, size, and surface chemistry to increase particle circulation and tumor accumulation. Active targeting employs either chemical moieties (e.g. peptides, sugars, aptamers, antibodies) to selectively bind to cell membranes or responsive elements (e.g. ultrasound, magnetism, light) to deliver its cargo within a local region. This article will focus on the systemic administration of anti-cancer agents and their ability to home to tumors and, if relevant, distant metastatic sites.
Collapse
Affiliation(s)
- Daxing Liu
- Department of Biomedical Engineering, The City College of New York, New York, NY 10031, United States
| | - Debra T Auguste
- Department of Biomedical Engineering, The City College of New York, New York, NY 10031, United States.
| |
Collapse
|
80
|
Leung KM, Batey S, Rowlands R, Isaac SJ, Jones P, Drewett V, Carvalho J, Gaspar M, Weller S, Medcalf M, Wydro MM, Pegram R, Mudde GC, Bauer A, Moulder K, Woisetschläger M, Tuna M, Haurum JS, Sun H. A HER2-specific Modified Fc Fragment (Fcab) Induces Antitumor Effects Through Degradation of HER2 and Apoptosis. Mol Ther 2015; 23:1722-1733. [PMID: 26234505 PMCID: PMC4817942 DOI: 10.1038/mt.2015.127] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2015] [Accepted: 07/07/2015] [Indexed: 12/16/2022] Open
Abstract
FS102 is a HER2-specific Fcab (Fc fragment with antigen binding), which binds HER2 with high affinity and recognizes an epitope that does not overlap with those of trastuzumab or pertuzumab. In tumor cells that express high levels of HER2, FS102 caused profound HER2 internalization and degradation leading to tumor cell apoptosis. The antitumor effect of FS102 in patient-derived xenografts (PDXs) correlated strongly with the HER2 amplification status of the tumors. Superior activity of FS102 over trastuzumab or the combination of trastuzumab and pertuzumab was observed in vitro and in vivo when the gene copy number of HER2 was equal to or exceeded 10 per cell based on quantitative polymerase chain reaction (qPCR). Thus, FS102 induced complete and sustained tumor regression in a significant proportion of HER2-high PDX tumor models. We hypothesize that the unique structure and/or epitope of FS102 enables the Fcab to internalize and degrade cell surface HER2 more efficiently than standard of care antibodies. In turn, increased depletion of HER2 commits the cells to apoptosis as a result of oncogene shock. FS102 has the potential of a biomarker-driven therapeutic that derives superior antitumor effects from a unique mechanism-of-action in tumor cells which are oncogenically addicted to the HER2 pathway due to overexpression.
Collapse
Affiliation(s)
- Kin-Mei Leung
- F-star Biotechnology Ltd, Babraham Research Campus, Cambridge, UK
| | - Sarah Batey
- F-star Biotechnology Ltd, Babraham Research Campus, Cambridge, UK.
| | - Robert Rowlands
- F-star Biotechnology Ltd, Babraham Research Campus, Cambridge, UK
| | - Samine J Isaac
- F-star Biotechnology Ltd, Babraham Research Campus, Cambridge, UK
| | - Phil Jones
- F-star Biotechnology Ltd, Babraham Research Campus, Cambridge, UK
| | - Victoria Drewett
- F-star Biotechnology Ltd, Babraham Research Campus, Cambridge, UK
| | - Joana Carvalho
- F-star Biotechnology Ltd, Babraham Research Campus, Cambridge, UK
| | - Miguel Gaspar
- F-star Biotechnology Ltd, Babraham Research Campus, Cambridge, UK
| | - Sarah Weller
- F-star Biotechnology Ltd, Babraham Research Campus, Cambridge, UK
| | - Melanie Medcalf
- F-star Biotechnology Ltd, Babraham Research Campus, Cambridge, UK
| | - Mateusz M Wydro
- F-star Biotechnology Ltd, Babraham Research Campus, Cambridge, UK
| | - Robert Pegram
- F-star Biotechnology Ltd, Babraham Research Campus, Cambridge, UK
| | - Geert C Mudde
- F-star Biotechnology Ltd, Babraham Research Campus, Cambridge, UK
| | - Anton Bauer
- F-star Biotechnology Ltd, Babraham Research Campus, Cambridge, UK
| | - Kevin Moulder
- F-star Biotechnology Ltd, Babraham Research Campus, Cambridge, UK
| | | | - Mihriban Tuna
- F-star Biotechnology Ltd, Babraham Research Campus, Cambridge, UK
| | - John S Haurum
- F-star Biotechnology Ltd, Babraham Research Campus, Cambridge, UK
| | - Haijun Sun
- F-star Biotechnology Ltd, Babraham Research Campus, Cambridge, UK
| |
Collapse
|
81
|
Elagwany AS, Eldayem TMA, Karkour TAZ, ELdeghedy AAE, Morsy HR. The application of serum cystatin C in estimating the renal function in women with severe preeclamptic toxemia. PROGRESOS DE OBSTETRICIA Y GINECOLOGÍA 2015. [DOI: 10.1016/j.pog.2015.06.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
|
82
|
Chaturvedi K, Ganguly K, Kulkarni AR, Rudzinski WE, Krauss L, Nadagouda MN, Aminabhavi TM. Oral insulin delivery using deoxycholic acid conjugated PEGylated polyhydroxybutyrate co-polymeric nanoparticles. Nanomedicine (Lond) 2015; 10:1569-83. [DOI: 10.2217/nnm.15.36] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Aim: To develop insulin loaded deoxycholic acid conjugated PEGylated polyhydroxybutyrate co-polymeric nanoparticles and carry out in vitro and in vivo testing of enteric coated granules comprising these nanoparticles. Materials & methods: Insulin loaded nanoparticles were prepared and characterized in vitro. Cellular uptake was studied using hyperspectral and live cell confocal microscopy. Enteric coated granules of nanoparticles were fed orally to diabetic rats and the pharmacokinetic and pharmacodynamic parameters were evaluated. Results: Ultra small (˜10 nm) nanoparticles with polydispersity index of 0.299 were obtained. The enteric coated granules showed a negligible insulin release in acidic pH, but released insulin in alkaline environment. High cellular uptake was observed and nanoparticles were able to maintain the blood glucose levels up to 24 h. Conclusion: These enteric-coated nanoparticle granules sustained the release of insulin and showed enhanced insulin bioavailability. Hence, these may serve as a platform device for oral insulin delivery with extended release.
Collapse
Affiliation(s)
| | - Kuntal Ganguly
- Soniya College of Pharmacy, S.R. Nagar, Dharwad 580 002, India
| | | | - Walter E Rudzinski
- Department of Chemistry & Biochemistry, Texas State University, San Marcos, TX 78666, USA
| | - Leslie Krauss
- CytoViva, Inc., 300 North Dean Road, Suite 5 - PMB 157, Auburn, AL 36830, USA
| | | | | |
Collapse
|
83
|
Abstract
Mathematical modeling techniques have been useful in providing insights into biological systems, including the kidney. This article considers some of the mathematical models that concern urea transport in the kidney. Modeling simulations have been conducted to investigate, in the context of urea cycling and urine concentration, the effects of hypothetical active urea secretion into pars recta. Simulation results suggest that active urea secretion induces a "urea-selective" improvement in urine concentrating ability. Mathematical models have also been built to study the implications of the highly structured organization of tubules and vessels in the renal medulla on urea sequestration and cycling. The goal of this article is to show how physiological problems can be formulated and studied mathematically, and how such models may provide insights into renal functions.
Collapse
Affiliation(s)
- Anita T Layton
- Department of Mathematics, Duke University, Durham, NC, USA,
| |
Collapse
|
84
|
Chung JJ, Huber TB, Gödel M, Jarad G, Hartleben B, Kwoh C, Keil A, Karpitskiy A, Hu J, Huh CJ, Cella M, Gross RW, Miner JH, Shaw AS. Albumin-associated free fatty acids induce macropinocytosis in podocytes. J Clin Invest 2015; 125:2307-16. [PMID: 25915582 DOI: 10.1172/jci79641] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2014] [Accepted: 03/19/2015] [Indexed: 01/26/2023] Open
Abstract
Podocytes are specialized epithelial cells in the kidney glomerulus that play important structural and functional roles in maintaining the filtration barrier. Nephrotic syndrome results from a breakdown of the kidney filtration barrier and is associated with proteinuria, hyperlipidemia, and edema. Additionally, podocytes undergo changes in morphology and internalize plasma proteins in response to this disorder. Here, we used fluid-phase tracers in murine models and determined that podocytes actively internalize fluid from the plasma and that the rate of internalization is increased when the filtration barrier is disrupted. In cultured podocytes, the presence of free fatty acids (FFAs) associated with serum albumin stimulated macropinocytosis through a pathway that involves FFA receptors, the Gβ/Gγ complex, and RAC1. Moreover, mice with elevated levels of plasma FFAs as the result of a high-fat diet were more susceptible to Adriamycin-induced proteinuria than were animals on standard chow. Together, these results support a model in which podocytes sense the disruption of the filtration barrier via FFAs bound to albumin and respond by enhancing fluid-phase uptake. The response to FFAs may function in the development of nephrotic syndrome by amplifying the effects of proteinuria.
Collapse
|
85
|
A plug-and-play approach to antibody-based therapeutics via a chemoselective dual click strategy. Nat Commun 2015; 6:6645. [PMID: 25824906 PMCID: PMC4389247 DOI: 10.1038/ncomms7645] [Citation(s) in RCA: 193] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2014] [Accepted: 02/15/2015] [Indexed: 12/13/2022] Open
Abstract
Although recent methods for the engineering of antibody–drug conjugates (ADCs) have gone some way to addressing the challenging issues of ADC construction, significant hurdles still remain. There is clear demand for the construction of novel ADC platforms that offer greater stability, homogeneity and flexibility. Here we describe a significant step towards a platform for next-generation antibody-based therapeutics by providing constructs that combine site-specific modification, exceptional versatility and high stability, with retention of antibody binding and structure post-modification. The relevance of the work in a biological context is also demonstrated in a cytotoxicity assay and a cell internalization study with HER2-positive and -negative breast cancer cell lines. Antibody–drug conjugates are a class of therapeutic combining the directing ability of antibodies with the cell-killing ability of cytotoxic drugs. Here the authors describe an approach based on click chemistry that enables the rapid assembly of dual-modified antibodies with potential for new therapeutic modalities.
Collapse
|
86
|
In vivo biodistribution and clearance of peptide amphiphile micelles. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2015; 11:479-87. [DOI: 10.1016/j.nano.2014.08.006] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2014] [Revised: 08/13/2014] [Accepted: 08/22/2014] [Indexed: 12/22/2022]
|
87
|
Owens EA, Lee S, Choi J, Henary M, Choi HS. NIR fluorescent small molecules for intraoperative imaging. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2015; 7:828-38. [PMID: 25645081 DOI: 10.1002/wnan.1337] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2014] [Revised: 12/03/2014] [Accepted: 12/15/2014] [Indexed: 01/24/2023]
Abstract
Recent advances in bioimaging and nanomedicine have permitted the exploitation of molecular optical imaging in image-guided surgery; however, the parameters mediating optimum performance of contrast agents are not yet precisely determined. To develop ideal contrast agents for image-guided surgery, we need to consider the following criteria: (1) excitation and emission wavelengths in the near-infrared (NIR) window, (2) optimized optical characteristics for high in vivo performance, (3) overcoming or harnessing biodistribution and clearance, and (4) reducing nonspecific uptake. The design considerations should be focused on optimizing the optical and physicochemical property criteria. Biodistribution and clearance should first be considered because they mediate the fate of a contrast agent in the body such as how long after intravenous injection a contrast agent reaches the peak signal-to-background ratio (SBR) and how long the signal lasts (retention).
Collapse
Affiliation(s)
- Eric A Owens
- Department of Chemistry, Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA, USA
| | - Stephanie Lee
- Division of Hematology/Oncology, Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA
| | - JungMun Choi
- Division of Hematology/Oncology, Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA
| | - Maged Henary
- Department of Chemistry, Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA, USA
| | - Hak Soo Choi
- Division of Hematology/Oncology, Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA.,Department of Cogno-Mechatronics Engineering, Pusan National University, Busan, South Korea
| |
Collapse
|
88
|
Neal CR. Podocytes … What's Under Yours? (Podocytes and Foot Processes and How They Change in Nephropathy). Front Endocrinol (Lausanne) 2015; 6:9. [PMID: 25755650 PMCID: PMC4337384 DOI: 10.3389/fendo.2015.00009] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2014] [Accepted: 01/15/2015] [Indexed: 12/25/2022] Open
Abstract
Most of the described structures of podocytes in health and disease have been inferred from light and electron microscopic studies of rodent models. The variation in filtration barrier features is measured on micrographs, the aim being statistical significance. This is the technical campaign waged against kidney disease but this approach can be misleading. The signaling cascades and connectivity of the podocyte and foot processes (FPs) are inferred from in vitro studies that at best blurr the reality of the in vivo state. This review will outline actin signaling connectivity and the key differences in the structural and functional domains squeezed into the FPs and the relationship of these domains to other parts of the podocyte. It covers the changes in podocytes during nephropathy concentrating on FP and finally proposes an alternative interpretation of FP ultrastructure derived from articles published over the last 60 years.
Collapse
Affiliation(s)
- Chris R. Neal
- Bristol Renal, University of Bristol, Bristol, UK
- *Correspondence: Chris R. Neal, Bristol Renal, University of Bristol, Dorothy Hodgkin Building, Whitson Street, Bristol, BS1 3NY, UK e-mail:
| |
Collapse
|
89
|
Choi SJ, Choy JH. Biokinetics of zinc oxide nanoparticles: toxicokinetics, biological fates, and protein interaction. Int J Nanomedicine 2014; 9 Suppl 2:261-9. [PMID: 25565844 PMCID: PMC4279768 DOI: 10.2147/ijn.s57920] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Biokinetic studies of zinc oxide (ZnO) nanoparticles involve systematic and quantitative analyses of absorption, distribution, metabolism, and excretion in plasma and tissues of whole animals after exposure. A full understanding of the biokinetics provides basic information about nanoparticle entry into systemic circulation, target organs of accumulation and toxicity, and elimination time, which is important for predicting the long-term toxic potential of nanoparticles. Biokinetic behaviors can be dependent on physicochemical properties, dissolution property in biological fluids, and nanoparticle–protein interaction. Moreover, the determination of biological fates of ZnO nanoparticles in the systemic circulation and tissues is critical in interpreting biokinetic behaviors and predicting toxicity potential as well as mechanism. This review focuses on physicochemical factors affecting the biokinetics of ZnO nanoparticles, in concert with understanding bioavailable fates and their interaction with proteins.
Collapse
Affiliation(s)
- Soo-Jin Choi
- Department of Food Science and Technology, Seoul Women's University, Seoul, South Korea
| | - Jin-Ho Choy
- Center for Intelligent Nano Bio Materials (CINBM), Department of Bioinspired Science and Department of Chemistry and Nanoscience, Ewha Womans University, Seoul, South Korea
| |
Collapse
|
90
|
Lee JA, Kim MK, Paek HJ, Kim YR, Kim MK, Lee JK, Jeong J, Choi SJ. Tissue distribution and excretion kinetics of orally administered silica nanoparticles in rats. Int J Nanomedicine 2014; 9 Suppl 2:251-60. [PMID: 25565843 PMCID: PMC4279759 DOI: 10.2147/ijn.s57939] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Purpose The effects of particle size on the tissue distribution and excretion kinetics of silica nanoparticles and their biological fates were investigated following a single oral administration to male and female rats. Methods Silica nanoparticles of two different sizes (20 nm and 100 nm) were orally administered to male and female rats, respectively. Tissue distribution kinetics, excretion profiles, and fates in tissues were analyzed using elemental analysis and transmission electron microscopy. Results The differently sized silica nanoparticles mainly distributed to kidneys and liver for 3 days post-administration and, to some extent, to lungs and spleen for 2 days post-administration, regardless of particle size or sex. Transmission electron microscopy and energy dispersive spectroscopy studies in tissues demonstrated almost intact particles in liver, but partially decomposed particles with an irregular morphology were found in kidneys, especially in rats that had been administered 20 nm nanoparticles. Size-dependent excretion kinetics were apparent and the smaller 20 nm particles were found to be more rapidly eliminated than the larger 100 nm particles. Elimination profiles showed 7%–8% of silica nanoparticles were excreted via urine, but most nanoparticles were excreted via feces, regardless of particle size or sex. Conclusion The kidneys, liver, lungs, and spleen were found to be the target organs of orally-administered silica nanoparticles in rats, and this organ distribution was not affected by particle size or animal sex. In vivo, silica nanoparticles were found to retain their particulate form, although more decomposition was observed in kidneys, especially for 20 nm particles. Urinary and fecal excretion pathways were determined to play roles in the elimination of silica nanoparticles, but 20 nm particles were secreted more rapidly, presumably because they are more easily decomposed. These findings will be of interest to those seeking to predict potential toxicological effects of silica nanoparticles on target organs.
Collapse
Affiliation(s)
- Jeong-A Lee
- Department of Food Science and Technology, Seoul Women's University, Seoul, Republic of Korea
| | - Mi-Kyung Kim
- Department of Food Science and Technology, Seoul Women's University, Seoul, Republic of Korea
| | - Hee-Jeong Paek
- Department of Food Science and Technology, Seoul Women's University, Seoul, Republic of Korea
| | - Yu-Ri Kim
- Department of Biochemistry and Molecular Biology, Korea University Medical School and College, Seoul, Republic of Korea
| | - Meyoung-Kon Kim
- Department of Biochemistry and Molecular Biology, Korea University Medical School and College, Seoul, Republic of Korea
| | - Jong-Kwon Lee
- Toxicological Research Division, National Institute of Food and Drug Safety Evaluation, Chungchungbuk-do, Republic of Korea
| | - Jayoung Jeong
- Toxicological Research Division, National Institute of Food and Drug Safety Evaluation, Chungchungbuk-do, Republic of Korea
| | - Soo-Jin Choi
- Department of Food Science and Technology, Seoul Women's University, Seoul, Republic of Korea
| |
Collapse
|
91
|
Zhao Y, Sultan D, Detering L, Luehmann H, Liu Y. Facile synthesis, pharmacokinetic and systemic clearance evaluation, and positron emission tomography cancer imaging of ⁶⁴Cu-Au alloy nanoclusters. NANOSCALE 2014; 6:13501-9. [PMID: 25266128 DOI: 10.1039/c4nr04569f] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Gold nanoparticles have been widely used for oncological applications including diagnosis and therapy. However, the non-specific mononuclear phagocyte system accumulation and potential long-term toxicity have significantly limited clinical translation. One strategy to overcome these shortcomings is to reduce the size of gold nanoparticles to allow renal clearance. Herein, we report the preparation of (64)Cu alloyed gold nanoclusters ((64)CuAuNCs) for in vivo evaluation of pharmacokinetics, systemic clearance, and positron emission tomography (PET) imaging in a mouse prostate cancer model. The facile synthesis in acqueous solution allowed precisely controlled (64)Cu incorporation for high radiolabeling specific activity and stability for sensitive and accurate detection. Through surface pegylation with 350 Da polyethylene glycol (PEG), the (64)CuAuNCs-PEG350 afforded optimal biodistribution and significant renal and hepatobiliary excretion. PET imaging showed low non-specific tumor uptake, indicating its potential for active targeting of clinically relevant biomarkers in tumor and metastatic organs.
Collapse
Affiliation(s)
- Yongfeng Zhao
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, Missouri 63110, USA.
| | | | | | | | | |
Collapse
|
92
|
Effect of Supercoiling on the Mechanical and Permeability Properties of Model Collagen IV Networks. Ann Biomed Eng 2014; 43:1695-705. [PMID: 25408357 DOI: 10.1007/s10439-014-1187-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2014] [Accepted: 11/11/2014] [Indexed: 11/27/2022]
Abstract
Collagen IV networks in the glomerular basement membrane (GBM) are essential for the maintenance and regulation of blood filtration in the kidneys. The GBM contains two different types of collagen IV networks: [α1(IV)]2α2(IV) and α3(IV)α4(IV)α5(IV), the latter of which has a higher number of supercoils (two or more collagens coiling around each other). To investigate the effects of supercoiling on the mechanical and permeability properties of collagen IV networks, we generated model collagen IV networks in the GBM and reconnected them to create different levels of supercoiling. We found that supercoiling greatly increases the stiffness of collagen IV networks but only minimally decreases the permeability. Also, doubling the amount of supercoils in a network had a bigger effect than doubling the stiffness of the supercoils. Our results suggest that the formation of supercoils is a specialized mechanism by the GBM that provides with a network stiff and strong enough to withstand the high hydrostatic pressures of filtration, yet porous enough that filtration is not hindered. Clinically, understanding the effects of supercoiling gives us insight into the mechanisms of GBM failure in some disease states where the normal collagen IV structure is disrupted.
Collapse
|
93
|
Sun T, Zhang YS, Pang B, Hyun DC, Yang M, Xia Y. Engineered nanoparticles for drug delivery in cancer therapy. Angew Chem Int Ed Engl 2014; 53:12320-64. [PMID: 25294565 DOI: 10.1002/anie.201403036] [Citation(s) in RCA: 766] [Impact Index Per Article: 69.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2014] [Indexed: 12/18/2022]
Abstract
In medicine, nanotechnology has sparked a rapidly growing interest as it promises to solve a number of issues associated with conventional therapeutic agents, including their poor water solubility (at least, for most anticancer drugs), lack of targeting capability, nonspecific distribution, systemic toxicity, and low therapeutic index. Over the past several decades, remarkable progress has been made in the development and application of engineered nanoparticles to treat cancer more effectively. For example, therapeutic agents have been integrated with nanoparticles engineered with optimal sizes, shapes, and surface properties to increase their solubility, prolong their circulation half-life, improve their biodistribution, and reduce their immunogenicity. Nanoparticles and their payloads have also been favorably delivered into tumors by taking advantage of the pathophysiological conditions, such as the enhanced permeability and retention effect, and the spatial variations in the pH value. Additionally, targeting ligands (e.g., small organic molecules, peptides, antibodies, and nucleic acids) have been added to the surface of nanoparticles to specifically target cancerous cells through selective binding to the receptors overexpressed on their surface. Furthermore, it has been demonstrated that multiple types of therapeutic drugs and/or diagnostic agents (e.g., contrast agents) could be delivered through the same carrier to enable combination therapy with a potential to overcome multidrug resistance, and real-time readout on the treatment efficacy. It is anticipated that precisely engineered nanoparticles will emerge as the next-generation platform for cancer therapy and many other biomedical applications.
Collapse
Affiliation(s)
- Tianmeng Sun
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30332 (USA)
| | | | | | | | | | | |
Collapse
|
94
|
Sun T, Zhang YS, Pang B, Hyun DC, Yang M, Xia Y. Maßgeschneiderte Nanopartikel für den Wirkstofftransport in der Krebstherapie. Angew Chem Int Ed Engl 2014. [DOI: 10.1002/ange.201403036] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
95
|
Abstract
The field of polymeric biomaterials has received much attention in recent years due to its potential for enhancing the biocompatibility of systems and devices applied to drug delivery and tissue engineering. Such applications continually push the definition of biocompatibility from relatively straightforward issues such as cytotoxicity to significantly more complex processes such as reducing foreign body responses or even promoting/recapitulating natural body functions. Hydrogels and their colloidal analogues, microgels, have been and continue to be heavily investigated as viable materials for biological applications because they offer numerous, facile avenues in tailoring chemical and physical properties to approach biologically harmonious integration. Mechanical properties in particular are recently coming into focus as an important manner in which biological responses can be altered. In this Account, we trace how mechanical properties of microgels have moved into the spotlight of research efforts with the realization of their potential impact in biologically integrative systems. We discuss early experiments in our lab and in others focused on synthetic modulation of particle structure at a rudimentary level for fundamental drug delivery studies. These experiments elucidated that microgel mechanics are a consequence of polymer network distribution, which can be controlled by chemical composition or particle architecture. The degree of deformability designed into the microgel allows for a defined response to an imposed external force. We have studied deformation in packed colloidal phases and in translocation events through confined pores; in all circumstances, microgels exhibit impressive deformability in response to their environmental constraints. Microgels further translate their mechanical properties when assembled in films to the properties of the bulk material. In particular, microgel films have been a large focus in our lab as building blocks for self-healing materials. We have shown that their ability to heal after damage arises from polymer mobility during hydration. Furthermore, we have shown film mobility dictates cell adhesion and spreading in a manner that is fundamentally different from previous work on mechanotransduction. In total, we hope that this Account presents a broad introduction to microgel research that intersects polymer chemistry, physics, and regenerative medicine. We expect that research intersection will continue to expand as we fill the knowledge gaps associated with soft materials in biological milieu.
Collapse
Affiliation(s)
- Shalini Saxena
- School of Materials Science and Engineering, Petit
Institute for Bioengineering and Bioscience, and School of Chemistry and
Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Caroline E. Hansen
- School of Materials Science and Engineering, Petit
Institute for Bioengineering and Bioscience, and School of Chemistry and
Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - L. Andrew Lyon
- School of Materials Science and Engineering, Petit
Institute for Bioengineering and Bioscience, and School of Chemistry and
Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| |
Collapse
|
96
|
Zhen Z, Tang W, Todd T, Xie J. Ferritins as nanoplatforms for imaging and drug delivery. Expert Opin Drug Deliv 2014; 11:1913-22. [PMID: 25070839 DOI: 10.1517/17425247.2014.941354] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
INTRODUCTION Due to unique architecture and surface properties, ferritin has emerged as an important class of biomaterial. Many studies suggest that ferritin and its derivatives hold great potential in a wide range of bio-applications. AREAS COVERED In this review, we summarize recent progress on employing ferritins as a platform to construct functional nanoparticles for applications in MRI, optical imaging, cell tracking, and drug delivery. EXPERT OPINION As a natural polymer, ferritins afford advantages such as high biocompatibility, good biodegradability, and a relatively long plasma half-life. These attributes put ferritins ahead of conventional materials in clinical translation for imaging and drug delivery purposes.
Collapse
Affiliation(s)
- Zipeng Zhen
- University of Georgia, Department of Chemistry , Athens, GA 30602 , USA
| | | | | | | |
Collapse
|
97
|
Filler G, Kusserow C, Lopes L, Kobrzyński M. Beta-trace protein as a marker of GFR--history, indications, and future research. Clin Biochem 2014; 47:1188-94. [PMID: 24833359 DOI: 10.1016/j.clinbiochem.2014.04.027] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2014] [Revised: 04/29/2014] [Accepted: 04/30/2014] [Indexed: 12/30/2022]
Abstract
OBJECTIVES Recent findings suggest that beta-trace protein (BTP), a small molecular weight protein, is at least equal if not superior to serum creatinine as a marker of glomerular filtration rate (GFR), particularly since it is independent from height, gender, age, and muscle mass. The authors sought to summarize knowledge on BTP and its use as a marker of GFR using the most recent literature available. DESIGN AND METHODS The authors compiled key articles and all relevant recent literature on this topic. Physical and chemical features of the molecule are described, as well as factors that may affect its expression. The use of BTP in estimating GFR as a whole and in specific patient groups, including pregnant women, neonates and infants, children and adolescents, and patients who have undergone renal transplantation is discussed. The use of BTP as a marker for cardiovascular risk factors is also briefly addressed. RESULTS Although its performance in the general population is marginally inferior to cystatin C, studies have suggested that it may be superior in accurately estimating GFR in select patient groups such as pregnant women and neonates. CONCLUSIONS This novel marker shows promise, but further research is required to clarify findings from available data.
Collapse
Affiliation(s)
- Guido Filler
- Department of Paediatrics, Schulich School of Medicine & Dentistry, London, ON N6A 5W9, Canada; Department of Pathology and Laboratory Medicine, Schulich School of Medicine & Dentistry, University of Western Ontario, London, ON N5A 5A5, Canada; Department of Medicine, Schulich School of Medicine & Dentistry, University of Western Ontario, London, ON N5A 5A5, Canada.
| | - Carola Kusserow
- Department of Paediatrics, Schulich School of Medicine & Dentistry, London, ON N6A 5W9, Canada
| | - Laudelino Lopes
- Department of Obstetrics & Gynaecology, Schulich School of Medicine & Dentistry, London, ON N6A 5W9, Canada
| | - Marta Kobrzyński
- Department of Paediatrics, Schulich School of Medicine & Dentistry, London, ON N6A 5W9, Canada
| |
Collapse
|
98
|
Experimental tools to monitor the dynamics of endothelial barrier function: a survey of in vitro approaches. Cell Tissue Res 2014; 355:485-514. [DOI: 10.1007/s00441-014-1810-3] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2013] [Accepted: 01/13/2014] [Indexed: 02/05/2023]
|
99
|
Arkill KP, Qvortrup K, Starborg T, Mantell JM, Knupp C, Michel CC, Harper SJ, Salmon AHJ, Squire JM, Bates DO, Neal CR. Resolution of the three dimensional structure of components of the glomerular filtration barrier. BMC Nephrol 2014; 15:24. [PMID: 24484633 PMCID: PMC3922634 DOI: 10.1186/1471-2369-15-24] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2013] [Accepted: 01/21/2014] [Indexed: 11/13/2022] Open
Abstract
Background The human glomerulus is the primary filtration unit of the kidney, and contains the Glomerular Filtration Barrier (GFB). The GFB had been thought to comprise 3 layers – the endothelium, the basement membrane and the podocyte foot processes. However, recent studies have suggested that at least two additional layers contribute to the function of the GFB, the endothelial glycocalyx on the vascular side, and the sub-podocyte space on the urinary side. To investigate the structure of these additional layers is difficult as it requires three-dimensional reconstruction of delicate sub-microscopic (<1 μm) cellular and extracellular elements. Methods Here we have combined three different advanced electron microscopic techniques that cover multiple orders of magnitude of volume sampled, with a novel staining methodology (Lanthanum Dysprosium Glycosaminoglycan adhesion, or LaDy GAGa), to determine the structural basis of these two additional layers. Serial Block Face Scanning Electron Microscopy (SBF-SEM) was used to generate a 3-D image stack with a volume of a 5.3 x 105 μm3 volume of a whole kidney glomerulus (13% of glomerular volume). Secondly, Focused Ion Beam milling Scanning Electron Microscopy (FIB-SEM) was used to image a filtration region (48 μm3 volume). Lastly Transmission Electron Tomography (Tom-TEM) was performed on a 0.3 μm3 volume to identify the fine structure of the glycocalyx. Results Tom-TEM clearly showed 20 nm fibre spacing in the glycocalyx, within a limited field of view. FIB-SEM demonstrated, in a far greater field of view, how the glycocalyx structure related to fenestrations and the filtration slits, though without the resolution of TomTEM. SBF-SEM was able to determine the extent of the sub-podocyte space and glycocalyx coverage, without additional heavy metal staining. Neither SBF- nor FIB-SEM suffered the anisotropic shrinkage under the electron beam that is seen with Tom-TEM. Conclusions These images demonstrate that the three dimensional structure of the GFB can be imaged, and investigated from the whole glomerulus to the fine structure of the glycocalyx using three dimensional electron microscopy techniques. This should allow the identification of structural features regulating physiology, and their disruption in pathological states, aiding the understanding of kidney disease.
Collapse
Affiliation(s)
- Kenton P Arkill
- Nanoscale Physics Research Laboratories, School of Physics and Astronomy, University of Birmingham, Birmingham, UK.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
100
|
Croft NP, Purcell AW. Peptidomimetics: modifying peptides in the pursuit of better vaccines. Expert Rev Vaccines 2014; 10:211-26. [DOI: 10.1586/erv.10.161] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|