51
|
Chen Z, Zhong M, Luo Y, Deng L, Hu Z, Song Y. Determination of rheology and surface tension of airway surface liquid: a review of clinical relevance and measurement techniques. Respir Res 2019; 20:274. [PMID: 31801520 PMCID: PMC6894196 DOI: 10.1186/s12931-019-1229-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Accepted: 11/01/2019] [Indexed: 12/11/2022] Open
Abstract
By airway surface liquid, we mean a thin fluid continuum consisting of the airway lining layer and the alveolar lining layer, which not only serves as a protective barrier against foreign particles but also contributes to maintaining normal respiratory mechanics. In recent years, measurements of the rheological properties of airway surface liquid have attracted considerable clinical attention due to new advances in microrheology instruments and methods. This article reviews the clinical relevance of measurements of airway surface liquid viscoelasticity and surface tension from four main aspects: maintaining the stability of the airways and alveoli, preventing ventilator-induced lung injury, optimizing surfactant replacement therapy for respiratory syndrome distress, and characterizing the barrier properties of airway mucus to improve drug and gene delivery. Primary measuring techniques and methods suitable for determining the viscoelasticity and surface tension of airway surface liquid are then introduced with respect to principles, advantages and limitations. Cone and plate viscometers and particle tracking microrheometers are the most commonly used instruments for measuring the bulk viscosity and microviscosity of airway surface liquid, respectively, and pendant drop methods are particularly suitable for the measurement of airway surface liquid surface tension in vitro. Currently, in vivo and in situ measurements of the viscoelasticity and surface tension of the airway surface liquid in humans still presents many challenges.
Collapse
Affiliation(s)
- Zhenglong Chen
- School of Medical Instrumentation, Shanghai University of Medicine & Health Sciences, 257 Tianxiong Road, Shanghai, 201318 China
| | - Ming Zhong
- Department of Intensive Care Medicine, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032 China
| | - Yuzhou Luo
- School of Medical Instrumentation, Shanghai University of Medicine & Health Sciences, 257 Tianxiong Road, Shanghai, 201318 China
| | - Linhong Deng
- Institute of Biomedical Engineering and Health Sciences, Changzhou University, Changzhou, 213164 Jiangsu China
| | - Zhaoyan Hu
- School of Medical Instrumentation, Shanghai University of Medicine & Health Sciences, 257 Tianxiong Road, Shanghai, 201318 China
| | - Yuanlin Song
- Department of Pulmonary Medicine, Zhongshan Hospital Fudan University, 180 Fenglin Road, Xuhui District, Shanghai, 200032 China
| |
Collapse
|
52
|
Viola H, Chang J, Grunwell JR, Hecker L, Tirouvanziam R, Grotberg JB, Takayama S. Microphysiological systems modeling acute respiratory distress syndrome that capture mechanical force-induced injury-inflammation-repair. APL Bioeng 2019; 3:041503. [PMID: 31768486 PMCID: PMC6874511 DOI: 10.1063/1.5111549] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Accepted: 11/08/2019] [Indexed: 12/14/2022] Open
Abstract
Complex in vitro models of the tissue microenvironment, termed microphysiological systems, have enormous potential to transform the process of discovering drugs and disease mechanisms. Such a paradigm shift is urgently needed in acute respiratory distress syndrome (ARDS), an acute lung condition with no successful therapies and a 40% mortality rate. Here, we consider how microphysiological systems could improve understanding of biological mechanisms driving ARDS and ultimately improve the success of therapies in clinical trials. We first discuss how microphysiological systems could explain the biological mechanisms underlying the segregation of ARDS patients into two clinically distinct phenotypes. Then, we contend that ARDS-mimetic microphysiological systems should recapitulate three critical aspects of the distal airway microenvironment, namely, mechanical force, inflammation, and fibrosis, and we review models that incorporate each of these aspects. Finally, we recognize the substantial challenges associated with combining inflammation, fibrosis, and/or mechanical force in microphysiological systems. Nevertheless, complex in vitro models are a novel paradigm for studying ARDS, and they could ultimately improve patient care.
Collapse
Affiliation(s)
| | - Jonathan Chang
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory School of Medicine, Atlanta, Georgia 30332, USA
| | - Jocelyn R. Grunwell
- Department of Pediatrics, Division of Critical Care Medicine, Children's Healthcare of Atlanta at Egleston, Emory University School of Medicine, Atlanta, Georgia 30322, USA
| | - Louise Hecker
- Division of Pulmonary, Allergy and Critical Care and Sleep Medicine, University of Arizona, Tucson, Arizona 85724, USA and Southern Arizona Veterans Affairs Health Care System, Tucson, Arizona 85723, USA
| | - Rabindra Tirouvanziam
- Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia 30322, USA and Center for CF and Airways Disease Research, Children's Healthcare of Atlanta, Atlanta, Georgia 30322, USA
| | - James B. Grotberg
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan 48109, USA
| | | |
Collapse
|
53
|
Methods of Delivering Mechanical Stimuli to Organ-on-a-Chip. MICROMACHINES 2019; 10:mi10100700. [PMID: 31615136 PMCID: PMC6843435 DOI: 10.3390/mi10100700] [Citation(s) in RCA: 83] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/07/2019] [Revised: 10/06/2019] [Accepted: 10/10/2019] [Indexed: 12/19/2022]
Abstract
Recent advances in integrating microengineering and tissue engineering have enabled the creation of promising microengineered physiological models, known as organ-on-a-chip (OOC), for experimental medicine and pharmaceutical research. OOCs have been used to recapitulate the physiologically critical features of specific human tissues and organs and their interactions. Application of chemical and mechanical stimuli is critical for tissue development and behavior, and they were also applied to OOC systems. Mechanical stimuli applied to tissues and organs are quite complex in vivo, which have not adequately recapitulated in OOCs. Due to the recent advancement of microengineering, more complicated and physiologically relevant mechanical stimuli are being introduced to OOC systems, and this is the right time to assess the published literature on this topic, especially focusing on the technical details of device design and equipment used. We first discuss the different types of mechanical stimuli applied to OOC systems: shear flow, compression, and stretch/strain. This is followed by the examples of mechanical stimuli-incorporated OOC systems. Finally, we discuss the potential OOC systems where various types of mechanical stimuli can be applied to a single OOC device, as a better, physiologically relevant recapitulation model, towards studying and evaluating experimental medicine, human disease modeling, drug development, and toxicology.
Collapse
|
54
|
Does Regional Lung Strain Correlate With Regional Inflammation in Acute Respiratory Distress Syndrome During Nonprotective Ventilation? An Experimental Porcine Study. Crit Care Med 2019. [PMID: 29528946 DOI: 10.1097/ccm.0000000000003072] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
OBJECTIVE It is known that ventilator-induced lung injury causes increased pulmonary inflammation. It has been suggested that one of the underlying mechanisms may be strain. The aim of this study was to investigate whether lung regional strain correlates with regional inflammation in a porcine model of acute respiratory distress syndrome. DESIGN Retrospective analysis of CT images and positron emission tomography images using [F]fluoro-2-deoxy-D-glucose. SETTING University animal research laboratory. SUBJECTS Seven piglets subjected to experimental acute respiratory distress syndrome and five ventilated controls. INTERVENTIONS Acute respiratory distress syndrome was induced by repeated lung lavages, followed by 210 minutes of injurious mechanical ventilation using low positive end-expiratory pressures (mean, 4 cm H2O) and high inspiratory pressures (mean plateau pressure, 45 cm H2O). All animals were subsequently studied with CT scans acquired at end-expiration and end-inspiration, to obtain maps of volumetric strain (inspiratory volume - expiratory volume)/expiratory volume, and dynamic positron emission tomography imaging. Strain maps and positron emission tomography images were divided into 10 isogravitational horizontal regions-of-interest, from which spatial correlation was calculated for each animal. MEASUREMENTS AND MAIN RESULTS The acute respiratory distress syndrome model resulted in a decrease in respiratory system compliance (20.3 ± 3.4 to 14.0 ± 4.9 mL/cm H2O; p < 0.05) and oxygenation (PaO2/FIO2, 489 ± 80 to 92 ± 59; p < 0.05), whereas the control animals did not exhibit changes. In the acute respiratory distress syndrome group, strain maps showed a heterogeneous distribution with a greater concentration in the intermediate gravitational regions, which was similar to the distribution of [F]fluoro-2-deoxy-D-glucose uptake observed in the positron emission tomography images, resulting in a positive spatial correlation between both variables (median R = 0.71 [0.02-0.84]; p < 0.05 in five of seven animals), which was not observed in the control animals. CONCLUSION In this porcine acute respiratory distress syndrome model, regional lung strain was spatially correlated with regional inflammation, supporting that strain is a relevant and prominent determinant of ventilator-induced lung injury.
Collapse
|
55
|
Romanò F, Fujioka H, Muradoglu M, Grotberg JB. Liquid plug formation in an airway closure model. PHYSICAL REVIEW FLUIDS 2019; 4:093103. [PMID: 33907725 PMCID: PMC8074672 DOI: 10.1103/physrevfluids.4.093103] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
The closure of a human lung airway is modeled as an instability of a two-phase flow in a pipe coated internally with a Newtonian liquid. For a thick enough coating, the Plateau-Rayleigh instability creates a liquid plug which blocks the airway, halting distal gas exchange. Owing to a bi-frontal plug growth, this airway closure flow induces high stress levels on the wall, which is the location of airway epithelial cells. A parametric numerical study is carried out simulating relevant conditions for human lungs, either in ordinary or pathological situations. Our simulations can represent the physical process from pre- to post-coalescence phases. Previous studies have been limited to pre-coalescence only. The topological change during coalescence induces a high level of stress and stress gradients on the epithelial cells, which are large enough to damage them, causing sub-lethal or lethal responses. We find that post-coalescence wall stresses can be in the range of 300% to 600% greater than pre-coalescence values, so introduce a new important source of mechanical perturbation to the cells.
Collapse
Affiliation(s)
| | - H. Fujioka
- Center Comput. Sci., Tulane University, 6823 St. Charles Avenue, New Orleans, Louisiana 70118, USA
| | - M. Muradoglu
- Dept. Mech. Eng., Koc University, Rumeli Feneri Yolu, 80910 Sariyer, Istanbul, Turkey
| | - J. B. Grotberg
- Dept. Biomed. Eng., University of Michigan, 2123 Carl A. Gerstacker Building, 2200 Bonisteel Boulevard, Ann Arbor, MI 48109-2099, USA
| |
Collapse
|
56
|
Rühl N, Lopez-Rodriguez E, Albert K, Smith BJ, Weaver TE, Ochs M, Knudsen L. Surfactant Protein B Deficiency Induced High Surface Tension: Relationship between Alveolar Micromechanics, Alveolar Fluid Properties and Alveolar Epithelial Cell Injury. Int J Mol Sci 2019; 20:ijms20174243. [PMID: 31480246 PMCID: PMC6747270 DOI: 10.3390/ijms20174243] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 08/24/2019] [Accepted: 08/26/2019] [Indexed: 11/16/2022] Open
Abstract
High surface tension at the alveolar air-liquid interface is a typical feature of acute and chronic lung injury. However, the manner in which high surface tension contributes to lung injury is not well understood. This study investigated the relationship between abnormal alveolar micromechanics, alveolar epithelial injury, intra-alveolar fluid properties and remodeling in the conditional surfactant protein B (SP-B) knockout mouse model. Measurements of pulmonary mechanics, broncho-alveolar lavage fluid (BAL), and design-based stereology were performed as a function of time of SP-B deficiency. After one day of SP-B deficiency the volume of alveolar fluid V(alvfluid,par) as well as BAL protein and albumin levels were normal while the surface area of injured alveolar epithelium S(AEinjure,sep) was significantly increased. Alveoli and alveolar surface area could be recruited by increasing the air inflation pressure. Quasi-static pressure-volume loops were characterized by an increased hysteresis while the inspiratory capacity was reduced. After 3 days, an increase in V(alvfluid,par) as well as BAL protein and albumin levels were linked with a failure of both alveolar recruitment and airway pressure-dependent redistribution of alveolar fluid. Over time, V(alvfluid,par) increased exponentially with S(AEinjure,sep). In conclusion, high surface tension induces alveolar epithelial injury prior to edema formation. After passing a threshold, epithelial injury results in vascular leakage and exponential accumulation of alveolar fluid critically hampering alveolar recruitability.
Collapse
Affiliation(s)
- Nina Rühl
- Institute of Functional and Applied Anatomy, Hannover Medical School, Hannover 30625, Germany
| | - Elena Lopez-Rodriguez
- Institute of Functional and Applied Anatomy, Hannover Medical School, Hannover 30625, Germany
- Biomedical Research in Endstage and Obstructive Lung Diseases (BREATH), Member of the German Center for Lung Research (DLZ), Hannover 30625, Germany
- REBIRTH, Cluster of Excellence, Hannover 30625, Germany
- Institute of Vegetative Anatomy, Charite, Berlin 10117, Germany
| | - Karolin Albert
- Institute of Functional and Applied Anatomy, Hannover Medical School, Hannover 30625, Germany
| | - Bradford J Smith
- Department of Bioengineering, University of Colorado Denver, Denver, CO 80045, USA
| | - Timothy E Weaver
- Division of Pulmonary Biology, University of Cincinnati College of Medicine, Cincinnati, OH 45221, USA
| | - Matthias Ochs
- Institute of Functional and Applied Anatomy, Hannover Medical School, Hannover 30625, Germany
- Biomedical Research in Endstage and Obstructive Lung Diseases (BREATH), Member of the German Center for Lung Research (DLZ), Hannover 30625, Germany
- REBIRTH, Cluster of Excellence, Hannover 30625, Germany
- Institute of Vegetative Anatomy, Charite, Berlin 10117, Germany
| | - Lars Knudsen
- Institute of Functional and Applied Anatomy, Hannover Medical School, Hannover 30625, Germany.
- Biomedical Research in Endstage and Obstructive Lung Diseases (BREATH), Member of the German Center for Lung Research (DLZ), Hannover 30625, Germany.
- REBIRTH, Cluster of Excellence, Hannover 30625, Germany.
| |
Collapse
|
57
|
Muradoglu M, Romanò F, Fujioka H, Grotberg JB. Effects of surfactant on propagation and rupture of a liquid plug in a tube. JOURNAL OF FLUID MECHANICS 2019; 872:407-437. [PMID: 31844335 PMCID: PMC6913541 DOI: 10.1017/jfm.2019.333] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Surfactant-laden liquid plug propagation and rupture occurring in lower lung airways are studied computationally using a front-tracking method. The plug is driven by an applied constant pressure in a rigid axisymmetric tube whose inner surface is coated by a thin liquid film. The evolution equations of the interfacial and bulk surfactant concentrations coupled with the incompressible Navier-Stokes equations are solved in the front-tracking framework. The numerical method is first validated for a surfactant-free case and the results are found to be in good agreement with the earlier simulations of Fujioka et al. (2008) and Hassan et al. (2011). Then extensive simulations are performed to investigate the effects of surfactant on the mechanical stresses that could be injurious to epithelial cells such as pressure and shear stress. It is found that the liquid plug ruptures violently to induce large pressure and shear stress on airway walls and even a tiny amount of surfactant significantly reduces the pressure and shear stress and thus improves cell survivability. However, addition of surfactant also delays the plug rupture and thus airway reopening.
Collapse
Affiliation(s)
- M. Muradoglu
- Department of Mechanical Engineering, Koc University, Rumelifeneri Yolu, Sariyer, 34450, Istanbul, Turkey
| | - F. Romanò
- Department of Biomedical Engineering, University of Michigan, 2123 Carl A. Gerstacker Building, 2200 Bonisteel Boulevard, Ann Arbor, Michigan 48109-2099, USA
| | - H. Fujioka
- Center for Computational Science, Tulane University, 6823 St. Charles Avenue, New Orleans,Louisiana 70118, USA
| | - J. B. Grotberg
- Department of Biomedical Engineering, University of Michigan, 2123 Carl A. Gerstacker Building, 2200 Bonisteel Boulevard, Ann Arbor, Michigan 48109-2099, USA
| |
Collapse
|
58
|
Bitker L, Costes N, Le Bars D, Lavenne F, Orkisz M, Hernandez Hoyos M, Benzerdjeb N, Devouassoux M, Richard JC. Noninvasive quantification of macrophagic lung recruitment during experimental ventilation-induced lung injury. J Appl Physiol (1985) 2019; 127:546-558. [PMID: 31169472 DOI: 10.1152/japplphysiol.00825.2018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Macrophagic lung infiltration is pivotal in the development of lung biotrauma because of ventilation-induced lung injury (VILI). We assessed the performance of [11C](R)-PK11195, a positron emission tomography (PET) radiotracer binding the translocator protein, to quantify macrophage lung recruitment during experimental VILI. Pigs (n = 6) were mechanically ventilated under general anesthesia, using protective ventilation settings (baseline). Experimental VILI was performed by titrating tidal volume to reach a transpulmonary end-inspiratory pressure (∆PL) of 35-40 cmH2O. We acquired PET/computed tomography (CT) lung images at baseline and after 4 h of VILI. Lung macrophages were quantified in vivo by the standardized uptake value (SUV) of [11C](R)-PK11195 measured in PET on the whole lung and in six lung regions and ex vivo on lung pathology at the end of experiment. Lung mechanics were extracted from CT images to assess their association with the PET signal. ∆PL increased from 9 ± 1 cmH2O under protective ventilation, to 36 ± 6 cmH2O during experimental VILI. Compared with baseline, whole-lung [11C](R)-PK11195 SUV significantly increased from 1.8 ± 0.5 to 2.9 ± 0.5 after experimental VILI. Regional [11C](R)-PK11195 SUV was positively associated with the magnitude of macrophage recruitment in pathology (P = 0.03). Compared with baseline, whole-lung CT-derived dynamic strain and tidal hyperinflation increased significantly after experimental VILI, from 0.6 ± 0 to 2.0 ± 0.4, and 1 ± 1 to 43 ± 19%, respectively. On multivariate analysis, both were significantly associated with regional [11C](R)-PK11195 SUV. [11C](R)-PK11195 lung uptake (a proxy of lung inflammation) was increased by experimental VILI and was associated with the magnitude of dynamic strain and tidal hyperinflation.NEW & NOTEWORTHY We assessed the performance of [11C](R)-PK11195, a translocator protein-specific positron emission tomography (PET) radiotracer, to quantify macrophage lung recruitment during experimental ventilation-induced lung injury (VILI). In this proof-of-concept study, we showed that the in vivo quantification of [11C](R)-PK11195 lung uptake in PET reflected the magnitude of macrophage lung recruitment after VILI. Furthermore, increased [11C](R)-PK11195 lung uptake was associated with harmful levels of dynamic strain and tidal hyperinflation applied to the lungs.
Collapse
Affiliation(s)
- Laurent Bitker
- Service de Médecine Intensive et Réanimation, Hôpital de la Croix Rousse, Hospices Civils de Lyon, Lyon, France.,Univ Lyon, INSA-Lyon, Université Claude Bernard Lyon 1, UJM-Saint Etienne, Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, CREATIS Unité Mixte de Recherche 5220, U1206, Villeurbanne, France.,Université Lyon 1 Claude Bernard, Université de Lyon, Lyon, France
| | | | - Didier Le Bars
- Université Lyon 1 Claude Bernard, Université de Lyon, Lyon, France.,CERMEP - Imagerie du Vivant, Bron, France
| | | | - Maciej Orkisz
- Univ Lyon, INSA-Lyon, Université Claude Bernard Lyon 1, UJM-Saint Etienne, Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, CREATIS Unité Mixte de Recherche 5220, U1206, Villeurbanne, France.,Université Lyon 1 Claude Bernard, Université de Lyon, Lyon, France
| | - Marcela Hernandez Hoyos
- Systems and Computing Engineering Department, School of Engineering, Universidad de los Andes, Bogota, Colombia
| | - Nazim Benzerdjeb
- Université Lyon 1 Claude Bernard, Université de Lyon, Lyon, France.,Centre d'Anatomie et Cytologie Pathologique, Centre Hospitalier Lyon Sud, Hospices Civils de Lyon, Lyon, France
| | - Mojgan Devouassoux
- Université Lyon 1 Claude Bernard, Université de Lyon, Lyon, France.,Centre d'Anatomie et Cytologie Pathologique, Centre Hospitalier Lyon Sud, Hospices Civils de Lyon, Lyon, France
| | - Jean-Christophe Richard
- Service de Médecine Intensive et Réanimation, Hôpital de la Croix Rousse, Hospices Civils de Lyon, Lyon, France.,Univ Lyon, INSA-Lyon, Université Claude Bernard Lyon 1, UJM-Saint Etienne, Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, CREATIS Unité Mixte de Recherche 5220, U1206, Villeurbanne, France.,Université Lyon 1 Claude Bernard, Université de Lyon, Lyon, France
| |
Collapse
|
59
|
Mellenthin MM, Seong SA, Roy GS, Bartolák-Suki E, Hamlington KL, Bates JHT, Smith BJ. Using injury cost functions from a predictive single-compartment model to assess the severity of mechanical ventilator-induced lung injuries. J Appl Physiol (1985) 2019; 127:58-70. [PMID: 31046518 DOI: 10.1152/japplphysiol.00770.2018] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Identifying safe ventilation patterns for patients with acute respiratory distress syndrome remains challenging because of the delicate balance between gas exchange and selection of ventilator settings to prevent further ventilator-induced lung injury (VILI). Accordingly, this work seeks to link ventilator settings to graded levels of VILI to identify injury cost functions that predict injury by using a computational model to process pressures and flows measured at the airway opening. Pressure-volume loops were acquired over the course of ~2 h of mechanical ventilation in four different groups of BALB/c mice. A cohort of these animals were subjected to an injurious bronchoalveolar lavage before ventilation. The data were analyzed with a single-compartment model that predicts recruitment/derecruitment and tissue distension at each time step in measured pressure-volume loops. We compared several injury cost functions to markers of VILI-induced blood-gas barrier disruption. Of the cost functions considered, we conclude that mechanical power dissipation and strain heterogeneity are the best at distinguishing between graded levels of injury and are good candidates for forecasting the development of VILI. NEW & NOTEWORTHY This work uses a predictive single-compartment model and injury cost functions to assess graded levels of mechanical ventilator-induced lung injury. The most promising measures include strain heterogeneity and mechanical power dissipation.
Collapse
Affiliation(s)
| | - Siyeon A Seong
- College of Medicine, University of Vermont , Burlington, Vermont
| | - Gregory S Roy
- College of Medicine, University of Vermont , Burlington, Vermont
| | | | - Katharine L Hamlington
- College of Medicine, University of Vermont , Burlington, Vermont.,University of Colorado at Children's Hospital Colorado , Aurora, Colorado
| | - Jason H T Bates
- College of Medicine, University of Vermont , Burlington, Vermont
| | - Bradford J Smith
- Department of Bioengineering, University of Colorado Denver , Aurora, Colorado.,College of Medicine, University of Vermont , Burlington, Vermont
| |
Collapse
|
60
|
Campbell HK, Salvi AM, O'Brien T, Superfine R, DeMali KA. PAK2 links cell survival to mechanotransduction and metabolism. J Cell Biol 2019; 218:1958-1971. [PMID: 30940647 PMCID: PMC6548143 DOI: 10.1083/jcb.201807152] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Revised: 01/29/2019] [Accepted: 03/20/2019] [Indexed: 12/20/2022] Open
Abstract
Campbell et al. show that force stimulates PAK2 activation at cell–cell junctions, where it protects cells under force from death and plays a key role in linking force-induced mechanotransduction, metabolism, and cell survival. Too little or too much force can trigger cell death, yet factors that ensure the survival of cells remain largely unknown. Here, we demonstrate that E-cadherin responds to force by recruiting and activating p21-activated protein kinase 2 (PAK2) to allow cells to stiffen, metabolize, and survive. Interestingly, PAK2 activation and its control of the apoptotic response are specific for the amplitude of force applied. Specifically, under low amplitudes of physiological force, PAK2 is protected from proteolysis, thereby ensuring cell survival. In contrast, under higher amplitudes of physiological force, PAK2 is left unprotected and stimulates apoptosis, an effect that is prevented by cleavage-resistant forms of the protein. Finally, we demonstrate that PAK2 protection is conferred by direct binding of AMPK. Thus, PAK2 mediates the survival of cells under force. These findings reveal an unexpected paradigm for how mechanotransduction, metabolism, and cell survival are linked.
Collapse
Affiliation(s)
- Hannah K Campbell
- Department of Biochemistry, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA
| | - Alicia M Salvi
- Department of Biochemistry, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA
| | - Timothy O'Brien
- Department of Physics, University of North Carolina, Chapel Hill, NC
| | - Richard Superfine
- Department of Physics, University of North Carolina, Chapel Hill, NC
| | - Kris A DeMali
- Department of Biochemistry, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA
| |
Collapse
|
61
|
Beitler JR, Sarge T, Banner-Goodspeed VM, Gong MN, Cook D, Novack V, Loring SH, Talmor D. Effect of Titrating Positive End-Expiratory Pressure (PEEP) With an Esophageal Pressure-Guided Strategy vs an Empirical High PEEP-Fio2 Strategy on Death and Days Free From Mechanical Ventilation Among Patients With Acute Respiratory Distress Syndrome: A Randomized Clinical Trial. JAMA 2019; 321:846-857. [PMID: 30776290 PMCID: PMC6439595 DOI: 10.1001/jama.2019.0555] [Citation(s) in RCA: 249] [Impact Index Per Article: 49.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
IMPORTANCE Adjusting positive end-expiratory pressure (PEEP) to offset pleural pressure might attenuate lung injury and improve patient outcomes in acute respiratory distress syndrome (ARDS). OBJECTIVE To determine whether PEEP titration guided by esophageal pressure (PES), an estimate of pleural pressure, was more effective than empirical high PEEP-fraction of inspired oxygen (Fio2) in moderate to severe ARDS. DESIGN, SETTING, AND PARTICIPANTS Phase 2 randomized clinical trial conducted at 14 hospitals in North America. Two hundred mechanically ventilated patients aged 16 years and older with moderate to severe ARDS (Pao2:Fio2 ≤200 mm Hg) were enrolled between October 31, 2012, and September 14, 2017; long-term follow-up was completed July 30, 2018. INTERVENTIONS Participants were randomized to PES-guided PEEP (n = 102) or empirical high PEEP-Fio2 (n = 98). All participants received low tidal volumes. MAIN OUTCOMES AND MEASURES The primary outcome was a ranked composite score incorporating death and days free from mechanical ventilation among survivors through day 28. Prespecified secondary outcomes included 28-day mortality, days free from mechanical ventilation among survivors, and need for rescue therapy. RESULTS Two hundred patients were enrolled (mean [SD] age, 56 [16] years; 46% female) and completed 28-day follow-up. The primary composite end point was not significantly different between treatment groups (probability of more favorable outcome with PES-guided PEEP: 49.6% [95% CI, 41.7% to 57.5%]; P = .92). At 28 days, 33 of 102 patients (32.4%) assigned to PES-guided PEEP and 30 of 98 patients (30.6%) assigned to empirical PEEP-Fio2 died (risk difference, 1.7% [95% CI, -11.1% to 14.6%]; P = .88). Days free from mechanical ventilation among survivors was not significantly different (median [interquartile range]: 22 [15-24] vs 21 [16.5-24] days; median difference, 0 [95% CI, -1 to 2] days; P = .85). Patients assigned to PES-guided PEEP were significantly less likely to receive rescue therapy (4/102 [3.9%] vs 12/98 [12.2%]; risk difference, -8.3% [95% CI, -15.8% to -0.8%]; P = .04). None of the 7 other prespecified secondary clinical end points were significantly different. Adverse events included gross barotrauma, which occurred in 6 patients with PES-guided PEEP and 5 patients with empirical PEEP-Fio2. CONCLUSIONS AND RELEVANCE Among patients with moderate to severe ARDS, PES-guided PEEP, compared with empirical high PEEP-Fio2, resulted in no significant difference in death and days free from mechanical ventilation. These findings do not support PES-guided PEEP titration in ARDS. TRIAL REGISTRATION ClinicalTrials.gov Identifier NCT01681225.
Collapse
Affiliation(s)
- Jeremy R. Beitler
- Center for Acute Respiratory Failure and Division of Pulmonary, Allergy, and Critical Care Medicine, Columbia University College of Physicians & Surgeons, New York, New York
| | - Todd Sarge
- Department of Anesthesia, Critical Care, and Pain Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts
| | - Valerie M. Banner-Goodspeed
- Department of Anesthesia, Critical Care, and Pain Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts
| | - Michelle N. Gong
- Division of Critical Care Medicine, Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, New York
| | - Deborah Cook
- Department of Medicine, St Joseph’s Hospital and McMaster University, Hamilton, Ontario, Canada
| | - Victor Novack
- Soroka Clinical Research Center, Soroka University Medical Center, Beer-Sheva, Israel
| | - Stephen H. Loring
- Department of Anesthesia, Critical Care, and Pain Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts
| | - Daniel Talmor
- Department of Anesthesia, Critical Care, and Pain Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
62
|
Wang L, Li Z, Xu C, Qin J. Bioinspired Engineering of Organ-on-Chip Devices. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1174:401-440. [PMID: 31713207 DOI: 10.1007/978-981-13-9791-2_13] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The human body can be viewed as an organism consisting of a variety of cellular and non-cellular materials interacting in a highly ordered manner. Its complex and hierarchical nature inspires the multi-level recapitulation of the human body in order to gain insights into the inner workings of life. While traditional cell culture models have led to new insights into the cellular microenvironment and biological control in vivo, deeper understanding of biological systems and human pathophysiology requires the development of novel model systems that allow for analysis of complex internal and external interactions within the cellular microenvironment in a more relevant organ context. Engineering organ-on-chip systems offers an unprecedented opportunity to unravel the complex and hierarchical nature of human organs. In this chapter, we first highlight the advances in microfluidic platforms that enable engineering of the cellular microenvironment and the transition from cells-on-chips to organs-on-chips. Then, we introduce the key features of the emerging organs-on-chips and their proof-of-concept applications in biomedical research. We also discuss the challenges and future outlooks of this state-of-the-art technology.
Collapse
Affiliation(s)
- Li Wang
- Division of Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, P. R. China
| | - Zhongyu Li
- Division of Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, P. R. China
| | - Cong Xu
- Division of Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, P. R. China
| | - Jianhua Qin
- Division of Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, P. R. China. .,CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China. .,Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China. .,University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
63
|
Knudsen L, Lopez-Rodriguez E, Berndt L, Steffen L, Ruppert C, Bates JHT, Ochs M, Smith BJ. Alveolar Micromechanics in Bleomycin-induced Lung Injury. Am J Respir Cell Mol Biol 2018; 59:757-769. [PMID: 30095988 PMCID: PMC6293074 DOI: 10.1165/rcmb.2018-0044oc] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Accepted: 06/29/2018] [Indexed: 12/22/2022] Open
Abstract
Lung injury results in intratidal alveolar recruitment and derecruitment and alveolar collapse, creating stress concentrators that increase strain and aggravate injury. In this work, we sought to describe alveolar micromechanics during mechanical ventilation in bleomycin-induced lung injury and surfactant replacement therapy. Structure and function were assessed in rats 1 day and 3 days after intratracheal bleomycin instillation and after surfactant replacement therapy. Pulmonary system mechanics were measured during ventilation with positive end-expiratory pressures (PEEPs) between 1 and 10 cm H2O, followed by perfusion fixation at end-expiratory pressure at airway opening (Pao) values of 1, 5, 10, and 20 cm H2O for quantitative analyses of lung structure. Lung structure and function were used to parameterize a physiologically based, multicompartment computational model of alveolar micromechanics. In healthy controls, the numbers of open alveoli remained stable in a range of Pao = 1-20 cm H2O, whereas bleomycin-challenged lungs demonstrated progressive alveolar derecruitment with Pao < 10 cm H2O. At Day 3, ∼40% of the alveoli remained closed at high Pao, and alveolar size heterogeneity increased. Simulations of injured lungs predicted that alveolar recruitment pressures were much greater than the derecruitment pressures, so that minimal intratidal recruitment and derecruitment occurred during mechanical ventilation with a tidal volume of 10 ml/kg body weight over a range of PEEPs. However, the simulations also predicted a dramatic increase in alveolar strain with injury that we attribute to alveolar interdependence. These findings suggest that in progressive lung injury, alveolar collapse with increased distension of patent (open) alveoli dominates alveolar micromechanics. PEEP and surfactant substitution reduce alveolar collapse and dynamic strain but increase static strain.
Collapse
Affiliation(s)
- Lars Knudsen
- Institute of Functional and Applied Anatomy, and
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover, Member of the German Center for Lung Research (DZL) Hannover Medical School, Hannover, Germany
- REBIRTH, Cluster of Excellence, Hannover, Germany
| | - Elena Lopez-Rodriguez
- Institute of Functional and Applied Anatomy, and
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover, Member of the German Center for Lung Research (DZL) Hannover Medical School, Hannover, Germany
- REBIRTH, Cluster of Excellence, Hannover, Germany
| | | | | | - Clemens Ruppert
- Department of Internal Medicine, and
- Universities of Giessen and Marburg Lung Center, Member of the German Center for Lung Research (DZL), Justus Liebig University Giessen, Giessen, Germany
| | | | - Matthias Ochs
- Institute of Functional and Applied Anatomy, and
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover, Member of the German Center for Lung Research (DZL) Hannover Medical School, Hannover, Germany
- REBIRTH, Cluster of Excellence, Hannover, Germany
| | - Bradford J. Smith
- Department of Bioengineering, University of Colorado Denver, Denver, Colorado
| |
Collapse
|
64
|
Knudsen L, Ochs M. The micromechanics of lung alveoli: structure and function of surfactant and tissue components. Histochem Cell Biol 2018; 150:661-676. [PMID: 30390118 PMCID: PMC6267411 DOI: 10.1007/s00418-018-1747-9] [Citation(s) in RCA: 206] [Impact Index Per Article: 34.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/19/2018] [Indexed: 12/14/2022]
Abstract
The mammalian lung´s structural design is optimized to serve its main function: gas exchange. It takes place in the alveolar region (parenchyma) where air and blood are brought in close proximity over a large surface. Air reaches the alveolar lumen via a conducting airway tree. Blood flows in a capillary network embedded in inter-alveolar septa. The barrier between air and blood consists of a continuous alveolar epithelium (a mosaic of type I and type II alveolar epithelial cells), a continuous capillary endothelium and the connective tissue layer in-between. By virtue of its respiratory movements, the lung has to withstand mechanical challenges throughout life. Alveoli must be protected from over-distension as well as from collapse by inherent stabilizing factors. The mechanical stability of the parenchyma is ensured by two components: a connective tissue fiber network and the surfactant system. The connective tissue fibers form a continuous tensegrity (tension + integrity) backbone consisting of axial, peripheral and septal fibers. Surfactant (surface active agent) is the secretory product of type II alveolar epithelial cells and covers the alveolar epithelium as a biophysically active thin and continuous film. Here, we briefly review the structural components relevant for gas exchange. Then we describe our current understanding of how these components function under normal conditions and how lung injury results in dysfunction of alveolar micromechanics finally leading to lung fibrosis.
Collapse
Affiliation(s)
- Lars Knudsen
- Institute of Functional and Applied Anatomy, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany.,Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research (DZL), Hannover, Germany.,REBIRTH Cluster of Excellence, Hannover, Germany
| | - Matthias Ochs
- Institute of Functional and Applied Anatomy, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany. .,Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research (DZL), Hannover, Germany. .,REBIRTH Cluster of Excellence, Hannover, Germany.
| |
Collapse
|
65
|
Tregidgo HFJ, Crabb MG, Hazel AL, Lionheart WRB. On the Feasibility of Automated Mechanical Ventilation Control Through EIT. IEEE Trans Biomed Eng 2018; 65:2459-2470. [DOI: 10.1109/tbme.2018.2798812] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
66
|
Lambeth C, Wang Z, Kairaitis K, Moshfegh A, Jabbarzadeh A, Amis TC. Modelling mucosal surface roughness in the human velopharynx: a computational fluid dynamics study of healthy and obstructive sleep apnea airways. J Appl Physiol (1985) 2018; 125:1821-1831. [PMID: 30284517 DOI: 10.1152/japplphysiol.00233.2018] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We previously published a unique methodology for quantifying human velopharyngeal mucosal surface topography and found increased mucosal surface roughness in obstructive sleep apnea (OSA) patients. In fluid mechanics, surface roughness is associated with increased frictional pressure losses and resistance. This study used computational fluid dynamics (CFD) to analyse the mechanistic effect of different levels of mucosal surface roughness on velopharyngeal airflow. METHODS Reconstructed velopharyngeal models from OSA and Control subjects were modified, giving each model three levels of roughness, quantified by the curvature based surface roughness index (CBSRI0.6; range 24.8-68.6mm-1). CFD using the k-ω shear stress transport (SST) turbulence model was performed (unidirectional, inspiratory, steady state, 15l/min volumetric flow rate), and the effects of roughness on flow velocity, intraluminal pressure, wall shear stress and velopharyngeal resistance (Rv) were examined. RESULTS Across all models, increasing roughness increased maximum flow velocity, wall shear stress and flow disruption, while decreasing intraluminal pressures. Linear mixed effects modelling demonstrated a log-linear relationship between CBSRI0.6 and Rv, with a common slope (log(Rv)/CBSRI0.6) of 0.0079 (95%CI 0.0015-0.0143; p=0.019) for all subjects, equating to a 1.9-fold increase in Rv when roughness increased from Control to OSA levels. At any fixed CBSRI0.6, the estimated difference in log(Rv) between OSA and Control models was 0.9382 (95%CI 0.0032-1.8732; p=0.049), equating to an 8.7-fold increase in Rv. CONCLUSION This study supports the hypothesis that increasing mucosal surface roughness increases velopharyngeal airway resistance, particularly for anatomically narrower OSA airways, and may thus contribute to increased vulnerability to upper airway collapse in OSA patients.
Collapse
Affiliation(s)
- Christopher Lambeth
- Ludwig Engel Centre for Respiratory Research, The Westmead Institute for Medical Research, Australia
| | | | - Kristina Kairaitis
- Westmead Hospital, Ludwig Engel Centre for Respiratory Research,Westmead Millennium Institute and the University of Sydney, Australia
| | | | | | - Terence Charles Amis
- Westmead Hospital, Ludwig Engel Centre for Respiratory Research, Westmead Millennium Institute and the University of Sydney
| |
Collapse
|
67
|
Bates JHT, Smith BJ. Ventilator-induced lung injury and lung mechanics. ANNALS OF TRANSLATIONAL MEDICINE 2018; 6:378. [PMID: 30460252 PMCID: PMC6212358 DOI: 10.21037/atm.2018.06.29] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Accepted: 06/11/2018] [Indexed: 02/03/2023]
Abstract
Mechanical ventilation applies physical stresses to the tissues of the lung and thus may give rise to ventilator-induced lung injury (VILI), particular in patients with acute respiratory distress syndrome (ARDS). The most dire consequences of VILI result from injury to the blood-gas barrier. This allows plasma-derived fluid and proteins to leak into the airspaces where they flood some alveolar regions, while interfering with the functioning of pulmonary surfactant in those regions that remain open. These effects are reflected in commensurately increased values of dynamic lung elastance (EL ), a quantity that in principle is readily measured at the bedside. Recent mathematical/computational modeling studies have shown that the way in which EL varies as a function of both time and positive end-expiratory pressure (PEEP) reflects the nature and degree of lung injury, and can even be used to infer the separate contributions of volutrauma and atelectrauma to VILI. Interrogating such models for minimally injurious regimens of mechanical ventilation that apply to a particular lung may thus lead to personalized approaches to the ventilatory management of ARDS.
Collapse
Affiliation(s)
- Jason H. T. Bates
- Department of Medicine, University of Vermont Larner College of Medicine, Burlington, VT, USA
| | - Bradford J. Smith
- Department of Bioengineering, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO, USA
| |
Collapse
|
68
|
Song JW, Paek J, Park KT, Seo J, Huh D. A bioinspired microfluidic model of liquid plug-induced mechanical airway injury. BIOMICROFLUIDICS 2018; 12:042211. [PMID: 29887935 PMCID: PMC5973896 DOI: 10.1063/1.5027385] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Accepted: 05/07/2018] [Indexed: 05/19/2023]
Abstract
Occlusion of distal airways due to mucus plugs is a key pathological feature common to a wide variety of obstructive pulmonary diseases. Breathing-induced movement of airway mucus plugs along the respiratory tract has been shown to generate abnormally large mechanical stresses, acting as an insult that can incite acute injury to the airway epithelium. Here, we describe a unique microengineering strategy to model this pathophysiological process using a bioinspired microfluidic device. Our system combines an air-liquid interface culture of primary human small airway epithelial cells with a microengineered biomimetic platform to replicate the process of mucus exudation induced by airway constriction that leads to the formation of mucus plugs across the airway lumen. Specifically, we constructed a compartmentalized three-dimensional (3D) microfluidic device in which extracellular matrix hydrogel scaffolds reminiscent of airway stroma were compressed to discharge fluid into the airway compartment and form liquid plugs. We demonstrated that this plug formation process and subsequent movement of liquid plugs through the airway channel can be regulated in a precisely controlled manner. Furthermore, we examined the detrimental effect of plug propagation on the airway epithelium to simulate acute epithelial injury during airway closure. Our system allows for a novel biomimetic approach to modeling a complex and dynamic biophysical microenvironment of diseased human airways and may serve as an enabling platform for mechanistic investigation of key disease processes that drive the progression and exacerbation of obstructive pulmonary diseases.
Collapse
Affiliation(s)
- Joseph W. Song
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Jungwook Paek
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Kyu-Tae Park
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | | | - Dongeun Huh
- Author to whom correspondence should be addressed:
| |
Collapse
|
69
|
Chen L, Xia HF, Shang Y, Yao SL. Molecular Mechanisms of Ventilator-Induced Lung Injury. Chin Med J (Engl) 2018; 131:1225-1231. [PMID: 29553050 PMCID: PMC5956775 DOI: 10.4103/0366-6999.226840] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Indexed: 12/22/2022] Open
Abstract
OBJECTIVE Mechanical ventilation (MV) has long been used as a life-sustaining approach for several decades. However, researchers realized that MV not only brings benefits to patients but also cause lung injury if used improperly, which is termed as ventilator-induced lung injury (VILI). This review aimed to discuss the pathogenesis of VILI and the underlying molecular mechanisms. DATA SOURCES This review was based on articles in the PubMed database up to December 2017 using the following keywords: "ventilator-induced lung injury", "pathogenesis", "mechanism", and "biotrauma". STUDY SELECTION Original articles and reviews pertaining to mechanisms of VILI were included and reviewed. RESULTS The pathogenesis of VILI was defined gradually, from traditional pathological mechanisms (barotrauma, volutrauma, and atelectrauma) to biotrauma. High airway pressure and transpulmonary pressure or cyclic opening and collapse of alveoli were thought to be the mechanisms of barotraumas, volutrauma, and atelectrauma. In the past two decades, accumulating evidence have addressed the importance of biotrauma during VILI, the molecular mechanism underlying biotrauma included but not limited to proinflammatory cytokines release, reactive oxygen species production, complement activation as well as mechanotransduction. CONCLUSIONS Barotrauma, volutrauma, atelectrauma, and biotrauma contribute to VILI, and the molecular mechanisms are being clarified gradually. More studies are warranted to figure out how to minimize lung injury induced by MV.
Collapse
Affiliation(s)
- Lin Chen
- Department of Anesthesiology, Institute of Anesthesiology and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, China
| | - Hai-Fa Xia
- Department of Anesthesiology, Institute of Anesthesiology and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, China
| | - You Shang
- Department of Critical Care Medicine, Institute of Anesthesiology and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, China
| | - Shang-Long Yao
- Department of Anesthesiology, Institute of Anesthesiology and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, China
| |
Collapse
|
70
|
Hamlington KL, Smith BJ, Dunn CM, Charlebois CM, Roy GS, Bates JHT. Linking lung function to structural damage of alveolar epithelium in ventilator-induced lung injury. Respir Physiol Neurobiol 2018; 255:22-29. [PMID: 29742448 DOI: 10.1016/j.resp.2018.05.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Revised: 05/02/2018] [Accepted: 05/05/2018] [Indexed: 12/21/2022]
Abstract
Understanding how the mechanisms of ventilator-induced lung injury (VILI), namely atelectrauma and volutrauma, contribute to the failure of the blood-gas barrier and subsequent intrusion of edematous fluid into the airspace is essential for the design of mechanical ventilation strategies that minimize VILI. We ventilated mice with different combinations of tidal volume and positive end-expiratory pressure (PEEP) and linked degradation in lung function measurements to injury of the alveolar epithelium observed via scanning electron microscopy. Ventilating with both high inspiratory plateau pressure and zero PEEP was necessary to cause derangements in lung function as well as visually apparent physical damage to the alveolar epithelium of initially healthy mice. In particular, the epithelial injury was tightly associated with indicators of alveolar collapse. These results support the hypothesis that mechanical damage to the epithelium during VILI is at least partially attributed to atelectrauma-induced damage of alveolar type I epithelial cells.
Collapse
Affiliation(s)
- Katharine L Hamlington
- Department of Medicine, University of Vermont Larner College of Medicine, Burlington, VT 05405, USA.
| | - Bradford J Smith
- Department of Medicine, University of Vermont Larner College of Medicine, Burlington, VT 05405, USA.
| | - Celia M Dunn
- Department of Medicine, University of Vermont Larner College of Medicine, Burlington, VT 05405, USA
| | - Chantel M Charlebois
- Department of Medicine, University of Vermont Larner College of Medicine, Burlington, VT 05405, USA
| | - Gregory S Roy
- Department of Medicine, University of Vermont Larner College of Medicine, Burlington, VT 05405, USA
| | - Jason H T Bates
- Department of Medicine, University of Vermont Larner College of Medicine, Burlington, VT 05405, USA.
| |
Collapse
|
71
|
Hamlington KL, Bates JHT, Roy GS, Julianelle AJ, Charlebois C, Suki B, Smith BJ. Alveolar leak develops by a rich-get-richer process in ventilator-induced lung injury. PLoS One 2018; 13:e0193934. [PMID: 29590136 PMCID: PMC5874026 DOI: 10.1371/journal.pone.0193934] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Accepted: 01/31/2018] [Indexed: 02/07/2023] Open
Abstract
Acute respiratory distress syndrome (ARDS) is a life-threatening condition for which there are currently no medical therapies other than supportive care involving the application of mechanical ventilation. However, mechanical ventilation itself can worsen ARDS by damaging the alveolocapillary barrier in the lungs. This allows plasma-derived fluid and proteins to leak into the airspaces of the lung where they interfere with the functioning of pulmonary surfactant, which increases the stresses of mechanical ventilation and worsens lung injury. Once such ventilator-induced lung injury (VILI) is underway, managing ARDS and saving the patient becomes increasingly problematic. Maintaining an intact alveolar barrier thus represents a crucial management goal, but the biophysical processes that perforate this barrier remain incompletely understood. To study the dynamics of barrier perforation, we subjected initially normal mice to an injurious ventilation regimen that imposed both volutrauma (overdistension injury) and atelectrauma (injury from repetitive reopening of closed airspaces) on the lung, and observed the rate at which macromolecules of various sizes leaked into the airspaces as a function of the degree of overall injury. Computational modeling applied to our findings suggests that perforations in the alveolocapillary barrier appear and progress according to a rich-get-richer mechanism in which the likelihood of a perforation getting larger increases with the size of the perforation. We suggest that atelectrauma causes the perforations after which volutrauma expands them. This mechanism explains why atelectrauma appears to be essential to the initiation of VILI in a normal lung, and why atelectrauma and volutrauma then act synergistically once VILI is underway.
Collapse
Affiliation(s)
- Katharine L. Hamlington
- Vermont Lung Center, Department of Medicine, University of Vermont College of Medicine, Burlington, VT, United States of America
| | - Jason H. T. Bates
- Vermont Lung Center, Department of Medicine, University of Vermont College of Medicine, Burlington, VT, United States of America
| | - Gregory S. Roy
- Vermont Lung Center, Department of Medicine, University of Vermont College of Medicine, Burlington, VT, United States of America
| | - Adele J. Julianelle
- Vermont Lung Center, Department of Medicine, University of Vermont College of Medicine, Burlington, VT, United States of America
| | - Chantel Charlebois
- Vermont Lung Center, Department of Medicine, University of Vermont College of Medicine, Burlington, VT, United States of America
| | - Bela Suki
- Department of Biomedical Engineering, Boston University, Boston, MA, United States of America
| | - Bradford J. Smith
- Department of Bioengineering, University of Colorado Denver, Aurora, CO, United States of America
- * E-mail:
| |
Collapse
|
72
|
Zamankhan P, Takayama S, Grotberg JB. Steady Displacement of Long Gas Bubbles in Channels and Tubes Filled by a Bingham Fluid. PHYSICAL REVIEW FLUIDS 2018; 3:013302. [PMID: 30740583 PMCID: PMC6366646 DOI: 10.1103/physrevfluids.3.013302] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Bingham fluids behave like solids below a von Mises stress threshold, the yield stress, while above it they behave like Newtonian fluids. They are characterized by a dimensionless parameter, Bingham number (Bn), which is the ratio of the yield stress to a characteristic viscous stress. In this study, the non-inertial steady motion of a finite size gas bubble in both a plane 2D channel and an axi-symmetric tube filled by a Bingham fluid has been studied numerically. The Bingham number, Bn, is in the range 0 ≤ Bn ≤ 3, where Bn=0 is the Newtonian case, while the Capillary number which is the ratio of a characteristic viscous force to the surface tension has values Ca=0.05, 0.10, and 0.25. The volume of all axi-symmetric and 2D bubbles has been chosen to be identical for all parameter choices and large enough for the bubbles to be long compared to the channel/tube width/diameter. The Bingham fluid constitutive equation is approximated by a regularized equation. During the motion, the bubble interface is separated from the wall by a static liquid film. The film thickness scaled by the tube radius (axi-symmetric)/half of the channel height (2D) is the dimensionless film thickness, h. The results show that increasing Bn initially leads to an increase in h, however, the profile h versus Bn can be monotonic or non-monotonic depending on Ca values and 2D/axi-symmetric configurations. The yield stress also alters the shape of the front and rear of the bubble and suppresses the capillary waves at the rear of the bubble. The yield stress increases the magnitude of the wall shear stress and its gradient and therefore increases the potential for epithelial cell injuries in applications to lung airway mucus plugs. The topology of the yield surfaces as well the flow pattern in the bubble frame of reference varies significantly by Ca and Bn.
Collapse
Affiliation(s)
- Parsa Zamankhan
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
- ANSYS, Inc., 900 Victors way, Ann Arbor, MI 48108, USA
| | - Shuichi Takayama
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
| | - James B Grotberg
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
73
|
Kalikkot Thekkeveedu R, Guaman MC, Shivanna B. Bronchopulmonary dysplasia: A review of pathogenesis and pathophysiology. Respir Med 2017; 132:170-177. [PMID: 29229093 PMCID: PMC5729938 DOI: 10.1016/j.rmed.2017.10.014] [Citation(s) in RCA: 244] [Impact Index Per Article: 34.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Revised: 08/23/2017] [Accepted: 10/20/2017] [Indexed: 12/31/2022]
Abstract
Bronchopulmonary dysplasia (BPD) is a chronic lung disease of primarily premature infants that results from an imbalance between lung injury and repair in the developing lung. BPD is the most common respiratory morbidity in preterm infants, which affects nearly 10, 000 neonates each year in the United States. Over the last two decades, the incidence of BPD has largely been unchanged; however, the pathophysiology has changed with the substantial improvement in the respiratory management of extremely low birth weight (ELBW) infants. Here we have attempted to comprehensively review and summarize the current literature on the pathogenesis and pathophysiology of BPD. Our goal is to provide insight to help further progress in preventing and managing severe BPD in the ELBW infants.
Collapse
Affiliation(s)
| | - Milenka Cuevas Guaman
- Section of Neonatology, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - Binoy Shivanna
- Section of Neonatology, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA.
| |
Collapse
|
74
|
Higuita-Castro N, Nelson MT, Shukla V, Agudelo-Garcia PA, Zhang W, Duarte-Sanmiguel SM, Englert JA, Lannutti JJ, Hansford DJ, Ghadiali SN. Using a Novel Microfabricated Model of the Alveolar-Capillary Barrier to Investigate the Effect of Matrix Structure on Atelectrauma. Sci Rep 2017; 7:11623. [PMID: 28912466 PMCID: PMC5599538 DOI: 10.1038/s41598-017-12044-9] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Accepted: 09/01/2017] [Indexed: 11/25/2022] Open
Abstract
The alveolar-capillary barrier is composed of epithelial and endothelial cells interacting across a fibrous extracelluar matrix (ECM). Although remodeling of the ECM occurs during several lung disorders, it is not known how fiber structure and mechanics influences cell injury during cyclic airway reopening as occurs during mechanical ventilation (atelectrauma). We have developed a novel in vitro platform that mimics the micro/nano-scale architecture of the alveolar microenvironment and have used this system to investigate how ECM microstructural properties influence epithelial cell injury during airway reopening. In addition to epithelial-endothelial interactions, our platform accounts for the fibrous topography of the basal membrane and allows for easy modulation of fiber size/diameter, density and stiffness. Results indicate that fiber stiffness and topography significantly influence epithelial/endothelial barrier function where increased fiber stiffness/density resulted in altered cytoskeletal structure, increased tight junction (TJ) formation and reduced barrier permeability. However, cells on rigid/dense fibers were also more susceptible to injury during airway reopening. These results indicate that changes in the mechanics and architecture of the lung microenvironment can significantly alter cell function and injury and demonstrate the importance of implementing in vitro models that more closely resemble the natural conditions of the lung microenvironment.
Collapse
Affiliation(s)
- N Higuita-Castro
- Biomedical Engineering Department, The Ohio State University, Columbus, Ohio, United States.,Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, Ohio, United States
| | - M T Nelson
- Biomedical Engineering Department, The Ohio State University, Columbus, Ohio, United States
| | - V Shukla
- Biomedical Engineering Department, The Ohio State University, Columbus, Ohio, United States.,Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, Ohio, United States
| | - P A Agudelo-Garcia
- Department of Molecular and Cellular Biochemistry, The Ohio State University, Columbus, Ohio, United States
| | - W Zhang
- Department of Internal Medicine, Division of Pulmonary, Critical Care and Sleep Medicine, The Ohio State University Wexner Medical Center, Columbus, Ohio, United States
| | - S M Duarte-Sanmiguel
- Biomedical Engineering Department, The Ohio State University, Columbus, Ohio, United States.,Human Nutrition Program, The Ohio State University, Columbus, Ohio, United States
| | - J A Englert
- Department of Internal Medicine, Division of Pulmonary, Critical Care and Sleep Medicine, The Ohio State University Wexner Medical Center, Columbus, Ohio, United States
| | - J J Lannutti
- Department of Material Sciences and Engineering, The Ohio State University, Columbus, Ohio, United States
| | - D J Hansford
- Biomedical Engineering Department, The Ohio State University, Columbus, Ohio, United States
| | - S N Ghadiali
- Biomedical Engineering Department, The Ohio State University, Columbus, Ohio, United States. .,Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, Ohio, United States. .,Department of Internal Medicine, Division of Pulmonary, Critical Care and Sleep Medicine, The Ohio State University Wexner Medical Center, Columbus, Ohio, United States.
| |
Collapse
|
75
|
Smith BJ, Bartolak-Suki E, Suki B, Roy GS, Hamlington KL, Charlebois CM, Bates JHT. Linking Ventilator Injury-Induced Leak across the Blood-Gas Barrier to Derangements in Murine Lung Function. Front Physiol 2017; 8:466. [PMID: 28736528 PMCID: PMC5500660 DOI: 10.3389/fphys.2017.00466] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Accepted: 06/19/2017] [Indexed: 01/10/2023] Open
Abstract
Mechanical ventilation is vital to the management of acute respiratory distress syndrome, but it frequently leads to ventilator-induced lung injury (VILI). Understanding the pathophysiological processes involved in the development of VILI is an essential prerequisite for improving lung-protective ventilation strategies. The goal of this study was to relate the amount and nature of material accumulated in the airspaces to biomarkers of injury and the derecruitment behavior of the lung in VILI. Forty-nine BALB/c mice were mechanically ventilated with combinations of tidal volume and end-expiratory pressures to produce varying degrees of overdistension and atelectasis while lung function was periodically assessed. Total protein, serum protein, and E-Cadherin levels were measured in bronchoalveolar lavage fluid (BALF). Tissue injury was assessed by histological scoring. We found that both high tidal volume and zero positive end-expiratory pressure were necessary to produce significant VILI. Increased BALF protein content was correlated with increased lung derecruitability, elevated peak pressures, and histological evidence of tissue injury. Blood derived molecules were present in the BALF in proportion to histological injury scores and epithelial injury, reflected by E-Cadherin levels in BALF. We conclude that repetitive recruitment is an important factor in the pathogenesis of VILI that exacerbates injury associated with tidal overdistension. Furthermore, the dynamic mechanical behavior of the injured lung provides a means to assess both the degree of tissue injury and the nature and amount of blood-derived fluid and proteins that accumulate in the airspaces.
Collapse
Affiliation(s)
- Bradford J Smith
- Department of Bioengineering, Anschutz Medical Campus, University of Colorado DenverAurora, CO, United States
| | | | - Bela Suki
- Department of Biomedical Engineering, Boston UniversityBoston, MA, United States
| | - Gregory S Roy
- Department of Medicine, Vermont Lung Center, Larner College of Medicine at The University of VermontBurlington, VT, United States
| | - Katharine L Hamlington
- Department of Medicine, Vermont Lung Center, Larner College of Medicine at The University of VermontBurlington, VT, United States
| | - Chantel M Charlebois
- Department of Medicine, Vermont Lung Center, Larner College of Medicine at The University of VermontBurlington, VT, United States
| | - Jason H T Bates
- Department of Medicine, Vermont Lung Center, Larner College of Medicine at The University of VermontBurlington, VT, United States
| |
Collapse
|
76
|
Bartolák-Suki E, Noble PB, Bou Jawde S, Pillow JJ, Suki B. Optimization of Variable Ventilation for Physiology, Immune Response and Surfactant Enhancement in Preterm Lambs. Front Physiol 2017; 8:425. [PMID: 28690548 PMCID: PMC5481362 DOI: 10.3389/fphys.2017.00425] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Accepted: 06/01/2017] [Indexed: 12/12/2022] Open
Abstract
Preterm infants often require mechanical ventilation due to lung immaturity including reduced or abnormal surfactant. Since cyclic stretch with cycle-by-cycle variability is known to augment surfactant release by epithelial cells, we hypothesized that such in vivo mechanotransduction improves surfactant maturation and hence lung physiology in preterm subjects. We thus tested whether breath-by-breath variability in tidal volume (VT) in variable ventilation (VV) can be tuned for optimal performance in a preterm lamb model. Preterm lambs were ventilated for 3 h with conventional ventilation (CV) or two variants of VV that used a maximum VT of 1.5 (VV1) or 2.25 (VV2) times the mean VT. VT was adjusted during ventilation to a permissive pCO2 target range. Respiratory mechanics were monitored continuously using the forced oscillation technique, followed by postmortem bronchoalveolar lavage and tissue collection. Both VVs outperformed CV in blood gas parameters (pH, SaO2, cerebral O2 saturation). However, only VV2 lowered PaCO2 and had a higher specific respiratory compliance than CV. VV2 also increased surfactant protein (SP)-B release compared to VV1 and stimulated its production compared to CV. The production and release of proSP-C however, was increased with CV compared to both VVs. There was more SP-A in both VVs than CV in the lung, but VV2 downregulated SP-A in the lavage, whereas SP-D significantly increased in CV in both the lavage and lung. Compared to CV, the cytokines IL-1β, and TNFα decreased with both VVs with less inflammation during VV2. Additionally, VV2 lungs showed the most homogeneous alveolar structure and least inflammatory cell infiltration assessed by histology. CV lungs exhibited over-distension mixed with collapsed and interstitial edematous regions with occasional hemorrhage. Following VV1, some lambs had normal alveolar structure while others were similar to CV. The IgG serum proteins in the lavage, a marker of leakage, were the highest in CV. An overall combined index of performance that included physiological, biochemical and histological markers was the best in VV2 followed by VV1. Thus, VV2 outperformed VV1 by enhancing SP-B metabolism resulting in open alveolar airspaces, less leakage and inflammation and hence better respiratory mechanics.
Collapse
Affiliation(s)
| | - Peter B Noble
- Anatomy, Physiology and Human Biology, School of Human Sciences, University of Western AustraliaPerth, WA, Australia.,Centre of Neonatal Research and Education, Pediatrics, Medical School, University of Western AustraliaPerth, WA, Australia
| | - Samer Bou Jawde
- Department of Biomedical Engineering, Boston UniversityBoston, MA, United States
| | - Jane J Pillow
- Anatomy, Physiology and Human Biology, School of Human Sciences, University of Western AustraliaPerth, WA, Australia.,Centre of Neonatal Research and Education, Pediatrics, Medical School, University of Western AustraliaPerth, WA, Australia
| | - Béla Suki
- Department of Biomedical Engineering, Boston UniversityBoston, MA, United States
| |
Collapse
|
77
|
Yamaguchi E, Nolan LP, Gaver DP. Microscale distribution and dynamic surface tension of pulmonary surfactant normalize the recruitment of asymmetric bifurcating airways. J Appl Physiol (1985) 2017; 122:1167-1178. [DOI: 10.1152/japplphysiol.00543.2016] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Revised: 12/16/2016] [Accepted: 01/04/2017] [Indexed: 01/03/2023] Open
Abstract
We investigate the influence of bifurcation geometry, asymmetry of daughter airways, surfactant distribution, and physicochemical properties on the uniformity of airway recruitment of asymmetric bifurcating airways. To do so, we developed microfluidic idealized in vitro models of bifurcating airways, through which we can independently evaluate the impact of carina location and daughter airway width and length. We explore the uniformity of recruitment and its relationship to the dynamic surface tension of the lining fluid and relate this behavior to the hydraulic (PHyd) and capillary (PCap) pressure drops. These studies demonstrate the extraordinary importance of PCap in stabilizing reopening, even in highly asymmetric systems. The dynamic surface tension of pulmonary surfactant is integral to this stability because it modulates PCap in a velocity-dependent manner. Furthermore, the surfactant distribution at the propagating interface can have a very large influence on recruitment stability by focusing surfactant preferentially to specific daughter airways. This implies that modification of the surfactant distribution through novel modes of ventilation could be useful in inducing uniformly recruited lungs, aiding in gas exchange, and reducing ventilator-induced lung injury. NEW & NOTEWORTHY The dynamic surface tension of pulmonary surfactant is integral to the uniformity of asymmetric bifurcation airway recruitments because it modulates capillary pressure drop in a velocity-dependent manner. Also, the surfactant distribution at the propagating interface can have a very large influence on recruitment stability by focusing surfactant preferentially to specific daughter airways. This implies that modification of the surfactant distribution through novel modes of ventilation could be useful in inducing uniformly recruited lungs, reducing ventilator-induced lung injury.
Collapse
Affiliation(s)
- Eiichiro Yamaguchi
- Department of Biomedical Engineering, Tulane University, New Orleans, Louisiana
| | - Liam P. Nolan
- Department of Biomedical Engineering, Tulane University, New Orleans, Louisiana
| | - Donald P. Gaver
- Department of Biomedical Engineering, Tulane University, New Orleans, Louisiana
| |
Collapse
|
78
|
Simpson AJ, Romer LM, Kippelen P. Exercise-induced dehydration alters pulmonary function but does not modify airway responsiveness to dry air in athletes with mild asthma. J Appl Physiol (1985) 2017; 122:1329-1335. [PMID: 28280109 PMCID: PMC5451531 DOI: 10.1152/japplphysiol.01114.2016] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Revised: 03/03/2017] [Accepted: 03/08/2017] [Indexed: 11/22/2022] Open
Abstract
This study is the first to investigate the effect of whole body dehydration on airway responsiveness. Our data suggest that the airway response to dry air hyperpnea in athletes with mild asthma and/or exercise-induced bronchoconstriction is not exacerbated in a state of mild dehydration. On the basis of recorded alterations in lung volumes, however, exercise-induced dehydration appears to compromise small airway function. Local airway water loss is the main physiological trigger for exercise-induced bronchoconstriction (EIB). Our aim was to investigate the effects of whole body water loss on airway responsiveness and pulmonary function in athletes with mild asthma and/or EIB. Ten recreational athletes with a medical diagnosis of mild asthma and/or EIB completed a randomized, crossover study. Pulmonary function tests, including spirometry, whole body plethysmography, and diffusing capacity of the lung for carbon monoxide (DlCO), were conducted before and after three conditions: 1) 2 h of exercise in the heat with no fluid intake (dehydration), 2) 2 h of exercise with ad libitum fluid intake (control), and 3) a time-matched rest period (rest). Airway responsiveness was assessed 2 h postexercise/rest via eucapnic voluntary hyperpnea (EVH) to dry air. Exercise in the heat with no fluid intake induced a state of mild dehydration, with a body mass loss of 2.3 ± 0.8% (SD). After EVH, airway narrowing was not different between conditions: median (interquartile range) maximum fall in forced expiratory volume in 1 s was 13 (7–15)%, 11 (9–24)%, and 12 (7–20)% in dehydration, control, and rest conditions, respectively. Dehydration caused a significant reduction in forced vital capacity (300 ± 190 ml, P = 0.001) and concomitant increases in residual volume (260 ± 180 ml, P = 0.001) and functional residual capacity (260 ± 250 ml, P = 0.011), with no change in DlCO. Mild exercise-induced dehydration does not exaggerate airway responsiveness to dry air in athletes with mild asthma/EIB but may affect small airway function. NEW & NOTEWORTHY This study is the first to investigate the effect of whole body dehydration on airway responsiveness. Our data suggest that the airway response to dry air hyperpnea in athletes with mild asthma and/or exercise-induced bronchoconstriction is not exacerbated in a state of mild dehydration. On the basis of alterations in lung volumes, however, exercise-induced dehydration appears to compromise small airway function.
Collapse
Affiliation(s)
- A J Simpson
- Centre for Human Performance, Exercise, and Rehabilitation, Division of Sport, Health, and Exercise Sciences, College of Health and Life Sciences, Brunel University London, Uxbridge, United Kingdom
| | - L M Romer
- Centre for Human Performance, Exercise, and Rehabilitation, Division of Sport, Health, and Exercise Sciences, College of Health and Life Sciences, Brunel University London, Uxbridge, United Kingdom
| | - P Kippelen
- Centre for Human Performance, Exercise, and Rehabilitation, Division of Sport, Health, and Exercise Sciences, College of Health and Life Sciences, Brunel University London, Uxbridge, United Kingdom
| |
Collapse
|
79
|
Whang J, Faulman C, Itin TA, Gaver DP. The influence of tethering and gravity on the stability of compliant liquid-lined airways. J Biomech 2017; 50:228-233. [DOI: 10.1016/j.jbiomech.2016.11.030] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Accepted: 11/05/2016] [Indexed: 11/28/2022]
|
80
|
Knudsen L, Ruppert C, Ochs M. Tissue remodelling in pulmonary fibrosis. Cell Tissue Res 2016; 367:607-626. [PMID: 27981380 DOI: 10.1007/s00441-016-2543-2] [Citation(s) in RCA: 82] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Accepted: 11/19/2016] [Indexed: 12/16/2022]
Abstract
Many lung diseases result in fibrotic remodelling. Fibrotic lung disorders can be divided into diseases with known and unknown aetiology. Among those with unknown aetiology, idiopathic pulmonary fibrosis (IPF) is a common diagnosis. Because of its progressive character leading to a rapid decline in lung function, it is a fatal disease with poor prognosis and limited therapeutic options. Thus, IPF has motivated many studies in the last few decades in order to increase our mechanistic understanding of the pathogenesis of the disease. The current concept suggests an ongoing injury of the alveolar epithelium, an impaired regeneration capacity, alveolar collapse and, finally, a fibroproliferative response. The origin of lung injury remains elusive but a diversity of factors, which will be discussed in this article, has been shown to be associated with IPF. Alveolar epithelial type II (AE2) cells play a key role in lung fibrosis and their crucial role for epithelial regeneration, stabilisation of alveoli and interaction with fibroblasts, all known to be responsible for collagen deposition, will be illustrated. Whereas mechanisms of collagen deposition and fibroproliferation are the focus of many studies in the field, the awareness of other mechanisms in this disease is currently limited to biochemical and imaging studies including quantitative assessments of lung structure in IPF and animal models assigning alveolar collapse and collapse induration crucial roles for the degradation of the lung resulting in de-aeration and loss of surface area. Dysfunctional AE2 cells, instable alveoli and mechanical stress trigger remodelling that consists of collapsed alveoli absorbed by fibrotic tissue (i.e., collapse induration).
Collapse
Affiliation(s)
- Lars Knudsen
- Institute of Functional and Applied Anatomy, Hannover Medical School, Carl-Neuberg Strasse 1, 30625, Hannover, Germany. .,Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research (DZL), Hannover Medical School, Hannover, Germany. .,REBIRTH, Cluster of Excellence, Hannover Medical School, Hannover, Germany.
| | - Clemens Ruppert
- Department of Internal Medicine, Justus-Liebig-University Giessen, Giessen, Germany.,Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Universities of Giessen and Marburg, Giessen, Germany
| | - Matthias Ochs
- Institute of Functional and Applied Anatomy, Hannover Medical School, Carl-Neuberg Strasse 1, 30625, Hannover, Germany.,Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research (DZL), Hannover Medical School, Hannover, Germany.,REBIRTH, Cluster of Excellence, Hannover Medical School, Hannover, Germany
| |
Collapse
|
81
|
Lung surfactant metabolism: early in life, early in disease and target in cell therapy. Cell Tissue Res 2016; 367:721-735. [PMID: 27783217 DOI: 10.1007/s00441-016-2520-9] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Accepted: 09/27/2016] [Indexed: 01/07/2023]
Abstract
Lung surfactant is a complex mixture of lipids and proteins lining the alveolar epithelium. At the air-liquid interface, surfactant lowers surface tension, avoiding alveolar collapse and reducing the work of breathing. The essential role of lung surfactant in breathing and therefore in life, is highlighted by surfactant deficiency in premature neonates, which causes neonatal respiratory distress syndrome and results in early death after birth. In addition, defects in surfactant metabolism alter lung homeostasis and lead to disease. Special attention should be paid to two important key cells responsible for surfactant metabolism: alveolar epithelial type II cells (AE2C) and alveolar macrophages (AM). On the one hand, surfactant deficiency coming from abnormal AE2C function results in high surface tension, promoting alveolar collapse and mechanical stress in the epithelium. This epithelial injury contributes to tissue remodeling and lung fibrosis. On the other hand, impaired surfactant catabolism by AM leads to accumulation of surfactant in air spaces and the associated altered lung function in pulmonary alveolar proteinosis (PAP). We review here two recent cell therapies that aim to recover the activity of AE2C or AM, respectively, therefore targeting the restoring of surfactant metabolism and lung homeostasis. Applied therapies successfully show either transplantation of healthy AE2C in fibrotic lungs, to replace injured AE2C cells and surfactant, or transplantation of bone marrow-derived macrophages to counteract accumulation of surfactant lipid and proteinaceous material in the alveolar spaces leading to PAP. These therapies introduce an alternative treatment with great potential for patients suffering from lung diseases.
Collapse
|
82
|
Abstract
Prevention of ventilator-induced lung injury (VILI) can attenuate multiorgan failure and improve survival in at-risk patients. Clinically significant VILI occurs from volutrauma, barotrauma, atelectrauma, biotrauma, and shear strain. Differences in regional mechanics are important in VILI pathogenesis. Several interventions are available to protect against VILI. However, most patients at risk of lung injury do not develop VILI. VILI occurs most readily in patients with concomitant physiologic insults. VILI prevention strategies must balance risk of lung injury with untoward side effects from the preventive effort, and may be most effective when targeted to subsets of patients at increased risk.
Collapse
|
83
|
Stewart PS, Jensen OE. Patterns of recruitment and injury in a heterogeneous airway network model. J R Soc Interface 2016; 12:20150523. [PMID: 26423440 PMCID: PMC4614491 DOI: 10.1098/rsif.2015.0523] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
In respiratory distress, lung airways become flooded with liquid and may collapse due to surface-tension forces acting on air-liquid interfaces, inhibiting gas exchange. This paper proposes a mathematical multiscale model for the mechanical ventilation of a network of occluded airways, where air is forced into the network at a fixed tidal volume, allowing investigation of optimal recruitment strategies. The temporal response is derived from mechanistic models of individual airway reopening, incorporating feedback on the airway pressure due to recruitment. The model accounts for stochastic variability in airway diameter and stiffness across and between generations. For weak heterogeneity, the network is completely ventilated via one or more avalanches of recruitment (with airways recruited in quick succession), each characterized by a transient decrease in the airway pressure; avalanches become more erratic for airways that are initially more flooded. However, the time taken for complete ventilation of the network increases significantly as the network becomes more heterogeneous, leading to increased stresses on airway walls. The model predicts that the most peripheral airways are most at risk of ventilation-induced damage. A positive-end-expiratory pressure reduces the total recruitment time but at the cost of larger stresses exerted on airway walls.
Collapse
Affiliation(s)
- Peter S Stewart
- School of Mathematics and Statistics, University of Glasgow, Glasgow, G12 8QW, UK
| | - Oliver E Jensen
- School of Mathematics, University of Manchester, Manchester, M13 9PL, UK
| |
Collapse
|
84
|
Jamaati H, Nazari M, Darooei R, Ghafari T, Raoufy MR. Role of shear stress in ventilator-induced lung injury. THE LANCET RESPIRATORY MEDICINE 2016; 4:e41-e42. [DOI: 10.1016/s2213-2600(16)30159-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Revised: 06/08/2016] [Accepted: 06/10/2016] [Indexed: 10/21/2022]
|
85
|
Loverdos K, Toumpanakis D, Litsiou E, Karavana V, Glynos C, Magkou C, Theocharis S, Vassilakopoulos T. The differential effects of inspiratory, expiratory, and combined resistive breathing on healthy lung. Int J Chron Obstruct Pulmon Dis 2016; 11:1623-38. [PMID: 27499619 PMCID: PMC4959591 DOI: 10.2147/copd.s106337] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Combined resistive breathing (CRB) is the hallmark of obstructive airway disease pathophysiology. We have previously shown that severe inspiratory resistive breathing (IRB) induces acute lung injury in healthy rats. The role of expiratory resistance is unknown. The possibility of a load-dependent type of resistive breathing-induced lung injury also remains elusive. Our aim was to investigate the differential effects of IRB, expiratory resistive breathing (ERB), and CRB on healthy rat lung and establish the lowest loads required to induce injury. Anesthetized tracheostomized rats breathed through a two-way valve. Varying resistances were connected to the inspiratory, expiratory, or both ports, so that the peak inspiratory pressure (IRB) was 20%-40% or peak expiratory (ERB) was 40%-70% of maximum. CRB was assessed in inspiratory/expiratory pressures of 30%/50%, 40%/50%, and 40%/60% of maximum. Quietly breathing animals served as controls. At 6 hours, respiratory system mechanics were measured, and bronchoalveolar lavage was performed for measurement of cell and protein concentration. Lung tissue interleukin-6 and interleukin-1β levels were estimated, and a lung injury histological score was determined. ERB produced significant, load-independent neutrophilia, without mechanical or permeability derangements. IRB 30% was the lowest inspiratory load that provoked lung injury. CRB increased tissue elasticity, bronchoalveolar lavage total cell, macrophage and neutrophil counts, protein and cytokine levels, and lung injury score in a dose-dependent manner. In conclusion, CRB load dependently deranges mechanics, increases permeability, and induces inflammation in healthy rats. ERB is a putative inflammatory stimulus for the lung.
Collapse
Affiliation(s)
- Konstantinos Loverdos
- Department of Critical Care, Pulmonary Unit and Marianthi Simou Applied Biomedical Research and Training Center, Evangelismos General Hospital, University of Athens Medical School
| | - Dimitrios Toumpanakis
- Department of Critical Care, Pulmonary Unit and Marianthi Simou Applied Biomedical Research and Training Center, Evangelismos General Hospital, University of Athens Medical School
| | - Eleni Litsiou
- Department of Critical Care, Pulmonary Unit and Marianthi Simou Applied Biomedical Research and Training Center, Evangelismos General Hospital, University of Athens Medical School
| | - Vassiliki Karavana
- Department of Critical Care, Pulmonary Unit and Marianthi Simou Applied Biomedical Research and Training Center, Evangelismos General Hospital, University of Athens Medical School
| | - Constantinos Glynos
- Department of Critical Care, Pulmonary Unit and Marianthi Simou Applied Biomedical Research and Training Center, Evangelismos General Hospital, University of Athens Medical School
| | | | - Stamatios Theocharis
- 1st Department of Pathology, University of Athens Medical School, Athens, Greece
| | - Theodoros Vassilakopoulos
- Department of Critical Care, Pulmonary Unit and Marianthi Simou Applied Biomedical Research and Training Center, Evangelismos General Hospital, University of Athens Medical School
| |
Collapse
|
86
|
Higuita-Castro N, Shukla VC, Mihai C, Ghadiali SN. Simvastatin Treatment Modulates Mechanically-Induced Injury and Inflammation in Respiratory Epithelial Cells. Ann Biomed Eng 2016; 44:3632-3644. [PMID: 27411707 DOI: 10.1007/s10439-016-1693-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Accepted: 07/04/2016] [Indexed: 12/21/2022]
Abstract
Mechanical forces in the respiratory system, including surface tension forces during airway reopening and high transmural pressures, can result in epithelial cell injury, barrier disruption and inflammation. In this study, we investigated if a clinically relevant pharmaceutical agent, Simvastatin, could mitigate mechanically induced injury and inflammation in respiratory epithelia. Pulmonary alveolar epithelial cells (A549) were exposed to either cyclic airway reopening forces or oscillatory transmural pressure in vitro and treated with a wide range of Simvastatin concentrations. Simvastatin induced reversible depolymerization of the actin cytoskeleton and a statistically significant reduction the cell's elastic modulus. However, Simvastatin treatment did not result in an appreciable change in the cell's viscoelastic properties. Simvastatin treated cells did exhibit a reduced height-to-width aspect ratio and these changes in cell morphology resulted in a significant decrease in epithelial cell injury during airway reopening. Interestingly, although very high concentrations (25-50 µM) of Simvastatin resulted in dramatically less IL-6 and IL-8 pro-inflammatory cytokine secretion, 2.5 µM Simvastatin did not reduce the total amount of pro-inflammatory cytokines secreted during mechanical stimulation. These results indicate that although Simvastatin treatment may be useful in reducing cell injury during airway reopening, elevated local concentrations of Simvastatin might be needed to reduce mechanically-induced injury and inflammation in respiratory epithelia.
Collapse
Affiliation(s)
- N Higuita-Castro
- Biomedical Engineering Department, The Ohio State University, 270 Bevis Hall, 1080 Carmack Rd., Columbus, OH, 43221, USA.,Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - V C Shukla
- Biomedical Engineering Department, The Ohio State University, 270 Bevis Hall, 1080 Carmack Rd., Columbus, OH, 43221, USA.,Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - C Mihai
- Biomedical Engineering Department, The Ohio State University, 270 Bevis Hall, 1080 Carmack Rd., Columbus, OH, 43221, USA
| | - S N Ghadiali
- Biomedical Engineering Department, The Ohio State University, 270 Bevis Hall, 1080 Carmack Rd., Columbus, OH, 43221, USA. .,Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Department of Internal Medicine, The Ohio State University Wexner Medical Center, Columbus, OH, USA. .,Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH, USA.
| |
Collapse
|
87
|
Koulouras V, Papathanakos G, Papathanasiou A, Nakos G. Efficacy of prone position in acute respiratory distress syndrome patients: A pathophysiology-based review. World J Crit Care Med 2016; 5:121-36. [PMID: 27152255 PMCID: PMC4848155 DOI: 10.5492/wjccm.v5.i2.121] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2015] [Revised: 01/11/2016] [Accepted: 03/07/2016] [Indexed: 02/06/2023] Open
Abstract
Acute respiratory distress syndrome (ARDS) is a syndrome with heterogeneous underlying pathological processes. It represents a common clinical problem in intensive care unit patients and it is characterized by high mortality. The mainstay of treatment for ARDS is lung protective ventilation with low tidal volumes and positive end-expiratory pressure sufficient for alveolar recruitment. Prone positioning is a supplementary strategy available in managing patients with ARDS. It was first described 40 years ago and it proves to be in alignment with two major ARDS pathophysiological lung models; the "sponge lung" - and the "shape matching" -model. Current evidence strongly supports that prone positioning has beneficial effects on gas exchange, respiratory mechanics, lung protection and hemodynamics as it redistributes transpulmonary pressure, stress and strain throughout the lung and unloads the right ventricle. The factors that individually influence the time course of alveolar recruitment and the improvement in oxygenation during prone positioning have not been well characterized. Although patients' response to prone positioning is quite variable and hard to predict, large randomized trials and recent meta-analyses show that prone position in conjunction with a lung-protective strategy, when performed early and in sufficient duration, may improve survival in patients with ARDS. This pathophysiology-based review and recent clinical evidence strongly support the use of prone positioning in the early management of severe ARDS systematically and not as a rescue maneuver or a last-ditch effort.
Collapse
|
88
|
Lopez-Rodriguez E, Boden C, Echaide M, Perez-Gil J, Kolb M, Gauldie J, Maus UA, Ochs M, Knudsen L. Surfactant dysfunction during overexpression of TGF-β1 precedes profibrotic lung remodeling in vivo. Am J Physiol Lung Cell Mol Physiol 2016; 310:L1260-71. [PMID: 27106287 DOI: 10.1152/ajplung.00065.2016] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Accepted: 04/17/2016] [Indexed: 11/22/2022] Open
Abstract
Transforming growth factor-β1 (TGF-β1) is involved in regulation of cellular proliferation, differentiation, and fibrogenesis, inducing myofibroblast migration and increasing extracellular matrix synthesis. Here, TGF-β1 effects on pulmonary structure and function were analyzed. Adenovirus-mediated gene transfer of TGF-β1 in mice lungs was performed and evaluated by design-based stereology, invasive pulmonary function testing, and detailed analyses of the surfactant system 1 and 2 wk after gene transfer. After 1 wk decreased static compliance was linked with a dramatic alveolar derecruitment without edema formation or increase in the volume of septal wall tissue or collagen fibrils. Abnormally high surface tension correlated with downregulation of surfactant proteins B and C. TTF-1 expression was reduced, and, using PLA (proximity ligand assay) technology, we found Smad3 and TTF-1 forming complexes in vivo, which are normally translocated into the nucleus of the alveolar epithelial type II cells (AE2C) but in the presence of TGF-β1 remain in the cytoplasm. AE2C show altered morphology, resulting in loss of total apical surface area per lung and polarity. These changes of AE2C were progressive 2 wk after gene transfer and correlated with lung compliance. Although static lung compliance remained low, the volume of septal wall tissue and collagen fibrils increased 2 wk after gene transfer. In this animal model, the primary effect of TGF-β1 signaling in the lung is downregulation of surfactant proteins, high surface tension, alveolar derecruitment, and mechanical stress, which precede fibrotic tissue remodeling and progressive loss of AE2C polarity. Initial TTF-1 dysfunction is potentially linked to downregulation of surfactant proteins.
Collapse
Affiliation(s)
- Elena Lopez-Rodriguez
- Institute of Functional and Applied Anatomy, Hannover Medical School, Hannover, Germany
| | - Caroline Boden
- Institute of Functional and Applied Anatomy, Hannover Medical School, Hannover, Germany
| | - Mercedes Echaide
- Department of Biochemistry and Molecular Biology, Faculty of Biology, Universidad Complutense de Madrid, Madrid, Spain
| | - Jesus Perez-Gil
- Department of Biochemistry and Molecular Biology, Faculty of Biology, Universidad Complutense de Madrid, Madrid, Spain
| | - Martin Kolb
- Firestone Institute of Respiratory Health, McMaster University, Hamilton, Ontario, Canada
| | - Jack Gauldie
- Firestone Institute of Respiratory Health, McMaster University, Hamilton, Ontario, Canada
| | - Ulrich A Maus
- Department of Experimental Pneumology, Hannover Medical School, Hannover, Germany; Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research (DZL), Hannover, Germany; and
| | - Matthias Ochs
- Institute of Functional and Applied Anatomy, Hannover Medical School, Hannover, Germany; Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research (DZL), Hannover, Germany; and REBIRTH Cluster of Excellence, Hannover, Germany
| | - Lars Knudsen
- Institute of Functional and Applied Anatomy, Hannover Medical School, Hannover, Germany; Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research (DZL), Hannover, Germany; and
| |
Collapse
|
89
|
Hamlington KL, Ma B, Smith BJ, Bates JHT. Modeling the Progression of Epithelial Leak Caused by Overdistension. Cell Mol Bioeng 2016; 9:151-161. [PMID: 26951764 DOI: 10.1007/s12195-015-0426-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Mechanical ventilation is necessary for treatment of the acute respiratory distress syndrome but leads to overdistension of the open regions of the lung and produces further damage. Although we know that the excessive stresses and strains disrupt the alveolar epithelium, we know little about the relationship between epithelial strain and epithelial leak. We have developed a computational model of an epithelial monolayer to simulate leak progression due to overdistension and to explain previous experimental findings in mice with ventilator-induced lung injury. We found a nonlinear threshold-type relationship between leak area and increasing stretch force. After the force required to initiate the leak was reached, the leak area increased at a constant rate with further increases in force. Furthermore, this rate was slower than the rate of increase in force, especially at end-expiration. Parameter manipulation changed only the leak-initiating force; leak area growth followed the same trend once this force was surpassed. These results suggest that there is a particular force (analogous to ventilation tidal volume) that must not be exceeded to avoid damage and that changing cell physical properties adjusts this threshold. This is relevant for the development of new ventilator strategies that avoid inducing further injury to the lung.
Collapse
Affiliation(s)
| | - Baoshun Ma
- Vermont Lung Center, Department of Medicine, University of Vermont, Burlington, VT
| | - Bradford J Smith
- Vermont Lung Center, Department of Medicine, University of Vermont, Burlington, VT
| | - Jason H T Bates
- Vermont Lung Center, Department of Medicine, University of Vermont, Burlington, VT
| |
Collapse
|
90
|
Cereda M, Xin Y, Hamedani H, Clapp J, Kadlecek S, Meeder N, Zeng J, Profka H, Kavanagh BP, Rizi RR. Mild loss of lung aeration augments stretch in healthy lung regions. J Appl Physiol (1985) 2015; 120:444-54. [PMID: 26662053 DOI: 10.1152/japplphysiol.00734.2015] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2015] [Accepted: 12/07/2015] [Indexed: 11/22/2022] Open
Abstract
Inspiratory stretch by mechanical ventilation worsens lung injury. However, it is not clear whether and how the ventilator damages lungs in the absence of preexisting injury. We hypothesized that subtle loss of lung aeration during general anesthesia regionally augments ventilation and distension of ventilated air spaces. In eight supine anesthetized and intubated rats, hyperpolarized gas MRI was performed after a recruitment maneuver following 1 h of volume-controlled ventilation with zero positive end-expiratory pressure (ZEEP), FiO2 0.5, and tidal volume 10 ml/kg, and after a second recruitment maneuver. Regional fractional ventilation (FV), apparent diffusion coefficient (ADC) of (3)He (a measurement of ventilated peripheral air space dimensions), and gas volume were measured in lung quadrants of ventral and dorsal regions of the lungs. In six additional rats, computed tomography (CT) images were obtained at each time point. Ventilation with ZEEP decreased total lung gas volume and increased both FV and ADC in all studied regions. Increases in FV were more evident in the dorsal slices. In each lung quadrant, higher ADC was predicted by lower gas volume and by increased mean values (and heterogeneity) of FV distribution. CT scans documented 10% loss of whole-lung aeration and increased density in the dorsal lung, but no macroscopic atelectasis. Loss of pulmonary gas at ZEEP increased fractional ventilation and inspiratory dimensions of ventilated peripheral air spaces. Such regional changes could help explain a propensity for mechanical ventilation to contribute to lung injury in previously uninjured lungs.
Collapse
Affiliation(s)
- Maurizio Cereda
- Department of Anesthesiology and Critical Care, University of Pennsylvania, Philadelphia, Pennsylvania;
| | - Yi Xin
- Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania; and
| | - Hooman Hamedani
- Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania; and
| | - Justin Clapp
- Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania; and
| | - Stephen Kadlecek
- Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania; and
| | - Natalie Meeder
- Department of Anesthesiology and Critical Care, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Johnathan Zeng
- Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania; and
| | - Harrilla Profka
- Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania; and
| | - Brian P Kavanagh
- Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
| | - Rahim R Rizi
- Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania; and
| |
Collapse
|
91
|
He C, Zeng H, Chen J. Modeling of the Effect of Cell Deformation Associated with Microbubble Collision in Centrifugation Field. Cell Mol Bioeng 2015. [DOI: 10.1007/s12195-015-0416-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
|
92
|
Chen ZL, Song YL, Hu ZY, Zhang S, Chen YZ. An estimation of mechanical stress on alveolar walls during repetitive alveolar reopening and closure. J Appl Physiol (1985) 2015; 119:190-201. [DOI: 10.1152/japplphysiol.00112.2015] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2015] [Accepted: 05/26/2015] [Indexed: 11/22/2022] Open
Abstract
Alveolar overdistension and mechanical stresses generated by repetitive opening and closing of small airways and alveoli have been widely recognized as two primary mechanistic factors that may contribute to the development of ventilator-induced lung injury. A long-duration exposure of alveolar epithelial cells to even small, shear stresses could lead to the changes in cytoskeleton and the production of inflammatory mediators. In this paper, we have made an attempt to estimate in situ the magnitudes of mechanical stresses exerted on the alveolar walls during repetitive alveolar reopening by using a tape-peeling model of McEwan and Taylor (35). To this end, we first speculate the possible ranges of capillary number ( Ca) ≡ μU/ γ (a dimensionless combination of surface tension γ, fluid viscosity μ, and alveolar opening velocity U) during in vivo alveolar opening. Subsequent calculations show that increasing respiratory rate or inflation rate serves to increase the values of mechanical stresses. For a normal lung, the predicted maximum shear stresses are <15 dyn/cm2 at all respiratory rates, whereas for a lung with elevated surface tension or viscosity, the maximum shear stress will notably increase, even at a slow respiratory rate. Similarly, the increased pressure gradients in the case of elevated surface or viscosity may lead to a pressure drop >300 dyn/cm2 across a cell, possibly inducing epithelial hydraulic cracks. In addition, we have conceived of a geometrical model of alveolar opening to make a prediction of the positive end-expiratory pressure (PEEP) required to splint open a collapsed alveolus, which as shown by our results, covers a wide range of pressures, from several centimeters to dozens of centimeters of water, strongly depending on the underlying pulmonary conditions. The establishment of adequate regional ventilation-to-perfusion ratios may prevent recruited alveoli from reabsorption atelectasis and accordingly, reduce the required levels of PEEP. The present study and several recent animal experiments likewise suggest that a lung-protective ventilation strategy should not only include small tidal volume and plateau pressure limitations but also consider such cofactors as ventilation frequency and inflation rate.
Collapse
Affiliation(s)
- Zheng-long Chen
- Biomedical Instrument Institute, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
- Department of Precise Medical Device, Shanghai Medical Instrumentation College, Shanghai, China; and
| | - Yuan-lin Song
- Department of Pulmonary Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Zhao-yan Hu
- Department of Precise Medical Device, Shanghai Medical Instrumentation College, Shanghai, China; and
| | - Su Zhang
- Biomedical Instrument Institute, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Ya-zhu Chen
- Biomedical Instrument Institute, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
93
|
Carrasco Loza R, Villamizar Rodríguez G, Medel Fernández N. Ventilator-Induced Lung Injury (VILI) in Acute Respiratory Distress Syndrome (ARDS): Volutrauma and Molecular Effects. Open Respir Med J 2015; 9:112-9. [PMID: 26312103 PMCID: PMC4541417 DOI: 10.2174/1874306401509010112] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2015] [Revised: 04/16/2015] [Accepted: 04/16/2015] [Indexed: 01/03/2023] Open
Abstract
Acute Respiratory Distress Syndrome (ARDS) is a clinical condition secondary to a variety of insults leading to a severe acute respiratory failure and high mortality in critically ill patients. Patients with ARDS generally require mechanical ventilation, which is another important factor that may increase the ALI (acute lung injury) by a series of pathophysiological mechanisms, whose common element is the initial volutrauma in the alveolar units, and forming part of an entity known clinically as ventilator-induced lung injury (VILI). Injured lungs can be partially protected by optimal settings and ventilation modes, using low tidal volume (VT) values and high positive-end expiratory pressure (PEEP). The benefits in ARDS outcomes caused by these interventions have been confirmed by several prospective randomized controlled trials (RCTs) and are attributed to reduction in volutrauma. The purpose of this article is to present an approach to VILI pathophysiology focused on the effects of volutrauma that lead to lung injury and the ‘mechanotransduction’ mechanism. A more complete understanding about the molecular effects that physical forces could have, is essential for a better assessment of existing strategies as well as the development of new therapeutic strategies to reduce the damage resulting from VILI, and thereby contribute to reducing mortality in ARDS.
Collapse
Affiliation(s)
- R Carrasco Loza
- Laboratorio de Investigación Biomédica, Hospital del Salvador, Facultad de Medicina, Universidad de Chile, Santiago, Chile ; Unidad de Cuidados Intensivos, Clínica Dávila, Santiago, Chile
| | | | - N Medel Fernández
- Laboratorio de Investigación Biomédica, Hospital del Salvador, Facultad de Medicina, Universidad de Chile, Santiago, Chile ; Unidad de Cuidados Intensivos, Clínica Dávila, Santiago, Chile
| |
Collapse
|
94
|
Lutz D, Gazdhar A, Lopez-Rodriguez E, Ruppert C, Mahavadi P, Günther A, Klepetko W, Bates JH, Smith B, Geiser T, Ochs M, Knudsen L. Alveolar derecruitment and collapse induration as crucial mechanisms in lung injury and fibrosis. Am J Respir Cell Mol Biol 2015; 52:232-43. [PMID: 25033427 DOI: 10.1165/rcmb.2014-0078oc] [Citation(s) in RCA: 88] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) and bleomycin-induced pulmonary fibrosis are associated with surfactant system dysfunction, alveolar collapse (derecruitment), and collapse induration (irreversible collapse). These events play undefined roles in the loss of lung function. The purpose of this study was to quantify how surfactant inactivation, alveolar collapse, and collapse induration lead to degradation of lung function. Design-based stereology and invasive pulmonary function tests were performed 1, 3, 7, and 14 days after intratracheal bleomycin-instillation in rats. The number and size of open alveoli was correlated to mechanical properties. Active surfactant subtypes declined by Day 1, associated with a progressive alveolar derecruitment and a decrease in compliance. Alveolar epithelial damage was more pronounced in closed alveoli compared with ventilated alveoli. Collapse induration occurred on Day 7 and Day 14 as indicated by collapsed alveoli overgrown by a hyperplastic alveolar epithelium. This pathophysiology was also observed for the first time in human IPF lung explants. Before the onset of collapse induration, distal airspaces were easily recruited, and lung elastance could be kept low after recruitment by positive end-expiratory pressure (PEEP). At later time points, the recruitable fraction of the lung was reduced by collapse induration, causing elastance to be elevated at high levels of PEEP. Surfactant inactivation leading to alveolar collapse and subsequent collapse induration might be the primary pathway for the loss of alveoli in this animal model. Loss of alveoli is highly correlated with the degradation of lung function. Our ultrastructural observations suggest that collapse induration is important in human IPF.
Collapse
Affiliation(s)
- Dennis Lutz
- 1 Institute of Functional and Applied Anatomy, Hannover Medical School, Hannover
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
95
|
Stevens D, Oades PJ, Williams CA. Airflow limitation following cardiopulmonary exercise testing and heavy-intensity intermittent exercise in children with cystic fibrosis. Eur J Pediatr 2015; 174:251-7. [PMID: 25119817 DOI: 10.1007/s00431-014-2387-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2014] [Revised: 07/17/2014] [Accepted: 07/21/2014] [Indexed: 11/28/2022]
Abstract
UNLABELLED The clinical importance of exercise testing and training in the healthcare management of young patients with cystic fibrosis (CF) is growing. The aim of the present study was to determine the incidence of airflow limitation following cardiopulmonary exercise testing (CPET) and heavy-intensity intermittent exercise (HIIE) in young patients with CF. Nineteen young patients with CF and respective paired-matched controls performed CPET and HIIE on separate days. Forced expiratory volume in one second (FEV1) was measured pre- and post each exercise modality. A fall in FEV1 of 10 % or greater was used to define airflow limitation. The incidence of airflow limitation was significantly greater in the CF group than in the controls following CPET (32 vs. 5 %; p = 0.03); however, no significant difference in the incidence of airflow limitation was shown following HIIE between the CF group and controls (11 vs. 16 %; p = 0.64). CONCLUSION Our data show that the incidence of airflow limitation following CPET in young patients with CF is high. Therefore, clinicians may wish to identify whether young CF patients experience airflow limitation following strenuous exercise, such as CPET, before it is performed. However, HIIE carries a low risk for airflow limitation and may be prescribed as a safe, yet effective exercise modality for young patients with CF.
Collapse
Affiliation(s)
- Daniel Stevens
- Department of Pediatrics, Division of Respirology, Faculty of Medicine, Dalhousie University, Halifax, NS, Canada,
| | | | | |
Collapse
|
96
|
Tenenbaum-Katan J, Fishler R, Rothen-Rutishauser B, Sznitman J. Biomimetics of fetal alveolar flow phenomena using microfluidics. BIOMICROFLUIDICS 2015; 9:014120. [PMID: 25759753 PMCID: PMC4336252 DOI: 10.1063/1.4908269] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2014] [Accepted: 01/23/2015] [Indexed: 05/12/2023]
Abstract
At the onset of life in utero, the respiratory system begins as a liquid-filled tubular organ and undergoes significant morphological changes during fetal development towards establishing a respiratory organ optimized for gas exchange. As airspace morphology evolves, respiratory alveolar flows have been hypothesized to exhibit evolving flow patterns. In the present study, we have investigated flow topologies during increasing phases of embryonic life within an anatomically inspired microfluidic device, reproducing real-scale features of fetal airways representative of three distinct phases of in utero gestation. Micro-particle image velocimetry measurements, supported by computational fluid dynamics simulations, reveal distinct respiratory alveolar flow patterns throughout different stages of fetal life. While attached, streamlined flows characterize the shallow structures of premature alveoli indicative of the onset of saccular stage, separated recirculating vortex flows become the signature of developed and extruded alveoli characteristic of the advanced stages of fetal development. To further mimic physiological aspects of the cellular environment of developing airways, our biomimetic devices integrate an alveolar epithelium using the A549 cell line, recreating a confluent monolayer that produces pulmonary surfactant. Overall, our in vitro biomimetic fetal airways model delivers a robust and reliable platform combining key features of alveolar morphology, flow patterns, and physiological aspects of fetal lungs developing in utero.
Collapse
Affiliation(s)
- Janna Tenenbaum-Katan
- Department of Biomedical Engineering, Technion-Israel Institute of Technology , 32000 Haifa, Israel
| | - Rami Fishler
- Department of Biomedical Engineering, Technion-Israel Institute of Technology , 32000 Haifa, Israel
| | | | - Josué Sznitman
- Department of Biomedical Engineering, Technion-Israel Institute of Technology , 32000 Haifa, Israel
| |
Collapse
|
97
|
Levy R, Hill DB, Forest MG, Grotberg JB. Pulmonary fluid flow challenges for experimental and mathematical modeling. Integr Comp Biol 2014; 54:985-1000. [PMID: 25096289 PMCID: PMC4296202 DOI: 10.1093/icb/icu107] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Modeling the flow of fluid in the lungs, even under baseline healthy conditions, presents many challenges. The complex rheology of the fluids, interaction between fluids and structures, and complicated multi-scale geometry all add to the complexity of the problem. We provide a brief overview of approaches used to model three aspects of pulmonary fluid and flow: the surfactant layer in the deep branches of the lung, the mucus layer in the upper airway branches, and closure/reopening of the airway. We discuss models of each aspect, the potential to capture biological and therapeutic information, and open questions worthy of further investigation. We hope to promote multi-disciplinary collaboration by providing insights into mathematical descriptions of fluid-mechanics in the lung and the kinds of predictions these models can make.
Collapse
Affiliation(s)
- Rachel Levy
- *Department of Mathematics, Harvey Mudd College, Claremont, CA 91711, USA; The Marsico Lung Institute, Department of Physics and Astronomy, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Department of Mathematics, Department of Biomedical Engineering, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; NASA Bioscience and Engineering Institute, The University of Michigan, Ann Arbor, MI 48109, USA
| | - David B Hill
- *Department of Mathematics, Harvey Mudd College, Claremont, CA 91711, USA; The Marsico Lung Institute, Department of Physics and Astronomy, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Department of Mathematics, Department of Biomedical Engineering, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; NASA Bioscience and Engineering Institute, The University of Michigan, Ann Arbor, MI 48109, USA
| | - M Gregory Forest
- *Department of Mathematics, Harvey Mudd College, Claremont, CA 91711, USA; The Marsico Lung Institute, Department of Physics and Astronomy, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Department of Mathematics, Department of Biomedical Engineering, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; NASA Bioscience and Engineering Institute, The University of Michigan, Ann Arbor, MI 48109, USA
| | - James B Grotberg
- *Department of Mathematics, Harvey Mudd College, Claremont, CA 91711, USA; The Marsico Lung Institute, Department of Physics and Astronomy, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Department of Mathematics, Department of Biomedical Engineering, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; NASA Bioscience and Engineering Institute, The University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
98
|
Camilo LM, Ávila MB, Cruz LFS, Ribeiro GCM, Spieth PM, Reske AA, Amato M, Giannella-Neto A, Zin WA, Carvalho AR. Positive end-expiratory pressure and variable ventilation in lung-healthy rats under general anesthesia. PLoS One 2014; 9:e110817. [PMID: 25383882 PMCID: PMC4226529 DOI: 10.1371/journal.pone.0110817] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2014] [Accepted: 09/13/2014] [Indexed: 11/25/2022] Open
Abstract
Objectives Variable ventilation (VV) seems to improve respiratory function in acute lung injury and may be combined with positive end-expiratory pressure (PEEP) in order to protect the lungs even in healthy subjects. We hypothesized that VV in combination with moderate levels of PEEP reduce the deterioration of pulmonary function related to general anesthesia. Hence, we aimed at evaluating the alveolar stability and lung protection of the combination of VV at different PEEP levels. Design Randomized experimental study. Setting Animal research facility. Subjects Forty-nine male Wistar rats (200–270 g). Interventions Animals were ventilated during 2 hours with protective low tidal volume (VT) in volume control ventilation (VCV) or VV and PEEP adjusted at the level of minimum respiratory system elastance (Ers), obtained during a decremental PEEP trial subsequent to a recruitment maneuver, and 2 cmH2O above or below of this level. Measurements and Main Results Ers, gas exchange and hemodynamic variables were measured. Cytokines were determined in lung homogenate and plasma samples and left lung was used for histologic analysis and diffuse alveolar damage scoring. A progressive time-dependent increase in Ers was observed independent on ventilatory mode or PEEP level. Despite of that, the rate of increase of Ers and lung tissue IL-1 beta concentration were significantly lower in VV than in VCV at the level of the PEEP of minimum Ers. A significant increase in lung tissue cytokines (IL-6, IL-1 beta, CINC-1 and TNF-alpha) as well as a ventral to dorsal and cranial to caudal reduction in aeration was observed in all ventilated rats with no significant differences among groups. Conclusions VV combined with PEEP adjusted at the level of the PEEP of minimal Ers seemed to better prevent anesthesia-induced atelectasis and might improve lung protection throughout general anesthesia.
Collapse
Affiliation(s)
- Luciana M. Camilo
- Laboratory of Respiration Physiology, Carlos Chagas Filho Institute of Biophysics, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Mariana B. Ávila
- Laboratory of Respiration Physiology, Carlos Chagas Filho Institute of Biophysics, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Luis Felipe S. Cruz
- Laboratory of Respiration Physiology, Carlos Chagas Filho Institute of Biophysics, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Gabriel C. M. Ribeiro
- Laboratory of Pulmonary Engineering, Biomedical Engineering Program, Alberto Luis Coimbra Institute of Post-Graduation and Research in Engineering, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Peter M. Spieth
- Pulmonary Engineering Group, Department of Anesthesiology and Intensive Care Medicine, Technische Universität Dresden, Germany
| | - Andreas A. Reske
- Department of Anesthesiology and Intensive Care Medicine, University of Leipzig, Leipzig, Germany
| | - Marcelo Amato
- Cardio-Pulmonary Department, Pulmonary Division, Hospital das Clínicas, Universidade de São Paulo, São Paulo, Brazil
| | - Antonio Giannella-Neto
- Laboratory of Pulmonary Engineering, Biomedical Engineering Program, Alberto Luis Coimbra Institute of Post-Graduation and Research in Engineering, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Walter A. Zin
- Laboratory of Respiration Physiology, Carlos Chagas Filho Institute of Biophysics, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Alysson R. Carvalho
- Laboratory of Respiration Physiology, Carlos Chagas Filho Institute of Biophysics, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Laboratory of Pulmonary Engineering, Biomedical Engineering Program, Alberto Luis Coimbra Institute of Post-Graduation and Research in Engineering, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- * E-mail:
| |
Collapse
|
99
|
Chen X, Zielinski R, Ghadiali SN. Computational analysis of microbubble flows in bifurcating airways: role of gravity, inertia, and surface tension. J Biomech Eng 2014; 136:101007. [PMID: 25068642 PMCID: PMC4151161 DOI: 10.1115/1.4028097] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2013] [Revised: 07/20/2014] [Accepted: 07/30/2014] [Indexed: 01/11/2023]
Abstract
Although mechanical ventilation is a life-saving therapy for patients with severe lung disorders, the microbubble flows generated during ventilation generate hydrodynamic stresses, including pressure and shear stress gradients, which damage the pulmonary epithelium. In this study, we used computational fluid dynamics to investigate how gravity, inertia, and surface tension influence both microbubble flow patterns in bifurcating airways and the magnitude/distribution of hydrodynamic stresses on the airway wall. Direct interface tracking and finite element techniques were used to simulate bubble propagation in a two-dimensional (2D) liquid-filled bifurcating airway. Computational solutions of the full incompressible Navier-Stokes equation were used to investigate how inertia, gravity, and surface tension forces as characterized by the Reynolds (Re), Bond (Bo), and Capillary (Ca) numbers influence pressure and shear stress gradients at the airway wall. Gravity had a significant impact on flow patterns and hydrodynamic stress magnitudes where Bo > 1 led to dramatic changes in bubble shape and increased pressure and shear stress gradients in the upper daughter airway. Interestingly, increased pressure gradients near the bifurcation point (i.e., carina) were only elevated during asymmetric bubble splitting. Although changes in pressure gradient magnitudes were generally more sensitive to Ca, under large Re conditions, both Re and Ca significantly altered the pressure gradient magnitude. We conclude that inertia, gravity, and surface tension can all have a significant impact on microbubble flow patterns and hydrodynamic stresses in bifurcating airways.
Collapse
Affiliation(s)
- Xiaodong Chen
- Department of Biomedical Engineering,The Ohio State University,Columbus, OH 43210
| | - Rachel Zielinski
- Department of Biomedical Engineering,The Ohio State University,Columbus, OH 43210
| | - Samir N. Ghadiali
- Department of Biomedical Engineering,The Ohio State University,Columbus, OH 43210
- Department of Internal Medicine,Division of Pulmonary, Allergy, Critical Care andSleep Medicine,Dorothy M. Davis Heart &Lung Research Institute,The Ohio State University,Columbus, OH 43210e-mail:
| |
Collapse
|
100
|
Kollisch-Singule M, Emr B, Smith B, Ruiz C, Roy S, Meng Q, Jain S, Satalin J, Snyder K, Ghosh A, Marx WH, Andrews P, Habashi N, Nieman GF, Gatto LA. Airway pressure release ventilation reduces conducting airway micro-strain in lung injury. J Am Coll Surg 2014; 219:968-76. [PMID: 25440027 DOI: 10.1016/j.jamcollsurg.2014.09.011] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2014] [Revised: 07/25/2014] [Accepted: 08/01/2014] [Indexed: 12/18/2022]
Abstract
BACKGROUND Improper mechanical ventilation can exacerbate acute lung damage, causing a secondary ventilator-induced lung injury (VILI). We hypothesized that VILI can be reduced by modifying specific components of the ventilation waveform (mechanical breath), and we studied the impact of airway pressure release ventilation (APRV) and controlled mandatory ventilation (CMV) on the lung micro-anatomy (alveoli and conducting airways). The distribution of gas during inspiration and expiration and the strain generated during mechanical ventilation in the micro-anatomy (micro-strain) were calculated. STUDY DESIGN Rats were anesthetized, surgically prepared, and randomized into 1 uninjured control group (n = 2) and 4 groups with lung injury: APRV 75% (n = 2), time at expiration (TLow) set to terminate appropriately at 75% of peak expiratory flow rate (PEFR); APRV 10% (n = 2), TLow set to terminate inappropriately at 10% of PEFR; CMV with PEEP 5 cm H2O (PEEP 5; n = 2); or PEEP 16 cm H2O (PEEP 16; n = 2). Lung injury was induced in the experimental groups by Tween lavage and ventilated with their respective settings. Lungs were fixed at peak inspiration and end expiration for standard histology. Conducting airway and alveolar air space areas were quantified and conducting airway micro-strain was calculated. RESULTS All lung injury groups redistributed inspired gas away from alveoli into the conducting airways. The APRV 75% minimized gas redistribution and micro-strain in the conducting airways and provided the alveolar air space occupancy most similar to control at both inspiration and expiration. CONCLUSIONS In an injured lung, APRV 75% maintained micro-anatomic gas distribution similar to that of the normal lung. The lung protection demonstrated in previous studies using APRV 75% may be due to a more homogeneous distribution of gas at the micro-anatomic level as well as a reduction in conducting airway micro-strain.
Collapse
Affiliation(s)
| | - Bryanna Emr
- Department of General Surgery, SUNY Upstate Medical University, Syracuse, NY
| | - Bradford Smith
- Department of Medicine, University of Vermont, Burlington, VT
| | - Cynthia Ruiz
- Department of Biological Sciences, SUNY Cortland, Cortland, NY
| | - Shreyas Roy
- Department of General Surgery, SUNY Upstate Medical University, Syracuse, NY
| | - Qinghe Meng
- Department of General Surgery, SUNY Upstate Medical University, Syracuse, NY
| | - Sumeet Jain
- Department of General Surgery, SUNY Upstate Medical University, Syracuse, NY
| | - Joshua Satalin
- Department of General Surgery, SUNY Upstate Medical University, Syracuse, NY.
| | - Kathy Snyder
- Department of General Surgery, SUNY Upstate Medical University, Syracuse, NY
| | - Auyon Ghosh
- Department of General Surgery, SUNY Upstate Medical University, Syracuse, NY
| | - William H Marx
- Department of General Surgery, SUNY Upstate Medical University, Syracuse, NY
| | - Penny Andrews
- R Adams Cowley Shock Trauma Center, Trauma Critical Care Medicine, University of Maryland School of Medicine, Baltimore, MD
| | - Nader Habashi
- R Adams Cowley Shock Trauma Center, Trauma Critical Care Medicine, University of Maryland School of Medicine, Baltimore, MD
| | - Gary F Nieman
- Department of General Surgery, SUNY Upstate Medical University, Syracuse, NY
| | - Louis A Gatto
- Department of General Surgery, SUNY Upstate Medical University, Syracuse, NY; Department of Biological Sciences, SUNY Cortland, Cortland, NY
| |
Collapse
|