51
|
Aldworth ZN, Miller JP, Gedeon T, Cummins GI, Dimitrov AG. Dejittered spike-conditioned stimulus waveforms yield improved estimates of neuronal feature selectivity and spike-timing precision of sensory interneurons. J Neurosci 2005; 25:5323-32. [PMID: 15930380 PMCID: PMC6725005 DOI: 10.1523/jneurosci.0359-05.2005] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2005] [Revised: 04/21/2005] [Accepted: 04/21/2005] [Indexed: 11/21/2022] Open
Abstract
What is the meaning associated with a single action potential in a neural spike train? The answer depends on the way the question is formulated. One general approach toward formulating this question involves estimating the average stimulus waveform preceding spikes in a spike train. Many different algorithms have been used to obtain such estimates, ranging from spike-triggered averaging of stimuli to correlation-based extraction of "stimulus-reconstruction" kernels or spatiotemporal receptive fields. We demonstrate that all of these approaches miscalculate the stimulus feature selectivity of a neuron. Their errors arise from the manner in which the stimulus waveforms are aligned to one another during the calculations. Specifically, the waveform segments are locked to the precise time of spike occurrence, ignoring the intrinsic "jitter" in the stimulus-to-spike latency. We present an algorithm that takes this jitter into account. "Dejittered" estimates of the feature selectivity of a neuron are more accurate (i.e., provide a better estimate of the mean waveform eliciting a spike) and more precise (i.e., have smaller variance around that waveform) than estimates obtained using standard techniques. Moreover, this approach yields an explicit measure of spike-timing precision. We applied this technique to study feature selectivity and spike-timing precision in two types of sensory interneurons in the cricket cercal system. The dejittered estimates of the mean stimulus waveforms preceding spikes were up to three times larger than estimates based on the standard techniques used in previous studies and had power that extended into higher-frequency ranges. Spike timing precision was approximately 5 ms.
Collapse
Affiliation(s)
- Zane N Aldworth
- Center for Computational Biology, Montana State University, Bozeman, Montana 59717, USA
| | | | | | | | | |
Collapse
|
52
|
Kanou M, Kondoh Y. Compensation of Escape Direction in Unilaterally Cercus-ablated Crickets, Gryllus bimaculatus, is Associated with the Distance Walked during Recovery Period. Zoolog Sci 2004; 21:933-9. [PMID: 15459451 DOI: 10.2108/zsj.21.933] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
In response to an air puff stimulus, intact crickets, Gryllus bimaculatus, make an escape almost 180 degrees opposite to the stimulus source. In order to verify our previous hypothesis that a self-stimulation of the wind-sensory system is necessary for a compensational recovery of the escape direction (behavioral compensation) in unilaterally cercus-ablated crickets, we investigated the relationship between the conditions of rearing after a unilateral cercal ablation and the degree of behavioral compensation. A unilaterally cercus-ablated cricket reared in a large cage to permit free locomotion showed a significantly higher degree of recovery of escape direction compared with those reared under restrained conditions in a small glass vial. However, the degree of behavioral compensation in a cricket reared alone in a large cage was smaller than that of crickets reared in a cage of the same size with 5-6 other cercus-ablated crickets. Mutual stimulation possibly increased the extent of locomotion of crickets reared in a group and improved the degree of compensational recovery of the escape direction. To ascertain this, the distance a cricket moved during the recovery period was associated with the degree of compensational change of the escape direction. The result suggests that the degree of compensation of the escape direction clearly depended on the distance walked by the crickets. The compensation seemed not to be caused by other factors such as chemical ones in the case of group rearing because forced locomotion induced by touch stimulation on the body surface was solely effective in improving the escape direction.
Collapse
Affiliation(s)
- Masamichi Kanou
- Department of Biology and Earth Sciences, Faculty of Science, Ehime University, Matsuyama, Japan.
| | | |
Collapse
|
53
|
Eaton CD, Crook S, Cummins G, Jacobs G. Modeling ion channels from the cricket cercal sensory system. Neurocomputing 2004. [DOI: 10.1016/j.neucom.2004.01.074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
54
|
Ogawa H, Baba Y, Oka K. Directional sensitivity of dendritic calcium responses to wind stimuli in the cricket giant interneuron. Neurosci Lett 2004; 358:185-8. [PMID: 15039112 DOI: 10.1016/j.neulet.2004.01.023] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2003] [Revised: 01/09/2004] [Accepted: 01/13/2004] [Indexed: 10/26/2022]
Abstract
We examined directional sensitivities in the dendritic activity of the identified giant interneurons (GIs) in the cricket, using in vivo Ca(2+) imaging during different directional air-current stimuli. Air current stimulus evoked action potential burst and quick Ca(2+) increase in GI. The stimulus direction of the maximal Ca(2+) responses corresponded to that of the maximal voltage response. However, the shapes of the directional tuning curves based on the Ca(2+) responses for each dendritic branch were different from the overall tuning curve based on spike counts for the cell. Moreover, different dendritic branches displayed distinct directional sensitivity profiles to the air-current stimuli. We propose that postsynaptic activities will influence the local Ca(2+) signals in the distal dendrites, and produce the difference in directional sensitivity of the dendritic Ca(2+) response.
Collapse
Affiliation(s)
- Hiroto Ogawa
- Department of Biology, Saitama Medical School, 981 Kawakado, Moroyama Iruma-gun, Saitama 350-0496, Japan.
| | | | | |
Collapse
|
55
|
Spence AJ, Hoy RR, Isaacson MS. A micromachined silicon multielectrode for multiunit recording. J Neurosci Methods 2003; 126:119-26. [PMID: 12814836 DOI: 10.1016/s0165-0270(03)00075-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
A 16-channel multielectrode was used to record propagating action potentials from multiple units in the ventral nerve cord of the cricket Gryllus bimaculatus. The multielectrode was fabricated using photolithographic and bulk silicon etching techniques. The fabrication differs from standard methods in its use of deep reactive ion etching (DRIE) to form the bulk electrode structure. This technique enables the fabrication of relatively thick (>100 microm), rigid structures whose top surface can have any form of thin film electronics. The multielectrode tested in this paper consists of 16 narrow silicon bridges, 150 microm wide and 350 microm tall, spaced evenly over a centimeter, with passive rectangular gold recording sites on the top surface. The nerve cord was placed perpendicularly across the bridges. In this geometry, the nerve spans a 350 microm deep, 450 microm wide trench between each recording site, permitting adequate isolation of recording sites from each other and a platinum ground plane. Spike templates for eight neurons were formed using principle component analysis and clustering of the concatenated multichannel waveforms. Clean templates were generated from a 40 s recording of stimulus evoked activity. Conduction velocities ranged from 2.59+/-0.05 to 4.99+/-0.12 m/s. Two limitations of extracellular electrode arrays are the resolution of overlapping spikes and relation of discriminated units to known anatomy. The high density, precise positioning, and controlled impedance of recording sites achievable in microfabricated devices such as this one will aid in overcoming these limitations. The rigid devices fabricated using this process offer stable positioning of recording sites over relatively large distances (several millimeters) and are suitable for clamping or squeezing of nerve cords.
Collapse
Affiliation(s)
- A J Spence
- School of Applied and Engineering Physics, Cornell University, Ithaca, NY 14853, USA.
| | | | | |
Collapse
|
56
|
Cummins G, Crook S, Dimitrov A, Ganje T, Jacobs G, Miller J. Structural and biophysical mechanisms underlying dynamic sensitivity of primary sensory interneurons in the cricket cercal sensory system. Neurocomputing 2003. [DOI: 10.1016/s0925-2312(02)00786-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
57
|
|
58
|
Schrader S, Horseman G, Cokl A. Directional sensitivity of wind-sensitive giant interneurons in the cave cricket Troglophilus neglectus. THE JOURNAL OF EXPERIMENTAL ZOOLOGY 2002; 292:73-81. [PMID: 11754023 DOI: 10.1002/jez.1143] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Unlike the situation in most cockroach and cricket species studied so far, the wind-sensitive cerci of the cave cricket Troglophilus neglectus Krauss (Rhaphidophoridae, Orthoptera) are not oriented parallel to the body axis but perpendicular to it. The effects of this difference on the morphology, and directional sensitivity of cercal giant interneurons (GIs), were investigated. In order to test the hypothesis that the 90 degrees change in cercal orientation causes a corresponding shift in directional sensitivity of GIs, their responses in both the horizontal and vertical planes were tested. One ventral and four dorsal GIs (corresponding to GIs 9-1a and 9-2a, 9-3a, 10-2a, 10-3a of gryllid crickets) were identified. The ventral GI 9-1a of Troglophilus differed somewhat from its cricket homologue in its dendritic arborisation and its directional sensitivity in the horizontal plane. The morphology and horizontal directionality of the dorsal GIs closely resembled that of their counterparts in gryllids. In the vertical plane, the directionality of all GIs tested was similar. They were all excited mainly by wind puffs from the axon-ipsilateral quadrant. The results suggest that directional sensitivity to air currents in the horizontal plane is maintained despite the altered orientation of the cerci. This is presumably due to compensatory modifications in the directional pReferences of the filiform hairs.
Collapse
Affiliation(s)
- S Schrader
- National Institute of Biology, Vec4na pot 111, 1001 Ljubljana, Slovenia.
| | | | | |
Collapse
|
59
|
Lestienne R. Spike timing, synchronization and information processing on the sensory side of the central nervous system. Prog Neurobiol 2001; 65:545-91. [PMID: 11728644 DOI: 10.1016/s0301-0082(01)00019-3] [Citation(s) in RCA: 91] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
To what extent is the variability of the neuronal responses compatible with the use of spike timing for sensory information processing by the central nervous system? In reviewing the state of the art of this question, I first analyze the characteristics of this variability with its three elements: synaptic noise, impact of ongoing activity and possible fluctuations in evoked responses. I then review the recent literature on the various sensory modalities: somato-sensory, olfactory, gustatory and visual and auditory processing. I emphasize that the conditions in which precise timing, at the millisecond level, is usually obtained, are conditions that usually require dynamic stimulation or sharp changes in the stimuli. By contrast, situations in which stimulation not belonging to the temporal domain is temporally encoded lead to much coarser temporal coding; although in both cases, neural networks transmit the signals with similarly high precision. Synchronization among neurons is an important tool in information processing in both cases but again seems to act either at millisecond or tens of millisecond levels. Information theory applied to both situations confirms that the average rate of information transmission is much higher in dynamic than in static situations. These facts suggest that channels of precise temporal encoding may exist in the brain but imply populations of neurons working in a yet to be discovered way.
Collapse
Affiliation(s)
- R Lestienne
- Neurobiologie des Processus Adaptatifs, 9 quai St. Bernard 75005, CNRS FRE2371, Paris, France
| |
Collapse
|
60
|
Baird JC, Taube JS, Peterson DV. Statistical and information properties of head direction cells. PERCEPTION & PSYCHOPHYSICS 2001; 63:1026-37. [PMID: 11578047 DOI: 10.3758/bf03194521] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The human channel capacity for identifying sensory stimuli is compared with channel capacities based on neurophysiological findings. Studies have shown that cells in the postsubiculum (PoS) and the anterior dorsal thalamus (ADN) of the rat discharge as a function of the animal's head direction in the horizontal plane. We compute the statistical properties of the firing rates of head direction (HD) cells and the potential amount of information transmitted by these cells according to two theoretical models. The ceU response model for single cells indicates that information transmitted is much less than 0.5 bits. The population response model developed for cell ensembles generates values in the range of 1-3.2 bits, suggesting that a cell population can distinguish between two and nine head directions, depending on the value used for the standard deviation of directions over which a cell fires. These values are similar to those found in human psychophysical studies of the channel capacity for unidimensional sensory attributes.
Collapse
Affiliation(s)
- J C Baird
- Dartmouth College, Hanover, New Hampshire, USA.
| | | | | |
Collapse
|
61
|
Berkowitz A. Broadly tuned spinal neurons for each form of fictive scratching in spinal turtles. J Neurophysiol 2001; 86:1017-25. [PMID: 11495969 DOI: 10.1152/jn.2001.86.2.1017] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Behavioral choice can be mediated either by a small number of sharply tuned neurons or by large populations of broadly tuned neurons. This issue can be conveniently examined in the turtle spinal cord, which generates each of three forms of scratching-rostral, pocket, and caudal-in response to mechanical stimulation in each of three adjacent regions of the body surface. Previous research showed that many propriospinal neurons are broadly tuned to either the rostral scratch region or the pocket scratch region, but responses to caudal scratch stimulation could not be examined in that reduced preparation. In the current study, individual spinal neurons were recorded extracellularly from the gray matter of the turtle spinal cord hindlimb enlargement, while sites in the rostral, pocket, and caudal scratch regions were mechanically stimulated. Many neurons were broadly tuned to the caudal scratch region; other neurons were broadly tuned to either the pocket scratch or rostral scratch region. All three types were typically found within a single animal. These data are consistent with the hypothesis that the turtle spinal cord relies on large populations of broadly tuned neurons to select each of the three forms of scratching. In addition, neurons that were broadly tuned to each of the scratch regions were typically found in each spinal cord segment and within the same range of mediolateral and dorsoventral locations. Providing that these neurons are related to the selection and generation of the three forms of scratching, this would indicate that cells of this type are not segregated into distinct regions of the spinal cord gray matter.
Collapse
Affiliation(s)
- A Berkowitz
- Department of Zoology, University of Oklahoma, Norman 73019, USA.
| |
Collapse
|
62
|
Abstract
Studies of insect identified neurons over the past 25 years have provided some of the very best data on sensorimotor integration; tracing information flow from sensory to motor networks. General principles have emerged that have increased the sophistication with which we now understand both sensory processing and motor control. Two overarching themes have emerged from studies of identified sensory interneurons. First, within a species, there are profound differences in neuronal organization associated with both the sex and the social experience of the individual. Second, single neurons exhibit some surprisingly rich examples of computational sophistication in terms of (a) temporal dynamics (coding superimposed upon circadian and shorter-term rhythms), and also (b) what Kenneth Roeder called "neural parsimony": that optimal information can be encoded, and complex acts of sensorimotor coordination can be mediated, by small ensembles of cells. Insect motor systems have proven to be relatively complex, and so studies of their organization typically have not yielded completely defined circuits as are known from some other invertebrates. However, several important findings have emerged. Analysis of neuronal oscillators for rhythmic behavior have delineated a profound influence of sensory feedback on interneuronal circuits: they are not only modulated by feedback, but may be substantially reconfigured. Additionally, insect motor circuits provide potent examples of neuronal restructuring during an organism's lifetime, as well as insights on how circuits have been modified across evolutionary time. Several areas where future advances seem likely to occur include: molecular genetic analyses, neuroecological syntheses, and neuroinformatics--the use of digital resources to organize databases with information on identified nerve cells and behavior.
Collapse
Affiliation(s)
- C M Comer
- Laboratory of Integrative Neuroscience, Department of Biological Sciences, University of Illinois at Chicago, Chicago, IL 60607, USA.
| | | |
Collapse
|
63
|
Barbieri R, Quirk MC, Frank LM, Wilson MA, Brown EN. Construction and analysis of non-Poisson stimulus-response models of neural spiking activity. J Neurosci Methods 2001; 105:25-37. [PMID: 11166363 DOI: 10.1016/s0165-0270(00)00344-7] [Citation(s) in RCA: 158] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
A paradigm for constructing and analyzing non-Poisson stimulus-response models of neural spike train activity is presented. Inhomogeneous gamma (IG) and inverse Gaussian (IIG) probability models are constructed by generalizing the derivation of the inhomogeneous Poisson (IP) model from the exponential probability density. The resultant spike train models have Markov dependence. Quantile-quantile (Q-Q) plots and Kolmogorov-Smirnov (K-S) plots are developed based on the rate-rescaling theorem to assess model goodness-of-fit. The analysis also expresses the spike rate function of the neuron directly in terms of its interspike interval (ISI) distribution. The methods are illustrated with an analysis of 34 spike trains from rat CA1 hippocampal pyramidal neurons recorded while the animal executed a behavioral task. The stimulus in these experiments is the animal's position in its environment and the response is the neural spiking activity. For all 34 pyramidal cells, the IG and IIG models gave better fits to the spike trains than the IP. The IG model more accurately described the frequency of longer ISIs, whereas the IIG model gave the best description of the burst frequency, i.e. ISIs < or = 20 ms. The findings suggest that bursts are a significant component of place cell spiking activity even when position and the background variable, theta phase, are taken into account. Unlike the Poisson model, the spatial and temporal rate maps of the IG and IIG models depend directly on the spiking history of the neurons. These rate maps are more physiologically plausible since the interaction between space and time determines local spiking propensity. While this statistical paradigm is being developed to study information encoding by rat hippocampal neurons, the framework should be applicable to stimulus-response experiments performed in other neural systems.
Collapse
Affiliation(s)
- R Barbieri
- Department of Anesthesia and Critical Care, Massachusetts General Hospital, Harvard Medical School/MIT, 55 Fruit Street, Clinics 3, Boston, MA 02114-2698, USA.
| | | | | | | | | |
Collapse
|
64
|
Anderson CH, Huang Q, Clark JW. Harmonic analysis of spiking neuronal pairs. Neurocomputing 2000. [DOI: 10.1016/s0925-2312(00)00175-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
65
|
Abstract
We examine the anatomical basis for the representation of stimulus parameters within a neural map and examine the extraction of these parameters by sensory interneurons (INs) in the cricket cercal sensory system. The extraction of air current direction by these sensory interneurons can be understood largely in terms of the anatomy of the system. There are two critical anatomical constraints. (1) The arborizations of afferents with similar directional tuning properties are located near each other within the neural map. Therefore, a continuous variation in stimulus direction causes a continuous variation in the spatial pattern of activation. (2) The restriction of the synaptic connections of an interneuron to a unique set of afferents results from the unique anatomy of that interneuron: its dendritic arbors are located within restricted regions of the afferent map containing afferents with a limited subset of directional sensitivities. The functional organization of the set of four interneurons studied here is equivalent to a Cartesian coordinate system for computing the stimulus direction vector. For any air current stimulus direction, the firing rates of the active interneurons could be decoded as Cartesian coordinates by neurons at successive processing stages. The implications of this Cartesian coordinate system are discussed with respect to optimal coding strategies and developmental constraints on the cellular implementation of this coding scheme.
Collapse
|
66
|
Raastad M, Kiehn O. Spike coding during locomotor network activity in ventrally located neurons in the isolated spinal cord from neonatal rat. J Neurophysiol 2000; 83:2825-34. [PMID: 10805680 DOI: 10.1152/jn.2000.83.5.2825] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
To characterize spike coding in spinal neurons during rhythmic locomotor activity, we recorded from individual cells in the lumbar spinal cord of neonatal rats by using the on-cell patch-clamp technique. Locomotor activity was induced by N-methyl-D aspartate (NMDA) and 5-hydroxytryptamine (5-HT) and monitored by ventral root recording. We made an estimator based on the assumption that the number of spikes arriving during two halves of the locomotor cycle could be a code used by the neuronal network to distinguish between the halves. This estimator, termed the spike contrast, was calculated as the difference between the number of spikes in the most and least active half of an average cycle. The root activity defined the individual cycles and the positions of the spikes were calculated relative to these cycles. By comparing the average spike contrast to the spike contrast in noncyclic, randomized spike trains we found that approximately one half the cells (19 of 42) contained a significant spike contrast, averaging 1.25 +/- 0.23 (SE) spikes/cycle. The distribution of spike contrasts in the total population of cells was exponential, showing that weak modulation was more typical than strong modulation. To investigate if this low spike contrast was misleading because a higher spike contrast averaged out by occurring at different positions in the individual cycles we compared the spike contrast obtained from the average cycle to its maximal value in the individual cycles. The value was larger (3.13 +/- 0.25 spikes) than the spike contrast in the average cycle but not larger than the spike contrast in the individual cycles of a random, noncyclic spike trains (3.21 +/- 0.21 spikes). This result suggested that the important distinction between cyclic and noncyclic cells was only the repeated cycle position of the spike contrast and not its magnitude. Low spike frequencies (5.2 +/- 0.82 spikes/cycle, that were on average 3.5 s long) and a minimal spike interval of 100-200 ms limited the spike contrast. The standard deviation (SD) of the spike contrast in the individual neurons was similar to the average spike contrasts and was probably stochastic because the SDs of the simulated, noncyclic spike trains were also similar. In conclusion we find a highly distributed and variable locomotor related cyclic signal that is represented in the individual neurons by very few spikes and that becomes significant only because the spike contrast is repeated at a preferred phase of the locomotor cycle.
Collapse
Affiliation(s)
- M Raastad
- Department of Neurophysiology, Section of Neurophysiology, The Panum Institute, 2200 Copenhagen N, Denmark
| | | |
Collapse
|
67
|
Ogawa H, Baba Y, Oka K. Dendritic Ca2+ transient increase evoked by wind stimulus in the cricket giant interneuron. Neurosci Lett 1999; 275:61-4. [PMID: 10554985 DOI: 10.1016/s0304-3940(99)00744-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
In vivo Ca2+ imaging was applied to the cricket median giant interneuron (MGI), to visualize the dendritic processing of mechanosensory signals. Wind stimulation (air-puff) to the cerci induced a transient increase in the cytosolic Ca2+ concentration ([Ca2+]i) in the MGI with a latency of a few seconds, suggesting the release of Ca2+ from the intracellular store site in the MGI. The amplitude of the transient increase in [Ca2+]i in the dendrites depended on the direction of the air-puff, and the increase in [Ca2+]i evoked by the air-puff was suppressed by the hyperpolarizing current injection which blocked the generation of action potentials. These results indicate that the action potential is necessary to the direction-sensitive increase in [Ca2+]i induced by wind stimulation.
Collapse
Affiliation(s)
- H Ogawa
- Kawachi Millibioflight Project, ERATO, Meguro, Tokyo, Japan.
| | | | | |
Collapse
|
68
|
Abstract
Previous electrophysiological studies of cockroach mushroom bodies demonstrated the sensitivity of efferent neurons to multimodal stimuli. The present account describes the morphology and physiology of several types of efferent neurons with dendrites in the medial lobes. In general, efferent neurons respond to a variety of modalities in a context-specific manner, responding to specific combinations or specific sequences of multimodal stimuli. Efferent neurons that show endogenous activity have dendritic specializations that extend to laminae of Kenyon cell axons equipped with many synaptic vesicles, termed "dark" laminae. Efferent neurons that are active only during stimulation have dendritic specializations that branch mainly among Kenyon cell axons having few vesicles and forming the "pale" laminae. A new category of "recurrent" efferent neuron has been identified that provides feedback or feedforward connections between different parts of the mushroom body. Some of these neurons are immunopositive to antibodies raised against the inhibitory transmitter gamma-aminobutyric acid. Feedback pathways to the calyces arise from satellite neuropils adjacent to the medial lobes, which receive axon collaterals of efferent neurons. Efferent neurons are uniquely identifiable. Each morphological type occurs at the same location in the mushroom bodies of different individuals. Medial lobe efferent neurons terminate in the lateral protocerebrum among the endings of antennal lobe projection neurons. It is suggested that information about the sensory context of olfactory (or other) stimuli is relayed by efferent neurons to the lateral protocerebrum where it is integrated with information about odors relayed by antennal lobe projection neurons.
Collapse
Affiliation(s)
- Y Li
- Arizona Research Laboratories, Division of Neurobiology, The University of Arizona, Tucson 85721, USA.
| | | |
Collapse
|
69
|
Abstract
Primary mechanosensory receptors and interneurons in the cricket cercal sensory system are sensitive to the direction and frequency of air current stimuli. Receptors innervating long mechanoreceptor hairs (>1000 microm) are most sensitive to low-frequency air currents (<150 Hz); receptors innervating medium-length hairs (900-500 microm) are most sensitive to higher frequency ranges (150-400 Hz). Previous studies demonstrated that the projection pattern of the synaptic arborizations of long hair receptor afferents form a continuous map of air current direction within the terminal abdominal ganglion (). We demonstrate here that the projection pattern of the medium-length hair afferents also forms a continuous map of stimulus direction. However, the afferents from the long and medium-length hair afferents show very little spatial segregation with respect to their frequency sensitivity. The possible functional significance of this small degree of spatial segregation was investigated, by calculating the relative overlap between the long and medium-length hair afferents with the dendrites of two interneurons that are known to have different frequency sensitivities. Both interneurons were shown to have nearly equal anatomical overlap with long and medium hair afferents. Thus, the differential overlap of these interneurons with the two different classes of afferents was not adequate to explain the observed frequency selectivity of the interneurons. Other mechanisms such as selective connectivity between subsets of afferents and interneurons and/or differences in interneuron biophysical properties must play a role in establishing the frequency selectivities of these interneurons.
Collapse
|
70
|
Abstract
In a recent study, it was concluded that natural time-varying stimuli are represented more reliably in the brain than constant stimuli are. The results presented here disagree with this conclusion, although they were obtained from the same identified neuron (H1) in the fly's visual system. For large parts of the neuron's activity range, the variability of the responses was very similar for constant and time-varying stimuli and was considerably smaller than that in many visual interneurons of vertebrates.
Collapse
Affiliation(s)
- A K Warzecha
- Lehrstuhl für Neurobiologie, Fakultät für Biologie, Universität Bielefeld, Postfach 10 01 31, D-33501 Bielefeld, Germany.
| | | |
Collapse
|
71
|
Alkasab TK, Bozza TC, Cleland TA, Dorries KM, Pearce TC, White J, Kauer JS. Characterizing complex chemosensors: information-theoretic analysis of olfactory systems. Trends Neurosci 1999; 22:102-8. [PMID: 10199633 DOI: 10.1016/s0166-2236(98)01351-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The mechanisms that underlie a wine lover's ability to identify a favorite vintage and a dog's ability to track the scent of a lost child are still deep mysteries. Our understanding of these olfactory phenomena is confounded by the difficulty encountered when attempting to identify the parameters that define odor stimuli, by the broad tuning and variability of neurons in the olfactory pathway,and by the distributed nature of olfactory encoding. These issues pertain to both biological systems and to newly developed 'artificial noses' that seek to mimic these natural processes. Information theory, which quantifies explicitly the extent to which the state of one system (for example, the universe of all odors) relates to the state of another (for example, the responses of an odor-sensing device),can serve as a basis for analysing both natural and engineered odor sensors. This analytical approach can be used to explore the problems of defining stimulus dimensions, assessing strategies of neuronal processing, and examining the properties of biological systems that emerge from interactions among their complex components. It can also serve to optimize the design of artificial olfactory devices for a variety of applications, which include process control, medical diagnostics and the detection of explosives.
Collapse
Affiliation(s)
- T K Alkasab
- Dept of Neuroscience, Tufts University School of Medicine, Boston, MA 02111, USA
| | | | | | | | | | | | | |
Collapse
|
72
|
Lewis JE, Kristan WB. Representation of touch location by a population of leech sensory neurons. J Neurophysiol 1998; 80:2584-92. [PMID: 9819265 DOI: 10.1152/jn.1998.80.5.2584] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
To form accurate representations of the world, sensory systems must accurately encode stimuli in the spike trains of populations of neurons. The nature of such neuronal population codes is beginning to be understood. We characterize the entire sensory system underlying a simple withdrawal reflex in the leech, a bend directed away from the site of a light touch. Our studies show that two different populations of mechanosensory neurons each encode touch information with an accuracy that can more than account for the behavioral output. However, we found that only one of the populations, the P cells, is important for the behavior. The sensory representation of touch location is based on the spike counts in all of the four P cells. Further, fewer than three action potentials in the P cell population, occurring during the first 100 ms of a touch stimulus, may be required to process touch location information to produce the appropriately directed bend.
Collapse
Affiliation(s)
- J E Lewis
- Department of Biology, University of California, San Diego, La Jolla, California 92093-0357, USA
| | | |
Collapse
|
73
|
Quantitative analysis of a directed behavior in the medicinal leech: implications for organizing motor output. J Neurosci 1998. [PMID: 9454862 DOI: 10.1523/jneurosci.18-04-01571.1998] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The local bend is a directed behavior produced by the leech, Hirudo medicinalis, in response to a light touch. Contraction of longitudinal muscles near the touched location results in a bend directed away from the stimulus. We quantify the relationship between the location of touch around the body perimeter and the behavioral output by using video analysis, muscle tension measurements, and electromyography. On average, the direction of the behavioral output differed from the touch location by <8% of the total body perimeter. We discuss our results in the context of two contrasting behavioral strategies: a Continuous strategy, in which the local bend is directed exactly opposite to stimulus location, and a Categorical strategy, in which there are four distinct bend directions, each elicited by stimuli given in a single quadrant of the body perimeter. To distinguish between these strategies, we delivered two competing stimuli simultaneously. The resulting behavioral output is best described by an average of the effects of each stimulus given alone and thus provides support for the Continuous strategy. We also use a simple model, based on anatomical and physiological data, to predict the responses of the known motor neurons to different stimulus locations. The model shows that the activation of two of the motor neurons (D and V) is inconsistent with a Categorical strategy. However, these neurons are known to be active during the local bend behavior. This result, along with our experimental observations, suggests that the local bend network uses a Continuous strategy to encode stimulus location and produce directed behavioral output.
Collapse
|
74
|
Abstract
The correlation of neuronal activity with sensory input and behavioural output has revealed that information is often encoded in the activity of many neurons across a population, that is, a neural population code is used. The possible algorithms that downstream networks use to read out this population code have been studied by manipulating the activity of a few neurons in a population. We have used this approach to study population coding in a small network underlying the leech local bend, a body bend directed away from a touch stimulus. Because of the small size of this network we are able to monitor and manipulate the complete set of sensory inputs to the network. We show here that the population vector formed by the spike counts of the active mechanosensory neurons is well correlated with bend direction. A model based on the known connectivity of the identified neurons in the local bend network can account for our experimental results, and is suitable for reading out the neural population vector. Thus, for the first time to our knowledge, it is possible to link a proposed algorithm for neural population coding with synaptic and network mechanisms in an experimental system.
Collapse
Affiliation(s)
- J E Lewis
- Department of Biology, University of California, San Diego, La Jolla 92093-0357, USA
| | | |
Collapse
|
75
|
Lestienne R, Tuckwell HC. The significance of precisely replicating patterns in mammalian CNS spike trains. Neuroscience 1998; 82:315-36. [PMID: 9466445 DOI: 10.1016/s0306-4522(97)00281-9] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Neuronal spike trains from both single and multi-unit recordings often contain patterns such as doublets and triplets of spikes that precisely replicate themselves at a later time. The presence of such precisely replicating patterns can still be detected when the tolerance on interval replication is shortened to a fraction of a millisecond. In this context we examine here data taken from various parts of the central nervous systems of anesthetized rats, cats and monkeys. The relative abundance of replicating triplets varies from centre to centre, and is nearly always significantly greater than obtained in Monte-Carlo simulations of either a Poisson-like process or a renewal process having the same interspike interval distribution as the neuronal data. However, a remarkable exception is found in the activity of retinal ganglion cells. Significant deviations were found in the primary visual cortex and, even more so, in the lateral geniculate body and the mitral cells of the olfactory bulb. Using a fixed tolerance for the replication of intervals (0.5 ms) it is usually observed that replicating patterns are produced in excess (with respect to renewal process models) mostly in low firing rate episodes (< or = 100 Hz). However, using a tolerance that varies in direct proportion to the mean interval (i.e. as the reciprocal of the firing rate), one generally observes that replicating triplets occur with higher than expected frequency in comparable proportions at all firing rates. This observation suggests the existence of a scale invariance principle in these phenomena with respect to certain neuronal codes. In order to decrease the influence of the estimated neuronal firing rate on the results of the comparisons, we computed also the ratio NT2/ND3, of the number of replicating triplets to the number of doublets replicating three times [Lestienne R. (1994) Proc. Soc. Neurosci. 20, 22; Lestienne R. (1996) Biol. Cybern. 74, 55-61], using both a fixed or a variable tolerance. In spike trains obeying a Poisson process, NT2/ND3 ratios should be nearly independent of the frequency, especially when using a variable tolerance. These studies supported previous results: significant deviations from the models are found in all the spike trains examined, except in the case of retinal ganglion cells, and the most significant deviations are found in recordings from the lateral geniculate nucleus and the mitral cells of the olfactory bulb. Removing spikes that belong to bursts having large "Poisson surprise" values [Legéndy C. R. and Salcman M. (1985) J. Neurophysiol. 53, 926-939] (except the very first spike of the burst) significantly decreases NT2/ND3 ratios in the record from the lateral geniculate nucleus, suggesting that in this case bursty episodes greatly contribute to the production of replicating patterns, but such a removal does not affect results from the piriform record. Finally, in both the lateral geniculate nucleus and in the mitral cells of the olfactory bulb records, perturbing the timing of spikes by applying to interspike intervals small jitters of uniform probability density with amplitude up to 3 ms, very significantly decrease NT2/ND3 ratios in these centres, but does not change much the NT2/ND3 ratios in other neuronal recordings. Implications of these findings for a possible role of precisely replicating patterns in temporal coding of neuronal information is discussed, as well as possible mechanisms for their production.
Collapse
Affiliation(s)
- R Lestienne
- Institut des Neurosciences (CNRS URA 1488), Université Paris VI, France
| | | |
Collapse
|
76
|
Mizrahi A, Libersat F. Independent coding of wind direction in cockroach giant interneurons. J Neurophysiol 1997; 78:2655-61. [PMID: 9356415 DOI: 10.1152/jn.1997.78.5.2655] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Independent coding of wind direction in cockroach giant interneurons. J. Neurophysiol. 78: 2655-2661, 1997. In this study we examined the possible role of cell-to-cell interactions in the localization processing of a wind stimulus by the cockroach cercal system. Such sensory processing is performed primarily by pairs of giant interneurons (GIs), a group of highly directional cells. We have studied possible interactions among these GIs by comparing the wind sensitivity of a given GI before and after removing another GI with the use of photoablation. Testing various combinations of GI pairs did not reveal any suprathreshold interactions. This was true for all unilateral GI pairs on the left or right side as well as all the bilateral GI pairs (left and right homologues). Those experiments in which we were able to measure synaptic activity did not reveal subthreshold interactions between the GIs either. We conclude that the GIs code independently for a given wind direction without local GI-GI interactions. We discuss the possible implications of the absence of local interactions on information transfer in the first station of the escape circuit.
Collapse
Affiliation(s)
- A Mizrahi
- Zlotowski Center for Neurosciences and Department of Life Sciences, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel
| | | |
Collapse
|
77
|
Warzecha AK, Egelhaaf M. How reliably does a neuron in the visual motion pathway of the fly encode behaviourally relevant information? Eur J Neurosci 1997; 9:1365-74. [PMID: 9240394 DOI: 10.1111/j.1460-9568.1997.tb01491.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
How reliably neurons convey information depends on the extent to which their activity is affected by stochastic processes which are omnipresent in the nervous system. The functional consequences of neuronal noise can only be assessed if the latter is related to the response components that are induced in a normal behavioural situation. In the present study the reliability of neural coding was investigated for an identified neuron in the pathway processing visual motion information of the fly (Lucilia cuprina). The stimuli used to investigate the neuronal performance were not exclusively defined by the experimenter. Instead, they were generated by the fly itself, i.e. by its own actions and reactions in a behavioural closed-loop experiment, and subsequently replayed to the animal while the activity of an identified motion-sensitive neuron was recorded. Although the time course of the neuronal responses is time-locked to the stimulus, individual response traces differ slightly from each other due to stochastic fluctuations in the timing and number of action potentials. Individual responses thus consist of a stimulus-induced and a stochastic response component. The stimulus-induced response component can be recovered most reliably from noisy neuronal signals if these are smoothed by intermediate-sized time windows (40-100 ms). At this time scale the best compromise is achieved between smoothing out the noise and maintaining the temporal resolution of the stimulus-induced response component. Consequently, in the visual motion pathway of the fly, behaviourally relevant motion stimuli can be resolved best at a time scale where the timing of individual spikes does not matter.
Collapse
Affiliation(s)
- A K Warzecha
- Lehrstuhl für Neurobiologie, Fakultät für Biologie, Universität Bielefeld, Germany
| | | |
Collapse
|
78
|
Baba Y, Shimozawa T. Diversity of Motor Responses Initiated by a Wind Stimulus in the Freely Moving Cricket, Gryllus bimaculatus. Zoolog Sci 1997. [DOI: 10.2108/zsj.14.587] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
79
|
Clague H, Theunissen F, Miller JP. Effects of adaptation on neural coding by primary sensory interneurons in the cricket cercal system. J Neurophysiol 1997; 77:207-20. [PMID: 9120562 DOI: 10.1152/jn.1997.77.1.207] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Methods of stochastic systems analysis were applied to examine the effect of adaptation on frequency encoding by two functionally identical primary interneurons of the cricket cercal system. Stimulus reconstructions were obtained from a linear filtering transformation of spike trains elicited in response to bursts of broadband white noise air current stimuli (5-400 Hz). Each linear reconstruction was compared with the actual stimulus in the frequency domain to obtain a measure of waveform coding accuracy as a function of frequency. The term adaptation in this paper refers to the decrease in firing rate of a cell after the onset or increase in power of a white noise stimulus. The increase in firing rate after stimulus offset or decrease in stimulus power is assumed to be a complementary aspect of the same phenomenon. As the spike rate decreased during the course of adaptation, the total amount of information carried about the velocity waveform of the stimulus also decreased. The quality of coding of frequencies between 70 and 400 Hz decreased dramatically. The quality of coding of frequencies between 5 and 70 Hz decreased only slightly or even increased in some cases. The disproportionate loss of information about the higher frequencies could be attributed in part to the more rapid loss of spikes correlated with high-frequency stimulus components than of spikes correlated with low-frequency components. An increase in the responsiveness of a cell to frequencies > 70 Hz was correlated with a decrease in the ability of that cell to encode frequencies in the 5-70 Hz range. This nonlinear property could explain the improvement seen in some cases in the coding accuracy of frequencies between 5 and 70 Hz during the course of adaptation. Waveform coding properties also were characterized for fully adapted neurons at several stimulus intensities. The changes in coding observed through the course of adaptation were similar in nature to those found across stimulus powers. These changes could be accounted for largely by a change in neural sensitivity. The effect of adaptation on the coding of stimulus power was examined by measuring the response curves to steps in stimulus power before and after exposure to an adapting stimulus. Adaptation caused a loss of information about the mean stimulus power but did not cause any improvement in the coding of changes in stimulus power. The unadapted response of the cells did not show any saturation even at the highest powers used in these experiments.
Collapse
Affiliation(s)
- H Clague
- Department of Molecular and Cell Biology, University of California, Berkeley 94720, USA
| | | | | |
Collapse
|
80
|
Chan WP, Dickinson MH. Position-specific central projections of mechanosensory neurons on the haltere of the blow fly, Calliphora vicina. J Comp Neurol 1996; 369:405-18. [PMID: 8743421 DOI: 10.1002/(sici)1096-9861(19960603)369:3<405::aid-cne6>3.0.co;2-9] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The halteres of Dipteran insects play an important role in flight control. They are complex mechanosensory devices equipped with approximately 400 campaniform sensilla, cuticular strain gauges, which are organized into five fields at the base of each haltere. Despite the important role of these mechanosensory structures in flight, the central organization of the sensory afferents originating from the different field campaniforms has not been determined. We show here that in the blow fly, Calliphora vicina, sensory afferents from the campaniform fields project to the thorax in a region-specific manner. Afferents from different fields have different projection profiles and in addition, the projection pattern of afferents from different regions of the same field may show further variation. However, central target regions of these afferents are not exclusive to particular sensory fields because cells from different fields can possess similar projection profiles. Convergence of afferent projections is not limited to axons from the haltere fields, but is also observed between afferents originating from the haltere fields and those from serially homologous fields on the radial vein of the wing. Although we have not determined the specific cellular targets of the haltere sensory cells, the afferents of a dorsal field could make potential contact with at least one identified wing steering motoneuron that is known to be important in turning maneuvers. Our results, thus, provide the anatomical basis for studying how mechanosensory information encoded by the complex fields on the base of the haltere is mapped onto different functional regions within the CNS.
Collapse
Affiliation(s)
- W P Chan
- Department of Organismal Biology and Anatomy, University of Chicago, IL 60637, USA
| | | |
Collapse
|
81
|
Levin JE, Miller JP. Broadband neural encoding in the cricket cercal sensory system enhanced by stochastic resonance. Nature 1996; 380:165-8. [PMID: 8600392 DOI: 10.1038/380165a0] [Citation(s) in RCA: 326] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Sensory systems are often required to detect a small amplitude signal embedded in broadband background noise. Traditionally, ambient noise is regarded as detrimental to encoding accuracy. Recently, however, a phenomenon known as stochastic resonance has been described in which, for systems with a nonlinear threshold, increasing the input noise level can actually improve the output signal-to-noise ratio over a limited range of signal and noise strengths. Previous theoretical and experimental studies of stochastic resonance in physical and biological systems have dealt exclusively with single-frequency sine stimuli embedded in a broadband noise background. In the past year it has been shown in a theoretical and modelling study that stochastic resonance can be observed with broadband signals. Here we demonstrate that broadband stochastic resonance is manifest in the peripheral layers of neural processing in a simple sensory system, and that it plays a role over a wide range of biologically relevant stimulus parameters. Further, we quantify the functional significance of the phenomenon within the context of signal processing, using information theory.
Collapse
Affiliation(s)
- J E Levin
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA
| | | |
Collapse
|
82
|
Kanou M. Directionality of Cricket Giant Interneurons to Escape Eliciting Unidirectional Air-Current. Zoolog Sci 1996. [DOI: 10.2108/zsj.13.35] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
83
|
|
84
|
Kristan WB, Lockery SR, Lewis JE. Using reflexive behaviors of the medicinal leech to study information processing. JOURNAL OF NEUROBIOLOGY 1995; 27:380-9. [PMID: 7673896 DOI: 10.1002/neu.480270310] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The interneuronal network that produces local bending in the leech is distributed, in the sense that most of the interneurons involved are activated in all forms of local bending, even those in which their outputs would produce inappropriate movements. Such networks have been found to control a number of different behaviors in a variety of animals. This article reviews three issues: the physiological and modeling observations that led to the conclusion that local bending in leeches is controlled by a distributed system; what distributed processing means for this and other behaviors; and why the leech interneuronal network may have evolved to be distributed in the first place.
Collapse
Affiliation(s)
- W B Kristan
- Department of Biology, University of California at San Diego, La Jolla 92093-0357, USA
| | | | | |
Collapse
|
85
|
Abstract
We propose a rigorous definition for the term temporal encoding as it is applied to schemes for the representation of information within patterns of neuronal action potentials, and distinguish temporal encoding schemes from those based on window-averaged mean rate encoding. The definition relies on the identification of an encoding time window, defined as the duration of a neuron's spike train assumed to correspond to a single symbol in the neural code. The duration of the encoding time window is dictated by the time scale of the information being encoded. We distinguish between the concepts of the encoding time window and the integration time window, the latter of which is defined as the duration of a stimulus signal that affects the response of the neuron. We note that the duration of the encoding and integration windows might be significantly different. We also present objective, experimentally assessable criteria for identifying neurons and neuronal ensembles that utilize temporal encoding to any significant extent. The definitions and criteria are made rigorous within the contexts of several commonly used analytical approaches, including the stimulus reconstruction analysis technique. Several examples are presented to illustrate the distinctions between and relative capabilities of rate encoding and temporal encoding schemes. We also distinguish our usage of temporal encoding from the term temporal coding, which is commonly used in reference to the representation of information about the timing of events by rate encoding schemes.
Collapse
Affiliation(s)
- F Theunissen
- Department of Molecular and Cell Biology, University of California, Berkeley 94720, USA
| | | |
Collapse
|
86
|
Abstract
Transmission of information is an important function of cortical neurons, so it is conceivable that they have evolved to transmit information efficiently, with low noise and high temporal precision. Such precision is consistent with the output generated by various working models that mimick neuronal activity, from simple integrate-and-fire models to elaborate numerical simulations of realistic-looking neurons. But our current inability to match this data with neurons' detailed spike-generating mechanisms in vivo allows us a wide latitude in interpreting the significance of the various components of their spike code. One extreme hypothesis, the 'simple' model, is that each neuron is noisy and slow, performing a simple computation and transmitting a small amount of information. A competing hypothesis, the 'efficient' model, postulates that a neuron transmits large amounts of information through precise, complex, single-spike computations. Both hypotheses are broadly consistent with the available data. The conflict may only be resolved with the development of new measurement techniques that will allow one to investigate directly the properties that make a neuron efficient--that is, to be able to measure highly transient, localized events inside the thinnest dendrites, which are currently experimentally inaccessible.
Collapse
Affiliation(s)
- W R Softky
- National Institutes of Health, Bethesda, Maryland 20814, USA
| |
Collapse
|
87
|
Kolton L, Camhi JM. Cartesian representation of stimulus direction: Parallel processing by two sets of giant interneurons in the cockroach. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 1995. [DOI: 10.1007/bf01021589] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
88
|
Troyer TW, Levin JE, Jacobs GA. Construction and analysis of a database representing a neural map. Microsc Res Tech 1994; 29:329-43. [PMID: 7858313 DOI: 10.1002/jemt.1070290502] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
We describe the development and analysis of a quantitative database representing the global structural and functional organization of an entire sensory map. The database was derived from measurements of anatomical characteristics of a statistical sample of typical mechanosensory afferents in the cricket cercal sensory system. Anatomical characteristics of the neurons were measured quantitatively in three dimensions using a computer reconstruction system. The reconstructions of all neurons were aligned and scaled to a common standard set of dimensions, according to a highly reproducible set of intrinsic fiducial marks. The database therefore preserves accurate information about spatial relationships between the neurons within the ensemble. Algorithms were implemented to allow the integration of electrophysiological data about the stimulus/response characteristics of the reconstructed neurons into the database. The algorithms essentially map a physiological function onto a "field" representing the continuous distribution of synaptic terminals throughout the neural structure. Subsequent analysis allowed quantitative predictions of several important functional characteristics of the sensory map that emerge from its global organization. First, quantitative and testable predictions were made about ensemble response patterns within the map. The predicted patterns are presented as graphical images, similar to images that might be observed with activity-dependent dyes in the real neural system. Second, the synaptic innervation patterns from the sensory afferent map onto the dendrites of a postsynaptic target interneuron were predicted by calculating the overlap between the interneuron's dendrites with the afferent map. By doing so, several aspects of the stimulus/response properties of the interneuron were accurately predicted.
Collapse
Affiliation(s)
- T W Troyer
- Department of Mathematics, University of California, Berkeley 94720
| | | | | |
Collapse
|
89
|
Abstract
Neurons may encode information in more subtle ways than their average firing rate; encoding by more complex features of a neuron's firing pattern may allow more efficient information transmission.
Collapse
Affiliation(s)
- J P Miller
- Department of Molecular and Cell Biology, University of California, Berkeley 94720
| |
Collapse
|
90
|
Abstract
Biological neural networks are large systems of complex elements interacting through a complex array of connexions. Individual neurons express a large number of active conductances (Connors et al. 1982; Adams & Gavin, 1986; Llinás, 1988; McCormick, 1990; Hille, 1992) and exhibit a wide variety of dynamic behaviours on time scales ranging from milliseconds to many minutes (Llinás, 1988; Harris-Warrick & Marder, 1991; Churchland & Sejnowski, 1992; Turrigiano et al. 1994).
Collapse
Affiliation(s)
- L F Abbott
- Center for Complex Systems, Brandeis University, Waltham, MA 02254
| |
Collapse
|
91
|
Abstract
In a number of systems including wind detection in the cricket, visual motion perception and coding of arm movement direction in the monkey and place cell response to position in the rat hippocampus, firing rates in a population of tuned neurons are correlated with a vector quantity. We examine and compare several methods that allow the coded vector to be reconstructed from measured firing rates. In cases where the neuronal tuning curves resemble cosines, linear reconstruction methods work as well as more complex statistical methods requiring more detailed information about the responses of the coding neurons. We present a new linear method, the optimal linear estimator (OLE), that on average provides the best possible linear reconstruction. This method is compared with the more familiar vector method and shown to produce more accurate reconstructions using far fewer recorded neurons.
Collapse
Affiliation(s)
- E Salinas
- Biology Department, Brandeis University, Waltham, MA 02254, USA
| | | |
Collapse
|
92
|
Davis GW, Murphey RK. Retrograde signaling and the development of transmitter release properties in the invertebrate nervous system. JOURNAL OF NEUROBIOLOGY 1994; 25:740-56. [PMID: 7915302 DOI: 10.1002/neu.480250612] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The dynamics of presynaptic transmitter release are often matched to the functional properties of the postsynaptic cell. In organisms ranging from cats to crickets, evidence suggests that retrograde signaling is essential for matching these presynaptic release properties to individual postsynaptic partners. Retrograde interactions appear to control the development of presynaptic, short-term facilitation and depression.
Collapse
Affiliation(s)
- G W Davis
- Biology Department, Morrill Science Center (South), University of Massachusetts, Amherst 01003
| | | |
Collapse
|
93
|
Gozani SN, Miller JP. Optimal discrimination and classification of neuronal action potential waveforms from multiunit, multichannel recordings using software-based linear filters. IEEE Trans Biomed Eng 1994; 41:358-72. [PMID: 8063302 DOI: 10.1109/10.284964] [Citation(s) in RCA: 59] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
We describe advanced protocols for the discrimination and classification of neuronal spike waveforms within multichannel electrophysiological recordings. The programs are capable of detecting and classifying the spikes from multiple, simultaneously active neurons, even in situations where there is a high degree of spike waveform superposition on the recording channels. The protocols are based on the derivation of an optimal linear filter for each individual neuron. Each filter is tuned to selectively respond to the spike waveform generated by the corresponding neuron, and to attenuate noise and the spike waveforms from all other neurons. The protocol is essentially an extension of earlier work [1], [13], [18]. However, the protocols extend the power and utility of the original implementations in two significant respects. First, a general single-pass automatic template estimation algorithm was derived and implemented. Second, the filters were implemented within a software environment providing a greatly enhanced functional organization and user interface. The utility of the analysis approach was demonstrated on samples of multiunit electrophysiological recordings from the cricket abdominal nerve cord.
Collapse
Affiliation(s)
- S N Gozani
- Department of Molecular and Cell Biology, University of California, Berkeley 94720
| | | |
Collapse
|
94
|
Liebenthal E, Uhlmann O, Camhi JM. Critical parameters of the spike trains in a cell assembly: coding of turn direction by the giant interneurons of the cockroach. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 1994; 174:281-96. [PMID: 8151520 DOI: 10.1007/bf00240211] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Cockroaches (Periplaneta americana) respond to air displacement produced by an approaching predator by turning and running away. A set of 4 bilateral pairs of ventral giant interneurons is important in determining turn direction. Wind from a given side is known to produce more spikes, an earlier onset of the spike trains, and different fine temporal patterning, in the ipsilateral vs the contralateral set of these interneurons. Here we investigate which of these spike train parameters the cockroach actually uses to determine the direction it will turn. We delivered controlled wind puffs from the right front, together with intracellular injection of spike trains in a left ventral giant interneuron, under conditions where the animal could make normally directed turning movements of the legs and body. In trials where our stimuli caused the left side to give both the first spike and more total spikes than the right, but where our injected spike train included none of the normal fine temporal patterning, 92% of the evoked turns were to the right-opposite of normal (Figs. 4-6). In trials where the left side gave the first spike, but the right side gave more spikes, 100% of the turns were to the left--the normal direction (Figs. 8, 9). Comparable results were obtained when each of the left giant interneurons 1, 2 or 3 were electrically stimulated, and when either weak or stronger wind puffs were used. Stimulating a left giant interneuron electrically in the absence of a wind puff evoked an escape-like turn on 9% of the trials, and these were all to the right (Fig. 9). These results indicate that fine temporal patterning in the spike trains is not necessary, and information about which side gives the first spike is not sufficient, to determine turn direction. Rather, the key parameter appears to be relative numbers of action potentials in the left vs the right group of cells. These conclusions were supported by similar experiments in which extracellular stimulation of several left giant interneurons was paired with right wind (Figs. 11, 12).
Collapse
Affiliation(s)
- E Liebenthal
- Department of Cell and Animal Biology, Hebrew University, Jerusalem, Israel
| | | | | |
Collapse
|
95
|
Bodnar DA. Excitatory influence of wind-sensitive local interneurons on an ascending interneuron in the cricket cercal sensory system. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 1993; 172:641-51. [PMID: 8331608 DOI: 10.1007/bf00213686] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
This study examined the effects of a set of identified wind-sensitive local interneurons (9DL interneurons) on the wind-evoked spike output and directional sensitivity of an ascending interneuron (10-3) in the cricket (Acheta domesticus) cercal sensory system. Comparison of the directional sensitivities of the 9DL interneurons and 10-3 revealed that 3 of the 9DL interneurons have a large degree of overlap in their excitatory receptive fields with that of 10-3. Photoinactivation of any one of these 3 9DL interneurons resulted in a significant decrease in the spike output of 10-3 at its optimal excitatory wind stimulus positions. However, the overall directional sensitivity of 10-3 remained essentially unchanged. Photoinactivation of the one 9DL interneuron which had no overlap in its excitatory receptive field with 10-3 did not affect 10-3's responsiveness to wind stimuli. Results from simultaneous intracellular recordings of 10-3 and one of the 9DL interneurons which had an excitatory influence on 10-3 showed that depolarization of the local interneuron produced an epsp in 10-3, and could elicit several action potentials. Comparison of the morphologies of the 9DL interneurons and 10-3 revealed that the 3 9DL interneurons which had an excitatory influence on 10-3 all had regions of dendritic overlap with this ascending interneuron.
Collapse
Affiliation(s)
- D A Bodnar
- Department of Molecular and Cell Biology, University of California, Berkeley
| |
Collapse
|
96
|
Abstract
In addition to describing behavior in terms of neuronal properties and interconnections, some studies are using these well defined neuronal circuits to see how the circuits interact, how they develop, and how they are modified by experience, hormones and neuromodulators. The ready availability of computers and computational techniques has helped in some efforts, as have improvements in physiological and morphological techniques. The major insights, however, still come from experiments that ask clear and direct questions. This review highlights some of the promising approaches and suggests some general features of how neuronal circuits produce behavior.
Collapse
Affiliation(s)
- W B Kristan
- Department of Biology, University of California, San Diego, La Jolla 92093
| |
Collapse
|
97
|
Bodnar DA, Miller JP, Jacobs GA. Anatomy and physiology of identified wind-sensitive local interneurons in the cricket cercal sensory system. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 1991; 168:553-64. [PMID: 1920156 DOI: 10.1007/bf00215077] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
1. A group of wind sensitive local interneurons (9DL Interneurons) in the terminal abdominal ganglion of the cricket Acheta domesticus were identified and studied using intracellular staining and recording techniques. 2. The 9DL interneurons had apparent resting potentials ranging from -38 mV to -45 mV. At this membrane potential, these cells produced graded responses to wind stimuli; action potentials were never observed at these resting potentials. However, when the 9DL interneurons were hyperpolarized to a membrane potential of approximately -60 mV, a single action potential at the leading edge of the wind stimulus response was sometimes observed. 3. The wind stimulus threshold of the 9DL interneurons to the types of stimuli used in these studies was approximately 0.01 cm/s. Above this threshold, the excitatory responses increased logarithmically with increasing peak wind velocity up to approximately 0.5 cm/s. 4. The 9DL interneurons were directionally sensitive; their response amplitudes varied with wind stimulus orientation. 9DL1 cells responded maximally when stimulated with wind directed at the front of the animal. The apparent peak in directional sensitivity of the 9DL2 interneurons varied between the side and the rear of the animal, depending upon the site of electrode penetration within the cell's dendritic arbor. 5. The locations of dendritic branches of the 9DL interneurons within the afferent map of wind direction were used to predict the excitatory receptive field of these interneurons.
Collapse
Affiliation(s)
- D A Bodnar
- Department of Molecular and Cell Biology, University of California, Berkeley 94720
| | | | | |
Collapse
|