51
|
The protein-bound uremic toxin p-cresyl-sulfate promotes intracellular ROS production and lipid peroxidation in 3T3-L1 adipose cells. Biochimie 2021; 189:137-143. [PMID: 34217821 DOI: 10.1016/j.biochi.2021.06.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2019] [Revised: 06/14/2021] [Accepted: 06/30/2021] [Indexed: 11/23/2022]
Abstract
Patients with chronic kidney disease (CKD) often exhibit increased level of oxidative stress that contribute to the deterioration of renal function and uremic complications. White adipose tissue (WAT) has been recognized as a major site of production of radical oxygen species (ROS) in the context of metabolic diseases. This study was designed to decipher whether the protein bound uremic toxin p-cresyl-sulfate (p-CS) could contribute to ROS production in WAT and promote oxidative stress. Mouse 3T3-L1 adipocytes were incubated for 2 h in culture medium containing 212 μM p-CS, a concentration chosen to mimic levels encountered in end stage renal disease patients or KCl as a control and intracellular ROS production was measured using the fluorescent probe 5-6-carboxy-2',7'-dichlorodihydrofluorescein diacetate. Oxidative insult was estimated by the measurement of malondialdehyde (MDA) content and glutathione content. The effects of probenecid (1 mM) a potent inhibitor of organic anion transporter, apocynin (1 mM) an inhibitor of NADPH oxidase or common antioxidants such as α-tocopherol (2.5 μM), ascorbate (200 μM), and N-acetylcysteine (500 μM) were further evaluated. p-CS triggered a striking increase in ROS production (+228%, p < 0.01), in MDA content (+214%, p < 0.005) and a decrease in glutathione (-47%, P < 0.01). Pre-treatment of cells with probenecid, apocynin or antioxidants prevented the p-CS induced ROS production and oxidative insults. These results suggest that in uremic state, the intracellular accumulation of p-CS in adipose cells could contribute, through an activation of NADPH oxidase, to the redox imbalance often reported in CKD patients.
Collapse
|
52
|
Kanikowska D, Kanikowska A, Swora-Cwynar E, Grzymisławski M, Sato M, Bręborowicz A, Witowski J, Korybalska K. Moderate Caloric Restriction Partially Improved Oxidative Stress Markers in Obese Humans. Antioxidants (Basel) 2021; 10:antiox10071018. [PMID: 34202775 PMCID: PMC8300641 DOI: 10.3390/antiox10071018] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 06/15/2021] [Accepted: 06/22/2021] [Indexed: 12/14/2022] Open
Abstract
Oxidative stress and inflammation are implicated in obesity. Therefore, we investigated whether moderate and short-term calorie restriction (CR) reflects a real-life situation, mediates weight loss, and improves oxidative stress markers. We analyzed oxidative stress markers in patients with obesity undergoing moderate CR. Serum oxidative stress markers (myeloperoxidase (MPO), superoxide dismutase (SOD), catalase, total antioxidant status (TAS), and reactive oxygen species (ROS) (generation by endothelial cells in vitro)) were measured in 53 subjects (mean BMI 37.8 ± 5.9 kg/m2) who underwent 8 weeks of CR, which included a reduction of 300-500 kcal/day. MPO was the most CR-sensitive parameter. The mean level of serum MPO in patients with obesity was 20% higher than that in post CR intervention (p < 0.001). SOD increased by 12% after CR (p < 0.05), which was largely due to the improvement in glucose tolerance and the reduction in insulin resistance after CR. Other tested parameters were not modified during the treatment. CR resulted in an expected decrease in body weight (by 5.9 ± 4.6 kg, p < 0.0001) and other anthropometric parameters. Additionally, it was accompanied by a significant change in hsCRP, hsTNF alpha, hsIL-6, leptin (all p < 0.0001), and HOMA-IR (p < 0.05). Cardiovascular and metabolic parameters were also partially improved. Short-term, moderate CR partially improves antioxidant capacity but is enough to substantially change anthropometric parameters in obese patients. Our observations indicate that mimicking real-life situations and low-cost dietary intervention can be successfully implemented in obesity treatment with a simultaneous moderate effect on antioxidant status.
Collapse
Affiliation(s)
- Dominika Kanikowska
- Department of Pathophysiology, Poznan University of Medical Sciences, 60-806 Poznań, Poland; (A.B.); (J.W.); (K.K.)
- Correspondence:
| | - Alina Kanikowska
- Department of Internal Diseases, Metabolism and Nutrition, Poznań University of Medical Science, 60-355 Poznań, Poland; (A.K.); (E.S.-C.); (M.G.)
| | - Ewelina Swora-Cwynar
- Department of Internal Diseases, Metabolism and Nutrition, Poznań University of Medical Science, 60-355 Poznań, Poland; (A.K.); (E.S.-C.); (M.G.)
| | - Marian Grzymisławski
- Department of Internal Diseases, Metabolism and Nutrition, Poznań University of Medical Science, 60-355 Poznań, Poland; (A.K.); (E.S.-C.); (M.G.)
| | - Maki Sato
- Department of Physiology, Institutional Research, Aichi Medical University School of Medicine, Aichi Medical University, Aichi 480-1195, Japan;
| | - Andrzej Bręborowicz
- Department of Pathophysiology, Poznan University of Medical Sciences, 60-806 Poznań, Poland; (A.B.); (J.W.); (K.K.)
| | - Janusz Witowski
- Department of Pathophysiology, Poznan University of Medical Sciences, 60-806 Poznań, Poland; (A.B.); (J.W.); (K.K.)
| | - Katarzyna Korybalska
- Department of Pathophysiology, Poznan University of Medical Sciences, 60-806 Poznań, Poland; (A.B.); (J.W.); (K.K.)
| |
Collapse
|
53
|
Mas-Bargues C, Escrivá C, Dromant M, Borrás C, Viña J. Lipid peroxidation as measured by chromatographic determination of malondialdehyde. Human plasma reference values in health and disease. Arch Biochem Biophys 2021; 709:108941. [PMID: 34097903 DOI: 10.1016/j.abb.2021.108941] [Citation(s) in RCA: 95] [Impact Index Per Article: 31.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 02/12/2021] [Accepted: 05/24/2021] [Indexed: 12/16/2022]
Abstract
Free radicals and oxidants are involved in physiological signaling pathways, although an imbalance between pro-oxidant and anti-oxidant systems in favor of the former leads to major biomolecular damage. This is the so-called oxidative stress, a complex process that affects us all and is responsible for the development of many diseases. Lipids are very sensitive to oxidant attack and to-date, malondialdehyde (MDA), 4-hydroxy-2-nonenal (4-HNE) and F2-isoprostane are the main biomarkers for lipid peroxidation assessment. They all derive from polyunsaturated fatty acids (PUFAs) either by enzyme-catalyzed reactions (physiological) or by non-enzyme reactions (pathological). The profile of PUFAs present in the tissue will determine the proportion of each biomarker. In this review we aim to discuss the proper method for MDA determination using HPLC. We also offer reference MDA values in humans in physiological and pathological conditions.
Collapse
Affiliation(s)
- Cristina Mas-Bargues
- Freshage Research Group, Department of Physiology, Faculty of Medicine, University of Valencia, CIBERFES-ISCIII, INCLIVA, 46010, Valencia, Spain
| | - Consuelo Escrivá
- Freshage Research Group, Department of Physiology, Faculty of Medicine, University of Valencia, CIBERFES-ISCIII, INCLIVA, 46010, Valencia, Spain
| | - Mar Dromant
- Freshage Research Group, Department of Physiology, Faculty of Medicine, University of Valencia, CIBERFES-ISCIII, INCLIVA, 46010, Valencia, Spain
| | - Consuelo Borrás
- Freshage Research Group, Department of Physiology, Faculty of Medicine, University of Valencia, CIBERFES-ISCIII, INCLIVA, 46010, Valencia, Spain
| | - José Viña
- Freshage Research Group, Department of Physiology, Faculty of Medicine, University of Valencia, CIBERFES-ISCIII, INCLIVA, 46010, Valencia, Spain.
| |
Collapse
|
54
|
Coulibaly K, Thauvin M, Melenbacher A, Testard C, Trigoni E, Vincent A, Stillman MJ, Vriz S, Policar C, Delsuc N. A di-Copper Peptidyl Complex Mimics the Activity of Catalase, a Key Antioxidant Metalloenzyme. Inorg Chem 2021; 60:9309-9319. [PMID: 34109781 DOI: 10.1021/acs.inorgchem.0c03718] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Catalases (CAT) are antioxidant metalloenzymes necessary for life in oxygen-metabolizing cells to regulate H2O2 concentration by accelerating its dismutation. Many physiopathological situations are associated with oxidative stress resulting from H2O2 overproduction, during which antioxidant defenses are overwhelmed. We have used a combinatorial approach associated with an activity-based screening to discover a first peptidyl di-copper complex mimicking CAT. The complex was studied in detail and characterized for its CAT activity both in solutions and in cells using different analytical methods. The complex exhibited CAT activity in solutions and, more interestingly, on HyPer HeLa cells that possess a genetically encoded ratiometric fluorescent sensors of H2O2. These results highlight the efficiency of a combinatorial approach for the discovery of peptidyl complexes that exhibit catalytic activity.
Collapse
Affiliation(s)
- Koudedja Coulibaly
- Laboratoire des biomolécules, LBM, Département de chimie, Ecole normale supérieure, PSL University, Sorbonne Université, CNRS, 75005 Paris, France
| | - Marion Thauvin
- Collège de France, Centre Interdisciplinaire de Recherche en Biologie (CIRB), CNRS UMR7241/INSERM U1050, 75231 Paris, Cedex 05, France.,Sorbonne Université, 4 place Jussieu, 75005 Paris, France
| | - Adyn Melenbacher
- Department of Chemistry, The University of Western Ontario, London, ON N6A 5B7, Canada
| | - Clara Testard
- Laboratoire des biomolécules, LBM, Département de chimie, Ecole normale supérieure, PSL University, Sorbonne Université, CNRS, 75005 Paris, France
| | - Evangelia Trigoni
- Laboratoire des biomolécules, LBM, Département de chimie, Ecole normale supérieure, PSL University, Sorbonne Université, CNRS, 75005 Paris, France
| | - Amandine Vincent
- Laboratoire des biomolécules, LBM, Département de chimie, Ecole normale supérieure, PSL University, Sorbonne Université, CNRS, 75005 Paris, France
| | - Martin J Stillman
- Department of Chemistry, The University of Western Ontario, London, ON N6A 5B7, Canada
| | - Sophie Vriz
- Collège de France, Centre Interdisciplinaire de Recherche en Biologie (CIRB), CNRS UMR7241/INSERM U1050, 75231 Paris, Cedex 05, France.,Faculty of Science, Université de Paris, 75006 Paris, France
| | - Clotilde Policar
- Laboratoire des biomolécules, LBM, Département de chimie, Ecole normale supérieure, PSL University, Sorbonne Université, CNRS, 75005 Paris, France
| | - Nicolas Delsuc
- Laboratoire des biomolécules, LBM, Département de chimie, Ecole normale supérieure, PSL University, Sorbonne Université, CNRS, 75005 Paris, France
| |
Collapse
|
55
|
Pleiotropic and Potentially Beneficial Effects of Reactive Oxygen Species on the Intracellular Signaling Pathways in Endothelial Cells. Antioxidants (Basel) 2021; 10:antiox10060904. [PMID: 34205032 PMCID: PMC8229098 DOI: 10.3390/antiox10060904] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 05/28/2021] [Accepted: 05/31/2021] [Indexed: 02/06/2023] Open
Abstract
Endothelial cells (ECs) are exposed to molecular dioxygen and its derivative reactive oxygen species (ROS). ROS are now well established as important signaling messengers. Excessive production of ROS, however, results in oxidative stress, a significant contributor to the development of numerous diseases. Here, we analyze the experimental data and theoretical concepts concerning positive pro-survival effects of ROS on signaling pathways in endothelial cells (ECs). Our analysis of the available experimental data suggests possible positive roles of ROS in induction of pro-survival pathways, downstream of the Gi-protein-coupled receptors, which mimics insulin signaling and prevention or improvement of the endothelial dysfunction. It is, however, doubtful, whether ROS can contribute to the stabilization of the endothelial barrier.
Collapse
|
56
|
Zhang B, Han HB, Xu LB, Li YR, Song MX, Liu AP. Transcriptomic analysis of diapause-associated genes in Exorista civilis Rondani (Diptera:Tachinidae). ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2021; 107:e21789. [PMID: 33860960 DOI: 10.1002/arch.21789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 03/15/2021] [Accepted: 03/15/2021] [Indexed: 06/12/2023]
Abstract
Exorista civilis Rondani (Diptera:Tachinidae) is an excellent dominant parasitic enemy all over the world. But there has been a lack of research on the molecular regulation of diapause in E. civilis. To investigate the important diapause-associated genes and metabolic pathways in E. civilis, we can provide a theoretical basis for clarifying the molecular mechanism of diapause at the transcriptome level. The Illumina HiSeq. 2000 platform was used to perform transcriptome sequencing and bioinformatics analysis of the non-diapause and diapause pupae of E. civilis. 58,050 unigenes were successfully assembled, in which 4355 upregulated and 3158 downregulated unigenes were differentially expressed. Moreover, by Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichments, 896 kinds of the differentially expressed genes were specifically analyzed and showed that diapause-associated genes were related to be involved in the pathways of cold resistance, amino acid metabolism, and energy metabolism. Furthermore, these upregulated five genes showed the same trends of expression patterns between quantitative real-time polymerase chain reaction and RNA-Seq. This study provides a theoretical basis for the further study of the diapausing molecular mechanisms of E. civilis.
Collapse
Affiliation(s)
- Bo Zhang
- Research Center for Quality, Safety and Risk Assessment of Grass and Livestock Products, Institute of Grassland Research, Chinese Academy of Agricultural Sciences, Hohhot, China
| | - Hai-Bin Han
- Research Center for Quality, Safety and Risk Assessment of Grass and Livestock Products, Institute of Grassland Research, Chinese Academy of Agricultural Sciences, Hohhot, China
| | - Lin-Bo Xu
- Research Center for Quality, Safety and Risk Assessment of Grass and Livestock Products, Institute of Grassland Research, Chinese Academy of Agricultural Sciences, Hohhot, China
| | - Yan-Ru Li
- College of Horticulture and Plant Protection, Inner Mongolia Agricultural University, Hohhot, China
| | - Mi-Xia Song
- Research Center for Quality, Safety and Risk Assessment of Grass and Livestock Products, Institute of Grassland Research, Chinese Academy of Agricultural Sciences, Hohhot, China
| | - Ai-Ping Liu
- Research Center for Quality, Safety and Risk Assessment of Grass and Livestock Products, Institute of Grassland Research, Chinese Academy of Agricultural Sciences, Hohhot, China
| |
Collapse
|
57
|
Contribution of Adipose Tissue Oxidative Stress to Obesity-Associated Diabetes Risk and Ethnic Differences: Focus on Women of African Ancestry. Antioxidants (Basel) 2021; 10:antiox10040622. [PMID: 33921645 PMCID: PMC8073769 DOI: 10.3390/antiox10040622] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 03/15/2021] [Accepted: 03/26/2021] [Indexed: 12/14/2022] Open
Abstract
Adipose tissue (AT) storage capacity is central in the maintenance of whole-body homeostasis, especially in obesity states. However, sustained nutrients overflow may dysregulate this function resulting in adipocytes hypertrophy, AT hypoxia, inflammation and oxidative stress. Systemic inflammation may also contribute to the disruption of AT redox equilibrium. AT and systemic oxidative stress have been involved in the development of obesity-associated insulin resistance (IR) and type 2 diabetes (T2D) through several mechanisms. Interestingly, fat accumulation, body fat distribution and the degree of how adiposity translates into cardio-metabolic diseases differ between ethnicities. Populations of African ancestry have a higher prevalence of obesity and higher T2D risk than populations of European ancestry, mainly driven by higher rates among African women. Considering the reported ethnic-specific differences in AT distribution and function and higher levels of systemic oxidative stress markers, oxidative stress is a potential contributor to the higher susceptibility for metabolic diseases in African women. This review summarizes existing evidence supporting this hypothesis while acknowledging a lack of data on AT oxidative stress in relation to IR in Africans, and the potential influence of other ethnicity-related modulators (e.g., genetic-environment interplay, socioeconomic factors) for consideration in future studies with different ethnicities.
Collapse
|
58
|
Zhu T, Ren N, Liu X, Dong Y, Wang R, Gao J, Sun J, Zhu Y, Wang L, Fan C, Tian H, Li J, Zhao C. Probing the Intracellular Dynamics of Nitric Oxide and Hydrogen Sulfide Using an Activatable NIR II Fluorescence Reporter. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202015650] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- Tianli Zhu
- Key Laboratory for Advanced Materials, Institute of Fine Chemicals School of Chemistry and Molecular Engineering, Frontiers Science Center for Materiobiology and Dynamic Chemistry East China University of Science and Technology Shanghai 200237 P. R. China
| | - Ning Ren
- Bioimaging Center Shanghai Synchrotron Radiation Facility Zhangjiang Laboratory Shanghai Advanced Research Institute Division of Physical Biology CAS Key Laboratory of Interfacial Physics and Technology Shanghai Institute of Applied Physics Chinese Academy of Sciences Shanghai 201210 China
| | - Xia Liu
- Bioimaging Center Shanghai Synchrotron Radiation Facility Zhangjiang Laboratory Shanghai Advanced Research Institute Division of Physical Biology CAS Key Laboratory of Interfacial Physics and Technology Shanghai Institute of Applied Physics Chinese Academy of Sciences Shanghai 201210 China
| | - Yan Dong
- Key Laboratory for Advanced Materials, Institute of Fine Chemicals School of Chemistry and Molecular Engineering, Frontiers Science Center for Materiobiology and Dynamic Chemistry East China University of Science and Technology Shanghai 200237 P. R. China
| | - Rongchen Wang
- Key Laboratory for Advanced Materials, Institute of Fine Chemicals School of Chemistry and Molecular Engineering, Frontiers Science Center for Materiobiology and Dynamic Chemistry East China University of Science and Technology Shanghai 200237 P. R. China
| | - Jinzhu Gao
- Key Laboratory for Advanced Materials, Institute of Fine Chemicals School of Chemistry and Molecular Engineering, Frontiers Science Center for Materiobiology and Dynamic Chemistry East China University of Science and Technology Shanghai 200237 P. R. China
| | - Jie Sun
- Key Laboratory for Advanced Materials, Institute of Fine Chemicals School of Chemistry and Molecular Engineering, Frontiers Science Center for Materiobiology and Dynamic Chemistry East China University of Science and Technology Shanghai 200237 P. R. China
| | - Ying Zhu
- Bioimaging Center Shanghai Synchrotron Radiation Facility Zhangjiang Laboratory Shanghai Advanced Research Institute Division of Physical Biology CAS Key Laboratory of Interfacial Physics and Technology Shanghai Institute of Applied Physics Chinese Academy of Sciences Shanghai 201210 China
| | - Lihua Wang
- Bioimaging Center Shanghai Synchrotron Radiation Facility Zhangjiang Laboratory Shanghai Advanced Research Institute Division of Physical Biology CAS Key Laboratory of Interfacial Physics and Technology Shanghai Institute of Applied Physics Chinese Academy of Sciences Shanghai 201210 China
| | - Chunhai Fan
- School of Chemistry and Chemical Engineering Frontiers Science Center for Transformative Molecules and National Center for Translational Medicine Shanghai Jiao Tong University Shanghai 200240 China
| | - He Tian
- Key Laboratory for Advanced Materials, Institute of Fine Chemicals School of Chemistry and Molecular Engineering, Frontiers Science Center for Materiobiology and Dynamic Chemistry East China University of Science and Technology Shanghai 200237 P. R. China
| | - Jiang Li
- Bioimaging Center Shanghai Synchrotron Radiation Facility Zhangjiang Laboratory Shanghai Advanced Research Institute Division of Physical Biology CAS Key Laboratory of Interfacial Physics and Technology Shanghai Institute of Applied Physics Chinese Academy of Sciences Shanghai 201210 China
| | - Chunchang Zhao
- Key Laboratory for Advanced Materials, Institute of Fine Chemicals School of Chemistry and Molecular Engineering, Frontiers Science Center for Materiobiology and Dynamic Chemistry East China University of Science and Technology Shanghai 200237 P. R. China
| |
Collapse
|
59
|
Redox regulation of the insulin signalling pathway. Redox Biol 2021; 42:101964. [PMID: 33893069 PMCID: PMC8113030 DOI: 10.1016/j.redox.2021.101964] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 03/19/2021] [Accepted: 03/29/2021] [Indexed: 12/11/2022] Open
Abstract
The peptide hormone insulin is a key regulator of energy metabolism, proliferation and survival. Binding of insulin to its receptor activates the PI3K/AKT signalling pathway, which mediates fundamental cellular responses. Oxidants, in particular H2O2, have been recognised as insulin-mimetics. Treatment of cells with insulin leads to increased intracellular H2O2 levels affecting the activity of downstream signalling components, thereby amplifying insulin-mediated signal transduction. Specific molecular targets of insulin-stimulated H2O2 include phosphatases and kinases, whose activity can be altered via redox modifications of critical cysteine residues. Over the past decades, several of these redox-sensitive cysteines have been identified and their impact on insulin signalling evaluated. The aim of this review is to summarise the current knowledge on the redox regulation of the insulin signalling pathway.
Collapse
|
60
|
Gibb Z, Blanco-Prieto O, Bucci D. The role of endogenous antioxidants in male animal fertility. Res Vet Sci 2021; 136:495-502. [PMID: 33857769 DOI: 10.1016/j.rvsc.2021.03.024] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 01/29/2021] [Accepted: 03/25/2021] [Indexed: 01/22/2023]
Abstract
Mammalian semen is a physiological fluid composed of a cellular fraction (spermatozoa), and a liquid fraction (seminal plasma). Once delivered to the female genital tract, spermatozoa should be able to capacitate; a process which involves a plethora of biochemical and physiological changes required to fertilize the oocyte. Sperm production (spermatogenesis) occurs in the testes, whereby pluripotent spermatogonia differentiate to form the most morphologically specialized cells in the body. Further maturation of spermatozoa occurs in the epididymis, where they are stored prior to ejaculation. During this whole process, spermatozoa are exposed to different environments and cellular processes which may expose them to substantial levels of oxidative stress. To avoid damage associated with the unchecked production of reactive oxygen species (ROS), both spermatozoa, and the parts of the male genital tract in which they reside, are furnished with a suite of antioxidant molecules which are able to provide protection to these cells, thereby increasing their chance of being able to fertilize the oocyte and deliver an intact paternal genome to the future offspring. However, there are a host of reasons why these antioxidant systems may fail, including nutritional deficiencies, genetics, and disease states, and in these situations, a reduction or abolition of fertilizing capacity may result. This review paper focuses on the endogenous antioxidant defences available to spermatozoa during spermatogenesis and sperm maturation, the site of their production and their physiological role. Furthermore, we revised the causes and effects of antioxidant deficiencies (congenital or acquired during the animal's adulthood) on reproductive function in different animal species.
Collapse
Affiliation(s)
- Zamira Gibb
- Priority Research Centre in Reproductive Science, Faculty of Science, University of Newcastle, Callaghan, NSW 2308, Australia
| | - Olga Blanco-Prieto
- Department of Veterinary Medical Sciences, Alma Mater Studiorum - Università di Bologna, Italy.
| | - Diego Bucci
- Department of Veterinary Medical Sciences, Alma Mater Studiorum - Università di Bologna, Italy
| |
Collapse
|
61
|
Zhu T, Ren N, Liu X, Dong Y, Wang R, Gao J, Sun J, Zhu Y, Wang L, Fan C, Tian H, Li J, Zhao C. Probing the Intracellular Dynamics of Nitric Oxide and Hydrogen Sulfide Using an Activatable NIR II Fluorescence Reporter. Angew Chem Int Ed Engl 2021; 60:8450-8454. [DOI: 10.1002/anie.202015650] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 12/24/2020] [Indexed: 12/11/2022]
Affiliation(s)
- Tianli Zhu
- Key Laboratory for Advanced Materials, Institute of Fine Chemicals School of Chemistry and Molecular Engineering, Frontiers Science Center for Materiobiology and Dynamic Chemistry East China University of Science and Technology Shanghai 200237 P. R. China
| | - Ning Ren
- Bioimaging Center Shanghai Synchrotron Radiation Facility Zhangjiang Laboratory Shanghai Advanced Research Institute Division of Physical Biology CAS Key Laboratory of Interfacial Physics and Technology Shanghai Institute of Applied Physics Chinese Academy of Sciences Shanghai 201210 China
| | - Xia Liu
- Bioimaging Center Shanghai Synchrotron Radiation Facility Zhangjiang Laboratory Shanghai Advanced Research Institute Division of Physical Biology CAS Key Laboratory of Interfacial Physics and Technology Shanghai Institute of Applied Physics Chinese Academy of Sciences Shanghai 201210 China
| | - Yan Dong
- Key Laboratory for Advanced Materials, Institute of Fine Chemicals School of Chemistry and Molecular Engineering, Frontiers Science Center for Materiobiology and Dynamic Chemistry East China University of Science and Technology Shanghai 200237 P. R. China
| | - Rongchen Wang
- Key Laboratory for Advanced Materials, Institute of Fine Chemicals School of Chemistry and Molecular Engineering, Frontiers Science Center for Materiobiology and Dynamic Chemistry East China University of Science and Technology Shanghai 200237 P. R. China
| | - Jinzhu Gao
- Key Laboratory for Advanced Materials, Institute of Fine Chemicals School of Chemistry and Molecular Engineering, Frontiers Science Center for Materiobiology and Dynamic Chemistry East China University of Science and Technology Shanghai 200237 P. R. China
| | - Jie Sun
- Key Laboratory for Advanced Materials, Institute of Fine Chemicals School of Chemistry and Molecular Engineering, Frontiers Science Center for Materiobiology and Dynamic Chemistry East China University of Science and Technology Shanghai 200237 P. R. China
| | - Ying Zhu
- Bioimaging Center Shanghai Synchrotron Radiation Facility Zhangjiang Laboratory Shanghai Advanced Research Institute Division of Physical Biology CAS Key Laboratory of Interfacial Physics and Technology Shanghai Institute of Applied Physics Chinese Academy of Sciences Shanghai 201210 China
| | - Lihua Wang
- Bioimaging Center Shanghai Synchrotron Radiation Facility Zhangjiang Laboratory Shanghai Advanced Research Institute Division of Physical Biology CAS Key Laboratory of Interfacial Physics and Technology Shanghai Institute of Applied Physics Chinese Academy of Sciences Shanghai 201210 China
| | - Chunhai Fan
- School of Chemistry and Chemical Engineering Frontiers Science Center for Transformative Molecules and National Center for Translational Medicine Shanghai Jiao Tong University Shanghai 200240 China
| | - He Tian
- Key Laboratory for Advanced Materials, Institute of Fine Chemicals School of Chemistry and Molecular Engineering, Frontiers Science Center for Materiobiology and Dynamic Chemistry East China University of Science and Technology Shanghai 200237 P. R. China
| | - Jiang Li
- Bioimaging Center Shanghai Synchrotron Radiation Facility Zhangjiang Laboratory Shanghai Advanced Research Institute Division of Physical Biology CAS Key Laboratory of Interfacial Physics and Technology Shanghai Institute of Applied Physics Chinese Academy of Sciences Shanghai 201210 China
| | - Chunchang Zhao
- Key Laboratory for Advanced Materials, Institute of Fine Chemicals School of Chemistry and Molecular Engineering, Frontiers Science Center for Materiobiology and Dynamic Chemistry East China University of Science and Technology Shanghai 200237 P. R. China
| |
Collapse
|
62
|
Kooshki F, Tutunchi H, Vajdi M, Karimi A, Niazkar HR, Shoorei H, Pourghassem Gargari B. A Comprehensive insight into the effect of chromium supplementation on oxidative stress indices in diabetes mellitus: A systematic review. Clin Exp Pharmacol Physiol 2021; 48:291-309. [PMID: 33462845 DOI: 10.1111/1440-1681.13462] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 04/16/2020] [Accepted: 12/24/2020] [Indexed: 02/06/2023]
Abstract
Diabetes mellitus is a metabolic disorder defined as an increase in blood glucose levels (hyperglycaemia) and insufficient production or action of insulin produced by the pancreas. Chronic hyperglycaemia leads to increased reactive oxygen species (ROS) production and oxidative stress, which consequently results in insulin resistance, beta cell degeneration, dyslipidaemia, and glucose intolerance in diabetic patients. Chromium has an essential role in the metabolism of proteins, lipids, and carbohydrates through increasing insulin efficiency. This systematic review aimed to evaluate chromium supplementation's potential roles in oxidative stress indices in diabetes mellitus. A systematic search was performed in PubMed, Scopus, Google Scholar, Cochrane, and Science Direct databases until November 2020. All clinical trials and animal studies that assessed chromium's effect on oxidative stress indices in diabetes mellitus and were published in English-language journals were included. Finally, only 33 out of 633 articles met the required criteria for further analysis. Among 33 papers, 25 studies were performed on animals, and eight investigations were conducted on humans. Twenty-eight studies of chromium supplementation lead to reducing oxidative stress indices. Also, 23 studies showed that chromium supplementation markedly increased antioxidant enzymes' activity and improved levels of antioxidant indices. In conclusion, chromium supplementation decreased oxidative stress in diabetes mellitus. However, further clinical trials are suggested in a bid to determine the exact mechanisms.
Collapse
Affiliation(s)
- Fateme Kooshki
- Student Research Committee, Faculty of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Clinical Nutrition, Faculty of Nutrition and Food Science, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Helda Tutunchi
- Nutrition Research Center, Faculty of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mahdi Vajdi
- Student Research Committee, Faculty of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Clinical Nutrition, Faculty of Nutrition and Food Science, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Arash Karimi
- Student Research Committee, Faculty of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Clinical Nutrition, Faculty of Nutrition and Food Science, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hamid Reza Niazkar
- Student Research Committee, Gonabad University of Medical Sciences, Gonabad, Iran
| | - Hamed Shoorei
- Department of Anatomical Sciences, Faculty of Medicine, Birjand University of Medical Sciences, Birjand, Iran
| | - Bahram Pourghassem Gargari
- Nutrition Research Center, Faculty of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
63
|
Behl T, Kaur I, Sehgal A, Sharma E, Kumar A, Grover M, Bungau S. Unfolding Nrf2 in diabetes mellitus. Mol Biol Rep 2021; 48:927-939. [PMID: 33389540 DOI: 10.1007/s11033-020-06081-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Accepted: 12/10/2020] [Indexed: 11/24/2022]
Abstract
In spite of much awareness, diabetes mellitus continues to remain one of major reasons for mortality and morbidity rate all over the globe. Free radicals cause oxidative stress which is responsible for causing diabetes. The recent advancements in elucidation of ARE/keap1/Nrf2 pathway can help in better understanding of diabetes mellitus. Various clinical trials and animal studies have shown the promising effect of Nrf2 pathway in reversing diabetes by counteracting with the oxidative stress produced. The gene is known to dissociate from Keap1 on coming in contact with such stresses to show preventive and prognosis effect. The Nrf2 gene has been marked as a molecular player in dealing with wide intracellular as well as extracellular cellular interactions in different diseases. The regulation of this gene gives some transcription factor that contain antioxidant response elements (ARE) in their promoter region and thus are responsible for encoding certain proteins involved in regulation of metabolic and detoxifying enzymes.
Collapse
Affiliation(s)
- Tapan Behl
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, India.
| | - Ishnoor Kaur
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, India
| | - Aayush Sehgal
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, India
| | - Eshita Sharma
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, India
| | - Arun Kumar
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, India
| | - Madhuri Grover
- B.S. Anangpuria Institute of Pharmacy, Alampur, Haryana, India
| | - Simona Bungau
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, Oradea, Romania
| |
Collapse
|
64
|
Skytte MJ, Samkani A, Astrup A, Frystyk J, Rehfeld JF, Holst JJ, Madsbad S, Burling K, Fenger M, Thomsen MN, Larsen TM, Krarup T, Haugaard SB. Effects of carbohydrate restriction on postprandial glucose metabolism, β-cell function, gut hormone secretion, and satiety in patients with Type 2 diabetes. Am J Physiol Endocrinol Metab 2021; 320:E7-E18. [PMID: 33103448 DOI: 10.1152/ajpendo.00165.2020] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Dietary carbohydrate restriction may improve the phenotype of Type 2 diabetes (T2D) patients. We aimed to investigate 6 wk of carbohydrate restriction on postprandial glucose metabolism, pancreatic α- and β-cell function, gut hormone secretion, and satiety in T2D patients. Methods In a crossover design, 28 T2D patients (mean HbA1c: 60 mmol/mol) were randomized to 6 wk of carbohydrate-reduced high-protein (CRHP) diet and 6 wk of conventional diabetes (CD) diet (energy-percentage carbohydrate/protein/fat: 30/30/40 vs. 50/17/33). Twenty-four-hour continuous glucose monitoring (CGM) and mixed-meal tests were undertaken and fasting intact proinsulin (IP), 32,33 split proinsulin concentrations (SP), and postprandial insulin secretion rates (ISR), insulinogenic index (IGI), β-cell sensitivity to glucose (Bup), glucagon, and gut hormones were measured. Gastric emptying was evaluated by postprandial paracetamol concentrations and satiety by visual analog scale ratings. A CRHP diet reduced postprandial glucose area under curve (net AUC) by 60% (P < 0.001), 24 h glucose by 13% (P < 0.001), fasting IP and SP concentrations (both absolute and relative to C-peptide, P < 0.05), and postprandial ISR (24%, P = 0.015), while IGI and Bup improved by 31% and 45% (both P < 0.001). The CRHP diet increased postprandial glucagon net AUC by 235% (P < 0.001), subjective satiety by 18% (P = 0.03), delayed gastric emptying by 15 min (P < 0.001), decreased gastric inhibitory polypeptide net AUC by 29% (P < 0.001), but had no significant effect on glucagon-like-peptide-1, total peptide YY, and cholecystokinin responses. A CRHP diet reduced glucose excursions and improved β-cell function, including proinsulin processing, and increased subjective satiety in patients with T2D.
Collapse
Affiliation(s)
- Mads J Skytte
- Department of Endocrinology, Copenhagen University Hospital, Bispebjerg, Denmark
| | - Amirsalar Samkani
- Department of Endocrinology, Copenhagen University Hospital, Bispebjerg, Denmark
| | - Arne Astrup
- Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, Denmark
| | - Jan Frystyk
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Jens F Rehfeld
- Department. of Clinical Biochemistry, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Jens J Holst
- Novo Nordisk Foundation Center for Basic Metabolic Research and Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Sten Madsbad
- Department of Endocrinology, Copenhagen University Hospital Hvidovre, Copenhagen, Denmark
| | - Keith Burling
- Core Biochemical Assay Laboratory, Cambridge University Hospitals National Health Service Foundation Trust, Cambridge, United Kingdom
| | - Mogens Fenger
- Department of Clinical Biochemistry, Copenhagen University Hospital Hvidovre, Copenahagen, Denmark
| | - Mads N Thomsen
- Department of Endocrinology, Copenhagen University Hospital, Bispebjerg, Denmark
| | - Thomas M Larsen
- Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, Denmark
| | - Thure Krarup
- Department of Endocrinology, Copenhagen University Hospital, Bispebjerg, Denmark
| | - Steen B Haugaard
- Department of Endocrinology, Copenhagen University Hospital, Bispebjerg, Denmark
| |
Collapse
|
65
|
Al-Taie A, Sancar M, Izzettin FV. 8-Hydroxydeoxyguanosine: A valuable predictor of oxidative DNA damage in cancer and diabetes mellitus. Cancer 2021. [DOI: 10.1016/b978-0-12-819547-5.00017-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
66
|
Abstract
PURPOSE OF REVIEW Cachexia, a feature of cancer and other chronic diseases, is marked by progressive weight loss and skeletal muscle wasting. This review aims to highlight the sex differences in manifestations of cancer cachexia in patients, rodent models, and our current understanding of the potential mechanisms accounting for these differences. RECENT FINDINGS Male cancer patients generally have higher prevalence of cachexia, greater weight loss or muscle wasting, and worse outcomes compared with female cancer patients. Knowledge is increasing about sex differences in muscle fiber type and function, mitochondrial metabolism, global gene expression and signaling pathways, and regulatory mechanisms at the levels of sex chromosomes vs. sex hormones; however, it is largely undetermined how such sex differences directly affect the susceptibility to stressors leading to muscle wasting in cancer cachexia. Few studies have investigated basic mechanisms underlying sex differences in cancer cachexia. A better understanding of sex differences would improve cachexia treatment in both sexes.
Collapse
Affiliation(s)
- Xiaoling Zhong
- Department of Surgery, Indiana University School of Medicine, Indianapolis, IN, USA
- Indiana Center for Musculoskeletal Health, Indianapolis, IN, USA
- Research Service, Richard L. Roudebush Veterans Administration Medical Center, Indianapolis, IN, USA
| | - Teresa A Zimmers
- Department of Surgery, Indiana University School of Medicine, Indianapolis, IN, USA.
- Indiana Center for Musculoskeletal Health, Indianapolis, IN, USA.
- Research Service, Richard L. Roudebush Veterans Administration Medical Center, Indianapolis, IN, USA.
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, USA.
- IU Melvin and Bren Simon Comprehensive Cancer Center, Indianapolis, IN, USA.
- Department of Otolaryngology-Head & Neck Surgery, Indiana University School of Medicine, Indianapolis, IN, USA.
- Department of Anatomy, Cell Biology & Physiology, Indiana University School of Medicine, Indianapolis, IN, USA.
| |
Collapse
|
67
|
The Function of LmPrx6 in Diapause Regulation in Locusta migratoria Through the Insulin Signaling Pathway. INSECTS 2020; 11:insects11110763. [PMID: 33167530 PMCID: PMC7694527 DOI: 10.3390/insects11110763] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 11/02/2020] [Accepted: 11/03/2020] [Indexed: 11/16/2022]
Abstract
Simple Summary LmPrx6 of the insulin signaling pathway is significantly associated with diapause induction in Locusta migratoria L. as per our pervious transcriptome data. In the current study, we first cloned and sequenced the gene and demonstrated its similarity to other Prxs using phylogenetic analyses. Later on, we knocked down Prx6 using RNAi and showed that phosphorylation of proteins associated with the insulin signaling pathway and responses to oxidative stress were altered. Knockdown of Prx6 also resulted in a reduced ability to enter diapause, and hence, we are of the opinion that this gene could serve as an effective target for RNAi-based control of L. migratoria L. The study has provided some helpful insights into the diversified roles of Prx6 in locusts and will be of interest to other insect pests for examining the relatively unexplored group of proteins as well. Abstract Peroxiredoxins (Prxs), which scavenge reactive oxygen species (ROS), are cysteine-dependent peroxide reductases that group into six structurally discernable classes: AhpC-Prx1, BCP-PrxQ, Prx5, Prx6, Tpx, and AhpE. A previous study showed that forkhead box protein O (FOXO) in the insulin signaling pathway (ISP) plays a vital role in regulating locust diapause by phosphorylation, which can be promoted by the high level of ROS. Furthermore, the analysis of transcriptome between diapause and non-diapause phenotypes showed that one of the Prxs, LmPrx6, which belongs to the Prx6 class, was involved. We presumed that LmPrx6 might play a critical role in diapause induction of Locusta migratoria and LmPrx6 may therefore provide a useful target of control methods based on RNA interference (RNAi). To verify our hypothesis, LmPrx6 was initially cloned from L. migratoria to make dsLmPrx6 and four important targets were tested, including protein-tyrosine phosphorylase 1B (LmPTP1B), insulin receptor (LmIR), RAC serine/threonine-protein kinase (LmAKT), and LmFOXO in ISP. When LmPrx6 was knocked down, the diapause rate was significantly reduced. The phosphorylation level of LmPTP1B significantly decreased while the phosphorylation levels of LmIR, LmAKT, and LmFOXO were significantly increased. Moreover, we identified the effect on two categories of genes downstream of LmFOXO, including stress tolerance and storage of energy reserves. Results showed that the mRNA levels of catalase and Mn superoxide dismutase (Mn-SOD), which enhanced stress tolerance, were significantly downregulated after silencing of LmPrx6. The mRNA levels of glycogen synthase and phosphoenolpyruvate carboxy kinase (PEPCK) that influence energy storage were also downregulated after knocking down of LmPrx6. The silencing of LmPrx6 indicates that this regulatory protein may probably be an ideal target for RNAi-based diapause control of L. migratoria.
Collapse
|
68
|
A novel quinolinylmethyl substituted ethylenediamine compound exerts anti-cancer effects via stimulating the accumulation of reactive oxygen species and NO in hepatocellular carcinoma cells. Eur J Pharmacol 2020; 885:173497. [PMID: 32841641 DOI: 10.1016/j.ejphar.2020.173497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 08/13/2020] [Accepted: 08/21/2020] [Indexed: 12/24/2022]
Abstract
Hepatocellular carcinoma (HCC) is one of the leading causes of cancer-related deaths worldwide. Owing to the limitations in the current therapeutic strategies for treating HCC, development of novel chemotherapeutic drugs is urgently needed. In the present study, we found that QQM, a newly-synthesized quinolinylmethyl substituted ethylenediamine compound, exhibited anti-HCC effects both in vitro and in vivo. QQM inhibited HCC cell growth and induced G0/G1-phase cell cycle arrest and apoptosis in a dose-dependent manner. Our results showed that QQM acted by significantly increasing intracellular reactive oxygen species in HCC cells, which led to cell apoptosis and growth inhibition. Furthermore, QQM treatment resulted in an accumulation of reactive nitric oxide (NO) in HCC cells, and introduction of a NO scavenger, carboxy-PTIO, largely attenuated QQM-induced cytotoxicity. Finally, we found that QQM inhibited growth and induced apoptosis of HCC xenograft tumors in vivo. Taken together, our results indicated that QQM exerted anti-HCC effects by inducing reactive oxygen species and NO accumulation in HCC cells. Thus, QQM exhibits the qualities of a novel, promising anti-tumor candidate for the treatment of HCC.
Collapse
|
69
|
Effects of Regular Exercise on Diabetes-Induced Memory Deficits and Biochemical Parameters in Male Rats. J Mol Neurosci 2020; 71:1023-1030. [PMID: 33000398 DOI: 10.1007/s12031-020-01724-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 09/25/2020] [Indexed: 10/23/2022]
Abstract
The main objective of current work was to determine the effects of treadmill-running and swimming exercise on passive avoidance learning (PAL) and blood biochemical parameters in rats with streptozotocin (STZ)-induced diabetes. Male Wistar rats were divided into the following 6 groups (N = 6-8 per group): CON, healthy rats without exercise (N = 8); STZ, diabetic rats without exercise (N = 8); CON-SE, healthy rats subjected to swimming exercise (2 months; N = 6); STZ-SE, diabetic rats subjected to swimming exercise (2 months; N = 7); CON-TE, healthy rats subjected to treadmill exercise (2 months; N = 8); STZ-TE, diabetic rats subjected to treadmill exercise (2 months; N = 8). Diabetes was induced by a single intraperitoneal injection of 50 mg/kg STZ. Our results showed that STZ decreased the step-through latency in the retention test (STLr) and increased the time spent in the dark compartment (TDC) when compared with the CON group. However, treadmill-running and swimming exercise in STZ-treated rats increased the STLr and decreased the TDC when compared with STZ-treated rats without exercise in PAL. Blood low-density lipoprotein (LDL) and triglyceride (TG) levels in the STZ group were significantly higher than those in the CON group, whereas plasma total antioxidant capacity (TAC) and levels of catalase (CAT) and glutathione peroxidase (GPx) were lower in the STZ group compared with the CON group. The levels of LDL and TG decreased and the levels of TAC, CAT, and GPx increased in the exercise groups in comparison with the STZ group. The present results indicate that regular exercise enhances learning and memory in diabetic rats and that these effects may occur through activation of the antioxidant system.
Collapse
|
70
|
Ahiawodzi P, Djousse L, Ix JH, Kizer JR, Tracy RP, Arnold A, Newman A, Mukamal KJ. Non-Esterified Fatty Acids and Risks of Frailty, Disability, and Mobility Limitation in Older Adults: The Cardiovascular Health Study. J Am Geriatr Soc 2020; 68:2890-2897. [PMID: 32964434 DOI: 10.1111/jgs.16793] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 07/22/2020] [Accepted: 07/30/2020] [Indexed: 02/06/2023]
Abstract
BACKGROUND/OBJECTIVES Non-esterified fatty acids (NEFAs) play central roles in the relationship between adiposity and glucose metabolism, and they have been implicated in the pathogenesis of cardiovascular disease, but few studies have assessed their effects on complex geriatric syndromes like frailty that cross multiple organ systems. We sought to determine the relationships between NEFAs and incident frailty, disability, and mobility limitation in a population-based cohort of older persons. METHODS We analyzed 4,710 Cardiovascular Health Study (CHS) participants who underwent measurement of circulating total fasting NEFAs in 1992-1993 and were assessed for frailty in 1996-1997 and for disability and mobility limitation annually. We used ordinal logistic regression to model incident frailty, linear regression to model components of frailty, and Cox regression to model disability and mobility limitation in relation to baseline NEFAs. To ensure proportional hazards, we truncated follow-up at 9 years for disability and 6.5 years for mobility limitation. RESULTS A total of 42 participants became frail and 510 became pre-frail over a 4-year period, and we documented 1,720 cases of disability and 1,225 cases of mobility limitation during follow-up. NEFAs were positively associated in a dose-dependent manner with higher risks of incident frailty, disability, and mobility limitation. The adjusted odds ratios for frailty were 1.37 (95% confidence interval [CI] = 1.01-1.86; P = .04) across extreme tertiles and 1.17 (95% CI = 1.03-1.33; P = .01) per standard deviation increment. The corresponding hazard ratios for incident disability were 1.14 (95% CI = 1.01-1.30; P = .04) and 1.11 (95% CI = 1.06-1.17; P < .0001); those for incident mobility limitation were 1.23 (95% CI = 1.06-1.43; P = .006) and 1.15 (95% CI = 1.08-1.22; P < .0001). Results were largely consistent among both men and women. Among individual components of frailty, NEFAs were significantly associated with self-reported exhaustion (β = .07; standard error = .03; P = .02). CONCLUSION Circulating NEFAs are significantly associated with frailty, disability, and mobility limitation among older adults. These results highlight the broad spectrum of adverse health issues associated with NEFA in older adults.
Collapse
Affiliation(s)
- Peter Ahiawodzi
- Department of Public Health, Campbell University College of Pharmacy and Health Sciences, Buies Creek, North Carolina, USA
| | - Luc Djousse
- Division of Aging, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Joachim H Ix
- Divisions of Nephrology and Preventive Medicine, University of California, San Diego, San Diego, California, USA
| | - Jorge R Kizer
- Division of Cardiology, Veterans Affairs Medical Center, University of California, San Francisco, California, USA
| | - Russell P Tracy
- Department of Pathology and Biochemistry, University of Vermont College of Medicine, Burlington, Vermont, USA
| | - Alice Arnold
- Department of a Biostatistics, University of Washington, Seattle, Washington, USA
| | - Anne Newman
- Departments of Epidemiology and Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Kenneth J Mukamal
- Division of General Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
71
|
Roohi A, Nikougoftar M, Montazeri H, Navabi S, Shokri F, Ostad SN, Ghahremani MH. High Glucose Affects the Cytotoxic Potential of Rapamycin, Metformin and Hydrogen Peroxide in Cultured Human Mesenchymal Stem Cells. Curr Mol Med 2020; 19:688-698. [PMID: 31625470 DOI: 10.2174/1566524019666190722115842] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Revised: 06/16/2019] [Accepted: 06/21/2019] [Indexed: 12/16/2022]
Abstract
BACKGROUND Oxidative stress and chronic hyperglycemia are two major side effects of type 2 diabetes affecting all cell types including mesenchymal stem cells (MSCs). As a cell therapy choice, understanding the behavior of MSCs will provide crucial information for efficient treatment. METHODS Placental mesenchymal stem cells were treated with various concentrations of glucose, metformin, rapamycin, and hydrogen peroxide to monitor their viability and cell cycle distribution. Cellular viability was examined via the MTT assay. Cell cycle distribution was studied by propidium iodide staining and apoptosis was determined using Annexin Vpropidium iodide staining and flow cytometry. Involvement of potential signaling pathways was evaluated by Western blotting for activation of Akt, P70S6K, and AMPK. RESULTS The results indicated that high glucose augmented cell viability and reduced metformin toxic potential. However, the hydrogen peroxide and rapamycin toxicities were exacerbated. CONCLUSION Our findings suggest that high glucose concentration has a major effect on placental mesenchymal stem cell viability in the presence of rapamycin, metformin and hydrogen peroxide in culture.
Collapse
Affiliation(s)
- Azam Roohi
- Department of Molecular Medicine, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran.,Department of Immunology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahin Nikougoftar
- Blood Transfusion Research Center- Higher Institute for Research and Education in Transfusion Medicine- Tehran, Iran
| | - Hamed Montazeri
- School of Pharmacy- International Campus, Iran University of Medical Sciences- Tehran, Iran
| | - Shadisadat Navabi
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Fazel Shokri
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Seyed Nasser Ostad
- Department of Toxicology-Pharmacology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Hossein Ghahremani
- Department of Molecular Medicine, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran.,Department of Toxicology-Pharmacology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
72
|
Role of the Nox4/AMPK/mTOR signaling axe in adipose inflammation-induced kidney injury. Clin Sci (Lond) 2020; 134:403-417. [PMID: 32095833 DOI: 10.1042/cs20190584] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 02/03/2020] [Accepted: 02/10/2020] [Indexed: 12/25/2022]
Abstract
Diabetic kidney disease is one of the most serious complications of diabetes worldwide and is the leading cause of end-stage renal disease. While research has primarily focused on hyperglycemia as a key player in the pathophysiology of diabetic complications, recently, increasing evidence have underlined the role of adipose inflammation in modulating the development and/or progression of diabetic kidney disease. This review focuses on how adipose inflammation contribute to diabetic kidney disease. Furthermore, it discusses in detail the underlying mechanisms of adipose inflammation, including pro-inflammatory cytokines, oxidative stress, and AMPK/mTOR signaling pathway and critically describes their role in diabetic kidney disease. This in-depth understanding of adipose inflammation and its impact on diabetic kidney disease highlights the need for novel interventions in the treatment of diabetic complications.
Collapse
|
73
|
Iannantuoni F, M. de Marañon A, Abad-Jiménez Z, Canet F, Díaz-Pozo P, López-Domènech S, Morillas C, Rocha M, Víctor VM. Mitochondrial Alterations and Enhanced Human Leukocyte/Endothelial Cell Interactions in Type 1 Diabetes. J Clin Med 2020; 9:jcm9072155. [PMID: 32650465 PMCID: PMC7408780 DOI: 10.3390/jcm9072155] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 06/25/2020] [Accepted: 07/06/2020] [Indexed: 12/15/2022] Open
Abstract
Type 1 diabetes has been associated with oxidative stress. This study evaluates the rates of oxidative stress, mitochondrial function, leukocyte–endothelium interactions and adhesion molecules in type 1 diabetic patients. The study population consisted of 52 diabetic patients and 46 body-composition and age-matched controls. We assessed anthropometric and metabolic parameters, oxidative stress and mitochondrial function by evaluating reactive oxygen species (ROS) production, mitochondrial ROS production, mitochondrial membrane potential and superoxide dismutase (SOD) and catalase (CAT) expression in polymorphonuclear leukocytes from type 1 diabetic patients. In addition, we evaluated interactions between leukocytes and human umbilical vein endothelial cells (HUVEC), and serum expression of adhesion molecules (P-selectin, VCAM-1 and ICAM-1), proinflammatory cytokines (IL-6 and TNFα) and myeloperoxidase (MPO). HbA1C and glucose levels were higher in diabetic patients than in control subjects, as expected. Mitochondrial function was altered and leukocyte–endothelium interactions were enhanced in diabetic patients, which was evident in the increase in total and mitochondrial ROS production, higher mitochondrial membrane potential, enhanced leukocyte rolling and adhesion, and decreased rolling velocity. Furthermore, we observed an increase in levels of adhesion molecules P-selectin, VCAM-1, and ICAM-1 in these subjects. In addition, type 1 diabetic patients exhibited an increase in proinflammatory mediators TNFα and MPO, and a decreased expression of SOD. The enhancement of leukocyte–endothelium interactions and proinflammatory markers correlated with glucose and HbA1Clevels. Mitochondrial alteration, oxidative stress, and enhanced leukocyte–endothelium interactions are features of type 1 diabetes and may be related to cardiovascular implications.
Collapse
Affiliation(s)
- Francesca Iannantuoni
- Service of Endocrinology and Nutrition, University Hospital Doctor Peset, Foundation for the Promotion of Health and Biomedical Research in the Valencian Region (FISABIO), 46017 Valencia, Spain; (F.I.); (A.M.d.M.); (Z.A.-J.); (F.C.); (P.D.-P.); (S.L.-D.); (C.M.)
| | - Aranzazu M. de Marañon
- Service of Endocrinology and Nutrition, University Hospital Doctor Peset, Foundation for the Promotion of Health and Biomedical Research in the Valencian Region (FISABIO), 46017 Valencia, Spain; (F.I.); (A.M.d.M.); (Z.A.-J.); (F.C.); (P.D.-P.); (S.L.-D.); (C.M.)
| | - Zaida Abad-Jiménez
- Service of Endocrinology and Nutrition, University Hospital Doctor Peset, Foundation for the Promotion of Health and Biomedical Research in the Valencian Region (FISABIO), 46017 Valencia, Spain; (F.I.); (A.M.d.M.); (Z.A.-J.); (F.C.); (P.D.-P.); (S.L.-D.); (C.M.)
| | - Francisco Canet
- Service of Endocrinology and Nutrition, University Hospital Doctor Peset, Foundation for the Promotion of Health and Biomedical Research in the Valencian Region (FISABIO), 46017 Valencia, Spain; (F.I.); (A.M.d.M.); (Z.A.-J.); (F.C.); (P.D.-P.); (S.L.-D.); (C.M.)
| | - Pedro Díaz-Pozo
- Service of Endocrinology and Nutrition, University Hospital Doctor Peset, Foundation for the Promotion of Health and Biomedical Research in the Valencian Region (FISABIO), 46017 Valencia, Spain; (F.I.); (A.M.d.M.); (Z.A.-J.); (F.C.); (P.D.-P.); (S.L.-D.); (C.M.)
| | - Sandra López-Domènech
- Service of Endocrinology and Nutrition, University Hospital Doctor Peset, Foundation for the Promotion of Health and Biomedical Research in the Valencian Region (FISABIO), 46017 Valencia, Spain; (F.I.); (A.M.d.M.); (Z.A.-J.); (F.C.); (P.D.-P.); (S.L.-D.); (C.M.)
| | - Carlos Morillas
- Service of Endocrinology and Nutrition, University Hospital Doctor Peset, Foundation for the Promotion of Health and Biomedical Research in the Valencian Region (FISABIO), 46017 Valencia, Spain; (F.I.); (A.M.d.M.); (Z.A.-J.); (F.C.); (P.D.-P.); (S.L.-D.); (C.M.)
| | - Milagros Rocha
- Service of Endocrinology and Nutrition, University Hospital Doctor Peset, Foundation for the Promotion of Health and Biomedical Research in the Valencian Region (FISABIO), 46017 Valencia, Spain; (F.I.); (A.M.d.M.); (Z.A.-J.); (F.C.); (P.D.-P.); (S.L.-D.); (C.M.)
- CIBERehd—Department of Pharmacology and Physiology, University of Valencia, 46010 Valencia, Spain
- Correspondence: (M.R.); (V.M.V.)
| | - Víctor M. Víctor
- Service of Endocrinology and Nutrition, University Hospital Doctor Peset, Foundation for the Promotion of Health and Biomedical Research in the Valencian Region (FISABIO), 46017 Valencia, Spain; (F.I.); (A.M.d.M.); (Z.A.-J.); (F.C.); (P.D.-P.); (S.L.-D.); (C.M.)
- CIBERehd—Department of Pharmacology and Physiology, University of Valencia, 46010 Valencia, Spain
- Department of Physiology, University of Valencia, 46010 Valencia, Spain
- Correspondence: (M.R.); (V.M.V.)
| |
Collapse
|
74
|
Zalachoras I, Hollis F, Ramos-Fernández E, Trovo L, Sonnay S, Geiser E, Preitner N, Steiner P, Sandi C, Morató L. Therapeutic potential of glutathione-enhancers in stress-related psychopathologies. Neurosci Biobehav Rev 2020; 114:134-155. [DOI: 10.1016/j.neubiorev.2020.03.015] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 03/09/2020] [Accepted: 03/12/2020] [Indexed: 12/11/2022]
|
75
|
(-)-Epicatechin Modulates Mitochondrial Redox in Vascular Cell Models of Oxidative Stress. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:6392629. [PMID: 32587663 PMCID: PMC7301192 DOI: 10.1155/2020/6392629] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 03/20/2020] [Accepted: 04/25/2020] [Indexed: 02/07/2023]
Abstract
Diabetes mellitus affects 451 million people worldwide, and people with diabetes are 3-5 times more likely to develop cardiovascular disease. In vascular tissue, mitochondrial function is important for vasoreactivity. Diabetes-mediated generation of excess reactive oxygen species (ROS) may contribute to vascular dysfunction via damage to mitochondria and regulation of endothelial nitric oxide synthase (eNOS). We have identified (–)-epicatechin (EPICAT), a plant compound and known vasodilator, as a potential therapy. We hypothesized that mitochondrial ROS in cells treated with antimycin A (AA, a compound targeting mitochondrial complex III) or high glucose (HG, global perturbation) could be normalized by EPICAT, and correlate with improved mitochondrial dynamics and cellular signaling. Human umbilical vein endothelial cells (HUVEC) were treated with HG, AA, and/or 0.1 or 1.0 μM of EPICAT. Mitochondrial and cellular superoxide, mitochondrial respiration, and cellular signaling upstream of mitochondrial function were assessed. EPICAT at 1.0 μM significantly attenuated mitochondrial superoxide in HG-treated cells. At 0.1 μM, EPICAT nonsignificantly increased mitochondrial respiration, agreeing with previous reports. EPICAT significantly increased complex I expression in AA-treated cells, and 1.0 μM EPICAT significantly decreased mitochondrial complex V expression in HG-treated cells. No significant effects were seen on either AMPK or eNOS expression. Our study suggests that EPICAT is useful in mitigating moderate ROS concentrations from a global perturbation and may modulate mitochondrial complex activity. Our data illustrate that EPICAT acts in the cell in a dose-dependent manner, demonstrating hormesis.
Collapse
|
76
|
Paun G, Neagu E, Albu C, Savin S, Radu GL. In Vitro Evaluation of Antidiabetic and Anti-Inflammatory Activities of Polyphenolic-Rich Extracts from Anchusa officinalis and Melilotus officinalis. ACS OMEGA 2020; 5:13014-13022. [PMID: 32548486 PMCID: PMC7288582 DOI: 10.1021/acsomega.0c00929] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Accepted: 05/13/2020] [Indexed: 05/06/2023]
Abstract
This study was focused on the phytochemical composition and biological activities of Anchusa officinalis and Melilotus officinalis polyphenolic-rich extracts obtained by nanofiltration. The high-performance liquid chromatography-mass spectrometry analysis showed that chlorogenic acid and rosmarinic acid were the main phenolic acids in both extracts. The main flavonoid compound from A. officinalis extracts is luteolin, whereas rutin and isoquercitrin are the main flavonoids in M. officinalis. M. officinalis polyphenolic-rich extract had the highest α-amylase (from hog pancreas) inhibitory activity (IC50 = 1.30 ± 0.06 μg/mL) and α-glucosidase (from Saccharomyces cerevisiae) inhibitory activity (IC50 = 92.18 ± 1.92 μg/mL). However, both extracts presented a significant α-glucosidase inhibitory activity. Furthermore, the hyaluronidase inhibition of polyphenolic-rich extracts also proved to be stronger (IC50 = 11.8 ± 0.1 μg/mL for M. officinalis and 36.5 ± 0.2 μg/mL for A. officinalis), but there was moderate or low lipoxygenase inhibition. The studies on the fibroblast cell line demonstrated that both A. officinalis and M. officinalis polyphenolic-rich extracts possess the cytotoxic effect at a concentration higher than 500 μg/mL. The experimental data suggest that both extracts are promising candidates for the development of natural antidiabetic and anti-inflammatory food supplements.
Collapse
|
77
|
Is Mitochondrial Oxidative Stress the Key Contributor to Diaphragm Atrophy and Dysfunction in Critically Ill Patients? Crit Care Res Pract 2020; 2020:8672939. [PMID: 32377432 PMCID: PMC7191397 DOI: 10.1155/2020/8672939] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 03/10/2020] [Accepted: 03/27/2020] [Indexed: 02/08/2023] Open
Abstract
Diaphragm dysfunction is prevalent in the progress of respiratory dysfunction in various critical illnesses. Respiratory muscle weakness may result in insufficient ventilation, coughing reflection suppression, pulmonary infection, and difficulty in weaning off respirators. All of these further induce respiratory dysfunction and even threaten the patients' survival. The potential mechanisms of diaphragm atrophy and dysfunction include impairment of myofiber protein anabolism, enhancement of myofiber protein degradation, release of inflammatory mediators, imbalance of metabolic hormones, myonuclear apoptosis, autophagy, and oxidative stress. Among these contributors, mitochondrial oxidative stress is strongly implicated to play a key role in the process as it modulates diaphragm protein synthesis and degradation, induces protein oxidation and functional alteration, enhances apoptosis and autophagy, reduces mitochondrial energy supply, and is regulated by inflammatory cytokines via related signaling molecules. This review aims to provide a concise overview of pathological mechanisms of diaphragmatic dysfunction in critically ill patients, with special emphasis on the role and modulating mechanisms of mitochondrial oxidative stress.
Collapse
|
78
|
Redox modulation of muscle mass and function. Redox Biol 2020; 35:101531. [PMID: 32371010 PMCID: PMC7284907 DOI: 10.1016/j.redox.2020.101531] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 03/28/2020] [Accepted: 03/31/2020] [Indexed: 12/21/2022] Open
Abstract
Muscle mass and strength are very important for exercise performance. Training-induced musculoskeletal injuries usually require periods of complete immobilization to prevent any muscle contraction of the affected muscle groups. Disuse muscle wasting will likely affect every sport practitioner in his or her lifetime. Even short periods of disuse results in significant declines in muscle size, fiber cross sectional area, and strength. To understand the molecular signaling pathways involved in disuse muscle atrophy is of the utmost importance to develop more effective countermeasures in sport science research. We have divided our review in four different sections. In the first one we discuss the molecular mechanisms involved in muscle atrophy including the main protein synthesis and protein breakdown signaling pathways. In the second section of the review we deal with the main cellular, animal, and human atrophy models. The sources of reactive oxygen species in disuse muscle atrophy and the mechanism through which they regulate protein synthesis and proteolysis are reviewed in the third section of this review. The last section is devoted to the potential interventions to prevent muscle disuse atrophy with especial consideration to studies on which the levels of endogenous antioxidants enzymes or dietary antioxidants have been tested.
Collapse
|
79
|
The evaluation of lipid peroxidation and oxidative modification of proteins in blood serum under obesity development and the consumption of aqueous kidney beans Phaseolus vulgaris pods extract. CURRENT ISSUES IN PHARMACY AND MEDICAL SCIENCES 2020. [DOI: 10.2478/cipms-2020-0008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Abstract
Our interest has focused on the investigation of the anti-obese potential of kidney beans (P. vulgaris) pods extract. In the course of the study, obesity development in rats was induced with high-calorie diet. Control and obese rats then have consumed with aqueous kidney beans (P. vulgaris) pods extract during 6 weeks (200 mg/kg). Results show that the long-term consumption of P. vulgaris pods extract can lead to the reduction of hyperglycemia and insulin resistance development. Furthermore, we saw a normalization of lipid peroxidation parameters and oxidative modification of protein due to the consumption of the kidney beans (P. vulgaris) pods extract. Our experimental data demonstrate the ability of the kidney beans (P. vulgaris) pod extracts to mitigate obesity development but the details of this mechanism remains to be not fully understood.
Collapse
|
80
|
Saito Y. Selenoprotein P as a significant regulator of pancreatic β cell function. J Biochem 2020; 167:119-124. [PMID: 31373634 DOI: 10.1093/jb/mvz061] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Accepted: 08/01/2019] [Indexed: 02/05/2023] Open
Abstract
Selenoprotein P (SeP; encoded by SELENOP) is selenium (Se)-rich plasma protein that is mainly produced in the liver. SeP functions as a Se-transport protein to deliver Se from the liver to other tissues, such as the brain and testis. The protein plays a pivotal role in Se metabolism and antioxidative defense, and it has been identified as a 'hepatokine' that causes insulin resistance in type 2 diabetes. SeP levels are increased in type 2 diabetes patients, and excess SeP impairs insulin signalling, promoting insulin resistance. Furthermore, increased levels of SeP disturb the functioning of pancreatic β cells and inhibit insulin secretion. This review focuses on the biological function of SeP and the molecular mechanisms associated with the adverse effects of excess SeP on pancreatic β cells' function, particularly with respect to redox reactions. Interactions between the liver and pancreas are also discussed.
Collapse
Affiliation(s)
- Yoshiro Saito
- Laboratory of Molecular Biology and Metabolism, Graduate School of Pharmaceutical Sciences, Tohoku University, C301, 6-3 Aoba, Aramaki, Aoba-ku, Sendai, Miyagi 980-8578, Japan
| |
Collapse
|
81
|
Mphahlele MJ, Choong YS, Maluleka MM, Gildenhuys S. Synthesis, In Vitro Evaluation and Molecular Docking of the 5-Acetyl-2-aryl-6-hydroxybenzo[ b]furans against Multiple Targets Linked to Type 2 Diabetes. Biomolecules 2020; 10:E418. [PMID: 32156083 PMCID: PMC7175131 DOI: 10.3390/biom10030418] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 02/12/2020] [Accepted: 02/19/2020] [Indexed: 02/06/2023] Open
Abstract
The 5-acetyl-2-aryl-6-hydroxybenzo[b]furans 2a-h have been evaluated through in vitro enzymatic assay against targets which are linked to type 2 diabetes (T2D), namely, α-glucosidase, protein tyrosine phosphatase 1B (PTP1B) and β-secretase. These compounds have also been evaluated for antioxidant activity using the 2,2-diphenyl-1-picrylhydrazyl (DPPH) free-radical scavenging method. The most active compounds against α-glucosidase and/or PTP1B, namely, 4-fluorophenyl 2c, 4-methoxyphenyl 2g and 3,5-dimethoxyphenyl substituted 2h derivatives were also evaluated for potential anti-inflammatory properties against cyclooxygenase-2 activity. The Lineweaver-Burk and Dixon plots were used to determine the type of inhibition on compounds 2c and 2h against α-glucosidase and PTP1B receptors. The interactions were investigated in modelled complexes against α-glucosidase and PTP1B via molecular docking.
Collapse
Affiliation(s)
- Malose J. Mphahlele
- Department of Chemistry, University of South Africa, Private Bag X06, Florida 1710, South Africa
| | - Yee Siew Choong
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, Penang 11800, Malaysia;
| | - Marole M. Maluleka
- Department of Chemistry, University of South Africa, Private Bag X06, Florida 1710, South Africa
| | - Samantha Gildenhuys
- Department of Life & Consumer Sciences, College of Agriculture and Environmental Sciences, University of South Africa, Private Bag X06, Florida 1710, South Africa;
| |
Collapse
|
82
|
Bahar L, Sucu N, Eras N, Bagdatoglu OT, Yildirim M. Adrenomedullin expression in aortic artery wall of diabetic rats given alpha lipoic acid. Pharmacol Rep 2020; 72:912-921. [PMID: 32103464 DOI: 10.1007/s43440-020-00082-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 12/18/2019] [Accepted: 12/23/2019] [Indexed: 11/26/2022]
Abstract
BACKGROUND Diabetes mellitus (DM) is a major health problem predisposing to cardiovascular diseases. The aim of this study was to investigate the effects of alpha lipoic acid (ALA) on both the arterial wall of diabetic rats and the adrenomedullin (ADM) gene expression. METHODS Twenty-four Wistar Albino rats were divided into three groups as Control, DM + S, and DM + ALA. For DM model, a single dose of 40 mg/kg streptozotocin, for DM + ALA group, 100 mg/kg/day/4 weeks was administered. Hematoxylin & Eosin (H&E) staining was done and vascular endothelial growth factor (VEGF) was detected by immunohistochemical analysis in the artery wall. Total damage score of vessel wall (endothelial cell damage, media layer smooth muscle cell damage, and internal elastic lamina damage) and H score (immunoreactivity intensity) were calculated. Expression of ADM gene was measured by qRT-PCR. RESULTS In DM + S group, Total damage score of vessel wall were detected by light microscopy. There were statistically significant differences between the groups Control/DM + S and DM + S/DM + ALA in terms of the vessel total damage score and H score (p < 0.005). ADM expression was increased threefold in both DM + S and DM + ALA groups compared to the control group (p < 0.05). CONCLUSIONS ALA may have positive effect on the vessel damage in diabetic rats. However, no significant decrease in ADM expression levels was observed in diabetic rats after ALA administration and we considered that the protective effect of ALA is independent of adrenomedullin. Further studies with different doses and durations of ALA administrations are required to investigate the changes in ADM expression.
Collapse
Affiliation(s)
- Leyla Bahar
- Vocational School of Health Services, Mersin University, Ciftlikkoy Campuse, 33343 Yenisehir, Mersin, Turkey.
| | - Nehir Sucu
- Department of Cardiovascular Surgery, Faculty of Medicine, Mersin University, Mersin, Turkey
| | - Nazan Eras
- Department of Medical Genetics, Faculty of Medicine, Mersin University, Mersin, Turkey
| | - Ozlen Tubay Bagdatoglu
- Vocational School of Health Services, Mersin University, Ciftlikkoy Campuse, 33343 Yenisehir, Mersin, Turkey
| | - Metin Yildirim
- Department of Biochemistry, Faculty of Pharmacy, Mersin University, Mersin, Turkey
| |
Collapse
|
83
|
Mabrouki L, Rjeibi I, Taleb J, Zourgui L. Cardiac Ameliorative Effect of Moringa oleifera Leaf Extract in High-Fat Diet-Induced Obesity in Rat Model. BIOMED RESEARCH INTERNATIONAL 2020; 2020:6583603. [PMID: 32190675 PMCID: PMC7064870 DOI: 10.1155/2020/6583603] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 02/09/2020] [Accepted: 02/14/2020] [Indexed: 01/22/2023]
Abstract
The consumption of a high-fat diet is linked to the development of obesity and considered a risk factor for cardiovascular diseases. The aim of this study was to evaluate the effect of the methanolic extract of Moringa oleifera leaves (MEML) on the high-fat diet- (HFD-) induced obesity and cardiac damage in rats. MEML, at a dose of 200 mg/kg/bw and 400 mg/kg/bw, was orally administrated to obese rats for 12 weeks. M. oleifera leaves were proved to be rich in nutrients and minerals. Diversity of phenolic compounds in MEML was evidenced via LC-ESI-MS analysis. The chronic administration of HFD in rats led to an increase in the body weight gain, total cholesterol, and triglycerides and reduction in the HDL-C levels. The obtained results indicated a significant increase (p < 0.05) in the cardiac marker enzyme level in obese rats. A significant decrease (p < 0.05) in the levels of cardiac catalase (CAT), glutathione peroxidase (GPx), and superoxide dismutase (SOD) activities was accompanied with an increase of malondialdehyde (MDA) level in the high-fat diet group when compared to those of the control. The treatment with the MEML alleviated abnormalities in the serum biochemical parameters, balanced the antioxidant status, and reestablished the normal histological structure of the heart especially in the case of the higher concentration. Moringa oleifera leaves may be a promising candidate in the management of obesity and its related complications such as heart problems.
Collapse
Affiliation(s)
- Lamia Mabrouki
- Research Unit of Active Biomolecules Valorisation, Higher Institute of Applied Biology of Medenine (ISBAM), University of Gabes, 4119 Medenine, Tunisia
| | - Ilhem Rjeibi
- Faculty of Sciences of Gafsa, 2112 Gafsa, Tunisia
| | - Jihen Taleb
- Research Unit of Active Biomolecules Valorisation, Higher Institute of Applied Biology of Medenine (ISBAM), University of Gabes, 4119 Medenine, Tunisia
| | - Lazhar Zourgui
- Research Unit of Active Biomolecules Valorisation, Higher Institute of Applied Biology of Medenine (ISBAM), University of Gabes, 4119 Medenine, Tunisia
| |
Collapse
|
84
|
Shaikh A, Ibrahim M, Khan M. Effect of Ficus glomerata leaf extract in streptozotocin-induced early diabetic complications and its characterization by LC-MS. EXCLI JOURNAL 2020; 19:33-47. [PMID: 32038115 PMCID: PMC7003634 DOI: 10.17179/excli2019-1441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Accepted: 12/19/2019] [Indexed: 11/18/2022]
Abstract
Diabetes mellitus is a complex metabolic disorder that leads to various micro-vascular complications. The present study elucidated the effect of chloroform extract of leaves of Ficus glomerata (CHFG) in streptozotocin-induced early diabetic renal and neural complications. Wistar rats were injected with STZ (55 mg/kg, i.p.) to produce experimental diabetes. Two weeks after the stabilization of diabetes, CHFG extract at the dose of 200 and 400 mg/kg (CHFG 200 and CHFG 400) and metformin at the dose of 250 mg/kg (Met 250) was administered to the diabetic rats for further two weeks. Diabetic rats showed an increase in blood glucose, plasma urea, uric acid, creatinine, triglyceride, and total cholesterol level. The change in behavioral parameters such as thermal hyperalgesia and cold allodynia with compromised sciatic nerve and kidney antioxidant status were seen in diabetic rats. Diabetic rats treated with CHFG 200, CHFG 400, and Met 250 showed a decrease in blood glucose, plasma urea, uric acid, creatinine, triglyceride, and total cholesterol level. Also, it improved altered behavioral parameters such as thermal hyperalgesia and cold allodynia. It also restored the sciatic nerve and kidney antioxidant status. The results of kidney and sciatic nerves histopathological study were in line with the results of biochemical parameters that confirmed the favorable role of CHFG. Characterization of CHFG by LC-MS revealed the presence of diverse phytoconstituents, which might be responsible for its protective effect.
Collapse
Affiliation(s)
- Abusufyan Shaikh
- School of Pharmacy, Anjuman-I-Islam's Kalsekar Technical Campus, New Panvel, Maharashtra, affiliated to Mumbai University, Mumbai, India.,Research Scholar, JNTUH, Kukatpally, Telangana, India
| | | | - Mohib Khan
- Oriental College of Pharmacy, Navi Mumbai, India
| |
Collapse
|
85
|
Gu SH, Chen CH. Reactive oxygen species-mediated bombyxin signaling in Bombyx mori. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2020; 117:103279. [PMID: 31756435 DOI: 10.1016/j.ibmb.2019.103279] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 11/06/2019] [Accepted: 11/12/2019] [Indexed: 06/10/2023]
Abstract
In the present study, we demonstrated that bombyxin, an insect insulin-like peptide, modulated ecdysteroidogenesis in Bombyx mori prothoracic glands (PGs) through redox signaling. Our results showed that bombyxin treatment resulted in a transient increase in intracellular reactive oxygen species (ROS) concentration, as measured using 2',7'-dichlorofluorescin diacetate (DCFDA), an oxidation-sensitive fluorescent probe. The antioxidant N-acetylcysteine (NAC) abolished the bombyxin-induced increase in fluorescence in Bombyx PGs. Furthermore, bombyxin-induced ROS production was inhibited by mitochondrial oxidative phosphorylation inhibitors (rotenone and antimycin A), indicating mitochondria-mediated ROS production. The stimulation of ROS production in response to bombyxin appears to undergo development-specific changes. We further investigated the action mechanism of bombyxin-stimulated ROS signaling. Results showed that in the presence of either NAC, rotenone, or antimycin A, bombyxin-stimulated phosphorylation of insulin receptor, Akt, and 4E-binding protein (4E-BP) was blocked and bombyxin-stimulated ecdysteroidogenesis in PGs was greatly inhibited. From these results, we conclude that ROS signaling appears to be involved in bombyxin-stimulated ecdysteroidogenesis of PGs in B. mori by modulating the phosphorylation of insulin receptor, Akt, and 4E-BP. To our knowledge, this is the first demonstration of redox regulation in insulin signaling in an insect system.
Collapse
Affiliation(s)
- Shi-Hong Gu
- Department of Biology, National Museum of Natural Science, 1 Kuan-Chien Road, Taichung, 404, Taiwan, ROC.
| | - Chien-Hung Chen
- Chung Hwa University of Medical Technology, 89 Wen-Hwa 1st Road, Jen-Te Township, Tainan County, 717, Taiwan, ROC
| |
Collapse
|
86
|
Heinonen S, Jokinen R, Rissanen A, Pietiläinen KH. White adipose tissue mitochondrial metabolism in health and in obesity. Obes Rev 2020; 21:e12958. [PMID: 31777187 DOI: 10.1111/obr.12958] [Citation(s) in RCA: 114] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2019] [Revised: 08/27/2019] [Accepted: 09/03/2019] [Indexed: 12/11/2022]
Abstract
White adipose tissue is one of the largest organs of the body. It plays a key role in whole-body energy status and metabolism; it not only stores excess energy but also secretes various hormones and metabolites to regulate body energy balance. Healthy adipose tissue capable of expanding is needed for metabolic well-being and to prevent accumulation of triglycerides to other organs. Mitochondria govern several important functions in the adipose tissue. We review the derangements of mitochondrial function in white adipose tissue in the obese state. Downregulation of mitochondrial function or biogenesis in the white adipose tissue is a central driver for obesity-associated metabolic diseases. Mitochondrial functions compromised in obesity include oxidative functions and renewal and enlargement of the adipose tissue through recruitment and differentiation of adipocyte progenitor cells. These changes adversely affect whole-body metabolic health. Dysfunction of the white adipose tissue mitochondria in obesity has long-term consequences for the metabolism of adipose tissue and the whole body. Understanding the pathways behind mitochondrial dysfunction may help reveal targets for pharmacological or nutritional interventions that enhance mitochondrial biogenesis or function in adipose tissue.
Collapse
Affiliation(s)
- Sini Heinonen
- Obesity Research Unit, Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Riikka Jokinen
- Obesity Research Unit, Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Aila Rissanen
- Obesity Research Unit, Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Helsinki, Finland.,Department of Psychiatry, Helsinki University Hospital, Helsinki, Finland
| | - Kirsi H Pietiläinen
- Obesity Research Unit, Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Helsinki, Finland.,Endocrinology, Abdominal Center, Helsinki University Hospital, Helsinki, Finland
| |
Collapse
|
87
|
Abplanalp WT, Wickramasinghe NS, Sithu SD, Conklin DJ, Xie Z, Bhatnagar A, Srivastava S, O'Toole TE. Benzene Exposure Induces Insulin Resistance in Mice. Toxicol Sci 2020; 167:426-437. [PMID: 30346588 DOI: 10.1093/toxsci/kfy252] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Benzene is a ubiquitous pollutant associated with hematotoxicity but its metabolic effects are unknown. We sought to determine if and how exposure to volatile benzene impacted glucose handling. We exposed wild type C57BL/6 mice to volatile benzene (50 ppm × 6 h/day) or HEPA-filtered air for 2 or 6 weeks and measured indices of oxidative stress, inflammation, and insulin signaling. Compared with air controls, we found that mice inhaling benzene demonstrated increased plasma glucose (p = .05), insulin (p = .03), and HOMA-IR (p = .05), establishing a state of insulin and glucose intolerance. Moreover, insulin-stimulated Akt phosphorylation was diminished in the liver (p = .001) and skeletal muscle (p = .001) of benzene-exposed mice, accompanied by increases in oxidative stress and Nf-κb phosphorylation (p = .025). Benzene-exposed mice also demonstrated elevated levels of Mip1-α transcripts and Socs1 (p = .001), but lower levels of Irs-2 tyrosine phosphorylation (p = .0001). Treatment with the superoxide dismutase mimetic, TEMPOL, reversed benzene-induced effects on oxidative stress, Nf-κb phosphorylation, Socs1 expression, Irs-2 tyrosine phosphorylation, and systemic glucose intolerance. These findings suggest that exposure to benzene induces insulin resistance and that this may be a sensitive indicator of inhaled benzene toxicity. Persistent ambient benzene exposure may be a heretofore unrecognized contributor to the global human epidemics of diabetes and cardiovascular disease.
Collapse
Affiliation(s)
- Wesley T Abplanalp
- Department of Medicine, Diabetes and Obesity Center, University of Louisville, Louisville, Kentucky 40292
| | - Nalinie S Wickramasinghe
- Department of Medicine, Diabetes and Obesity Center, University of Louisville, Louisville, Kentucky 40292.,Envirome Institute, University of Louisville, Louisville, Kentucky 40292.,University of Louisville Superfund Research Center, Louisville, Kentucky 40202
| | - Srinivas D Sithu
- Department of Medicine, Diabetes and Obesity Center, University of Louisville, Louisville, Kentucky 40292.,Envirome Institute, University of Louisville, Louisville, Kentucky 40292.,University of Louisville Superfund Research Center, Louisville, Kentucky 40202
| | - Daniel J Conklin
- Department of Medicine, Diabetes and Obesity Center, University of Louisville, Louisville, Kentucky 40292.,Envirome Institute, University of Louisville, Louisville, Kentucky 40292.,University of Louisville Superfund Research Center, Louisville, Kentucky 40202
| | - Zhengzhi Xie
- Department of Medicine, Diabetes and Obesity Center, University of Louisville, Louisville, Kentucky 40292.,Envirome Institute, University of Louisville, Louisville, Kentucky 40292.,University of Louisville Superfund Research Center, Louisville, Kentucky 40202
| | - Aruni Bhatnagar
- Department of Medicine, Diabetes and Obesity Center, University of Louisville, Louisville, Kentucky 40292.,Envirome Institute, University of Louisville, Louisville, Kentucky 40292.,University of Louisville Superfund Research Center, Louisville, Kentucky 40202
| | - Sanjay Srivastava
- Department of Medicine, Diabetes and Obesity Center, University of Louisville, Louisville, Kentucky 40292.,Envirome Institute, University of Louisville, Louisville, Kentucky 40292.,University of Louisville Superfund Research Center, Louisville, Kentucky 40202
| | - Timothy E O'Toole
- Department of Medicine, Diabetes and Obesity Center, University of Louisville, Louisville, Kentucky 40292.,Envirome Institute, University of Louisville, Louisville, Kentucky 40292.,University of Louisville Superfund Research Center, Louisville, Kentucky 40202
| |
Collapse
|
88
|
Nono Nankam PA, Mendham AE, De Smidt MF, Keswell D, Olsson T, Blüher M, Goedecke JH. Changes in systemic and subcutaneous adipose tissue inflammation and oxidative stress in response to exercise training in obese black African women. J Physiol 2020; 598:503-515. [PMID: 31873952 DOI: 10.1113/jp278669] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Accepted: 12/17/2019] [Indexed: 12/20/2022] Open
Abstract
KEY POINTS Inflammation and oxidative stress are interrelated during obesity and contribute to the development of insulin resistance; and exercise training represents a key component in the management of these conditions. Black African women, despite high gluteal subcutaneous adipose tissue (SAT) and less visceral fat, are less insulin sensitive than their white counterparts. Exercise training improved systemic oxidative stress in obese black women, which was related to gynoid fat reduction and not insulin sensitivity. Inflammatory markers changed depot-specifically in response to exercise training, increasing in gluteal SAT without changing in abdominal SAT. The increase of inflammatory state in gluteal SAT after exercise training is suggested to result from tissue remodelling consecutive to the reduction of gynoid fat but does not contribute to the improvement of whole-body insulin sensitivity in obese black South African women. ABSTRACT Inflammation and oxidative stress are interrelated during obesity and contribute to the development of insulin resistance. Exercise training represents a key component in the management of obesity. We evaluated the effects of 12 weeks' combined resistance and aerobic exercise training on systemic and abdominal vs. gluteal subcutaneous adipose tissue (SAT) inflammatory and oxidative status in obese black South African women. Before and after the intervention, body composition (dual energy X-ray absorptiometry), cardio-respiratory fitness ( VO 2 peak ), serum and SAT inflammatory and oxidative stress markers were measured from 15 (control group) and 20 (exercise group) women and insulin sensitivity (SI ; frequently sampled intravenous glucose tolerance test) was estimated. Following the intervention, VO 2 peak (9.8%), body fat composition (1-3%) and SI (9%) improved, serum thiobarbituric acid reactive substances (TBARS) decreased (6.5%), and catalase activity increased (23%) in the exercise compared to the control group (P < 0.05), without changes in circulating inflammatory markers. The mRNA content of interleukin-10, tumour necrosis factor α, nuclear factor κB and macrophage migration inhibitory factor increased in the gluteal SAT exercise compared to the control group P < 0.05), with no changes in abdominal SAT. These changes of inflammatory profile in gluteal SAT, in addition to the reduction of circulating TBARS, correlated with the reduction of gynoid fat, but not with the improvement of SI . The changes in systemic oxidative stress markers and gluteal SAT inflammatory genes correlated with the reduction in gynoid fat but were not directly associated with the exercise-induced improvements in SI .
Collapse
Affiliation(s)
- Pamela A Nono Nankam
- Division of Exercise Science and Sports Medicine, Department of Human Biology, University of Cape Town, Cape Town, South Africa.,Department of Medicine, University of Leipzig, Leipzig, Germany
| | - Amy E Mendham
- Division of Exercise Science and Sports Medicine, Department of Human Biology, University of Cape Town, Cape Town, South Africa.,Non-Communicable Diseases Research Unit, South African Medical Research Council, Cape Town, South Africa
| | - Melony F De Smidt
- Division of Exercise Science and Sports Medicine, Department of Human Biology, University of Cape Town, Cape Town, South Africa
| | - Dheshnie Keswell
- Division of Exercise Science and Sports Medicine, Department of Human Biology, University of Cape Town, Cape Town, South Africa
| | - Tommy Olsson
- Department of Public Health and Clinical Medicine, Umeå University, Umeå, Sweden
| | - Matthias Blüher
- Department of Medicine, University of Leipzig, Leipzig, Germany
| | - Julia H Goedecke
- Division of Exercise Science and Sports Medicine, Department of Human Biology, University of Cape Town, Cape Town, South Africa.,Non-Communicable Diseases Research Unit, South African Medical Research Council, Cape Town, South Africa
| |
Collapse
|
89
|
Ren X, Zhang J, Wang L, Wang Z, Wang Y. Diel variation in cortisol, glucose, lactic acid and antioxidant system of black sea bass Centropristis striata under natural photoperiod. Chronobiol Int 2020; 37:176-188. [PMID: 31948265 DOI: 10.1080/07420528.2019.1675684] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Diel rhythm in activity of antioxidant enzymes, as well as contents of glutathione and lipid peroxides, has been intensively investigated in Mammalia and Aves, however, the relevant studies about fish are few. In the present study, we examined variation in contents of cortisol, glucose and lactic acid in plasma of black sea bass Centropristis striata under natural photoperiod during a 24-h period. In addition, variation in activity of antioxidant enzymes, such as superoxide dismutase (SOD), glutathione peroxidase (GSH-PX), catalase (CAT) and glutathione reductase (GR) as well as contents of total glutathione (T-GSH), reduced glutathione (GSH), oxidized glutathione (GSSG) and malondialdehyde (MDA) in liver and plasma of the fish were also determined. The plasma and liver samples were collected from the test fish at 3 h intervals during a 24-h cycle, with the first sampling time set at 03:00 h. No significant differences were found in glucose content and activities of GSH-PX and GR in plasma, as well as activities of SOD and GR in liver among different sampling times. In contrast, apparent variation was observed in contents of cortisol, lactic acid and MDA in plasma, activities of SOD and CAT in plasma, contents of MDA, T-GSH, GSH and GSSG in liver and activities of GSH-PX and CAT in liver between different sampling times. Moreover, contents of cortisol and MDA in plasma, SOD activity in plasma, and contents of MDA, GSH and GSSG in liver exhibited circadian rhythm, and their acrophases occurred at 06:08 h, 18:38 h, 15:09 h, 09:57 h, 23:36 h and 07:30 h, respectively. The present study indicates that some physiological parameters relating to stress response, such as cortisol and MDA contents in plasma, MDA, GSH and GSSG contents in liver and SOD activity in plasma changed at different time throughout a day in black sea bass. Therefore, caution should be taken when evaluating stress response in fish with these physiological parameters measured at different times.
Collapse
Affiliation(s)
- Xing Ren
- Institute of Marine Biology and Pharmacology, Ocean College, Zhejiang University, Zhoushan, P.R. China
| | - Jingya Zhang
- Institute of Marine Biology and Pharmacology, Ocean College, Zhejiang University, Zhoushan, P.R. China
| | - Li Wang
- Institute of Marine Biology and Pharmacology, Ocean College, Zhejiang University, Zhoushan, P.R. China
| | - Zhi Wang
- Institute of Marine Biology and Pharmacology, Ocean College, Zhejiang University, Zhoushan, P.R. China
| | - Yan Wang
- Institute of Marine Biology and Pharmacology, Ocean College, Zhejiang University, Zhoushan, P.R. China
| |
Collapse
|
90
|
Sabadashka M, Nagalievska M, Sybirna N. Tyrosine nitration as a key event of signal transduction that regulates functional state of the cell. Cell Biol Int 2020; 45:481-497. [PMID: 31908104 DOI: 10.1002/cbin.11301] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Accepted: 01/04/2020] [Indexed: 12/21/2022]
Abstract
This review is dedicated to the role of nitration of proteins by tyrosine residues in physiological and pathological conditions. First of all, we analyze the biochemical evidence of peroxynitrite formation and reactions that lead to its formation, types of posttranslational modifications (PTMs) induced by reactive nitrogen species, as well as three biological pathways of tyrosine nitration. Then, we describe two possible mechanisms of protein nitration that are involved in intracellular signal transduction, as well as its interconnection with phosphorylation/dephosphorylation of tyrosine. Next part of the review is dedicated to the role of proteins nitration in different pathological conditions. In this section, special attention is devoted to the role of nitration in changes of functional properties of actin-protein that undergoes PTMs both in normal and pathological conditions. Overall, this review is devoted to the main features of protein nitration by tyrosine residue and the role of this process in intracellular signal transduction in basal and pathological conditions.
Collapse
Affiliation(s)
- Mariya Sabadashka
- Department of Biochemistry, Faculty of Biology, Ivan Franko National University of Lviv, 4, Hrushevskyi St., Lviv, 79005, Ukraine
| | - Mariia Nagalievska
- Department of Biochemistry, Faculty of Biology, Ivan Franko National University of Lviv, 4, Hrushevskyi St., Lviv, 79005, Ukraine
| | - Nataliia Sybirna
- Department of Biochemistry, Faculty of Biology, Ivan Franko National University of Lviv, 4, Hrushevskyi St., Lviv, 79005, Ukraine
| |
Collapse
|
91
|
Huang M, Li J. Physiological regulation of reactive oxygen species in organisms based on their physicochemical properties. Acta Physiol (Oxf) 2020; 228:e13351. [PMID: 31344326 DOI: 10.1111/apha.13351] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Revised: 07/21/2019] [Accepted: 07/23/2019] [Indexed: 12/11/2022]
Abstract
Oxidative stress is recognized as free radical dyshomeostasis, which has damaging effects on proteins, lipids and DNA. However, during cell differentiation and proliferation and other normal physiological processes, free radicals play a pivotal role in message transmission and are considered important messengers. Organisms maintain free radical homeostasis through a sophisticated regulatory system in which these "2-faced" molecules play appropriate roles under physiological and pathological conditions. Reactive oxygen species (ROS), including a large number of free radicals, act as redox signalling molecules in essential cellular signalling pathways, including cell differentiation and proliferation. However, excessive ROS levels can induce oxidative stress, which is an important risk factor for diabetes, cancer and cardiovascular disease. An overall comprehensive understanding of ROS is beneficial for understanding the pathogenesis of certain diseases and finding new therapeutic treatments. This review primarily focuses on ROS cellular localization, sources, chemistry and molecular targets to determine how to distinguish between the roles of ROS as messengers and in oxidative stress.
Collapse
Affiliation(s)
- Mei‐Zhou Huang
- Key Lab of New Animal Drug Project of Gansu Province, Key Lab of Veterinary Pharmaceutical Development of Ministry of Agriculture Lanzhou Institute of Husbandry and Pharmaceutical Sciences of CAAS Lanzhou China
| | - Jian‐Yong Li
- Key Lab of New Animal Drug Project of Gansu Province, Key Lab of Veterinary Pharmaceutical Development of Ministry of Agriculture Lanzhou Institute of Husbandry and Pharmaceutical Sciences of CAAS Lanzhou China
| |
Collapse
|
92
|
The effect of cold atmospheric plasma on diabetes-induced enzyme glycation, oxidative stress, and inflammation; in vitro and in vivo. Sci Rep 2019; 9:19958. [PMID: 31882837 PMCID: PMC6934811 DOI: 10.1038/s41598-019-56459-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Accepted: 12/03/2019] [Indexed: 02/07/2023] Open
Abstract
Cold atmospheric plasma (CAP) is known as the versatile tool in different biological, and medical applications. In this study, we investigated the effect of cold plasma on diabetes via in vitro and in vivo assessments. We performed the in vitro assay to evaluate the impact of CAP on glycated glutathione peroxidase (GPx) through enzyme activity measurement as a function index and far- and near-UV circular dichroism (CD) and fluorescence analysis as structure indices. The result of in vitro assessment showed that the exposure of glycated GPx to plasma causes a considerable increase in enzyme activity up to 30%. Also, the evaluation of far- and near-UV CD and fluorescence analysis indicated a modification in the protein structure. According to obtained result from in vitro assessment, in vivo assay evaluated the effect of CAP on diabetic mice through analyzing of blood glucose level (BGL), advanced glycation end products (AGEs), antioxidant activity, oxidative stress biomarkers such as malondialdehyde (MDA), advanced oxidation protein products (AOPP), and oxidized low-density lipoprotein (oxLDL), and inflammation factors including tumor necrosis factor (TNF-α), interleukin-1 (IL-1), and interleukin-6 (IL-6). The result of in vivo experiment also showed a 20% increase in antioxidant activity. Also, the reduction in AGEs, oxidative stress biomarkers, and inflammatory cytokines concentrations was observed. The result of this study revealed that CAP could be useful in diabetes treatment and can be utilized as a complementary method for diabetes therapy.
Collapse
|
93
|
Chen HY, Kouadio Fodjo E, Jiang L, Chang S, Li JB, Zhan DS, Gu HX, Li DW. Simultaneous Detection of Intracellular Nitric Oxide and Peroxynitrite by a Surface-Enhanced Raman Scattering Nanosensor with Dual Reactivity. ACS Sens 2019; 4:3234-3239. [PMID: 31736302 DOI: 10.1021/acssensors.9b01740] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
A functional surface-enhanced Raman scattering (SERS) nanosensor which can simultaneously detect nitric oxide (NO) and peroxynitrite (ONOO-) in living cells is explored. The SERS nanosensor is fabricated through modifying gold nanoparticles (AuNPs) with newly synthesized 3,4-diaminophenylboronic acid pinacol ester (DAPBAP), which has two reactive groups. The simultaneous detection achieved in this work is not only because of the SERS spectral changes of the nanosensor resulting from the dual reactivity of DAPBAP on AuNPs with NO and ONOO- but also by the narrow SERS bands suitable for multiplex detection. Owing to the combination of SERS fingerprinting information and chemical reaction specificity, the nanosensor has great selectivity for NO and ONOO-, respectively. In addition, the nanosensor has a wide linearity range from 0 to 1.0 × 10-4 M with a submicromolar sensitivity. More importantly, simultaneous monitoring of NO and ONOO- in the Raw264.7 cells has been fulfilled by this functional nanosensor, which shows that the SERS strategy will be promising in comprehension of the physiological issues related with NO and ONOO-.
Collapse
Affiliation(s)
- Hua-Ying Chen
- Key Laboratory for Advanced Materials, Joint International Laboratory for Precision Chemistry & School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Essy Kouadio Fodjo
- Key Laboratory for Advanced Materials, Joint International Laboratory for Precision Chemistry & School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China
- Laboratory of Physical Chemistry, Felix Houphouet Boigny University, Abidjan 00225, Cote d’Ivoire
| | - Lei Jiang
- Key Laboratory for Advanced Materials, Joint International Laboratory for Precision Chemistry & School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Shuai Chang
- Key Laboratory for Advanced Materials, Joint International Laboratory for Precision Chemistry & School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Jia-Bin Li
- Key Laboratory for Advanced Materials, Joint International Laboratory for Precision Chemistry & School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - De-Sheng Zhan
- Key Laboratory for Advanced Materials, Joint International Laboratory for Precision Chemistry & School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Hai-Xin Gu
- Shanghai Fire Research Institute of Ministry of MEM, Shanghai 200438, P. R. China
| | - Da-Wei Li
- Key Laboratory for Advanced Materials, Joint International Laboratory for Precision Chemistry & School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China
| |
Collapse
|
94
|
Abstract
In aerobes, oxygen is essential for maintenance of life. However, incomplete reduction of oxygen leads to generation of reactive oxygen species. These oxidants oxidise biological macromolecules present in their vicinity and thereby impair cellular functions causing oxidative stress (OS). Aerobes have evolved both enzymatic and nonenzymatic antioxidant defences to protect themselves from OS. Although hormones as means of biological coordination involve in regulation of physiological activities of tissues by regulating metabolism, any change in their normal titre leads to pathophysiological states. While, hormones such as melatonin, insulin, oestrogen, progesterone display antioxidant features, thyroid hormone, corticosteroids and catecholamines elicit free radical generation and OS, and the role of testosterone in inducing OS is debateable. This review is an attempt to understand the impact of free radical generation and cross talk between the hormones modulating antioxidant defence system under various pathophysiological conditions.
Collapse
Affiliation(s)
- Gagan B N Chainy
- Department of Biotechnology, Utkal University, Bhubaneswar, India
| | | |
Collapse
|
95
|
Chen C, Huang J, Shen J, Bai Q. Quercetin improves endothelial insulin sensitivity in obese mice by inhibiting Drp1 phosphorylation at serine 616 and mitochondrial fragmentation. Acta Biochim Biophys Sin (Shanghai) 2019; 51:1250-1257. [PMID: 31781748 DOI: 10.1093/abbs/gmz127] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2019] [Revised: 09/30/2019] [Accepted: 09/30/2019] [Indexed: 01/20/2023] Open
Abstract
Studies have shown that endothelial insulin resistance induced by oxidative stress contributes to vascular dysfunction in metabolic disorders. Quercetin, a natural antioxidant, has been recently shown to exert protective effects on endothelial function. However, the effects of quercetin on endothelial insulin resistance and its underlying mechanism are unclear. Here, we found that chronic oral treatment of obese mice with quercetin increased vascular endothelial insulin sensitivity, accompanied by alleviated mitochondrial fragmentation as revealed by confocal imaging. In addition, western blot analysis showed that quercetin treatment suppressed the levels of dynamin-related protein 1 (Drp1) and phosphorylation at serine 616 in endothelial cells of obese mice. Mechanistically, quercetin specifically suppressed Drp1 phosphorylation at serine 616, whereas it showed little effects on the Drp1 level and its phosphorylation at serine 637 in cultured endothelial cells under oxidative stress. Furthermore, our results also showed that quercetin suppressed Drp1 phosphorylation at serine 616 by inhibiting PKCδ as revealed by western blot analysis. Knockdown of PKCδ with siRNA alleviated the protective effects of quercetin on endothelial-mitochondrial dynamics and insulin sensitivity. These results suggest that chronic oral treatment with quercetin exerts endothelial protective effects through inhibition of PKCδ and the resultant mitochondrial fragmentation.
Collapse
Affiliation(s)
- Cuirong Chen
- Department of Neurology, Renmin Hospital of Pudong New District, Shanghai 201200, China
| | - Jing Huang
- The Central Hospital of Xuhui District, Shanghai 201231, China
| | - Jian Shen
- Department of Neurology, Renmin Hospital of Pudong New District, Shanghai 201200, China
| | - Qingke Bai
- Department of Neurology, Renmin Hospital of Pudong New District, Shanghai 201200, China
| |
Collapse
|
96
|
Pirmoghani A, Salehi I, Moradkhani S, Karimi SA, Salehi S. Effect of Crataegus extract supplementation on diabetes induced memory deficits and serum biochemical parameters in male rats. IBRO Rep 2019; 7:90-96. [PMID: 31720488 PMCID: PMC6838887 DOI: 10.1016/j.ibror.2019.10.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2019] [Accepted: 10/05/2019] [Indexed: 01/04/2023] Open
Abstract
This study was undertaken to investigate the Crataegus extract (CE) eff ;ects on diabetes-induced memory deficit in passive avoidance learning (PAL), blood glucose, and lipid profile panel. Male Wistar rats were divided into five groups: Control (CTRL); Diabetic (DM); and Diabetic animals treated with three doses of CE (100, 300 and 1000 mg/kg) (DM + CE). Streptozotocin (STZ)-induced diabetic rats (50 mg/kg, ip) were orally administrated with CE once a day for 2 weeks. After 2 weeks, PAL task was used to evaluate the passive avoidance learning and memory. At the end of experiment, the level of plasma glucose, triglycerides (TG), cholesterol, low-density lipoprotein (LDL), and high-density lipoprotein (HDL) were determined. Our results showed that the step-through latency (STLr) in diabetic animals was less than the control group (P = 0.0009). Crataegus (300 mg) increased STLr in diabetic animals (P = 0.0418). Diabetic animals spent more time in the dark compartment (TDC) (P = 0.0009). Crataegus (300 and 1000 mg) decreased TDC in diabetic animals (P = 0.0175). Crataegus (100 and 300 mg) decreased blood glucose in diabetic animals (P < 0.001). TG and Cholesterol concentration increased in diabetic animals in comparison with control (P < 0.05). CE (100 and 300 mg) reduced the cholesterol concentration in diabetic animals (P < 0.001). There was no significant difference in the case of LDL among the experimental groups (P > 0.05). CE (1000 mg) increased HDL in diabetic animals (P < 0.05). Our findings demonstrated that CE had the hypolipidemic and hypoglycemic effects and lead to memory improvement in STZ-induced diabetes.
Collapse
Affiliation(s)
- Amin Pirmoghani
- Neurophysiology Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
- Student Research Committee, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Iraj Salehi
- Neurophysiology Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
- Department of Neuroscience, School of Science and Advanced Technologies in Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Shirin Moradkhani
- Medicinal Plants and Natural Products Research Center, Department of Pharmacognosy and Pharmaceutical Biotechnology, School of pharmacy, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Seyed Asaad Karimi
- Neurophysiology Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
- Department of Neuroscience, School of Science and Advanced Technologies in Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Sakineh Salehi
- Department of Physiology and Neurophysiology Research Center, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
97
|
Lian K, Wang Q, Zhao S, Yang M, Chen G, Chen Y, Li C, Gao H, Li C. Pretreatment of Diabetic Adipose-derived Stem Cells with mitoTEMPO Reverses their Defective Proangiogenic Function in Diabetic Mice with Critical Limb Ischemia. Cell Transplant 2019; 28:1652-1663. [PMID: 31684763 PMCID: PMC6923552 DOI: 10.1177/0963689719885076] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Adipose-derived stem cells (ADSCs) have the ability to migrate to injury sites and
facilitate tissue repair by promoting angiogenesis. However, the therapeutic effect of
ADSCs from patients with diabetes is impaired due to oxidative stress. Given that diabetes
is a group of metabolic disorders and mitochondria are a major source of reactive oxygen
species (ROS), it is possible that mitochondrial ROS plays an important role in the
induction of diabetic ADSC (dADSC) dysfunction. ADSCs isolated from diabetic mice were
treated with mitoTEMPO, a mitochondrial ROS scavenger, or TEMPO, a universal ROS
scavenger, for three passages. The results showed that pretreatment with mitoTEMPO
increased the proliferation, multidifferentiation potential, and the migration and
proangiogenic capacities of dADSCs to levels similar to those of ADSCs from control mice,
whereas pretreatment with TEMPO showed only minor effects. Mechanistically, mitoTEMPO
pretreatment enhanced the mitochondrial antioxidant capacity of dADSCs, and knockdown of
superoxide dismutase reduced the restored mitochondrial antioxidant capacity and
attenuated the proangiogenic effects induced by mitoTEMPO pretreatment. In addition,
mitoTEMPO pretreatment improved the survival of dADSCs in diabetic mice with critical limb
ischemia, showing protective effects similar to those of control ADSCs. Pretreatment of
dADSCs with mitoTEMPO decreased limb injury and improved angiogenesis in diabetic mice
with critical limb ischemia. These findings suggested that short-term pretreatment of
dADSCs with a mitochondrial ROS scavenger restored their normal functions, which may be an
effective strategy for improving the therapeutic effects of ADSC-based therapies in
patients with diabetes.
Collapse
Affiliation(s)
- Kun Lian
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China.,Both the authors contributed equally to this article
| | - Qin Wang
- Department of Pharmacogenomics, Fourth Military Medical University, Xi'an, Shaanxi, P.R. China.,Both the authors contributed equally to this article
| | - Shuai Zhao
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Maosen Yang
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Genrui Chen
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Youhu Chen
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Congye Li
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Haokao Gao
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Chengxiang Li
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| |
Collapse
|
98
|
Bansal G, Singh S, Monga V, Thanikachalam PV, Chawla P. Synthesis and biological evaluation of thiazolidine-2,4-dione-pyrazole conjugates as antidiabetic, anti-inflammatory and antioxidant agents. Bioorg Chem 2019; 92:103271. [DOI: 10.1016/j.bioorg.2019.103271] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2019] [Revised: 09/02/2019] [Accepted: 09/09/2019] [Indexed: 01/02/2023]
|
99
|
Root Bark of Paeonia suffruticosa Extract and Its Component Methyl Gallate Possess Peroxynitrite Scavenging Activity and Anti-inflammatory Properties through NF-κB Inhibition in LPS-treated Mice. Molecules 2019; 24:molecules24193483. [PMID: 31557976 PMCID: PMC6804175 DOI: 10.3390/molecules24193483] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Revised: 09/18/2019] [Accepted: 09/24/2019] [Indexed: 11/25/2022] Open
Abstract
A peroxynitrite (ONOO−)-generating system induced by 3-morpholinosydnonimine, was used to evaluate the ONOO− scavenging properties of plants that have been widely used as traditional medicine in Korea for the treatment of several diseases. The most effective medicinal plants were Paeonia suffruticosa Andrew, followed in order by Lonicera japonica Thunb., Curcuma zedoaria (Christm.) Roscoe, and Pueraria thunbergiana Benth. In addition, root bark of P. suffruticosa was partitioned with organic solvents of different polarities, and the ethyl acetate (EtOAc) fraction showed the strongest ONOO− scavenging activity. Methyl gallate, a plant-derived phenolic compound identified from the EtOAc fraction, exerted strong ONOO− scavenging activity. The in vivo therapeutic potential of methyl gallate was investigated using lipopolysaccharide-treated mice. Oral administration of methyl gallate protected against acute renal injury and exhibited potential anti-inflammatory properties through an increase in antioxidant activity and decrease in nuclear factor-kappa B activity.
Collapse
|
100
|
Shin MG, Cha HN, Park S, Kim YW, Kim JY, Park SY. Selenoprotein W deficiency does not affect oxidative stress and insulin sensitivity in the skeletal muscle of high-fat diet-fed obese mice. Am J Physiol Cell Physiol 2019; 317:C1172-C1182. [PMID: 31509445 DOI: 10.1152/ajpcell.00064.2019] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Selenoprotein W (SelW) is a selenium-containing protein with a redox motif found abundantly in the skeletal muscle of rodents. Previous in vitro studies suggest that SelW plays an antioxidant role; however, relatively few in vivo studies have addressed the antioxidant role of SelW. Since oxidative stress is a causative factor for the development of insulin resistance in obese subjects, we hypothesized that if SelW plays a role as an antioxidant, SelW deficiency could aggravate the oxidative stress and insulin resistance caused by a high-fat diet. SelW deficiency did not affect insulin sensitivity and H2O2 levels in the skeletal muscle of control diet-fed mice. SelW levels in the skeletal muscle were decreased by high-fat diet feeding for 12 wk. High-fat diet induced obesity and insulin resistance and increased the levels of H2O2 and oxidative stress makers, which were not affected by SelW deficiency. High-fat diet feeding increased the expression of antioxidant enzymes; however, SelW deficiency did not affect the expression levels of antioxidants. These results suggest that SelW does not play a protective role against oxidative stress and insulin resistance in the skeletal muscle of high-fat diet-fed obese mice.
Collapse
Affiliation(s)
- Min-Gyeong Shin
- Department of Physiology, College of Medicine, Yeungnam University, Daegu, Korea.,Smart-aging Convergence Research Center, College of Medicine, Yeungnam University, Daegu, Korea
| | - Hye-Na Cha
- Department of Physiology, College of Medicine, Yeungnam University, Daegu, Korea.,Smart-aging Convergence Research Center, College of Medicine, Yeungnam University, Daegu, Korea
| | - Soyoung Park
- Department of Physiology, College of Medicine, Yeungnam University, Daegu, Korea.,Smart-aging Convergence Research Center, College of Medicine, Yeungnam University, Daegu, Korea
| | - Yong-Woon Kim
- Department of Physiology, College of Medicine, Yeungnam University, Daegu, Korea
| | - Jong-Yeon Kim
- Department of Physiology, College of Medicine, Yeungnam University, Daegu, Korea
| | - So-Young Park
- Department of Physiology, College of Medicine, Yeungnam University, Daegu, Korea.,Smart-aging Convergence Research Center, College of Medicine, Yeungnam University, Daegu, Korea
| |
Collapse
|