51
|
Differding E. The Drug Discovery and Development Industry in India-Two Decades of Proprietary Small-Molecule R&D. ChemMedChem 2017; 12:786-818. [PMID: 28464443 PMCID: PMC5488177 DOI: 10.1002/cmdc.201700043] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2017] [Revised: 05/01/2017] [Indexed: 12/11/2022]
Abstract
This review provides a comprehensive survey of proprietary drug discovery and development efforts performed by Indian companies between 1994 and mid-2016. It is based on the identification and detailed analysis of pharmaceutical, biotechnology, and contract research companies active in proprietary new chemical entity (NCE) research and development (R&D) in India. Information on preclinical and clinical development compounds was collected by company, therapeutic indication, mode of action, target class, and development status. The analysis focuses on the overall pipeline and its evolution over two decades, contributions by type of company, therapeutic focus, attrition rates, and contribution to Western pharmaceutical pipelines through licensing agreements. This comprehensive analysis is the first of its kind, and, in our view, represents a significant contribution to the understanding of the current state of the drug discovery and development industry in India.
Collapse
Affiliation(s)
- Edmond Differding
- Differding Consulting s.p.r.l.Route de Blocry 551348Louvain-la-NeuveBelgium
| |
Collapse
|
52
|
Modified SJH alleviates FFAs-induced hepatic steatosis through leptin signaling pathways. Sci Rep 2017; 7:45425. [PMID: 28358008 PMCID: PMC5371820 DOI: 10.1038/srep45425] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Accepted: 03/01/2017] [Indexed: 02/06/2023] Open
Abstract
Samjunghwan (SJH) is an herbal formula used in traditional Korean medicine. This prescription has long been used in treatment of aging and lifestyle diseases. The current study showed the effect and mechanisms of anti-hepatic steatosis action of modified SJH (mSJH) in vitro and in vivo. Treatment with mSJH resulted in significantly decreased intracellular lipid accumulation in steatosis-induced cells. Furthermore, mSJH triggered the phosphorylation of AMP-activated protein kinase and acetyl-CoA carboxylase as well as increased the expression of leptin at both protein and gene levels. In addition, C57BL6 mice fed high-fat diet (HFD) showed significant improvements in body, liver weights and fat weights; and serum, hepatic and fecal lipid parameters in response to the treatment with mSJH. Furthermore, mSJH showed favorable effects on the hepatic expression of several genes related to lipid metabolism. Betaine, one of constituents of mSJH exerted fundamental beneficial impact on FFAs-induced cells. However, the beneficial effects of mSJH were diminished upon blocking of leptin signaling by dexamethasone, suggesting the leptin signaling as a key component in mSJH-mediated modulation of lipid homeostasis. Our results suggest that mSJH exerts an anti-hepatic steatosis effect via activation of leptin and associated signaling cascades related to lipid metabolism.
Collapse
|
53
|
An HJ, Lee B, Kim DH, Lee EK, Chung KW, Park MH, Jeong HO, Kim SM, Moon KM, Kim YR, Kim SJ, Yun HY, Chun P, Yu BP, Moon HR, Chung HY. Physiological characterization of a novel PPAR pan agonist, 2-(4-(5,6-methylenedioxybenzo[d]thiazol-2-yl)-2-methylphenoxy)-2-methylpropanoic acid (MHY2013). Oncotarget 2017; 8:16912-16924. [PMID: 28129657 PMCID: PMC5370010 DOI: 10.18632/oncotarget.14818] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Accepted: 12/27/2016] [Indexed: 02/03/2023] Open
Abstract
Recently, agonists targeting multiple peroxisome proliferator-activated receptors (PPARs) have been developed to improve metabolic disorders and minimize the side effects of selective PPAR agonists such as weight gain and dyslipidemia. We newly synthesized six 2-methyl-2-(o-tolyloxy)propanoic acid derivatives based on the structure of a well-known PPAR pan agonist, bezafibrate. Of six compounds, MHY2013 was screened as the strongest activator of three PPAR subtypes based on protein docking simulation and luciferase assays. When treated orally in db/db mice, MHY2013 ameliorated obesity-induced insulin resistance, dyslipidemia, and hepatic steatosis without changes of the body weight and levels of liver and kidney injury markers. MHY2013 decreased the serum triglyceride and fatty acid levels, which is associated with an increase in fatty acid oxidation signaling in the liver and thermogenic signaling on white adipose tissue, respectively. Furthermore, MHY2013 markedly increased serum levels of insulin-sensitizing hormones including fibroblast growth factor 21 (FGF21) and adiponectin. In conclusion, this study suggests that, MHY2013 is a novel PPAR pan agonist that improves obesity-induced insulin resistance, dyslipidemia and hepatic steatosis and elevates insulin-sensitizing hormones in the blood.
Collapse
Affiliation(s)
- Hye Jin An
- College of Pharmacy, Pusan National University, Busan 46241, Republic of Korea.,Molecular Inflammation Research Center for Aging Intervention (MRCA), Pusan National University, Busan 46241, Republic of Korea
| | - Bonggi Lee
- College of Pharmacy, Pusan National University, Busan 46241, Republic of Korea.,Molecular Inflammation Research Center for Aging Intervention (MRCA), Pusan National University, Busan 46241, Republic of Korea.,Korean Medicine (KM)-Application Center, Korea Institute of Oriental Medicine (KIOM), Daegu 41062, Republic of Korea
| | - Dae Hyun Kim
- College of Pharmacy, Pusan National University, Busan 46241, Republic of Korea.,Molecular Inflammation Research Center for Aging Intervention (MRCA), Pusan National University, Busan 46241, Republic of Korea
| | - Eun Kyeong Lee
- College of Pharmacy, Pusan National University, Busan 46241, Republic of Korea.,Molecular Inflammation Research Center for Aging Intervention (MRCA), Pusan National University, Busan 46241, Republic of Korea
| | - Ki Wung Chung
- College of Pharmacy, Pusan National University, Busan 46241, Republic of Korea.,Molecular Inflammation Research Center for Aging Intervention (MRCA), Pusan National University, Busan 46241, Republic of Korea
| | - Min Hi Park
- College of Pharmacy, Pusan National University, Busan 46241, Republic of Korea.,Molecular Inflammation Research Center for Aging Intervention (MRCA), Pusan National University, Busan 46241, Republic of Korea
| | - Hyoung Oh Jeong
- College of Pharmacy, Pusan National University, Busan 46241, Republic of Korea.,Molecular Inflammation Research Center for Aging Intervention (MRCA), Pusan National University, Busan 46241, Republic of Korea
| | - Seong Min Kim
- College of Pharmacy, Pusan National University, Busan 46241, Republic of Korea.,Molecular Inflammation Research Center for Aging Intervention (MRCA), Pusan National University, Busan 46241, Republic of Korea
| | - Kyoung Mi Moon
- College of Pharmacy, Pusan National University, Busan 46241, Republic of Korea.,Molecular Inflammation Research Center for Aging Intervention (MRCA), Pusan National University, Busan 46241, Republic of Korea
| | - Ye Ra Kim
- College of Pharmacy, Pusan National University, Busan 46241, Republic of Korea.,Molecular Inflammation Research Center for Aging Intervention (MRCA), Pusan National University, Busan 46241, Republic of Korea
| | - Seong Jin Kim
- College of Pharmacy, Pusan National University, Busan 46241, Republic of Korea.,Molecular Inflammation Research Center for Aging Intervention (MRCA), Pusan National University, Busan 46241, Republic of Korea
| | - Hwi Young Yun
- College of Pharmacy, Pusan National University, Busan 46241, Republic of Korea.,Molecular Inflammation Research Center for Aging Intervention (MRCA), Pusan National University, Busan 46241, Republic of Korea
| | - Pusoon Chun
- College of Pharmacy, Inje University, Gyeongsangnam-do 50834, Republic of Korea
| | - Byung Pal Yu
- Department of Physiology, The University of Texas Health Science Center at San Antonio, San Antonio, TX 78229-3900, USA
| | - Hyung Ryong Moon
- College of Pharmacy, Pusan National University, Busan 46241, Republic of Korea.,Molecular Inflammation Research Center for Aging Intervention (MRCA), Pusan National University, Busan 46241, Republic of Korea
| | - Hae Young Chung
- College of Pharmacy, Pusan National University, Busan 46241, Republic of Korea.,Molecular Inflammation Research Center for Aging Intervention (MRCA), Pusan National University, Busan 46241, Republic of Korea
| |
Collapse
|
54
|
Salminen A, Kauppinen A, Kaarniranta K. FGF21 activates AMPK signaling: impact on metabolic regulation and the aging process. J Mol Med (Berl) 2016; 95:123-131. [PMID: 27678528 DOI: 10.1007/s00109-016-1477-1] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Revised: 08/29/2016] [Accepted: 09/19/2016] [Indexed: 12/13/2022]
Abstract
Fibroblast growth factor 21 (FGF21) has a significant role in the regulation of energy metabolism, e.g., in the control of systemic glucose and lipid metabolism. For instance, FGF21 enhances insulin sensitivity, increases glucose uptake, and thus can decrease serum hyperglycemia, while it also increases lipid oxidation and inhibits lipogenesis. AMP-activated protein kinase (AMPK) is a tissue energy sensor involved in maintaining the energy balance and tissue integrity. It is known that AMPK signaling generates an energy metabolic profile which displays a remarkable overlap with that of FGF21. There is convincing evidence that endocrine FGF21 signaling activates the AMPK pathway, either directly through FGFR1/β-klotho signaling or indirectly by stimulating the secretion of adiponectin and corticosteroids, which consequently can activate AMPK signaling in their target tissues. By activating AMPK, FGF21 can promote a healthy aging process and thus extend mammalian lifespan. We will examine the signaling mechanisms through which FGF21 can activate the AMPK pathway and then discuss the significance of the close connection between FGF21 and AMPK signaling in the control of metabolic disorders and the aging process.
Collapse
Affiliation(s)
- Antero Salminen
- Department of Neurology, Institute of Clinical Medicine, University of Eastern Finland, P.O. Box 1627, FI-70211, Kuopio, Finland.
| | - Anu Kauppinen
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, P.O. Box 1627, FI-70211, Kuopio, Finland
| | - Kai Kaarniranta
- Department of Ophthalmology, Institute of Clinical Medicine, University of Eastern Finland, P.O. Box 1627, FI-70211, Kuopio, Finland.,Department of Ophthalmology, Kuopio University Hospital, P.O. Box 100, FI-70029 KYS, Kuopio, Finland
| |
Collapse
|
55
|
Yousefi M, Movassaghpour AA, Shamsasenjan K, Ghalamfarsa G, Sadreddini S, Jadidi-Niaragh F, Hojjat-Farsangi M. The skewed balance between Tregs and Th17 in chronic lymphocytic leukemia. Future Oncol 2016; 11:1567-82. [PMID: 25963433 DOI: 10.2217/fon.14.298] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
While Tregs maintain self-tolerance and inhibit antitumor responses, T helper (Th)17 cells may enhance inflammatory and antitumor responses. The balance between these two important T-cell subsets has been skewed in many immunopathologic conditions such as autoimmune and cancer diseases. B-cell chronic lymphocytic leukemia (CLL) is the most common form of leukemia in the western world and is characterized with monoclonal expansion of B lymphocytes. There is evidence which implies that the progression of CLL is associated with expansion of Treg and downregulation of Th17 cells. In this review, we will discuss about immunobiology of Treg and Th17 cells and their role in immunopathogenesis of CLL as well as their reciprocal changes during disease progression.
Collapse
Affiliation(s)
- Mehdi Yousefi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | | | | | | | | | | |
Collapse
|
56
|
Schröder T, Kucharczyk D, Bär F, Pagel R, Derer S, Jendrek ST, Sünderhauf A, Brethack AK, Hirose M, Möller S, Künstner A, Bischof J, Weyers I, Heeren J, Koczan D, Schmid SM, Divanovic S, Giles DA, Adamski J, Fellermann K, Lehnert H, Köhl J, Ibrahim S, Sina C. Mitochondrial gene polymorphisms alter hepatic cellular energy metabolism and aggravate diet-induced non-alcoholic steatohepatitis. Mol Metab 2016; 5:283-295. [PMID: 27069868 PMCID: PMC4812012 DOI: 10.1016/j.molmet.2016.01.010] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Revised: 01/18/2016] [Accepted: 01/25/2016] [Indexed: 02/07/2023] Open
Abstract
Objective Non-alcoholic fatty liver disease (NAFLD) is the most common chronic liver disease and is associated with an enhanced risk for liver and cardiovascular diseases and mortality. NAFLD can progress from simple hepatic steatosis to non-alcoholic steatohepatitis (NASH). However, the mechanisms predisposing to this progression remain undefined. Notably, hepatic mitochondrial dysfunction is a common finding in patients with NASH. Due to a lack of appropriate experimental animal models, it has not been evaluated whether this mitochondrial dysfunction plays a causative role for the development of NASH. Methods To determine the effect of a well-defined mitochondrial dysfunction on liver physiology at baseline and during dietary challenge, C57BL/6J-mtFVB/N mice were employed. This conplastic inbred strain has been previously reported to exhibit decreased mitochondrial respiration likely linked to a non-synonymous gene variation (nt7778 G/T) of the mitochondrial ATP synthase protein 8 (mt-ATP8). Results At baseline conditions, C57BL/6J-mtFVB/N mice displayed hepatic mitochondrial dysfunction characterized by decreased ATP production and increased formation of reactive oxygen species (ROS). Moreover, genes affecting lipid metabolism were differentially expressed, hepatic triglyceride and cholesterol levels were changed in these animals, and various acyl-carnitines were altered, pointing towards an impaired mitochondrial carnitine shuttle. However, over a period of twelve months, no spontaneous hepatic steatosis or inflammation was observed. On the other hand, upon dietary challenge with either a methionine and choline deficient diet or a western-style diet, C57BL/6J-mtFVB/N mice developed aggravated steatohepatitis as characterized by lipid accumulation, ballooning of hepatocytes and infiltration of immune cells. Conclusions We observed distinct metabolic alterations in mice with a mitochondrial polymorphism associated hepatic mitochondrial dysfunction. However, a second hit, such as dietary stress, was required to cause hepatic steatosis and inflammation. This study suggests a causative role of hepatic mitochondrial dysfunction in the development of experimental NASH. C57BL/6J-mtFVB/N mice (mt-ATP8, nt7778 G/T) display hepatic mitochondrial dysfunction. C57BL/6J-mtFVB/N mice display alterations in hepatic energy metabolism. C57BL/6J-mtFVB/N mice show no spontaneous hepatic steatosis or inflammation. C57BL/6J-mtFVB/N mice are susceptible to diet induced NASH. Study demonstrates causative role of mitochondrial dysfunction for NASH development.
Collapse
Key Words
- ALT, alanine aminotransferase
- AMP, adenosine monophosphate
- AMPK, AMP-activated proteinkinase
- ATP, adenosine triphosphate
- ATP8, ATP synthase protein 8
- Arg, arginine
- Asp, aspartic acid
- B6-mtB6, C57BL/6
- B6-mtFVB, C57BL/6-mtFVB/N
- C0, free dl-carnitine
- C16, hexadecanoyl-l-carntine
- C18, octadecanoyl-l-carnitine
- CD, control diet
- CD3, cluster of differentiation receptor 3
- CPT I, carnitine-palmitoyltransferase I
- CYP51A1, cytochrome P450, family 51, subfamily A, polypeptide 1
- GAPDH, glyceraldehyde 3-phosphate dehydrogenase
- Gr1, granulocyte differentiation antigen 1
- H&E, hematoxylin–eosin staining
- H2O2, hydrogen peroxide
- Hsd17b7, 17-beta-hydroxysteroid dehydrogenase type 7
- IDI1, isopentenyl-diphosphate delta isomerase 1
- IL, interleukin
- IPA, ingenuity pathway analysis
- KEGG, Kyoto Encyclopedia of Genes and Genomes
- Lipid metabolism
- Ly6G, lymphocyte antigen 6 complex, locus G
- MCDD, methionine and choline deficient diet
- MSMO1, methylsterol monooxygenase 1
- Met, methionine
- Mitochondrial dysfunction
- Mitochondrial gene polymorphism
- NAFL, non-alcoholic liver steatosis
- NAFLD
- NAFLD, non-alcoholic fatty liver disease
- NAS, NAFLD activity score
- NASH, non-alcoholic steatohepatitis
- ND3, NADH dehydrogenase subunit 3
- OCR, oxygen consumption rate
- OXPHOS, oxidative phosphorylation system
- PBS, phosphate buffered saline
- ROS, reactive oxygen species
- SNPs, single nucleotide polymorphisms
- SOD2, superoxide dismutase 2
- STRING, Search Tool for the Retrieval of Interacting Genes/Proteins
- Steatohepatitis
- TNFα
- TNFα, tumor necrosis factor alpha
- Tyr, tyrosine
- WD, western-style diet
- mt, mitochondrial
- pAMPK, phosphorylated AMP-activated proteinkinase
Collapse
Affiliation(s)
- Torsten Schröder
- University of Lübeck, Department of Medicine I, Ratzeburger Allee 160, D-23538 Lübeck, Germany; University of Lübeck, Institute for Systemic Inflammation Research, Ratzeburger Allee 160, D-23538 Lübeck, Germany
| | - David Kucharczyk
- University of Lübeck, Department of Medicine I, Ratzeburger Allee 160, D-23538 Lübeck, Germany
| | - Florian Bär
- University of Lübeck, Department of Medicine I, Ratzeburger Allee 160, D-23538 Lübeck, Germany
| | - René Pagel
- University of Lübeck, Department of Medicine I, Ratzeburger Allee 160, D-23538 Lübeck, Germany; University of Lübeck, Institute of Anatomy, Ratzeburger Allee 160, D-23538 Lübeck, Germany
| | - Stefanie Derer
- University of Lübeck, Department of Medicine I, Ratzeburger Allee 160, D-23538 Lübeck, Germany
| | - Sebastian Torben Jendrek
- University of Lübeck, Department of Medicine I, Ratzeburger Allee 160, D-23538 Lübeck, Germany; University of Lübeck, Institute of Anatomy, Ratzeburger Allee 160, D-23538 Lübeck, Germany
| | - Annika Sünderhauf
- University of Lübeck, Department of Medicine I, Ratzeburger Allee 160, D-23538 Lübeck, Germany
| | - Ann-Kathrin Brethack
- University of Lübeck, Department of Medicine I, Ratzeburger Allee 160, D-23538 Lübeck, Germany
| | - Misa Hirose
- University of Lübeck, The Lübeck Institute of Experimental Dermatology, Ratzeburger Allee 160, D-23538 Lübeck, Germany
| | - Steffen Möller
- University of Lübeck, The Lübeck Institute of Experimental Dermatology, Ratzeburger Allee 160, D-23538 Lübeck, Germany; Rostock University Medical Center, Institute for Biostatistics and Informatics in Medicine and Ageing Research, Ernst-Heydemann-Straße 8, D-18057 Rostock, Germany
| | - Axel Künstner
- University of Lübeck, The Lübeck Institute of Experimental Dermatology, Ratzeburger Allee 160, D-23538 Lübeck, Germany; Max Planck Institute for Evolutionary Biology, Guest Group Evolutionary Genomics, August-Thienemann-Straße 2, 24306 Plön, Germany
| | - Julia Bischof
- University of Lübeck, The Lübeck Institute of Experimental Dermatology, Ratzeburger Allee 160, D-23538 Lübeck, Germany
| | - Imke Weyers
- University of Lübeck, Institute of Anatomy, Ratzeburger Allee 160, D-23538 Lübeck, Germany
| | - Jörg Heeren
- University Hospital Hamburg-Eppendorf, Department of Biochemistry and Molecular Cell Biology, Martinistraße 52, D-20246 Hamburg, Germany
| | - Dirk Koczan
- University of Rostock, Institute of Immunology, Schillingallee 70, D-18057 Rostock, Germany
| | | | - Senad Divanovic
- Cincinnati Children's Hospital Research Foundation, University of Cincinnati, Division of Immunobiology, 3333 Burnet Avenue, Cincinnati, OH 45229-3026, USA
| | - Daniel Aaron Giles
- Cincinnati Children's Hospital Research Foundation, University of Cincinnati, Division of Immunobiology, 3333 Burnet Avenue, Cincinnati, OH 45229-3026, USA
| | - Jerzy Adamski
- Helmholtz Center, German Research Center for Environmental Health, Institute of Experimental Genetics, Genome Analysis Center, Ingolstaedter Landstraße 1, D-85764 Neuherberg, Germany; Technische Universität München, Lehrstuhl für Experimentelle Genetik, Liesel-Beckmann-Straße 4, 85350 Freising-Weihenstephan, Germany; German Center for Diabetes Research (DZD), Ingolstaedter Landstraße 1, 85764 Neuherberg, Germany
| | - Klaus Fellermann
- University of Lübeck, Department of Medicine I, Ratzeburger Allee 160, D-23538 Lübeck, Germany
| | - Hendrik Lehnert
- University of Lübeck, Department of Medicine I, Ratzeburger Allee 160, D-23538 Lübeck, Germany
| | - Jörg Köhl
- University of Lübeck, Institute for Systemic Inflammation Research, Ratzeburger Allee 160, D-23538 Lübeck, Germany; Cincinnati Children's Hospital Research Foundation, University of Cincinnati, Division of Immunobiology, 3333 Burnet Avenue, Cincinnati, OH 45229-3026, USA
| | - Saleh Ibrahim
- University of Lübeck, The Lübeck Institute of Experimental Dermatology, Ratzeburger Allee 160, D-23538 Lübeck, Germany
| | - Christian Sina
- University of Lübeck, Department of Medicine I, Ratzeburger Allee 160, D-23538 Lübeck, Germany.
| |
Collapse
|
57
|
Sun Y, Tian T, Gao J, Liu X, Hou H, Cao R, Li B, Quan M, Guo L. Metformin ameliorates the development of experimental autoimmune encephalomyelitis by regulating T helper 17 and regulatory T cells in mice. J Neuroimmunol 2016; 292:58-67. [PMID: 26943960 DOI: 10.1016/j.jneuroim.2016.01.014] [Citation(s) in RCA: 98] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Revised: 01/09/2016] [Accepted: 01/14/2016] [Indexed: 01/22/2023]
Abstract
Immoderate immunoreaction of antigen-specific Th17 and Treg cell dysfunction play critical roles in the pathogenesis of multiple sclerosis. We examined Th17/Treg immune responses and the underlying mechanisms in response to metformin in C57BL/6 mice with experimental autoimmune encephalomyelitis (EAE). Metformin reduced Th17 and increased Treg cell percentages along with the levels of associated cytokines. Molecules involved in cellular metabolism were altered in mice with EAE. Suppressed activation of mTOR and its downstream target, HIF-1α, likely mediated the protective effects of metformin. Our findings demonstrate that regulation of T cell metabolism represents a new therapeutic target for CNS autoimmune disorders.
Collapse
Affiliation(s)
- Yafei Sun
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, 050000, Hebei, China
| | - Tian Tian
- Department of neurosurgery, Affiliated Hospital of Chengde Medical College, Chengde, 06700, Hebei, China
| | - Juan Gao
- Department of Neurology, Affiliated Hospital of Hebei University, Baoding, 071000, Hebei, China
| | - Xiaoqian Liu
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, 050000, Hebei, China
| | - Huiqing Hou
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, 050000, Hebei, China; Key Laboratory of Hebei Neurology, Shijiazhuang, 050000, Hebei, China
| | - Runjing Cao
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, 050000, Hebei, China
| | - Bin Li
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, 050000, Hebei, China; Key Laboratory of Hebei Neurology, Shijiazhuang, 050000, Hebei, China
| | - Moyuan Quan
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, 050000, Hebei, China
| | - Li Guo
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, 050000, Hebei, China; Key Laboratory of Hebei Neurology, Shijiazhuang, 050000, Hebei, China.
| |
Collapse
|
58
|
Liu X, Lian J, Hu CH, Deng C. Betahistine co-treatment ameliorates dyslipidemia induced by chronic olanzapine treatment in rats through modulation of hepatic AMPKα-SREBP-1 and PPARα-dependent pathways. Pharmacol Res 2015. [DOI: 10.1016/j.phrs.2015.07.023] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
59
|
Noureldein MH, Abd El-Razek RS, El-Hefnawy MH, El-Mesallamy HO. Fenofibrate reduces inflammation in obese patients with or without type 2 diabetes mellitus via sirtuin 1/fetuin A axis. Diabetes Res Clin Pract 2015; 109:513-20. [PMID: 26105582 DOI: 10.1016/j.diabres.2015.05.043] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2015] [Revised: 05/07/2015] [Accepted: 05/19/2015] [Indexed: 01/15/2023]
Abstract
AIMS The aim of the current study is to investigate the effect of fenofibrate alone and in combination with pioglitazone on serum sirtuin 1 and fetuin A of obese patients with Type 2 Diabetes Mellitus (T2DM). METHODS Intervention effect on inflammatory parameters was assessed before and after treatment. The study was conducted on 60 postmenopausal females of whom, only 44 patients completed the study. They were distributed as follows; obese patients without T2DM (n=15) who administered fenofibrate (160 mg/day) once for 8 weeks, obese patients with T2DM (n=15) who administered fenofibrate (160 mg/day) once for 8 weeks, obese patients with T2DM (n=14) who administered fenofibrate (160 mg/day) and pioglitazone (15 mg/day) combination once for 8 weeks. We measured fasting plasma glucose, glycated hemoglobin (HbA1c), serum lipids. Inflammatory markers (high sensitivity C-reactive protein "hs-CRP", interleukin-6 "IL-6", fetuin A, and sirtuin 1) of patients were measured in serum using enzyme-linked immunoassay (ELISA) kits. RESULTS Sirtuin 1 levels in obese patients with T2DM were significantly lower than its levels in obese patients while fetuin A levels were significantly higher (P<0.001). Fenofibrate, alone and in combination with pioglitazone, significantly decreased triacylglycerol, hs-CRP, IL-6, fetuin A and increased sirtuin 1 levels (P<0.001) which suggests that it can be used to delay the complications of obesity and T2DM. There is a strong correlation between fetuin A, sirtuin 1, IL-6 and hs-CRP levels suggesting a shared common pathway. CONCLUSIONS Fenofibrate was shown to increase serum sirtuin 1 and decrease serum fetuin A levels in obese patients. TRIAL NUMBER PACTR201407000856135.
Collapse
Affiliation(s)
- Mohamed H Noureldein
- BSc of Pharmaceutical Sciences, Teaching Assistant at Biochemistry Department, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Rania S Abd El-Razek
- Lecturer of Biochemistry, Biochemistry Department, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Mohamed H El-Hefnawy
- Professor of endocrinology and Dean of the National Institute of Diabetes and Endocrinology (NIDE), Cairo, Egypt
| | - Hala O El-Mesallamy
- Professor of Biochemistry and Vice Dean of Postgraduate and Research Affairs, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt.
| |
Collapse
|
60
|
Synchronizing transcriptional control of T cell metabolism and function. Nat Rev Immunol 2015; 15:574-84. [DOI: 10.1038/nri3874] [Citation(s) in RCA: 85] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
61
|
Al-Rasheed NM, Al-Rasheed NM, Attia HA, Al-Amin MA, Al-Ajmi HN, Hasan IH, Mohamad RA, Sinjilawi NA. Renoprotective Effects of Fenofibrate via Modulation of LKB1/AMPK mRNA Expression and Endothelial Dysfunction in a Rat Model of Diabetic Nephropathy. Pharmacology 2015; 95:229-39. [PMID: 25967095 DOI: 10.1159/000381190] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2015] [Accepted: 02/21/2015] [Indexed: 11/19/2022]
Abstract
This study was conducted to investigate whether the renoprotective effects of fenofibrate are mediated via attenuation of endothelial dysfunction and modulating the mRNA expression of adenosine monophosphate-activated protein kinase (AMPK) and its downstream kinase liver kinase B1 (LKB1) in rats with diabetic nephropathy (DN). Diabetes was induced by a single intraperitoneal injection of streptozotocin (55 mg kg(-1)). Fenofibrate (100 mg kg(-1), p.o.) was given to diabetic rats daily for 12 weeks. Treatment with fenofibrate significantly improved the renal function as revealed by the significant reductions in urinary albumin excretion and serum levels of creatinine and urea, in addition to the significant increase in creatinine clearance compared with the diabetic control group. Hyperglycemia-induced oxidative damage was ameliorated by treatment with fenofibrate as indicated by the significantly increased levels of glutathione and catalase together with the significant decrease in lipid peroxidation. Administration of fenofibrate caused significant increases in renal nitric oxide (NO) production and mRNA expression of endothelial NO synthase (eNOS), AMPK and LKB1, reflecting improvement of endothelial function. Our results give further insights into the mechanisms underlying the protective role of fenofibrate in DN via modulation of AMPK, LKB1 and eNOS mRNA expression.
Collapse
Affiliation(s)
- Nawal M Al-Rasheed
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | | | | | | | | | | | | | | |
Collapse
|
62
|
T Helper 17/Regulatory T Cell Balance and Experimental Models of Peritoneal Dialysis-Induced Damage. BIOMED RESEARCH INTERNATIONAL 2015; 2015:416480. [PMID: 26064907 PMCID: PMC4433660 DOI: 10.1155/2015/416480] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/18/2014] [Accepted: 12/29/2014] [Indexed: 02/06/2023]
Abstract
Fibrosis is a general complication in many diseases. It is the main complication during peritoneal dialysis (PD) treatment, a therapy for renal failure disease. Local inflammation and mesothelial to mesenchymal transition (MMT) are well known key phenomena in peritoneal damage during PD. New data suggest that, in the peritoneal cavity, inflammatory changes may be regulated at least in part by a delicate balance between T helper 17 and regulatory T cells. This paper briefly reviews the implication of the Th17/Treg-axis in fibrotic diseases. Moreover, it compares current evidences described in PD animal experimental models, indicating a loss of Th17/Treg balance (Th17 predominance) leading to peritoneal damage during PD. In addition, considering the new clinical and animal experimental data, new therapeutic strategies to reduce the Th17 response and increase the regulatory T response are proposed. Thus, future goals should be to develop new clinical biomarkers to reverse this immune misbalance and reduce peritoneal fibrosis in PD.
Collapse
|
63
|
Viswakarma N, Jia Y, Bai L, Gao Q, Lin B, Zhang X, Misra P, Rana A, Jain S, Gonzalez FJ, Zhu YJ, Thimmapaya B, Reddy JK. The Med1 subunit of the mediator complex induces liver cell proliferation and is phosphorylated by AMP kinase. J Biol Chem 2013; 288:27898-911. [PMID: 23943624 DOI: 10.1074/jbc.m113.486696] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Mediator, a large multisubunit protein complex, plays a pivotal role in gene transcription by linking gene-specific transcription factors with the preinitiation complex and RNA polymerase II. In the liver, the key subunit of the Mediator complex, Med1, interacts with several nuclear receptors and transcription factors to direct gene-specific transcription. Conditional knock-out of Med1 in the liver showed that hepatocytes lacking Med1 did not regenerate following either partial hepatectomy or treatment with certain nuclear receptor activators and failed to give rise to tumors when challenged with carcinogens. We now report that the adenovirally driven overexpression of Med1 in mouse liver stimulates hepatocyte DNA synthesis with enhanced expression of DNA replication, cell cycle control, and liver-specific genes, indicating that Med1 alone is necessary and sufficient for liver cell proliferation. Importantly, we demonstrate that AMP-activated protein kinase (AMPK), an important cellular energy sensor, interacts with, and directly phosphorylates, Med1 in vitro at serine 656, serine 756, and serine 796. AMPK also phosphorylates Med1 in vivo in mouse liver and in cultured primary hepatocytes and HEK293 and HeLa cells. In addition, we demonstrate that PPARα activators increase AMPK-mediated Med1 phosphorylation in vivo. Inhibition of AMPK by compound C decreased hepatocyte proliferation induced by Med1 and also by the PPARα activators fenofibrate and Wy-14,643. Co-treatment with compound C attenuated PPARα activator-inducible fatty acid β-oxidation in liver. Our results suggest that Med1 phosphorylation by its association with AMPK regulates liver cell proliferation and fatty acid oxidation, most likely as a downstream effector of PPARα and AMPK.
Collapse
Affiliation(s)
- Navin Viswakarma
- From the Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
64
|
Abstract
The interplay of the immune system with other aspects of physiology is continually being revealed and in some cases studied in considerable mechanistic detail. A prime example is the influence of metabolic cues on immune responses. It is well appreciated that upon activation, T cells take on a metabolic profile profoundly distinct from that of their quiescent and anergic counterparts; however, a number of recent breakthroughs have greatly expanded our knowledge of how aspects of cellular metabolism can shape a T-cell response. Particularly important are findings that certain environmental cues can tilt the delicate balance between inflammation and immune tolerance by skewing T-cell fate decisions toward either the T-helper 17 (Th17) or T-regulatory (Treg) cell lineage. Recognizing the unappreciated immune-modifying potential of metabolic factors and particularly those involved in the generation of these functionally opposing T-cell subsets will likely add new and potent therapies to our repertoire for treating immune mediated pathologies. In this review, we summarize and discuss recent findings linking certain metabolic pathways, enzymes, and by-products to shifts in the balance between Th17 and Treg cell populations. These advances highlight numerous opportunities for immune modulation.
Collapse
Affiliation(s)
- Joseph Barbi
- Department of Oncology, Immunology and Hematopoiesis Division, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | | | | |
Collapse
|
65
|
Treating influenza with statins and other immunomodulatory agents. Antiviral Res 2013; 99:417-35. [PMID: 23831494 DOI: 10.1016/j.antiviral.2013.06.018] [Citation(s) in RCA: 128] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2013] [Revised: 06/19/2013] [Accepted: 06/25/2013] [Indexed: 12/28/2022]
Abstract
Statins not only reduce levels of LDL-cholesterol, they counteract the inflammatory changes associated with acute coronary syndrome and improve survival. Similarly, in patients hospitalized with laboratory-confirmed seasonal influenza, statin treatment is associated with a 41% reduction in 30-day mortality. Most patients of any age who are at increased risk of influenza mortality have chronic low-grade inflammation characteristic of metabolic syndrome. Moreover, differences in the immune responses of children and adults seem responsible for the low mortality in children and high mortality in adults seen in the 1918 influenza pandemic and in other acute infectious and non-infectious conditions. These differences probably reflect human evolutionary development. Thus the host response to influenza seems to be the major determinant of outcome. Outpatient statins are associated with reductions in hospitalizations and deaths due to sepsis and pneumonia. Inpatient statins are also associated with reductions in short-term pneumonia mortality. Other immunomodulatory agents--ACE inhibitors (ACEIs), angiotensin receptor blockers (ARBs), PPARγ and PPARα agonists (glitazones and fibrates) and AMPK agonists (metformin)--also reduce mortality in patients with pneumonia (ACEIs, ARBs) or in mouse models of influenza (PPAR and AMPK agonists). In experimental studies, treatment has not increased virus replication. Thus effective management of influenza may not always require targeting the virus with vaccines or antiviral agents. Clinical investigators, not systems biologists, have been the first to suggest that immunomodulatory agents might be used to treat influenza patients, but randomized controlled trials will be needed to provide convincing evidence that they work. To guide the choice of which agent(s) to study, we need new types of laboratory research in animal models and clinical and epidemiological research in patients with critical illness. These studies will have crucial implications for global public health. During the 2009 H1N1 influenza pandemic, timely and affordable supplies of vaccines and antiviral agents were unavailable to more than 90% of the world's people. In contrast, statins and other immunomodulatory agents are currently produced as inexpensive generics, global supplies are huge, and they would be available to treat patients in any country with a basic health care system on the first pandemic day. Treatment with statins and other immunomodulatory agents represents a new approach to reducing mortality caused by seasonal and pandemic influenza.
Collapse
|
66
|
Weng JR, Bai LY, Chiu CF, Hu JL, Chiu SJ, Wu CY. Cucurbitane Triterpenoid from Momordica charantia Induces Apoptosis and Autophagy in Breast Cancer Cells, in Part, through Peroxisome Proliferator-Activated Receptor γ Activation. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2013; 2013:935675. [PMID: 23843889 PMCID: PMC3697288 DOI: 10.1155/2013/935675] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/20/2013] [Revised: 05/24/2013] [Accepted: 05/26/2013] [Indexed: 12/15/2022]
Abstract
Although the antitumor activity of the crude extract of wild bitter gourd (Momordica charantia L.) has been reported, its bioactive constituents and the underlying mechanism remain undefined. Here, we report that 3 β ,7 β -dihydroxy-25-methoxycucurbita-5,23-diene-19-al (DMC), a cucurbitane-type triterpene isolated from wild bitter gourd, induced apoptotic death in breast cancer cells through peroxisome proliferator-activated receptor (PPAR) γ activation. Luciferase reporter assays indicated the ability of DMC to activate PPAR γ , and pharmacological inhibition of PPAR γ protected cells from DMC's antiproliferative effect. Western blot analysis indicated that DMC suppressed the expression of many PPAR γ -targeted signaling effectors, including cyclin D1, CDK6, Bcl-2, XIAP, cyclooxygenase-2, NF- κ B, and estrogen receptor α , and induced endoplasmic reticulum stress, as manifested by the induction of GADD153 and GRP78 expression. Moreover, DMC inhibited mTOR-p70S6K signaling through Akt downregulation and AMPK activation. The ability of DMC to activate AMPK in liver kinase (LK) B1-deficient MDA-MB-231 cells suggests that this activation was independent of LKB1-regulated cellular metabolic status. However, DMC induced a cytoprotective autophagy presumably through mTOR inhibition, which could be overcome by the cotreatment with the autophagy inhibitor chloroquine. Together, the ability of DMC to modulate multiple PPAR γ -targeted signaling pathways provides a mechanistic basis to account for the antitumor activity of wild bitter gourd.
Collapse
Affiliation(s)
- Jing-Ru Weng
- Department of Biological Science and Technology, China Medical University, Taichung 40402, Taiwan
| | - Li-Yuan Bai
- Division of Hematology and Oncology, Department of Internal Medicine, China Medical University Hospital, Taichung 40402, Taiwan
- College of Medicine, China Medical University, Taichung 40402, Taiwan
| | - Chang-Fang Chiu
- Division of Hematology and Oncology, Department of Internal Medicine, China Medical University Hospital, Taichung 40402, Taiwan
- Cancer Center, China Medical University Hospital, Taichung 40402, Taiwan
| | - Jing-Lan Hu
- Department of Biological Science and Technology, China Medical University, Taichung 40402, Taiwan
| | - Shih-Jiuan Chiu
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei 11031, Taiwan
| | - Chia-Yung Wu
- Department of Biological Science and Technology, China Medical University, Taichung 40402, Taiwan
| |
Collapse
|
67
|
Galal O, Podlogar J, Verspohl EJ. Impact of ADMA (asymmetric dimethylarginine) on physiology with respect to diabetes mellitus and respiratory system BEAS-2B cells (human bronchial epithelial cells). ACTA ACUST UNITED AC 2012; 65:253-63. [PMID: 23278693 DOI: 10.1111/j.2042-7158.2012.01590.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2011] [Accepted: 08/12/2012] [Indexed: 11/27/2022]
Abstract
OBJECTIVES Asymmetric dimethylarginine (ADMA) is a non-selective nitric oxide (NO) synthase inhibitor associated with cardiovascular and metabolic disorders. This study aimed to investigate ADMA with respect to both diabetes and respiratory disease. METHODS Glucose was determined by hexokinase method, insulin by a radioimmunoassay. Griess test was used for NO assay and cytokinines were assayed by ELISA. Ciliary beat frequency was determined by high speed video using a microscope. KEY FINDINGS ADMA induced an increase in blood glucose and plasma insulin levels in rats; the ratio of these effects indicates the induction of a diabetic situation (insulin resistance). L-arginine increased blood glucose and initially slightly decreased plasma insulin. A pretreatment with ADMA abolished these effects. ADMA shows similar effects in vitro (insulin-secreting cell line, INS-1 cells). L-arginine increased production of NO, which was reversed by ADMA (INS-1 cells). ADMA also reduced NO production positively modulated by various substances, namely metformin, ciglitazone, losartan and nateglinide, but nevertheless inhibited insulin release induced by these compounds. ADMA stimulated the production of cytokines such as interleukin (IL-6) and macrophage inflammatory protein-2 (MIP-2) (rat IL-8 analogue) from INS-1 cells. 5-Aminoimidazole-4-carboxamide-1-β-4-ribofuranoside (AICAR), a direct adenosine monophosphate protein kinase (AMPK) activator and anti-inflammatory agent, induced NO production and reduced cytokine release. In contrast to diabetes parameters, ADMA had no effect of on the respiratory system (cytokine secretion from BEAS-2B cells (IL-8, regulated on activation, normal T cell expressed and secreted, and tumour necrosis factor-α), ciliary beat frequency and smooth muscle contraction of rat trachea). CONCLUSIONS ADMA has a pathophysiological impact leading to a diabetic situation but has no impact on the respiratory system.
Collapse
Affiliation(s)
- Omneya Galal
- Department of Pharmacology, Inst Medicinal Chem, Muenster, Germany
| | | | | |
Collapse
|
68
|
Yang X, So WY, Ma RCW, Yu LWL, Kong APS, Lee HM, Xu G, Ozaki R, Ko GTC, Chan JCN. Use of thiazolidinedione and cancer risk in Type 2 diabetes: the Hong Kong diabetes registry. Diabetes Res Clin Pract 2012; 97:e13-7. [PMID: 22502769 DOI: 10.1016/j.diabres.2012.03.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2011] [Revised: 03/04/2012] [Accepted: 03/13/2012] [Indexed: 11/17/2022]
Abstract
We examined possible anticancer effects of thiazolidinediones (TZDs) in 6074 Chinese with Type 2 diabetes free of cancer at enrolment. During a median follow-up of 4.93 years, 270 patients developed cancer. Use of TZDs was associated with reduced risk of cancer in a dose-response manner in multivariable analysis.
Collapse
Affiliation(s)
- Xilin Yang
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong, China.
| | | | | | | | | | | | | | | | | | | |
Collapse
|