51
|
Neuroprotective effects of Psoralea corylifolia Linn seed extracts on mitochondrial dysfunction induced by 3-nitropropionic acid. BMC COMPLEMENTARY AND ALTERNATIVE MEDICINE 2014; 14:370. [PMID: 25277760 PMCID: PMC4196132 DOI: 10.1186/1472-6882-14-370] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/07/2014] [Accepted: 09/29/2014] [Indexed: 01/05/2023]
Abstract
BACKGROUND Mitochondrial dysfunction has been implicated in neuronal apoptosis associated with neurodegenerative diseases such as Huntington's disease (HD). Animals that are administered 3-nitropropionic acid (3-NP), a mitochondrial toxin that specifically inhibits complex II of the mitochondrial electron transport chain, manifest HD-like symptoms. METHODS Psoralea corylifolia Linn seed extracts against 3-NP induced mitochondrial dysfunction in cultured rat pheochromocytoma (PC12) cells, which are used for neurobiological studies. RESULTS In this study showed that 3-NP-treated PC12 cells had decreased ATP levels, lower cellular oxygen consumption, and reduced mitochondrial membrane potential than those of untreated PC12 cells. Psoralea corylifolia Linn seed extracts stimulated mitochondrial respiration with uncoupling and induced an increased bioenergetic reserve capacity. Furthermore, PC12 cells pretreated with P. corylifolia Linn seed extracts significantly attenuated 3-NP-induced cell death, reduced ATP levels, and lowered the mitochondrial membrane potential. CONCLUSIONS These results demonstrate that P. corylifolia Linn seed extracts have a significant protective effect against 3-NP induced cytotoxicity. Thus, our results indicate that P. corylifolia Linn seed extracts may have potential applications as therapeutic agents for treating neurodegenerative disease.
Collapse
|
52
|
Spongionella secondary metabolites protect mitochondrial function in cortical neurons against oxidative stress. Mar Drugs 2014; 12:700-18. [PMID: 24473170 PMCID: PMC3944510 DOI: 10.3390/md12020700] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2013] [Revised: 01/07/2014] [Accepted: 01/08/2014] [Indexed: 02/06/2023] Open
Abstract
The marine habitat provides a large number of structurally-diverse bioactive compounds for drug development. Marine sponges have been studied over many years and are found to be a rich source of these bioactive chemicals. This study is focused on the evaluation of the activity of six diterpene derivatives isolated from Spongionella sp. on mitochondrial function using an oxidative in vitro stress model. The test compounds include the Gracilins (A, H, K, J and L) and tetrahydroaplysulphurin-1. Compounds were co-incubated with hydrogen peroxide for 12 hours to determine their protective capacities and their effect on markers of apoptosis and Nrf2/ARE pathways was evaluated. Results conclude that Gracilins preserve neurons against oxidative damage, and that in particular, tetrahydroaplysulphurin-1 shows a complete neuroprotective activity. Oxidative stress is linked to mitochondrial dysfunction and consequently to neurodegenerative disorders like Parkinson and Alzheimer diseases, Friedreich ataxia or Amyotrophic lateral sclerosis. This neuroprotection against oxidation conditions suggest that these metabolites could be interesting lead candidates in drug development for neurodegenerative diseases.
Collapse
|
53
|
Kotelnikova RA, Smolina AV, Grigoryev VV, Faingold II, Mischenko DV, Rybkin AY, Poletayeva DA, Vankin GI, Zamoyskiy VL, Voronov II, Troshin PA, Kotelnikov AI, Bachurin SO. Influence of water-soluble derivatives of [60]fullerene on therapeutically important targets related to neurodegenerative diseases. MEDCHEMCOMM 2014. [DOI: 10.1039/c4md00194j] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Water soluble fullerene derivatives I and II were shown to behave as promising neuroprotective agents that improve cognitive functioning in animals.
Collapse
Affiliation(s)
| | | | - V. V. Grigoryev
- Institute of Physiologically Active Compounds of Russian Academy of Sciences
- Chernogolovka
- Russia
| | | | | | | | | | - G. I. Vankin
- Institute of Physiologically Active Compounds of Russian Academy of Sciences
- Chernogolovka
- Russia
| | - V. L. Zamoyskiy
- Institute of Physiologically Active Compounds of Russian Academy of Sciences
- Chernogolovka
- Russia
| | | | | | | | - S. O. Bachurin
- Institute of Physiologically Active Compounds of Russian Academy of Sciences
- Chernogolovka
- Russia
| |
Collapse
|
54
|
Sui BD, Xu TQ, Liu JW, Wei W, Zheng CX, Guo BL, Wang YY, Yang YL. Understanding the role of mitochondria in the pathogenesis of chronic pain. Postgrad Med J 2013; 89:709-14. [DOI: 10.1136/postgradmedj-2012-131068] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
55
|
Parkinson's disease is related to an increased risk of ischemic stroke-a population-based propensity score-matched follow-up study. PLoS One 2013; 8:e68314. [PMID: 24023710 PMCID: PMC3759416 DOI: 10.1371/journal.pone.0068314] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2013] [Accepted: 05/28/2013] [Indexed: 11/19/2022] Open
Abstract
Objective The risk of stroke in patients with Parkinson’s disease (PD) remains controversial. The purpose of this population-based propensity score-matched longitudinal follow-up study was to determine whether there is an increased risk of ischemic stroke after PD. Methods We used a logistic regression model that includes age, sex, pre-existing comorbidities and socioeconomic status as covariates to compute the propensity score. A total of 2204 patients with at least two ambulatory visits with the principal diagnosis of PD in 2001 was enrolled in the PD group. The non- PD group consisted of 2204, propensity score-matched subjects without PD. The ischemic stroke-free survival rates of the two groups were estimated using the Kaplan-Meier method. Stratified Cox proportional hazard regression with patients matched on propensity score was used to estimate the effect of PD on the occurrence of ischemic stroke. Results During the three-year follow-up period, 328 subjects in the PD group and 156 subjects in the non-PD group developed ischemic stroke. The ischemic stroke-free survival rate of the PD group was significantly lower than that of the non-PD group (P<0.0001). The hazard ratio (HR) of stroke for the PD group was 2.37 (95% confidence interval [CI], 1.92 to 2.93, P<0.0001) compared to the non- PD group. Conclusions This study shows a significantly increased risk of ischemic stroke in PD patients. Further studies are required to investigate the underlying mechanism.
Collapse
|
56
|
Weinstein JD, Gonzalez ER, Egleton RD, Hunt DA. A Paradigm Shift for Evaluating Pharmacotherapy for Alzheimer's Disease: The 10-Patient Screening Protocol. ACTA ACUST UNITED AC 2013; 28:443-54. [DOI: 10.4140/tcp.n.2013.443] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
57
|
Milaneschi Y, Cesari M, Simonsick EM, Vogelzangs N, Kanaya AM, Yaffe K, Patrignani P, Metti A, Kritchevsky SB, Pahor M, Ferrucci L, Penninx BWJH. Lipid peroxidation and depressed mood in community-dwelling older men and women. PLoS One 2013; 8:e65406. [PMID: 23776478 PMCID: PMC3679197 DOI: 10.1371/journal.pone.0065406] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2013] [Accepted: 04/24/2013] [Indexed: 12/31/2022] Open
Abstract
It has been hypothesized that cellular damage caused by oxidative stress is associated with late-life depression but epidemiological evidence is limited. In the present study we evaluated the association between urinary 8-iso-prostaglandin F2α (8-iso-PGF2α), a biomarker of lipid peroxidation, and depressed mood in a large sample of community-dwelling older adults. Participants were selected from the Health, Aging and Body Composition study, a community-based longitudinal study of older persons (aged 70–79 years). The present analyses was based on a subsample of 1027 men and 948 women free of mobility disability. Urinary concentration of 8-iso-PGF2α was measured by radioimmunoassay methods and adjusted for urinary creatinine. Depressed mood was defined as a score greater than 5 on the 15-item Geriatric Depression Scale and/or use of antidepressant medications. Depressed mood was present in 3.0% of men and 5.5% of women. Depressed men presented higher urinary concentrations of 8-iso-PGF2α than non-depressed men even after adjustment for multiple sociodemographic, lifestyle and health factors (p = 0.03, Cohen’s d = 0.30). This association was not present in women (depressed status-by-sex interaction p = 0.04). Our study showed that oxidative damage may be linked to depression in older men from a large sample of the general population. Further studies are needed to explore whether the modulation of oxidative stress may break down the link between late-life depression and its deleterious health consequences.
Collapse
Affiliation(s)
- Yuri Milaneschi
- Department of Psychiatry and EMGO Institute for Health and Care Research, VU University Medical Center/GGZ inGeest, Amsterdam, The Netherlands.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
58
|
Prezzavento O, Arena E, Parenti C, Pasquinucci L, Aricò G, Scoto GM, Grancara S, Toninello A, Ronsisvalle S. Design and synthesis of new bifunctional sigma-1 selective ligands with antioxidant activity. J Med Chem 2013; 56:2447-55. [PMID: 23470245 DOI: 10.1021/jm3017893] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Herein we report the synthesis of new bifunctional sigma-1 (σ1)-selective ligands with antioxidant activity. To achieve this goal, we combined the structure of lipoic acid, a universal antioxidant, with an appropriate sigma aminic moiety. Ligands 14 and 26 displayed high affinity and selectivity for σ1 receptors (Kiσ1 = 1.8 and 5.5 nM; Kiσ2/σ1 = 354 and 414, respectively). Compound 26 exhibited in vivo antiopioid effects on kappa opioid (KOP) receptor-mediated analgesia. In rat liver and brain mitochondria (RLM, RBM), this compound significantly reduced the swelling and the oxidation of thiol groups induced by calcium ions. Our results demonstrate that the tested compound has protective effects against oxidative stress.
Collapse
Affiliation(s)
- O Prezzavento
- Department of Drug Sciences, Medicinal Chemistry Section, University of Catania, Viale A. Doria 6, 95125 Catania, Italy.
| | | | | | | | | | | | | | | | | |
Collapse
|
59
|
Abstract
Reactive oxygen species (ROS), which are involved in normal physiological functions at low concentrations, can have deleterious effects when produced in excess. Over time, ROS may result in a pathological state of imbalance known as oxidative stress. Oxidative stress has long been implicated in many diseases, and is consistently associated with poor outcomes in heart failure. Most therapies that are currently being used may provide some reduction in oxidative stress, but there is no consensus on the clinical outcomes of various antioxidants. Currently, there are no antioxidant therapies that are being used routinely to specifically target oxidative stress in patients with heart failure. This article reviews the current understanding of ROS generation, and the potential for novel pharmacologic strategies to target oxidative stress in heart failure.
Collapse
Affiliation(s)
- Zain Ahmed
- Section of Heart Failure and Cardiac Transplantation Medicine, Heart and Vascular Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | | |
Collapse
|
60
|
Maltsev A, Dovidchenko N, Uteshev V, Sokolik V, Shtang O, Yakushin M, Sokolova N, Surin A, Galzitskaya O. Intensive protein synthesis in neurons and phosphorylation of beta-amyloid precursor protein and tau-protein are triggering factors of neuronal amyloidosis and Alzheimer's disease. ACTA ACUST UNITED AC 2013; 59:144-70. [DOI: 10.18097/pbmc20135902144] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Recently the studies of Alzheimer’s disease have become particularly actual and have attracted scientists from all over the world to this problem as a result of dissemination of this dangerous disorder. The reason for such pathogenesis is not known, but the final image, for the first time obtained on microscopic brain sections from patients with this disease more than a hundred years ago, is well known to clinicists. This is the deposition of Ab amyloid in the brain tissue of senile plaques and fibrils. Many authors suppose that the deposition of beta-amyloid provokes secondary neuronal changes which are the reason of neuron death. Other authors associate the death of neurons with hyperphosphorylation of tau-proteins which form neurofibrillar coils inside nerve cells and lead to their death. For creation of methods of preclinical diagnostics and effective treatment of Alzheimer’s disease novel knowledge is required on the nature of triggering factors of sporadic isoforms of Alzheimer’s disease, on cause-effect relationships of phosphorylation of amyloid precursor protein with formation of pathogenic beta-amyloids, on the relationship with these factors of hyperphosphorylation of tau-protein and neuron death. In this review we analyze the papers describing the increasing of intensity of biosynthesis in neurons in normal conditions and under the stress, the possibility of development of energetic unbalanced neurons and activation of their protective systems. Phosphorylation and hyperphosphorylation of tau-proteins is also tightly connected with protective mechanisms of cells and with processes of evacuation of phosphates, adenosine mono-phosphates and pyrophosphates from the region of protein synthesis. Upon long and high intensity of protein synthesis the protective mechanisms are overloaded and the complementarity of metabolitic processes is disturbed. This results in dysfunction of neurons, transport collapse, and neuron death.
Collapse
Affiliation(s)
- A.V. Maltsev
- Russian Gerontological Research Clinical Center, Russian Ministry of Health Care; Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences
| | | | - V.K. Uteshev
- Institute of Biophysics Cell, Russian Academy of Sciences
| | - V.V. Sokolik
- Institute of Neurology, Psychiatry and Addiction Medical Sciences of Ukraine
| | | | - M.A. Yakushin
- Russian Gerontological Research Clinical Center, Russian Ministry of Health Care
| | - N.M. Sokolova
- Russian Gerontological Research Clinical Center, Russian Ministry of Health Care
| | - A.K. Surin
- Insitute of Protein Research, Russian Academy of Sciences; State Research Center for Applied Microbiology & Biotechnology
| | | |
Collapse
|
61
|
Shaki F, Hosseini MJ, Ghazi-Khansari M, Pourahmad J. Depleted uranium induces disruption of energy homeostasis and oxidative stress in isolated rat brain mitochondria. Metallomics 2013; 5:736-44. [DOI: 10.1039/c3mt00019b] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
62
|
Ding J, Yu HL, Ma WW, Xi YD, Zhao X, Yuan LH, Feng JF, Xiao R. Soy isoflavone attenuates brain mitochondrial oxidative stress induced by β-amyloid peptides 1-42 injection in lateral cerebral ventricle. J Neurosci Res 2012; 91:562-7. [PMID: 23239252 DOI: 10.1002/jnr.23163] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2012] [Revised: 09/19/2012] [Accepted: 09/29/2012] [Indexed: 12/30/2022]
Abstract
The aim of this study is to investigate whether soy isoflavone (SIF) reduces oxidative stress and improves the antioxidant ability in mitochondria of rat brain damaged by injection of beta-amyloid peptides 1-42 (Aβ1-42). Forty Wistar rats were randomly divided into control, Aβ1-42, SIF + Aβ1-42, and SIF groups according to body weight. The rats in the SIF + Aβ1-42 group and SIF group were intragastrically administered SIF suspension in 0.5% CMC-Na for 28 days, whereas the rats in control group and Aβ1-42 group were administered the same volume of 0.5% CMC-Na. On day 14, the rats in the Aβ1-42 group and SIF + Aβ1-42 group were injected with Aβ1-42 into the lateral cerebral ventricle with physiological saline. The rat brains were then sampled, and brain mitochondria were isolated. After this, the mitochondrial membrane potential (MMP) and mitochondrial redox state were measured. The contents of brain nuclear factor E2-related factor (Nrf2) and heme oxygenase-1 (HO-1) protein in brain tissue were quantitated by Western blot. The results showed that SIF maintained the MMP, elevated the reduced glutathione/oxidized glutathione (GSH/GSSG) ratio, and increased glutathione peroxidase (GPx) and manganese superoxide dismutase (MnSOD) protein expression in brain mitochondria. Additionally, SIF reversed the Aβ1-42-induced downregulation of the protein expression of Nrf2 and HO-1 in brain tissue. These results indicated that SIF could alleviate the oxidative damage and maintain the redox imbalance in brain mitochondria damaged by Aβ1-42. This might result from regulation of the Nrf2/HO-1 pathway.
Collapse
Affiliation(s)
- Juan Ding
- Department of Nutrition and Food Hygiene, School of Public Health and Family Medicine, Capital Medical University, Beijing, China
| | | | | | | | | | | | | | | |
Collapse
|
63
|
Farrugia G, Balzan R. Oxidative stress and programmed cell death in yeast. Front Oncol 2012; 2:64. [PMID: 22737670 PMCID: PMC3380282 DOI: 10.3389/fonc.2012.00064] [Citation(s) in RCA: 193] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2012] [Accepted: 06/02/2012] [Indexed: 12/11/2022] Open
Abstract
Yeasts, such as Saccharomyces cerevisiae, have long served as useful models for the study of oxidative stress, an event associated with cell death and severe human pathologies. This review will discuss oxidative stress in yeast, in terms of sources of reactive oxygen species (ROS), their molecular targets, and the metabolic responses elicited by cellular ROS accumulation. Responses of yeast to accumulated ROS include upregulation of antioxidants mediated by complex transcriptional changes, activation of pro-survival pathways such as mitophagy, and programmed cell death (PCD) which, apart from apoptosis, includes pathways such as autophagy and necrosis, a form of cell death long considered accidental and uncoordinated. The role of ROS in yeast aging will also be discussed.
Collapse
Affiliation(s)
- Gianluca Farrugia
- Department of Physiology and Biochemistry, Faculty of Medicine and Surgery, University of MaltaMsida, Malta
| | - Rena Balzan
- Department of Physiology and Biochemistry, Faculty of Medicine and Surgery, University of MaltaMsida, Malta
| |
Collapse
|
64
|
Traore K, Zirkin B, Thimmulappa RK, Biswal S, Trush MA. Upregulation of TLR1, TLR2, TLR4, and IRAK-2 Expression During ML-1 Cell Differentiation to Macrophages: Role in the Potentiation of Cellular Responses to LPS and LTA. ISRN ONCOLOGY 2012; 2012:641246. [PMID: 22685674 PMCID: PMC3364600 DOI: 10.5402/2012/641246] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/06/2012] [Accepted: 03/06/2012] [Indexed: 12/27/2022]
Abstract
12-O-tetradecanoylphorbol 13-acetate (TPA) induces the differentiation of human myeloid ML-1 cells to macrophages. In the current study, the expression, responsiveness, and regulation of toll-like receptors (TLRs) in TPA-induced ML-1-derived macrophages were investigated. We have found that TPA-induced differentiation of ML-1 cells was accompanied by the upregulation of TLR1, TLR2, TLR4, and CD14 expression at both the mRNA and protein levels. Interestingly, TLR1 and TLR4 protein expression on ML-1 cells could be blocked by pretreatment with U0126, suggesting the role of an Erk1/2-induced differentiation signal in this process. In addition, the expression of IRAK-2, a key member of the TLR/IRAK-2/NF-κB-dependent signaling cascade was also induced in response to TPA. Accordingly, we demonstrated an increased cellular release of inflammatory cytokines (TNF-α and various interleukins) upon stimulation with LPS and LTA ligands for TLR4 and TLR2, respectively. Furthermore, using luminol-dependent chemiluminescence, addition of LPS and LTA induces a sustained DPI-inhibitable generation of reactive oxygen species (ROS) by the differentiated ML-1 cells. Together, these data suggest that the increase in the responsiveness of TPA-treated ML-1 cells to LPS and LTA occurs in response to the upregulation of their respective receptors as well as an induction of the IRAK-2 gene expression.
Collapse
Affiliation(s)
- Kassim Traore
- Department of Chemistry Geology & Physics, Elizabeth City State University, Elizabeth City, NC 27909, USA
| | | | | | | | | |
Collapse
|
65
|
Crépeaux G, Bouillaud-Kremarik P, Sikhayeva N, Rychen G, Soulimani R, Schroeder H. Late effects of a perinatal exposure to a 16 PAH mixture: Increase of anxiety-related behaviours and decrease of regional brain metabolism in adult male rats. Toxicol Lett 2012; 211:105-13. [PMID: 22450773 DOI: 10.1016/j.toxlet.2012.03.005] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2012] [Revised: 03/09/2012] [Accepted: 03/10/2012] [Indexed: 12/22/2022]
Abstract
Polycyclic Aromatic Hydrocarbons (PAHs) are ubiquitous pollutants originated from incomplete combustion processes. Ingestion of contaminated food is the main route of exposure for humans. These molecules are able to cross the placental barrier and are also found in breast milk. Since PAHs are neurotoxic agents, the potential adverse effects of a perinatal exposure of the developing brain is a key issue for public health especially concerning PAH mixture. In this study, female rats were exposed trough diet to a mixture of 16 PAHs, at doses of 2 μg/kg/day or 200 μg/kg/day during gestation and 1.5 μg/kg/day or 150 μg/kg/day during breast-feeding period. To assess late neurotoxic effects in male offsprings, behavioural and cognitive tests were carried out and histochemical analyses using cytochrome oxidase as a cerebral metabolism marker were performed on adult animals. Results showed that anxiety-related behaviours significantly increased in exposed animals, but there was no significant alteration of motor activity and learning and memory abilities. Several brain areas of the limbic system showed a neuronal hypometabolism in exposed animals. This work highlights that exposure to PAHs at early stages of brain development can cause later troubles on behaviour and that PAHs are able to partly alter the central nervous system metabolism on adulthood.
Collapse
Affiliation(s)
- Guillemette Crépeaux
- Unité de Recherche Animal et Fonctionnalités des Produits Animaux, INRA UC340, Nancy Université, Vandoeuvre-lès-Nancy, France.
| | | | | | | | | | | |
Collapse
|
66
|
Shin DH, Martinez SS, Parsons M, Jayaweera DT, Campa A, Baum MK. Relationship of Oxidative Stress with HIV Disease Progression in HIV/HCV Co-infected and HIV Mono-infected Adults in Miami. INTERNATIONAL JOURNAL OF BIOSCIENCE, BIOCHEMISTRY AND BIOINFORMATICS 2012; 2:217-223. [PMID: 23504530 PMCID: PMC3596259 DOI: 10.7763/ijbbb.2012.v2.104] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
BACKGROUND HIV and HCV infections are both characterized by increased oxidative stress. Information on the magnitude of this increase and its consequences in HIV/HCV co-infection and viral replication is limited. We investigated the relationship between oxidative stress and HIV-progression in HIV/HCV co-infected and HIV mono-infected adults. METHODS 106 HIV/HCV co-infected and 115 HIV mono-infected participants provided demographic information and blood to determine 8-oxo-dG and percent oxidized glutathione. RESULTS HIV/HCV co-infected subjects had higher percent oxidized glutathione, higher HIV viral load, lower mtDNA copies and higher liver fibrosis than mono-infected subjects. In a small sample of HIV/HCV co-infected participants with liver biopsy, 8-oxo-dG was significantly lower in participants with low fibrosis scores than those with high fibrosis scores, and the grade of inflammation was strongly associated with oxidized glutathione. CONCLUSIONS HIV/HCV co-infection seems to diminish the capacity of the antioxidant system to control oxidative stress, and increases HIV replication.
Collapse
Affiliation(s)
- Dong-Ho Shin
- Florida International University, Miami FL 33199 USA
| | | | | | | | | | | |
Collapse
|
67
|
Scott E, Zhang QG, Wang R, Vadlamudi R, Brann D. Estrogen neuroprotection and the critical period hypothesis. Front Neuroendocrinol 2012; 33:85-104. [PMID: 22079780 PMCID: PMC3288697 DOI: 10.1016/j.yfrne.2011.10.001] [Citation(s) in RCA: 102] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2011] [Revised: 10/21/2011] [Accepted: 10/24/2011] [Indexed: 12/15/2022]
Abstract
17β-Estradiol (estradiol or E2) is implicated as a neuroprotective factor in a variety of neurodegenerative disorders. This review focuses on the mechanisms underlying E2 neuroprotection in cerebral ischemia, as well as emerging evidence from basic science and clinical studies, which suggests that there is a "critical period" for estradiol's beneficial effect in the brain. Potential mechanisms underlying the critical period are discussed, as are the neurological consequences of long-term E2 deprivation (LTED) in animals and in humans after natural menopause or surgical menopause. We also summarize the major clinical trials concerning postmenopausal hormone therapy (HT), comparing their outcomes with respect to cardiovascular and neurological disease and discussing their relevance to the critical period hypothesis. Finally, potential caveats, controversies and future directions for the field are highlighted and discussed throughout the review.
Collapse
Affiliation(s)
- Erin Scott
- Institute of Molecular Medicine and Genetics, Georgia Health Sciences University, Augusta, GA 30912, USA
| | - Quan-guang Zhang
- Institute of Molecular Medicine and Genetics, Georgia Health Sciences University, Augusta, GA 30912, USA
| | - Ruimin Wang
- Experimental and Research Center, Hebei United University, 57 South Jian-she Road, Tangshan, Hebei, 063600, PR China
| | - Ratna Vadlamudi
- Department of Obstetrics & Gynecology, University of Texas Health Science Center at San Antonio, Floyd Curl Drive, San Antonio, TX 78229, USA
| | - Darrell Brann
- Institute of Molecular Medicine and Genetics, Georgia Health Sciences University, Augusta, GA 30912, USA
| |
Collapse
|
68
|
Estevez AY, Erlichman JS. Cerium Oxide Nanoparticles for the Treatment of Neurological Oxidative Stress Diseases. ACTA ACUST UNITED AC 2011. [DOI: 10.1021/bk-2011-1083.ch009] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2023]
Affiliation(s)
- A. Y. Estevez
- Biology Department, St. Lawrence University, Canton, New York 13617
- Psychology Department, St. Lawrence University, Canton, New York 13617
| | - J. S. Erlichman
- Biology Department, St. Lawrence University, Canton, New York 13617
- Psychology Department, St. Lawrence University, Canton, New York 13617
| |
Collapse
|