51
|
Sidney J, Vela JL, Friedrich D, Kolla R, von Herrath M, Wesley JD, Sette A. Low HLA binding of diabetes-associated CD8+ T-cell epitopes is increased by post translational modifications. BMC Immunol 2018; 19:12. [PMID: 29562882 PMCID: PMC5863483 DOI: 10.1186/s12865-018-0250-3] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Accepted: 03/14/2018] [Indexed: 01/15/2023] Open
Abstract
Background Type 1 diabetes (T1D) is thought to be an autoimmune disease driven by anti-islet antigen responses and mediated by T-cells. Recent published data suggests that T-cell reactivity to modified peptides, effectively neoantigens, may promote T1D. These findings have given more credence to the concept that T1D may not be solely an error of immune recognition but may be propagated by errors in protein processing or in modifications to endogenous peptides occurring as result of hyperglycemia, endoplasmic reticulum (ER) stress, or general beta cell dysfunction. In the current study, we hypothesized that diabetes-associated epitopes bound human leukocyte antigen (HLA) class I poorly and that post-translational modifications (PTM) to key sequences within the insulin-B chain enhanced peptide binding to HLA class I, conferring the CD8+ T-cell reactivity associated with T1D. Results We first identified, through the Immune Epitope Database (IEDB; www.iedb.org), 138 published HLA class I-restricted diabetes-associated epitopes reported to elicit positive T-cell responses in humans. The peptide binding affinity for their respective restricting allele(s) was evaluated in vitro. Overall, 75% of the epitopes bound with a half maximal inhibitory concentration (IC50) of 8250 nM or better, establishing a reference affinity threshold for HLA class I-restricted diabetes epitopes. These studies demonstrated that epitopes from diabetes-associated antigens bound HLA with a lower affinity than those of microbial origin (binding threshold of 500 nM for 85% of the epitopes). Further predictions suggested that diabetes epitopes also bind HLA class I with lower affinity than epitopes associated with other autoimmune diseases. Therefore, we measured the effect of common PTM (citrullination, chlorination, deamidation, and oxidation) on HLA-A*02:01 binding of insulin-B-derived peptides, compared to native peptides. We found that these modifications increased binding for 44% of the insulin-B epitopes, but only 15% of the control peptides. Conclusions These results demonstrate that insulin-derived epitopes, commonly associated with T1D, generally bind HLA class I poorly, but can be subject to PTM that improve their binding capacity and may, in part, be responsible for T-cell activation in T1D and subsequent beta cell death. Electronic supplementary material The online version of this article (10.1186/s12865-018-0250-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- John Sidney
- La Jolla Institute for Allergy and Immunology, La Jolla, CA, 92130, USA.
| | - Jose Luis Vela
- Novo Nordisk Research Center Seattle, Inc., 530 Fairview Ave N, Seattle, WA, 98109, USA
| | - Dave Friedrich
- Novo Nordisk Research Center Seattle, Inc., 530 Fairview Ave N, Seattle, WA, 98109, USA
| | - Ravi Kolla
- La Jolla Institute for Allergy and Immunology, La Jolla, CA, 92130, USA
| | - Matthias von Herrath
- Novo Nordisk Research Center Seattle, Inc., 530 Fairview Ave N, Seattle, WA, 98109, USA
| | - Johnna D Wesley
- Novo Nordisk Research Center Seattle, Inc., 530 Fairview Ave N, Seattle, WA, 98109, USA
| | - Alessandro Sette
- La Jolla Institute for Allergy and Immunology, La Jolla, CA, 92130, USA
| |
Collapse
|
52
|
Ricciardi MJ, Magnani DM, Grifoni A, Kwon YC, Gutman MJ, Grubaugh ND, Gangavarapu K, Sharkey M, Silveira CGT, Bailey VK, Pedreño-Lopez N, Gonzalez-Nieto L, Maxwell HS, Domingues A, Martins MA, Pham J, Weiskopf D, Altman J, Kallas EG, Andersen KG, Stevenson M, Lichtenberger P, Choe H, Whitehead SS, Sette A, Watkins DI. Ontogeny of the B- and T-cell response in a primary Zika virus infection of a dengue-naïve individual during the 2016 outbreak in Miami, FL. PLoS Negl Trop Dis 2017; 11:e0006000. [PMID: 29267278 PMCID: PMC5755934 DOI: 10.1371/journal.pntd.0006000] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Revised: 01/05/2018] [Accepted: 09/28/2017] [Indexed: 01/05/2023] Open
Abstract
Zika virus (ZIKV) is a mosquito-borne flavivirus of significant public health concern. In the summer of 2016, ZIKV was first detected in the contiguous United States. Here we present one of the first cases of a locally acquired ZIKV infection in a dengue-naïve individual. We collected blood from a female with a maculopapular rash at day (D) 5 and D7 post onset of symptoms (POS) and we continued weekly blood draws out to D148 POS. To establish the ontogeny of the immune response against ZIKV, lymphocytes and plasma were analyzed in a longitudinal fashion. The plasmablast response peaked at D7 POS (19.6% of CD19+ B-cells) and was undetectable by D15 POS. ZIKV-specific IgM was present at D5 POS, peaked between D15 and D21 POS, and subsequently decreased. The ZIKV-specific IgG response, however, was not detected until D15 POS and continued to increase after that. Interestingly, even though the patient had never been infected with dengue virus (DENV), cross-reactive IgM and IgG binding against each of the four DENV serotypes could be detected. The highest plasma neutralization activity against ZIKV peaked between D15 and D21 POS, and even though DENV binding antibodies were present in the plasma of the patient, there was neither neutralization nor antibody dependent enhancement (ADE) of DENV. Interestingly, ADE against ZIKV arose at D48 POS and continued until the end of the study. CD4+ and CD8+ T-cells recognized ZIKV-NS2A and ZIKV-E, respectively. The tetramer positive CD8+ T-cell response peaked at D21 POS with elevated levels persisting for months. In summary, this is the first study to establish the timing of the ontogeny of the immune response against ZIKV. Zika virus (ZIKV) is an emerging viral disease that has the potential to negatively impact future generations by causing birth defects in infected pregnant mothers. While there have been many studies performed in animal models of ZIKV infection, there have only been a limited number of reports studying the immune responses in humans. Ricciardi et. al. analyzed the immune response of a primary ZIKV infection in a dengue virus (DENV) naïve individual during the 2016 outbreak in Miami, Florida. B- and T-cell responses were assessed over multiple time points. Cross-reactive antibodies against DENV, a virus that the patient was never infected with, were generated during the ZIKV infection, but these antibodies failed to neutralize any of the DENV serotypes. Furthermore, while these DENV-cross-reactive antibodies might be expected to cause antibody dependent enhancement (ADE) of DENV infection, they did not. Interestingly, ADE of ZIKV infection was seen at approximately 1 ½ months after infection. Together, these results establish the timing of the ontogeny of the immune response against a primary ZIKV infection in a DENV-naïve individual.
Collapse
Affiliation(s)
- Michael J. Ricciardi
- Department of Pathology, University of Miami Miller School of Medicine, Miami, FL, United States of America
- * E-mail:
| | - Diogo M. Magnani
- Department of Pathology, University of Miami Miller School of Medicine, Miami, FL, United States of America
| | - Alba Grifoni
- Division of Vaccine Discovery, La Jolla Institute for Allergy and Immunology, La Jolla, CA, United States of America
| | - Young-Chan Kwon
- Department of Immunology and Microbial Science, The Scripps Research Institute, Jupiter, FL, United States of America
| | - Martin J. Gutman
- Department of Pathology, University of Miami Miller School of Medicine, Miami, FL, United States of America
| | - Nathan D. Grubaugh
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, CA, United States of America
| | - Karthik Gangavarapu
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, CA, United States of America
| | - Mark Sharkey
- Division of Infectious Disease, University of Miami Miller School of Medicine, Miami, FL, United States of America
| | - Cassia G. T. Silveira
- Division of Clinical Immunology and Allergy, School of Medicine, University of São Paulo, São Paulo, SP, Brazil
| | - Varian K. Bailey
- Department of Pathology, University of Miami Miller School of Medicine, Miami, FL, United States of America
| | - Núria Pedreño-Lopez
- Department of Pathology, University of Miami Miller School of Medicine, Miami, FL, United States of America
| | - Lucas Gonzalez-Nieto
- Department of Pathology, University of Miami Miller School of Medicine, Miami, FL, United States of America
| | - Helen S. Maxwell
- Department of Pathology, University of Miami Miller School of Medicine, Miami, FL, United States of America
| | - Aline Domingues
- Department of Pathology, University of Miami Miller School of Medicine, Miami, FL, United States of America
| | - Mauricio A. Martins
- Department of Pathology, University of Miami Miller School of Medicine, Miami, FL, United States of America
| | - John Pham
- Division of Vaccine Discovery, La Jolla Institute for Allergy and Immunology, La Jolla, CA, United States of America
| | - Daniela Weiskopf
- Division of Vaccine Discovery, La Jolla Institute for Allergy and Immunology, La Jolla, CA, United States of America
| | - John Altman
- Department of Microbiology and Immunology and Emory Vaccine Research Center, Emory University, Atlanta, GA, United States of America
| | - Esper G. Kallas
- Division of Clinical Immunology and Allergy, School of Medicine, University of São Paulo, São Paulo, SP, Brazil
| | - Kristian G. Andersen
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, CA, United States of America
| | - Mario Stevenson
- Division of Infectious Disease, University of Miami Miller School of Medicine, Miami, FL, United States of America
| | - Paola Lichtenberger
- Division of Infectious Disease, University of Miami Miller School of Medicine, Miami, FL, United States of America
| | - Hyeryun Choe
- Department of Immunology and Microbial Science, The Scripps Research Institute, Jupiter, FL, United States of America
| | - Stephen S. Whitehead
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States of America
| | - Alessandro Sette
- Division of Vaccine Discovery, La Jolla Institute for Allergy and Immunology, La Jolla, CA, United States of America
| | - David I. Watkins
- Department of Pathology, University of Miami Miller School of Medicine, Miami, FL, United States of America
| |
Collapse
|
53
|
Unique phenotypes and clonal expansions of human CD4 effector memory T cells re-expressing CD45RA. Nat Commun 2017; 8:1473. [PMID: 29133794 PMCID: PMC5684192 DOI: 10.1038/s41467-017-01728-5] [Citation(s) in RCA: 176] [Impact Index Per Article: 25.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Accepted: 10/12/2017] [Indexed: 12/01/2022] Open
Abstract
The expression of CD45RA is generally associated with naive T cells. However, a subset of effector memory T cells re-expresses CD45RA (termed TEMRA) after antigenic stimulation with unknown molecular characteristics and functions. CD4 TEMRA cells have been implicated in protective immunity against pathogens such as dengue virus (DENV). Here we show that not only the frequency but also the phenotype of CD4 TEMRA cells are heterogeneous between individuals. These cells can be subdivided into two major subsets based on the expression of the adhesion G protein-coupled receptor GPR56, and GPR56+ TEMRA cells display a transcriptional and proteomic program with cytotoxic features that is distinct from effector memory T cells. Moreover, GPR56+ TEMRA cells have higher levels of clonal expansion and contain the majority of virus-specific TEMRA cells. Overall, this study reveals the heterogeneity of CD4 TEMRA cells and provides insights into T-cell responses against DENV and other viral pathogens. Memory T cells are essential for combating recurring infection by promoting prompt and effective immune responses. Here the authors show, via system biology approaches, that human CD4 memory T cells contains a CD45RA-rexpressing pool that can be further subsetted by the expression of GPR56 for distinct functionalities.
Collapse
|
54
|
Grifoni A, Angelo MA, Lopez B, O'Rourke PH, Sidney J, Cerpas C, Balmaseda A, Silveira CGT, Maestri A, Costa PR, Durbin AP, Diehl SA, Phillips E, Mallal S, De Silva AD, Nchinda G, Nkenfou C, Collins MH, de Silva AM, Lim MQ, Macary PA, Tatullo F, Solomon T, Satchidanandam V, Desai A, Ravi V, Coloma J, Turtle L, Rivino L, Kallas EG, Peters B, Harris E, Sette A, Weiskopf D. Global Assessment of Dengue Virus-Specific CD4 + T Cell Responses in Dengue-Endemic Areas. Front Immunol 2017; 8:1309. [PMID: 29081779 PMCID: PMC5646259 DOI: 10.3389/fimmu.2017.01309] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Accepted: 09/28/2017] [Indexed: 11/18/2022] Open
Abstract
Background Dengue is a major public health problem worldwide. Assessment of adaptive immunity is important to understanding immunopathology and to define correlates of protection against dengue virus (DENV). To enable global assessment of CD4+ T cell responses, we mapped HLA-DRB1-restricted DENV-specific CD4+ T cell epitopes in individuals previously exposed to DENV in the general population of the dengue-endemic region of Managua, Nicaragua. Methods HLA class II epitopes in the population of Managua were identified by an in vitro IFNγ ELISPOT assay. CD4+ T cells purified by magnetic bead negative selection were stimulated with HLA-matched epitope pools in the presence of autologous antigen-presenting cells, followed by pool deconvolution to identify specific epitopes. The epitopes identified in this study were combined with those previously identified in the DENV endemic region of Sri Lanka, to generate a “megapool” (MP) consisting of 180 peptides specifically designed to achieve balanced HLA and DENV serotype coverage. The DENV CD4MP180 was validated by intracellular cytokine staining assays. Results We detected responses directed against a total of 431 epitopes, representing all 4 DENV serotypes, restricted by 15 different HLA-DRB1 alleles. The responses were associated with a similar pattern of protein immunodominance, overall higher magnitude of responses, as compared to what was observed previously in the Sri Lanka region. Based on these epitope mapping studies, we designed a DENV CD4 MP180 with higher and more consistent coverage, which allowed the detection of CD4+ T cell DENV responses ex vivo in various cohorts of DENV exposed donors worldwide, including donors from Nicaragua, Brazil, Singapore, Sri Lanka, and U.S. domestic flavivirus-naïve subjects immunized with Tetravalent Dengue Live-Attenuated Vaccine (TV005). This broad reactivity reflects that the 21 HLA-DRB1 alleles analyzed in this and previous studies account for more than 80% of alleles present with a phenotypic frequency ≥5% worldwide, corresponding to 92% phenotypic coverage of the general population (i.e., 92% of individuals express at least one of these alleles). Conclusion The DENV CD4 MP180 can be utilized to measure ex vivo responses to DENV irrespective of geographical location.
Collapse
Affiliation(s)
- Alba Grifoni
- Division of Vaccine Discovery, La Jolla Institute for Allergy and Immunology, La Jolla, CA, United States
| | - Michael A Angelo
- Division of Vaccine Discovery, La Jolla Institute for Allergy and Immunology, La Jolla, CA, United States
| | - Benjamin Lopez
- Division of Vaccine Discovery, La Jolla Institute for Allergy and Immunology, La Jolla, CA, United States
| | - Patrick H O'Rourke
- Division of Vaccine Discovery, La Jolla Institute for Allergy and Immunology, La Jolla, CA, United States
| | - John Sidney
- Division of Vaccine Discovery, La Jolla Institute for Allergy and Immunology, La Jolla, CA, United States
| | - Cristhiam Cerpas
- Laboratorio Nacional de Virología, Centro Nacional de Diagnóstico y Referencia, Ministerio de Salud, Managua, Nicaragua
| | - Angel Balmaseda
- Laboratorio Nacional de Virología, Centro Nacional de Diagnóstico y Referencia, Ministerio de Salud, Managua, Nicaragua
| | - Cassia G T Silveira
- Division of Clinical Immunology and Allergy, School of Medicine, University of São Paulo, São Paulo, Brazil
| | - Alvino Maestri
- Division of Clinical Immunology and Allergy, School of Medicine, University of São Paulo, São Paulo, Brazil
| | - Priscilla R Costa
- Division of Clinical Immunology and Allergy, School of Medicine, University of São Paulo, São Paulo, Brazil
| | - Anna P Durbin
- Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD, United States
| | - Sean A Diehl
- Vaccine Testing Center, Department of Medicine, Larner College of Medicine, University of Vermont, Burlington, VT, United States
| | - Elizabeth Phillips
- Institute for Immunology and Infectious Diseases, Murdoch University, Perth, WA, Australia.,Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Simon Mallal
- Institute for Immunology and Infectious Diseases, Murdoch University, Perth, WA, Australia.,Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Aruna D De Silva
- Division of Vaccine Discovery, La Jolla Institute for Allergy and Immunology, La Jolla, CA, United States.,Genetech Research Institute, Colombo, Sri Lanka
| | - Godwin Nchinda
- Chantal BIYA International Reference Centre for Research on the Prevention and Management of HIV/AIDS CIRCB, Yaoundé, Cameroon
| | - Celine Nkenfou
- Chantal BIYA International Reference Centre for Research on the Prevention and Management of HIV/AIDS CIRCB, Yaoundé, Cameroon
| | - Matthew H Collins
- Department of Microbiology and Immunology, University of North Carolina School of Medicine, Chapel Hill, NC, United States
| | - Aravinda M de Silva
- Department of Microbiology and Immunology, University of North Carolina School of Medicine, Chapel Hill, NC, United States
| | - Mei Qiu Lim
- Emerging Infectious Disease Programme, Duke-NUS Medical School, Singapore, Singapore
| | - Paul A Macary
- Immunology Programme, Department of Microbiology and Immunology, Life Sciences Institute, National University of Singapore, Singapore, Singapore
| | - Filippo Tatullo
- Institute of Infection and Global Health, University of Liverpool, Liverpool, United Kingdom
| | - Tom Solomon
- Institute of Infection and Global Health, University of Liverpool, Liverpool, United Kingdom.,National Institute for Health Research, Health Protection Research Unit in Emerging and Zoonotic Infections, University of Liverpool, Liverpool, United Kingdom
| | - Vijaya Satchidanandam
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, India
| | - Anita Desai
- Neurovirology, National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore, India
| | - Vasanthapram Ravi
- Neurovirology, National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore, India
| | - Josefina Coloma
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, Berkeley, CA, United States
| | - Lance Turtle
- Institute of Infection and Global Health, University of Liverpool, Liverpool, United Kingdom.,National Institute for Health Research, Health Protection Research Unit in Emerging and Zoonotic Infections, University of Liverpool, Liverpool, United Kingdom
| | - Laura Rivino
- Emerging Infectious Disease Programme, Duke-NUS Medical School, Singapore, Singapore
| | - Esper G Kallas
- Division of Clinical Immunology and Allergy, School of Medicine, University of São Paulo, São Paulo, Brazil
| | - Bjoern Peters
- Division of Vaccine Discovery, La Jolla Institute for Allergy and Immunology, La Jolla, CA, United States
| | - Eva Harris
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, Berkeley, CA, United States
| | - Alessandro Sette
- Division of Vaccine Discovery, La Jolla Institute for Allergy and Immunology, La Jolla, CA, United States
| | - Daniela Weiskopf
- Division of Vaccine Discovery, La Jolla Institute for Allergy and Immunology, La Jolla, CA, United States
| |
Collapse
|
55
|
El Bissati K, Zhou Y, Paulillo SM, Raman SK, Karch CP, Roberts CW, Lanar DE, Reed S, Fox C, Carter D, Alexander J, Sette A, Sidney J, Lorenzi H, Begeman IJ, Burkhard P, McLeod R. Protein nanovaccine confers robust immunity against Toxoplasma. NPJ Vaccines 2017; 2:24. [PMID: 29263879 PMCID: PMC5627305 DOI: 10.1038/s41541-017-0024-6] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Revised: 06/20/2017] [Accepted: 06/21/2017] [Indexed: 11/08/2022] Open
Abstract
We designed and produced a self-assembling protein nanoparticle. This self-assembling protein nanoparticle contains five CD8+ HLA-A03-11 supertypes-restricted epitopes from antigens expressed during Toxoplasma gondii's lifecycle, the universal CD4+ T cell epitope PADRE, and flagellin as a scaffold and TLR5 agonist. These CD8+ T cell epitopes were separated by N/KAAA spacers and optimized for proteasomal cleavage. Self-assembling protein nanoparticle adjuvanted with TLR4 ligand-emulsion GLA-SE were evaluated for their efficacy in inducing IFN-γ responses and protection of HLA-A*1101 transgenic mice against T. gondii. Immunization, using self-assembling protein nanoparticle-GLA-SE, activated CD8+ T cells to produce IFN-γ. Self-assembling protein nanoparticle-GLA-SE also protected HLA-A*1101 transgenic mice against subsequent challenge with Type II parasites. Hence, combining CD8+ T cell-eliciting peptides and PADRE into a multi-epitope protein that forms a nanoparticle, administered with GLA-SE, leads to efficient presentation by major histocompatibility complex Class I and II molecules. Furthermore, these results suggest that activation of TLR4 and TLR5 could be useful for development of vaccines that elicit T cells to prevent toxoplasmosis in humans.
Collapse
Affiliation(s)
- Kamal El Bissati
- Departments of OVS, The University of Chicago, 5841S Maryland Ave, Chicago, IL 60637 USA
| | - Ying Zhou
- Departments of OVS, The University of Chicago, 5841S Maryland Ave, Chicago, IL 60637 USA
| | | | | | - Christopher P. Karch
- Institute of Materials Science and Department of Molecular and Cell Biology, University of Connecticut, 97 North Eagleville Road, Storrs, CT 06269 USA
| | - Craig W. Roberts
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, G4 0RE UK
| | - David E. Lanar
- Walter Reed Army Institute of Research, 503 Robert Grant Ave, Silver Spring, MD 20910 USA
| | - Steve Reed
- Infectious Diseases Research Institute, 1616 Eastlake Ave E #400, Seattle, WA 98102 USA
| | - Chris Fox
- Infectious Diseases Research Institute, 1616 Eastlake Ave E #400, Seattle, WA 98102 USA
| | - Darrick Carter
- Infectious Diseases Research Institute, 1616 Eastlake Ave E #400, Seattle, WA 98102 USA
| | - Jeff Alexander
- PaxVax, 3985-A Sorrento Valley Blvd, San Diego, CA 92121 USA
| | - Alessandro Sette
- La Jolla Institute of Allergy and Immunology, 9420 Athena Cir, La Jolla, CA 92037 USA
| | - John Sidney
- La Jolla Institute of Allergy and Immunology, 9420 Athena Cir, La Jolla, CA 92037 USA
| | - Hernan Lorenzi
- J. Craig Venter Institute, 9714 Medical Center Drive, Rockville, MD 20850 USA
| | - Ian J. Begeman
- Departments of OVS, The University of Chicago, 5841S Maryland Ave, Chicago, IL 60637 USA
| | - Peter Burkhard
- Alpha-O Peptides AG, Lörracherstrasse 50, 4125 Riehen, Switzerland
- Institute of Materials Science and Department of Molecular and Cell Biology, University of Connecticut, 97 North Eagleville Road, Storrs, CT 06269 USA
| | - Rima McLeod
- Departments of OVS, The University of Chicago, 5841S Maryland Ave, Chicago, IL 60637 USA
- Pediatrics (Infectious Diseases), The University of Chicago, 5841S Maryland Ave, Chicago, IL 60637 USA
| |
Collapse
|
56
|
da Silva Antunes R, Paul S, Sidney J, Weiskopf D, Dan JM, Phillips E, Mallal S, Crotty S, Sette A, Lindestam Arlehamn CS. Definition of Human Epitopes Recognized in Tetanus Toxoid and Development of an Assay Strategy to Detect Ex Vivo Tetanus CD4+ T Cell Responses. PLoS One 2017; 12:e0169086. [PMID: 28081174 PMCID: PMC5230748 DOI: 10.1371/journal.pone.0169086] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Accepted: 12/12/2016] [Indexed: 12/13/2022] Open
Abstract
Despite widespread uses of tetanus toxoid (TT) as a vaccine, model antigen and protein carrier, TT epitopes have been poorly characterized. Herein we defined the human CD4+ T cell epitope repertoire by reevaluation of previously described epitopes and evaluation of those derived from prediction of HLA Class II binding. Forty-seven epitopes were identified following in vitro TT stimulation, with 28 epitopes accounting for 90% of the total response. Despite this diverse range of epitopes, individual responses were associated with only a few immunodominant epitopes, with each donor responding on average to 3 epitopes. For the top 14 epitopes, HLA restriction could be inferred based on HLA typing of the responding donors. HLA binding predictions re-identified the vast majority of known epitopes, and identified 24 additional novel epitopes. With these epitopes, we created a TT epitope pool, which allowed us to characterize TT responses directly ex vivo using a cytokine-independent Activation Induced Marker (AIM) assay. These TT responses were highly Th1 or Th2 polarized, which was dependent upon the original priming vaccine, either the cellular DTwP or acellular DTaP formulation. This polarization remained despite the original priming having occurred decades past and a recent booster immunization with a reduced acellular vaccine formulation. While TT responses following booster vaccination were not durably increased in magnitude, they were associated with a relative expansion of CD4+ effector memory T cells.
Collapse
Affiliation(s)
| | - Sinu Paul
- La Jolla Institute for Allergy and Immunology, La Jolla, California, United Ststes of America
| | - John Sidney
- La Jolla Institute for Allergy and Immunology, La Jolla, California, United Ststes of America
| | - Daniela Weiskopf
- La Jolla Institute for Allergy and Immunology, La Jolla, California, United Ststes of America
| | - Jennifer M. Dan
- La Jolla Institute for Allergy and Immunology, La Jolla, California, United Ststes of America
| | - Elizabeth Phillips
- Institute for Immunology and Infectious Diseases, Murdoch University, Perth, Western Australia, Australia
| | - Simon Mallal
- Institute for Immunology and Infectious Diseases, Murdoch University, Perth, Western Australia, Australia
| | - Shane Crotty
- Institute for Immunology and Infectious Diseases, Murdoch University, Perth, Western Australia, Australia
| | - Alessandro Sette
- La Jolla Institute for Allergy and Immunology, La Jolla, California, United Ststes of America
| | | |
Collapse
|
57
|
Oseroff C, Christensen LH, Westernberg L, Pham J, Lane J, Paul S, Greenbaum J, Stranzl T, Lund G, Hoof I, Holm J, Würtzen PA, Meno KH, Frazier A, Schulten V, Andersen PS, Peters B, Sette A. Immunoproteomic analysis of house dust mite antigens reveals distinct classes of dominant T cell antigens according to function and serological reactivity. Clin Exp Allergy 2016; 47:577-592. [PMID: 27684489 DOI: 10.1111/cea.12829] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2016] [Revised: 08/11/2016] [Accepted: 08/30/2016] [Indexed: 12/22/2022]
Abstract
BACKGROUND House dust mite (HDM) allergens are a common cause of allergy and allergic asthma. A comprehensive analysis of proteins targeted by T cells, which are implicated in the development and regulation of allergic disease independent of their antibody reactivity, is still lacking. OBJECTIVE To comprehensively analyse the HDM-derived protein targets of T cell responses in HDM-allergic individuals, and investigate their correlation with IgE/IgG responses and protein function. METHODS Proteomic analysis (liquid chromatography-tandem mass spectrometry) of HDM extracts identified 90 distinct protein clusters, corresponding to 29 known allergens and 61 novel proteins. Peripheral blood mononuclear cells (PBMC) from 20 HDM-allergic individuals were stimulated with HDM extracts and assayed with a set of ~2500 peptides derived from these 90 protein clusters and predicted to bind the most common HLA class II types. 2D immunoblots were made in parallel to elucidate IgE and IgG reactivity, and putative function analyses were performed in silico according to Gene Ontology annotations. RESULTS Analysis of T cell reactivity revealed a large number of T cell epitopes. Overall response magnitude and frequency was comparable for known and novel proteins, with 15 antigens (nine of which were novel) dominating the total T cell response. Most of the known allergens that were dominant at the T cell level were also IgE reactive, as expected, while few novel dominant T cell antigens were IgE reactive. Among known allergens, hydrolase activity and detectable IgE/IgG reactivity are strongly correlated, while no protein function correlates with immunogenicity of novel proteins. A total of 106 epitopes accounted for half of the total T cell response, underlining the heterogeneity of T cell responses to HDM allergens. CONCLUSIONS AND CLINICAL RELEVANCE Herein, we define the T cell targets for both known allergens and novel proteins, which may inform future diagnostics and immunotherapeutics for allergy to HDM.
Collapse
Affiliation(s)
- Carla Oseroff
- La Jolla Institute for Allergy and Immunology, La Jolla, CA 92037, USA
| | | | - Luise Westernberg
- La Jolla Institute for Allergy and Immunology, La Jolla, CA 92037, USA
| | - John Pham
- La Jolla Institute for Allergy and Immunology, La Jolla, CA 92037, USA
| | - Jerome Lane
- La Jolla Institute for Allergy and Immunology, La Jolla, CA 92037, USA
| | - Sinu Paul
- La Jolla Institute for Allergy and Immunology, La Jolla, CA 92037, USA
| | - Jason Greenbaum
- La Jolla Institute for Allergy and Immunology, La Jolla, CA 92037, USA
| | | | - Gitte Lund
- ALK-Abelló A/S, Global Research, Hørsholm, Denmark
| | - Ilka Hoof
- ALK-Abelló A/S, Global Research, Hørsholm, Denmark
| | - Jens Holm
- ALK-Abelló A/S, Global Research, Hørsholm, Denmark
| | | | - Kåre H Meno
- ALK-Abelló A/S, Global Research, Hørsholm, Denmark
| | - April Frazier
- La Jolla Institute for Allergy and Immunology, La Jolla, CA 92037, USA
| | | | | | - Bjoern Peters
- La Jolla Institute for Allergy and Immunology, La Jolla, CA 92037, USA
| | - Alessandro Sette
- La Jolla Institute for Allergy and Immunology, La Jolla, CA 92037, USA
| |
Collapse
|
58
|
Weiskopf D, Angelo MA, Grifoni A, O'Rourke PH, Sidney J, Paul S, De Silva AD, Phillips E, Mallal S, Premawansa S, Premawansa G, Wijewickrama A, Peters B, Sette A. HLA-DRB1 Alleles Are Associated With Different Magnitudes of Dengue Virus-Specific CD4+ T-Cell Responses. J Infect Dis 2016; 214:1117-24. [PMID: 27443615 DOI: 10.1093/infdis/jiw309] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Accepted: 07/15/2016] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Each year dengue virus (DENV) infects 400 million human but causes symptomatic disease in only a subset of patients, suggesting that host genetic factors may play a role. HLA molecules that restrict T-cell responses are one of the most polymorphic host factors in humans. METHODS Here we map HLA DRB1-restricted DENV-specific epitopes in individuals previously exposed to DENV, to identify the breadth and specificity of CD4(+) T-cell responses. To investigate whether HLA-specific variations in the magnitude of response might predict associations between dengue outcomes and HLA-DRB1 alleles, we assembled samples from hospitalized patients with known severity of disease. RESULTS The capsid protein followed by nonstructural protein 3 (NS3), NS2A, and NS5 were the most targeted proteins. We further noticed a wide variation in magnitude of T-cell responses as a function of the restricting DRB1 allele and found several HLA alleles that showed trends toward a lower risk of hospitalized disease were associated with a higher magnitude of T-cell responses. CONCLUSIONS Comprehensive identification of unique CD4(+) T-cell epitopes across the 4 DENV serotypes allows the testing of T-cell responses by use of a simple, approachable technique and points to important implications for vaccine design.
Collapse
Affiliation(s)
- Daniela Weiskopf
- Division of Vaccine Discovery, La Jolla Institute for Allergy and Immunology, California
| | - Michael A Angelo
- Division of Vaccine Discovery, La Jolla Institute for Allergy and Immunology, California
| | - Alba Grifoni
- Division of Vaccine Discovery, La Jolla Institute for Allergy and Immunology, California
| | - Patrick H O'Rourke
- Division of Vaccine Discovery, La Jolla Institute for Allergy and Immunology, California
| | - John Sidney
- Division of Vaccine Discovery, La Jolla Institute for Allergy and Immunology, California
| | - Sinu Paul
- Division of Vaccine Discovery, La Jolla Institute for Allergy and Immunology, California
| | - Aruna D De Silva
- Division of Vaccine Discovery, La Jolla Institute for Allergy and Immunology, California Genetech Research Institute
| | - Elizabeth Phillips
- Department of Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee Institute for Immunology and Infectious Diseases, Murdoch University, Perth, Australia
| | - Simon Mallal
- Department of Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee Institute for Immunology and Infectious Diseases, Murdoch University, Perth, Australia
| | - Sunil Premawansa
- Department of Zoology and Environmental Science, Science Faculty, University of Colombo
| | | | | | - Bjoern Peters
- Division of Vaccine Discovery, La Jolla Institute for Allergy and Immunology, California
| | - Alessandro Sette
- Division of Vaccine Discovery, La Jolla Institute for Allergy and Immunology, California
| |
Collapse
|
59
|
Lindestam Arlehamn CS, McKinney DM, Carpenter C, Paul S, Rozot V, Makgotlho E, Gregg Y, van Rooyen M, Ernst JD, Hatherill M, Hanekom WA, Peters B, Scriba TJ, Sette A. A Quantitative Analysis of Complexity of Human Pathogen-Specific CD4 T Cell Responses in Healthy M. tuberculosis Infected South Africans. PLoS Pathog 2016; 12:e1005760. [PMID: 27409590 PMCID: PMC4943605 DOI: 10.1371/journal.ppat.1005760] [Citation(s) in RCA: 98] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Accepted: 06/18/2016] [Indexed: 12/13/2022] Open
Abstract
We performed a quantitative analysis of the HLA restriction, antigen and epitope specificity of human pathogen specific responses in healthy individuals infected with M. tuberculosis (Mtb), in a South African cohort as a test case. The results estimate the breadth of T cell responses for the first time in the context of an infection and human population setting. We determined the epitope repertoire of eleven representative Mtb antigens and a large panel of previously defined Mtb epitopes. We estimated that our analytic methods detected 50-75% of the total response in a cohort of 63 individuals. As expected, responses were highly heterogeneous, with responses to a total of 125 epitopes detected. The 66 top epitopes provided 80% coverage of the responses identified in our study. Using a panel of 48 HLA class II-transfected antigen-presenting cells, we determined HLA class II restrictions for 278 epitope/donor recognition events (36% of the total). The majority of epitopes were restricted by multiple HLA alleles, and 380 different epitope/HLA combinations comprised less than 30% of the estimated Mtb-specific response. Our results underline the complexity of human T cell responses at a population level. Efforts to capture and characterize this broad and highly HLA promiscuous Mtb-specific T cell epitope repertoire will require significant peptide multiplexing efforts. We show that a comprehensive "megapool" of Mtb peptides captured a large fraction of the Mtb-specific T cells and can be used to characterize this response.
Collapse
Affiliation(s)
- Cecilia S. Lindestam Arlehamn
- La Jolla Institute for Allergy and Immunology, Department of Vaccine Discovery, La Jolla, California, United States of America
| | - Denise M. McKinney
- La Jolla Institute for Allergy and Immunology, Department of Vaccine Discovery, La Jolla, California, United States of America
| | - Chelsea Carpenter
- La Jolla Institute for Allergy and Immunology, Department of Vaccine Discovery, La Jolla, California, United States of America
| | - Sinu Paul
- La Jolla Institute for Allergy and Immunology, Department of Vaccine Discovery, La Jolla, California, United States of America
| | - Virginie Rozot
- South African Tuberculosis Vaccine Initiative, Institute of Infectious Disease and Molecular Medicine, and Division of Immunology, Department of Pathology, University of Cape Town, Cape Town, South Africa
| | - Edward Makgotlho
- South African Tuberculosis Vaccine Initiative, Institute of Infectious Disease and Molecular Medicine, and Division of Immunology, Department of Pathology, University of Cape Town, Cape Town, South Africa
| | - Yolande Gregg
- South African Tuberculosis Vaccine Initiative, Institute of Infectious Disease and Molecular Medicine, and Division of Immunology, Department of Pathology, University of Cape Town, Cape Town, South Africa
| | - Michele van Rooyen
- South African Tuberculosis Vaccine Initiative, Institute of Infectious Disease and Molecular Medicine, and Division of Immunology, Department of Pathology, University of Cape Town, Cape Town, South Africa
| | - Joel D. Ernst
- Department of Medicine, Division of Infectious Diseases, New York University School of Medicine, New York, New York, United States of America
| | - Mark Hatherill
- South African Tuberculosis Vaccine Initiative, Institute of Infectious Disease and Molecular Medicine, and Division of Immunology, Department of Pathology, University of Cape Town, Cape Town, South Africa
| | - Willem A. Hanekom
- South African Tuberculosis Vaccine Initiative, Institute of Infectious Disease and Molecular Medicine, and Division of Immunology, Department of Pathology, University of Cape Town, Cape Town, South Africa
| | - Bjoern Peters
- La Jolla Institute for Allergy and Immunology, Department of Vaccine Discovery, La Jolla, California, United States of America
| | - Thomas J. Scriba
- South African Tuberculosis Vaccine Initiative, Institute of Infectious Disease and Molecular Medicine, and Division of Immunology, Department of Pathology, University of Cape Town, Cape Town, South Africa
| | - Alessandro Sette
- La Jolla Institute for Allergy and Immunology, Department of Vaccine Discovery, La Jolla, California, United States of America
| |
Collapse
|
60
|
Dan JM, Lindestam Arlehamn CS, Weiskopf D, da Silva Antunes R, Havenar-Daughton C, Reiss SM, Brigger M, Bothwell M, Sette A, Crotty S. A Cytokine-Independent Approach To Identify Antigen-Specific Human Germinal Center T Follicular Helper Cells and Rare Antigen-Specific CD4+ T Cells in Blood. THE JOURNAL OF IMMUNOLOGY 2016; 197:983-93. [PMID: 27342848 DOI: 10.4049/jimmunol.1600318] [Citation(s) in RCA: 197] [Impact Index Per Article: 24.6] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Accepted: 05/19/2016] [Indexed: 12/13/2022]
Abstract
Detection of Ag-specific CD4(+) T cells is central to the study of many human infectious diseases, vaccines, and autoimmune diseases. However, such cells are generally rare and heterogeneous in their cytokine profiles. Identification of Ag-specific germinal center (GC) T follicular helper (Tfh) cells by cytokine production has been particularly problematic. The function of a GC Tfh cell is to selectively help adjacent GC B cells via cognate interaction; thus, GC Tfh cells may be stingy cytokine producers, fundamentally different from Th1 or Th17 cells in the quantities of cytokines produced. Conventional identification of Ag-specific cells by intracellular cytokine staining relies on the ability of the CD4(+) T cell to generate substantial amounts of cytokine. To address this problem, we have developed a cytokine-independent activation-induced marker (AIM) methodology to identify Ag-specific GC Tfh cells in human lymphoid tissue. Whereas Group A Streptococcus-specific GC Tfh cells produced minimal detectable cytokines by intracellular cytokine staining, the AIM method identified 85-fold more Ag-specific GC Tfh cells. Intriguingly, these GC Tfh cells consistently expressed programmed death ligand 1 upon activation. AIM also detected non-Tfh cells in lymphoid tissue. As such, we applied AIM for identification of rare Ag-specific CD4(+) T cells in human peripheral blood. Dengue, tuberculosis, and pertussis vaccine-specific CD4(+) T cells were readily detectable by AIM. In summary, cytokine assays missed 98% of Ag-specific human GC Tfh cells, reflecting the biology of these cells, which could instead be sensitively identified by coexpression of TCR-dependent activation markers.
Collapse
Affiliation(s)
- Jennifer M Dan
- La Jolla Institute for Allergy and Immunology, La Jolla, CA 92037; Division of Infectious Diseases, University of California, San Diego, La Jolla, CA 92093
| | | | - Daniela Weiskopf
- La Jolla Institute for Allergy and Immunology, La Jolla, CA 92037
| | | | - Colin Havenar-Daughton
- La Jolla Institute for Allergy and Immunology, La Jolla, CA 92037; Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, La Jolla, CA 92037; and
| | - Samantha M Reiss
- La Jolla Institute for Allergy and Immunology, La Jolla, CA 92037; Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, La Jolla, CA 92037; and
| | | | | | - Alessandro Sette
- La Jolla Institute for Allergy and Immunology, La Jolla, CA 92037
| | - Shane Crotty
- La Jolla Institute for Allergy and Immunology, La Jolla, CA 92037; Division of Infectious Diseases, University of California, San Diego, La Jolla, CA 92093; Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, La Jolla, CA 92037; and
| |
Collapse
|
61
|
Hinz D, Seumois G, Gholami AM, Greenbaum JA, Lane J, White B, Broide DH, Schulten V, Sidney J, Bakhru P, Oseroff C, Wambre E, James EA, Kwok WW, Peters B, Vijayanand P, Sette A. Lack of allergy to timothy grass pollen is not a passive phenomenon but associated with the allergen-specific modulation of immune reactivity. Clin Exp Allergy 2016; 46:705-19. [PMID: 26662458 PMCID: PMC4846575 DOI: 10.1111/cea.12692] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2015] [Revised: 12/01/2015] [Accepted: 12/03/2015] [Indexed: 01/16/2023]
Abstract
BACKGROUND Timothy grass (TG) pollen is a common seasonal airborne allergen associated with symptoms ranging from mild rhinitis to severe asthma. OBJECTIVE The aim of this study was to characterize changes in TG-specific T cell responses as a function of seasonality. METHODS Peripheral blood mononuclear cells (PBMCs) obtained from allergic individuals and non-allergic controls, either during the pollen season or out of season, were stimulated with either TG extract or a pool of previously identified immunodominant antigenic regions. RESULTS PBMCs from allergic subjects exhibit higher IL-5 and IL-10 responses in season than when collected out of season. In the case of non-allergic subjects, as expected we observed lower IL-5 responses and robust production of IFN-γ compared to allergic individuals. Strikingly, non-allergic donors exhibited an opposing pattern, with decreased immune reactivity in season. The broad down-regulation in non-allergic donors indicates that healthy individuals are not oblivious to allergen exposure, but rather react with an active modulation of responses following the antigenic stimulus provided during the pollen season. Transcriptomic analysis of allergen-specific T cells defined genes modulated in concomitance with the allergen exposure and inhibition of responses in non-allergic donors. CONCLUSION AND CLINICAL RELEVANCE Magnitude and functionality of T helper cell responses differ substantially in season vs. out of season in allergic and non-allergic subjects. The results indicate the specific and opposing modulation of immune responses following the antigenic stimulation during the pollen season. This seasonal modulation reflects the enactment of specific molecular programmes associated with health and allergic disease.
Collapse
MESH Headings
- Allergens/immunology
- Case-Control Studies
- Cytokines/metabolism
- Female
- Gene Expression Profiling
- Gene Expression Regulation
- HLA Antigens/genetics
- HLA Antigens/immunology
- Humans
- Immunologic Memory
- Immunomodulation
- Leukocytes, Mononuclear/immunology
- Leukocytes, Mononuclear/metabolism
- Lymphocyte Activation
- Lymphocyte Count
- Male
- Phenotype
- Phleum/immunology
- Pollen/immunology
- RNA, Messenger/genetics
- Rhinitis, Allergic, Seasonal/diagnosis
- Rhinitis, Allergic, Seasonal/genetics
- Rhinitis, Allergic, Seasonal/immunology
- Rhinitis, Allergic, Seasonal/metabolism
- Seasons
- T-Cell Antigen Receptor Specificity
- T-Lymphocyte Subsets/immunology
- T-Lymphocyte Subsets/metabolism
- Transcriptome
Collapse
Affiliation(s)
- Denise Hinz
- La Jolla Institute for Allergy and Immunology, La Jolla, CA 92037, USA
| | - Grégory Seumois
- La Jolla Institute for Allergy and Immunology, La Jolla, CA 92037, USA
| | - Amin M. Gholami
- La Jolla Institute for Allergy and Immunology, La Jolla, CA 92037, USA
| | | | - Jerome Lane
- La Jolla Institute for Allergy and Immunology, La Jolla, CA 92037, USA
| | - Brandie White
- La Jolla Institute for Allergy and Immunology, La Jolla, CA 92037, USA
| | | | | | - John Sidney
- La Jolla Institute for Allergy and Immunology, La Jolla, CA 92037, USA
| | - Pearl Bakhru
- La Jolla Institute for Allergy and Immunology, La Jolla, CA 92037, USA
| | - Carla Oseroff
- La Jolla Institute for Allergy and Immunology, La Jolla, CA 92037, USA
| | - Erik Wambre
- Benaroya Research Institute at Virginia Mason, Seattle, WA 98101, USA
| | - Eddie A. James
- Benaroya Research Institute at Virginia Mason, Seattle, WA 98101, USA
| | - William W. Kwok
- Benaroya Research Institute at Virginia Mason, Seattle, WA 98101, USA
| | - Bjoern Peters
- La Jolla Institute for Allergy and Immunology, La Jolla, CA 92037, USA
| | | | - Alessandro Sette
- La Jolla Institute for Allergy and Immunology, La Jolla, CA 92037, USA
| |
Collapse
|