51
|
Piner Benli P, Kaya M, Dağlıoğlu YK. Fucoidan Protects against Acute Sulfoxaflor-Induced Hematological/Biochemical Alterations and Oxidative Stress in Male Mice. Pharmaceuticals (Basel) 2021; 15:ph15010016. [PMID: 35056073 PMCID: PMC8778046 DOI: 10.3390/ph15010016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 12/15/2021] [Accepted: 12/22/2021] [Indexed: 01/30/2023] Open
Abstract
Fucoidan is a sulfated polysaccharide which can be found among a number of macroalgea species. It has a broad spectrum of biological activities including anti-oxidant, anti-tumor, immunoregulation, anti-viral and anti-coagulant. The current study was performed to investigate possible protective effects of fucoidan for sulfoxaflor-induced hematological/biochemical alterations and oxidative stress in the blood of male Swiss albino mice. For this purpose, sulfoxaflor was administered at a dose of 15 mg/kg/day (1/50 oral LD50), and fucoidan was administered at a dose of 50 mg/kg/day by oral gavage alone and combined for 24 h and 7 days. Hematological parameters (RBC, HGB, HCT, MCV, MCH, MCHC, Plt, WBC, Neu, Lym and Mon), serum biochemical parameters (AST, ALT, GGT, LDH, BUN, Cre and TBil), and serum oxidative stress/antioxidant markers (8-OHdG, MDA, POC and GSH) were analyzed. The results indicated that sulfoxaflor altered hematological and biochemical parameters and caused oxidative stress in mice; fucoidan ameliorated some hematological and biochemical parameters and exhibited a protective role as an antioxidant against sulfoxaflor-induced oxidative stress.
Collapse
Affiliation(s)
- Petek Piner Benli
- Department of Veterinary Pharmacology and Toxicology, Faculty of Ceyhan Veterinary Medicine, Cukurova University, 01330 Adana, Turkey
- Correspondence: ; Tel./Fax: +90-322-6133507
| | - Merve Kaya
- Department of Biotechnology, Institute of Natural and Applied Sciences, Cukurova University, 01330 Adana, Turkey;
| | - Yusuf Kenan Dağlıoğlu
- Department of Microbiology, Faculty of Medicine, Kırsehir Ahi Evran University, 40100 Kırsehir, Turkey;
| |
Collapse
|
52
|
Piner Benli P, Kaya M, Coskun C. Fucoidan Modulated Oxidative Stress and Caspase-3 mRNA Expression Induced by Sulfoxaflor in the Brain of Mice. Neurotox Res 2021; 39:1908-1919. [PMID: 34570347 DOI: 10.1007/s12640-021-00415-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 08/07/2021] [Accepted: 09/10/2021] [Indexed: 12/27/2022]
Abstract
The current study aimed to investigate the role of fucoidan in the oxidative and apoptotic effects of sulfoxaflor, a neonicotinoid sulfoximine insecticide, in the brain of Swiss albino mice (Mus musculus). Sulfoxaflor and fucoidan were administered to mice at doses of 15 mg/kg/day (1/50 oral LD50) and 50 mg/kg/day, respectively, by oral gavage for 24 h or 7 days. The tGSH, TBARS and protein levels, and GPx, GR, and GST enzyme activities were determined by spectrophotometric methods. Caspase-3 gene expression level was determined by RT-PCR. Data analysis showed that brains of sulfoxaflor-treated mice exhibited higher TBARS levels; GPx, GR, and GST enzyme activities; and caspase-3 expression levels, as well as lower levels of tGSH. Co-administration of fucoidan and sulfoxaflor reduced the TBARS levels, increased tGSH levels, and increased GPx, GR, and GST enzyme activities. Fucoidan also decreased the sulfoxaflor-induced up-regulation of caspase-3 mRNA expression. Results of the present study showed that sulfoxaflor caused oxidative stress by inducing lipid peroxidation and altering GSH-dependent antioxidants in the brain of mice. In addition, sulfoxaflor may trigger apoptotic cell death shown by the up-regulation of caspase-3. Fucoidan treatment modulated all the aforementioned alterations in the brain of mice. It was concluded that fucoidan might have antioxidant effects that support the GSH-dependent antioxidant system and can play a modulator role in oxidative stress and caspase-3 expression in the brain of sulfoxaflor treated-mice.
Collapse
Affiliation(s)
- Petek Piner Benli
- Department of Veterinary Pharmacology and Toxicology, Faculty of Ceyhan Veterinary Medicine, Cukurova University, 01330, Adana, Turkey.
| | - Merve Kaya
- Department of Biotechnology, Institute of Natural and Applied Sciences, Cukurova University, 01330, Adana, Turkey
| | - Cagil Coskun
- Department of Biophysics, Faculty of Medicine, Cukurova University, 01330, Adana, Turkey
| |
Collapse
|
53
|
Mohamed SM, Abdel-Rahim EA, Aly TA, Naguib AM, Khattab MS. Barley microgreen incorporation in diet-controlled diabetes and counteracted aflatoxicosis in rats. Exp Biol Med (Maywood) 2021; 247:385-394. [PMID: 34796731 DOI: 10.1177/15353702211059765] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Increased environmental pollution and unhealthy lifestyle are blamed for escalated chronic diseases. Exposure to aflatoxins was recently suggested to have a role in the increased incidence of type 2 diabetes mellitus. Diet modification and consumption of different functional food are now gaining attention, especially in diabetes management. This study investigates the effect of a diet containing barley microgreen against diabetes induced by streptozotocin with or without aflatoxin administration in rats. Barley microgreen was rich in 3'-Benzyloxy-5,6,7,4'-tetramethoxyflavone (48.8% of total) followed by 5β,7βH,10α-Eudesm-11-en-1α-ol (18.46%). Streptozotocin injection and/or aflatoxin administration significantly elevated glucose level, decreased insulin level, decreased β-cell function, deteriorated liver and kidney function parameters, and induced oxidative stress in the liver. Histopathology revealed irregular small-sized islets and decreased area % of insulin-positive beta cells in the pancreas, hepatic degeneration, nephropathy, and neuropathy in diabetic and/or aflatoxin administered rats compared to control. Barley microgreen diet fed to diabetic rats with or without aflatoxin alleviated all evaluated parameters. Barley microgreen diet also ameliorated the toxic effect of aflatoxin. In conclusion, exposure to aflatoxin aggravated diabetes and its complication. The incorporation of barley microgreen in the diet was able to control type 2 diabetes mellitus and the improved outcomes observed with barley microgreen treatments involved or occurred in conjunction with improved biomarkers of oxidative stress.
Collapse
Affiliation(s)
- Sara M Mohamed
- Regional Center for Food and Feed, Agriculture Research Center, Ministry of Agriculture, Giza 12619, Egypt
| | - Emam A Abdel-Rahim
- Biochemistry Department, Faculty of Agriculture, 63526Cairo University, Giza 12613, Egypt
| | - Tahany Aa Aly
- Regional Center for Food and Feed, Agriculture Research Center, Ministry of Agriculture, Giza 12619, Egypt
| | - AbdelMoneim M Naguib
- Biochemistry Department, Faculty of Agriculture, 63526Cairo University, Giza 12613, Egypt
| | - Marwa S Khattab
- Pathology Department, Faculty of Veterinary Medicine, 63526Cairo University, Giza 12211, Egypt
| |
Collapse
|
54
|
Alanazi IS, Emam M, Elsabagh M, Alkahtani S, Abdel-Daim MM. The protective effects of 18β-glycyrrhetinic acid against acrylamide-induced cellular damage in diabetic rats. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:58322-58330. [PMID: 34117542 DOI: 10.1007/s11356-021-14742-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 06/01/2021] [Indexed: 06/12/2023]
Abstract
This study was aimed at elucidating the protective effects of 18β-glycyrrhetinic acid (18βGA) against acrylamide (Acr)-induced cellular damage in diabetic rats. Rats were randomly assigned into eight groups (n = 8) following 12 h of fasting: control group, a single dose of 50 mg/kg streptozotocin (STZ) intraperitoneally (diabetic group), 50 mg/kg 18βGA orally after 2 weeks from STZ injection (18βGA group), 20 mg/kg Acr after 1month from STZ injection (Acr group), STZ plus Acr (STZ-Acr group), STZ plus 18βGA (STZ-18βGA group), Acr plus 18βGA (Acr-18βGA group), or STZ plus Acr plus 18βGA (STZ-Acr-18βGA group). Administration of 18βGA alone increased GSH, GSH-PX, SOD, and CAT in both liver and kidneys. While STZ injection was associated with diabetic and oxidative stress changes as indicated by the higher serum glucose, cholesterol, creatinine, IL-1β, IL-6, TNF-α, and antioxidant enzyme activities, together with increased lipid peroxides and decreased antioxidant biomarkers in the liver and kidneys. Similarly, the co-administration of STZ and Acr was associated with similar, more augmented effects, compared to STZ alone. The administration of 18βGA normalized STZ and Acr-induced elevations in oxidative defense variables in the liver and kidney tissues and blood biomarkers. Thus, our study demonstrated that the damaging effects of Acr were more exaggerated in diabetic rats. Furthermore, it showed the ability of 18βGA to inhibit reactive oxygen species generation and restore the antioxidant defenses in diabetic rats with Acr-induced liver and kidney cytotoxicity.
Collapse
Affiliation(s)
- Ibtesam S Alanazi
- Department of Biology, Faculty of Sciences, University of Hafr Al Batin, Hafr Al Batin, Saudi Arabia
| | - Mohamed Emam
- Department of Nutrition and Veterinary Clinical Nutrition, Faculty of Veterinary Medicine, Damanhour University, El Beheira, Damanhour, Egypt
| | - Mabrouk Elsabagh
- Department of Nutrition and Clinical Nutrition, Faculty of Veterinary Medicine, Kafr El-sheikh University, Kafr El-Sheikh, 33516, Egypt
| | - Saad Alkahtani
- Department of Zoology, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia
| | - Mohamed M Abdel-Daim
- Department of Zoology, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia.
- Pharmacology Department, Faculty of Veterinary Medicine, Suez Canal University, Ismailia, 41522, Egypt.
| |
Collapse
|
55
|
The Mechanism Underlying the Extreme Sensitivity of Duck to Aflatoxin B1. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021. [DOI: 10.1155/2021/9996503] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Most metabolites of aflatoxin B1 (AFB1), especially exo-AFB1-8,9-epoxide (AFBO), can induce the production of reactive oxygen species (ROS) to vary degrees, causing oxidative stress and liver damage, and ultimately induce liver cancer in humans and animals. Duck is one of the most sensitive animals to AFB1, and severe economic losses are caused by duck AFB1 poisoning every year, but the exact mechanism of this high sensitivity is still unclear. This review highlights significant advances in our understanding of the AFB1 metabolic activation, like cytochrome P450s (CYPs), and AFB1 metabolic detoxification, like glutathione S-transferases (GSTs) in poultry. In addition, AFB1 may have other metabolic pathways in poultry, such as the mutual conversion of AFB1 and aflatoxicol (AFL) and the process of AFBO to produce AFB1-8,9-dihydrodiol (AFB1-dhd) and further metabolize it into detoxification substances. This review also summarized some exogenous regulatory substances that can alleviate AFB1-induced oxidative stress.
Collapse
|
56
|
Abdel-Daim MM, Abdeen A, Jalouli M, Abdelkader A, Megahed A, Alkahtane A, Almeer R, Alhoshani NM, Al-Johani NS, Alkahtani S, Aleya L. Fucoidan supplementation modulates hepato-renal oxidative stress and DNA damage induced by aflatoxin B1 intoxication in rats. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 768:144781. [PMID: 33444861 DOI: 10.1016/j.scitotenv.2020.144781] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 12/04/2020] [Accepted: 12/21/2020] [Indexed: 05/21/2023]
Abstract
Aflatoxins are a common food contaminant of global concern. Aflatoxin B1 (AFB1) intoxication is associated with serious health hazards. Recently, fucoidan (FUC) has gained much attention from pharmaceutical industry due to its promising therapeutic effects. The impacts of FUC on AFB1-induced liver and kidney injures have not been sufficiently addressed. This research was conducted to evaluate the ameliorative effect of FUC in AFB1-induced hepatorenal toxicity model in rats over 14 days. Five groups were assigned; control, FUC (200 mg/kg/day, orally), AFB1 (50 μg/kg, i.p.), and AFB1 plus a low or high dose of FUC. AFB1 induced marked hepatorenal injury elucidated by substantial alterations in biochemical tests and histological pictures. The oxidative distress instigated by AFB1 enhanced production of malondialdehyde (MDA) and nitric oxide (NO) along with reduction in the reduced-glutathione (GSH), glutathione peroxidase (GSH-Px), superoxide dismutase (SOD), and catalase (CAT) activities. DNA damage in the liver and kidney tissues has been demonstrated by overexpression of proliferating cell nuclear antigen (PCNA). Unambiguously, FUC consumption alleviates the AFB1-induced mitochondrial dysfunction, oxidative harm, and apoptosis. These ameliorated effects are proposed to be attributed to fucoidan's antioxidant and anti-apoptotic activities. Our results recommend FUC supplementation to food because it exerts both preventive and therapeutic effects against AFB1-induced toxicity.
Collapse
Affiliation(s)
- Mohamed M Abdel-Daim
- Department of Zoology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia; Department of Pharmacology, Faculty of Veterinary Medicine, Suez Canal University, Ismailia 41522, Egypt.
| | - Ahmed Abdeen
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Benha University, Toukh 13736, Egypt; Center of Excellence for Screening of Environmental Contaminants, Benha University, Toukh 13736, Egypt
| | - Maroua Jalouli
- College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Afaf Abdelkader
- Center of Excellence for Screening of Environmental Contaminants, Benha University, Toukh 13736, Egypt; Department of Forensic Medicine and Clinical Toxicology, Faculty of Medicine, Benha University, Benha 13518, Egypt
| | - Ameer Megahed
- Department of Animal Medicine, Internal Medicine, Faculty of Veterinary Medicine, Benha University, Toukh 13736, Egypt; Department of Veterinary Clinical Medicine, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, IL 61802, USA
| | - Abdullah Alkahtane
- Department of Zoology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Rafa Almeer
- Department of Zoology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Norah M Alhoshani
- Department of Zoology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Norah S Al-Johani
- Department of Zoology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Saad Alkahtani
- Department of Zoology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Lotfi Aleya
- Chrono-Environnement Laboratory, UMR CNRS 6249, Bourgogne Franche-Comté University, F-25030 Besançon Cedex, France
| |
Collapse
|
57
|
Shahba S, Mehrzad J, Malvandi AM. Neuroimmune disruptions from naturally occurring levels of mycotoxins. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:10.1007/s11356-021-14146-4. [PMID: 33932215 DOI: 10.1007/s11356-021-14146-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 04/22/2021] [Indexed: 06/12/2023]
Abstract
Substantial pieces of evidence support the potential of exogenous toxins in disrupting neuroimmune homeostasis. It appears that mycotoxins are one of the noticeable sources of naturally occurring substances dysregulating the immune system, which involves the physiology of many organs, such as the central nervous system (CNS). The induction of inflammatory responses in microglial cells and astrocytes, the CNS resident cells with immunological characteristics, could interrupt the hemostasis upon even with low-level exposure to mycotoxins. The inevitable widespread occurrence of a low level of mycotoxins in foods and feed is likely increasing worldwide, predisposing individuals to potential neuroimmunological dysregulations. This paper reviews the current understanding of mycotoxins' neuro-immunotoxic features under low-dose exposure and the possible ways for detoxification and clearance as a perspective.
Collapse
Affiliation(s)
- Sara Shahba
- Department of Microbiology and Immunology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Jalil Mehrzad
- Department of Microbiology and Immunology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran.
| | - Amir Mohammad Malvandi
- Science and Technology Pole, IRCCS Multimedica, Via Gaudenzio Fantoli, 16/15, 20138, Milan, Italy.
| |
Collapse
|
58
|
|
59
|
Chen YC, Cheng CY, Liu CT, Sue YM, Chen TH, Hsu YH, Huang NJ, Chen CH. Combined protective effects of oligo-fucoidan, fucoxanthin, and L-carnitine on the kidneys of chronic kidney disease mice. Eur J Pharmacol 2021; 892:173708. [PMID: 33152336 DOI: 10.1016/j.ejphar.2020.173708] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 10/23/2020] [Accepted: 10/29/2020] [Indexed: 12/13/2022]
Abstract
Chronic kidney disease (CKD) is a common global progressive disease, but there are no ideal drugs for the treatment. Fucoidan and fucoxanthin, and L-carnitine are one of the very few natural products that have a therapeutic effect on CKD in animal experiments. However, the combined effects of these compounds on CKD are unknown. We established a mouse CKD model by right nephrectomy with transient ischemic injury to the left kidney. Oligo-fucoidan and fucoidan were extracted from Laminaria japonica. We fed CKD mice with the two compounds and L-carnitine to evaluate the combined effects on CKD. Oligo-fucoidan and fucoidan inhibited renal fibrosis and reduced serum creatine in CKD mice to a greater extent than any single compound. L-carnitine had no measurable effect on renal fibrosis but promoted the protective effect of the mixture of oligo-fucoidan and fucoidan on renal function in CKD mice. In the two-month safety test, the combined mixture further improved renal function and did not elevate serum aspartate aminotransferase and alanine aminotransferase levels in CKD mice. Furthermore, the weights of CKD mice treated with the combination increased to the normal level. We also found that all oligo-fucoidan, fucoxanthin, and L-carnitine inhibit H2O2-induced apoptosis and activated Akt in rat renal tubular cells. Our results confirm that oligo-fucoidan, fucoxanthin, and L-carnitine have a combined protective effect on the kidneys. The combined mixture may be beneficial for CKD patients.
Collapse
Affiliation(s)
- Yen-Cheng Chen
- Division of Nephrology, Department of Internal Medicine, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan; TMU Research Center of Urology and Kidney, Taipei, Taiwan
| | - Chung-Yi Cheng
- Division of Nephrology, Department of Internal Medicine, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan; Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan; TMU Research Center of Urology and Kidney, Taipei, Taiwan
| | - Chung-Te Liu
- Division of Nephrology, Department of Internal Medicine, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan; TMU Research Center of Urology and Kidney, Taipei, Taiwan
| | - Yuh-Mou Sue
- Division of Nephrology, Department of Internal Medicine, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan; Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan; TMU Research Center of Urology and Kidney, Taipei, Taiwan
| | - Tso-Hsiao Chen
- Division of Nephrology, Department of Internal Medicine, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan; Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan; TMU Research Center of Urology and Kidney, Taipei, Taiwan
| | - Yung-Ho Hsu
- Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan; Division of Nephrology, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, Taipei, Taiwan; TMU Research Center of Urology and Kidney, Taipei, Taiwan
| | - Nai-Jen Huang
- Division of Nephrology, Department of Internal Medicine, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
| | - Cheng-Hsien Chen
- Division of Nephrology, Department of Internal Medicine, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan; Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan; Division of Nephrology, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, Taipei, Taiwan; TMU Research Center of Urology and Kidney, Taipei, Taiwan.
| |
Collapse
|
60
|
Elkazzaz SK, Khodeer DM, El Fayoumi HM, Moustafa YM. Role of sodium glucose cotransporter type 2 inhibitors dapagliflozin on diabetic nephropathy in rats; Inflammation, angiogenesis and apoptosis. Life Sci 2021; 280:119018. [PMID: 33549594 DOI: 10.1016/j.lfs.2021.119018] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 01/03/2021] [Accepted: 01/05/2021] [Indexed: 02/06/2023]
Abstract
AIMS Diabetic nephropathy is a major cause of chronic kidney disease and end-stage renal failure worldwide. Dapagliflozin Sodium-glucose co-transporter 2 (SGLT2) inhibitor is a new class of diabetic medications prescribed for the treatment of type 2 diabetes. The current study investigates the possible impact of dapagliflozin (DAPA) on inflammations, apoptosis, angiogenesis and fibrosis in early-stage diabetic nephropathy using a rat model of type 2 diabetes. MAIN METHODS Rats were divided into five groups, group1: normal vehicle group, group 2: diabetic group, group 3: diabetic+ DAPA (0.75 mg/kg), group 4: diabetic+DAPA (1.5 mg/kg), group 5: diabetic+DAPA (3 mg/kg). At the end of the study, Blood glucose level was measured. Serum insulin, BUN, and SCr were measured. Insulin resistance was determined using the homeostasis model assessment for insulin resistance (HOMA-IR) index. Renal tissue homogenization was done for assessment of inflammatory markers TNF-α, PEDF, and PTX-3, In addition to apoptosis markers BCL-2 and BAX. Histopathological examinations were done for tubular renal cells and immunohistochemical examination for fibrosis marker α-SMA and angiogenic factor VEGF. KEY FINDINGS Treatments with dapagliflozin showed improvements in histopathological examinations, inflammatory and apoptotic markers compared to diabetic vehicles in a dose-dependent manner. SIGNIFICANCE Thus, dapagliflozin may have renoprotective effects, which be promising in diabetic patients suffered from nephropathy.
Collapse
Affiliation(s)
- Shimaa K Elkazzaz
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Sinai University, Ismailia, Egypt
| | - Dina M Khodeer
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Suez Canal University, Ismailia, Egypt.
| | - Hassan M El Fayoumi
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Zagazig University, Zagazig, Egypt
| | - Yasser M Moustafa
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Suez Canal University, Ismailia, Egypt
| |
Collapse
|
61
|
Wang L, Zhang K, Ding X, Wang Y, Bai H, Yang Q, Ben J, Zhang H, Li X, Chen Q, Zhu X. Fucoidan antagonizes diet-induced obesity and inflammation in mice. J Biomed Res 2020; 35:197-205. [PMID: 33495425 PMCID: PMC8193708 DOI: 10.7555/jbr.34.20200153] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Obesity is an escalating global pandemic posing a serious threat to human health. The intervention therapy using weight-reducing drugs, accompanied by lifestyle modification, is a strategy for the treatment of obesity. In the present study, we explored the role of fucoidan, a seaweed compound, on high-fat diet (HFD)-induced obesity in mice. We found that fucoidan treatment significantly reduced the body fat and caused redistribution of visceral and subcutaneous fat in HFD-fed mice. Meanwhile, fucoidan treatment inhibited adipocyte hypertrophy and inflammation in adipose tissue. Collectively, these results suggest that fucoidan may be a promising treatment for obesity and obesity-induced complications.
Collapse
Affiliation(s)
- Lei Wang
- Key Laboratory of Targeted Intervention of Cardiovascular Disease, CollaborativeInnovation Center for Cardiovascular Disease Translational Medicine, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Kun Zhang
- Key Laboratory of Targeted Intervention of Cardiovascular Disease, CollaborativeInnovation Center for Cardiovascular Disease Translational Medicine, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Xin Ding
- Key Laboratory of Targeted Intervention of Cardiovascular Disease, CollaborativeInnovation Center for Cardiovascular Disease Translational Medicine, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Yan Wang
- Key Laboratory of Targeted Intervention of Cardiovascular Disease, CollaborativeInnovation Center for Cardiovascular Disease Translational Medicine, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Hui Bai
- Key Laboratory of Targeted Intervention of Cardiovascular Disease, CollaborativeInnovation Center for Cardiovascular Disease Translational Medicine, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Qing Yang
- Key Laboratory of Targeted Intervention of Cardiovascular Disease, CollaborativeInnovation Center for Cardiovascular Disease Translational Medicine, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Jingjing Ben
- Key Laboratory of Targeted Intervention of Cardiovascular Disease, CollaborativeInnovation Center for Cardiovascular Disease Translational Medicine, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Hanwen Zhang
- Key Laboratory of Targeted Intervention of Cardiovascular Disease, CollaborativeInnovation Center for Cardiovascular Disease Translational Medicine, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Xiaoyu Li
- Key Laboratory of Targeted Intervention of Cardiovascular Disease, CollaborativeInnovation Center for Cardiovascular Disease Translational Medicine, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Qi Chen
- Key Laboratory of Targeted Intervention of Cardiovascular Disease, CollaborativeInnovation Center for Cardiovascular Disease Translational Medicine, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Xudong Zhu
- Key Laboratory of Targeted Intervention of Cardiovascular Disease, CollaborativeInnovation Center for Cardiovascular Disease Translational Medicine, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| |
Collapse
|
62
|
Mahgoub HA, El-Adl MAM, Ghanem HM, Martyniuk CJ. The effect of fucoidan or potassium permanganate on growth performance, intestinal pathology, and antioxidant status in Nile tilapia (Oreochromis niloticus). FISH PHYSIOLOGY AND BIOCHEMISTRY 2020; 46:2109-2131. [PMID: 32829475 DOI: 10.1007/s10695-020-00858-w] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2019] [Accepted: 08/13/2020] [Indexed: 06/11/2023]
Abstract
Fucoidans are marine algal sulfated glycans that are widely used as dietary additives in aquaculture. These glycans are recognized as beneficial supplements for their antimicrobial, anti-inflammatory, anticancer, and antiviral properties. Potassium permanganate is another commonly used chemical that is used in aquaculture to treat infections in fish. Despite their widespread use, there are few data available regarding the potential sublethal toxicity associated with fucoidan and potassium permanganate treatments of fish. In this study, we investigated the effect of each compound on the growth, intestinal health, and antioxidant status of Nile tilapia (Oreochromis niloticus). Both compounds affected the growth of experimental fish compared with untreated fish. However, while growth parameters were positively associated with the dose of fucoidan administered, growth was negatively associated with the dose of potassium permanganate in Nile tilapia. Fucoidan treatment was observed to improve the intestinal health of fish based upon increases in intestinal villous area, intestinal villous length and width, and the intraepithelial lymphocyte number and decreases in the total intestinal bacterial count compared with untreated fish. Conversely, potassium permanganate induced intestinal epithelium proliferation and villous branching, a histopathological response typically observed with chemical irritants. Both fucoidan and potassium permanganate decreased levels of oxidative and nitrosative stress markers and enhanced the antioxidant status in multiple organs. Taken together, fucoidan dietary application improved the growth, intestinal health, and antioxidant status in Nile tilapia, supporting the use of this compound as a promising feed additive for aquaculture production. Conversely, potassium permanganate baths have negative effects on fish growth at higher doses and appeared to act as a gastrointestinal irritant in tilapia. This study improves knowledge regarding the biochemical and histological responses in Nile tilapia to two widely used aquaculture-related treatments.
Collapse
Affiliation(s)
- Hebatallah A Mahgoub
- Pathology Department, Faculty of Veterinary Medicine, Mansoura University, Mansoura, 35516, Egypt.
- Center for Environmental and Human Toxicology, Department of Physiological Sciences, College of Veterinary Medicine, University of Florida, Gainesville, 32611, FL, USA.
| | - Mohamed A M El-Adl
- Department of Biochemistry and Chemistry of Nutrition, Faculty of Veterinary Medicine, Mansoura University, Mansoura, 35516, Egypt
| | - Hanaa M Ghanem
- Department of Animal Husbandry, Faculty of Veterinary Medicine, Mansoura University, Mansoura, 35516, Egypt
| | - Christopher J Martyniuk
- Center for Environmental and Human Toxicology, Department of Physiological Sciences, College of Veterinary Medicine, University of Florida, Gainesville, 32611, FL, USA
| |
Collapse
|
63
|
Apostolova E, Lukova P, Baldzhieva A, Katsarov P, Nikolova M, Iliev I, Peychev L, Trica B, Oancea F, Delattre C, Kokova V. Immunomodulatory and Anti-Inflammatory Effects of Fucoidan: A Review. Polymers (Basel) 2020; 12:polym12102338. [PMID: 33066186 PMCID: PMC7602053 DOI: 10.3390/polym12102338] [Citation(s) in RCA: 136] [Impact Index Per Article: 27.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 10/10/2020] [Accepted: 10/11/2020] [Indexed: 02/06/2023] Open
Abstract
Inflammation is the initial response of the immune system to potentially harmful stimuli (e.g., injury, stress, and infections). The process involves activation of macrophages and neutrophils, which produce mediators, such as nitric oxide (NO), prostaglandin E2 (PGE2), pro-inflammatory and anti-inflammatory cytokines. The pro-inflammatory cytokines interleukin-1β (IL-1β), interleukin 6 (IL-6), and tumor necrosis factor-α (TNF-α) are considered as biomarkers of inflammation. Even though it occurs as a physiological defense mechanism, its involvement in the pathogenesis of various diseases is reported. Rheumatoid arthritis, inflammatory bowel disease, Alzheimer's disease, and cardiovascular diseases are only a part of the diseases, in which pathogenesis the chronic inflammation is involved. Fucoidans are complex polysaccharides from brown seaweeds and some marine invertebrates, composed mainly of L-fucose and sulfate ester groups and minor amounts of neutral monosaccharides and uronic acids. Algae-derived fucoidans are studied intensively during the last years regarding their multiple biological activities and possible therapeutic potential. However, the source, species, molecular weight, composition, and structure of the polysaccharides, as well as the route of administration of fucoidans, could be crucial for their effects. Fucoidan is reported to act on different stages of the inflammatory process: (i) blocking of lymphocyte adhesion and invasion, (ii) inhibition of multiple enzymes, and (iii) induction of apoptosis. In this review, we focused on the immunemodulating and anti-inflammatory effects of fucoidans derived from macroalgae and the models used for their evaluation. Additional insights on the molecular structure of the compound are included.
Collapse
Affiliation(s)
- Elisaveta Apostolova
- Department of Pharmacology and Drug Toxicology, Faculty of Pharmacy, Medical University-Plovdiv, Vasil Aprilov Str. 15A, 4002 Plovdiv, Bulgaria; (E.A.); (L.P.); (V.K.)
| | - Paolina Lukova
- Department of Pharmacognosy and Pharmaceutical Chemistry, Faculty of Pharmacy, Medical University-Plovdiv, Vasil Aprilov Str. 15A, 4002 Plovdiv, Bulgaria
- Correspondence: ; Tel.: +359-884978727
| | - Alexandra Baldzhieva
- Department of Microbiology and Immunology, Faculty of Pharmacy, Medical University-Plovdiv, Vasil Aprilov Str. 15A, 4002 Plovdiv, Bulgaria;
- Research Institute at Medical University-Plovdiv, Vasil Aprilov Str. 15A, 4002 Plovdiv, Bulgaria;
| | - Plamen Katsarov
- Research Institute at Medical University-Plovdiv, Vasil Aprilov Str. 15A, 4002 Plovdiv, Bulgaria;
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Medical University-Plovdiv, Vasil Aprilov Str. 15A, 4002 Plovdiv, Bulgaria
| | - Mariana Nikolova
- Department of Biochemistry and Microbiology, Faculty of Biology, Plovdiv University Paisii Hilendarski, Tsar Asen Str. 24, 4000 Plovdiv, Bulgaria; (M.N.); (I.I.)
| | - Ilia Iliev
- Department of Biochemistry and Microbiology, Faculty of Biology, Plovdiv University Paisii Hilendarski, Tsar Asen Str. 24, 4000 Plovdiv, Bulgaria; (M.N.); (I.I.)
| | - Lyudmil Peychev
- Department of Pharmacology and Drug Toxicology, Faculty of Pharmacy, Medical University-Plovdiv, Vasil Aprilov Str. 15A, 4002 Plovdiv, Bulgaria; (E.A.); (L.P.); (V.K.)
| | - Bogdan Trica
- Department of Bioresources, National Institute for Research & Development in Chemistry and Petrochemistry-ICECHIM Bucharest, Splaiul Independenței 202, 060021 Bucharest, Romania; (B.T.); (F.O.)
| | - Florin Oancea
- Department of Bioresources, National Institute for Research & Development in Chemistry and Petrochemistry-ICECHIM Bucharest, Splaiul Independenței 202, 060021 Bucharest, Romania; (B.T.); (F.O.)
| | - Cédric Delattre
- CNRS, SIGMA Clermont, Institut Pascal, Université Clermont Auvergne, F-63000 Clermont-Ferrand, France;
- Institut Universitaire de France (IUF), 1 rue Descartes, 75005 Paris, France
| | - Vesela Kokova
- Department of Pharmacology and Drug Toxicology, Faculty of Pharmacy, Medical University-Plovdiv, Vasil Aprilov Str. 15A, 4002 Plovdiv, Bulgaria; (E.A.); (L.P.); (V.K.)
| |
Collapse
|
64
|
Zhang J, Sun Z, Lin N, Lu W, Huang X, Weng J, Sun S, Zhang C, Yang Q, Zhou G, Guo H, Chi J. Fucoidan from Fucus vesiculosus attenuates doxorubicin-induced acute cardiotoxicity by regulating JAK2/STAT3-mediated apoptosis and autophagy. Biomed Pharmacother 2020; 130:110534. [PMID: 32711244 DOI: 10.1016/j.biopha.2020.110534] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 07/05/2020] [Accepted: 07/11/2020] [Indexed: 12/21/2022] Open
Abstract
Doxorubicin (DOX) is well-known for its potent antitumor activity but limited by its multiple and serious adverse effects. A major adverse effect is acute cardiotoxicity; yet, its mechanism has not been elucidated. Fucoidan is a multifunctional and nontoxic polysaccharide that is widely studied because of its favorable biological activities and safety. Hence, we proposed that fucoidan may play a protective role in DOX-induced acute cardiotoxicity without causing additional side effects. Sprague-Dawley rats were injected intraperitoneally with a single high dose of DOX to induce acute cardiac injury. Fucoidan was administered orally before DOX injection and AG490, a JAK2 inhibitor, was applied to verify the participation of the JAK2/STAT3 pathway. In vitro, H9C2 cells were treated with the same drugs at different concentrations and intervention times. in vivo and in vitro results demonstrated that DOX administration induced myocardial damage accompanied by acceleratory apoptosis and deficient autophagy in heart tissues or cells, which could be significantly improved by fucoidan supplement. AG490 partly abolished the cardioprotective effects of fucoidan, suggesting the involvement of JAK2 signaling. Additionally, western blotting revealed DOX-induced JAK2/STAT3 pathway activation, which was enhanced by fucoidan and weaken by AG490. Hence, fucoidan exerted a favorable effect on DOX-induced cardiotoxicity by enhancing autophagy and suppressing apoptosis in a JAK2/STAT3-dependent manner, which may provide a promising and novel therapeutic strategy against negative chemotherapy-induced effects.
Collapse
Affiliation(s)
- Jie Zhang
- Department of Cardiology, Shaoxing People's Hospital (Shaoxing Hospital, Zhejiang University School of Medicine), Shaoxing, 312000, Zhejiang, China; The First Clinical Medical College, Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China
| | - Zhenzhu Sun
- The First Clinical Medical College, Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China
| | - Na Lin
- Zhejiang Chinese Medical University, Hangzhou, 310000, Zhejiang, China
| | - Wenqiang Lu
- Department of Cardiology, Shaoxing People's Hospital (Shaoxing Hospital, Zhejiang University School of Medicine), Shaoxing, 312000, Zhejiang, China
| | - Xingxiao Huang
- Department of Cardiology, Shaoxing People's Hospital (Shaoxing Hospital, Zhejiang University School of Medicine), Shaoxing, 312000, Zhejiang, China
| | - Jingfan Weng
- Department of Cardiology, Shaoxing People's Hospital (Shaoxing Hospital, Zhejiang University School of Medicine), Shaoxing, 312000, Zhejiang, China
| | - Shimin Sun
- The First Clinical Medical College, Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China
| | - Chuanjing Zhang
- Department of Cardiology, Shaoxing People's Hospital (Shaoxing Hospital, Zhejiang University School of Medicine), Shaoxing, 312000, Zhejiang, China
| | - Qi Yang
- Zhejiang Chinese Medical University, Hangzhou, 310000, Zhejiang, China
| | - Guozhong Zhou
- Department of Medical, Shaoxing People's Hospital, Shaoxing, 312000, Zhejiang, China
| | - Hangyuan Guo
- Department of Cardiology, Shaoxing People's Hospital (Shaoxing Hospital, Zhejiang University School of Medicine), Shaoxing, 312000, Zhejiang, China; The First Clinical Medical College, Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China; Zhejiang Chinese Medical University, Hangzhou, 310000, Zhejiang, China.
| | - Jufang Chi
- Department of Cardiology, Shaoxing People's Hospital (Shaoxing Hospital, Zhejiang University School of Medicine), Shaoxing, 312000, Zhejiang, China; The First Clinical Medical College, Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China; Zhejiang Chinese Medical University, Hangzhou, 310000, Zhejiang, China.
| |
Collapse
|
65
|
Proshkina E, Shaposhnikov M, Moskalev A. Genome-Protecting Compounds as Potential Geroprotectors. Int J Mol Sci 2020; 21:E4484. [PMID: 32599754 PMCID: PMC7350017 DOI: 10.3390/ijms21124484] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 06/18/2020] [Accepted: 06/19/2020] [Indexed: 02/06/2023] Open
Abstract
Throughout life, organisms are exposed to various exogenous and endogenous factors that cause DNA damages and somatic mutations provoking genomic instability. At a young age, compensatory mechanisms of genome protection are activated to prevent phenotypic and functional changes. However, the increasing stress and age-related deterioration in the functioning of these mechanisms result in damage accumulation, overcoming the functional threshold. This leads to aging and the development of age-related diseases. There are several ways to counteract these changes: 1) prevention of DNA damage through stimulation of antioxidant and detoxification systems, as well as transition metal chelation; 2) regulation of DNA methylation, chromatin structure, non-coding RNA activity and prevention of nuclear architecture alterations; 3) improving DNA damage response and repair; 4) selective removal of damaged non-functional and senescent cells. In the article, we have reviewed data about the effects of various trace elements, vitamins, polyphenols, terpenes, and other phytochemicals, as well as a number of synthetic pharmacological substances in these ways. Most of the compounds demonstrate the geroprotective potential and increase the lifespan in model organisms. However, their genome-protecting effects are non-selective and often are conditioned by hormesis. Consequently, the development of selective drugs targeting genome protection is an advanced direction.
Collapse
Affiliation(s)
- Ekaterina Proshkina
- Laboratory of Geroprotective and Radioprotective Technologies, Institute of Biology, Komi Science Centre, Ural Branch, Russian Academy of Sciences, 28 Kommunisticheskaya st., 167982 Syktyvkar, Russia; (E.P.); (M.S.)
| | - Mikhail Shaposhnikov
- Laboratory of Geroprotective and Radioprotective Technologies, Institute of Biology, Komi Science Centre, Ural Branch, Russian Academy of Sciences, 28 Kommunisticheskaya st., 167982 Syktyvkar, Russia; (E.P.); (M.S.)
| | - Alexey Moskalev
- Laboratory of Geroprotective and Radioprotective Technologies, Institute of Biology, Komi Science Centre, Ural Branch, Russian Academy of Sciences, 28 Kommunisticheskaya st., 167982 Syktyvkar, Russia; (E.P.); (M.S.)
- Pitirim Sorokin Syktyvkar State University, 55 Oktyabrsky prosp., 167001 Syktyvkar, Russia
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| |
Collapse
|