51
|
Andò S, Barone I, Giordano C, Bonofiglio D, Catalano S. The Multifaceted Mechanism of Leptin Signaling within Tumor Microenvironment in Driving Breast Cancer Growth and Progression. Front Oncol 2014; 4:340. [PMID: 25505738 PMCID: PMC4245002 DOI: 10.3389/fonc.2014.00340] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2014] [Accepted: 11/12/2014] [Indexed: 12/28/2022] Open
Abstract
Adipokines represent likely candidates to mediate the increased breast cancer risk and the enhanced progression associated with obesity. Other contributors to obesity-related cancer progression are insulin/IGF-1 pathways and hormones. Among these, the adipokine leptin is the most intensively studied in both metabolism in general and in cancer due to the fact that leptin levels increase in proportion of fat mass. Leptin is primarily synthesized from adipocytes but it is also produced by other cells including fibroblasts. In this latter case, it has been well demonstrated how cancer-associated fibroblasts express leptin receptor and secrete leptin, which sustains a short autocrine loop and is able to target tumor epithelial cells enhancing breast cancer cell motility and invasiveness. In addition, it has been reported that leptin may induce breast cancer to undergo a transition from epithelial to spindle-like mesenchymal morphology, activating the signaling pathways devoted to the EMT. Thus, it emerges how leptin may play a crucial role in mediating malignant cell and tumor microenvironment interactions. Here, we present an overview of the role of leptin in breast cancer, covering the following topics: (1) leptin as an amplifier of estrogen signaling in tumor epithelial cells contributing to the promotion of carcinogenesis; (2) leptin as a crucial player in mediating tumor-stroma interaction and influencing EMT-linked mechanisms, that may sustain breast cancer growth and progression; (3) leptin and leptin receptor targeting as novel therapeutic strategies for breast cancer treatment.
Collapse
Affiliation(s)
- Sebastiano Andò
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria , Rende , Italy
| | - Ines Barone
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria , Rende , Italy
| | | | - Daniela Bonofiglio
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria , Rende , Italy
| | - Stefania Catalano
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria , Rende , Italy
| |
Collapse
|
52
|
Jiang N, Sun R, Sun Q. Leptin signaling molecular actions and drug target in hepatocellular carcinoma. DRUG DESIGN DEVELOPMENT AND THERAPY 2014; 8:2295-302. [PMID: 25484575 PMCID: PMC4238752 DOI: 10.2147/dddt.s69004] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Previous reports indicate that over 13 different tumors, including hepatocellular carcinoma (HCC), are related to obesity. Obesity-associated inflammatory, metabolic, and endocrine mediators, as well as the functioning of the gut microbiota, are suspected to contribute to tumorigenesis. In obese people, proinflammatory cytokines/chemokines including tumor necrosis factor-alpha, interleukin (IL)-1 and IL-6, insulin and insulin-like growth factors, adipokines, plasminogen activator inhibitor-1, adiponectin, and leptin are found to play crucial roles in the initiation and development of cancer. The cytokines induced by leptin in adipose tissue or tumor cells have been intensely studied. Leptin-induced signaling pathways are critical for biological functions such as adiposity, energy balance, endocrine function, immune reaction, and angiogenesis as well as oncogenesis. Leptin is an activator of cell proliferation and anti-apoptosis in several cell types, and an inducer of cancer stem cells; its critical roles in tumorigenesis are based on its oncogenic, mitogenic, proinflammatory, and pro-angiogenic actions. This review provides an update of the pathological effects of leptin signaling with special emphasis on potential molecular mechanisms and therapeutic targeting, which could potentially be used in future clinical settings. In addition, leptin-induced angiogenic ability and molecular mechanisms in HCC are discussed. The stringent binding affinity of leptin and its receptor Ob-R, as well as the highly upregulated expression of both leptin and Ob-R in cancer cells compared to normal cells, makes leptin an ideal drug target for the prevention and treatment of HCC, especially in obese patients.
Collapse
Affiliation(s)
- Nan Jiang
- Shandong University School of Medicine, Jinan, Shandong Province, People's Republic of China
| | - Rongtong Sun
- Weihai Municipal Hospital, Weihai, Shandong Province, People's Republic of China
| | - Qing Sun
- Department of Pathology, QianFoShan Hospital Affiliated to Shandong University, Jinan, Shandong Province, People's Republic of China
| |
Collapse
|
53
|
n-3 polyunsaturated fatty acids and mechanisms to mitigate inflammatory paracrine signaling in obesity-associated breast cancer. Nutrients 2014; 6:4760-93. [PMID: 25360510 PMCID: PMC4245562 DOI: 10.3390/nu6114760] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2014] [Revised: 10/08/2014] [Accepted: 10/10/2014] [Indexed: 02/06/2023] Open
Abstract
Globally, the prevalence of obesity is increasing which subsequently increases the risk of the development of obesity-related chronic diseases. Low-grade chronic inflammation and dysregulated adipose tissue inflammatory mediator/adipokine secretion are well-established in obesity, and these factors increase the risk of developing inflammation-associated cancer. Breast cancer is of particular interest given that increased inflammation within the subcutaneous mammary adipose tissue depot can alter the local tissue inflammatory microenvironment such that it resembles that of obese visceral adipose tissue. Therefore, in obese women with breast cancer, increased inflammatory mediators both locally and systemically can perpetuate inflammation-associated pro-carcinogenic signaling pathways, thereby increasing disease severity. Herein, we discuss some of these inflammation-associated pro-carcinogenic mechanisms of the combined obese breast cancer phenotype and offer evidence that dietary long chain n-3 polyunsaturated fatty acids (PUFA) may have utility in mitigating the severity of obesity-associated inflammation and breast cancer.
Collapse
|
54
|
Madeddu C, Gramignano G, Floris C, Murenu G, Sollai G, Macciò A. Role of inflammation and oxidative stress in post-menopausal oestrogen-dependent breast cancer. J Cell Mol Med 2014; 18:2519-29. [PMID: 25338520 PMCID: PMC4302656 DOI: 10.1111/jcmm.12413] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2014] [Accepted: 07/30/2014] [Indexed: 12/19/2022] Open
Abstract
Weight gain and obesity are among the most important risk factors for post-menopausal oestrogen-dependent breast cancer (EDBC). Weight gain is associated with oxidative stress, which in turn promotes breast cancer progression. We carried out a prospective study in 216 consecutive post-menopausal breast cancer patients aiming to examine the correlations between traditional prognostic factors (tumour size, T, nodal, N, grading, G, and metastasis status, M), and body mass index (BMI), leptin, pro-inflammatory cytokines (Interleukin, IL,-6 and tumour necrosis factor-alpha, TNF-α), and oxidative stress (reactive oxygen species, ROS, glutathione peroxidase, GPx, superoxide dismutase, SOD) among patients with oestrogen receptor (ER)+ and ER− breast cancers. Distribution of T, N and M categories did not differ between ER+ and ER− breast cancer patients. ER− patients showed a higher incidence of G3 tumours. Weight, BMI, leptin, IL-6 and ROS were higher in ER+ compared with ER− patients. Among ER+ patients, BMI, leptin, IL-6 and ROS correlated with T and M. Leptin, IL-6 and ROS were positively correlated also with N. Among ER− patients, BMI and leptin did not correlate with any of prognostic parameters, whereas a positive correlation between IL-6, ROS and M was found. Multivariate regression analysis showed that BMI, leptin, IL-6 and ROS were predictive for T, N and M in ER+ patients. Weight gain, inflammation and oxidative stress are involved in EDBC prognosis. Their modulation through antidiabetic, anti-inflammatory and antioxidants drugs combined with endocrine therapy may constitute a targeted approach in post-menopausal EDBC.
Collapse
Affiliation(s)
- Clelia Madeddu
- Department of Medical Sciences "Mario Aresu", University of Cagliari, Cagliari, Italy
| | | | | | | | | | | |
Collapse
|
55
|
Strong AL, Strong TA, Rhodes LV, Semon JA, Zhang X, Shi Z, Zhang S, Gimble JM, Burow ME, Bunnell BA. Obesity associated alterations in the biology of adipose stem cells mediate enhanced tumorigenesis by estrogen dependent pathways. Breast Cancer Res 2014; 15:R102. [PMID: 24176089 PMCID: PMC3978929 DOI: 10.1186/bcr3569] [Citation(s) in RCA: 90] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2013] [Accepted: 09/04/2013] [Indexed: 12/13/2022] Open
Abstract
Introduction Obesity has been associated with increased incidence and mortality of breast cancer. While the precise correlation between obesity and breast cancer remains to be determined, recent studies suggest that adipose tissue and adipose stem cells (ASCs) influence breast cancer tumorigenesis and tumor progression. Methods Breast cancer cells lines were co-cultured with ASCs (n = 24), categorized based on tissue site of origin and body mass index (BMI), and assessed for enhanced proliferation, alterations in gene expression profile with PCR arrays, and enhanced tumorigenesis in immunocompromised mice. The gene expression profile of ASCs was assess with PCR arrays and qRT-PCR and confirmed with Western blot analysis. Inhibitory studies were conducted by delivering estrogen antagonist ICI182,780, leptin neutralizing antibody, or aromatase inhibitor letrozole and assessing breast cancer cell proliferation. To assess the role of leptin in human breast cancers, Oncomine and Kaplan Meier plot analyses were conducted. Results ASCs derived from the abdominal subcutaneous adipose tissue of obese subjects (BMI > 30) enhanced breast cancer cell proliferation in vitro and tumorigenicity in vivo. These findings were correlated with changes in the gene expression profile of breast cancer cells after co-culturing with ASCs, particularly in estrogen receptor-alpha (ESR1) and progesterone receptor (PGR) expression. Analysis of the gene expression profile of the four groups of ASCs revealed obesity induced alterations in several key genes, including leptin (LEP). Blocking estrogen signaling with ICI182,780, leptin neutralizing antibody, or letrozole diminished the impact of ASCs derived from obese subjects. Women diagnosed with estrogen receptor/progesterone receptor positive (ER+/PR+) breast cancers that also expressed high levels of leptin had poorer prognosis than women with low leptin expression. Conclusion ASCs isolated from the abdomen of obese subjects demonstrated increased expression of leptin, through estrogen stimulation, which increased breast cancer cell proliferation. The results from this study demonstrate that abdominal obesity induces significant changes in the biological properties of ASCs and that these alterations enhance ER+/PR+ breast cancer tumorigenesis through estrogen dependent pathways.
Collapse
|
56
|
Voisin S, Almén MS, Moschonis G, Chrousos GP, Manios Y, Schiöth HB. Dietary fat quality impacts genome-wide DNA methylation patterns in a cross-sectional study of Greek preadolescents. Eur J Hum Genet 2014; 23:654-62. [PMID: 25074463 PMCID: PMC4402618 DOI: 10.1038/ejhg.2014.139] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2014] [Revised: 06/16/2014] [Accepted: 06/20/2014] [Indexed: 12/04/2022] Open
Abstract
The type and the amount of dietary fat have a significant influence on the metabolic pathways involved in the development of obesity, metabolic syndrome, diabetes type 2 and cardiovascular diseases. However, it is unknown to what extent this modulation is achieved through DNA methylation. We assessed the effects of cholesterol intake, the proportion of energy intake derived from fat, the ratio of polyunsaturated fatty acids (PUFA) to saturated fatty acids (SFA), the ratio of monounsaturated fatty acids (MUFA) to SFA, and the ratio of MUFA+PUFA to SFA on genome-wide DNA methylation patterns in normal-weight and obese children. We determined the genome-wide methylation profile in the blood of 69 Greek preadolescents (∼10 years old) as well as their dietary intake for two consecutive weekdays and one weekend day. The methylation levels of one CpG island shore and four sites were significantly correlated with total fat intake. The methylation levels of 2 islands, 11 island shores and 16 sites were significantly correlated with PUFA/SFA; of 9 islands, 26 island shores and 158 sites with MUFA/SFA; and of 10 islands, 40 island shores and 130 sites with (MUFA+PUFA)/SFA. We found significant gene enrichment in 34 pathways for PUFA/SFA, including the leptin pathway, and a significant enrichment in 5 pathways for (MUFA+PUFA)/SFA. Our results suggest that specific changes in DNA methylation may have an important role in the mechanisms involved in the physiological responses to different types of dietary fat.
Collapse
Affiliation(s)
- Sarah Voisin
- Department of Neuroscience, Functional Pharmacology, Uppsala University, Uppsala, Sweden
| | - Markus S Almén
- Department of Neuroscience, Functional Pharmacology, Uppsala University, Uppsala, Sweden
| | - George Moschonis
- Department of Nutrition and Dietetics, Harokopio University, Athens, Greece
| | - George P Chrousos
- First Department of Pediatrics, Athens University Medical School, Aghia Sophia Children's Hospital, Athens, Greece
| | - Yannis Manios
- Department of Nutrition and Dietetics, Harokopio University, Athens, Greece
| | - Helgi B Schiöth
- Department of Neuroscience, Functional Pharmacology, Uppsala University, Uppsala, Sweden
| |
Collapse
|
57
|
Zhou W, Tian Y, Gong H, Guo S, Luo C. Oncogenic role and therapeutic target of leptin signaling in colorectal cancer. Expert Opin Ther Targets 2014; 18:961-71. [PMID: 24946986 DOI: 10.1517/14728222.2014.926889] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
INTRODUCTION Obesity is characterized by high secretion of several cytokines from adipose tissue and is a recognized risk factor for many cancers. Among these cytokines, leptin mainly produced by adipose tissue and cancer cells is the most studied adipokine. Leptin is an activator of cell proliferation, an antiapoptotic molecule and inducer of cancer stem cells in many cell types, and its critical roles in obesity-related tumorigenesis are based on its oncogenic, mitogenic, pro-inflammatory and pro-angiogenic actions. AREAS COVERED These leptin-induced signals and action are critical for their biological effects on energy balance, adiposity, endocrine systems, immunity, angiogenesis as well as oncogenesis. This review focuses on the up-to-date knowledge on the oncogenic role of leptin signaling, clinical significance and specific drug target development in colorectal cancer (CRC). Additionally, leptin-induced angiogenic ability and molecular mechanisms in CRC cells are discussed. EXPERT OPINION Stringent binding affinity of leptin/Ob-R and overexpression of leptin/Ob-R and their targets in cancer cells make it a unique drug target for prevention and treatment of CRC, particularly in obesity colorectal patients.
Collapse
Affiliation(s)
- Weiqiang Zhou
- Shenyang Medical College, Key Laboratory of Environmental Pollution and Microecology of Liaoning Province , No.146 North Huanghe St, Huanggu Dis, Shenyang City, Liaoning Pro 110034 , PR China
| | | | | | | | | |
Collapse
|
58
|
Dubois V, Jardé T, Delort L, Billard H, Bernard-Gallon D, Berger E, Geloen A, Vasson MP, Caldefie-Chezet F. Leptin induces a proliferative response in breast cancer cells but not in normal breast cells. Nutr Cancer 2014; 66:645-55. [PMID: 24738610 DOI: 10.1080/01635581.2014.894104] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Obesity is a risk factor for breast cancer in postmenopausal women. Leptin, a hormone excessively produced during obesity, is suggested to be involved in breast cancer. The aim of the study was to investigate procarcinogenic potential of leptin by evaluating influence of leptin on cell proliferation, cell cycle, apoptosis, and signaling on numerous breast cells lines, including 184B5 normal cells, MCF10A fibrocystic cells and MCF-7, MDA-MB-231, and T47D cancer cells. Expressions of leptin and Ob-R were analyzed using qRT-PCR and immunohistochemistry, proliferation using fluorimetric resazurin reduction test and xCELLigence system, apoptosis and cell cycle by flow cytometry, and effect of leptin on different signalling pathways using qRT-PCR and Western blot. Cells were exposed to increasing concentrations of leptin. All cell lines expressed mRNA and protein of leptin and Ob-R. Leptin stimulated proliferation of all cell lines except for 184B5 and MDA-MB-231 cells. Leptin inhibited apoptosis but didn't alter proportion of cells within cell cycle in MCF7 cells. Leptin induced overexpression of leptin, Ob-R, estrogen receptor, and aromatase mRNA in MCF-7 and T47D cells. Autoregulation induced by leptin, relationship with estrogen pathway, and proliferative and antiapoptic activity in breast cancer cells may explain that obesity-associated hyperleptinemia may be a breast cancer risk factor.
Collapse
Affiliation(s)
- Virginie Dubois
- a Clermont-Université , Université d'Auvergne , Unité de Nutrition Humaine, BP10448, F-63000 Clermont-Ferrand , France and INRA, UMR 1019, UNH, ECREIN, CRNH Auvergne, Clermont-Ferrand , France
| | | | | | | | | | | | | | | | | |
Collapse
|
59
|
Lee KN, Choi HS, Yang SY, Park HK, Lee YY, Lee OY, Yoon BC, Hahm JS, Paik SS. The role of leptin in gastric cancer: Clinicopathologic features and molecular mechanisms. Biochem Biophys Res Commun 2014; 446:822-9. [DOI: 10.1016/j.bbrc.2014.02.072] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2014] [Accepted: 02/16/2014] [Indexed: 12/14/2022]
|
60
|
Kumar J, Ward AC. Role of the interleukin 6 receptor family in epithelial ovarian cancer and its clinical implications. Biochim Biophys Acta Rev Cancer 2014; 1845:117-25. [PMID: 24388871 DOI: 10.1016/j.bbcan.2013.12.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2013] [Revised: 12/08/2013] [Accepted: 12/24/2013] [Indexed: 01/10/2023]
Abstract
Ovarian cancer is the most lethal gynecological malignancy, with few effective treatment options in most cases. Therefore, understanding the biology of ovarian cancer remains an important area of research in order to improve clinical outcomes. Cytokine receptor signaling through the Janus kinase-signal transducer and activator of transcription (JAK-STAT) pathway is an essential component of normal development and homeostasis. However, numerous studies have implicated perturbation of this pathway in a range of cancers. In particular, members of the IL-6R family acting via the downstream STAT3 transcription factor play an important role in a number of solid tumors - including ovarian cancer - by altering the expression of target genes that impact on key phenotypes. This has led to the development of specific inhibitors of this pathway which are being used in combination with standard chemotherapeutic agents. This review focuses on the role of IL-6R family members in the etiology of epithelial ovarian cancer, and the application of therapies specifically targeting IL-6R signaling in this disease setting.
Collapse
Affiliation(s)
- Janani Kumar
- School of Medicine, Deakin University, Geelong, Victoria, Australia; Strategic Research Centre in Molecular and Medical Research, Deakin University, Geelong, Victoria, Australia
| | - Alister C Ward
- School of Medicine, Deakin University, Geelong, Victoria, Australia; Strategic Research Centre in Molecular and Medical Research, Deakin University, Geelong, Victoria, Australia.
| |
Collapse
|
61
|
Surmacz E. Leptin and adiponectin: emerging therapeutic targets in breast cancer. J Mammary Gland Biol Neoplasia 2013; 18:321-32. [PMID: 24136336 DOI: 10.1007/s10911-013-9302-8] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2013] [Accepted: 09/24/2013] [Indexed: 12/13/2022] Open
Abstract
Obesity is a recognized risk factor for breast cancer development and poorer response to therapy. Two major fat tissue-derived adipokines, leptin and adiponectin have been implicated in mammary carcinogenesis. Leptin appears to promote breast cancer progression through activation of mitogenic, antiapoptotic, and metastatic pathways, while adiponectin may restrict tumorigenic processes primarily by inhibiting cell metabolism. Furthermore, adiponectin is known to counteract detrimental leptin effects in breast cancer models. Thus, therapeutic inhibition of pro-neoplastic leptin pathways and reactivation of anti-neoplastic adiponectin signaling may benefit breast cancer patients, especially the obese subpopulation. This review focuses on current experimental strategies aiming at leptin and adiponectin pathways in breast cancer models. Novel leptin receptor antagonists and adiponectin receptor agonists as well as other compounds for therapeutic modulation of adipokine pathways are discussed in detail, including potential pharmacological advantages and limitations of these approaches.
Collapse
Affiliation(s)
- Eva Surmacz
- Sbarro Institute for Cancer Research and Molecular Medicine, Temple University, 1900 N12th Street, BioLife Bldg. Rm 425, Philadelphia, PA, 19122, USA,
| |
Collapse
|
62
|
He Z, Feng GS. Control of body weight versus tumorigenesis by concerted action of leptin and estrogen. Rev Endocr Metab Disord 2013; 14:339-45. [PMID: 24142297 DOI: 10.1007/s11154-013-9277-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Improper body weight control is most critical to the development of morbid obesity, which is often associated with alternation in leptin (Ob) signaling in the central nervous system. Leptin acts to control fat mass through the regulation of both food intake and energy expenditure. In addition to the primary action in metabolic signaling, leptin has also been found to play a role in reproduction and even in breast tumorigenesis in obese patients. Interestingly, estrogen, a sex hormone, has also been recognized as another crucial factor for energy balance and breast tumorigenesis in obese subjects. Obesity in postmenopausal women has been associated with higher risk of breast cancer. There are substantial data in the literature on the connection of estrogen and leptin pathways in development of obesity and breast cancer. In this review, we discuss the cross-talk of leptin and estrogen signaling pathways in body weight control and breast cancer development.
Collapse
Affiliation(s)
- Zhao He
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China,
| | | |
Collapse
|
63
|
Zhang Y, Duan C, Bian C, Xiong Y, Zhang J. Steroid receptor coactivator-1: a versatile regulator and promising therapeutic target for breast cancer. J Steroid Biochem Mol Biol 2013; 138:17-23. [PMID: 23474438 DOI: 10.1016/j.jsbmb.2013.02.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2012] [Revised: 02/06/2013] [Accepted: 02/19/2013] [Indexed: 11/15/2022]
Abstract
Breast cancer is the leading cause of cancer death for women worldwide. Various therapeutic approaches have been proposed, among which endocrine therapy has recently become popular due to the high sensitivity of breast tissues to steroids such as estrogens and progesterone. The underlying mechanisms of steroid regulation in breast cancer cell proliferation, invasiveness, metastasis and endocrine resistance, however, remain largely unknown. Steroid receptor coactivator-1 (SRC-1) has attracted much attention because it is an important co-regulator and plays a pivotal role in modulating the transcriptional activities of steroid nuclear receptors. Accumulated research has established a strong correlation between SRC-1 and the pathological progression or disease-related features of breast cancer, which supports its potential as a target for specific therapeutic intervention in the clinical management of breast cancer. In addition, a diverse group of downstream molecules have also been shown to participate in various functional pathways related to SRC-1-associated regulation of breast cancer. These downstream molecules are also considered promising therapeutic targets, providing additional options for targeted treatments. In this review, the expression of SRC-1 in breast cancer and the close relationships between SRC-1 and the cell proliferation, invasiveness, metastasis and endocrine resistance of breast cancer will be discussed, followed by a brief summary of its putative functional mechanisms with an emphasis on the potential therapeutic role of SRC-1.
Collapse
Affiliation(s)
- Yanlei Zhang
- Department of Neurobiology, Chongqing Key Laboratory of Neurobiology, Third Military Medical University, Chongqing 400038, China; Company Ten of Cadet Brigade, Third Military Medical University, Chongqing 400038, China
| | | | | | | | | |
Collapse
|
64
|
Role of adipokines and cytokines in obesity-associated breast cancer: therapeutic targets. Cytokine Growth Factor Rev 2013; 24:503-13. [PMID: 24210902 DOI: 10.1016/j.cytogfr.2013.10.001] [Citation(s) in RCA: 111] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2013] [Revised: 10/10/2013] [Accepted: 10/11/2013] [Indexed: 02/06/2023]
Abstract
Obesity is the cause of a large proportion of breast cancer incidences and mortality in post-menopausal women. In obese people, elevated levels of various growth factors such as insulin and insulin-like growth factors (IGFs) are found. Elevated insulin level leads to increased secretion of estrogen by binding to the circulating sex hormone binding globulin (SHBG). The increased estrogen-mediated downstream signaling favors breast carcinogenesis. Obesity leads to altered expression profiles of various adipokines and cytokines including leptin, adiponectin, IL-6, TNF-α and IL-1β. The increased levels of leptin and decreased adiponectin secretion are directly associated with breast cancer development. Increased levels of pro-inflammatory cytokines within the tumor microenvironment promote tumor development. Efficacy of available breast cancer drugs against obesity-associated breast cancer is yet to be confirmed. In this review, we will discuss different adipokine- and cytokine-mediated molecular signaling pathways involved in obesity-associated breast cancer, available therapeutic strategies and potential therapeutic targets for obesity-associated breast cancer.
Collapse
|
65
|
García-Robles MJ, Segura-Ortega JE, Fafutis-Morris M. The biology of leptin and its implications in breast cancer: a general view. J Interferon Cytokine Res 2013; 33:717-27. [PMID: 23869900 DOI: 10.1089/jir.2012.0168] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Obesity is a world health problem that increases the risk for developing type 2 diabetes, cardiovascular disease, fatty liver, and some types of cancer. In postmenopausal women, it represents an important risk factor for the development of breast cancer (BC). Leptin is an adipokine that is secreted by fatty tissue, and high leptin levels are observed both in mouse models of obesity and in obese subjects. High levels of leptin promote the proliferation and progression of various types of cancer, including BC. This review provides a general overview of the biology of leptin, important laboratory studies, and animal and clinical models that have provided evidence for an active role of leptin in the proliferation, progression, and survival of mammary tumors. Finally, this review addresses the most recent studies on the use of leptin receptor antagonists as a novel therapeutic treatment for BC.
Collapse
Affiliation(s)
- Mayra J García-Robles
- 1 Doctorado en Ciencias Biomedicas, CUCS, Universidad de Guadalajara , Guadalajara, Mexico
| | | | | |
Collapse
|
66
|
Ramos-Nino ME. The role of chronic inflammation in obesity-associated cancers. ISRN ONCOLOGY 2013; 2013:697521. [PMID: 23819063 PMCID: PMC3683483 DOI: 10.1155/2013/697521] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/17/2013] [Accepted: 05/12/2013] [Indexed: 12/20/2022]
Abstract
There is a strong relationship between metabolism and immunity, which can become deleterious under conditions of metabolic stress. Obesity, considered a chronic inflammatory disease, is one example of this link. Chronic inflammation is increasingly being recognized as an etiology in several cancers, particularly those of epithelial origin, and therefore a potential link between obesity and cancer. In this review, the connection between the different factors that can lead to the chronic inflammatory state in the obese individual, as well as their effect in tumorigenesis, is addressed. Furthermore, the association between obesity, inflammation, and esophageal, liver, colon, postmenopausal breast, and endometrial cancers is discussed.
Collapse
Affiliation(s)
- Maria E. Ramos-Nino
- Department of Pathology and Department of Medical Laboratory Sciences, University of Vermont, Burlington, VT, USA
| |
Collapse
|
67
|
Yuan Y, Zhang J, Cai L, Ding C, Wang X, Chen H, Wang X, Yan J, Lu J. Leptin induces cell proliferation and reduces cell apoptosis by activating c-myc in cervical cancer. Oncol Rep 2013; 29:2291-6. [PMID: 23588620 DOI: 10.3892/or.2013.2390] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2013] [Accepted: 03/18/2013] [Indexed: 12/25/2022] Open
Abstract
Leptin may be involved in the pathogenesis of numerous cancer types by activation of cellular signal-transduction pathways. In this study, we analyzed the role of leptin and the mechanism(s) underlying its action in cervical carcinoma cells. Firstly, we examined the expression of leptin in 80 cases of cervical carcinoma using immunohistochemical staining. The results showed that the levels of leptin correlated significantly with the grades of cervical carcinoma. At the same time, the expression of leptin correlated positively with c-myc and its downstream gene, bcl-2. The expression of c-myc and bcl-2 was evaluated in leptin-treated HeLa cells by reverse transcription-polymerase chain reaction (RT-PCR) and western blotting. Recombinant leptin significantly activated the expression of bcl-2 and c-myc in HeLa cells. Finally, the apoptotic index, the proliferative activity and the expression levels of c-myc and bcl-2 were determined in the HeLa cells treated with silencing of leptin. We found that silencing of leptin inhibited the proliferation of HeLa cells and reduced the expression of bcl-2 and c-myc. Our data demonstrated that leptin interferes with the expression of oncogenic c-myc and anti-apoptotic bcl-2, and regulates cell turnover and facilitates the progression of cervical cancer.
Collapse
Affiliation(s)
- Yong Yuan
- Department of Pathology, Shaanxi Cancer Hospital, Xi'an, Shaanxi 710061, PR China
| | | | | | | | | | | | | | | | | |
Collapse
|
68
|
Caldefie-Chézet F, Dubois V, Delort L, Rossary A, Vasson MP. [Leptin: Involvement in the pathophysiology of breast cancer]. ANNALES D'ENDOCRINOLOGIE 2013; 74:90-101. [PMID: 23566612 DOI: 10.1016/j.ando.2013.03.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
More than one million new cases of breast cancer are diagnosed each year worldwide and more than 400,000 deaths occur due to this pathology. Obesity is a risk factor for postmenopausal breast cancer and the place held by the adipose tissue and secretions (i.e. adipokines) begins to be recognized. Indeed, firstly, plasma adipokine levels, modulated in obesity situation, could have effects "remotely" on mammary carcinogenesis and, secondly, breast cancer cells are surrounded by adipocyte microenvironment, which is probably more important in the case of obesity, and may be locally influenced by it. In this context, leptin appears to be strongly involved in mammary carcinogenesis and may contribute to the angiogenesis process and local pro-inflammatory mechanisms, especially in obese patients for whom increased metastatic potential and risk of mortality are described.
Collapse
Affiliation(s)
- Florence Caldefie-Chézet
- Clermont université, université d'Auvergne, UFR pharmacie, 28, place Henri-Dunant, 63000 Clermont-Ferrand, France.
| | | | | | | | | |
Collapse
|
69
|
Spina A, Di Maiolo F, Esposito A, Sapio L, Chiosi E, Sorvillo L, Naviglio S. cAMP Elevation Down-Regulates β3 Integrin and Focal Adhesion Kinase and Inhibits Leptin-Induced Migration of MDA-MB-231 Breast Cancer Cells. Biores Open Access 2013; 1:324-32. [PMID: 23515360 PMCID: PMC3559230 DOI: 10.1089/biores.2012.0270] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Breast cancer is one of the most common malignancies and a major cause of cancer death among women worldwide. The high mortality rate associated with breast cancer is mainly due to a propensity of the tumor to metastasize, even if small or undetectable. Given the relevant role of leptin in breast cancer growth and metastasis, novel strategies to counteract biological effects of this obesity-linked cytokine are warranted. Recently, we demonstrated that in MDA-MB-231 breast cancer cells, intracellular cAMP elevation completely abrogates both ERK1/2 and STAT3 phosphorylation in response to leptin. Very surprisingly, this provided evidence that when cAMP levels are increased, leptin drives cells towards apoptosis associated with a marked decrease of Bcl2 protein levels and accompanied by down-regulation of protein kinase A (PKA). The aim of the current study was to investigate the role of cAMP in leptin-associated motility of breast cancer cells. Here we show that cAMP elevation completely prevents leptin-induced migration of MDA-MB-231 breast cancer cells. Interestingly, the inhibition by cAMP-elevating agents of leptin-mediated cell migration is accompanied by a strong decrease of β3 integrin subunit and focal adhesion kinase (FAK) protein levels. Analysis of the underlying cAMP-dependent molecular mechanisms revealed that PKA blockers partly counteract the inhibition of leptin-induced migration and completely prevent the antiproliferative action by cAMP elevation. Moreover, a cAMP analogue that specifically activates Epac and not PKA has an inhibitory effect on leptin-induced cell migration as well. The present study confirms initial evidence for the efficacy of cAMP elevation against oncogenic effects of leptin, identifies β3 integrin subunit and FAK as proteins strongly down-regulated by cAMP elevation, and suggests that both cAMP/PKA- and cAMP/Epac-dependent pathways are involved in inhibition of leptin-induced migration of MDA-MB-231 breast cancer cells. The potential clinical significance and therapeutic applications of our data are discussed.
Collapse
Affiliation(s)
- Annamaria Spina
- Department of Biochemistry and Biophysics, Second University of Naples , Medical School, Naples, Italy
| | | | | | | | | | | | | |
Collapse
|
70
|
Pijet M, Pijet B, Litwiniuk A, Pajak B, Gajkowska B, Orzechowski A. Leptin impairs myogenesis in C2C12 cells through JAK/STAT and MEK signaling pathways. Cytokine 2013. [DOI: 10.1016/j.cyto.2012.11.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
71
|
Santillán-Benítez JG, Mendieta-Zerón H, Gómez-Oliván LM, Torres-Juárez JJ, González-Bañales JM, Hernández-Peña LV, Ordóñez-Quiroz A. The tetrad BMI, leptin, leptin/adiponectin (L/A) ratio and CA 15-3 are reliable biomarkers of breast cancer. J Clin Lab Anal 2013; 27:12-20. [PMID: 23292756 DOI: 10.1002/jcla.21555] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2012] [Accepted: 10/02/2012] [Indexed: 11/11/2022] Open
Abstract
BACKGROUND Several studies have reported that leptin levels, the leptin/adiponectin (L/A) ratio and carbohydrate antigen (CA) 15-3 are especially elevated in breast cancer patients with high body mass index (BMI). The purpose of this study was to evaluate BMI, leptin, L/A ratio and CA 15-3 all together as reliable biomarkers for breast cancer. METHODS Serum levels of leptin, adiponectin and CA 15-3, as well as anthropometric and biochemical parameters were analysed in 88 female patients who participated in a mammography study. Predictive values of BMI, leptin, L/A ratio and CA 15-3 were determined with a 95% confidence interval. RESULTS Women were diagnosed with either breast cancer (n = 40) or benign breast lesions (n = 48). Among anthropometric parameters, age (P ≤ 0.001), weight (P ≤ 0.05) and waist circumference (P ≤ 0.02) were higher in patients with breast cancer than in patients without this pathology. The 75th percentile values for BMI, leptin, L/A ratio and CA 15-3 were 29.24 kg/m(2), 26.65 ng/ml, 2.37 and 18.45 IU, respectively. The suggested odds ratio for breast cancer patients with the values that were above the 75th percentile of the tetrad was 6.7 (0.7505-60.0665 confidence interval). CONCLUSION When the four variables were analysed together, a sensitivity of 83.3%, specificity of 80%, positive predictive value of 83.3% and negative predictive value of 80% were obtained. Results indicate that using the 75th percentile set points for BMI, leptin, L/A ratio and CA 15-3 together could offer a reliable approach to determine which women are at high risk for developing breast cancer.
Collapse
Affiliation(s)
- Jonnathan G Santillán-Benítez
- Molecular Biology Laboratory, Medical Research Center (CICMED), Autonomous University of the State of Mexico (UAEMex), Toluca, México.
| | | | | | | | | | | | | |
Collapse
|
72
|
Li Z, Shen J, Wu WKK, Yu X, Liang J, Qiu G, Liu J. Leptin induces cyclin D1 expression and proliferation of human nucleus pulposus cells via JAK/STAT, PI3K/Akt and MEK/ERK pathways. PLoS One 2012; 7:e53176. [PMID: 23300886 PMCID: PMC3534060 DOI: 10.1371/journal.pone.0053176] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2012] [Accepted: 11/26/2012] [Indexed: 01/07/2023] Open
Abstract
Increasing evidence suggests that obesity and aberrant proliferation of nucleus pulposus (NP) cells are associated with intervertebral disc degeneration. Leptin, a hormone with increased circulating level in obesity, has been shown to stimulate cell proliferation in a tissue-dependent manner. Nevertheless, the effect of leptin on the proliferation of human NP cells has not yet been demonstrated. Here, we show that leptin induced the proliferation of primary cultured human NP cells, which expressed the leptin receptors OBRa and OBRb. Induction of NP cell proliferation was confirmed by CCK8 assay and immunocytochemistry and Real-time PCR for PCNA and Ki-67. Mechanistically, leptin induced the phosphorylation of STAT3, Akt and ERK1/2 accompanied by the upregulation of cyclin D1. Pharmacological inhibition of JAK/STAT3, PI3K/Akt or MEK/ERK signaling by AG490, Wortmannin or U0126, respectively, reduced leptin-induced cyclin D1 expression and NP cell proliferation. These experiments also revealed an intricate crosstalk among these signaling pathways in mediating the action of leptin. Taken together, we show that leptin induces human NP cell cyclin D1 expression and proliferation via activation of JAK/STAT3, PI3K/Akt or MEK/ERK signaling. Our findings may provide a novel molecular mechanism that explains the association between obesity and intervertebral disc degeneration.
Collapse
Affiliation(s)
- Zheng Li
- Department of Orthopaedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Beijing, China
| | - Jianxiong Shen
- Department of Orthopaedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Beijing, China
- * E-mail:
| | - William Ka Kei Wu
- Department of Medicine and Therapeutics, Institute of Digestive Diseases, LKS Institute of Health Science, The Chinese University of Hong Kong, Hong Kong, China
| | - Xin Yu
- Department of Orthopaedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Beijing, China
| | - Jinqian Liang
- Department of Orthopaedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Beijing, China
| | - Guixing Qiu
- Department of Orthopaedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Beijing, China
| | - Jiaming Liu
- Department of Orthopaedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Beijing, China
| |
Collapse
|
73
|
Oh HK, Choi YS, Yang YI, Kim JH, Leung PCK, Choi JH. Leptin receptor is induced in endometriosis and leptin stimulates the growth of endometriotic epithelial cells through the JAK2/STAT3 and ERK pathways. Mol Hum Reprod 2012. [DOI: 10.1093/molehr/gas055] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
|
74
|
Giordano C, Vizza D, Panza S, Barone I, Bonofiglio D, Lanzino M, Sisci D, De Amicis F, Fuqua SAW, Catalano S, Andò S. Leptin increases HER2 protein levels through a STAT3-mediated up-regulation of Hsp90 in breast cancer cells. Mol Oncol 2012; 7:379-91. [PMID: 23228483 DOI: 10.1016/j.molonc.2012.11.002] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2012] [Accepted: 11/12/2012] [Indexed: 12/31/2022] Open
Abstract
Obesity condition confers risks to breast cancer development and progression, and several reports indicate that the adipokine leptin, whose synthesis and plasma levels increase with obesity, might play an important role in modulating breast cancer cell phenotype. Functional crosstalk occurring between leptin and different signaling molecules contribute to breast carcinogenesis. In this study, we show, in different human breast cancer cell lines, that leptin enhanced the expression of a chaperone protein Hsp90 resulting in increased HER2 protein levels. Silencing of Hsp90 gene expression by RNA interference abrogated leptin-mediated HER2 up-regulation. Leptin effects were dependent on JAK2/STAT3 activation, since inhibition of this signaling cascade by AG490 or ectopic expression of a STAT3 dominant negative abrogated leptin-induced HER2 and Hsp90 expressions. Functional experiments showed that leptin treatment significantly up-regulated human Hsp90 promoter activity. This occurred through an enhanced STAT3 transcription factor binding to its specific responsive element located in the Hsp90 promoter region as revealed by electrophoretic mobility shift assay and chromatin immunoprecipitation assay. Analysis of HER2, Akt and MAPK phosphorylation levels revealed that leptin treatment amplified the responsiveness of breast cancer cells to growth factor stimulation. Furthermore, we found that long-term leptin exposure reduced sensitivity of breast cancer cells to the antiestrogen tamoxifen. In the same experimental conditions, the combined treatment of tamoxifen with the Hsp90 inhibitor 17-AAG completely abrogated leptin-induced anchorage-independent breast cancer cell growth. In conclusion, our results highlight, for the first time, the ability of the adipocyte-secreted factor leptin to modulate Hsp90/HER2 expressions in breast cancer cells providing novel insights into the molecular mechanism linking obesity to breast cancer growth and progression.
Collapse
Affiliation(s)
- Cinzia Giordano
- Centro Sanitario, University of Calabria, 87036 Arcavacata di Rende (CS), Italy
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
75
|
Chen X, Zha X, Chen W, Zhu T, Qiu J, Røe OD, Li J, Wang Z, Yin Y. Leptin attenuates the anti-estrogen effect of tamoxifen in breast cancer. Biomed Pharmacother 2012. [PMID: 23199901 DOI: 10.1016/j.biopha.2012.10.001] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Leptin is a circulating peptide hormone, encoded by the obesity (ob) gene, acting as a regulator of food intake via hypothalamic-mediated effects. Recent studies have shown that leptin and leptin receptor (ObR) are involved in the carcinogenesis and development of breast cancer. In addition, functional cross talk between leptin and estrogen signaling has been registered. Here, we investigated the relation of leptin and ObR expression with survival in women with breast cancer treated with the anti-estrogen tamoxifen, and whether leptin can interfere with the estrogen receptor alpha (ERα) and the effect of tamoxifen in breast cancer cells. METHODS The protein expression of leptin and ObR(b) in 114 breast cancer samples was evaluated by immunohistochemistry, quantified by Immunoreactivity Score (IRS) and correlated to survival and other clinicopathological features. The expression of ObR(b) in ERα positive MCF-7 breast cancer cells was examined by immunofluorescence and western blot. Leptin effect on cell proliferation was determined by MTT assay. The interference of leptin with tamoxifen on ERα degradation was studied by western blot and immunofluorescence. Effects of leptin on the transcriptional activity of ERα were explored using luciferase reporter assays. RESULTS Positive staining (Immunoreactivity Score, IRS≥1) of leptin and ObR isoform ObRb in breast cancer tissues were seen in 79.8% and 85.1% of patients respectively. In overall and in tamoxifen-treated breast cancer patients, leptin expression (IRS≥1) correlated with poor prognosis, (log-rank test, P=0.016, overall; P=0.031, tamoxifen-treated). Overexpressed ObRb was found by western blotting andimmunofluorescence in MCF-7 as well as in MDA-MB-231, T47D, and MDA-MB-435 cell lines. Tamoxifen (1000μM) significantly inhibited the proliferation of MCF-7 cells, degraded ERα and reduced ERα-dependent transcription from estrogen response element-containing promoter. On the contrary, simultaneous treatment with leptin (100ng/ml) significantly attenuated these effects, similar to the effects of estradiol. CONCLUSIONS Leptin correlated significantly with poor prognosis in overall and tamoxifen-treated breast cancer patients. Leptin interferes with the action of tamoxifen in MCF-7 cells, at least partly, through inducing increased nuclear expression of ERα. Thus, leptin may contribute to tamoxifen resistance and consequently, leptin suppression could be a novel way of circumventing resistance to anti-estrogen treatment.
Collapse
Affiliation(s)
- Xiaofeng Chen
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, People's Republic of China
| | | | | | | | | | | | | | | | | |
Collapse
|
76
|
Zhang Y, Liu C, Peng H, Zhang J, Feng Q. IL1 receptor antagonist gene IL1-RN variable number of tandem repeats polymorphism and cancer risk: a literature review and meta-analysis. PLoS One 2012; 7:e46017. [PMID: 23049925 PMCID: PMC3457944 DOI: 10.1371/journal.pone.0046017] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2012] [Accepted: 08/27/2012] [Indexed: 12/13/2022] Open
Abstract
IL1 receptor antagonist (IL1RA) and IL1beta (IL1β), members of the pro-inflammatory cytokine interleukin-1 (IL1) family, play a potential role against infection and in the pathogenesis of cancers. The variable number of tandem repeats (VNTR) polymorphism in the second intron of the IL1 receptor antagonist gene (IL1-RN) and a polymorphism in exon 5 of IL1B (IL1B+3954C>T, rs1143634) have been suggested in predisposition to cancer risk. However, studies have shown inconsistent results. To validate any association, a meta-analysis was performed with 14,854 cases and 19,337 controls from 71 published case–control studies for IL1-RN VNTR and 33 eligible studies contained 7,847 cases and 8917 controls for IL1B +3954. Odds ratios (ORs) with 95% confidence intervals (CIs) were calculated from comparisons to assess the strength of the association. There was significant association between the IL1-RN VNTR polymorphism and the risk of cancer for any overall comparison. Furthermore, cancer type stratification analysis revealed that there were significantly increased risks of gastric cancer, bladder cancer and other cancer groups. Infection status analysis indicated that the H. pylori or HBV/HCV infection and IL1-RN VNTR genotypes were independent factors for developing gastric or hepatocellular cancers. In addition, a borderline significant association was observed between IL1B+3954 polymorphism and the increased cancer risk. Although some modest bias could not be eliminated, this meta-analysis suggested that the IL1-RN VNTR polymorphisms may contribute to genetic susceptibility to gastric cancer. More studies are needed to further evaluate the role of the IL1B+3954 polymorphism in the etiology of cancer.
Collapse
Affiliation(s)
- Ying Zhang
- Inspection Division, Kunshan Hospital Affiliated to Nanjing University of Chinese Medicine, Kunshan, Jiangsu, China
| | - Changming Liu
- Inspection Division, Kunshan Hospital Affiliated to Nanjing University of Chinese Medicine, Kunshan, Jiangsu, China
| | - Huiping Peng
- Department of Gastroenterology, Kunshan Hospital Affiliated to Nanjing University of Chinese Medicine, Kunshan, Jiangsu, China
| | - Jianzhi Zhang
- Inspection Division, Kunshan Hospital Affiliated to Nanjing University of Chinese Medicine, Kunshan, Jiangsu, China
| | - Quanlin Feng
- Department of Surgical Oncology, Kunshan Hospital Affiliated to Nanjing University of Chinese Medicine, Kunshan, Jiangsu, China
- * E-mail:
| |
Collapse
|
77
|
The balance between leptin and adiponectin in the control of carcinogenesis - focus on mammary tumorigenesis. Biochimie 2012; 94:2164-71. [PMID: 22728769 DOI: 10.1016/j.biochi.2012.06.013] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2012] [Accepted: 06/08/2012] [Indexed: 12/28/2022]
Abstract
A number of studies indicate that a growing list of cancers may be influenced by obesity. In obese individuals these cancers can be more frequent and more aggressive resulting in reduced survival. One of the most prominent and well characterized cancers in this regard is breast cancer. Obesity plays a complex role in breast cancer and is associated with increased inflammation, angiogenesis and alterations in serum levels of potential growth factors such as insulin, adiponectin, leptin and estrogen. Reduced levels of serum adiponectin have been reported in breast cancer patients compared to healthy controls, particularly in postmenopausal women and the level of adiponectin has been shown to be inversely associated with insulin resistance. The role of serum leptin levels in breast cancer appears to be more complex. Some studies have shown leptin to be increased in women with breast cancer but other studies have found leptin to be decreased or unchanged. This may be due to a number of confounding issues. We and others propose that it may be the levels of adiponectin and leptin as well as the balance of adiponectin and leptin that are the critical factors in breast and other obesity related cancer tumorigenesis. This review will focus on the current understanding of the interplay between obesity and the functions of leptin and adiponectin. It will then examine what is known about their potential roles in cancer particularly as pertains to breast cancer and how the ratio of adiponectin to leptin may play a role in tumorigenesis.
Collapse
|
78
|
Guo S, Liu M, Wang G, Torroella-Kouri M, Gonzalez-Perez RR. Oncogenic role and therapeutic target of leptin signaling in breast cancer and cancer stem cells. Biochim Biophys Acta Rev Cancer 2012; 1825:207-22. [PMID: 22289780 DOI: 10.1016/j.bbcan.2012.01.002] [Citation(s) in RCA: 77] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2011] [Revised: 01/12/2012] [Accepted: 01/15/2012] [Indexed: 12/17/2022]
Abstract
Significant correlations between obesity and incidence of various cancers have been reported. Obesity, considered a mild inflammatory process, is characterized by a high level of secretion of several cytokines from adipose tissue. These molecules have disparate effects, which could be relevant to cancer development. Among the inflammatory molecules, leptin, mainly produced by adipose tissue and overexpressed with its receptor (Ob-R) in cancer cells is the most studied adipokine. Mutations of leptin or Ob-R genes associated with obesity or cancer are rarely found. However, leptin is an anti-apoptotic molecule in many cell types, and its central roles in obesity-related cancers are based on its pro-angiogenic, pro-inflammatory and mitogenic actions. Notably, these leptin actions are commonly reinforced through entangled crosstalk with multiple oncogenes, cytokines and growth factors. Leptin-induced signals comprise several pathways commonly triggered by many cytokines (i.e., canonical: JAK2/STAT; MAPK/ERK1/2 and PI-3K/AKT1 and, non-canonical signaling pathways: PKC, JNK and p38 MAP kinase). Each of these leptin-induced signals is essential to its biological effects on food intake, energy balance, adiposity, immune and endocrine systems, as well as oncogenesis. This review is mainly focused on the current knowledge of the oncogenic role of leptin in breast cancer. Additionally, leptin pro-angiogenic molecular mechanisms and its potential role in breast cancer stem cells will be reviewed. Strict biunivocal binding-affinity and activation of leptin/Ob-R complex makes it a unique molecular target for prevention and treatment of breast cancer, particularly in obesity contexts.
Collapse
Affiliation(s)
- Shanchun Guo
- Microbiology, Biochemistry & Immunology, Morehouse School of Medicine, Atlanta, GA 30310, USA
| | | | | | | | | |
Collapse
|
79
|
Oncogenic role and therapeutic target of leptin signaling in breast cancer and cancer stem cells. BIOCHIMICA ET BIOPHYSICA ACTA 2012. [PMID: 22289780 DOI: 10.1016/j.bbcan.2012.01.002.oncogenic] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Significant correlations between obesity and incidence of various cancers have been reported. Obesity, considered a mild inflammatory process, is characterized by a high level of secretion of several cytokines from adipose tissue. These molecules have disparate effects, which could be relevant to cancer development. Among the inflammatory molecules, leptin, mainly produced by adipose tissue and overexpressed with its receptor (Ob-R) in cancer cells is the most studied adipokine. Mutations of leptin or Ob-R genes associated with obesity or cancer are rarely found. However, leptin is an anti-apoptotic molecule in many cell types, and its central roles in obesity-related cancers are based on its pro-angiogenic, pro-inflammatory and mitogenic actions. Notably, these leptin actions are commonly reinforced through entangled crosstalk with multiple oncogenes, cytokines and growth factors. Leptin-induced signals comprise several pathways commonly triggered by many cytokines (i.e., canonical: JAK2/STAT; MAPK/ERK1/2 and PI-3K/AKT1 and, non-canonical signaling pathways: PKC, JNK and p38 MAP kinase). Each of these leptin-induced signals is essential to its biological effects on food intake, energy balance, adiposity, immune and endocrine systems, as well as oncogenesis. This review is mainly focused on the current knowledge of the oncogenic role of leptin in breast cancer. Additionally, leptin pro-angiogenic molecular mechanisms and its potential role in breast cancer stem cells will be reviewed. Strict biunivocal binding-affinity and activation of leptin/Ob-R complex makes it a unique molecular target for prevention and treatment of breast cancer, particularly in obesity contexts.
Collapse
|
80
|
Palau N, Rebuffat SA, Altirriba J, Piquer S, Hanzu FA, Gomis R, Barbera A. Role of IGFBP-3 in the regulation of β-cell mass during obesity: adipose tissue/β-cell cross talk. Endocrinology 2012; 153:177-87. [PMID: 22067319 DOI: 10.1210/en.2011-0181] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
In obesity an increase in β-cell mass occurs to cope with the rise in insulin demand. This β-cell plasticity is essential to avoid the onset of hyperglycemia, although the molecular mechanisms that regulate this process remain unclear. This study analyzed the role of adipose tissue in the control of β-cell replication. Using a diet-induced model of obesity, we obtained conditioned media from three different white adipose tissue depots. Only in the adipose tissue depot surrounding the pancreas did the diet induce changes that led to an increase in INS1E cells and the islet replication rate. To identify the factors responsible for this proliferative effect, adipose tissue gene expression analysis was conducted by microarrays and quantitative RT-PCR. Of all the differentially expressed proteins, only the secreted ones were studied. IGF binding protein 3 (Igfbp3) was identified as the candidate for this effect. Furthermore, in the conditioned media, although the blockage of IGFBP3 led to an increase in the proliferation rate, the blockage of IGF-I receptor decreased it. Taken together, these data show that obesity induces specific changes in the expression profile of the adipose tissue depot surrounding the pancreas, leading to a decrease in IGFBP3 secretion. This decrease acts in a paracrine manner, stimulating the β-cell proliferation rate, probably through an IGF-I-dependent mechanism. This cross talk between the visceral-pancreatic adipose tissue and β-cells is a novel mechanism that participates in the control of β-cell plasticity.
Collapse
Affiliation(s)
- Nuria Palau
- Diabetes and Obesity Laboratory, Institut d'Investigations Biomediques August Pi i Sunyer, Rosselló 149-153, E-08036 Barcelona, Spain
| | | | | | | | | | | | | |
Collapse
|
81
|
Abstract
Adipose-tissue-derived signaling molecules, including the adipokines, are emerging as key candidate molecules that link obesity with cancer. Peritumoral, stromal, adipose tissue and secreted adipokines, particularly leptin, have important roles in breast cancer biology. For example, leptin signaling contributes to the metabolic features associated with breast cancer malignancy, such as switching the cells' energy balance from mitochondrial β-oxidation to the aerobic glycolytic pathway. Leptin also shapes the tumor microenvironment, mainly through its ability to potentiate both migration of endothelial cells and angiogenesis, and to sustain the recruitment of macrophages and monocytes, which in turn secrete vascular endothelial growth factor and proinflammatory cytokines. This article presents an overview of current knowledge on the involvement of leptin in the pathogenesis and progression of breast cancer, highlighted by human, in vitro and animal studies. Data are presented on the functional crosstalk between leptin and estrogen signaling, which further contributes to promotion of breast carcinogenesis. Finally, future perspectives and clinical applications in which leptin and the leptin receptor are considered as potential therapeutic targets for breast cancer are reviewed.
Collapse
Affiliation(s)
- Sebastiano Andò
- Department of Cell Biology and Centro Sanitario, University of Calabria, via Pietro Bucci, 87036 Arcavacata di Rende, Italy. sebastiano.ando@ unical.it
| | | |
Collapse
|
82
|
McCormack D, Schneider J, McDonald D, McFadden D. The antiproliferative effects of pterostilbene on breast cancer in vitro are via inhibition of constitutive and leptin-induced Janus kinase/signal transducer and activator of transcription activation. Am J Surg 2011; 202:541-4. [DOI: 10.1016/j.amjsurg.2011.06.020] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2011] [Revised: 05/23/2011] [Accepted: 06/27/2011] [Indexed: 12/01/2022]
|
83
|
Macciò A, Madeddu C. Obesity, inflammation, and postmenopausal breast cancer: therapeutic implications. ScientificWorldJournal 2011; 11:2020-36. [PMID: 22125453 PMCID: PMC3217612 DOI: 10.1100/2011/806787] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2011] [Accepted: 09/29/2011] [Indexed: 12/25/2022] Open
Abstract
Breast cancer is the female malignant neoplasia with the highest incidence in the industrialized world. Although early diagnosis has contributed to therapeutic success, breast cancer remains a major health issue. In the last few year the hormone therapy for estrogen-dependent breast cancer has evolved achieving significant clinical results; at the same time, it has enabled us to better define the role of estrogens in the etiopathogenesis of this tumour. Weight increase and obesity have been identified as the most important risk and prognostic factors for breast cancer in postmenopausal women. Several hypotheses have been proposed to explain the association of obesity with postmenopausal breast cancer. Specific obesity-associated factors, including leptin, insulin and inflammatory mediators, seem to influence breast cancer growth and prognosis independently of estrogens and at least in part by interacting with estrogen signalling at a cellular level. Therefore, a careful assessment of the nutritional status and body composition is paramount for a proper therapeutic approach for postmenopausal breast carcinoma. The use of antidiabetic and anti-inflammatory drugs associated with conventional hormone therapies and dietary/physical interventions could offer a new therapeutic approach for breast carcinoma that develops in the context of adiposity.
Collapse
Affiliation(s)
- Antonio Macciò
- Department of Obstetrics and Gynecology, Sirai Hospital, 09013 Carbonia, Italy.
| | | |
Collapse
|
84
|
Zhang Y, Yang X, Gui B, Xie G, Zhang D, Shang Y, Liang J. Corepressor protein CDYL functions as a molecular bridge between polycomb repressor complex 2 and repressive chromatin mark trimethylated histone lysine 27. J Biol Chem 2011; 286:42414-42425. [PMID: 22009739 DOI: 10.1074/jbc.m111.271064] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Polycomb group proteins play essential roles in transcriptional regulation of multiple gene families involved in various pathophysiological processes. It is believed that Polycomb Repressive Complex 2 (PRC2) is targeted to chromatin by the EED subunit to methylate histone H3 lysine 27 (H3K27), leading to a repressive chromatin state that inhibits gene expression. Here we report that the chromodomain-containing protein CDYL specifically recognizes di- and tri-methylated H3K27 (H3K27me2 and H3K27me3) and directly interacts with EZH2, the catalytic subunit of PRC2. We show that CDYL dramatically enhances the methyltransferase activity of PRC2 toward oligonucleosome substrates in vitro. Genome-wide analysis of CDYL targets by ChIP sequencing revealed that CDYL and PRC2 share a number of genomic targets. CDYL is required for chromatin targeting and maximal enzymatic activity of PRC2 at their common target sites. Our experiments indicate that CDYL functions as a molecular bridge between PRC2 and the repressive chromatin mark H3K27me3, forming a positive feedback loop to facilitate the establishment and propagation of H3K27me3 modifications along the chromatin.
Collapse
Affiliation(s)
- Yu Zhang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Biochemistry and Molecular Biology, Peking University Health Science Center, Beijing 100191, China
| | - Xiaohan Yang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Biochemistry and Molecular Biology, Peking University Health Science Center, Beijing 100191, China
| | - Bin Gui
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Biochemistry and Molecular Biology, Peking University Health Science Center, Beijing 100191, China
| | - Guojia Xie
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Biochemistry and Molecular Biology, Peking University Health Science Center, Beijing 100191, China
| | - Di Zhang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Biochemistry and Molecular Biology, Peking University Health Science Center, Beijing 100191, China
| | - Yongfeng Shang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Biochemistry and Molecular Biology, Peking University Health Science Center, Beijing 100191, China; Tianjin Key Laboratory of Medical Epigenetics, Tianjin Medical University, Tianjin 300070, China
| | - Jing Liang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Biochemistry and Molecular Biology, Peking University Health Science Center, Beijing 100191, China.
| |
Collapse
|
85
|
Wendremaire M, Bardou M, Peyronel C, Hadi T, Sagot P, Morrison JJ, Lirussi F. Effects of leptin on lipopolysaccharide-induced myometrial apoptosis in an in vitro human model of chorioamnionitis. Am J Obstet Gynecol 2011; 205:363.e1-9. [PMID: 21784405 DOI: 10.1016/j.ajog.2011.05.041] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2011] [Revised: 05/04/2011] [Accepted: 05/30/2011] [Indexed: 10/18/2022]
Abstract
OBJECTIVE This study was aimed at assessing the role of leptin on human myometrium, by studying its receptor expression in pregnant myometrium and the interaction of leptin with inflammation-induced apoptosis. STUDY DESIGN Myometrial samples were obtained from women with uncomplicated pregnancies who underwent cesarean delivery at term before labor onset. The effect of leptin on apoptosis was assessed by the incubation of myometrial strips with leptin (10(-10) to 10(-8) mol/L; 48 hours) before lipopolysaccharide treatment (10 μg/mL; 48 hours). RESULTS Long and short leptin receptor isoforms were expressed in myometrial cells of pregnant women. Leptin prevented lipopolysaccharide-induced apoptosis, in a concentration-dependent manner, by down-regulating cleaved caspase-3 and BCL2-associated X protein and up-regulating BCL2 expression. This effect was mediated specifically through leptin receptor stimulation, followed by ERK1/2 signaling pathway activation. CONCLUSION These results suggest a new potential pathway that is involved in delivery disorders of obese women and propose a role for the leptin-induced inhibition of myometrial apoptosis in the development of such disorders.
Collapse
|
86
|
Abstract
Leptin is a well-known mediator of obesity. Leptin and its receptor are overexpressed in breast cancer, especially in high-grade tumors. It has an association with progression and poor survival of breast cancer. Leptin can regulate endothelial cell proliferation and promote angiogenesis. There are several other factors such as insulin and HER2 may be involved in the relationship between leptin and breast cancer. Leptin system has emerged as a new and promising therapeutic target for breast cancer. This review article summarizes the current knowledge about the relation of leptin and breast cancer.
Collapse
|
87
|
Park J, Euhus DM, Scherer PE. Paracrine and endocrine effects of adipose tissue on cancer development and progression. Endocr Rev 2011; 32:550-70. [PMID: 21642230 PMCID: PMC3369575 DOI: 10.1210/er.2010-0030] [Citation(s) in RCA: 248] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The past few years have provided substantial evidence for the vital role of the local tumor microenvironment for various aspects of tumor progression. With obesity and its pathophysiological sequelae still on the rise, the adipocyte is increasingly moving center stage in the context of tumor stroma-related studies. To date, we have limited insight into how the systemic metabolic changes associated with obesity and the concomitant modification of the paracrine and endocrine panel of stromal adipocyte-derived secretory products ("adipokines") influence the incidence and progression of obesity-related cancers. Here, we discuss the role of adipocyte dysfunction associated with obesity and its potential impact on cancer biology.
Collapse
Affiliation(s)
- Jiyoung Park
- Touchstone Diabetes Center, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, USA
| | | | | |
Collapse
|
88
|
Jardé T, Perrier S, Vasson MP, Caldefie-Chézet F. Molecular mechanisms of leptin and adiponectin in breast cancer. Eur J Cancer 2011; 47:33-43. [PMID: 20889333 DOI: 10.1016/j.ejca.2010.09.005] [Citation(s) in RCA: 177] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2010] [Revised: 08/24/2010] [Accepted: 09/02/2010] [Indexed: 12/29/2022]
Abstract
Obesity is associated with an increased risk of breast cancer in postmenopausal women. Accumulating evidence suggests that adipose tissue, which is an endocrine organ producing a large range of factors, may interfere with breast cancer development. Leptin and adiponectin are two major adipocyte-secreted hormones. The pro-carcinogenic effect of leptin and conversely, the anti-carcinogenic effect of adiponectin result from two main mechanisms: a modulation in the signalling pathways involved in proliferation process and a subtle regulation of the apoptotic response. This review provides insight into recent findings on the molecular mechanisms of leptin and adiponectin in mammary tumours, and discusses the potential interplay between these two adipokines in breast cancer.
Collapse
Affiliation(s)
- Thierry Jardé
- Cardiff School of Biosciences, Cardiff University, S. Wales, Cardiff CF10 3US, United Kingdom.
| | | | | | | |
Collapse
|
89
|
Park SY, Kim JS, Seo YR, Sung MK. Effects of diet-induced obesity on colitis-associated colon tumor formation in A/J mice. Int J Obes (Lond) 2011; 36:273-80. [PMID: 21544082 DOI: 10.1038/ijo.2011.83] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
OBJECTIVE Studies have indicated that obesity is associated with a higher risk of colorectal cancer. This study was performed to determine the effect of diet-induced obesity on the formation of azoxymethane (AOM)/dextran sodium sulfate (DSS)-induced colon tumors and to identify adiposity-related mechanisms. METHODS Male A/J mice were placed on either a high-fat diet (HFD; 45% of total calories from fat) or a normal diet (ND; 15% of calories from fat) for 12 weeks. To induce colon tumors, AOM was administered at a dose of 10 mg/kg body weight, followed by two cycles of DSS supply. RESULTS Study results indicated that the HFD group had twofold higher numbers of colonic tumors, as compared with the ND group. The HFD group also had significantly increased body weight and epididymal fat weight, which were associated with increases of serum insulin, insulin-like growth factor-1, leptin, epididymal fat pad leptin mRNA and colonic leptin receptor (Ob-R) mRNA. Animals on HFD showed higher expressions of Ob-R, insulin receptor, phosphorylated Akt, phosphorylated extracellular signal-regulated kinases, Bcl-xL and Cyclin D1 proteins in the colon. CONCLUSION The results suggest that HFD-induced obesity facilitates colon tumor formation, possibly by regulating downstream targets of circulating adiposity-related factors via receptor-mediated signaling of the phosphatidylinositol 3-kinase/Akt pathway.
Collapse
Affiliation(s)
- S-Y Park
- Department of Food and Nutrition, Sookmyung Women's University, Seoul, Korea
| | | | | | | |
Collapse
|
90
|
Palianopoulou M, Papanikolaou V, Stefanou N, Tsezou A. The activation of leptin-mediated survivin is limited by the inducible suppressor SOCS-3 in MCF-7 cells. Exp Biol Med (Maywood) 2011; 236:70-6. [PMID: 21239736 DOI: 10.1258/ebm.2010.010224] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Although leptin has been found to be implicated in obesity-related breast carcinogenesis in postmenopausal women, the molecular mechanisms involved are yet to be defined. Recently, the antiapoptotic gene survivin has been recognized as a target gene for leptin in breast cancer. The aim of this study was to investigate the effect of leptin on the expression of survivin and on the transcriptional activity of its promoter in MCF-7 breast cancer cells. We also studied the potential involvement of SOCS-3 (a negative regulator of leptin's main signaling pathway JAK2/STAT3) in the expression of leptin-mediated survivin. Our results showed a significant increase in the mRNA (dose-dependent increase of 40-70%) and protein expression levels of survivin 24 h post-leptin treatment, which was followed by a significant decrease at 48 and 72 h (of 60-70%). In accordance, a chromatin immunoprecipitation assay revealed an initial strong binding of STAT3 to the survivin promoter, which was no longer detected after 24 h. Myc/mad/max network proteins and histone H3 acetylation status were not found to contribute to the expression of leptin-mediated survivin. Furthermore, a protein immunoprecipitation assay detected an enhanced SOCS-3 binding to the long isoform of leptin's receptor (Ob-Rb) 48 and 72 h after leptin administration, thus conferring inhibition to leptin signaling. In conclusion, our findings suggest, for the first time to our knowledge, that the effect of leptin on the antiapoptotic gene survivin is limited by the inhibitory role of SOCS-3 in the leptin-activated JAK2/STAT3 signaling pathway in MCF-7 breast cancer cells.
Collapse
Affiliation(s)
- Maria Palianopoulou
- Laboratory of Cytogenetics and Molecular Genetics, Faculty of Medicine, University of Thessaly, 41110 Larissa, Greece
| | | | | | | |
Collapse
|
91
|
Xu P, Ye W, Zhong S, Jen R, Li H, Feng E, Lin SH, Liu JY, Lin YC. Zeranol may increase the risk of leptin-induced neoplasia in human breast. Oncol Lett 2010; 2:101-108. [PMID: 22870137 DOI: 10.3892/ol.2010.214] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2010] [Accepted: 10/01/2010] [Indexed: 11/06/2022] Open
Abstract
Breast cancer and obesity are serious health problems and their relationship has been studied for many years. Leptin is mainly secreted by adipocytes and plays a key role in breast cancer development. Leptin expression is up-regulated in obese individuals and promotes breast cancer cell growth. On the other hand, exposure to environmental estrogens has been found to be directly related to breast cancer. Zeranol (Z) is a non-steroidal anabolic growth promoter used in the beef industry in the US. This study focused on the evaluation of Z and Z-containing sera (ZS) and its adverse health risk to human consumption of Z-containing meat produced from Z-implanted beef cattle. We hypothesized that Z increases the risk of breast neoplasia in women, particularly in obese women. A cell proliferation assay, ELISA analysis, RT-PCR and Western blot analysis were conducted. Our study demonstrated that Z and ZS collected from Z-implanted heifers stimulated the proliferation of primary cultured human normal breast epithelial cells (HNBECs) by up-regulating cyclin D1 expression. Leptin increased the sensitivity of HNBECs to Z, and Z increased the ability of HNBECs to secrete leptin. These results suggest an interaction between leptin and Z in HNBECs. Furthermore, Z may play a role in leptin-induced breast neoplasia.
Collapse
Affiliation(s)
- Pingping Xu
- Laboratory of Reproductive and Molecular Endocrinology, College of Veterinary Medicine, The Ohio State University, Columbus, OH 43210, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
92
|
|
93
|
Naviglio S, Di Gesto D, Illiano F, Chiosi E, Giordano A, Illiano G, Spina A. Leptin potentiates antiproliferative action of cAMP elevation via protein kinase A down-regulation in breast cancer cells. J Cell Physiol 2010; 225:801-9. [PMID: 20589829 DOI: 10.1002/jcp.22288] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Previously, we have shown that leptin potentiates the antiproliferative action of cAMP elevating agents in breast cancer cells and that the protein kinase A (PKA) inhibitor KT-5720 prevented the antiproliferative effects induced by the leptin plus cAMP elevation. The present experiments were designed to gain a better understanding about the PKA role in the antitumor interaction between leptin and cAMP elevating agents and on the underlying signaling pathways. Here we show that exposure of MDA-MB-231 breast cancer cells to leptin resulted in a strong phosphorylation of both ERK1/2 and STAT3. Interestingly, intracellular cAMP elevation upon forskolin pretreatment completely abrogated both ERK1/2 and STAT3 phosphorylation in response to leptin and was accompanied by a consistent CREB phosphorylation. Notably, leptin plus forskolin cotreatments resulted in a strong decrease of both PKA regulatory RIα and catalytic subunits protein levels. Importantly, pretreatment with the PKA inhibitor KT-5720 blocked the forskolin-induced CREB phosphorylation and prevented both the inhibition by forskolin of leptin-induced ERK1/2 and STAT3 phosphorylation and the PKA subunits down-regulation induced by the combination of leptin and forskolin. Altogether, our results indicate that leptin-dependent signaling pathways are influenced by cAMP elevation and identify PKA as relevantly involved in the pharmacological antitumor interaction between leptin and cAMP elevating drugs in MDA-MB-231 cells. We propose a molecular model by which PKA confers its effects. Potential therapeutic applications by our data will be discussed.
Collapse
Affiliation(s)
- Silvio Naviglio
- Department of Biochemistry and Biophysics, Second University of Naples, Medical School, Naples, Italy.
| | | | | | | | | | | | | |
Collapse
|
94
|
Stefanou N, Papanikolaou V, Furukawa Y, Nakamura Y, Tsezou A. Leptin as a critical regulator of hepatocellular carcinoma development through modulation of human telomerase reverse transcriptase. BMC Cancer 2010; 10:442. [PMID: 20723213 PMCID: PMC2931493 DOI: 10.1186/1471-2407-10-442] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2009] [Accepted: 08/19/2010] [Indexed: 12/15/2022] Open
Abstract
Background Numerous epidemiological studies have documented that obesity is associated with hepatocellular carcinoma (HCC). The aim of this study was to investigate the biological actions regulated by leptin, the obesity biomarker molecule, and its receptors in HCC and the correlation between leptin and human telomerase reverse transcriptase (hTERT), a known mediator of cellular immortalization. Methods We investigated the relationship between leptin, leptin receptors and hTERT mRNA expression in HCC and healthy liver tissue samples. In HepG2 cells, chromatin immunoprecipitation assay was used to study signal transducer and activator of transcription-3 (STAT3) and myc/mad/max transcription factors downstream of leptin which could be responsible for hTERT regulation. Flow cytometry was used for evaluation of cell cycle modifications and MMP1, 9 and 13 expression after treatment of HepG2 cells with leptin. Blocking of leptin's expression was achieved using siRNA against leptin and transfection with liposomes. Results We showed, for the first time, that leptin's expression is highly correlated with hTERT expression levels in HCC liver tissues. We also demonstrated in HepG2 cells that leptin-induced up-regulation of hTERT and TA was mediated through binding of STAT3 and Myc/Max/Mad network proteins on hTERT promoter. We also found that leptin could affect hepatocellular carcinoma progression and invasion through its interaction with cytokines and matrix mettaloproteinases (MMPs) in the tumorigenic microenvironment. Furthermore, we showed that histone modification contributes to leptin's gene regulation in HCC. Conclusions We propose that leptin is a key regulator of the malignant properties of hepatocellular carcinoma cells through modulation of hTERT, a critical player of oncogenesis.
Collapse
Affiliation(s)
- Nikolaos Stefanou
- University of Thessaly, Medical School, Department of Biology, Larissa, Greece
| | | | | | | | | |
Collapse
|
95
|
Thorn SR, Giesy SL, Myers MG, Boisclair YR. Mammary ductal growth is impaired in mice lacking leptin-dependent signal transducer and activator of transcription 3 signaling. Endocrinology 2010; 151:3985-95. [PMID: 20501669 PMCID: PMC3208358 DOI: 10.1210/en.2010-0029] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Mice lacking leptin (ob/ob) or its full-length receptor (db/db) are obese and reproductively incompetent. Fertility, pregnancy, and lactation are restored, respectively, in ob/ob mice treated with leptin through mating, d 6.5 post coitum, and pregnancy. Therefore, leptin signaling is needed for lactation, but the timing of its action and the affected mammary process remain unknown. To address this issue, we used s/s mice lacking only leptin-dependent signal transducer and activator of transcription (STAT)3 signaling. These mice share many features with db/db mice, including obesity, but differ by retaining sufficient activity of the hypothalamic-pituitary-ovarian axis to support reproduction. The s/s mammary epithelium was normal at 3 wk of age but failed to expand through the mammary fat pad (MFP) during the subsequent pubertal period. Ductal growth failure was not corrected by estrogen therapy and did not relate to inadequate IGF-I production by the MFP or to the need for epithelial or stromal leptin-STAT3 signaling. Ductal growth failure coincided with adipocyte hypertrophy and increased MFP production of leptin, TNFalpha, and IL6. These cytokines, however, were unable to inhibit the proliferation of a collection of mouse mammary epithelial cell lines. In conclusion, the very first step of postnatal mammary development fails in s/s mice despite sufficient estrogen IGF-I and an hypothalamic-pituitary-ovarian axis capable of supporting reproduction. This failure is not caused by mammary loss of leptin-dependent STAT3 signaling or by the development of inflammation. These data imply the existence of an unknown mechanism whereby leptin-dependent STAT3 signaling and obesity alter mammary ductal development.
Collapse
Affiliation(s)
- Stephanie R Thorn
- Department of Animal Science, Cornell University, Ithaca, New York 14853, USA
| | | | | | | |
Collapse
|
96
|
Androgen excess produces systemic oxidative stress and predisposes to beta-cell failure in female mice. PLoS One 2010; 5:e11302. [PMID: 20585581 PMCID: PMC2892018 DOI: 10.1371/journal.pone.0011302] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2010] [Accepted: 06/06/2010] [Indexed: 12/13/2022] Open
Abstract
In women, excess production of the male hormone, testosterone (T), is accompanied by insulin resistance. However, hyperandrogenemia is also associated with beta-cell dysfunction and type 2 diabetes raising the possibility that androgen receptor (AR) activation predisposes to beta-cell failure. Here, we tested the hypothesis that excess AR activation produces systemic oxidative stress thereby contributing to beta-cell failure. We used normal female mice (CF) and mice with androgen resistance by testicular feminization (Tfm). These mice were exposed to androgen excess and a beta-cell stress induced by streptozotocin (STZ). We find that following exposure to T, or the selective AR-agonist dehydrotestosterone (DHT), CF mice challenged with STZ, which are normally protected, are prone to beta-cell failure and insulin-deficient diabetes. Conversely, T-induced predisposition to beta-cell failure is abolished in Tfm mice. We do not observe any proapoptotic effect of DHT alone or in the presence of H(2)O(2) in cultured mouse and human islets. However, we observe that exposure of CF mice to T or DHT provokes systemic oxidative stress, which is eliminated in Tfm mice. This work has significance for hyperandrogenic women; excess activation of AR by testosterone may provoke systemic oxidative stress. In the presence of a prior beta-cell stress, this may predispose to beta-cell failure.
Collapse
|
97
|
Ray A, Cleary MP. Leptin as a potential therapeutic target for breast cancer prevention and treatment. Expert Opin Ther Targets 2010; 14:443-51. [PMID: 20230196 DOI: 10.1517/14728221003716466] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
IMPORTANCE OF THE FIELD Obesity is considered to be an important risk factor for postmenopausal breast cancer. Elevated estrogen levels are thought to be a growth factor associated with this relationship. However, there is increasing evidence that factors produced directly in adipose tissue, adipokines, can also affect breast cancer development. Leptin is one of the adipokines that is measured in serum/plasma in increasing amounts as body weight/body fat increases. AREAS COVERED IN THIS REVIEW We highlight important aspects of leptin in relationship to mammary/breast tumor development. This includes findings from human, in vitro and animal studies. Information on leptin-related compounds which may have therapeutic use is presented. Additionally strategies to alter serum leptin levels by dietary and pharmacological interventions are discussed. WHAT THE READER WILL GAIN The reader will gain insights into the relationship of an adipose tissue protein and its potential role in breast cancer development as well as ways to intervene in leptin's actions. TAKE HOME MESSAGE Continued research will determine if interfering with the action of leptin has preventive or therapeutic applications in breast cancer.
Collapse
Affiliation(s)
- Amitbha Ray
- University of Minnesota, The Hormel Institute, 801 16th Avenue NE, Austin, MN 55912, USA.
| | | |
Collapse
|
98
|
Macciò A, Madeddu C, Gramignano G, Mulas C, Floris C, Massa D, Astara G, Chessa P, Mantovani G. Correlation of body mass index and leptin with tumor size and stage of disease in hormone-dependent postmenopausal breast cancer: preliminary results and therapeutic implications. J Mol Med (Berl) 2010; 88:677-86. [PMID: 20339829 DOI: 10.1007/s00109-010-0611-8] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2010] [Revised: 03/01/2010] [Accepted: 03/01/2010] [Indexed: 11/29/2022]
Abstract
Obesity is considered the most important risk and prognostic factor for estrogen-dependent breast cancer in postmenopausal women. Adipokines, in particular leptin, are at the center of the etiopathogenetic mechanisms by which obesity and related metabolic disorders influence breast cancer risk and its prognosis. The present prospective observational study aims to investigate the relationship between body mass index (BMI), serum levels of leptin and proinflammatory cytokines, and breast cancer prognostic factors. In the study, 98 postmenopausal and 82 premenopausal patients with ER-positive breast cancer participated. During the same study period, 221 control subjects were simultaneously recruited. Women underwent baseline measurements pre-operatively, before any surgical and systemic treatments. Pathologic characteristics of tumors were abstracted from pathology reports. Leptin and proinflammatory cytokines were assayed in stored fasting blood specimens. In postmenopausal breast cancer patients, BMI, leptin, and interleukin-6 significantly correlated with pathological tumor classification (pT) and TNM stage. Multivariate regression analysis showed that BMI and leptin, but not interleukin-6, were independent predictive variables of pT and TNM stage. Our results seem to suggest a twofold role of leptin in the etiopathogenesis of postmenopausal estrogen-positive breast cancer. Indeed, leptin reflects the total amount of fat mass, which correlates to aromatase activity and subsequent estrogens levels. Further studies are warranted to clarify the role of leptin and interleukin-6 in breast carcinogenesis and identify new therapeutic options, beyond the use of aromatase inhibitors, acting selectively on adipokine-driven pathways.
Collapse
Affiliation(s)
- Antonio Macciò
- Department of Obstetrics and Gynecology, Sirai Hospital, 09013 Carbonia, Italy.
| | | | | | | | | | | | | | | | | |
Collapse
|
99
|
Yu W, Li R, Gui B, Shang Y. sZIP, an alternative splice variant of ZIP, antagonizes transcription repression and growth inhibition by ZIP. J Biol Chem 2010; 285:14301-7. [PMID: 20233718 DOI: 10.1074/jbc.m110.107508] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Recently, we reported a novel transcriptional repressor, ZIP (for zinc finger and G-patch domain-containing), which recruits the Mi-2/NuRD (nucleosome remodeling and deacetylase) complex and represses the expression of epidermal growth factor receptor (EGFR). In doing so, ZIP inhibits cell proliferation and suppresses breast carcinogenesis. Here, we report the cloning and the characterization of an alternatively spliced isoform of ZIP, sZIP. sZIP is an N-terminal truncated form of ZIP, lacking the zinc finger but retaining part of the G-patch domain and C-terminal coiled-coil domain of ZIP. We showed that sZIP could interact with the NuRD complex but lost its DNA-binding capacity. We demonstrated that sZIP antagonizes the transcription repression by ZIP by competing for the binding of the NuRD complex and that sZIP alleviates the growth inhibitory effect of ZIP on hepatocarcinoma cells through attenuating the transcriptional repression of EGFR. Our data provide a finely tuned mechanism for EGFR regulation and add another player for transcription repression.
Collapse
Affiliation(s)
- Wenhua Yu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Biochemistry and Molecular Biology, Peking University Health Science Center, Beijing 100191, China
| | | | | | | |
Collapse
|
100
|
Ren H, Zhao T, Wang X, Gao C, Wang J, Yu M, Hao J. Leptin upregulates telomerase activity and transcription of human telomerase reverse transcriptase in MCF-7 breast cancer cells. Biochem Biophys Res Commun 2010; 394:59-63. [DOI: 10.1016/j.bbrc.2010.02.093] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2010] [Accepted: 02/13/2010] [Indexed: 01/12/2023]
|