51
|
Kaminska B, Cyranowski S. Recent Advances in Understanding Mechanisms of TGF Beta Signaling and Its Role in Glioma Pathogenesis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1202:179-201. [PMID: 32034714 DOI: 10.1007/978-3-030-30651-9_9] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Transforming growth factor beta (TGF-β) signaling is involved in the regulation of proliferation, differentiation and survival/or apoptosis of many cells, including glioma cells. TGF-β acts via specific receptors activating multiple intracellular pathways resulting in phosphorylation of receptor-regulated Smad2/3 proteins that associate with the common mediator, Smad4. Such complex translocates to the nucleus, binds to DNA and regulates transcription of many genes. Furthermore, TGF-β-activated kinase-1 (TAK1) is a component of TGF-β signaling and activates mitogen-activated protein kinase (MAPK) cascades. Negative regulation of TGF-β/Smad signaling may occur through the inhibitory Smad6/7. While genetic alterations in genes related to TGF-β signaling are relatively rare in gliomas, the altered expression of those genes is a frequent event. The increased expression of TGF-β1-3 correlates with a degree of malignancy of human gliomas. TGF-β may contribute to tumor pathogenesis in many ways: by direct support of tumor growth, by maintaining self-renewal of glioma initiating stem cells and inhibiting anti-tumor immunity. Glioma initiating cells are dedifferentiated cells that retain many stem cell-like properties, play a role in tumor initiation and contribute to its recurrence. TGF-β1,2 stimulate expression of the vascular endothelial growth factor as well as the plasminogen activator inhibitor and some metalloproteinases that are involved in vascular remodeling, angiogenesis and degradation of the extracellular matrix. Inhibitors of TGF-β signaling reduce viability and invasion of gliomas in animal models and show a great promise as novel, potential anti-tumor therapeutics.
Collapse
Affiliation(s)
- Bozena Kaminska
- Laboratory of Molecular Neurobiology, Neurobiology Center, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland. .,Postgraduate School of Molecular Medicine, Warsaw Medical University, Warsaw, Poland.
| | - Salwador Cyranowski
- Laboratory of Molecular Neurobiology, Neurobiology Center, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland.,Postgraduate School of Molecular Medicine, Warsaw Medical University, Warsaw, Poland
| |
Collapse
|
52
|
Mills J, Capece M, Cocucci E, Tessari A, Palmieri D. Cancer-Derived Extracellular Vesicle-Associated MicroRNAs in Intercellular Communication: One Cell's Trash Is Another Cell's Treasure. Int J Mol Sci 2019; 20:E6109. [PMID: 31817101 PMCID: PMC6940802 DOI: 10.3390/ijms20246109] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2019] [Revised: 11/23/2019] [Accepted: 11/25/2019] [Indexed: 12/12/2022] Open
Abstract
Several non-protein-coding genomic regions, previously marked as "junk DNA", have been reported to be transcriptionally active, giving rise to non-coding RNA species implicated in fundamental biological and pathological processes. In particular, microRNAs (miRNAs), a class of small non-coding RNAs mediating post-transcriptional gene silencing, are causally involved in several human diseases, including various cancer types. Extracellular vesicles (EVs) are membranous structures physiologically released by most cell types. Initially, they were considered a "waste-removal" mechanism, through which cells could dispose unnecessary material and organelles. It is now widely demonstrated that EVs also play a critical role in intercellular communication, mediating the horizontal transfer of lipids, proteins, and genetic material. A paradigm shift in the biology of miRNAs was represented by the discovery that EVs, especially from cancer cells, contain miRs. EV-associated miRs act as autocrine, paracrine and endocrine factors, participating in cancer pathogenesis by modulating intercellular communication. Noteworthy, these formerly neglected molecules are now considered the next generation of cancer "theranostic" tools, with strong clinical relevance. In this review, we aim to summarize the most recent findings regarding EV-associated miRs in cancer pathogenesis and in the development of novel anti-neoplastic diagnostic and therapeutic approaches.
Collapse
Affiliation(s)
- Joseph Mills
- Department of Cancer Biology and Genetics, College of Medicine and Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA; (J.M.); (M.C.); (A.T.)
| | - Marina Capece
- Department of Cancer Biology and Genetics, College of Medicine and Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA; (J.M.); (M.C.); (A.T.)
| | - Emanuele Cocucci
- Division of Pharmaceutics and Pharmacology, College of Pharmacy and Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA;
| | - Anna Tessari
- Department of Cancer Biology and Genetics, College of Medicine and Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA; (J.M.); (M.C.); (A.T.)
| | - Dario Palmieri
- Department of Cancer Biology and Genetics, College of Medicine and Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA; (J.M.); (M.C.); (A.T.)
| |
Collapse
|
53
|
Lazarova M, Steinle A. Impairment of NKG2D-Mediated Tumor Immunity by TGF-β. Front Immunol 2019; 10:2689. [PMID: 31803194 PMCID: PMC6873348 DOI: 10.3389/fimmu.2019.02689] [Citation(s) in RCA: 93] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Accepted: 10/31/2019] [Indexed: 12/14/2022] Open
Abstract
Transforming growth factor-β (TGF-β) suppresses innate and adaptive immune responses via multiple mechanisms. TGF-β also importantly contributes to the formation of an immunosuppressive tumor microenvironment thereby promoting tumor growth. Amongst others, TGF-β impairs tumor recognition by cytotoxic lymphocytes via NKG2D. NKG2D is a homodimeric C-type lectin-like receptor expressed on virtually all human NK cells and cytotoxic T cells, and stimulates their effector functions upon engagement by NKG2D ligands (NKG2DL). While NKG2DL are mostly absent from healthy cells, their expression is induced by cellular stress and malignant transformation, and, accordingly, frequently detected on various tumor cells. Hence, the NKG2D axis is thought to play a decisive role in cancer immunosurveillance and, obviously, often is compromised in clinically apparent tumors. There is mounting evidence that TGF-β, produced by tumor cells and immune cells in the tumor microenvironment, plays a key role in blunting the NKG2D-mediated tumor surveillance. Here, we review the current knowledge on the impairment of NKG2D-mediated cancer immunity through TGF-β and discuss therapeutic approaches aiming at counteracting this major immune escape pathway. By reducing tumor-associated expression of NKG2DL and blinding cytotoxic lymphocytes through down-regulation of NKG2D, TGF-β is acting upon both sides of the NKG2D axis severely compromising NKG2D-mediated tumor rejection. Consequently, novel therapies targeting the TGF-β pathway are expected to reinvigorate NKG2D-mediated tumor elimination and thereby to improve the survival of cancer patients.
Collapse
Affiliation(s)
- Mariya Lazarova
- Institute for Molecular Medicine, Goethe-University Frankfurt am Main, Frankfurt am Main, Germany
| | - Alexander Steinle
- Institute for Molecular Medicine, Goethe-University Frankfurt am Main, Frankfurt am Main, Germany
| |
Collapse
|
54
|
Huang CH, Liao YJ, Chiou TJ, Huang HT, Lin YH, Twu YC. TGF-β regulated leukemia cell susceptibility against NK targeting through the down-regulation of the CD48 expression. Immunobiology 2019; 224:649-658. [PMID: 31421859 DOI: 10.1016/j.imbio.2019.07.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Revised: 05/29/2019] [Accepted: 07/30/2019] [Indexed: 12/29/2022]
Abstract
Transforming growth factor-β (TGF-β) is known to function as a dual role regulatory cytokine for being either a suppresser or promoter during tumor initiation and progression. In solid tumors, TGF-β secreted from tumor microenvironment acts as a suppresser against host immunity, like natural killer (NK) cells, to favor tumor evasion. However, besides solid tumors, the underlying mechanism of how TGF-β regulates leukemogenesis, tumor progression, immunoediting, and NK function is still not clear in detail. In this study, we found that TGF-β induced leukemia MEG-01 and U937 cells to become less sensitive to NK-92MI targeting by down-regulating CD48, a ligand for NK activating receptor 2B4, but not down-regulating other tumor-associated carbohydrate antigens (TACAs). In CD48-knockdown cells, cells responding to NK-92MI targeting displayed a phenotype of less NK susceptibility and cell conjugation. On the other hand, when NK cells were treated with TGF-β, TGF-β suppressed NK recognition, degranulation, and killing activity in time-dependent manner by regulating ICAM-1 binding capacity instead of affecting expressions of activating and inhibitory receptors. Taken together, both leukemia cells and immune NK cells could be regulated by TGF-β through suppressing leukemia cell surface CD48 to escape from host surveillance and down-regulating NK cell surface ICAM-1 binding activity to impair NK functions, respectively. Our results suggested that TGF-β had effect in leukemia similar to that observed in solid tumors but through different regulatory mechanism.
Collapse
Affiliation(s)
- Chin-Han Huang
- Department of Biotechnology and Laboratory Science in Medicine, School of Biomedical Science and Engineering, National Yang-Ming University, Taipei, Taiwan
| | - Yi-Jen Liao
- School of Medical Laboratory Science and Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| | - Tzeon-Jye Chiou
- Division of Transfusion Medicine, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan; Cancer Center, Taipei Municipal Wanfang Hospital, Taipei Medical University, Taipei, Taiwan
| | - Hsin-Ting Huang
- Department of Biotechnology and Laboratory Science in Medicine, School of Biomedical Science and Engineering, National Yang-Ming University, Taipei, Taiwan
| | - Yen-Hsi Lin
- Department of Biotechnology and Laboratory Science in Medicine, School of Biomedical Science and Engineering, National Yang-Ming University, Taipei, Taiwan
| | - Yuh-Ching Twu
- Department of Biotechnology and Laboratory Science in Medicine, School of Biomedical Science and Engineering, National Yang-Ming University, Taipei, Taiwan.
| |
Collapse
|
55
|
Carvalho JADV, Barbosa CCDL, Feher O, Maldaun MVC, Camargo VPD, Moraes FY, Marta GN. Systemic dissemination of glioblastoma: literature review. ACTA ACUST UNITED AC 2019; 65:460-468. [PMID: 30994848 DOI: 10.1590/1806-9282.65.3.460] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Accepted: 08/05/2018] [Indexed: 12/14/2022]
Abstract
INTRODUCTION Glioblastoma (GBM) is the most frequent primary malignant tumor from the central nervous system in adults. However, the presence of systemic metastasis is an extremely rare event. The objective of this study was to review the literature, evaluating the possible biological mechanisms related to the occurrence of systemic metastasis in patients diagnosed with GBM. RESULTS The mechanisms that may be related to GBM systemic dissemination are the blood-brain barrier breach, often seen in GBM cases, by the tumor itself or by surgical procedures, gaining access to blood and lymphatic vessels, associated with the acquisition of mesenchymal features of invasiveness, resistance to the immune mechanisms of defense and hostile environment through quiescence. CONCLUSIONS Tumor cells must overcome many obstacles until the development of systemic metastasis. The physiologic mechanisms are not completely clear. Although not fully understood, the pathophysiological understanding of the mechanisms that may be associated with the systemic spread is salutary for a global understanding of the disease. In addition, this knowledge may be used as a basis for a therapy to be performed in patients diagnosed with GBM distant metastasis.
Collapse
Affiliation(s)
| | - Caroline Chaul de Lima Barbosa
- Department of Radiology and Oncology - Clinical Oncology Unit; Faculdade de Medicina da Universidade de São Paulo - Instituto do Câncer do Estado de São Paulo (Icesp); Sao Paulo, Brasil.,Department of Clinical Oncology - Hospital Sírio-Libanês; Sao Paulo, Brasil
| | - Olavo Feher
- Department of Radiology and Oncology - Clinical Oncology Unit; Faculdade de Medicina da Universidade de São Paulo - Instituto do Câncer do Estado de São Paulo (Icesp); Sao Paulo, Brasil.,Department of Clinical Oncology - Hospital Sírio-Libanês; Sao Paulo, Brasil
| | - Marcos Vinicius Calfat Maldaun
- Division of Neurosurgery, Hospital Sírio-Libanês; Sao Paulo, Brasil.,Division of Neurosurgery, Santa Paula Hospital, São Paulo, SP, Brasil
| | - Veridiana Pires de Camargo
- Department of Radiology and Oncology - Clinical Oncology Unit; Faculdade de Medicina da Universidade de São Paulo - Instituto do Câncer do Estado de São Paulo (Icesp); Sao Paulo, Brasil.,Department of Clinical Oncology - Hospital Sírio-Libanês; Sao Paulo, Brasil
| | - Fabio Y Moraes
- Department of Oncology, Division of Radiation Oncology, Queen's University - Kingston Health Science Centre, Kingston, ON, Canada.,Department of Radiation Oncology, Hospital Sírio-Libanês, Sao Paulo, Brasil
| | - Gustavo Nader Marta
- Department of Radiology and Oncology, Division of Radiation Oncology, Instituto do Câncer do Estado de São Paulo (Icesp), Faculdade de Medicina da Universidade de São Paulo, Sao Paulo, Brasil.,Department of Radiation Oncology, Hospital Sírio-Libanês, Sao Paulo, Brasil
| |
Collapse
|
56
|
Fares J, Fares MY, Fares Y. Natural killer cells in the brain tumor microenvironment: Defining a new era in neuro-oncology. Surg Neurol Int 2019; 10:43. [PMID: 31528381 PMCID: PMC6743677 DOI: 10.25259/sni-97-2019] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Accepted: 02/05/2019] [Indexed: 12/19/2022] Open
Affiliation(s)
- Jawad Fares
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL - 60611, United States
| | - Mohamad Y. Fares
- Faculty of Medicine, American University of Beirut, Riad El-Solh
| | - Youssef Fares
- Department of Neurosurgery, Neuroscience Research Center, Faculty of Medical Sciences, Lebanese University, Beirut, Beyrouth - 1102 2801, Lebanon
| |
Collapse
|
57
|
Lazarova M, Steinle A. The NKG2D axis: an emerging target in cancer immunotherapy. Expert Opin Ther Targets 2019; 23:281-294. [DOI: 10.1080/14728222.2019.1580693] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Mariya Lazarova
- Institute for Molecular Medicine, Goethe-University Frankfurt am Main, Frankfurt am Main, Germany
| | - Alexander Steinle
- Institute for Molecular Medicine, Goethe-University Frankfurt am Main, Frankfurt am Main, Germany
| |
Collapse
|
58
|
Nayyar G, Chu Y, Cairo MS. Overcoming Resistance to Natural Killer Cell Based Immunotherapies for Solid Tumors. Front Oncol 2019; 9:51. [PMID: 30805309 PMCID: PMC6378304 DOI: 10.3389/fonc.2019.00051] [Citation(s) in RCA: 112] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Accepted: 01/18/2019] [Indexed: 12/22/2022] Open
Abstract
Despite advances in the diagnostic and therapeutic modalities, the prognosis of several solid tumor malignancies remains poor. Different factors associated with solid tumors including a varied genetic signature, complex molecular signaling pathways, defective cross talk between the tumor cells and immune cells, hypoxic and immunosuppressive effects of tumor microenvironment result in a treatment resistant and metastatic phenotype. Over the past several years, immunotherapy has emerged as an attractive therapeutic option against multiple malignancies. The unique ability of natural killer (NK) cells to target cancer cells without antigen specificity makes them an ideal candidate for use against solid tumors. However, the outcomes of adoptive NK cell infusions into patients with solid tumors have been disappointing. Extensive studies have been done to investigate different strategies to improve the NK cell function, trafficking and tumor targeting. Use of cytokines and cytokine analogs has been well described and utilized to enhance the proliferation, stimulation and persistence of NK cells. Other techniques like blocking the human leukocyte antigen-killer cell receptors (KIR) interactions with anti-KIR monoclonal antibodies, preventing CD16 receptor shedding, increasing the expression of activating NK cell receptors like NKG2D, and use of immunocytokines and immune checkpoint inhibitors can enhance NK cell mediated cytotoxicity. Using genetically modified NK cells with chimeric antigen receptors and bispecific and trispecific NK cell engagers, NK cells can be effectively redirected to the tumor cells improving their cytotoxic potential. In this review, we have described these strategies and highlighted the need to further optimize these strategies to improve the clinical outcome of NK cell based immunotherapy against solid tumors.
Collapse
Affiliation(s)
- Gaurav Nayyar
- Department of Pediatrics, New York Medical College, Valhalla, NY, United States
| | - Yaya Chu
- Department of Pediatrics, New York Medical College, Valhalla, NY, United States
| | - Mitchell S Cairo
- Department of Pediatrics, New York Medical College, Valhalla, NY, United States.,Department of Cell Biology & Anatomy, New York Medical College, Valhalla, NY, United States.,Department of Microbiology & Immunology, New York Medical College, Valhalla, NY, United States.,Department of Medicine, New York Medical College, Valhalla, NY, United States.,Department of Pathology, New York Medical College, Valhalla, NY, United States
| |
Collapse
|
59
|
A variant in the MICA gene is associated with liver fibrosis progression in chronic hepatitis C through TGF-β1 dependent mechanisms. Sci Rep 2019; 9:1439. [PMID: 30723271 PMCID: PMC6363805 DOI: 10.1038/s41598-018-35736-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Accepted: 11/09/2018] [Indexed: 12/19/2022] Open
Abstract
Hepatocarcinogenesis is tightly linked to liver fibrosis. Recently, two GWAS variants, MICA rs2596542 and DEPDC5 rs1012068 were identified as being associated with the development of HCV-induced hepatocellular carcinoma (HCC) in Japanese patients. The role of these variants on hepatic inflammation and fibrosis that are closely associated with HCC development is not known, nor are the biological mechanisms underlying their impact on the liver. Here, we demonstrate in 1689 patients with chronic hepatitis C (CHC) (1,501 with CHC and 188 with HCV-related HCC), that the MICA (T) allele, despite not being associated with HCC susceptibility, is associated with increased fibrosis stage (OR: 1.47, 95% CI: 1.05–2.06, p = 0.02) and fibrosis progression rate (hazards ratio: 1.41, 95% CI: 1.04–1.90, p = 0.02). The DEPDC5 variant was not associated with any of these phenotypes. MICA expression was down-regulated in advanced fibrosis stages. Further, (T) allele carriage was associated with lower MICA expression in liver and serum. Transforming growth factor-β1 (TGF-β1) expression suppresses MICA expression in hepatic stellate cells. Our findings suggest a novel mechanism linking susceptibility to advanced fibrosis and subsequently indirectly to HCC, to the level of MICA expression through TGF-β1-dependent mechanisms.
Collapse
|
60
|
Novel Immunoregulatory Functions of IL-18, an Accomplice of TGF-β1. Cancers (Basel) 2019; 11:cancers11010075. [PMID: 30641867 PMCID: PMC6356463 DOI: 10.3390/cancers11010075] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2018] [Revised: 12/27/2018] [Accepted: 01/04/2019] [Indexed: 12/17/2022] Open
Abstract
TGF-β1 is a pleiotropic factor exerting a strong regulatory role in several cell types, including immune cells. In NK cells it profoundly alters the surface expression of crucial activating and chemokine receptors. To understand which soluble signals might better contrast these effects, we cultured human NK cells in the presence of TGF-β1 and different innate and adaptive cytokines, generally referred as “immunostimulatory”. These included IL-2, IL-15, IL-21, IL-27, and IL-18. Unexpectedly, IL-18 strengthened rather than contrasting important TGF-β1-mediated functions. In particular, IL-18 further reduced the expression of CX3CR1 and NKp30, leading to the virtual abrogation of the triggering capability of this activating receptor. Moreover, IL-18 further increased the expression of CXCR4. The IL-18-mediated additive effect on NKp30 and CXCR4 expression involved transcriptional regulation and activation of MEK/ERK and/or p38MAPK. A proteomic approach quantified both surface and intracellular proteins significantly modified in cytokine-treated NK cells, thus giving global information on the biological processes involving TGF-β1 and IL-18. Our data support the concept that IL-18 may have a different behavior depending on the type of soluble factors characterizing the microenvironment. In a TGF-β1 rich milieu such as tumors, it may contribute to the impairment of both NK cells recruitment and killing capability.
Collapse
|
61
|
The effects of 2-hydroxyglutarate on the tumorigenesis of gliomas. Contemp Oncol (Pozn) 2018; 22:215-222. [PMID: 30783384 PMCID: PMC6377424 DOI: 10.5114/wo.2018.82642] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2018] [Accepted: 12/25/2018] [Indexed: 12/19/2022] Open
Abstract
Mutation of the isocitrate-dehydrogenase (IDH) enzymes is one of the central research topics regarding gliomagenesis. Indeed, 70% of gliomas are associated with a gain-of-function IDH mutation and consequently synthesize the oncometabolite, 2-hydroxyglutarate (2-HG). This review aims to elucidate the effects of 2-HG on gliomagenesis. 2-HG promotes tumorigenesis by impacting metabolism, vascularization and altering the epigenome of glioma cells. Glioma metabolism and vascularization is altered by 2-HG's effect on the stability of hypoxia-inducible factor (HIF) and inhibition of endostatin. However, 2-HG's impacts on epigenetic mechanisms are more profound to gliomagenesis. Through competitive inhibition of JHDMs and TET proteins, 2-HG orchestrates histone and DNA hypermethylation, which is associated with gene silencing and dedifferentiation of cells. The hypermethylator phenotype induced by 2-HG also results in alterations of the interaction of the immune system with the tumour. Additionally, this study reviews 2-HG promotion of tumorigenesis by inhibiting repair of DNA alkylation damage through competitive inhibition of AlkB proteins.
Collapse
|
62
|
Luo D, Dong XW, Yan B, Liu M, Xue TH, Liu H, You JH, Li F, Wang ZL, Chen ZN. MG132 selectively upregulates MICB through the DNA damage response pathway in A549 cells. Mol Med Rep 2018; 19:213-220. [PMID: 30483783 PMCID: PMC6297755 DOI: 10.3892/mmr.2018.9676] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Accepted: 10/23/2018] [Indexed: 12/26/2022] Open
Abstract
Natural killer (NK) cells recognize stress-activated NK group 2, member D (NKG2D) ligands in tumors. In the present study, the expression levels of NKG2D ligands were examined in four lung cancer cell lines (A549, PLA801D, NCI-H157 and NCI-H520). In the A549 cells, the expression of MHC class I polypeptiderelated sequence (MIC)A/B and UL16 binding protein (ULBP)1 was weak, the expression of ULBP2 was typical, and neither ULBP3 nor ULBP4 were expressed. The mechanism underlying the regulatory effect of a cancer treatment agent on the expression of NKG2D ligands was investigated using the proteasome inhibitor MG132. Following treatment for 8 h with MG132, the transcription levels of MICB and ULBP1 were upregulated 10.62- and 11.09-fold, respectively, and the expression levels of MICB and ULBP1 were increased by 68.18 and 23.65%, respectively. Notably, MICB exhibited significant time-dependent change. MG132 increased the transcription of MICB by acting at a site in the 480-bp MICB upstream promoter. The activity of the MICB promoter was upregulated 1.77-fold following treatment with MG132. MG132 treatment improved the cytotoxicity of NK cells, which was partially blocked by an antibody targeting NKG2D, and more specifically the MICB molecule. The expression of MICB induced by MG132 was inhibited by KU-55933 [ataxia telangiectasia mutated (ATM) kinase inhibitor], wortmannin (phosphoinositide 3 kinase inhibitor) and caffeine (ATM/ATM-Rad3-related inhibitor). The phosphorylation of checkpoint kinase 2 (Chk2), an event associated with DNA damage, was observed following treatment with MG132. These results indicated that MG132 selectively upregulates the expression of MICB in A549 cells, and increases the NKG2D-mediated cytotoxicity of NK cells. The regulatory effect of MG132 may be associated with the activation of Chk2, an event associated with DNA damage. The combination of MG132 with NK cell immunotherapy may have a synergistic effect that improves the therapeutic effect of lung cancer treatment.
Collapse
Affiliation(s)
- Dan Luo
- College of Life Science and Bioengineering, School of Science, Beijing Jiaotong University, Beijing 100044, P.R. China
| | - Xi-Wen Dong
- Department of Experimental Hematology, Beijing Institute of Radiation Medicine, Beijing 100850, P.R. China
| | - Bing Yan
- Department of Oncology, Hainan Branch of General Hospital of PLA, Sanya, Hainan 572013, P.R. China
| | - Mei Liu
- Department of Oncology, Hainan Branch of General Hospital of PLA, Sanya, Hainan 572013, P.R. China
| | - Tian-Hui Xue
- Department of Oncology, Hainan Branch of General Hospital of PLA, Sanya, Hainan 572013, P.R. China
| | - Hui Liu
- Department of Oncology, Hainan Branch of General Hospital of PLA, Sanya, Hainan 572013, P.R. China
| | - Jun-Hao You
- Department of Oncology, Hainan Branch of General Hospital of PLA, Sanya, Hainan 572013, P.R. China
| | - Fang Li
- Department of Oncology, Hainan Branch of General Hospital of PLA, Sanya, Hainan 572013, P.R. China
| | - Zi-Ling Wang
- College of Life Science and Bioengineering, School of Science, Beijing Jiaotong University, Beijing 100044, P.R. China
| | - Zhi-Nan Chen
- College of Life Science and Bioengineering, School of Science, Beijing Jiaotong University, Beijing 100044, P.R. China
| |
Collapse
|
63
|
Parodi M, Raggi F, Cangelosi D, Manzini C, Balsamo M, Blengio F, Eva A, Varesio L, Pietra G, Moretta L, Mingari MC, Vitale M, Bosco MC. Hypoxia Modifies the Transcriptome of Human NK Cells, Modulates Their Immunoregulatory Profile, and Influences NK Cell Subset Migration. Front Immunol 2018; 9:2358. [PMID: 30459756 PMCID: PMC6232835 DOI: 10.3389/fimmu.2018.02358] [Citation(s) in RCA: 92] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Accepted: 09/24/2018] [Indexed: 12/29/2022] Open
Abstract
Hypoxia, which characterizes most tumor tissues, can alter the function of different immune cell types, favoring tumor escape mechanisms. In this study, we show that hypoxia profoundly acts on NK cells by influencing their transcriptome, affecting their immunoregulatory functions, and changing the chemotactic responses of different NK cell subsets. Exposure of human peripheral blood NK cells to hypoxia for 16 or 96 h caused significant changes in the expression of 729 or 1,100 genes, respectively. Gene Set Enrichment Analysis demonstrated that these changes followed a consensus hypoxia transcriptional profile. As assessed by Gene Ontology annotation, hypoxia-targeted genes were implicated in several biological processes: metabolism, cell cycle, differentiation, apoptosis, cell stress, and cytoskeleton organization. The hypoxic transcriptome also showed changes in genes with immunological relevance including those coding for proinflammatory cytokines, chemokines, and chemokine-receptors. Quantitative RT-PCR analysis confirmed the modulation of several immune-related genes, prompting further immunophenotypic and functional studies. Multiplex ELISA demonstrated that hypoxia could variably reduce NK cell ability to release IFNγ, TNFα, GM-CSF, CCL3, and CCL5 following PMA+Ionomycin or IL15+IL18 stimulation, while it poorly affected the response to IL12+IL18. Cytofluorimetric analysis showed that hypoxia could influence NK chemokine receptor pattern by sustaining the expression of CCR7 and CXCR4. Remarkably, this effect occurred selectively (CCR7) or preferentially (CXCR4) on CD56bright NK cells, which indeed showed higher chemotaxis to CCL19, CCL21, or CXCL12. Collectively, our data suggest that the hypoxic environment may profoundly influence the nature of the NK cell infiltrate and its effects on immune-mediated responses within tumor tissues.
Collapse
Affiliation(s)
- Monica Parodi
- UOC Immunologia, IRCCS Ospedale Policlinico San Martino, Genova, Italy
| | - Federica Raggi
- Laboratorio di Biologia Molecolare, IRCCS Istituto Giannina Gaslini, Genova, Italy
| | - Davide Cangelosi
- Laboratorio di Biologia Molecolare, IRCCS Istituto Giannina Gaslini, Genova, Italy
| | - Claudia Manzini
- Laboratorio di Immunologia Clinica e Sperimentale, IRCCS Istituto Giannina Gaslini, Genova, Italy
| | - Mirna Balsamo
- Dipartimento di Medicina Sperimentale, Università di Genova, Genova, Italy
| | - Fabiola Blengio
- Laboratorio di Biologia Molecolare, IRCCS Istituto Giannina Gaslini, Genova, Italy
| | - Alessandra Eva
- Laboratorio di Biologia Molecolare, IRCCS Istituto Giannina Gaslini, Genova, Italy
| | - Luigi Varesio
- Laboratorio di Biologia Molecolare, IRCCS Istituto Giannina Gaslini, Genova, Italy
| | - Gabriella Pietra
- UOC Immunologia, IRCCS Ospedale Policlinico San Martino, Genova, Italy.,Dipartimento di Medicina Sperimentale, Università di Genova, Genova, Italy
| | - Lorenzo Moretta
- Immunology Area, Ospedale Pediatrico Bambin Gesù, Rome, Italy
| | - Maria Cristina Mingari
- UOC Immunologia, IRCCS Ospedale Policlinico San Martino, Genova, Italy.,Dipartimento di Medicina Sperimentale, Università di Genova, Genova, Italy.,Center of Excellence for Biomedical Research, University of Genoa, Genova, Italy
| | - Massimo Vitale
- UOC Immunologia, IRCCS Ospedale Policlinico San Martino, Genova, Italy
| | - Maria Carla Bosco
- Laboratorio di Biologia Molecolare, IRCCS Istituto Giannina Gaslini, Genova, Italy
| |
Collapse
|
64
|
Sheppard S, Ferry A, Guedes J, Guerra N. The Paradoxical Role of NKG2D in Cancer Immunity. Front Immunol 2018; 9:1808. [PMID: 30150983 PMCID: PMC6099450 DOI: 10.3389/fimmu.2018.01808] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2018] [Accepted: 07/23/2018] [Indexed: 12/12/2022] Open
Abstract
The activating receptor NKG2D and its ligands are recognized as a potent immune axis that controls tumor growth and microbial infections. With regards to cancer surveillance, various studies have demonstrated the antitumor function mediated by NKG2D on natural killer cells and on conventional and unconventional T cells. The use of NKG2D-deficient mice established the importance of NKG2D in delaying tumor development in transgenic mouse models of cancer. However, we recently demonstrated an unexpected, flip side to this coin, the ability for NKG2D to contribute to tumor growth in a model of inflammation-driven liver cancer. With a focus on the liver, here, we review current knowledge of NKG2D-mediated tumor surveillance and discuss evidence supporting a dual role for NKG2D in cancer immunity. We postulate that in certain advanced cancers, expression of ligands for NKG2D can drive cancer progression rather than rejection. We propose that the nature of the microenvironment within and surrounding tumors impacts the outcome of NKG2D activation. In a form of autoimmune attack, NKG2D promotes tissue damage, mostly in the inflamed tissue adjacent to the tumor, facilitating tumor progression while being ineffective at rejecting transformed cells in the tumor bed.
Collapse
Affiliation(s)
- Sam Sheppard
- Department of Life Sciences, Imperial College London, London, United Kingdom.,Memorial Sloan Kettering Cancer Center, Zuckerman Research Center, New York, NY, United States
| | - Amir Ferry
- Department of Life Sciences, Imperial College London, London, United Kingdom
| | - Joana Guedes
- Department of Life Sciences, Imperial College London, London, United Kingdom
| | - Nadia Guerra
- Department of Life Sciences, Imperial College London, London, United Kingdom
| |
Collapse
|
65
|
Jin F, Lin H, Gao S, Hu Z, Zuo S, Sun L, Jin C, Li W, Yang Y. The anti-tumor role of NK cells in vivo pre-activated and re-stimulated by interleukins in acute lymphoblastic leukemia. Oncotarget 2018; 7:79187-79202. [PMID: 27816971 PMCID: PMC5346707 DOI: 10.18632/oncotarget.13007] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2015] [Accepted: 10/26/2016] [Indexed: 01/20/2023] Open
Abstract
Although natural killer cells (NK cells) were traditionally classified as members of the innate immune system, NK cells have recently been found also to be an important player in the adaptive immune systems. In this context, in vitro activation of NK cells by cytokines leads to generation of NK cells with memory-like properties characterized by increased interferon-γ (IFNγ) production. However, it remains to be defined whether these memory-like NK cells exist in vivo after cytokine activation. Furthermore, it is also unclear whether such memory-like NK cells induced in vivo by cytokines could have effective anti-leukemia response. To address these issues, we used an in vivo pre-activation and re-stimulation system that was able to produce NK cells with increased IFNγ secretion. It was found that after in vivo pre-activation and re-stimulation with interleukins (ILs), NK cells retained a state to produce increased amount of IFNγ. Of note, whereas this intrinsic capacity of enhanced IFNγ production after in vivo IL pre-activation and re-stimulation could be transferred to the next generation of NK cells and was associated with prolonged survival of the mice with acute lymphoid leukemia. Moreover, the anti-leukemia activity of these memory-like NK cells was associated with IFNγ production and up-regulation of NK cells activation receptor-NK Group 2 member D (NKG2D). Together, these findings argue strongly that in vivo IL pre-activation and re-stimulation is capable to induce memory-like NK cells as observed previously in vitro, which are effective against acute lymphoblastic leukemia, likely via NKG2D-dependent IFNγ production, in intact animals.
Collapse
Affiliation(s)
- Fengyan Jin
- Department of Hematology, The First Bethune Hospital of Jilin University, Changchun, China
| | - Hai Lin
- Department of Hematology, The First Bethune Hospital of Jilin University, Changchun, China
| | - Sujun Gao
- Department of Hematology, The First Bethune Hospital of Jilin University, Changchun, China
| | - Zheng Hu
- Institute of Translational Medicine, The First Bethune Hospital of Jilin University, Changchun, China
| | - Song Zuo
- Institute of Translational Medicine, The First Bethune Hospital of Jilin University, Changchun, China
| | - Liguang Sun
- Institute of Translational Medicine, The First Bethune Hospital of Jilin University, Changchun, China
| | - Chunhui Jin
- Department of Hematology, The First Bethune Hospital of Jilin University, Changchun, China
| | - Wei Li
- Department of Hematology, The First Bethune Hospital of Jilin University, Changchun, China
| | - Yanping Yang
- Department of Hematology, The First Bethune Hospital of Jilin University, Changchun, China
| |
Collapse
|
66
|
Kamran N, Alghamri MS, Nunez FJ, Shah D, Asad AS, Candolfi M, Altshuler D, Lowenstein PR, Castro MG. Current state and future prospects of immunotherapy for glioma. Immunotherapy 2018; 10:317-339. [PMID: 29421984 PMCID: PMC5810852 DOI: 10.2217/imt-2017-0122] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Accepted: 11/30/2017] [Indexed: 12/14/2022] Open
Abstract
There is a large unmet need for effective therapeutic approaches for glioma, the most malignant brain tumor. Clinical and preclinical studies have enormously expanded our knowledge about the molecular aspects of this deadly disease and its interaction with the host immune system. In this review we highlight the wide array of immunotherapeutic interventions that are currently being tested in glioma patients. Given the molecular heterogeneity, tumor immunoediting and the profound immunosuppression that characterize glioma, it has become clear that combinatorial approaches targeting multiple pathways tailored to the genetic signature of the tumor will be required in order to achieve optimal therapeutic efficacy.
Collapse
Affiliation(s)
- Neha Kamran
- Department of Neurosurgery, The University of Michigan School of Medicine, MSRB II, RM 4570C, 1150 West Medical Center Drive, Ann Arbor, MI 48109-5689, USA
- Department of Cell & Developmental Biology, The University of Michigan School of Medicine, MSRB II, RM 4570C, 1150 West Medical Center Drive, Ann Arbor, MI 48109-5689, USA
| | - Mahmoud S Alghamri
- Department of Neurosurgery, The University of Michigan School of Medicine, MSRB II, RM 4570C, 1150 West Medical Center Drive, Ann Arbor, MI 48109-5689, USA
- Department of Cell & Developmental Biology, The University of Michigan School of Medicine, MSRB II, RM 4570C, 1150 West Medical Center Drive, Ann Arbor, MI 48109-5689, USA
| | - Felipe J Nunez
- Department of Neurosurgery, The University of Michigan School of Medicine, MSRB II, RM 4570C, 1150 West Medical Center Drive, Ann Arbor, MI 48109-5689, USA
- Department of Cell & Developmental Biology, The University of Michigan School of Medicine, MSRB II, RM 4570C, 1150 West Medical Center Drive, Ann Arbor, MI 48109-5689, USA
| | - Diana Shah
- Department of Neurosurgery, The University of Michigan School of Medicine, MSRB II, RM 4570C, 1150 West Medical Center Drive, Ann Arbor, MI 48109-5689, USA
- Department of Cell & Developmental Biology, The University of Michigan School of Medicine, MSRB II, RM 4570C, 1150 West Medical Center Drive, Ann Arbor, MI 48109-5689, USA
| | - Antonela S Asad
- Instituto de Investigaciones Biomédicas (CONICET-UBA), Facultad de Medicina, Universidad de Buenos Aires, Argentina
| | - Marianela Candolfi
- Instituto de Investigaciones Biomédicas (CONICET-UBA), Facultad de Medicina, Universidad de Buenos Aires, Argentina
| | - David Altshuler
- Department of Neurosurgery, The University of Michigan School of Medicine, MSRB II, RM 4570C, 1150 West Medical Center Drive, Ann Arbor, MI 48109-5689, USA
- Department of Cell & Developmental Biology, The University of Michigan School of Medicine, MSRB II, RM 4570C, 1150 West Medical Center Drive, Ann Arbor, MI 48109-5689, USA
| | - Pedro R Lowenstein
- Department of Neurosurgery, The University of Michigan School of Medicine, MSRB II, RM 4570C, 1150 West Medical Center Drive, Ann Arbor, MI 48109-5689, USA
- Department of Cell & Developmental Biology, The University of Michigan School of Medicine, MSRB II, RM 4570C, 1150 West Medical Center Drive, Ann Arbor, MI 48109-5689, USA
| | - Maria G Castro
- Department of Neurosurgery, The University of Michigan School of Medicine, MSRB II, RM 4570C, 1150 West Medical Center Drive, Ann Arbor, MI 48109-5689, USA
- Department of Cell & Developmental Biology, The University of Michigan School of Medicine, MSRB II, RM 4570C, 1150 West Medical Center Drive, Ann Arbor, MI 48109-5689, USA
| |
Collapse
|
67
|
Weiss T, Schneider H, Silginer M, Steinle A, Pruschy M, Polić B, Weller M, Roth P. NKG2D-Dependent Antitumor Effects of Chemotherapy and Radiotherapy against Glioblastoma. Clin Cancer Res 2017; 24:882-895. [PMID: 29162646 DOI: 10.1158/1078-0432.ccr-17-1766] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Revised: 10/12/2017] [Accepted: 11/15/2017] [Indexed: 11/16/2022]
Abstract
Purpose: NKG2D is a potent activating immune cell receptor, and glioma cells express the cognate ligands (NKG2DL). These ligands are inducible by cellular stress and temozolomide (TMZ) or irradiation (IR), the standard treatment of glioblastoma, could affect their expression. However, a role of NKG2DL for the efficacy of TMZ and IR has never been addressed.Experimental Design: We assessed the effect of TMZ and IR on NKG2DL in vitro and in vivo in a variety of murine and human glioblastoma models, including glioma-initiating cells, and a cohort of paired glioblastoma samples from patients before and after therapy. Functional effects were studied with immune cell assays. The relevance of the NKG2D system for the efficacy of TMZ and IR was assessed in vivo in syngeneic orthotopic glioblastoma models with blocking antibodies and NKG2D knockout mice.Results: TMZ or IR induced NKG2DL in vitro and in vivo in all glioblastoma models, and glioblastoma patient samples had increased levels of NKG2DL after therapy with TMZ and IR. This enhanced the immunogenicity of glioma cells in a NGK2D-dependent manner, was independent from cytotoxic or growth inhibitory effects, attenuated by O6-methylguanine-DNA-methyltransferase (MGMT), and required the DNA damage response. The survival benefit afforded by TMZ or IR relied on an intact NKG2D system and was decreased upon inhibition of the NKG2D pathway.Conclusions: The immune system may influence the activity of convential cancer treatments with particular importance of the NKG2D pathway in glioblastoma. Our data provide a rationale to combine NKG2D-based immunotherapies with TMZ and IR. Clin Cancer Res; 24(4); 882-95. ©2017 AACR.
Collapse
Affiliation(s)
- Tobias Weiss
- Department of Neurology and Brain Tumor Center, University Hospital Zurich and University of Zurich, Switzerland
| | - Hannah Schneider
- Department of Neurology and Brain Tumor Center, University Hospital Zurich and University of Zurich, Switzerland
| | - Manuela Silginer
- Department of Neurology and Brain Tumor Center, University Hospital Zurich and University of Zurich, Switzerland
| | | | - Martin Pruschy
- Department of Radiation Oncology, University Hospital Zurich and University of Zurich, Switzerland
| | - Bojan Polić
- Department of Histology and Embryology, Faculty of Medicine, University of Rijeka, Croatia
| | - Michael Weller
- Department of Neurology and Brain Tumor Center, University Hospital Zurich and University of Zurich, Switzerland
| | - Patrick Roth
- Department of Neurology and Brain Tumor Center, University Hospital Zurich and University of Zurich, Switzerland.
| |
Collapse
|
68
|
Pittari G, Vago L, Festuccia M, Bonini C, Mudawi D, Giaccone L, Bruno B. Restoring Natural Killer Cell Immunity against Multiple Myeloma in the Era of New Drugs. Front Immunol 2017; 8:1444. [PMID: 29163516 PMCID: PMC5682004 DOI: 10.3389/fimmu.2017.01444] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Accepted: 10/17/2017] [Indexed: 12/24/2022] Open
Abstract
Transformed plasma cells in multiple myeloma (MM) are susceptible to natural killer (NK) cell-mediated killing via engagement of tumor ligands for NK activating receptors or “missing-self” recognition. Similar to other cancers, MM targets may elude NK cell immunosurveillance by reprogramming tumor microenvironment and editing cell surface antigen repertoire. Along disease continuum, these effects collectively result in a progressive decline of NK cell immunity, a phenomenon increasingly recognized as a critical determinant of MM progression. In recent years, unprecedented efforts in drug development and experimental research have brought about emergence of novel therapeutic interventions with the potential to override MM-induced NK cell immunosuppression. These NK-cell enhancing treatment strategies may be identified in two major groups: (1) immunomodulatory biologics and small molecules, namely, immune checkpoint inhibitors, therapeutic antibodies, lenalidomide, and indoleamine 2,3-dioxygenase inhibitors and (2) NK cell therapy, namely, adoptive transfer of unmanipulated and chimeric antigen receptor-engineered NK cells. Here, we summarize the mechanisms responsible for NK cell functional suppression in the context of cancer and, specifically, myeloma. Subsequently, contemporary strategies potentially able to reverse NK dysfunction in MM are discussed.
Collapse
Affiliation(s)
- Gianfranco Pittari
- Department of Medical Oncology, National Center for Cancer Care and Research, HMC, Doha, Qatar
| | - Luca Vago
- Unit of Immunogenetics, Leukemia Genomics and Immunobiology, IRCCS San Raffaele Scientific Institute, Milano, Italy.,Hematology and Bone Marrow Transplantation Unit, IRCCS San Raffaele Scientific Institute, Milano, Italy
| | - Moreno Festuccia
- Department of Oncology/Hematology, A.O.U. Città della Salute e della Scienza di Torino, Presidio Molinette, Torino, Italy.,Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy
| | - Chiara Bonini
- Experimental Hematology Unit, Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milano, Italy.,Vita-Salute San Raffaele University, Milano, Italy
| | - Deena Mudawi
- Department of Medical Oncology, National Center for Cancer Care and Research, HMC, Doha, Qatar
| | - Luisa Giaccone
- Department of Oncology/Hematology, A.O.U. Città della Salute e della Scienza di Torino, Presidio Molinette, Torino, Italy.,Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy
| | - Benedetto Bruno
- Department of Oncology/Hematology, A.O.U. Città della Salute e della Scienza di Torino, Presidio Molinette, Torino, Italy.,Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy
| |
Collapse
|
69
|
Immune microenvironment of gliomas. J Transl Med 2017; 97:498-518. [PMID: 28287634 DOI: 10.1038/labinvest.2017.19] [Citation(s) in RCA: 369] [Impact Index Per Article: 52.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Revised: 01/16/2017] [Accepted: 01/19/2017] [Indexed: 12/13/2022] Open
Abstract
High-grade gliomas are rapidly progressing tumors of the central nervous system (CNS) with a very poor prognosis despite extensive resection combined with radiation and/or chemotherapy. Histopathological and flow cytometry analyses of human and rodent experimental gliomas revealed heterogeneity of a tumor and its niche, composed of reactive astrocytes, endothelial cells, and numerous immune cells. Infiltrating immune cells consist of CNS resident (microglia) and peripheral macrophages, granulocytes, myeloid-derived suppressor cells (MDSCs), and T lymphocytes. Intratumoral density of glioma-associated microglia/macrophages (GAMs) and MDSCs is the highest in malignant gliomas and inversely correlates with patient survival. Although GAMs have a few innate immune functions intact, their ability to be stimulated via TLRs, secrete cytokines, and upregulate co-stimulatory molecules is not sufficient to initiate antitumor immune responses. Moreover, tumor-reprogrammed GAMs release immunosuppressive cytokines and chemokines shaping antitumor responses. Both GAMs and MDSCs have ability to attract T regulatory lymphocytes to the tumor, but MDSCs inhibit cytotoxic responses mediated by natural killer cells, and block the activation of tumor-reactive CD4+ T helper cells and cytotoxic CD8+ T cells. The presence of regulatory T cells may further contribute to the lack of effective immune activation against malignant gliomas. We review the immunological aspects of glioma microenvironment, in particular composition and various roles of the immune cells infiltrating malignant human gliomas and experimental rodent gliomas. We describe tumor-derived signals and mechanisms driving myeloid cell accumulation and reprogramming. Although, understanding the complexity of cell-cell interactions in glioma microenvironment is far from being achieved, recent studies demonstrated several glioma-derived factors that trigger migration, accumulation, and reprogramming of immune cells. Identification of these factors may facilitate development of immunotherapy for gliomas as immunomodulatory and immune evasion mechanisms employed by malignant gliomas pose an appalling challenge to brain tumor immunotherapy.
Collapse
|
70
|
Seystahl K, Papachristodoulou A, Burghardt I, Schneider H, Hasenbach K, Janicot M, Roth P, Weller M. Biological Role and Therapeutic Targeting of TGF-β 3 in Glioblastoma. Mol Cancer Ther 2017; 16:1177-1186. [PMID: 28377490 DOI: 10.1158/1535-7163.mct-16-0465] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Revised: 09/06/2016] [Accepted: 03/23/2017] [Indexed: 11/16/2022]
Abstract
Transforming growth factor (TGF)-β contributes to the malignant phenotype of glioblastoma by promoting invasiveness and angiogenesis and creating an immunosuppressive microenvironment. So far, TGF-β1 and TGF-β2 isoforms have been considered to act in a similar fashion without isoform-specific function in glioblastoma. A pathogenic role for TGF-β3 in glioblastoma has not been defined yet. Here, we studied the expression and functional role of endogenous and exogenous TGF-β3 in glioblastoma models. TGF-β3 mRNA is expressed in human and murine long-term glioma cell lines as well as in human glioma-initiating cell cultures with expression levels lower than TGF-β1 or TGF-β2 in most cell lines. Inhibition of TGF-β3 mRNA expression by ISTH2020 or ISTH2023, two different isoform-specific phosphorothioate locked nucleic acid (LNA)-modified antisense oligonucleotide gapmers, blocks downstream SMAD2 and SMAD1/5 phosphorylation in human LN-308 cells, without affecting TGF-β1 or TGF-β2 mRNA expression or protein levels. Moreover, inhibition of TGF-β3 expression reduces invasiveness in vitro Interestingly, depletion of TGF-β3 also attenuates signaling evoked by TGF-β1 or TGF-β2 In orthotopic syngeneic (SMA-560) and xenograft (LN-308) in vivo glioma models, expression of TGF-β3 as well as of the downstream target, plasminogen-activator-inhibitor (PAI)-1, was reduced, while TGF-β1 and TGF-β2 levels were unaffected following systemic treatment with TGF-β3 -specific antisense oligonucleotides. We conclude that TGF-β3 might function as a gatekeeper controlling downstream signaling despite high expression of TGF-β1 and TGF-β2 isoforms. Targeting TGF-β3in vivo may represent a promising strategy interfering with aberrant TGF-β signaling in glioblastoma. Mol Cancer Ther; 16(6); 1177-86. ©2017 AACR.
Collapse
Affiliation(s)
- Katharina Seystahl
- Laboratory of Molecular Neuro-Oncology, Department of Neurology, University Hospital and University of Zurich, Switzerland.
| | - Alexandros Papachristodoulou
- Laboratory of Molecular Neuro-Oncology, Department of Neurology, University Hospital and University of Zurich, Switzerland
| | - Isabel Burghardt
- Laboratory of Molecular Neuro-Oncology, Department of Neurology, University Hospital and University of Zurich, Switzerland
| | - Hannah Schneider
- Laboratory of Molecular Neuro-Oncology, Department of Neurology, University Hospital and University of Zurich, Switzerland
| | - Kathy Hasenbach
- Laboratory of Molecular Neuro-Oncology, Department of Neurology, University Hospital and University of Zurich, Switzerland.,Isarna Therapeutics GmbH, Munich, Germany
| | | | - Patrick Roth
- Laboratory of Molecular Neuro-Oncology, Department of Neurology, University Hospital and University of Zurich, Switzerland
| | - Michael Weller
- Laboratory of Molecular Neuro-Oncology, Department of Neurology, University Hospital and University of Zurich, Switzerland
| |
Collapse
|
71
|
Mangani D, Weller M, Roth P. The network of immunosuppressive pathways in glioblastoma. Biochem Pharmacol 2017; 130:1-9. [DOI: 10.1016/j.bcp.2016.12.011] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Accepted: 12/13/2016] [Indexed: 12/21/2022]
|
72
|
Chen XH, Lu LL, Ke HP, Liu ZC, Wang HF, Wei W, Qi YF, Wang HS, Cai SH, Du J. The TGF-β-induced up-regulation of NKG2DLs requires AKT/GSK-3β-mediated stabilization of SP1. J Cell Mol Med 2017; 21:860-870. [PMID: 28165192 PMCID: PMC5387140 DOI: 10.1111/jcmm.13025] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Accepted: 10/02/2016] [Indexed: 02/05/2023] Open
Abstract
Natural killer (NK) cells play an important role in preventing cancer development. NK group 2 member D (NKG2D) is an activating receptor expressed in the membrane of NK cells. Tumour cells expressing NKG2DL become susceptible to an immune‐dependent rejection mainly mediated by NK cells. The paradoxical roles of transforming growth factor beta (TGF‐β) in regulation of NKG2DL are presented in many studies, but the mechanism is unclear. In this study, we showed that TGF‐β up‐regulated the expression of NKG2DLs in both PC3 and HepG2 cells. The up‐regulation of NKG2DLs was characterized by increasing the expression of UL16‐binding proteins (ULBPs) 1 and 2. TGF‐β treatment also increased the expression of transcription factor SP1. Knockdown of SP1 significantly attenuated TGF‐β‐induced up‐regulation of NKG2DLs in PC3 and HepG2 cells, suggesting that SP1 plays a key role in TGF‐β‐induced up‐regulation of NKG2DLs. TGF‐β treatment rapidly increased SP1 protein expression while not mRNA level. It might be due to that TGF‐β can elevate SP1 stability by activating PI3K/AKT signalling pathway, subsequently inhibiting GSK‐3β activity and decreasing the association between SP1 and GSK‐3β. Knockdown of GSK‐3β further verified our findings. Taken together, these results revealed that AKT/GSK‐3β‐mediated stabilization of SP1 is required for TGF‐β induced up‐regulation of NKG2DLs. Our study provided valuable evidence for exploring the tumour immune modulation function of TGF‐β.
Collapse
Affiliation(s)
- Xiao-Hui Chen
- Department of Microbial and Biochemical Pharmacy, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Lin-Lin Lu
- Department of Microbial and Biochemical Pharmacy, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Hong-Peng Ke
- Department of Microbial and Biochemical Pharmacy, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Zong-Cai Liu
- Department of Microbial and Biochemical Pharmacy, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Hai-Fang Wang
- Department of Microbial and Biochemical Pharmacy, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Wei Wei
- Department of Microbial and Biochemical Pharmacy, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Yi-Fei Qi
- Department of Microbial and Biochemical Pharmacy, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Hong-Sheng Wang
- Department of Microbial and Biochemical Pharmacy, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Shao-Hui Cai
- Department of Pharmacology, School of Pharmaceutical Sciences, Jinan University, Guangzhou, China
| | - Jun Du
- Department of Microbial and Biochemical Pharmacy, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
73
|
Fujiwara A, Shintani Y, Funaki S, Kawamura T, Kimura T, Minami M, Okumura M. Pirfenidone plays a biphasic role in inhibition of epithelial-mesenchymal transition in non-small cell lung cancer. Lung Cancer 2017; 106:8-16. [PMID: 28285699 DOI: 10.1016/j.lungcan.2017.01.006] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Revised: 01/04/2017] [Accepted: 01/12/2017] [Indexed: 12/28/2022]
Abstract
INTRODUCTION Epithelial to mesenchymal transition (EMT) relates to both organ fibrosis and malignant behavior of cancer. Pirfenidone (PFD) is an anti-fibrotic agent for idiopathic pulmonary fibrosis and one of its functions may be to inhibit fibrotic EMT. This study aimed to investigate the possibility that PFD might exert an anti-tumor effect through inhibition of EMT in non-small cell lung cancer (NSCLC) cell lines in vitro and in vivo. METHODS NSCLC cells (A549, NCI-H358) were used to evaluate PFD effects on TGF-β1 induced phenotypic changes. Possible TGF-β1 signaling pathways modulated by PFD were evaluated. The effects of PFD on EMT induced by an anti-cancer drug was also analyzed. The impact of PFD on tumor growth in nude mice as well as on EMT change in vivo was also determined. RESULTS PFD significantly inhibited TGF-β1-induced EMT. Smad2 phosphorylation and TGF-β1 receptor I expression were also inhibited as was translocation of Smad2 from the cytoplasm into the nucleus. Carboplatin induced elevation of TGF-β1 production from cancer cells together with induction of EMT, which were suppressed by co-treatment with PFD. In in vivo examination, PFD alone did not inhibit tumor progression whereas its combination with carboplatin significantly decreased tumor growth. Immunohistological analysis showed that PFD suppressed EMT change induced by carboplatin. CONCLUSIONS PFD could attenuate the EMT process induced not only by exogenous TGF-β1 but also by paracrine TGF-β produced from NSCLC cells. PFD may be a promising new therapeutic agent for the treatment of NSCLC through the regulation of EMT.
Collapse
Affiliation(s)
- Ayako Fujiwara
- Department of General Thoracic Surgery, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Yasushi Shintani
- Department of General Thoracic Surgery, Osaka University Graduate School of Medicine, Osaka, Japan.
| | - Soichiro Funaki
- Department of General Thoracic Surgery, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Tomohiro Kawamura
- Department of General Thoracic Surgery, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Toru Kimura
- Department of General Thoracic Surgery, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Masato Minami
- Department of General Thoracic Surgery, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Meinoshin Okumura
- Department of General Thoracic Surgery, Osaka University Graduate School of Medicine, Osaka, Japan
| |
Collapse
|
74
|
Mathupala SP, Guthikonda M, Sloan AE. RNAi Based Approaches to the Treatment of Malignant Glioma. Technol Cancer Res Treat 2016; 5:261-9. [PMID: 16700622 DOI: 10.1177/153303460600500313] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
RNA interference (RNAi) is a recently discovered, powerful molecular mechanism that can be harnessed to engineer gene-specific silencing in mammalian tissues. A mechanism, where short double-stranded RNA (dsRNA) molecules, when introduced into cells elicit specific “knock-down” of gene expression via degradation of targeted messenger RNA, has lately become the technique of choice for analysis of gene function in oncology research. Thus, RNAi is currently being extensively evaluated as a potential therapeutic strategy against malignant gliomas, since surgical, radiological, and chemotherapeutic interventions during the past few decades have done little to improve the poor prognosis rate for patients with these dreaded tumors. This review summarizes the pre-clinical studies that are currently underway to test the validity of RNAi as a potential therapeutic strategy against malignant gliomas, and discusses the potential technical Hurdles that remain to be overcome before the technique can become a promising clinical therapy to combat this frequently lethal disease.
Collapse
Affiliation(s)
- Saroj P Mathupala
- Department of Neurological Surgery, Karmanos Cancer Institute, Wayne State University School of Medicine, 808 HWCRC, 4100 John R. Road, Detroit, MI 48201, USA.
| | | | | |
Collapse
|
75
|
Hu J, Batth IS, Xia X, Li S. Regulation of NKG2D +CD8 + T-cell-mediated antitumor immune surveillance: Identification of a novel CD28 activation-mediated, STAT3 phosphorylation-dependent mechanism. Oncoimmunology 2016; 5:e1252012. [PMID: 28123894 DOI: 10.1080/2162402x.2016.1252012] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Revised: 10/10/2016] [Accepted: 10/19/2016] [Indexed: 01/06/2023] Open
Abstract
The natural killer (NK) group 2D (NKG2D) receptor, which displays on mouse and human NK cells, activates CD8+ T cells and small subsets of other T cells. NKG2D+CD8+ T cells play critical roles in both innate and adaptive immunity upon engagement with NKG2D ligands to eliminate tumor and infected cells. Despite the important role of NKG2D+CD8+ T cells in immune surveillance, the mechanisms of how NKG2D expression on CD8+ T cells is regulated remain poorly defined. We treated mouse and human CD8+ T cells with CD80 recombinant protein, plus a pharmacologic model with small molecular inhibitors to determine which signaling pathway leads to NKG2D regulation on CD8+T cells. This study revealed that CD28 activation gives rise to sustained NKG2D expression on both mouse and human CD8+ T cells in a signal transducer and activator of transcription 3 (STAT3) phosphorylation-dependent manner. Further, we found that CD28 activation stimulated sustained activation of the tyrosine kinase Lck, which recruits and triggers Janus kinase/STAT3 signaling to phosphorylate STAT3, and in turn increases NKG2D expression. Moreover, NKG2D induction on CD8+ T cells exerts cytolytic activity against target tumor cells in vitro, as well as significantly improves the antitumor therapeutic effects in vivo in an NKG2D-dependent manner. Taken together, these results elucidated a novel mechanism of NKG2D regulation by phosphorylated STAT3 (pSTAT3) on CD8+ T cells upon CD28 activation. This mechanism may shed light on the effectiveness of CD80-based, NKG2D-dependent antitumor immunotherapy.
Collapse
Affiliation(s)
- Jiemiao Hu
- Division of Pediatrics, The University of Texas MD Anderson Cancer Center , Houston, TX, USA
| | - Izhar S Batth
- Division of Pediatrics, The University of Texas MD Anderson Cancer Center , Houston, TX, USA
| | - Xueqing Xia
- Division of Pediatrics, The University of Texas MD Anderson Cancer Center , Houston, TX, USA
| | - Shulin Li
- Division of Pediatrics, The University of Texas MD Anderson Cancer Center , Houston, TX, USA
| |
Collapse
|
76
|
Rocca YS, Roberti MP, Juliá EP, Pampena MB, Bruno L, Rivero S, Huertas E, Sánchez Loria F, Pairola A, Caignard A, Mordoh J, Levy EM. Phenotypic and Functional Dysregulated Blood NK Cells in Colorectal Cancer Patients Can Be Activated by Cetuximab Plus IL-2 or IL-15. Front Immunol 2016; 7:413. [PMID: 27777574 PMCID: PMC5056190 DOI: 10.3389/fimmu.2016.00413] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Accepted: 09/23/2016] [Indexed: 12/12/2022] Open
Abstract
The clinical outcome of colorectal cancer (CRC) is associated with the immune response; thus, these tumors could be responsive to different immune therapy approaches. Natural killer (NK) cells are key antitumor primary effectors that can eliminate CRC cells without prior immunization. We previously determined that NK cells from the local tumor environment of CRC tumors display a profoundly altered phenotype compared with circulating NK cells from healthy donors (HD). In this study, we evaluated peripheral blood NK cells from untreated patients and their possible role in metastasis progression. We observed profound deregulation in receptor expression even in early stages of disease compared with HD. CRC-NK cells displayed underexpression of CD16, NKG2D, DNAM-1, CD161, NKp46, and NKp30 activating receptors, while inhibitory receptors CD85j and NKG2A were overexpressed. This inhibited phenotype affected cytotoxic functionality against CRC cells and interferon-γ production. We also determined that NKp30 and NKp46 are the key receptors involved in detriment of CRC-NK cells’ antitumor activity. Moreover, NKp46 expression correlated with relapse-free survival of CRC patients with a maximum follow-up of 71 months. CRC-NK cells also exhibited altered antibody-dependent cellular cytotoxicity function responding poorly to cetuximab. IL-2 and IL-15 in combination with cetuximab stimulated NK cell, improving cytotoxicity. These results show potential strategies to enhance CRC-NK cell activity.
Collapse
Affiliation(s)
- Yamila Sol Rocca
- Fundación Instituto Leloir-IIBBA, Ciudad Autónoma de Buenos Aires , Buenos Aires , Argentina
| | - María Paula Roberti
- Centro de Investigaciones Oncológicas CIO-FUCA, Ciudad Autónoma de Buenos Aires , Buenos Aires , Argentina
| | - Estefanía Paula Juliá
- Centro de Investigaciones Oncológicas CIO-FUCA, Ciudad Autónoma de Buenos Aires , Buenos Aires , Argentina
| | - María Betina Pampena
- Centro de Investigaciones Oncológicas CIO-FUCA, Ciudad Autónoma de Buenos Aires , Buenos Aires , Argentina
| | - Luisina Bruno
- Instituto Alexander Fleming, Ciudad Autónoma de Buenos Aires , Buenos Aires , Argentina
| | - Sergio Rivero
- Instituto Alexander Fleming, Ciudad Autónoma de Buenos Aires , Buenos Aires , Argentina
| | - Eduardo Huertas
- Instituto Alexander Fleming, Ciudad Autónoma de Buenos Aires , Buenos Aires , Argentina
| | | | - Alejandro Pairola
- Instituto Alexander Fleming, Ciudad Autónoma de Buenos Aires , Buenos Aires , Argentina
| | - Anne Caignard
- UMRS-1160, Institut National de la Santé et de la Recherche Médicale (INSERM), Paris, France; U1160, Université Paris Diderot, Sorbonne Paris Cité, Paris, France
| | - José Mordoh
- Fundación Instituto Leloir-IIBBA, Ciudad Autónoma de Buenos Aires, Buenos Aires, Argentina; Centro de Investigaciones Oncológicas CIO-FUCA, Ciudad Autónoma de Buenos Aires, Buenos Aires, Argentina; Instituto Alexander Fleming, Ciudad Autónoma de Buenos Aires, Buenos Aires, Argentina
| | - Estrella Mariel Levy
- Centro de Investigaciones Oncológicas CIO-FUCA, Ciudad Autónoma de Buenos Aires , Buenos Aires , Argentina
| |
Collapse
|
77
|
Luan Y, Liu J, Liu X, Xue X, Kong F, Sun C, Wang J, Liu L, Jia H. Tetramethypyrazine inhibits renal cell carcinoma cells through inhibition of NKG2D signaling pathways. Int J Oncol 2016; 49:1704-12. [DOI: 10.3892/ijo.2016.3670] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Accepted: 08/02/2016] [Indexed: 11/05/2022] Open
|
78
|
Nana AW, Yang PM, Lin HY. Overview of Transforming Growth Factor β Superfamily Involvement in Glioblastoma Initiation and Progression. Asian Pac J Cancer Prev 2016; 16:6813-23. [PMID: 26514451 DOI: 10.7314/apjcp.2015.16.16.6813] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Glioblastoma, also known as glioblastoma multiforme (GBM), is the most aggressive of human brain tumors and has a stunning progression with a mean survival of one year from the date of diagnosis. High cell proliferation, angiogenesis and/or necrosis are histopathological features of this cancer, which has no efficient curative therapy. This aggressiveness is associated with particular heterogeneity of the tumor featuring multiple genetic and epigenetic alterations, but also with implications of aberrant signaling driven by growth factors. The transforming growth factor β (TGFβ) superfamily is a large group of structurally related proteins including TGFβ subfamily members Nodal, Activin, Lefty, bone morphogenetic proteins (BMPs) and growth and differentiation factor (GDF). It is involved in important biological functions including morphogenesis, embryonic development, adult stem cell differentiation, immune regulation, wound healing and inflammation. This superfamily is also considered to impact on cancer biology including that of GBM, with various effects depending on the member. The TGFβ subfamily, in particular, is overexpressed in some GBM types which exhibit aggressive phenotypes. This subfamily impairs anti-cancer immune responses in several ways, including immune cells inhibition and major histocompatibility (MHC) class I and II abolishment. It promotes GBM angiogenesis by inducing angiogenic factors such as vascular endothelial growth factor (VEGF), plasminogen activator inhibitor (PAI-I) and insulin- like growth factor-binding protein 7 (IGFBP7), contributes to GBM progression by inducing metalloproteinases (MMPs), "pro-neoplastic" integrins (αvβ3, α5β1) and GBM initiating cells (GICs) as well as inducing a GBM mesenchymal phenotype. Equally, Nodal promotes GICs, induces cancer metabolic switch and supports GBM cell proliferation, but is negatively regulated by Lefty. Activin promotes GBM cell proliferation while GDF yields immune-escape function. On the other hand, BMPs target GICS and induce differentiation and sensitivity to chemotherapy. This multifaceted involvement of this superfamily in GBM necessitates different strategies in anti-cancer therapy. While suppressing the TGFβ subfamily yields advantageous results, enhancing BMPs production is also beneficial.
Collapse
Affiliation(s)
- Andre Wendindonde Nana
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan E-mail :
| | | | | |
Collapse
|
79
|
Shvidler J, Bothwell NE, Cable B. Refining indications for the use of mitomycin C using a randomized controlled trial with an animal model. Otolaryngol Head Neck Surg 2016; 136:653-7. [PMID: 17418268 DOI: 10.1016/j.otohns.2006.10.037] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2006] [Accepted: 10/27/2006] [Indexed: 10/23/2022]
Abstract
Objectives To evaluate the effect of mitomycin on the repair of acquired subglottic stenosis and to define the optimal concentration of mitomycin that would minimize restenosis after repair. Study Design And Setting A randomized prospective model was used in which 20 ferrets ( Mustela putorius furo) underwent simulated intubation injury that was then treated with CO2 laser lysis. Results Comparison of cross-sectional airway areas, after stenosis repair, showed no significant differences between control and mitomycin treatment groups. Comparison of histologic scores for both inflammation and mucosalization yielded no difference between control and treatment animals. Conclusions Mitomycin C appeared to have no benefit when placed after repair of an acquired stenosis. Significance This study closely models the injury experienced by children with acquired subglottic stenosis. These data provide clear evidence that mitomycin is limited in its effect on established wounds and help further define its role as an adjuvant for surgery in the aerodigestive tract.
Collapse
|
80
|
Zhang H, Li N, Zhang J, Jin F, Shan M, Qin J, Wang Y. The influence of miR-34a expression on stemness and cytotoxic susceptibility of breast cancer stem cells. Cancer Biol Ther 2016; 17:614-24. [PMID: 27082152 DOI: 10.1080/15384047.2016.1177678] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023] Open
Abstract
In this study, we investigate the effect of miR-34a expression and biological characteristics of breast cancer stem cells (BCSCs). The mammospheres were formed from murine breast cancer cell line 4T1 and regarded as murine BCSCs. Identification of stemness molecules and cloning experiments validate the biological characteristics of BCSCs we have established. We showed that miR-34a, as a tumor suppressor, could separately reduce the stemness of BCSCs and activate the cytotoxic susceptibility of BCSCs to natural killer (NK) cells in vitro via down regulating the expression of Notch1 signaling molecules. Moreover, miR-34a could completely restrain established mice breast tumor xenografts in vivo in the NOD/SCID mice that have functional NK cells at a normal level, whereas it was less effective in NOD/SCID/ CD122/IL-2Rβ mice that do not have functional NK cells. We conclude that miR-34a is a crucial, dual tumor suppressor and BCSCs-targeting immunotherapeutic agent and has shown efficacy in the treatment of murine breast cancer. The results also suggest that impaired NK cells could contribute to the resistance to therapies.
Collapse
Affiliation(s)
- Hongyao Zhang
- a Medical School of Nankai University , Tianjin , China
| | - Ning Li
- a Medical School of Nankai University , Tianjin , China
| | - Jiahui Zhang
- a Medical School of Nankai University , Tianjin , China
| | - Fengjiao Jin
- a Medical School of Nankai University , Tianjin , China
| | - Meihua Shan
- a Medical School of Nankai University , Tianjin , China
| | - Junfang Qin
- a Medical School of Nankai University , Tianjin , China
| | - Yue Wang
- a Medical School of Nankai University , Tianjin , China
| |
Collapse
|
81
|
Liu F, Qin J, Zhang H, Li N, Shan M, Lan L, Wang Y. IP-10 and fractalkine induce cytotoxic phenotype of murine NK cells. Sci Bull (Beijing) 2016. [DOI: 10.1007/s11434-015-0961-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
82
|
Wang H, Qiu T, Shi J, Liang J, Wang Y, Quan L, Zhang Y, Zhang Q, Tao K. Gene expression profiling analysis contributes to understanding the association between non-syndromic cleft lip and palate, and cancer. Mol Med Rep 2016; 13:2110-6. [PMID: 26795696 PMCID: PMC4768957 DOI: 10.3892/mmr.2016.4802] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2015] [Accepted: 12/18/2015] [Indexed: 12/30/2022] Open
Abstract
The present study aimed to investigate the molecular mechanisms underlying non-syndromic cleft lip, with or without cleft palate (NSCL/P), and the association between this disease and cancer. The GSE42589 data set was downloaded from the Gene Expression Omnibus database, and contained seven dental pulp stem cell samples from children with NSCL/P in the exfoliation period, and six controls. Differentially expressed genes (DEGs) were screened using the RankProd method, and their potential functions were revealed by pathway enrichment analysis and construction of a pathway interaction network. Subsequently, cancer genes were obtained from six cancer databases, and the cancer-associated protein-protein interaction network for the DEGs was visualized using Cytoscape. In total, 452 upregulated and 1,288 downregulated DEGs were screened. The upregulated DEGs were significantly enriched in the arachidonic acid metabolism pathway, including PTGDS, CYP4F2 and PLA2G16; and transforming growth factor (TGF)-β signaling pathway, including SMAD3 and TGFB2. The downregulated DEGs were distinctly involved in the pathways of DNA replication, including MCM2 and POLA1; cell cycle, including CDK1 and STAG1; and viral carcinogenesis, including PIK3CA and HIST1H2BF. Furthermore, the pathways of cell cycle and viral carcinogenesis, with higher degrees of interaction were found to interact with other pathways, including DNA replication, transcriptional misregulation in cancer, and the TGF-β signaling pathway. Additionally, TP53, CDK1, SMAD3, PIK3R1 and CASP3, with higher degrees, interacted with the cancer genes. In conclusion, the DEGs for NSCL/P were implicated predominantly in the TGF-β signaling pathway, the cell cycle and in viral carcinogenesis. The TP53, CDK1, SMAD3, PIK3R1 and CASP3 genes were found to be associated, not only with NSCL/P, but also with cancer. These results may contribute to a better understanding of the molecular mechanisms of NSCL/P.
Collapse
Affiliation(s)
- Hongyi Wang
- Department of Plastic Surgery, General Hospital of Shenyang Military Area Command, PLA, Shenyang, Liaoning 110016, P.R. China
| | - Tao Qiu
- Department of Plastic Surgery, General Hospital of Shenyang Military Area Command, PLA, Shenyang, Liaoning 110016, P.R. China
| | - Jie Shi
- Department of Plastic Surgery, General Hospital of Shenyang Military Area Command, PLA, Shenyang, Liaoning 110016, P.R. China
| | - Jiulong Liang
- Department of Plastic Surgery, General Hospital of Shenyang Military Area Command, PLA, Shenyang, Liaoning 110016, P.R. China
| | - Yang Wang
- Department of Plastic Surgery, General Hospital of Shenyang Military Area Command, PLA, Shenyang, Liaoning 110016, P.R. China
| | - Liangliang Quan
- Department of Plastic Surgery, General Hospital of Shenyang Military Area Command, PLA, Shenyang, Liaoning 110016, P.R. China
| | - Yu Zhang
- Department of Plastic Surgery, General Hospital of Shenyang Military Area Command, PLA, Shenyang, Liaoning 110016, P.R. China
| | - Qian Zhang
- Department of Plastic Surgery, General Hospital of Shenyang Military Area Command, PLA, Shenyang, Liaoning 110016, P.R. China
| | - Kai Tao
- Department of Plastic Surgery, General Hospital of Shenyang Military Area Command, PLA, Shenyang, Liaoning 110016, P.R. China
| |
Collapse
|
83
|
Gong C, Ni Z, Yao C, Zhu X, Ni L, Wang L, Zhu S. A High-Throughput Assay for Screening of Natural Products that Enhanced Tumoricidal Activity of NK Cells. Biol Proced Online 2015; 17:12. [PMID: 26516316 PMCID: PMC4625435 DOI: 10.1186/s12575-015-0026-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Accepted: 10/21/2015] [Indexed: 01/29/2023] Open
Abstract
BACKGROUND Recently, immunotherapy has shown a lot of promise in cancer treatment and different immune cell types are involved in this endeavor. Among different immune cell populations, NK cells are also an important component in unleashing the therapeutic activity of immune cells. Therefore, in order to enhance the tumoricidal activity of NK cells, identification of new small-molecule natural products is important. Despite the availability of different screening methods for identification of natural products, a simple, economic and high-throughput method is lacking. Hence, in this study, we have developed a high-throughput assay for screening and indentifying natural products that can enhance NK cell-mediated killing of cancer cells. RESULTS We expanded human NK cell population from human peripheral blood mononuclear cells (PBMCs) by culturing these PBMCs with membrane-bound IL-21 and CD137L engineered K562 cells. Next, expanded NK cells were co-cultured with non-small cell lung cancer (NSCLC) cells with or without natural products and after 24 h of co-culturing, harvested supernatants were analyzed for IFN-γ secretions by ELISA method. We screened 502 natural products and identified that 28 candidates has the potential to induce IFN-γ secretion by NK cells to varying degrees. Among the 28 natural product candidates, we further confirmed and analyzed the potential of one molecule, andrographolide. It actually increased IFN-γ secretion by NK cells and enhanced NK cell-mediated killing of NSCLC cells. CONCLUSIONS Our results demonstrated that this IFN-γ based high-throughput assay for screening of natural products for NK cell tumoricidal activity is a simple, economic and reliable method.
Collapse
Affiliation(s)
- Chenyuan Gong
- Laboratory of Integrative Medicine, School of Basic Medical Sciences, Shanghai University of Traditional Chinese Medicine, 1200 Cai Lun Road, Shanghai, 201203 P.R. China
| | - Zhongya Ni
- Laboratory of Integrative Medicine, School of Basic Medical Sciences, Shanghai University of Traditional Chinese Medicine, 1200 Cai Lun Road, Shanghai, 201203 P.R. China
| | - Chao Yao
- Laboratory of Integrative Medicine, School of Basic Medical Sciences, Shanghai University of Traditional Chinese Medicine, 1200 Cai Lun Road, Shanghai, 201203 P.R. China
| | - Xiaowen Zhu
- Laboratory of Integrative Medicine, School of Basic Medical Sciences, Shanghai University of Traditional Chinese Medicine, 1200 Cai Lun Road, Shanghai, 201203 P.R. China
| | - Lulu Ni
- Laboratory of Integrative Medicine, School of Basic Medical Sciences, Shanghai University of Traditional Chinese Medicine, 1200 Cai Lun Road, Shanghai, 201203 P.R. China
| | - Lixin Wang
- Laboratory of Integrative Medicine, School of Basic Medical Sciences, Shanghai University of Traditional Chinese Medicine, 1200 Cai Lun Road, Shanghai, 201203 P.R. China
| | - Shiguo Zhu
- Laboratory of Integrative Medicine, School of Basic Medical Sciences, Shanghai University of Traditional Chinese Medicine, 1200 Cai Lun Road, Shanghai, 201203 P.R. China
| |
Collapse
|
84
|
Rodvold JJ, Mahadevan NR, Zanetti M. Immune modulation by ER stress and inflammation in the tumor microenvironment. Cancer Lett 2015; 380:227-36. [PMID: 26525580 DOI: 10.1016/j.canlet.2015.09.009] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2015] [Revised: 09/16/2015] [Accepted: 09/19/2015] [Indexed: 12/18/2022]
Abstract
It is now increasingly evident that the immune system represents a barrier to tumor emergence, growth, and recurrence. Although this idea was originally proposed almost 50 years ago as the "immune surveillance hypothesis", it is commonly recognized that, with few rare exceptions, tumor cells always prevail. Thus, one of the central unsolved paradoxes of tumor immunology is how a tumor escapes immune control, which is reflected in the lack of effective autochthonous or vaccine-induced anti-tumor T cell responses. In this review, we discuss the role of the endoplasmic reticulum (ER) stress response/unfolded protein response (UPR) in the immunomodulation of myeloid cells and T cells. Specifically, we will discuss how the tumor cell UPR polarizes myeloid cells in a cell-extrinsic manner, and how in turn, thus polarized myeloid cells negatively affect T cell activation and clonal expansion.
Collapse
Affiliation(s)
- Jeffrey J Rodvold
- The Laboratory of Immunology, Department of Medicine and Moores Cancer Center, University of California, 9500 Gilman Drive, La Jolla, San Diego, CA 92093-0815
| | - Navin R Mahadevan
- The Laboratory of Immunology, Department of Medicine and Moores Cancer Center, University of California, 9500 Gilman Drive, La Jolla, San Diego, CA 92093-0815
| | - Maurizio Zanetti
- The Laboratory of Immunology, Department of Medicine and Moores Cancer Center, University of California, 9500 Gilman Drive, La Jolla, San Diego, CA 92093-0815.
| |
Collapse
|
85
|
Miyashita T, Miki K, Kamigaki T, Makino I, Nakagawara H, Tajima H, Takamura H, Kitagawa H, Fushida S, Ahmed AK, Duncan MD, Harmon JW, Ohta T. Low-dose gemcitabine induces major histocompatibility complex class I-related chain A/B expression and enhances an antitumor innate immune response in pancreatic cancer. Clin Exp Med 2015; 17:19-31. [PMID: 26449615 DOI: 10.1007/s10238-015-0394-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2015] [Accepted: 09/12/2015] [Indexed: 02/06/2023]
Abstract
We investigated the effect of gemcitabine (GEM), a key drug for pancreatic cancer treatment, on the expression of cell surface MICA/B in pancreatic cancer cells and resulting cytotoxicity of γδ T cells. We assessed the effect of GEM on the upregulation of cell surface MICA/B expression by flow cytometry, utilizing six pancreatic cancer cell lines. MICA and CD16 expressions from resected pancreatic cancer patient specimens, which received neoadjuvant chemotherapy (NAC) with GEM, were analyzed by immunohistochemistry. GEM could increase MICA/B expression on cell surface in pancreatic cancer cell lines (in 2 of 6 cell lines). This effect was most effectively at concentration not affecting cell growth of GEM (0.001 μM), because MICA/B negative population was appeared at concentration at cytostatic and cytotoxic effect to cell growth (0.1 and 10 μM). The cytotoxic activity of γδ T cells against PANC-1 was detected and functions through interactions between NKG2D and MICA/B. However, the enhancement of NKG2D-dependent cytotoxicity with increased MICA/B expression, by GEM treatment, was not observed. In addition, soluble MIC molecules were released from pancreatic cancer cell lines in culture supernatant with GEM treatment. Immunohistochemical staining demonstrated that MICA expression in tumor cells and CD16 positive cells surrounding tumors were significantly higher in the NAC group compared to that of the control group. There was a significant correlation between NAC and MICA expression, as well as NAC and CD16 positive cell expression. The present results indicate that low-dose GEM-induced MICA/B expression enhances innate immune function rather than cytotoxicity in pancreatic cancer. In addition, our result suggests that the inhibition of cleavage and release of MIC molecules from the tumor surface could potentially improve NKG2D-dependent cytotoxicity.
Collapse
Affiliation(s)
- Tomoharu Miyashita
- Department of Gastroenterological Surgery, Kanazawa University Hospital, 13-1 Takara-machi, Kanazawa, Ishikawa, 920-8641, Japan.
| | - Kenji Miki
- Medinet Medical Institute, MEDINET Co., Ltd., 2-2-8 Tamagawadai, Setagaya-ku, Tokyo, 158-0096, Japan
| | - Takashi Kamigaki
- Medinet Medical Institute, MEDINET Co., Ltd., 2-2-8 Tamagawadai, Setagaya-ku, Tokyo, 158-0096, Japan
| | - Isamu Makino
- Department of Gastroenterological Surgery, Kanazawa University Hospital, 13-1 Takara-machi, Kanazawa, Ishikawa, 920-8641, Japan
| | - Hisatoshi Nakagawara
- Department of Gastroenterological Surgery, Kanazawa University Hospital, 13-1 Takara-machi, Kanazawa, Ishikawa, 920-8641, Japan
| | - Hidehiro Tajima
- Department of Gastroenterological Surgery, Kanazawa University Hospital, 13-1 Takara-machi, Kanazawa, Ishikawa, 920-8641, Japan
| | - Hiroyuki Takamura
- Department of Gastroenterological Surgery, Kanazawa University Hospital, 13-1 Takara-machi, Kanazawa, Ishikawa, 920-8641, Japan
| | - Hirohisa Kitagawa
- Department of Gastroenterological Surgery, Kanazawa University Hospital, 13-1 Takara-machi, Kanazawa, Ishikawa, 920-8641, Japan
| | - Sachio Fushida
- Department of Gastroenterological Surgery, Kanazawa University Hospital, 13-1 Takara-machi, Kanazawa, Ishikawa, 920-8641, Japan
| | - Ali K Ahmed
- Department of Surgery, Johns Hopkins University School of Medicine, 4940 Eastern Avenue, Baltimore, MD, 21224, USA
| | - Mark D Duncan
- Department of Surgery, Johns Hopkins University School of Medicine, 4940 Eastern Avenue, Baltimore, MD, 21224, USA
| | - John W Harmon
- Department of Surgery, Johns Hopkins University School of Medicine, 4940 Eastern Avenue, Baltimore, MD, 21224, USA
| | - Tetsuo Ohta
- Department of Gastroenterological Surgery, Kanazawa University Hospital, 13-1 Takara-machi, Kanazawa, Ishikawa, 920-8641, Japan
| |
Collapse
|
86
|
Kim JH, Lee JK. Sesamolin enhances NK cell lysis activity by increasing the expression of NKG2D ligands on Burkitt's lymphoma cells. Int Immunopharmacol 2015; 28:977-84. [PMID: 26298637 DOI: 10.1016/j.intimp.2015.08.014] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2015] [Revised: 08/01/2015] [Accepted: 08/11/2015] [Indexed: 12/28/2022]
Abstract
Sesamolin and sesamin are representative lignans found in sesame seed. The present study was designed to demonstrate the anti-cancer activity of sesamolin achieved by increasing the expression level of NKG2D ligands on Raji cells, which are derived from Burkitt's lymphoma. The anti-cancer activity of sesamolin was also compared with that of sesamin. The cytolysis activity of NK cells against Raji was elevated by the pretreatment of sesamolin on Raji, but not by sesamin. We found that higher NKG2D ligand expression increased the sensitivity of sesamolin-treated Raji to NK cell lysis, resulting from a more active ERK signaling pathway. Our results provide evidence that targeting the ERK signaling pathway may enhance the antitumor activity of lignans and that there is a potential immunotherapeutic value for cancer treatment.
Collapse
Affiliation(s)
- Jeong Hwa Kim
- Department of Biology Education, College of Education, Chungbuk National University, Chungbuk 361-763, Republic of Korea; College of Pharmacy, Chungbuk National University, Chungbuk 361-763, Republic of Korea
| | - Jae Kwon Lee
- Department of Biology Education, College of Education, Chungbuk National University, Chungbuk 361-763, Republic of Korea.
| |
Collapse
|
87
|
Chloroquine inhibits the malignant phenotype of glioblastoma partially by suppressing TGF-beta. Invest New Drugs 2015; 33:1020-31. [PMID: 26271735 DOI: 10.1007/s10637-015-0275-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2015] [Accepted: 08/02/2015] [Indexed: 01/10/2023]
Abstract
BACKGROUND Glioblastoma (GBM), the most common and aggressive primary brain tumor, is characterized by excessive brain infiltration which prevents the complete surgical resection. These tumors also display treatment non-compliance and responses to standard therapy are invariably transient; consequently, the prognosis barely exceeds 14 months and recurrence is inevitable. Accordingly, several new treatment strategies have been studied. One such option is the use of chloroquine (CQ), a lysosomotropic weak base and renowned antimalarial drug, that has shown promising results in several pre-clinical studies. In this paper, we investigate the efficiency of CQ to hinder the malignant phenotype of GBM, namely extensive proliferation, invasion and radio-resistance. RESULTS In cell cycle analysis, proliferation assays and immunofluorescence, CQ treatments halved proliferation of primary cultures from GBM specimens and GBM cell lines (U-373 MG et U-87 MG). Gelatin zymography and Matrigel(TM)-coated transwell invasion assays also revealed a 50 % CQ induced inhibition of MMP-2 activity and GBM invasion. Concomitant treatment with CQ and radiation also radiosensitized GBM cells as shown by an accumulation in the G2/M phase, increased cell death and reduced clonogenic formation. Moreover, radiation-induced invasion was considerably restrained by CQ. We also observe that these effects are owed to CQ-induced inhibition of TGF-β secretion and signaling pathway, a predominant growth factor in GBM progression. CONCLUSION These results suggest that CQ, alone or as an adjuvant therapeutic, could be used to inhibit the GBM malignant phenotype and could benefit GBM afflicted patients.
Collapse
|
88
|
Abstract
Malignant gliomas are intrinsic brain tumors with a dismal prognosis. They are well-adapted to hypoxic conditions and poorly immunogenic. NKG2D is one of the major activating receptors of natural killer (NK) cells and binds to several ligands (NKG2DL). Here we evaluated the impact of miRNA on the expression of NKG2DL in glioma cells including stem-like glioma cells. Three of the candidate miRNA predicted to target NKG2DL were expressed in various glioma cell lines as well as in glioblastomas in vivo: miR-20a, miR-93 and miR-106b. LNA inhibitor-mediated miRNA silencing up-regulated cell surface NKG2DL expression, which translated into increased susceptibility to NK cell-mediated lysis. This effect was reversed by neutralizing NKG2D antibodies, confirming that enhanced lysis upon miRNA silencing was mediated through the NKG2D system. Hypoxia, a hallmark of glioblastomas in vivo, down-regulated the expression of NKG2DL on glioma cells, associated with reduced susceptibility to NK cell-mediated lysis. This process, however, was not mediated through any of the examined miRNA. Accordingly, both hypoxia and the expression of miRNA targeting NKG2DL may contribute to the immune evasion of glioma cells at the level of the NKG2D recognition pathway. Targeting miRNA may therefore represent a novel approach to increase the immunogenicity of glioblastoma.
Collapse
|
89
|
Abstract
Glioblastoma is the most common intracranial malignancy that constitutes about 50 % of all gliomas. Despite aggressive, multimodal therapy consisting of surgery, radiation, and chemotherapy, the outcome of patients with glioblastoma remains poor with 5-year survival rates of <10 %. Resistance to conventional therapies is most likely caused by several factors. Alterations in the functions of local immune mediators may represent a critical contributor to this resistance. The tumor microenvironment contains innate and adaptive immune cells in addition to the cancer cells and their surrounding stroma. These various cells communicate with each other by means of direct cell-cell contact or by soluble factors including cytokines and chemokines, and act in autocrine and paracrine manners to modulate tumor growth. There are dynamic interactions among the local immune elements and the tumor cells, where primarily the protective immune cells attempt to overcome the malignant cells. However, by developing somatic mutations and epigenetic modifications, the glioblastoma tumor cells acquire the capability of counteracting the local immune responses, and even exploit the immune cells and products for their own growth benefits. In this review, we survey those immune mechanisms that likely contribute to glioblastoma pathogenesis and may serve as a basis for novel treatment strategies.
Collapse
Affiliation(s)
- Katalin Eder
- Department of Molecular Pathology, Markusovszky University Teaching Hospital, Markusovszky Street 5, Szombathely, 9700, Hungary.
| | - Bernadette Kalman
- Department of Molecular Pathology, Markusovszky University Teaching Hospital, Markusovszky Street 5, Szombathely, 9700, Hungary
- University of Pecs, Pecs, Hungary
| |
Collapse
|
90
|
Abstract
The central nervous system (CNS) possesses powerful local and global immunosuppressive capabilities that modulate unwanted inflammatory reactions in nervous tissue. These same immune-modulatory mechanisms are also co-opted by malignant brain tumors and pose a formidable challenge to brain tumor immunotherapy. Routes by which malignant gliomas coordinate immunosuppression include the mechanical and functional barriers of the CNS; immunosuppressive cytokines and catabolites; immune checkpoint molecules; tumor-infiltrating immune cells; and suppressor immune cells. The challenges to overcoming tumor-induced immunosuppression, however, are not unique to the brain, and several analogous immunosuppressive mechanisms also exist for primary tumors outside of the CNS. Ultimately, the immune responses in the CNS are linked and complementary to immune processes in the periphery, and advances in tumor immunotherapy in peripheral sites may therefore illuminate novel approaches to brain tumor immunotherapy, and vice versa.
Collapse
Affiliation(s)
- Powell Perng
- Department of Neurosurgery, School of Medicine, Johns Hopkins University , Baltimore, MD , USA
| | - Michael Lim
- Department of Neurosurgery, School of Medicine, Johns Hopkins University , Baltimore, MD , USA
| |
Collapse
|
91
|
Naringenin enhances NK cell lysis activity by increasing the expression of NKG2D ligands on Burkitt's lymphoma cells. Arch Pharm Res 2015; 38:2042-8. [PMID: 26100136 DOI: 10.1007/s12272-015-0624-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2015] [Accepted: 06/10/2015] [Indexed: 10/23/2022]
Abstract
Natural killer (NK) cells are capable of identifying and killing tumor cells as well as virus infected cells without pre-sensitization. NK cells express activating and inhibitory receptors, and can distinguish between normal and tumor cells. The present study was designed to demonstrate the importance of the expression level of NKG2D ligands on the Burkitt's lymphoma cell line, Raji, in enhancing NK cell cytolytic activity. Various flavonoids were used as stimulants to enhance the expression of NKG2D ligands. NK cell lysis activity against Raji was not changed by pre-treatment of Raji with luteolin, kaempferol, taxifolin and hesperetin. However, treatment of Raji with naringenin showed increased sensitivity to NK cell lysis than untreated control cells. The activity of naringenin was due to enhanced NKG2D ligand expression. These results provide evidence that narigenin's antitumor activity may be due to targeting of NKG2D ligand expression and suggests a possible immunotherapeutic role for cancer treatment.
Collapse
|
92
|
Zhao Y, Hu J, Li R, Song J, Kang Y, Liu S, Zhang D. Enhanced NK cell adoptive antitumor effects against breast cancer in vitro via blockade of the transforming growth factor-β signaling pathway. Onco Targets Ther 2015; 8:1553-9. [PMID: 26124672 PMCID: PMC4482381 DOI: 10.2147/ott.s82616] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Natural killer (NK) cells have great potential for improving cancer immunotherapy. Adoptive NK cell transfer, an adoptive immunotherapy, represents a promising nontoxic anticancer therapy. However, existing data indicate that tumor cells can effectively escape NK cell-mediated apoptosis through immunosuppressive effects in the tumor microenvironment, and the therapeutic activity of adoptive NK cell transfer is not as efficient as anticipated. Transforming growth factor-beta (TGF-β) is a potent immunosuppressant. Genetic and epigenetic events that occur during mammary tumorigenesis circumvent the tumor-suppressing activity of TGF-β, thereby permitting late-stage breast cancer cells to acquire an invasive and metastatic phenotype in response to TGF-β. To block the TGF-β signaling pathway, NK cells were genetically modified with a dominant-negative TGF-β type II receptor by optimizing electroporation using the Amaxa Nucleofector system. These genetically modified NK cells were insensitive to TGF-β and resisted the suppressive effect of TGF-β on MCF-7 breast cancer cells in vitro. Our results demonstrate that blocking the TGF-β signaling pathway to modulate the tumor microenvironment can improve the antitumor activity of adoptive NK cells in vitro, thereby providing a new rationale for the treatment of breast cancer.
Collapse
Affiliation(s)
- Yue Zhao
- Department of General Surgery, Second Affiliated Hospital of Harbin Medical University, Harbin, People's Republic of China
| | - Jinyue Hu
- Department of Breast and Thyroid Surgery, The Third Hospital of Zhengzhou, Zhengzhou, People's Republic of China
| | - Rongguo Li
- Department of General Surgery, Second Affiliated Hospital of Harbin Medical University, Harbin, People's Republic of China
| | - Jian Song
- Department of General Surgery, Second Affiliated Hospital of Harbin Medical University, Harbin, People's Republic of China
| | - Yujuan Kang
- Department of General Surgery, Second Affiliated Hospital of Harbin Medical University, Harbin, People's Republic of China
| | - Si Liu
- Department of General Surgery, Second Affiliated Hospital of Harbin Medical University, Harbin, People's Republic of China
| | - Dongwei Zhang
- Department of General Surgery, Second Affiliated Hospital of Harbin Medical University, Harbin, People's Republic of China
| |
Collapse
|
93
|
Transforming growth factor β and bone morphogenetic protein actions in brain tumors. FEBS Lett 2015; 589:1588-97. [PMID: 25957771 DOI: 10.1016/j.febslet.2015.04.058] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2015] [Revised: 04/28/2015] [Accepted: 04/29/2015] [Indexed: 01/05/2023]
Abstract
Members of the transforming growth factor β (TGF-β) family are implicated in the biology of several cancers. Here we focus on malignancies of the brain and examine the TGFβ and the bone morphogenetic protein (BMP) signaling branches of the family. These pathways exhibit context-dependent actions during tumorigenesis, acting either as tumor suppressors or as pro-tumorigenic agents. In the brain, the TGF-βs associate with oncogenic development and progression to the more malignant state. Inversely, the BMPs suppress tumorigenic potential by acting as agents that induce tumor cell differentiation. The latter has been best demonstrated in grade IV astrocytomas, otherwise known as glioblastoma multiforme. We discuss how the actions of TGF-βs and BMPs on cancer stem cells may explain their effects on tumor progression, and try to highlight intricate mechanisms that may link tumor cell differentiation to invasion. The focus on TGF-β and BMP and their actions in brain malignancies provides a rich territory for mechanistic understanding of tumor heterogeneity and suggests ways for improved therapeutic intervention, currently being addressed by clinical trials.
Collapse
|
94
|
Hekim N, Cetin Z, Nikitaki Z, Cort A, Saygili EI. Radiation triggering immune response and inflammation. Cancer Lett 2015; 368:156-63. [PMID: 25911239 DOI: 10.1016/j.canlet.2015.04.016] [Citation(s) in RCA: 75] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2015] [Revised: 04/13/2015] [Accepted: 04/15/2015] [Indexed: 12/23/2022]
Abstract
Radiation therapy (RT) is a well-established but still under optimization branch of Cancer Therapy (CT). RT uses electromagnetic waves or charged particles in order to kill malignant cells, by accumulating the energy onto these cells. The issue at stake for RT, as well as for any other Cancer Therapy technique, is always to kill only cancer cells, without affecting the surrounding healthy ones. This perspective of CT is usually described under the terms "specificity" and "selectivity". Specificity and selectivity are the ideal goal, but the ideal is never entirely achieved. Thus, in addition to killing healthy cells, changes and effects are observed in the immune system after irradiation. In this review, we mainly focus on the effects of ionizing radiation on the immune system and its components like bone marrow. Additionally, we are interested in the effects and benefits of low-dose ionizing radiation on the hematopoiesis and immune response. Low dose radiation has been shown to induce biological responses like inflammatory responses, innate immune system activation and DNA repair (adaptive response). This review reveals the fact that there are many unanswered questions regarding the role of radiation as either an immune-activating (low dose) or immunosuppressive (high dose) agent.
Collapse
Affiliation(s)
- Nezih Hekim
- Department of Medical Biochemistry, School of Medicine, SANKO University, Gaziantep, Turkey
| | - Zafer Cetin
- Department of Medical Biology & Genetics, School of Medicine, SANKO University, Gaziantep, Turkey
| | - Zacharenia Nikitaki
- Department of Physics, School of Applied Mathematical and Physical Sciences, National Technical University of Athens, Zografou 15780, Athens, Greece
| | - Aysegul Cort
- Department of Medical Biochemistry, School of Medicine, SANKO University, Gaziantep, Turkey; Department of Nutrition and Dietetics, Faculty of Health Sciences, SANKO University, Gaziantep, Turkey
| | - Eyup Ilker Saygili
- Department of Medical Biochemistry, School of Medicine, SANKO University, Gaziantep, Turkey.
| |
Collapse
|
95
|
Hope CM, Coates PTH, Carroll RP. Immune profiling and cancer post transplantation. World J Nephrol 2015; 4:41-56. [PMID: 25664246 PMCID: PMC4317627 DOI: 10.5527/wjn.v4.i1.41] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2014] [Revised: 11/03/2014] [Accepted: 11/07/2014] [Indexed: 02/06/2023] Open
Abstract
Half of all long-term (> 10 year) australian kidney transplant recipients (KTR) will develop squamous cell carcinoma (SCC) or solid organ cancer (SOC), making cancer the leading cause of death with a functioning graft. At least 30% of KTR with a history of SCC or SOC will develop a subsequent SCC or SOC lesion. Pharmacological immunosuppression is a major contributor of the increased risk of cancer for KTR, with the cancer lesions themselves further adding to systemic immunosuppression and could explain, in part, these phenomena. Immune profiling includes; measuring immunosuppressive drug levels and pharmacokinetics, enumerating leucocytes and leucocyte subsets as well as testing leucocyte function in either an antigen specific or non-specific manner. Outputs can vary from assay to assay according to methods used. In this review we define the rationale behind post-transplant immune monitoring assays and focus on assays that associate and/or have the ability to predict cancer and rejection in the KTR. We find that immune monitoring can identify those KTR of developing multiple SCC lesions and provide evidence they may benefit from pharmacological immunosuppressive drug dose reductions. In these KTR risk of rejection needs to be assessed to determine if reduction of immunosuppression will not harm the graft.
Collapse
|
96
|
Platten M, Ochs K, Lemke D, Opitz C, Wick W. Microenvironmental clues for glioma immunotherapy. Curr Neurol Neurosci Rep 2014; 14:440. [PMID: 24604058 DOI: 10.1007/s11910-014-0440-1] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Gliomas have been viewed for decades as inaccessible for a meaningful antitumor immune response as they grow in a sanctuary site protected from infiltrating immune cells. Moreover, the glioma microenvironment constitutes a hostile environment for an efficient antitumor immune response as glioma-derived factors such as transforming growth factor β and catabolites of the essential amino acid tryptophan paralyze T-cell function. There is growing evidence from preclinical and clinical studies that a meaningful antitumor immunity exists in glioma patients and that it can be activated by vaccination strategies. As a consequence, the concept of glioma immunotherapy appears to be experiencing a renaissance with the first phase 3 randomized immunotherapy trials entering the clinical arena. On the basis of encouraging results from other tumor entities using immunostimulatory approaches by blocking endogenous T-cell suppressive pathways mediated by cytotoxic T-lymphocyte antigen 4 or programmed cell death protein 1/programmed cell death protein 1 ligand 1 with humanized antibodies, there is now a realistic and promising option to combine active immunotherapy with agents blocking the immunosuppressive microenvironment in patients with gliomas to allow a peripheral antitumor immune response induced by vaccination to become effective. Here we review the current clinical and preclinical evidence of antimicroenvironment immunotherapeutic strategies in gliomas.
Collapse
Affiliation(s)
- Michael Platten
- Department of Neurooncology, University Hospital Heidelberg and National Center for Tumor Diseases, German Cancer Consortium (DKTK) Clinical Cooperation Units, Im Neuenheimer Feld, Heidelberg, Germany,
| | | | | | | | | |
Collapse
|
97
|
Ahmad F, Ghosh S, Sinha S, Joshi SD, Mehta VS, Sen E. TGF-β-induced hCG-β regulates redox homeostasis in glioma cells. Mol Cell Biochem 2014; 399:105-12. [PMID: 25300619 DOI: 10.1007/s11010-014-2237-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2014] [Accepted: 10/01/2014] [Indexed: 12/14/2022]
Abstract
Transforming growth factor (TGF-β) is associated with the progression of glioblastoma multiforme (GBM)-the most malignant of brain tumors. Since there is a structural homology between TGF-β and human chorionic gonadotropin (hCG) and as both TGF-β and hCG-β are known regulators of oxidative stress and survival responses in a variety of tumors, the role of TGF-β in the regulation of hCG-β and its consequences on redox modulation of glioblastoma cells was investigated. A heightened hCG-β level was observed in GBM tumors. TGF-β treatment increased hCG-β expression in glioma cell lines, and this heightened hCG-β was found to regulate redox homeostasis in TGF-β-treated glioma cells, as siRNA-mediated knockdown of hCG-β (i) elevated reactive oxygen species (ROS) generation, (ii) decreased thioredoxin Trx1 expression and thioredoxin reductase (TrxR) activity, and (iii) abrogated expression of TP53-induced glycolysis and apoptosis regulator (TIGAR). Silencing of hCG-β abrogated Smad2/3 levels, suggesting the existence of TGF-β-hCG-β cross-talk in glioma cells. siRNA-mediated inhibition of elevated TIGAR levels in TGF-β-treated glioma cells was accompanied by an increase in ROS levels. As a farnesyltransferase inhibitor, Manumycin is known to induce glioma cell apoptosis in a ROS-dependent manner, and we investigated whether Manumycin could induce apoptosis in TGF-β-treated cells with elevated hCG-β exhibiting ROS-scavenging property. Manumycin-induced apoptosis in TGF-β-treated cells was accompanied by elevated ROS levels and decreased expression of hCG-β, Trx1, Smad2/3, and TIGAR. These findings indicate the existence of a previously unknown TGF-β-hCG-β link that regulates redox homeostasis in glioma cells.
Collapse
Affiliation(s)
- Fahim Ahmad
- National Brain Research Centre, Manesar, 122 051, Haryana, India
| | | | | | | | | | | |
Collapse
|
98
|
Seystahl K, Tritschler I, Szabo E, Tabatabai G, Weller M. Differential regulation of TGF-β-induced, ALK-5-mediated VEGF release by SMAD2/3 versus SMAD1/5/8 signaling in glioblastoma. Neuro Oncol 2014; 17:254-65. [PMID: 25165192 DOI: 10.1093/neuonc/nou218] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND The transforming growth factor (TGF)-β and vascular endothelial growth factor (VEGF) pathways have a major role in the pathogenesis of glioblastoma, notably immunosuppression, migration, and angiogenesis, but their interactions have remained poorly understood. METHODS We characterized TGF-β pathway activity in 9 long-term glioma cell lines (LTCs) and 4 glioma-initiating cell lines (GICs) in relation to constitutive and exogenous TGF-β-induced VEGF release. Results were validated using The Cancer Genome Atlas transcriptomics data. RESULTS Glioma cells exhibit heterogeneous patterns of constitutive TGF-β pathway activation reflected by phosphorylation not only of SMAD2 and SMAD3 but also of SMAD1/5/8. Constitutive TGF-β pathway activity depends on the type I TGF-β receptor, ALK-5, and accounts for up to 69% of constitutive VEGF release, which is positively regulated by SMAD2/3 and negatively regulated by SMAD1/5/8 signaling in a cell line-specific manner. Exogenous TGF-β induces VEGF release in most cell lines in a SMAD- and ALK-5-dependent manner. There is no correlation between the fold induction of VEGF secretion induced by TGF-β compared with hypoxia. The role of SMAD5 signaling is highly context and cell-line dependent with a VEGF inhibitory effect at low TGF-β and pSMAD2 levels and a stimulatory effect when TGF-β is abundant. CONCLUSIONS TGF-β regulates VEGF release by glioma cells in an ALK-5-dependent manner involving SMAD2, SMAD3, and SMAD1/5/8 signaling. This crosstalk between the TGF-β and VEGF pathways may open up new avenues of biomarker-driven exploratory clinical trials focusing on the microenvironment in glioblastoma.
Collapse
Affiliation(s)
- Katharina Seystahl
- Department of Neurology, University Hospital Zurich, Zurich, Switzerland
| | - Isabel Tritschler
- Department of Neurology, University Hospital Zurich, Zurich, Switzerland
| | - Emese Szabo
- Department of Neurology, University Hospital Zurich, Zurich, Switzerland
| | - Ghazaleh Tabatabai
- Department of Neurology, University Hospital Zurich, Zurich, Switzerland
| | - Michael Weller
- Department of Neurology, University Hospital Zurich, Zurich, Switzerland
| |
Collapse
|
99
|
Chandran PA, Keller A, Weinmann L, Seida AA, Braun M, Andreev K, Fischer B, Horn E, Schwinn S, Junker M, Houben R, Dombrowski Y, Dietl J, Finotto S, Wölfl M, Meister G, Wischhusen J. The TGF-β-inducible miR-23a cluster attenuates IFN-γ levels and antigen-specific cytotoxicity in human CD8⁺ T cells. J Leukoc Biol 2014; 96:633-45. [PMID: 25030422 DOI: 10.1189/jlb.3a0114-025r] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Cytokine secretion and degranulation represent key components of CD8(+) T-cell cytotoxicity. While transcriptional blockade of IFN-γ and inhibition of degranulation by TGF-β are well established, we wondered whether TGF-β could also induce immune-regulatory miRNAs in human CD8(+) T cells. We used miRNA microarrays and high-throughput sequencing in combination with qRT-PCR and found that TGF-β promotes expression of the miR-23a cluster in human CD8(+) T cells. Likewise, TGF-β up-regulated expression of the cluster in CD8(+) T cells from wild-type mice, but not in cells from mice with tissue-specific expression of a dominant-negative TGF-β type II receptor. Reporter gene assays including site mutations confirmed that miR-23a specifically targets the 3'UTR of CD107a/LAMP1 mRNA, whereas the further miRNAs expressed in this cluster-namely, miR-27a and -24-target the 3'UTR of IFN-γ mRNA. Upon modulation of the miR-23a cluster by the respective miRNA antagomirs and mimics, we observed significant changes in IFN-γ expression, but only slight effects on CD107a/LAMP1 expression. Still, overexpression of the cluster attenuated the cytotoxic activity of antigen-specific CD8(+) T cells. These functional data thus reveal that the miR-23a cluster not only is induced by TGF-β, but also exerts a suppressive effect on CD8(+) T-cell effector functions, even in the absence of TGF-β signaling.
Collapse
Affiliation(s)
- P Anoop Chandran
- Graduate School of Life Sciences (GSLS), University of Würzburg, Germany; Department of Obstetrics and Gynecology
| | - Andreas Keller
- Chair for Clinical Bioinformatics, Saarland University, Saarbrücken, Germany
| | - Lasse Weinmann
- Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Ahmed Adel Seida
- Department of Obstetrics and Gynecology, Interdisciplinary Center for Clinical Research
| | - Matthias Braun
- Pediatric Hematology, Oncology, and Stem Cell Transplantation, Children's Hospital
| | - Katerina Andreev
- Laboratory of Cellular and Molecular Lung Immunology, Institute of Molecular Pneumology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany; and
| | | | - Evi Horn
- Department of Obstetrics and Gynecology
| | - Stefanie Schwinn
- Pediatric Hematology, Oncology, and Stem Cell Transplantation, Children's Hospital
| | - Markus Junker
- Department of Obstetrics and Gynecology, Interdisciplinary Center for Clinical Research
| | - Roland Houben
- Department of Dermatology, University of Würzburg Medical School, Würzburg, Germany
| | - Yvonne Dombrowski
- Department of Obstetrics and Gynecology, Interdisciplinary Center for Clinical Research
| | | | - Susetta Finotto
- Laboratory of Cellular and Molecular Lung Immunology, Institute of Molecular Pneumology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany; and
| | - Matthias Wölfl
- Pediatric Hematology, Oncology, and Stem Cell Transplantation, Children's Hospital
| | - Gunter Meister
- Max Planck Institute of Biochemistry, Martinsried, Germany; Department of Biochemistry, University of Regensburg, Germany
| | - Jörg Wischhusen
- Department of Obstetrics and Gynecology, Interdisciplinary Center for Clinical Research,
| |
Collapse
|
100
|
Chretien AS, Le Roy A, Vey N, Prebet T, Blaise D, Fauriat C, Olive D. Cancer-Induced Alterations of NK-Mediated Target Recognition: Current and Investigational Pharmacological Strategies Aiming at Restoring NK-Mediated Anti-Tumor Activity. Front Immunol 2014; 5:122. [PMID: 24715892 PMCID: PMC3970020 DOI: 10.3389/fimmu.2014.00122] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2014] [Accepted: 03/10/2014] [Indexed: 01/14/2023] Open
Abstract
Despite evidence of cancer immune-surveillance, which plays a key role in tumor rejection, cancer cells can escape immune recognition through different mechanisms. Thus, evasion to Natural killer (NK) cell-mediated anti-tumor activity is commonly described and is mediated by various mechanisms, mainly cancer cell-induced down-regulation of NK-activating receptors (NCRs, NKG2D, DNAM-1, and CD16) as well as up-regulation of inhibitory receptors (killer-cell immunoglobulin-like receptors, KIRs, NKG2A). Alterations of NK cells lead to an impaired recognition of tumor cells as well as a decreased ability to interact with immune cells. Alternatively, cancer cells downregulate expression of ligands for NK cell-activating receptors and up-regulate expression of the ligands for inhibitory receptors. A better knowledge of the extent and the mechanisms of these defects will allow developing pharmacological strategies to restore NK cell ability to recognize and lyse tumor cells. Combining conventional chemotherapy and immune modulation is a promising approach likely to improve clinical outcome in diverse neoplastic malignancies. Here, we overview experimental approaches as well as strategies already available in the clinics that restore NK cell functionality. Yet successful cancer therapies based on the manipulation of NK cell already have shown efficacy in the context of hematologic malignancies. Additionally, the ability of cytotoxic agents to increase susceptibility of tumors to NK cell lysis has been studied and may require improvement to maximize this effect. More recently, new strategies were developed to specifically restore NK cell phenotype or to stimulate NK cell functions. Overall, pharmacological immune modulation trends to be integrated in therapeutic strategies and should improve anti-tumor effects of conventional cancer therapy.
Collapse
Affiliation(s)
- Anne-Sophie Chretien
- Centre de Cancérologie de Marseille, INSERM, U1068, Institut Paoli-Calmettes, Aix-Marseille Université, UM 105, CNRS, UMR7258, Marseille, France
| | - Aude Le Roy
- Centre de Cancérologie de Marseille, Plateforme d’Immunomonitoring en Cancérologie, INSERM, U1068, Institut Paoli-Calmettes, Aix-Marseille Université, UM 105, CNRS, UMR7258, Marseille, France
| | - Norbert Vey
- Centre de Cancérologie de Marseille, INSERM, U1068, Institut Paoli-Calmettes, Aix-Marseille Université, UM 105, CNRS, UMR7258, Marseille, France
- Département d’Hématologie, Institut Paoli-Calmettes, Marseille, France
| | - Thomas Prebet
- Département d’Hématologie, Institut Paoli-Calmettes, Marseille, France
| | - Didier Blaise
- Centre de Cancérologie de Marseille, INSERM, U1068, Institut Paoli-Calmettes, Aix-Marseille Université, UM 105, CNRS, UMR7258, Marseille, France
- Unité de Transplantation et de Thérapie Cellulaire, Institut Paoli-Calmettes, Marseille, France
| | - Cyril Fauriat
- Centre de Cancérologie de Marseille, INSERM, U1068, Institut Paoli-Calmettes, Aix-Marseille Université, UM 105, CNRS, UMR7258, Marseille, France
| | - Daniel Olive
- Centre de Cancérologie de Marseille, INSERM, U1068, Institut Paoli-Calmettes, Aix-Marseille Université, UM 105, CNRS, UMR7258, Marseille, France
- Centre de Cancérologie de Marseille, Plateforme d’Immunomonitoring en Cancérologie, INSERM, U1068, Institut Paoli-Calmettes, Aix-Marseille Université, UM 105, CNRS, UMR7258, Marseille, France
| |
Collapse
|