51
|
Jin H, Park MH, Kim SM. 3,3'-Diindolylmethane potentiates paclitaxel-induced antitumor effects on gastric cancer cells through the Akt/FOXM1 signaling cascade. Oncol Rep 2015; 33:2031-6. [PMID: 25633416 DOI: 10.3892/or.2015.3758] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2014] [Accepted: 01/07/2015] [Indexed: 11/06/2022] Open
Abstract
Gastric cancer is the fourth most common cancer and is one of the leading causes of cancer-related mortality worldwide. Forkhead box M1 (FOXM1) is overexpressed in gastric cancer, suggesting that it is important in gastric cancer oncogenesis. However, no studies have investigated the role of 3,3'-diindolylmethane (DIM), a component of cruciferous vegetables, in the regulation of FOXM1 and its signaling pathway in gastric cancer. Here, we report for the first time that DIM effectively downregulated Akt/FOXM1 in gastric cancer cells. Combination treatment with DIM and paclitaxel significantly and dose-dependently inhibited the proliferation of SNU638 cells when compared to treatment with DIM or paclitaxel alone. Colony formation of SNU638 cells was significantly attenuated by treatment with DIM and paclitaxel, and DIM potentiated the inhibition of colony formation in SNU638 cells by paclitaxel when compared to treatment with a single agent. Treatment with DIM plus paclitaxel substantially increased apoptosis as indicated by increased levels of cleaved polyADP-ribose polymerase (PARP) and cleaved caspase-9 protein. DIM dose-dependently sensitized gastric cancer cells through downregulation of FOXM1 and potentiated the effects of paclitaxel. FOXM1 effector genes such as CDK4, p53 and cyclin D1 were downregulated in gastric cancer cells by combination treatment with DIM and paclitaxel. In addition, DIM significantly and dose-dependently inhibited phosphorylation of Akt and potentiated paclitaxel-induced inhibition of Akt function in gastric cancer cells. Therefore, our results indicate that DIM effectively potentiates the efficacy of chemotherapeutic agents such as paclitaxel by downregulation of the Akt/FOXM1 signaling cascade in gastric cancer cells. Our findings suggest that DIM enhances the therapeutic efficacy of paclitaxel in gastric cancer and is a potential clinical anticancer agent for the prevention and/or treatment of gastric cancer.
Collapse
Affiliation(s)
- Hua Jin
- Department of Physiology, Institute for Medical Sciences, Chonbuk National University Medical School, Jeonju, Republic of Korea
| | - Man Hee Park
- Catholic University of Pusan, Busan, Republic of Korea
| | - Soo Mi Kim
- Department of Physiology, Institute for Medical Sciences, Chonbuk National University Medical School, Jeonju, Republic of Korea
| |
Collapse
|
52
|
Yu TY, Pang WJ, Yang GS. 3,3′-Diindolylmethane increases bone mass by suppressing osteoclastic bone resorption in mice. J Pharmacol Sci 2015; 127:75-82. [DOI: 10.1016/j.jphs.2014.11.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2014] [Revised: 09/23/2014] [Accepted: 10/29/2014] [Indexed: 12/12/2022] Open
|
53
|
Elumalai P, Arunakaran J. Review on molecular and chemopreventive potential of nimbolide in cancer. Genomics Inform 2014; 12:156-64. [PMID: 25705153 PMCID: PMC4330249 DOI: 10.5808/gi.2014.12.4.156] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2014] [Revised: 11/09/2014] [Accepted: 11/09/2014] [Indexed: 12/16/2022] Open
Abstract
Cancer is the most dreaded disease in human and also major health problem worldwide. Despite its high occurrence, the exact molecular mechanisms of the development and progression are not fully understood. The existing cancer therapy based on allopathic medicine is expensive, exhibits side effects; and may also alter the normal functioning of genes. Thus, a non-toxic and effective mode of treatment is needed to control cancer development and progression. Some medicinal plants offer a safe, effective and affordable remedy to control the cancer progression. Nimbolide, a limnoid derived from the neem (Azadirachta indica) leaves and flowers of neem, is widely used in traditional medical practices for treating various human diseases. Nimbolide exhibits several pharmacological effects among which its anticancer activity is the most promising. The previous studies carried out over the decades have shown that nimbolide inhibits cell proliferation and metastasis of cancer cells. This review highlights the current knowledge on the molecular targets that contribute to the observed anticancer activity of nimbolide related to induction of apoptosis and cell cycle arrest; and inhibition of signaling pathways related to cancer progression.
Collapse
Affiliation(s)
- Perumal Elumalai
- Department of Endocrinology, Dr. ALM Post Graduate Institute of Basic Medical Sciences, University of Madras, Chennai 600113, India
| | - Jagadeesan Arunakaran
- Department of Endocrinology, Dr. ALM Post Graduate Institute of Basic Medical Sciences, University of Madras, Chennai 600113, India
| |
Collapse
|
54
|
Li Y, VandenBoom TG, Wang Z, Kong D, Ali S, Philip PA, Sarkar FH. Up-regulation of miR-146a contributes to the inhibition of invasion of pancreatic cancer cells. Cancer Res 2014; 70:5703. [PMID: 25242818 DOI: 10.1158/1538-7445.am10-5703] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Pancreatic cancer (PC) is an aggressive malignancy with high mortality and is believed to be in part due to its highly invasive and metastatic behavior, which is associated with over-expression of EGFR and activation of NF-κB. Emerging evidence also suggest critical roles of microRNAs (miRNAs) in the regulation of various pathobiological processes including metastasis in PC and in other human malignancies. In the present study, we found lower expression of miR-146a in PC cells compared to normal human pancreatic duct epithelial (HPDE) cells. Interestingly, re-expression of miR-146a inhibited the invasive capacity of Colo357 and Panc-1 PC cells with concomitant down-regulation of EGFR and IRAK-1. Mechanistic studies including miR-146a re-expression, anti-miR-146 transfection, and EGFR knock-down experiment showed that there was a crosstalk between EGFR, MTA-2, IRAK-1, IκBα and NF-κB. Most importantly, we found that the treatment of PC cells with "natural agents" [3,3'-diinodolylmethane (DIM) or isoflavone] led to an increase in the expression of miR-146a and consequently down-regulated the expression of EGFR, MTA-2, IRAK-1 and NF-κB, resulting in the inhibition of invasion of Colo357 and Panc-1 cells. These results provide experimental evidence in support of the role of DIM and isoflavone as potential non-toxic agents as regulators of miRNA, which could be useful for the inhibition of cancer cell invasion and metastasis, and further suggesting that these agents could be important for designing novel targeted strategy for the treatment of PC.
Collapse
Affiliation(s)
- Yiwei Li
- Department of Pathology and Internal Medicine, Barbara Ann Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI, USA
| | - Timothy G VandenBoom
- Department of Pathology and Internal Medicine, Barbara Ann Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI, USA
| | - Zhiwei Wang
- Department of Pathology and Internal Medicine, Barbara Ann Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI, USA
| | - Dejuan Kong
- Department of Pathology and Internal Medicine, Barbara Ann Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI, USA
| | - Shadan Ali
- Department of Pathology and Internal Medicine, Barbara Ann Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI, USA
| | - Philip A Philip
- Department of Pathology and Internal Medicine, Barbara Ann Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI, USA
| | - Fazlul H Sarkar
- Department of Pathology and Internal Medicine, Barbara Ann Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI, USA
| |
Collapse
|
55
|
Lee KS, Lee DH, Kwon YS, Chun SY, Nam KS. Deep-sea water inhibits metastatic potential in HT-29 human colorectal adenocarcinomas via MAPK/NF-κB signaling pathway. BIOTECHNOL BIOPROC E 2014. [DOI: 10.1007/s12257-014-0210-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
56
|
Liu SC, Chen C, Chung CH, Wang PC, Wu NL, Cheng JK, Lai YW, Sun HL, Peng CY, Tang CH, Wang SW. Inhibitory effects of butein on cancer metastasis and bioenergetic modulation. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2014; 62:9109-9117. [PMID: 25137351 DOI: 10.1021/jf502370c] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Tumor metastasis is the major obstacle for cancer treatment. Previous studies have shown that butein exhibits antiangiogenesis property and anticancer effects in different kinds of human cancer cells. However, the effects of butein on metastasis and energy metabolism of cancer cells are mostly unknown. This study showed that butein significantly inhibited invasion of cancer cells without acting in a cytotoxic fashion. It was further demonstrated that butien dramatically suppressed cancer metastasis by an in vivo CAM-intravasation model. Additionally, butein concentration-dependently repressed the expression and activity of matrix metalloproteinase-9 (MMP-9) and urokinase plasminogen activator (uPA). The study indicated that butein may repress MMP-9 and uPA proteolytic activities and subsequently inhibit cancer metastasis via Akt/mTOR/p70S6K translational machinery. Moreover, butein may partly suppress cancer metastasis by down-regulating ATP synthesis via both oxidative and glycolytic metabolism. The results suggest that butein is a potential antimetastatic agent worthy of further development for cancer treatment.
Collapse
Affiliation(s)
- Shih-Chia Liu
- Departments of Orthopaedics, #Dermatology, and ⊥Anesthesiology, Mackay Memorial Hospital , Taipei, Taiwan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
57
|
Jayasooriya RGPT, Dilshara MG, Choi YH, Moon SK, Kim WJ, Kim GY. Tianeptine sodium salt suppresses TNF-α-induced expression of matrix metalloproteinase-9 in human carcinoma cells via suppression of the PI3K/Akt-mediated NF-κB pathway. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2014; 38:502-9. [PMID: 25168152 DOI: 10.1016/j.etap.2014.07.023] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2013] [Revised: 07/18/2014] [Accepted: 07/31/2014] [Indexed: 05/12/2023]
Abstract
Tianeptine sodium salt (TSS) is a selective facilitator of serotonin, but there are no reports regarding anti-invasive effects of TSS. Therefore, we investigated the effect of TSS on the expression of matrix metalloproteinase-9 (MMP-9) and invasion in three different human carcinoma cell lines. Our findings showed that MMP-9 activity was significantly increased in response to tumor necrosis factor-α (TNF-α), and that TSS reduced TNF-α-induced MMP-9 activity in a dose-dependent manner. TSS also downregulated both MMP-9 expression and TNF-α-induced MMP-9 promoter activity. Using a matrigel invasion assay, we showed that TSS significantly attenuated invasive rates in TNF-α-stimulated LNCaP prostate carcinoma cells. Furthermore, TSS suppressed TNF-α-induced NF-κB activity, which is a potential transcriptional factor for regulating many invasive genes, including MMP-9, by suppressing IκB degradation and nuclear translocation of NF-κB subunits in LNCaP prostate carcinoma cells. TSS also downregulated TNF-α-induced phosphorylation of phosphatidyl-inositol 3 kinase (PI3K) and Akt, and a selective PI3K/Akt inhibitor, LY294002, diminished TNF-α-induced NF-κB activation followed by levels of MMP-9, suggesting that TSS also reduces MMP-9 expression by inhibiting the PI3K/Akt-mediated NF-κB pathway. These results indicate that TSS is a potential anti-invasive agent by suppression of TNF-α-induced MMP-9 expression via inhibition of PI3K/Akt-mediated NF-κB activity.
Collapse
Affiliation(s)
| | - Matharage Gayani Dilshara
- Laboratory of Immunobiology, Department of Marine Life Sciences, Jeju National University, Jeju 690-756, Republic of Korea
| | - Yung Hyun Choi
- Department of Biochemistry, College of Oriental Medicine, Dongeui University, Busan 614-051, Republic of Korea
| | - Sung-Kwon Moon
- School of Food Science and Technology, Chung-Ang University, Ansung 456-756, Republic of Korea
| | - Wun-Jae Kim
- Department of Urology, College of Medicine, Chungbuk National University, Chungbuk, Cheongju 361-763, Republic of Korea
| | - Gi-Young Kim
- Laboratory of Immunobiology, Department of Marine Life Sciences, Jeju National University, Jeju 690-756, Republic of Korea.
| |
Collapse
|
58
|
McCarty MF, Hejazi J, Rastmanesh R. Beyond androgen deprivation: ancillary integrative strategies for targeting the androgen receptor addiction of prostate cancer. Integr Cancer Ther 2014; 13:386-395. [PMID: 24867960 DOI: 10.1177/1534735414534728] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The large majority of clinical prostate cancers remain dependent on androgen receptor (AR) activity for proliferation even as they lose their responsiveness to androgen deprivation or antagonism. AR activity can be maintained in these circumstances by increased AR synthesis--often reflecting increased NF-κB activation; upregulation of signaling pathways that promote AR activity in the absence of androgens; and by emergence of AR mutations or splice variants lacking the ligand-binding domain, which render the AR constitutively active. Drugs targeting the N-terminal transactivating domain of the AR, some of which are now in preclinical development, can be expected to inhibit the activity not only of unmutated ARs but also of the mutant forms and splice variants selected for by androgen deprivation. Concurrent measures that suppress AR synthesis or boost AR turnover could be expected to complement the efficacy of such drugs. A number of nutraceuticals that show efficacy in prostate cancer xenograft models--including polyphenols from pomegranate, grape seed, and green tea, the crucifera metabolite diindolylmethane, and the hormone melatonin--have the potential to suppress AR synthesis via downregulation of NF-κB activity; clinical doses of salicylate may have analogous efficacy. The proteasomal turnover of the AR is abetted by diets with a high ratio of long-chain omega-3 to omega-6 fatty acids, which are beneficial in prostate cancer xenograft models; berberine and sulforaphane, by inhibiting AR's interaction with its chaperone Hsp90, likewise promote AR proteasomal degradation and retard growth of human prostate cancer in nude mice. Hinge region acetylation of the AR is required for optimal transactivational activity, and low micromolar concentrations of the catechin epigallocatechin-3-gallate (EGCG) can inhibit such acetylation--possibly explaining the ability of EGCG administration to suppress androgenic activity and cell proliferation in prostate cancer xenografts. Hence, it is proposed that regimens featuring an N-terminal domain-targeting drug, various nutraceuticals/drugs that downregulate NF-κB activity, and/or supplemental intakes of fish oil, berberine, sulforaphane, and EGCG have potential for blocking proliferation of prostate cancer by targeting its characteristic addiction to androgen receptor activity.
Collapse
Affiliation(s)
| | - Jalal Hejazi
- Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Reza Rastmanesh
- National Nutrition and Food Sciences Technology Research Institute, Tehran, Iran
| |
Collapse
|
59
|
Tang L, Yue B, Cheng Y, Yao H, Ma X, Tian Q, Ge L, Liu Z, Han X. Inhibition of invasion and metastasis by DMBT, a novel trehalose derivative, through Akt/GSK-3β/β-catenin pathway in B16BL6 cells. Chem Biol Interact 2014; 222:7-17. [PMID: 25148938 DOI: 10.1016/j.cbi.2014.08.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2013] [Revised: 07/14/2014] [Accepted: 08/11/2014] [Indexed: 12/19/2022]
Abstract
Invasion, either directly or via metastasis formation, is the main cause of death in cancer patients. Development of efficient anti-invasive agents is an important research challenge. 6,6'-bis (2,3-dimethoxybenzoyl)-a, a-d-trehalose (DMBT), one of brartemicin analogs, was found to be the most potent anti-invasive agent, but the underlying mechanisms are poorly understood. Our current study was to explore the effects of DMBT on invasion and metastasis in B16BL6 cells. Antiproliferation assay and trypan blue exclusion assay showed that no obvious inhibitory or cytotoxic effect of DMBT was found in B16BL6 cells. Wound healing demonstrated that DMBT could inhibit cell migration compared with the normal group. Transwell experiments showed that DMBT could significantly inhibit invasion to the reconstituted basement membrane (P<0.01). We examined the effects of lung metastasis produced by highly metastatic B16BL6 melanoma cells by using experimental metastasis models and BLI analysis. DMBT could significantly suppress lung metastasis in mice. Results from immunohistochemical staining, Western blotting and real-time PCR indicated that the chemopreventive effect of DMBT was attributed to the inhibition of the VEGF and MMP-9 through Akt/GSK-3β/β-catenin and Akt/mTOR signaling pathways. These results suggested that DMBT could be a promising lead molecule for the anti-metastasis and serve as a therapeutic agent to inhibit cancer cell invasion and metastasis.
Collapse
Affiliation(s)
- Linlin Tang
- Department of Pharmacology, School of Pharmaceutical Sciences, Shandong University, 44 West Wenhua Road, Jinan 250012, China
| | - Bin Yue
- Department of Pharmacology, School of Pharmaceutical Sciences, Shandong University, 44 West Wenhua Road, Jinan 250012, China
| | - Yanna Cheng
- Department of Pharmacology, School of Pharmaceutical Sciences, Shandong University, 44 West Wenhua Road, Jinan 250012, China; Key Laboratory of Chemical Biology of Natural Products, Ministry of Education, China
| | - Hong Yao
- Department of Pharmacology, School of Pharmaceutical Sciences, Shandong University, 44 West Wenhua Road, Jinan 250012, China
| | - Xiaowen Ma
- Department of Pharmacology, School of Pharmaceutical Sciences, Shandong University, 44 West Wenhua Road, Jinan 250012, China
| | - Qi Tian
- Department of Pharmacology, School of Pharmaceutical Sciences, Shandong University, 44 West Wenhua Road, Jinan 250012, China
| | - Lianping Ge
- Department of Pharmacology, School of Pharmaceutical Sciences, Shandong University, 44 West Wenhua Road, Jinan 250012, China
| | - Zhaopeng Liu
- Department of Medicinal Chemistry, School of Pharmaceutical Sciences, Shandong University, 44 West Wenhua Road, Jinan 250012, China; Key Laboratory of Chemical Biology of Natural Products, Ministry of Education, China
| | - Xiuzhen Han
- Department of Pharmacology, School of Pharmaceutical Sciences, Shandong University, 44 West Wenhua Road, Jinan 250012, China; Key Laboratory of Chemical Biology of Natural Products, Ministry of Education, China.
| |
Collapse
|
60
|
Chen Y, Zheng L, Liu J, Zhou Z, Cao X, Lv X, Chen F. Shikonin inhibits prostate cancer cells metastasis by reducing matrix metalloproteinase-2/-9 expression via AKT/mTOR and ROS/ERK1/2 pathways. Int Immunopharmacol 2014; 21:447-55. [PMID: 24905636 DOI: 10.1016/j.intimp.2014.05.026] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2014] [Revised: 05/07/2014] [Accepted: 05/23/2014] [Indexed: 01/10/2023]
Abstract
Metastasis is one of the most important factors related to prostate cancer therapeutic efficacy. In previous studies, shikonin, an active naphthoquinone isolated from the Chinese medicine Zi Cao, has various anticancer activities both in vivo and in vitro. However, the mechanisms underlying shikonin's anticancer activity are not fully elucidated on prostate cancer cells. In the present study, we aimed to investigate the potential effects of shikonin on prostate cancer cells and the underlying mechanisms by which shikonin exerted its actions. With cell proliferation, flow cytometric cell cycle, migration and invasion assays, we found that shikonin potently suppressed PC-3 and DU145 cell growth by cell cycle arrest at the G2 phase and metastasis in a dose-dependent manner. Mechanically, we presented that shikonin could suppress the metastasis of PC-3 and DU145 cells via inhibiting the matrix metalloproteinase-2 (MMP-2) and MMP-9 expression and activation. In addition, shikonin significantly decreased the phosphorylation of AKT and mTOR in a dose-dependent manner while it induced extracellular signal-regulated kinase (ERK), p38 mitogen activated protein kinase (MAPK) and c-Jun N terminal kinase (JNK) phosphorylation. Further investigation of the underlying mechanism revealed that shikonin also induced the production of reactive oxygen species (ROS) that was reversed by the ROS scavenger dithiothreitol (DTT). Additionally, DTT reversed the shikonin induced activation of ERK1/2, thereby maintaining MMP-2 and MMP-9 expression and restoring cell metastasis. Together, shikonin inhibits aggressive prostate cancer cell migration and invasion by reducing MMP-2/-9 expression via AKT/mTOR and ROS/ERK1/2 pathways and presents a potential novel alternative agent for the treatment of human prostate cancer.
Collapse
Affiliation(s)
- Yongqiang Chen
- Department of Central Laboratory, 97th Hospital of PLA, 226 Tongshang Road, Xuzhou 221004, China
| | - Lu Zheng
- Department of Central Laboratory, 97th Hospital of PLA, 226 Tongshang Road, Xuzhou 221004, China
| | - Junquan Liu
- Department of Central Laboratory, 97th Hospital of PLA, 226 Tongshang Road, Xuzhou 221004, China
| | - Zhonghai Zhou
- Department of Central Laboratory, 97th Hospital of PLA, 226 Tongshang Road, Xuzhou 221004, China
| | - Xiliang Cao
- Department of Central Laboratory, 97th Hospital of PLA, 226 Tongshang Road, Xuzhou 221004, China
| | - Xiaoting Lv
- Department of Central Laboratory, 97th Hospital of PLA, 226 Tongshang Road, Xuzhou 221004, China
| | - Fuxing Chen
- Department of Central Laboratory, 97th Hospital of PLA, 226 Tongshang Road, Xuzhou 221004, China.
| |
Collapse
|
61
|
Yang ZS, Xu YF, Huang FF, Ding GF. Associations of nm23H1, VEGF-C, and VEGF-3 receptor in human prostate cancer. Molecules 2014; 19:6851-62. [PMID: 24858271 PMCID: PMC6271091 DOI: 10.3390/molecules19056851] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2014] [Revised: 05/13/2014] [Accepted: 05/21/2014] [Indexed: 02/02/2023] Open
Abstract
We studied the expression of the non-metastatic clone 23 type 1 (nm23H1) gene, vascular endothelial growth factor (VEGF)-C, and its receptor VEGFR-3 using an in situ hybridization technique and immunohistochemical analyses with prostate cancer tissues and adjacent benign tissues of 52 human archival cases. The association between VEGF-C expression, microlymphatic count (MLC), and staining intensity for nm23H1 and VEGFR-3 was used to evaluate tumor metastasis and survival rate. MLC values were significantly higher in tumorous tissue than in non-cancerous tissue. VEGF-C mRNA, VEGFR-3, and nm23H1 were highly expressed in tumorous tissue. VEGFR-3 expression was greater in VEGF-C mRNA-positive tumors than in VEGF-C mRNA-negative tumors. The association of VEGFR-3 expression with VEGF-C mRNA and MLC suggested that the poor prognosis and tumor metastasis associated with VEGFR-3 expression may be due, in part, to its role in promoting angiogenesis. VEGF-C expression was significantly associated with tumor lymphangiogenesis, angiogenesis, and immune response as a potent multifunctional stimulating factor in prostate cancer. Expression of nm23H1 was significantly inversely correlated with lymph node metastasis. Furthermore, there was a strong negative correlation between the expression of nm23H1, VEGF-C mRNA, and MLC. These findings provide important information for prophylactic, diagnostic, and therapeutic strategies for prostate cancer.
Collapse
Affiliation(s)
- Zui-Su Yang
- Engineering Research Centers of Marine Organism Medical Products, Medical College of Zhejiang Ocean University, Zhoushan 316022, China
| | - Yin-Feng Xu
- Engineering Research Centers of Marine Organism Medical Products, Medical College of Zhejiang Ocean University, Zhoushan 316022, China
| | - Fang-Fang Huang
- Engineering Research Centers of Marine Organism Medical Products, Medical College of Zhejiang Ocean University, Zhoushan 316022, China
| | - Guo-Fang Ding
- Engineering Research Centers of Marine Organism Medical Products, Medical College of Zhejiang Ocean University, Zhoushan 316022, China.
| |
Collapse
|
62
|
Sun TT, Wang Y, Cheng H, Xiao HZ, Xiang JJ, Zhang JT, Yu SBS, Martin TA, Ye L, Tsang LL, Jiang WG, Xiaohua J, Chan HC. Disrupted interaction between CFTR and AF-6/afadin aggravates malignant phenotypes of colon cancer. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2014; 1843:618-28. [PMID: 24373847 DOI: 10.1016/j.bbamcr.2013.12.013] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2013] [Revised: 11/26/2013] [Accepted: 12/16/2013] [Indexed: 12/16/2022]
Abstract
How mutations or dysfunction of CFTR may increase the risk of malignancies in various tissues remains an open question. Here we report the interaction between CFTR and an adherens junction molecule, AF-6/afadin, and its involvement in the development of colon cancer. We have found that CFTR and AF-6/afadin are co-localized at the cell-cell contacts and physically interact with each other in colon cancer cell lines. Knockdown of CFTR results in reduced epithelial tightness and enhanced malignancies, with increased degradation and reduced stability of AF-6/afadin protein. The enhanced invasive phenotype of CFTR-knockdown cells can be completely reversed by either AF-6/afadin over-expression or ERK inhibitor, indicating the involvement of AF-6/MAPK pathway. More interestingly, the expression levels of CFTR and AF-6/afadin are significantly downregulated in human colon cancer tissues and lower expression of CFTR and/or AF-6/afadin is correlated with poor prognosis of colon cancer patients. The present study has revealed a previously unrecognized interaction between CFTR and AF-6/afadin that is involved in the pathogenesis of colon cancer and indicated the potential of the two as novel markers of metastasis and prognostic predictors for human colon cancer.
Collapse
|
63
|
Liu T, Xie C, Ma H, Zhang S, Liang Y, Shi L, Yu D, Feng Y, Zhang T, Wu G. Gr-1+CD11b+ cells facilitate Lewis lung cancer recurrence by enhancing neovasculature after local irradiation. Sci Rep 2014; 4:4833. [PMID: 24776637 PMCID: PMC4003474 DOI: 10.1038/srep04833] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2014] [Accepted: 04/11/2014] [Indexed: 12/15/2022] Open
Abstract
Studies have shown that bone marrow-derived cells play an important role in tumor recurrence after chemotherapy and radiotherapy. In this study, we examined the relationship between the accumulation of Gr-1+CD11b+ cells and tumor recurrence after irradiation in tumor-bearing mice. By transplanting bone marrow cells into whole body-irradiated mice depleted of bone marrow, we assessed the role of Gr-1+CD11b+ cells in lung carcinoma models after local irradiation (LI). 20 Gy local irradiation could recruit CD11b+CXCR4+ cells into the irradiated tissues, and the recruited CD11b+CXCR4+ cells could promote tumor recurrence. Further 6 Gy whole body irradiation (WBI6Gy) could decrease tumor recurrence by inhibiting the accumulation of Gr-1+CD11b+ cells and then suppressing tumor vasculogenesis and angiogenesis. Our results suggest that the accumulation of CD11b+Gr-1+ cells promote tumor re-growth after local irradiation by enhancing tumor neovascularization, and low dose of whole body irradiation or irradiation of enlarged spleen may provide a new alternative for anti-angiogenesis therapies.
Collapse
Affiliation(s)
- Tao Liu
- 1] Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, P.R. China [2]
| | - Congying Xie
- 1] Departments of Radiation Oncology and Chemotherapy, The First Affiliated Hospital of Wenzhou Medical College, Wenzhou, Zhejiang, 325002, P.R. China [2]
| | - Hong Ma
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, P.R. China
| | - Sheng Zhang
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, P.R. China
| | - Yicheng Liang
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, P.R. China
| | - Liangliang Shi
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, P.R. China
| | - Dandan Yu
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, P.R. China
| | - Yiming Feng
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, P.R. China
| | - Tao Zhang
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, P.R. China
| | - Gang Wu
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, P.R. China
| |
Collapse
|
64
|
Antiangiogenic therapy effects on age-associated matrix metalloproteinase-9 (MMP-9) and insulin-like growth factor receptor-1 (IGFR-1) responses: a comparative study of prostate disorders in aged and TRAMP mice. Histochem Cell Biol 2014; 142:269-84. [PMID: 24562790 DOI: 10.1007/s00418-014-1193-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/20/2014] [Indexed: 10/25/2022]
Abstract
Senescence is associated with hormonal imbalance and prostatic disorders. Angiogenesis is fundamental for the progression of malignant lesions and is a promising target for prostate cancer treatment. The aim was to characterize matrix metalloproteinase-9 (MMP-9) and insulin-like growth factor receptor-1 (IGFR-1) responses in the prostate during senescence and following antiangiogenic and/or androgen ablation therapies, comparing them to cancer progression features in TRAMP mice. Aged male mice (52-week-old FVB) were submitted to antiangiogenic treatments with SU5416 (6 mg/kg; i.p.) and/or TNP-470 (15 mg/kg; s.c). Finasteride (20 mg/kg; s.c.) was administered alone or associated to both inhibitors. Dorsolateral prostate was collected for light microscopy, and immunohistochemistry and Western blotting collected for MMP-9 and IGFR-1. Senescence led to inflammation and different proliferative lesions in the prostate, as well as to increased MMP-9 and IGFR-1, resembling TRAMP mice prostatic microenvironment. Antiangiogenic therapies promoted recovery and/or interruption of age-associated alterations, presenting differential effects on the molecules studied. SU5416 acted mainly on MMP-9, whereas TNP-470 showed its best influence on IGFR-1 levels. Finasteride administration, alone or in combination with antiangiogenic agents, also resulted in regression of inflammation and neoplastic lesions, besides having a negative modulatory effect on both MMP-9 and IGFR-1. We concluded that stimulated tissue remodeling and proliferative processes during senescence predisposed the prostate to malignant disorders. The combination of different agents was more effective to minimize prostatic imbalance during this period, probably due to the differential action of each drug on factors involved in cell proliferation and extracellular matrix remodeling, resulting in a broader spectrum of effects following the combined treatment.
Collapse
|
65
|
Rocha CA, Cestari TM, Vidotti HA, de Assis GF, Garlet GP, Taga R. Sintered anorganic bone graft increases autocrine expression of VEGF, MMP-2 and MMP-9 during repair of critical-size bone defects. J Mol Histol 2014; 45:447-61. [PMID: 24482159 DOI: 10.1007/s10735-014-9565-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2013] [Accepted: 01/20/2014] [Indexed: 12/14/2022]
Abstract
This study aimed to evaluate morphometrically the bone formation and immunohistochemically the expression of vascular endothelial growth factor (VEGF) and metalloproteinase (MMP)-2 and -9 during the healing of critical-size defects treated with sintered anorganic bone (sAB). The 8-mm diameter full-thickness trephine defects created in the parietal bones of rats were filled with sAB (test group) or blood clot (CSD-control group). At 7, 14, 21, 30, 90 and 180 days postoperatively (n = 6/period) the volume of newly formed bone and total number of immunolabeled cells (Ntm) for each protein were determined. Bone formation was smaller and faster in the CSD-control group, stabilizing at 21 days (6.74 mm(3)). The peaks of VEGF, MMP-2 and MMP-9 occurred at 7 and 14 days in fibroblasts and osteoblasts, with mean reduction of 0.80 time at 21 days, keeping constant until 180 days. In the test group, sAB provided continuous bone formation between particles throughout all periods. The peak of MMP-2 was observed at 7-14 days in connective tissue cells and for VEGF and MMP-9 at 30 days in osteoblasts and osteocytes. Ntm for VEGF, MMP-2 and MMP-9 were in average, respectively, 3.70, 2.03 and 5.98 times higher than in the control group. At 180 days, newly formed bone (22.9 mm(3)) was 3.74 times greater in relation to control. The physical and chemical properties of sAB allow increased autocrine expression of VEGF, MMP-2 and MMP-9, favoring bone formation/remodeling with very good healing of cranial defects when compared to natural repair in the CSD-control.
Collapse
Affiliation(s)
- Caroline Andrade Rocha
- Department of Biological Sciences, Bauru School of Dentistry, University of São Paulo, Alameda Octávio Pinheiro Brisolla 9-75, Bauru, SP, 17012-901, Brazil,
| | | | | | | | | | | |
Collapse
|
66
|
KIM AEYUNG, YIM NAMHUI, IM MINJU, JUNG YOUNGPIL, KIM TAESOO, MA JINYEUL. Suppression of the invasive potential of highly malignant tumor cells by KIOM-C, a novel herbal medicine, via inhibition of NF-κB activation and MMP-9 expression. Oncol Rep 2013; 31:287-97. [DOI: 10.3892/or.2013.2822] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2013] [Accepted: 10/04/2013] [Indexed: 11/06/2022] Open
|
67
|
Howard CM, Baudino TA. Dynamic cell-cell and cell-ECM interactions in the heart. J Mol Cell Cardiol 2013; 70:19-26. [PMID: 24140801 DOI: 10.1016/j.yjmcc.2013.10.006] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2013] [Revised: 10/07/2013] [Accepted: 10/09/2013] [Indexed: 12/17/2022]
Abstract
Recent studies have placed an increasing amount of emphasis on the cardiovascular system and understanding how the heart and its vasculature can be regenerated following pathological stresses, such as hypertension and myocardial infarction. The remodeling process involves the permanent cellular constituents of the heart including myocytes, fibroblasts, endothelial cells, pericytes, smooth muscle cells and stem cells. It also includes transient cell populations, such as immune cells (e.g. lymphocytes, mast cells and macrophages) and circulating stem cells. Following injury, there are dramatic shifts in the various cardiac cell populations that can affect cell-cell and cell-extracellular matrix interactions and cardiac function. Cardiac fibroblasts are a key component in normal heart function, as well as during the remodeling process through dynamic cell-cell interactions and synthesis and degradation of the extracellular matrix. Fibroblasts dynamically interact with the various cardiac cell populations through mechanical, chemical (autocrine and/or paracrine) and electrophysiological means to alter gene and protein expression, cellular processes and ultimately cardiac function. Better understanding these cell-cell and cell-extracellular matrix interactions and their biological consequences should provide novel therapeutic targets for the treatment of heart disease. In this review we discuss the nature of these interactions and the importance of these interactions in maintaining normal heart function, as well as their role in the cardiac remodeling process. This article is part of a Special Issue entitled "Myocyte-Fibroblast Signalling in Myocardium."
Collapse
Affiliation(s)
| | - Troy A Baudino
- Department of Medicine, Division of Molecular Cardiology, Cardiovascular Research Institute, Texas A&M Health Science Center, Temple, TX 76504, USA; Central Texas Veterans Health Care System, Temple, TX 76504, USA.
| |
Collapse
|
68
|
Kandekar S, Preet R, Kashyap M, M. U. RP, Mohapatra P, Das D, Satapathy SR, Siddharth S, Jain V, Choudhuri M, Kundu CN, Guchhait SK, Bharatam PV. Structural Elaboration of a Natural Product: Identification of 3,3′-Diindolylmethane Aminophosphonate and Urea Derivatives as Potent Anticancer Agents. ChemMedChem 2013; 8:1873-84. [DOI: 10.1002/cmdc.201300273] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2013] [Revised: 07/23/2013] [Indexed: 01/08/2023]
|
69
|
Li Y, Kong D, Ahmad A, Bao B, Sarkar FH. Antioxidant function of isoflavone and 3,3'-diindolylmethane: are they important for cancer prevention and therapy? Antioxid Redox Signal 2013; 19:139-50. [PMID: 23391445 PMCID: PMC3689155 DOI: 10.1089/ars.2013.5233] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
SIGNIFICANCE Oxidative stress has been mechanistically linked with aging and chronic diseases, including cancer. In fact, oxidative stress status, chronic disease-related inflammation, and cancer occurred in the aging population are tightly correlated. It is well known that the activation of nuclear factor kappa B (NF-κB) plays important roles in oxidative stress, inflammation, and carcinogenesis. Therefore, targeting NF-κB is an important preventive or therapeutic strategy against oxidative stress, inflammation, and cancer. RECENT ADVANCES A variety of natural compounds has been found to reduce oxidative stress through their antioxidant activity. Among them, isoflavone, indole-3-carbinol (I3C), and its in vivo dimeric compound 3,3'-diindolylmethane (DIM) have shown their promising effects on the inhibition of NF-κB with corresponding reduction of oxidative stress. CRITICAL ISSUES It has been found that isoflavone, I3C, and DIM could inhibit cancer development and progression by regulating multiple cellular signaling pathways that are related to oxidative stress and significantly deregulated in cancer. FUTURE DIRECTIONS The antioxidative and anticancer effects of these natural agents make them strong candidates for chemoprevention and/or therapy against human malignancies. However, more clinical trials are needed to evaluate the effects of isoflavone and DIM for the prevention of cancer development and also for the treatment of cancer either alone or in combination with conventional cancer therapeutics.
Collapse
Affiliation(s)
- Yiwei Li
- Department of Pathology, Barbara Ann Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | | | | | | | | |
Collapse
|
70
|
W Watson G, M Beaver L, E Williams D, H Dashwood R, Ho E. Phytochemicals from cruciferous vegetables, epigenetics, and prostate cancer prevention. AAPS JOURNAL 2013; 15:951-61. [PMID: 23800833 DOI: 10.1208/s12248-013-9504-4] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2013] [Accepted: 06/11/2013] [Indexed: 12/21/2022]
Abstract
Epidemiological evidence has demonstrated a reduced risk of prostate cancer associated with cruciferous vegetable intake. Follow-up studies have attributed this protective activity to the metabolic products of glucosinolates, a class of secondary metabolites produced by crucifers. The metabolic products of glucoraphanin and glucobrassicin, sulforaphane, and indole-3-carbinol respectively, have been the subject of intense investigation by cancer researchers. Sulforaphane and indole-3-carbinol inhibit prostate cancer by both blocking initiation and suppressing prostate cancer progression in vitro and in vivo. Research has largely focused on the anti-initiation and cytoprotective effects of sulforaphane and indole-3-carbinol through induction of phases I and II detoxification pathways. With regards to suppressive activity, research has focused on the ability of sulforaphane and indole-3-carbinol to antagonize cell signaling pathways known to be dysregulated in prostate cancer. Recent investigations have characterized the ability of sulforaphane and indole-3-carbinol derivatives to modulate the activity of enzymes controlling the epigenetic status of prostate cancer cells. In this review, we will summarize the well-established, "classic" non-epigenetic targets of sulforaphane and indole-3-carbinol, and highlight more recent evidence supporting these phytochemicals as epigenetic modulators for prostate cancer chemoprevention.
Collapse
Affiliation(s)
- Gregory W Watson
- Molecular and Cellular Biology, Oregon State University, Corvallis, Oregon, 97331, USA
| | | | | | | | | |
Collapse
|
71
|
Clinicopathological significance of platelet-derived growth factor B, platelet-derived growth factor receptor-β, and E-cadherin expression in gastric carcinoma. Contemp Oncol (Pozn) 2013; 17:150-5. [PMID: 23788982 PMCID: PMC3685361 DOI: 10.5114/wo.2013.34618] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2012] [Revised: 08/10/2012] [Accepted: 09/20/2012] [Indexed: 01/30/2023] Open
Abstract
Aim of the study Platelet-derived growth factor B (PDGF-B), a vital growth factor which can induce angiogenesis and epithelial-mesenchymal transition (EMT), is important in the metastasis of many tumors. However, the roles of PDGF-B in gastric carcinoma are largely unknown. We investigated the correlation between PDGF-B, PDGFR-β and E-cadherin expression with the clinical features of gastric carcinoma patients to evaluate the relationship between PDGF-B signaling, E-cadherin and metastasis of gastric carcinoma, the correlation between PDGF-B and E-cadherin expression to assess the roles of PDGF-B signaling in metastasis of gastric carcinoma.. Material and methods We detected expressions of PDGF-B, PDGFR-β and E-cadherin in gastric carcinoma tissues and normal gastric mucosa tissues of 64 patients with gastric carcinoma who had undergone surgical resection, and investigated their relationships with clinical features and the relationships between PDGF-B and E-cadherin expression in gastric carcinoma. Results In surgical specimens, tumor cells expressed PDGF-B, and PDGFR-β was expressed by tumor stromal cells. E-cadherin was expressed by both tumor cells and normal gastric mucosa cells. Expressions of PDGF-B and PDGFR-β were increased in gastric carcinoma tissues (p < 0.05) and were positively correlated with the depth of cancer invasion, lymph node metastasis and TNM stage (p < 0.05). The expression of E-cadherin was reduced in gastric carcinoma tissues (p < 0.05) and was negatively correlated with the depth of cancer invasion, lymph node metastasis and TNM stage (p < 0.05). The correlation between PDGF-B and E-cadherin expression was negative (p < 0.05). Conclusion Our data indicate that either the overexpression of PDGF-B and PDGFR-β or the underexpression of E-cadherin is correlated with cancer progression and lymphogenous metastasis of gastric carcinoma. The PDGF-B signal pathway might induce EMT by down-regulating expression of E-cadherin to promote metastasis of gastric carcinoma.
Collapse
|
72
|
Hwang JY, Lee NS, Lee C, Lam KH, Kim HH, Woo J, Lin MY, Kisler K, Choi H, Zhou Q, Chow RH, Shung KK. Investigating contactless high frequency ultrasound microbeam stimulation for determination of invasion potential of breast cancer cells. Biotechnol Bioeng 2013; 110:2697-705. [PMID: 23568761 DOI: 10.1002/bit.24923] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2012] [Revised: 02/11/2013] [Accepted: 03/25/2013] [Indexed: 12/12/2022]
Abstract
In this article, we investigate the application of contactless high frequency ultrasound microbeam stimulation (HFUMS) for determining the invasion potential of breast cancer cells. In breast cancer patients, the finding of tumor metastasis significantly worsens the clinical prognosis. Thus, early determination of the potential of a tumor for invasion and metastasis would significantly impact decisions about aggressiveness of cancer treatment. Recent work suggests that invasive breast cancer cells (MDA-MB-231), but not weakly invasive breast cancer cells (MCF-7, SKBR3, and BT-474), display a number of neuronal characteristics, including expression of voltage-gated sodium channels. Since sodium channels are often co-expressed with calcium channels, this prompted us to test whether single-cell stimulation by a highly focused ultrasound microbeam would trigger Ca(2+) elevation, especially in highly invasive breast cancer cells. To calibrate the diameter of the microbeam ultrasound produced by a 200-MHz single element LiNbO3 transducer, we focused the beam on a wire target and performed a pulse-echo test. The width of the beam was ∼17 µm, appropriate for single cell stimulation. Membrane-permeant fluorescent Ca(2+) indicators were utilized to monitor Ca(2+) changes in the cells due to HFUMS. The cell response index (CRI), which is a composite parameter reflecting both Ca(2+) elevation and the fraction of responding cells elicited by HFUMS, was much greater in highly invasive breast cancer cells than in the weakly invasive breast cancer cells. The CRI of MDA-MB-231 cells depended on peak-to-peak amplitude of the voltage driving the transducer. These results suggest that HFUMS may serve as a novel tool to determine the invasion potential of breast cancer cells, and with further refinement may offer a rapid test for invasiveness of tumor biopsies in situ.
Collapse
Affiliation(s)
- Jae Youn Hwang
- Department of Biomedical Engineering, University of Southern California, Los Angeles, California 90089, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
73
|
Getz JA, Cheneval O, Craik DJ, Daugherty PS. Design of a cyclotide antagonist of neuropilin-1 and -2 that potently inhibits endothelial cell migration. ACS Chem Biol 2013; 8:1147-54. [PMID: 23537207 DOI: 10.1021/cb4000585] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Neuropilin-1 and -2 are critical regulators of angiogenesis, lymphangiogenesis, and cell survival as receptors for multiple growth factors. Disulfide-rich peptides that antagonize the growth factor receptors neuropilin-1 and neuropilin-2 were developed using bacterial display libraries. Peptide ligands specific for the VEGFA binding site on neuropilin-1 were identified by screening a library of disulfide-rich peptides derived from the thermostable, protease-resistant cyclotide kalata B1. First generation ligands were subjected to one cycle of affinity maturation to yield acyclic peptides with affinities of 40-60 nM and slow dissociation rate constants (∼1 × 10(-3) s(-1)). Peptides exhibited equivalent affinities for human and mouse neuropilin-1 and cross-reacted with human neuropilin-2 with lower affinity. A C-to-N cyclized variant (cyclotide) of one neuropilin ligand retained high affinity, exhibited increased protease resistance, and conferred improved potency for inhibiting endothelial cell migration in vitro (EC50 ≈ 100 nM). These results demonstrate that potent, target-specific cyclotides can be created by evolutionary design and that backbone cyclization can confer improved pharmacological properties.
Collapse
Affiliation(s)
- Jennifer A. Getz
- Department of Chemical Engineering, University of California, Santa Barbara, California
93106, United States
| | - Olivier Cheneval
- Institute
for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia
| | - David J. Craik
- Institute
for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Patrick S. Daugherty
- Department of Chemical Engineering, University of California, Santa Barbara, California
93106, United States
| |
Collapse
|
74
|
Arriazu R, Durán E, Pozuelo JM, Santamaria L. Expression of lysophosphatidic acid receptor 1 and relation with cell proliferation, apoptosis, and angiogenesis on preneoplastic changes induced by cadmium chloride in the rat ventral prostate. PLoS One 2013; 8:e57742. [PMID: 23451264 PMCID: PMC3579784 DOI: 10.1371/journal.pone.0057742] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2012] [Accepted: 01/24/2013] [Indexed: 01/26/2023] Open
Abstract
BACKGROUND Lysophosphatidic acid (LPA) is a phospholipid growth factor involved in cell proliferation, differentiation, migration, inflammation, angiogenesis, wound healing, cancer invasion, and survival. This study was directed to evaluate the immunoexpression of LPA-1, cell proliferation, apoptosis, and angiogenesis markers in preneoplastic lesions induced with cadmium chloride in rat prostate. METHODS The following parameters were calculated in ventral prostate of normal rats and rats that received Cd in drinking water during 24 months: percentages of cells immunoreactive to LPA-1 (LILPA1), PCNA (LIPCNA), MCM7 (LIMCM7), ubiquitin (LIUBI), apoptotic cells (LIAPO), and p53 (LIp53); volume fraction of Bcl-2 (VFBcl-2); and length of microvessels per unit of volume (LVMV/mm3). Data were analyzed using Student's t-test and Pearson correlation test. RESULTS The LILPA1 in dysplastic lesions and normal epithelium of Cd-treated rats was significantly higher than those in the control group. Markers of proliferation were significantly increased in dysplastic lesions, whereas some apoptotic markers were significantly decreased. No significant differences between groups were found in VFBcl-2. Dysplastic lesions showed a significant increase of LIp53. The length of microvessels per unit of volume was elevated in dysplastic acini. Statistically significant correlations were found only between LILPA1 and LIUBI. CONCLUSIONS Our results suggest that LPA-1 might be implicated in dysplastic lesions induced by cadmium chloride development. More studies are needed to confirm its potential contribution to the disease.
Collapse
Affiliation(s)
- Riánsares Arriazu
- Histology Laboratory, Institute of Applied Molecular Medicine, Department of Basic Medical Sciences, School of Medicine, CEU-San Pablo University, Madrid, Spain.
| | | | | | | |
Collapse
|
75
|
PTEN in Prostate Cancer. Prostate Cancer 2013. [DOI: 10.1007/978-1-4614-6828-8_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
|
76
|
Muqbil I, Bao GW, El-Kharraj R, Shah M, Mohammad RM, Sarkar FH, Azmi AS. Systems and Network Pharmacology Approaches to Cancer Stem Cells Research and Therapy. ACTA ACUST UNITED AC 2013; Suppl 7. [PMID: 24319631 DOI: 10.4172/2157-7633.s7-005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The cancer stem cell (CSC) hypothesis is increasingly being accepted as a model to explain for the functional heterogeneity that is commonly observed in solid tumors. According to this hypothesis, there exists a hierarchical organization of cells within the tumor, in which a differential subpopulation of stem-like cells is responsible for sustaining and recurrence of tumor growth. CSCs have been shown to exist in a variety of solid tumors especially those with known resistant phenotypes such as breast, prostate and pancreatic adenocarcinoma (PDAC). In all these models, the commonality of deregulation of three crucial pathways; Wnt, notch and hedgehog that maintain CSC self-renewal capacity is emerging. Collectively these major pathways and have been linked to the observed resistance of CSC to chemotherapy and radiotherapy. The existing lack of knowledge and our incomplete understanding of the molecular signatures associated with CSCs highlight the need for better approaches in both isolation and identification of unique pathways associated with these cells. In this direction, computational biology, especially systems and network approaches, have proven to be of great utility in unraveling pathway complexities such as those associated with CSCs. With highlights on the most up-to-date molecular, network, cellular, clinical, and therapeutic cancer research findings, this article tends to provide a wealth of insights on systems and network biology approaches to CSC marker identification, the mechanism through which they evade treatment as well as therapeutic approaches that will help in conquering these elusive cells in incurable and refractory malignancies.
Collapse
Affiliation(s)
- Irfana Muqbil
- Department of Biochemistry, Aligarh Muslim University, Aligarh, Uttar Pradesh, India
| | | | | | | | | | | | | |
Collapse
|
77
|
Immunohistochemical profile of NF-κB/p50, NF-κB/p65, MMP-9, MMP-2, and u-PA in experimental cervical spondylotic myelopathy. Spine (Phila Pa 1976) 2013; 38:4-10. [PMID: 22673181 DOI: 10.1097/brs.0b013e318261ea6f] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
STUDY DESIGN The immunohistochemical profile of nuclear factor-κ B (NF-κB)/p50, NF-κB/p65, matrix metalloproteinase (MMP)-9, MMP-2, and urokinase-type plasminogen activator (u-PA) proteins was examined in spinal cord tissues coming from rabbits, which underwent chronic cervical spinal cord compression. OBJECTIVE To study the potential role of NF-κB and extracellular matrix proteins under the chronic mechanical compression of the cervical spinal cord. SUMMARY OF BACKGROUND DATA Cervical spondylotic myelopathy (CSM) is the most common cause of spinal cord dysfunction among adults older than 55 years. Neuronal loss, myelin destruction, axonal degeneration, and glial scar formation are the principal neuropathological features of CSM. However, the biologic pathways that lead to these features remain unclear. METHODS In this study, we used a new animal experimental model of CSM developed in our laboratory. Briefly, after posterior cervical laminectomy, gradual and progressive compression (during 20 weeks) was achieved by introducing a piece of aromatic polyether (0.07 mm thick) under the C6 lamina in 15 New Zealand rabbits. In control animals (n = 15), the aromatic polyether was implanted and then removed after 60 seconds (sham operation). The immunoreactivity of p50 and p65 subunits of NF-kB, as well as that of MMP-2, MMP-9, and u-PA, was evaluated in paraffin-embedded spinal cord sections coming from both groups. The evaluation was performed using immunohistochemistry technique and the results were analyzed using SPSS for Windows, release 12.0 (SPSS Inc., Chicago, IL). RESULTS Increased immunoreactivity of both NF-κB subunits, p50 and p65, as well as MMP-2, MMP-9, and u-PA was demonstrated in animals with CSM in comparison with controls. Statistical analysis of the results revealed strong positive correlation between NF-κB subunits immunoreactivity and that of MMP-9, MMP-2, and u-PA. CONCLUSION There is a strong correlation between the immunoexpression of NF-κB/p50, NF-κB/p65, MMP-2, MMP-9, u-PA, and CSM.
Collapse
|
78
|
Zhuo W, Tao G, Zhang L, Chen Z. Vector-mediated selective expression of lethal factor, a toxic element of Bacillus anthracis, damages A549 cells via inhibition of MAPK and AKT pathways. Int J Med Sci 2013; 10:292-8. [PMID: 23423542 PMCID: PMC3575624 DOI: 10.7150/ijms.5570] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2012] [Accepted: 01/25/2013] [Indexed: 11/17/2022] Open
Abstract
Lethal factor (LF), a major toxic element of Bacillus anthracis combined with its protective antigen (PA), enters the cells through the cytomembrane receptors and causes damage to the host cells, thereby leading to septicemia, toxemia, and meningitis with high mortality. LF has been identified as a potential biotech-weapon, which can impede cancer growth in vascular endothelial cells because of its cytotoxicity. However, the feasibility of LF application and further investigations has been limited because LF is nonspecific. To solve this problem, we constructed a vector that contained the LF sequence, which was regulated by a tumor-specific human telomerase reverse transcriptase promoter (hTERTp). Results showed that LF was selectively expressed in lung cancer A549 cells but not in normal cells, thereby resulting in A549 cell apoptosis. The results also revealed that the inhibition of mitogen-activated protein kinase and AKT pathways was partially involved in the process. Thus, hTERTp-regulated LF increase could be a promising approach in lung cancer-targeted therapy.
Collapse
Affiliation(s)
- Wenlei Zhuo
- Institute of Cancer, Xinqiao Hospital, Third Military Medical University, Chongqing, China.
| | | | | | | |
Collapse
|
79
|
Chu ESM, Sze SCW, Cheung HP, Liu Q, Ng TB, Tong Y. An in vitro and in vivo investigation of the antimetastatic effects of a Chinese medicinal decoction, erxian decoction, on human ovarian cancer models. Integr Cancer Ther 2012; 12:336-46. [PMID: 23241639 DOI: 10.1177/1534735412464519] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
OBJECTIVES Erxian Decoction (EXD) is a well-documented Chinese medicinal formulation, which has been clinically applied for years for relieving menopausal syndromes by modulating hormonal levels indicating that EXD might also be effective in treating hormone-related tumors. This study aimed to differentially investigate the efficacy of EXD and its antimetastatic property on human ovarian cancer cells, OVCA429. METHODS The efficacy and cell cycle progression of EXD on OVCA429 cells was determined by MTT assay and flow cytometry, respectively. The modulated expression of metastatic markers by EXD in OVCA429 cells and xenografts was evaluated at transcriptional and translational levels by Western blotting and real-time polymerase chain reaction, respectively. The migrating and invasive ability of the cancer cells were determined by wound healing and invasive assays. RESULTS The IC50 value of EXD on OVCA429 cells was determined after 24 hours incubation with EXD at 1 mg/mL. EXD (1.5 mg/mL) mediated S-phase cell cycle arrest and apoptotic cell death at 24 hours posttreatment. EXD repressed the expression of several metastatic mediators, including EGFR, ErbB2, MMP2, MMP7, MMP9, and VEGF in OVCA429 cells and xenografts at transcriptional and/or translational levels. Furthermore, EXD functionally demonstrated significant inhibition of migrating and invasive ability of OVCA429 cells. EXD suppressed tumor size in xenografts without any adverse effects on body weight. CONCLUSIONS This is the first study that illustrates the antimetastatic property of EXD on human ovarian cancer models. This decoction merits serious consideration for further delineation of its multiple pharmacological effects, especially on hormone-related cancers, and these would be valuable for future clinical applications of EXD as an alternative regime for cancers.
Collapse
Affiliation(s)
- Ellie S M Chu
- The University of Hong Kong, Pokfulam, Hong Kong, Estate Building, 10 Sassoon Road, Pokfulam, Hong Kong
| | | | | | | | | | | |
Collapse
|
80
|
Jayasooriya RGPT, Lee YG, Kang CH, Lee KT, Choi YH, Park SY, Hwang JK, Kim GY. Piceatannol inhibits MMP-9-dependent invasion of tumor necrosis factor-α-stimulated DU145 cells by suppressing the Akt-mediated nuclear factor-κB pathway. Oncol Lett 2012; 5:341-347. [PMID: 23255946 DOI: 10.3892/ol.2012.968] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2012] [Accepted: 09/06/2012] [Indexed: 12/11/2022] Open
Abstract
Piceatannol has potent anti-inflammatory, immunomodulatory, anticancer and antiproliferative effects. However, little is known about the mechanism by which piceatannol inhibits invasion and metastasis. The aim of the current study was to investigate the effects of piceatannol on the expression of matrix metalloproteinase-9 (MMP-9) in DU145 human prostate cancer cells. The results revealed that MMP-9 activity was significantly increased in response to tumor necrosis factor-α (TNF-α). However, treatment with piceatannol reversed TNF-α- and MMP-9-induced gelatin zymography and its gene expression. In addition, a Matrigel invasion assay determined that piceatannol reduces the TNF-α-induced invasion of DU145 cells. Nuclear factor-κ B (NF-κB) is a significant transcription factor that regulates numerous genes involved in tumor cell invasion and metastasis. Therefore, whether piceatannol acts on NF-κB to regulate MMP-9 gene expression was analyzed. The results revealed that piceatannol attenuates MMP-9 gene expression via the suppression of NF-κB activity. Using a specific NF-κB inhibitor, pyrrolidine dithiocarbamate, it was confirmed that TNF-α-induced MMP-9 gene expression is primarily regulated by NF-κB activation. Piceatannol inhibited NF-κB activity by suppressing nuclear translocation of the NF-κB p65 and p50 subunits. Furthermore, TNF-α-induced Akt phosphorylation was significantly downregulated in the presence of piceatannol. The Akt inhibitor LY294002 caused a significant decrease in TNF-α-induced NF-κB activity and MMP-9 gene expression. Overall, these data suggest that piceatannol inhibits TNF-α-induced invasion by suppression of MMP-9 activation via the Akt-mediated NF-κB pathway in DU145 prostate cancer cells.
Collapse
|
81
|
Shao L, Tekedereli I, Wang J, Yuca E, Tsang S, Sood A, Lopez-Berestein G, Ozpolat B, Ittmann M. Highly specific targeting of the TMPRSS2/ERG fusion gene using liposomal nanovectors. Clin Cancer Res 2012; 18:6648-57. [PMID: 23052253 DOI: 10.1158/1078-0432.ccr-12-2715] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
PURPOSE The TMPRSS2/ERG (T/E) fusion gene is present in half of all prostate cancer tumors. Fusion of the oncogenic ERG gene with the androgen-regulated TMPRSS2 gene promoter results in expression of fusion mRNAs in prostate cancer cells. The junction of theTMPRSS2- and ERG-derived portions of the fusion mRNA constitutes a cancer-specific target in cells containing the T/E fusion gene. Targeting the most common alternatively spliced fusion gene mRNA junctional isoforms in vivo using siRNAs in liposomal nanovectors may potentially be a novel, low-toxicity treatment for prostate cancer. EXPERIMENTAL DESIGN We designed and optimized siRNAs targeting the two most common T/E fusion gene mRNA junctional isoforms (type III or type VI). Specificity of siRNAs was assessed by transient co-transfection in vitro. To test their ability to inhibit growth of prostate cancer cells expressing these fusion gene isoforms in vivo, specific siRNAs in liposomal nanovectors were used to treat mice bearing orthotopic or subcutaneous xenograft tumors expressing the targeted fusion isoforms. RESULTS The targeting siRNAs were both potent and highly specific in vitro. In vivo they significantly inhibited tumor growth. The degree of growth inhibition was variable and was correlated with the extent of fusion gene knockdown. The growth inhibition was associated with marked inhibition of angiogenesis and, to a lesser degree, proliferation and a marked increase in apoptosis of tumor cells. No toxicity was observed. CONCLUSIONS Targeting the T/E fusion junction in vivo with specific siRNAs delivered via liposomal nanovectors is a promising therapy for men with prostate cancer.
Collapse
Affiliation(s)
- Longjiang Shao
- Department of Pathology and Immunology and Michael E. DeBakey Department of Veterans Affairs Medical Center, Baylor College of Medicine, Houston, Texas 77030, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
82
|
Chen D, Banerjee S, Cui QC, Kong D, Sarkar FH, Dou QP. Activation of AMP-activated protein kinase by 3,3'-Diindolylmethane (DIM) is associated with human prostate cancer cell death in vitro and in vivo. PLoS One 2012; 7:e47186. [PMID: 23056607 PMCID: PMC3467201 DOI: 10.1371/journal.pone.0047186] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2012] [Accepted: 09/13/2012] [Indexed: 12/26/2022] Open
Abstract
There is a large body of scientific evidence suggesting that 3,3'-Diindolylmethane (DIM), a compound derived from the digestion of indole-3-carbinol, which is abundant in cruciferous vegetables, harbors anti-tumor activity in vitro and in vivo. Accumulating evidence suggests that AMP-activated protein kinase (AMPK) plays an essential role in cellular energy homeostasis and tumor development and that targeting AMPK may be a promising therapeutic option for cancer treatment in the clinic. We previously reported that a formulated DIM (BR-DIM; hereafter referred as B-DIM) with higher bioavailability was able to induce apoptosis and inhibit cell growth, angiogenesis, and invasion of prostate cancer cells. However, the precise molecular mechanism(s) for the anti-cancer effects of B-DIM have not been fully elucidated. In the present study, we investigated whether AMP-activated protein kinase (AMPK) is a molecular target of B-DIM in human prostate cancer cells. Our results showed, for the first time, that B-DIM could activate the AMPK signaling pathway, associated with suppression of the mammalian target of rapamycin (mTOR), down-regulation of androgen receptor (AR) expression, and induction of apoptosis in both androgen-sensitive LNCaP and androgen-insensitive C4-2B prostate cancer cells. B-DIM also activates AMPK and down-regulates AR in androgen-independent C4-2B prostate tumor xenografts in SCID mice. These results suggest that B-DIM could be used as a potential anti-cancer agent in the clinic for prevention and/or treatment of prostate cancer regardless of androgen responsiveness, although functional AR may be required.
Collapse
Affiliation(s)
- Di Chen
- Department of Oncology, Barbara Ann Karmanos Cancer Institute, Wayne State University, School of Medicine, Detroit, Michigan, United States of America
| | - Sanjeev Banerjee
- Department of Pathology, Barbara Ann Karmanos Cancer Institute, Wayne State University, School of Medicine, Detroit, Michigan, United States of America
| | - Qiuzhi C. Cui
- Department of Oncology, Barbara Ann Karmanos Cancer Institute, Wayne State University, School of Medicine, Detroit, Michigan, United States of America
| | - Dejuan Kong
- Department of Pathology, Barbara Ann Karmanos Cancer Institute, Wayne State University, School of Medicine, Detroit, Michigan, United States of America
| | - Fazlul H. Sarkar
- Department of Oncology, Barbara Ann Karmanos Cancer Institute, Wayne State University, School of Medicine, Detroit, Michigan, United States of America
- Department of Pathology, Barbara Ann Karmanos Cancer Institute, Wayne State University, School of Medicine, Detroit, Michigan, United States of America
- * E-mail: (QPD); (FHS)
| | - Q. Ping Dou
- Department of Oncology, Barbara Ann Karmanos Cancer Institute, Wayne State University, School of Medicine, Detroit, Michigan, United States of America
- Department of Pathology, Barbara Ann Karmanos Cancer Institute, Wayne State University, School of Medicine, Detroit, Michigan, United States of America
- * E-mail: (QPD); (FHS)
| |
Collapse
|
83
|
Kong D, Ahmad A, Bao B, Li Y, Banerjee S, Sarkar FH. Histone deacetylase inhibitors induce epithelial-to-mesenchymal transition in prostate cancer cells. PLoS One 2012; 7:e45045. [PMID: 23024790 PMCID: PMC3443231 DOI: 10.1371/journal.pone.0045045] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2012] [Accepted: 08/11/2012] [Indexed: 12/18/2022] Open
Abstract
Clinical experience of histone deacetylase inhibitors (HDACIs) in patients with solid tumors has been disappointing; however, the molecular mechanism of treatment failure is not known. Therefore, we sought to investigate the molecular mechanism of treatment failure of HDACIs in the present study. We found that HDACIs Trichostatin A (TSA) and Suberoylanilide hydroxamic acid (SAHA) could induce epithelial-to-mesenchymal transition (EMT) phenotype in prostate cancer (PCa) cells, which was associated with changes in cellular morphology consistent with increased expression of transcription factors ZEB1, ZEB2 and Slug, and mesenchymal markers such as vimentin, N-cadherin and Fibronectin. CHIP assay showed acetylation of histone 3 on proximal promoters of selected genes, which was in part responsible for increased expression of EMT markers. Moreover, TSA treatment led to further increase in the expression of Sox2 and Nanog in PCa cells with EMT phenotype, which was associated with cancer stem-like cell (CSLC) characteristics consistent with increased cell motility. Our results suggest that HDACIs alone would lead to tumor aggressiveness, and thus strategies for reverting EMT-phenotype to mesenchymal-to-epithelial transition (MET) phenotype or the reversal of CSLC characteristics prior to the use of HDACIs would be beneficial to realize the value of HDACIs for the treatment of solid tumors especially PCa.
Collapse
Affiliation(s)
- Dejuan Kong
- Department of Pathology, Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, Michigan, United States of America
| | - Aamir Ahmad
- Department of Pathology, Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, Michigan, United States of America
| | - Bin Bao
- Department of Pathology, Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, Michigan, United States of America
| | - Yiwei Li
- Department of Pathology, Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, Michigan, United States of America
| | - Sanjeev Banerjee
- Department of Pathology, Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, Michigan, United States of America
| | - Fazlul H. Sarkar
- Department of Pathology, Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, Michigan, United States of America
- * E-mail:
| |
Collapse
|
84
|
Muñoz-Moreno L, Arenas MI, Schally AV, Fernández-Martínez AB, Zarka E, González-Santander M, Carmena MJ, Vacas E, Prieto JC, Bajo AM. Inhibitory effects of antagonists of growth hormone-releasing hormone on growth and invasiveness of PC3 human prostate cancer. Int J Cancer 2012; 132:755-65. [PMID: 22777643 DOI: 10.1002/ijc.27716] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2012] [Revised: 06/11/2012] [Accepted: 06/22/2012] [Indexed: 01/28/2023]
Abstract
New approaches are needed to the therapy of advanced prostate cancer. This study determined the effect of growth hormone-releasing hormone (GHRH) antagonists, JMR-132 and JV-1-38 on growth of PC3 tumors as well as on angiogenesis and metastasis through the evaluation of various factors that contribute largely to the progression of prostate cancer. Human PC3 androgen-independent prostate cancer cells were injected subcutaneously into nude mice. The treatment with JMR-132 (10 μg/day) or JV-1-38 (20 μg/day) lasted 41 days. We also evaluated the effects of JMR-132 and JV-1-38 on proliferation, cell adhesion and migration in PC-3 cells in vitro. Several techniques (Western blot, reverse transcription polymerase chain reaction, immunohistochemistry, ELISA and zymography) were used to evaluate the expression levels of GHRH receptors and its splice variants, GHRH, vascular endothelial growth factor (VEGF), hypoxia inducible factor (HIF)-1α, metalloproteinases (MMPs) -2 and -9, β-catenin and E-cadherin. GHRH antagonists suppressed the proliferation of PC-3 cells in vitro and significantly inhibited growth of PC3 tumors. After treatment with these analogues, we found an increase in expression of GHRH receptor accompanied by a decrease of GHRH levels, a reduction in both VEGF and HIF-1α expression and in active forms of MMP-2 and MMP-9, a significant increase in levels of membrane-associated β-catenin and a significant decline in E-cadherin. These results support that the blockade of GHRH receptors can modulate elements involved in angiogenesis and metastasis. Consequently, GHRH antagonists could be considered as suitable candidates for therapeutic trials in the management of androgen-independent prostate cancer.
Collapse
Affiliation(s)
- Laura Muñoz-Moreno
- Molecular Neuroendocrinology Unit, Department of Biochemistry and Molecular Biology, University of Alcalá, Alcalá de Henares, Spain
| | | | | | | | | | | | | | | | | | | |
Collapse
|
85
|
Rajoria S, Suriano R, George AL, Kamat A, Schantz SP, Geliebter J, Tiwari RK. Molecular target based combinational therapeutic approaches in thyroid cancer. J Transl Med 2012; 10:81. [PMID: 22548798 PMCID: PMC3418191 DOI: 10.1186/1479-5876-10-81] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2011] [Accepted: 04/10/2012] [Indexed: 01/02/2023] Open
Abstract
Background Thyroid cancer, as with other types of cancer, is dependent on angiogenesis for its continued growth and development. Interestingly, estrogen has been shown to contribute to thyroid cancer aggressiveness in vitro, which is in full support of the observed increased incidence of thyroid cancer in women over men. Provided that estrogen has been observed to contribute to increased angiogenesis of estrogen responsive breast cancer, it is conceivable to speculate that estrogen also contributes to angiogenesis of estrogen responsive thyroid cancer. Methods In this study, three human thyroid cancer cells (B-CPAP, CGTH-W-1, ML-1) were treated with estrogen alone or estrogen and anti-estrogens (fulvestrant and 3,3′-diindolylmethane, a natural dietary compound) for 24 hours. The cell culture media was then added to human umbilical vein endothelial cell (HUVECs) and assayed for angiogenesis associated events. Vascular endothelial growth factor (VEGF) levels were also quantified in the conditioned media so as to evaluate if it is a key player involved in these observations. Results Conditioned medium from estrogen treated thyroid cancer cells enhanced phenotypical changes (proliferation, migration and tubulogenesis) of endothelial cells typically observed during angiogenesis. These phenotypic changes observed in HUVECs were determined to be modulated by estrogen induced secretion of VEGF by the cancer cells. Lastly, we show that VEGF secretion was inhibited by the anti-estrogens, fulvestrant and 3,3′-diindolylmethane, which resulted in diminished angiogenesis associated events in HUVECs. Conclusion Our data establishes estrogen as being a key regulator of VEGF secretion/expression in thyroid cells which enhances the process of angiogenesis in thyroid cancer. These findings also suggest the clinical utility of anti-estrogens as anti-angiogenic compounds to be used as a therapeutic means to treat thyroid cancer. We also observed that 3,3′-diindolylmethane is a promising naturally occurring anti-estrogen which can be used as a part of therapeutic regimen to treat thyroid cancer.
Collapse
Affiliation(s)
- Shilpi Rajoria
- Department of Microbiology and Immunology, New York Medical College, Valhalla, New York, 10595, USA
| | | | | | | | | | | | | |
Collapse
|
86
|
NAHA, a novel hydroxamic acid-derivative, inhibits growth and angiogenesis of breast cancer in vitro and in vivo. PLoS One 2012; 7:e34283. [PMID: 22479587 PMCID: PMC3315582 DOI: 10.1371/journal.pone.0034283] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2011] [Accepted: 02/27/2012] [Indexed: 11/29/2022] Open
Abstract
Background We have recently synthesized novel N-alkylated amino acid-derived hydroxamate, 2-[Benzyl-(2-nitro-benzenesulfonyl)-amino]-N-hydroxy-3-methyl-N-propyl-butyramide (NAHA). Here, we evaluate the anticancer activity of NAHA against highly invasive human breast cancer cells MDA-MB-231 in vitro and in vivo. Methodology/Principal Findings Cell growth was evaluated by MTT and soft agar assays. Protein expression was determined by DNA microarray and Western blot analysis. Metastatic potential was evaluated by cell adhesion, migration, invasion, capillary morphogenesis, and ELISA assays. The anticancer activity in vivo was evaluated in mouse xenograft model. NAHA inhibited proliferation and colony formation of MDA-MB-231 cells together with the down-regulation of expression of Cdk2 and CDC20 proteins. NAHA inhibited cell adhesion, migration, and invasion through the suppression of secretion of uPA. NAHA suppressed secretion of VEGF from MDA-MB-231 cells and inhibited capillary morphogenesis of human aortic endothelial cells (HAECs). Finally, NAHA at 50 mg/kg was not toxic and decreased tumor volume and tumor weight in vivo. This suppression of tumor growth was associated with the inhibition of mitotic figures and induction of apoptosis, and the reduction of CD31 and VEGF positive cells in tumors. Conclusion NAHA could be a novel promising compound for the development of new drugs for the therapy of invasive breast cancers.
Collapse
|
87
|
Kong D, Heath E, Chen W, Cher ML, Powell I, Heilbrun L, Li Y, Ali S, Sethi S, Hassan O, Hwang C, Gupta N, Chitale D, Sakr WA, Menon M, Sarkar FH. Loss of let-7 up-regulates EZH2 in prostate cancer consistent with the acquisition of cancer stem cell signatures that are attenuated by BR-DIM. PLoS One 2012; 7:e33729. [PMID: 22442719 PMCID: PMC3307758 DOI: 10.1371/journal.pone.0033729] [Citation(s) in RCA: 166] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2011] [Accepted: 02/16/2012] [Indexed: 11/22/2022] Open
Abstract
The emergence of castrate-resistant prostate cancer (CRPC) contributes to the high mortality of patients diagnosed with prostate cancer (PCa), which in part could be attributed to the existence and the emergence of cancer stem cells (CSCs). Recent studies have shown that deregulated expression of microRNAs (miRNAs) contributes to the initiation and progression of PCa. Among several known miRNAs, let-7 family appears to play a key role in the recurrence and progression of PCa by regulating CSCs; however, the mechanism by which let-7 family contributes to PCa aggressiveness is unclear. Enhancer of Zeste homolog 2 (EZH2), a putative target of let-7 family, was demonstrated to control stem cell function. In this study, we found loss of let-7 family with corresponding over-expression of EZH2 in human PCa tissue specimens, especially in higher Gleason grade tumors. Overexpression of let-7 by transfection of let-7 precursors decreased EZH2 expression and repressed clonogenic ability and sphere-forming capacity of PCa cells, which was consistent with inhibition of EZH2 3′UTR luciferase activity. We also found that the treatment of PCa cells with BR-DIM (formulated DIM: 3,3′-diindolylmethane by Bio Response, Boulder, CO, abbreviated as BR-DIM) up-regulated let-7 and down-regulated EZH2 expression, consistent with inhibition of self-renewal and clonogenic capacity. Moreover, BR-DIM intervention in our on-going phase II clinical trial in patients prior to radical prostatectomy showed upregulation of let-7 consistent with down-regulation of EZH2 expression in PCa tissue specimens after BR-DIM intervention. These results suggest that the loss of let-7 mediated increased expression of EZH2 contributes to PCa aggressiveness, which could be attenuated by BR-DIM treatment, and thus BR-DIM is likely to have clinical impact.
Collapse
Affiliation(s)
- Dejuan Kong
- Department of Pathology, Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, Michigan, United States of America
| | - Elisabeth Heath
- Department of Oncology, Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, Michigan, United States of America
| | - Wei Chen
- Department of Oncology, Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, Michigan, United States of America
| | - Michael L. Cher
- Department of Urology, Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, Michigan, United States of America
| | - Isaac Powell
- Department of Urology, Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, Michigan, United States of America
| | - Lance Heilbrun
- Department of Oncology, Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, Michigan, United States of America
| | - Yiwei Li
- Department of Pathology, Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, Michigan, United States of America
| | - Shadan Ali
- Department of Oncology, Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, Michigan, United States of America
| | - Seema Sethi
- Department of Pathology, Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, Michigan, United States of America
| | - Oudai Hassan
- Department of Pathology, Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, Michigan, United States of America
| | - Clara Hwang
- Department of Oncology, Henry Ford Health System, Detroit, Michigan, United States of America
| | - Nilesh Gupta
- Department of Pathology, Henry Ford Health System, Detroit, Michigan, United States of America
| | - Dhananjay Chitale
- Department of Pathology, Henry Ford Health System, Detroit, Michigan, United States of America
| | - Wael A. Sakr
- Department of Pathology, Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, Michigan, United States of America
| | - Mani Menon
- Department of Urology, Henry Ford Health System, Detroit, Michigan, United States of America
| | - Fazlul H. Sarkar
- Department of Pathology, Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, Michigan, United States of America
- * E-mail:
| |
Collapse
|
88
|
Sharma DK, Rah B, Lambu MR, Hussain A, Yousuf SK, Tripathi AK, Singh B, Jamwal G, Ahmed Z, Chanauria N, Nargotra A, Goswami A, Mukherjee D. Design and synthesis of novel N,N′-glycoside derivatives of 3,3′-diindolylmethanes as potential antiproliferative agents. MEDCHEMCOMM 2012. [DOI: 10.1039/c2md20098h] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
89
|
Ko J, Lung M. In vitro Human Umbilical Vein Endothelial Cells (HUVEC) Tube-formation Assay. Bio Protoc 2012. [DOI: 10.21769/bioprotoc.260] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
|
90
|
Gueron G, De Siervi A, Vazquez E. Advanced prostate cancer: reinforcing the strings between inflammation and the metastatic behavior. Prostate Cancer Prostatic Dis 2011; 15:213-21. [PMID: 22183772 DOI: 10.1038/pcan.2011.64] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
It is currently estimated that inflammatory responses are linked to 15-20% of all deaths from cancer worldwide. Although many studies point to an important role of inflammation in prostate growth, the contribution of inflammation to castration-resistant prostate cancer is not completely understood. The presence of inflammatory mediators in tumor microenvironment raises the question whether genetic events that participate in cancer development and progression are responsible for the inflammatory milieu inside and surrounding tumors. Activated oncogenes, cytokines, chemokines and their receptors, sustained oxidative stress and antioxidant imbalance share the capacity to orchestrate these pro-inflammatory programs; however, the diversity of the inflammatory cell components will determine the final response in the prostate tissue. These observations give rise to the concept that early genetic events generate an inflammatory microenvironment promoting prostate cancer progression and creating a continuous loop that stimulates a more aggressive stage. It is imperative to dissect the molecular pathologic mechanism of inflammation involved in the generation of the castration-resistant phenotype in prostate cancer. Here, we present a hypothesis where molecular signaling triggered by inflammatory mediators may evolve in prostate cancer progression. Thus, treatment of chronic inflammation may represent an important therapeutic target in advanced prostate cancer.
Collapse
Affiliation(s)
- G Gueron
- Department of Biological Chemistry, School of Sciences, University of Buenos Aires, Ciudad Universitaria, Pabellón II, Buenos Aires, Argentina-CONICET
| | | | | |
Collapse
|
91
|
Bohonowych JES, Peng S, Gopal U, Hance MW, Wing SB, Argraves KM, Lundgren K, Isaacs JS. Comparative analysis of novel and conventional Hsp90 inhibitors on HIF activity and angiogenic potential in clear cell renal cell carcinoma: implications for clinical evaluation. BMC Cancer 2011; 11:520. [PMID: 22172030 PMCID: PMC3259130 DOI: 10.1186/1471-2407-11-520] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2011] [Accepted: 12/15/2011] [Indexed: 02/21/2023] Open
Abstract
BACKGROUND Perturbing Hsp90 chaperone function targets hypoxia inducible factor (HIF) function in a von Hippel-Lindau (VHL) independent manner, and represents an approach to combat the contribution of HIF to cell renal carcinoma (CCRCC) progression. However, clinical trials with the prototypic Hsp90 inhibitor 17-AAG have been unsuccessful in halting the progression of advanced CCRCC. METHODS Here we evaluated a novel next generation small molecule Hsp90 inhibitor, EC154, against HIF isoforms and HIF-driven molecular and functional endpoints. The effects of EC154 were compared to those of the prototypic Hsp90 inhibitor 17-AAG and the histone deacetylase (HDAC) inhibitor LBH589. RESULTS The findings indicate that EC154 is a potent inhibitor of HIF, effective at doses 10-fold lower than 17-AAG. While EC154, 17-AAG and the histone deacetylase (HDAC) inhibitor LBH589 impaired HIF transcriptional activity, CCRCC cell motility, and angiogenesis; these effects did not correlate with their ability to diminish HIF protein expression. Further, our results illustrate the complexity of HIF targeting, in that although these agents suppressed HIF transcripts with differential dynamics, these effects were not predictive of drug efficacy in other relevant assays. CONCLUSIONS We provide evidence for EC154 targeting of HIF in CCRCC and for LBH589 acting as a suppressor of both HIF-1 and HIF-2 activity. We also demonstrate that 17-AAG and EC154, but not LBH589, can restore endothelial barrier function, highlighting a potentially new clinical application for Hsp90 inhibitors. Finally, given the discordance between HIF activity and protein expression, we conclude that HIF expression is not a reliable surrogate for HIF activity. Taken together, our findings emphasize the need to incorporate an integrated approach in evaluating Hsp90 inhibitors within the context of HIF suppression.
Collapse
Affiliation(s)
- Jessica E S Bohonowych
- Department of Cell and Molecular Pharmacology, Medical University of South Carolina, Charleston, SC, USA
| | | | | | | | | | | | | | | |
Collapse
|
92
|
Bao B, Wang Z, Ali S, Kong D, Banerjee S, Ahmad A, Li Y, Azmi AS, Miele L, Sarkar FH. Over-expression of FoxM1 leads to epithelial-mesenchymal transition and cancer stem cell phenotype in pancreatic cancer cells. J Cell Biochem 2011. [PMID: 21503965 DOI: 10.1002/jcb.23150.] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
FoxM1 is known to play important role in the development and progression of many malignancies including pancreatic cancer. Studies have shown that the acquisition of epithelial-to-mesenchymal transition (EMT) phenotype and induction of cancer stem cell (CSC) or cancer stem-like cell phenotypes are highly inter-related, and contributes to drug resistance, tumor recurrence, and metastasis. The molecular mechanism(s) by which FoxM1 contributes to the acquisition of EMT phenotype and induction of CSC self-renewal capacity is poorly understood. Therefore, we established FoxM1 over-expressing pancreatic cancer (AsPC-1) cells, which showed increased cell growth, clonogenicity, and cell migration. Moreover, over-expression of FoxM1 led to the acquisition of EMT phenotype by activation of mesenchymal cell markers, ZEB1, ZEB2, Snail2, E-cadherin, and vimentin, which is consistent with increased sphere-forming (pancreatospheres) capacity and expression of CSC surface markers (CD44 and EpCAM). We also found that over-expression of FoxM1 led to decreased expression of miRNAs (let-7a, let-7b, let-7c, miR-200b, and miR-200c); however, re-expression of miR-200b inhibited the expression of ZEB1, ZEB2, vimentin as well as FoxM1, and induced the expression of E-cadherin, leading to the reversal of EMT phenotype. Finally, we found that genistein, a natural chemo-preventive agent, inhibited cell growth, clonogenicity, cell migration and invasion, EMT phenotype, and formation of pancreatospheres consistent with reduced expression of CD44 and EpCAM. These results suggest, for the first time, that FoxM1 over-expression is responsible for the acquisition of EMT and CSC phenotype, which is in part mediated through the regulation of miR-200b and these processes, could be easily attenuated by genistein.
Collapse
Affiliation(s)
- Bin Bao
- Department of Pathology, Karmanos Cancer Institute, Wayne State University, Detroit, Michigan 48201, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
93
|
Qian X, Melkamu T, Upadhyaya P, Kassie F. Indole-3-carbinol inhibited tobacco smoke carcinogen-induced lung adenocarcinoma in A/J mice when administered during the post-initiation or progression phase of lung tumorigenesis. Cancer Lett 2011; 311:57-65. [PMID: 21767909 PMCID: PMC3164928 DOI: 10.1016/j.canlet.2011.06.023] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2011] [Revised: 06/14/2011] [Accepted: 06/16/2011] [Indexed: 12/23/2022]
Abstract
We studied the chemopreventive efficacy of indole-3-carbinol (I3C), a phytochemical found in cruciferous vegetables, to inhibit tobacco carcinogen-induced lung adenocarcinoma in A/J mice when given following post-initiation or progression protocol. Moreover, we assessed the potential mechanisms responsible for the anticancer effects of I3C. Post-initiation administration of I3C decreased the multiplicity of surface tumors as well as all forms of histopathological lesions, including adenocarcinoma, whereas administration of the compound during tumor progression failed to decrease the multiplicity of surface tumors and early forms of microscopic lesions but reduced the frequency of adenocarcinoma. Mechanistic studies in A549 lung adenocarcinoma cells indicated that the lung cancer preventive effects of I3C are mediated, at least in part, via modulation of the receptor tyrosine kinase/PI3K/Akt signaling pathway.
Collapse
Affiliation(s)
- Xuemin Qian
- Masonic Cancer Center, University of Minnesota, Minnesota, USA
| | - Tamene Melkamu
- Department of Animal Science, University of Minnesota, Minnesota, USA
| | | | - Fekadu Kassie
- Masonic Cancer Center, University of Minnesota, Minnesota, USA
- College of Veterinary Medicine, University of Minnesota, Minnesota, USA
| |
Collapse
|
94
|
Mishra A, Bhattacharya P, Paul S, Paul R, Swarnakar S. An alternative therapy for idiopathic pulmonary fibrosis by doxycycline through matrix metalloproteinase inhibition. Lung India 2011; 28:174-9. [PMID: 21886950 PMCID: PMC3162753 DOI: 10.4103/0970-2113.83972] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Idiopatiic pulmonary fibrosis (IPF) is a disease of dysregulated fibrogenesis with abnormal matrix metalloproteinase (MMPs) activity, angiogenesis, and profibrotic milieu wherein MMPs inhibition appears to be target-based therapy. We evaluated the role of doxycycline as a nonspecific inhibitor of MMPs in IPF patients. MATERIALS AND METHODS Patients of IPF diagnosed on the basis of ATS-ERS consensus criteria were put on oral doxycycline in an open prospective trial. They were followed up for long term with spirometry, 6 min walk test (6MWT), St. Georges respiratory questionnaire (SGRQ), forced vital capacity (FVC), and repeat bronchoscopy while on doxycycline monotherapy for over 24 weeks. Both the initial and follow-up broncho alveolar lavage fluids (BALF) from IPF patients (n = 6) and control subjects (n = 6) were looked for MMP-9, -3, tissue inhibitor of metalloproteinase (TIMP)-1 and vascular endothelial growth factor (VEGF) expression. Additionally, doxycycline's action on MMP activities in vitro was tested in BALF of IPF patients. RESULTS Doxycycline intervention showed significant improvement in IPF patients in terms of change in 6MWT, SGRQ, FVC, and quality of life. The level of MMP-9, -3, TIMP-1 and VEGF in the BALF were found significantly higher in the IPF patients compared to the controls while doxycycline therapy reduced those parameters nearer to control value. Doxycycline also showed a significant dose-dependent reduction in the in vitro MMPs activities in BALF. CONCLUSION Doxycycline shows significant prospect in the treatment of IPF through its anti MMPs activities. This is the first report on a case series of long-term doxycycline monotherapy in IPF patients.
Collapse
Affiliation(s)
- Amartya Mishra
- Department of Physiology, Drug Development Diagnostic and Biotechnology Division, Indian Institute of Chemical Biology, 4, Raja S.C. Mullick Road, Jadavpur, Kolkata, India
| | | | | | | | | |
Collapse
|
95
|
Roh YS, Cho A, Islam MR, Cho SD, Kim J, Kim JH, Lee JW, Lim CW, Kim B. 3,3′-Diindolylmethane induces immunotoxicity via splenocyte apoptosis in neonatal mice. Toxicol Lett 2011; 206:218-28. [DOI: 10.1016/j.toxlet.2011.07.021] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2011] [Revised: 07/19/2011] [Accepted: 07/20/2011] [Indexed: 11/17/2022]
|
96
|
Abdelbaqi K, Lack N, Guns ET, Kotha L, Safe S, Sanderson JT. Antiandrogenic and growth inhibitory effects of ring-substituted analogs of 3,3'-diindolylmethane (ring-DIMs) in hormone-responsive LNCaP human prostate cancer cells. Prostate 2011; 71:1401-1412. [PMID: 21321979 DOI: 10.1002/pros.21356] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2010] [Accepted: 01/14/2011] [Indexed: 11/09/2022]
Abstract
BACKGROUND Cruciferous vegetables protect against prostate cancer. Indole-3-carbinol (I3C) and its major metabolite 3,3'-diindolylmethane (DIM), exhibit antitumor activities in vitro and in vivo. Several synthetic ring-substituted dihaloDIMs (ring-DIMs) appear to have increased anticancer activity. METHODS Inhibition of LNCaP prostate cancer cell growth was measured by a WST-1 cell viability assay. Cytoplasmic and nuclear proteins were analyzed by immunoblotting and immunofluorescence. Androgen receptor (AR) activation was assessed by measuring prostate-specific antigen (PSA) expression and using LNCaP cells containing human AR and an AR-dependent probasin promoter-green fluorescent protein (GFP) construct. RESULTS Like DIM, several ring-substituted dihaloDIM analogs, namely 4,4'-dibromo-, 4,4'-dichloro-, 7,7'-dibromo-, and 7,7'-dichloroDIM, significantly inhibited DHT-stimulated growth of LNCaP cells at concentrations ≥1 µM. We observed structure-dependent differences for the effects of the ring-DIMs on AR expression, nuclear AR accumulation and PSA levels in LNCaP cells after 24 hr. Both 4,4'- and 7,7'-dibromoDIM decreased AR protein and mRNA levels, whereas 4,4'- and 7,7'-dichloroDIM had minimal effect. All four dihaloDIMs (10 and 30 µM) significantly decreased PSA protein and mRNA levels. Immuofluorescence studies showed that only the dibromoDIMs increased nuclear localization of AR. All ring-DIMs caused a concentration-dependent decrease in fluorescence induced by the synthetic androgen R1881 in LNCaP cells transfected with wild-type human AR and an androgen-responsive probasin promoter-GFP gene construct, with potencies up to 10-fold greater than that of DIM. CONCLUSION The antiandrogenic effects of ring-DIMs suggest they may form the basis for the development of novel agents against hormone-sensitive prostate cancer, alone or in combination with other drugs.
Collapse
Affiliation(s)
- Khalil Abdelbaqi
- INRS-Institut Armand-Frappier, Université du Québec, Laval, QC, Canada
| | | | | | | | | | | |
Collapse
|
97
|
Chen MF, Yang CM, Su CM, Liao JW, Hu ML. Inhibitory effect of vitamin C in combination with vitamin K3 on tumor growth and metastasis of Lewis lung carcinoma xenografted in C57BL/6 mice. Nutr Cancer 2011; 63:1036-43. [PMID: 21888506 DOI: 10.1080/01635581.2011.597537] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Vitamin C in combination with vitamin K3 (vit CK3) has been shown to inhibit tumor growth and lung metastasis in vivo, but the mechanism of action is poorly understood. Herein, C57BL/6 mice were implanted (s.c.) with Lewis lung carcinoma (LLC) for 9 days before injection (i.p.) with low-dose (100 mg vit C/kg + 1 mg vit K3/kg), high-dose (1,000 mg vit C/kg + 10 mg vit K3/kg) vit CK3 twice a week for an additional 28 days. As expected, vit CK3 or cisplatin (6 mg/kg, as a positive control) significantly and dose-dependently inhibited tumor growth and lung metastasis in LLC-bearing mice. Vit CK3 restored the body weight of tumor-bearing mice to the level of tumor-free mice. Vit CK3 significantly decreased activities of plasma metalloproteinase (MMP)-2, -9, and urokinase plasminogen activator (uPA). In lung tissues, vit CK3 1) increased protein expression of tissue inhibitor of metalloproteinase-1 (TIMP-1), TIMP-2, nonmetastatic protein 23 homolog 1 and plasminogen activator inhibitor-1; 2) reduced protein expression of MMP-2 and MMP-9; and 3) inhibited the proliferating cell nuclear antigen (PCNA). These results demonstrate that vit CK3 inhibits primary tumor growth and exhibits antimetastastic potential in vivo through attenuated tumor invasion and proliferation.
Collapse
Affiliation(s)
- Ming-Feng Chen
- Department of Integrated Medicine, Show Chwan Memorial Hospital, Changhua, Taiwan
| | | | | | | | | |
Collapse
|
98
|
Bao B, Wang Z, Ali S, Kong D, Banerjee S, Ahmad A, Li Y, Azmi AS, Miele L, Sarkar FH. Over-expression of FoxM1 leads to epithelial-mesenchymal transition and cancer stem cell phenotype in pancreatic cancer cells. J Cell Biochem 2011; 112:2296-306. [PMID: 21503965 PMCID: PMC3155646 DOI: 10.1002/jcb.23150] [Citation(s) in RCA: 175] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
FoxM1 is known to play important role in the development and progression of many malignancies including pancreatic cancer. Studies have shown that the acquisition of epithelial-to-mesenchymal transition (EMT) phenotype and induction of cancer stem cell (CSC) or cancer stem-like cell phenotypes are highly inter-related, and contributes to drug resistance, tumor recurrence, and metastasis. The molecular mechanism(s) by which FoxM1 contributes to the acquisition of EMT phenotype and induction of CSC self-renewal capacity is poorly understood. Therefore, we established FoxM1 over-expressing pancreatic cancer (AsPC-1) cells, which showed increased cell growth, clonogenicity, and cell migration. Moreover, over-expression of FoxM1 led to the acquisition of EMT phenotype by activation of mesenchymal cell markers, ZEB1, ZEB2, Snail2, E-cadherin, and vimentin, which is consistent with increased sphere-forming (pancreatospheres) capacity and expression of CSC surface markers (CD44 and EpCAM). We also found that over-expression of FoxM1 led to decreased expression of miRNAs (let-7a, let-7b, let-7c, miR-200b, and miR-200c); however, re-expression of miR-200b inhibited the expression of ZEB1, ZEB2, vimentin as well as FoxM1, and induced the expression of E-cadherin, leading to the reversal of EMT phenotype. Finally, we found that genistein, a natural chemo-preventive agent, inhibited cell growth, clonogenicity, cell migration and invasion, EMT phenotype, and formation of pancreatospheres consistent with reduced expression of CD44 and EpCAM. These results suggest, for the first time, that FoxM1 over-expression is responsible for the acquisition of EMT and CSC phenotype, which is in part mediated through the regulation of miR-200b and these processes, could be easily attenuated by genistein.
Collapse
Affiliation(s)
- Bin Bao
- Department of Pathology, Wayne State University, Detroit, Michigan
| | - Zhiwei Wang
- Department of Pathology, Wayne State University, Detroit, Michigan
| | - Shadan Ali
- Division of Hematology/Oncology Karmanos Cancer Institute, Wayne State University, Detroit, Michigan
| | - Dejuan Kong
- Department of Pathology, Wayne State University, Detroit, Michigan
| | - Sanjeev Banerjee
- Department of Pathology, Wayne State University, Detroit, Michigan
| | - Aamir Ahmad
- Department of Pathology, Wayne State University, Detroit, Michigan
| | - Yiwei Li
- Department of Pathology, Wayne State University, Detroit, Michigan
| | - Asfar S. Azmi
- Department of Pathology, Wayne State University, Detroit, Michigan
| | - Lucio Miele
- University of Mississippi Cancer Institute, Jackson, Mississippi
| | - Fazlul H. Sarkar
- Department of Pathology, Wayne State University, Detroit, Michigan
| |
Collapse
|
99
|
Heme oxygenase 1 (HO-1) challenges the angiogenic switch in prostate cancer. Angiogenesis 2011; 14:467-79. [PMID: 21833623 DOI: 10.1007/s10456-011-9230-4] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2011] [Accepted: 07/30/2011] [Indexed: 10/17/2022]
Abstract
Prostate cancer (PCa) is the second leading cause of cancer-associated death in men. Once a tumor is established it may attain further characteristics via mutations or hypoxia, which stimulate new blood vessels. Angiogenesis is a hallmark in the pathogenesis of cancer and inflammatory diseases that may predispose to cancer. Heme oxygenase-1 (HO-1) counteracts oxidative and inflammatory damage and was previously reported to play a key role in prostate carcinogenesis. To gain insight into the anti-tumoral properties of HO-1, we investigated its capability to modulate PCa associated-angiogenesis. In the present study, we identified in PC3 cells a set of inflammatory and pro-angiogenic genes down-regulated in response to HO-1 overexpression, in particular VEGFA, VEGFC, HIF1α and α5β1 integrin. Our results indicated that HO-1 counteracts oxidative imbalance reducing ROS levels. An in vivo angiogenic assay showed that intradermal inoculation of PC3 cells stable transfected with HO-1 (PC3HO-1) generated tumours less vascularised than controls, with decreased microvessel density and reduced CD34 and MMP9 positive staining. Interestingly, longer term grown PC3HO-1 xenografts displayed reduced neovascularization with the subsequent down-regulation of VEGFR2 expression. Additionally, HO-1 repressed nuclear factor κB (NF-κB)-mediated transcription from an NF-κB responsive luciferase reporter construct, which strongly suggests that HO-1 may regulate angiogenesis through this pathway. Taken together, these data supports a key role of HO-1 as a modulator of the angiogenic switch in prostate carcinogenesis ascertaining it as a logical target for intervention therapy.
Collapse
|
100
|
Vaccaro V, Melisi D, Bria E, Cuppone F, Ciuffreda L, Pino MS, Gelibter A, Tortora G, Cognetti F, Milella M. Emerging pathways and future targets for the molecular therapy of pancreatic cancer. Expert Opin Ther Targets 2011; 15:1183-96. [PMID: 21819318 DOI: 10.1517/14728222.2011.607438] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
INTRODUCTION Pancreatic cancer treatment remains a challenge for clinicians and researchers. Despite undisputable advances in the comprehension of the molecular mechanisms underlying cancer development and progression, early disease detection and clinical management of patients has made little, if any, progress in the past 20 years. Clinical development of targeted agents directed against validated pathways, such as the EGF/EGF receptor axis, the mutant KRAS protein, MMPs, and VEGF-mediated angiogenesis, alone or in combination with gemcitabine-based standard chemotherapy, has been disappointing. AREAS COVERED This review explores the preclinical rationale for clinical approaches aimed at targeting the TGF-β, IGF, Hedgehog, Notch and NF-κB signaling pathways, to develop innovative therapeutic strategies for pancreatic cancer. EXPERT OPINION Although some of the already clinically explored approaches (particularly EGFR and KRAS targeting) deserve further clinical consideration, by employing more innovative and creative clinical trial designs than the gemcitabine-targeted agent paradigm that has thus far invariably failed, the targeting of emerging and relatively unexplored signaling pathways holds great promise to increase our understanding of the complex molecular biology and to advance the clinical management of pancreatic cancer.
Collapse
Affiliation(s)
- Vanja Vaccaro
- Medical Oncology A, Regina Elena National Cancer Institute, Rome, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|