51
|
NK Cell Regulation in Cervical Cancer and Strategies for Immunotherapy. Cells 2021; 10:cells10113104. [PMID: 34831327 PMCID: PMC8619016 DOI: 10.3390/cells10113104] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 10/29/2021] [Accepted: 11/02/2021] [Indexed: 12/20/2022] Open
Abstract
Cervical cancer is one of the most prevalent gynaecological malignancies worldwide and is related to human papillomavirus (HPV) infection, viral persistence, progression, and invasion. Therefore, the immune response is linked to HPV status. Natural killer (NK) cells play a central role against virus-infected cells and tumours through a delicate balance between activating and inhibitory receptors and secretion of cytokines and chemokines. These cells also play a crucial role in tumour immunosurveillance. For these reasons, there is growing interest in harnessing NK cells as an immunotherapy for cervical cancer. These studies are diverse and include many strategies such as transferring activated autologous or allogeneic NK cells, improving the activation and cytolytic activity of NK cells using cytokines or analogues and modifying chimeric antigen receptors to increase specificity and targeting NK cells. However, research regarding the application of NK cells in immunotherapy is limited. This article focuses on recent discoveries about using NK cells to prevent and treat cervical cancer and the possibility of cellular immunotherapy becoming one of the best strategies to exploit the immune system to fight tumours.
Collapse
|
52
|
Garofalo C, De Marco C, Cristiani CM. NK Cells in the Tumor Microenvironment as New Potential Players Mediating Chemotherapy Effects in Metastatic Melanoma. Front Oncol 2021; 11:754541. [PMID: 34712615 PMCID: PMC8547654 DOI: 10.3389/fonc.2021.754541] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 09/27/2021] [Indexed: 12/13/2022] Open
Abstract
Until the last decade, chemotherapy was the standard treatment for metastatic cutaneous melanoma, even with poor results. The introduction of immune checkpoints inhibitors (ICIs) radically changed the outcome, increasing 5-year survival from 5% to 60%. However, there is still a large portion of unresponsive patients that would need further therapies. NK cells are skin-resident innate cytotoxic lymphocytes that recognize and kill virus-infected as well as cancer cells thanks to a balance between inhibitory and activating signals delivered by surface molecules expressed by the target. Since NK cells are equipped with cytotoxic machinery but lack of antigen restriction and needing to be primed, they are nowadays gaining attention as an alternative to T cells to be exploited in immunotherapy. However, their usage suffers of the same limitations reported for T cells, that is the loss of immunogenicity by target cells and the difficulty to penetrate and be activated in the suppressive tumor microenvironment (TME). Several evidence showed that chemotherapy used in metastatic melanoma therapy possess immunomodulatory properties that may restore NK cells functions within TME. Here, we will discuss the capability of such chemotherapeutics to: i) up-regulate melanoma cells susceptibility to NK cell-mediated killing, ii) promote NK cells infiltration within TME, iii) target other immune cell subsets that affect NK cells activities. Alongside traditional systemic melanoma chemotherapy, a new pharmacological strategy based on nanocarriers loaded with chemotherapeutics is developing. The use of nanotechnologies represents a very promising approach to improve drug tolerability and effectiveness thanks to the targeted delivery of the therapeutic molecules. Here, we will also discuss the recent developments in using nanocarriers to deliver anti-cancer drugs within the melanoma microenvironment in order to improve chemotherapeutics effects. Overall, we highlight the possibility to use standard chemotherapeutics, possibly delivered by nanosystems, to enhance NK cells anti-tumor cytotoxicity. Combined with immunotherapies targeting NK cells, this may represent a valuable alternative approach to treat those patients that do not respond to current ICIs.
Collapse
Affiliation(s)
- Cinzia Garofalo
- Department of Experimental and Clinical Medicine, "Magna Græcia" University of Catanzaro, Catanzaro, Italy
| | - Carmela De Marco
- Department of Experimental and Clinical Medicine, "Magna Græcia" University of Catanzaro, Catanzaro, Italy
| | - Costanza Maria Cristiani
- Department of Experimental and Clinical Medicine, "Magna Græcia" University of Catanzaro, Catanzaro, Italy
| |
Collapse
|
53
|
Velichinskii RA, Streltsova MA, Kust SA, Sapozhnikov AM, Kovalenko EI. The Biological Role and Therapeutic Potential of NK Cells in Hematological and Solid Tumors. Int J Mol Sci 2021; 22:ijms222111385. [PMID: 34768814 PMCID: PMC8584101 DOI: 10.3390/ijms222111385] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 10/16/2021] [Accepted: 10/18/2021] [Indexed: 12/20/2022] Open
Abstract
NK cells are an attractive target for cancer immunotherapy due to their potent antitumor activity. The main advantage of using NK cells as cytotoxic effectors over T cells is a reduced risk of graft versus host disease. At present, several variants of NK-cell-based therapies are undergoing clinical trials and show considerable effectiveness for hematological tumors. In these types of cancers, the immune cells themselves often undergo malignant transformation, which determines the features of the disease. In contrast, the current use of NK cells as therapeutic agents for the treatment of solid tumors is much less promising. Most studies are at the stage of preclinical investigation, but few progress to clinical trials. Low efficiency of NK cell migration and functional activity in the tumor environment are currently considered the major barriers to NK cell anti-tumor therapies. Various therapeutic combinations, genetic engineering methods, alternative sources for obtaining NK cells, and other techniques are aiming at the development of promising NK cell anticancer therapies, regardless of tumorigenesis. In this review, we compare the role of NK cells in the pathogenesis of hematological and solid tumors and discuss current prospects of NK-cell-based therapy for hematological and solid tumors.
Collapse
|
54
|
Adoptive NK Cell Therapy: A Promising Treatment Prospect for Metastatic Melanoma. Cancers (Basel) 2021; 13:cancers13184722. [PMID: 34572949 PMCID: PMC8471577 DOI: 10.3390/cancers13184722] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 09/10/2021] [Accepted: 09/17/2021] [Indexed: 12/16/2022] Open
Abstract
Simple Summary The incidence of metastatic melanoma has been increasing over the past years with current therapies showing limited efficacy to cure the disease. Therefore, other options are being investigated, such as adoptive cell therapy (ACT) where activated immune cells are infused into a patient to attack melanoma. Natural killer (NK) cells are part of the innate immune system and extremely suitable for this kind of therapy since they show minimal toxicities in the clinical setting. In this review, we focus on current strategies for NK cell therapy and the development of new approaches that hold great promise for the treatment of advanced melanoma. Abstract Adoptive cell therapy (ACT) represents a promising alternative approach for patients with treatment-resistant metastatic melanoma. Lately, tumor infiltrating lymphocyte (TIL) therapy and chimeric antigen receptor (CAR)-T cell therapy have shown improved clinical outcome, compared to conventional chemotherapy or immunotherapy. Nevertheless, they are limited by immune escape of the tumor, cytokine release syndrome, and manufacturing challenges of autologous therapies. Conversely, the clinical use of Natural Killer (NK) cells has demonstrated a favorable clinical safety profile with minimal toxicities, providing an encouraging treatment alternative. Unlike T cells, NK cells are activated, amongst other mechanisms, by the downregulation of HLA class I molecules, thereby overcoming the hurdle of tumor immune escape. However, impairment of NK cell function has been observed in melanoma patients, resulting in deteriorated natural defense. To overcome this limitation, “activated” autologous or allogeneic NK cells have been infused into melanoma patients in early clinical trials, showing encouraging clinical benefit. Furthermore, as several NK cell-based therapeutics are being developed for different cancers, an emerging variety of approaches to increase migration and infiltration of adoptively transferred NK cells towards solid tumors is under preclinical investigation. These developments point to adoptive NK cell therapy as a highly promising treatment for metastatic melanoma in the future.
Collapse
|
55
|
Dowlati A, Chan T. Pursuing Immunotherapeutic Targets in SCLC. J Thorac Oncol 2021; 16:1056-1057. [PMID: 34154789 DOI: 10.1016/j.jtho.2021.04.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 04/30/2021] [Indexed: 10/21/2022]
Affiliation(s)
- Afshin Dowlati
- University Hospitals Seidman Cancer Center, Case Western Reserve University, Cleveland, Ohio.
| | - Timothy Chan
- Center for Immunotherapy & Precision Immuno-Oncology, Cleveland Clinic Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio
| |
Collapse
|
56
|
Mishra HK, Dixon KJ, Pore N, Felices M, Miller JS, Walcheck B. Activation of ADAM17 by IL-15 Limits Human NK Cell Proliferation. Front Immunol 2021; 12:711621. [PMID: 34367174 PMCID: PMC8339566 DOI: 10.3389/fimmu.2021.711621] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 07/07/2021] [Indexed: 01/19/2023] Open
Abstract
Natural killer (NK) cells are innate cytotoxic lymphocytes that can recognize assorted determinants on tumor cells and rapidly kill these cells. Due to their anti-tumor effector functions and potential for allogeneic use, various NK cell platforms are being examined for adoptive cell therapies. However, their limited in vivo persistence is a current challenge. Cytokine-mediated activation of these cells is under extensive investigation and interleukin-15 (IL-15) is a particular focus since it drives their activation and proliferation. IL-15 efficacy though is limited in part by its induction of regulatory checkpoints. A disintegrin and metalloproteinase-17 (ADAM17) is broadly expressed by leukocytes, including NK cells, and it plays a central role in cleaving cell surface receptors, a process that regulates cell activation and cell-cell interactions. We report that ADAM17 blockade with a monoclonal antibody markedly increased human NK cell proliferation by IL-15 both in vitro and in a xenograft mouse model. Blocking ADAM17 resulted in a significant increase in surface levels of the homing receptor CD62L on proliferating NK cells. We show that NK cell proliferation in vivo by IL-15 and the augmentation of this process upon blocking ADAM17 are dependent on CD62L. Hence, our findings reveal for the first time that ADAM17 activation in NK cells by IL-15 limits their proliferation, presumably functioning as a feedback system, and that its substrate CD62L has a key role in this process in vivo. ADAM17 blockade in combination with IL-15 may provide a new approach to improve NK cell persistence and function in cancer patients.
Collapse
Affiliation(s)
- Hemant K Mishra
- Department of Veterinary and Biomedical Sciences, University of Minnesota, St. Paul, MN, United States
| | - Kate J Dixon
- Department of Veterinary and Biomedical Sciences, University of Minnesota, St. Paul, MN, United States
| | - Nabendu Pore
- Early Oncology Clinical Science, AstraZeneca, Gaithersburg, MD, United States
| | - Martin Felices
- Department of Medicine, Division of Hematology, Oncology, and Transplantation, University of Minnesota, Minneapolis, MN, United States
| | - Jeffrey S Miller
- Department of Medicine, Division of Hematology, Oncology, and Transplantation, University of Minnesota, Minneapolis, MN, United States
| | - Bruce Walcheck
- Department of Veterinary and Biomedical Sciences, University of Minnesota, St. Paul, MN, United States
| |
Collapse
|
57
|
Liu X, Guo R, Xu Y. B7-H6 as a Diagnostic Biomarker for Cervical Squamous Cell Carcinoma. Genet Test Mol Biomarkers 2021; 25:463-470. [PMID: 34280008 DOI: 10.1089/gtmb.2020.0313] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Background: B7-H6, a newly discovered member of the immunoglobulin superfamily, exerts antitumor effects by binding to NKP30 receptor on natural killer cells; it has important clinical implications. Cell surface ectodomain shedding of B7-H6 generates soluble B7-H6 (sB7-H6), which is highly expressed and serves as a valuable biomarker in multiple tumors, but the clinical significance and diagnostic value of B7-H6 in cervical squamous cell carcinoma (CSCC) remains unclear. Objective: To assess the expression and diagnostic value of B7-H6 in CSCC. Methods: In this study, 69 cervical specimens were analyzed for B7-H6 expression: 25 paired CSCC tissues were examined using quantitative real-time polymerase chain reaction, and 24 paraffin-embedded CSCC tissues and 20 normal tissues were analyzed immunohistochemically. Furthermore, plasma samples from 30 CSCC patients and 24 healthy controls were examined using ELISA. Results: B7-H6 mRNA and protein levels were significantly higher in CSCC tissues than in adjacent normal cervical tissues (p < 0.05). Immunohistochemical analysis revealed that high B7-H6 expression correlated with stromal invasion (p = 0.043), lymphovascular space involvement (p = 0.005), lymph node metastasis (p = 0.019), and International Federation of Gynecology and Obstetrics (FIGO) stage (p = 0.002). Moreover, ELISA results demonstrated that the sB7-H6 concentration in peripheral blood was higher in CSCC patients than in healthy controls (p < 0.0001). Notably, at the optimal cutoff point of 0.076 ng/mL, sB7-H6 showed 93.3% sensitivity and 62.5% specificity in the discrimination of CSCC patients from healthy controls. Conclusions: B7-H6 mRNA and protein levels are markedly increased in CSCC tissues and peripheral blood samples, and the B7-H6 level can be used as a biomarker for predicting the severity of CSCC disease and discriminating CSCC patients from healthy controls.
Collapse
Affiliation(s)
- Xuejing Liu
- Department of Gynecology, The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Ruimeng Guo
- Department of Gynecology, The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Yanying Xu
- Department of Gynecology, The Second Hospital of Tianjin Medical University, Tianjin, China
| |
Collapse
|
58
|
Mattiola I. Immune Circuits to Shape Natural Killer Cells in Cancer. Cancers (Basel) 2021; 13:cancers13133225. [PMID: 34203391 PMCID: PMC8267947 DOI: 10.3390/cancers13133225] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 06/19/2021] [Accepted: 06/21/2021] [Indexed: 12/26/2022] Open
Abstract
Simple Summary Natural killer (NK) cells are circulating innate lymphocytes endowed with antitumoral functions. NK cells are the innate counterpart of effector T cells and among the first cells responding to infections and tumors. In this review, the immune circuits regulating the NK cell antitumoral functions and the possible strategies to shape natural killing in cancer will be discussed. Abstract Natural killer (NK) cells are innate lymphoid cells playing an important role in anti-cancer immunity. NK cells are efficient in controlling the spreading of metastasis but are not very powerful in fighting against primary tumors. The NK cell capability to infiltrate and persist in the tumor microenvironment and to exert their antitumoral functions is often limited by tumor escape mechanisms. These tumor-mediated strategies not only induce NK cell tolerance but also interfere with the NK cell-dependent immune networking. This review will provide an overview of the tumor escape mechanisms impacting NK cells, identify the immune circuits regulating the NK cell-dependent antitumor immunity and revise the emerging therapeutic approaches to unleash NK cells in cancer.
Collapse
Affiliation(s)
- Irene Mattiola
- Laboratory of Innate Immunity, Department of Microbiology, Infectious Diseases and Immunology, Charité-Universitätsmedizin Berlin, Campus Benjamin Franklin, Hindenburgdamm 30, 12203 Berlin, Germany;
- Berlin Institute of Health (BIH), Anna-Louisa-Karsch Strasse 2, 10117 Berlin, Germany
- Mucosal and Developmental Immunology, Deutsches Rheuma-Forschungszentrum, Charitéplatz 1, 10117 Berlin, Germany
| |
Collapse
|
59
|
Guo R, Liu G, Li C, Liu X, Xu Y, Yang W, Wang F. B7 homolog 6 promotes the progression of cervical cancer. Exp Ther Med 2021; 22:774. [PMID: 34055073 PMCID: PMC8145428 DOI: 10.3892/etm.2021.10206] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 04/12/2021] [Indexed: 12/16/2022] Open
Abstract
B7 homolog 6 (B7-H6) was recently discovered to act as a co-stimulatory molecule. In particular, the expression of B7-H6 has been found to play an important biological role in several types of tumors. The aim of the present study was to determine the role of B7-H6 in cervical cancer. Immunohistochemistry was used to analyze the expression levels of B7-H6 in cervical precancerous and cancerous tissues. Furthermore, the expression of B7-H6 was knocked down in HeLa cells using short hairpin RNA and the effects of B7-H6 on HeLa cell proliferation, migration and invasion were determined using Cell Counting Kit-8, colony formation, wound healing and Transwell invasion assays, respectively. In addition, flow cytometry was used to analyze the levels of cell apoptosis and the cell cycle distribution. The results of the immunohistochemical staining revealed that the expression levels of B7-H6 were upregulated in cervical lesions. Furthermore, the expression levels of B7-H6 were positively associated with the clinical stage of the cervical lesions. B7-H6 knockdown suppressed the invasive, migratory and proliferative abilities of HeLa cells, and promoted G1 cell cycle arrest and apoptosis. In conclusion, the findings of the present study suggested that B7-H6 may serve as a novel oncogene and may hold promise as a potential therapeutic target for cervical cancer.
Collapse
Affiliation(s)
- Ruimeng Guo
- Department of Gynecology, The Second Hospital of Tianjin Medical University, Tianjin 300211, P.R. China
| | - Guoyan Liu
- Department of Gynecology, The General Hospital of Tianjin Medical University, Tianjin 300053, P.R. China
| | - Changying Li
- Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin 300211, P.R. China
| | - Xuejing Liu
- Department of Gynecology, The Second Hospital of Tianjin Medical University, Tianjin 300211, P.R. China
| | - Yanying Xu
- Department of Gynecology, The Second Hospital of Tianjin Medical University, Tianjin 300211, P.R. China
| | - Weina Yang
- Department of Gynecology, The Second Hospital of Tianjin Medical University, Tianjin 300211, P.R. China
| | - Fang Wang
- Department of Gynecology, The Second Hospital of Tianjin Medical University, Tianjin 300211, P.R. China
| |
Collapse
|
60
|
Descalzi-Montoya D, Montel RA, Smith K, Dziopa E, Darwich A, Yang Z, Bitsaktsis C, Korngold R, Sabatino D. Synthetic Antibody Mimics Based on Cancer-Targeting Immunostimulatory Peptides. Chembiochem 2021; 22:1589-1596. [PMID: 32964656 PMCID: PMC8191480 DOI: 10.1002/cbic.202000407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 09/16/2020] [Indexed: 11/08/2022]
Abstract
De novo cancer-targeting immunostimulatory peptides have been designed and developed as synthetic antibody mimics. A series of bifunctional peptides incorporating NKp30-binding and NK-cell-activating domains were synthesized as linear dimers and then extended into branching trimeric peptides by the incorporation of GRP78-targeting and tumor-cell-binding sequences. A selected trimeric peptide from this small set of peptides displayed binding capabilities on GRP78+ HepG2 and A549 target cells. Cell binding diminished in the presence of an anti-GRP78 peptide blocker, thus suggesting GRP78-binding dependence. Similarly, the selected trimeric peptide was also found to exhibit NK cell binding in an NKp30-dependent manner, which translated into NK cell activation as indicated by cytokine secretion. In co-culture, fluorescence microscopy revealed that the target GFP-expressing A549 cells were visibly associated with the effector NK cells when pre-activated with lead trimeric peptide. Accordingly, A549 cells were found to be compromised, as evidenced by the loss of GFP signal and notable detection of early-/late-stage apoptosis. Investigation of the immunological markers related to toxicity revealed detectable secretion of pro-inflammatory cytokines and chemokines, including IFN-γ, TNF-α, and IL-8. Furthermore, administration of peptide-activated NK cells into A549-tumor-bearing mice resulted in a consistent decrease in tumor growth when compared to the untreated control group. Taken together, the identification of a lead trimeric peptide capable of targeting and activating NK cells' immunotoxicity directly towards GRP78+ /B7H6- tumors provides a novel proof-of-concept for the development of cancer-targeting immunostimulatory peptide ligands that mimic antibody-targeting and -activating functions related to cancer immunotherapy applications.
Collapse
MESH Headings
- Adjuvants, Immunologic/chemistry
- Adjuvants, Immunologic/pharmacology
- Adjuvants, Immunologic/therapeutic use
- Animals
- Antibodies/chemistry
- Antibodies/immunology
- Cell Line, Tumor
- Cytokines/metabolism
- Endoplasmic Reticulum Chaperone BiP/immunology
- Female
- Humans
- Immunotherapy/methods
- Killer Cells, Natural/drug effects
- Killer Cells, Natural/immunology
- Killer Cells, Natural/metabolism
- Lymphocyte Activation/drug effects
- Male
- Mice
- Mice, Inbred NOD
- Mice, SCID
- Neoplasms/drug therapy
- Neoplasms/pathology
- Peptides/chemical synthesis
- Peptides/chemistry
- Peptides/pharmacology
- Peptides/therapeutic use
- Transplantation, Heterologous
Collapse
Affiliation(s)
- Dante Descalzi-Montoya
- Center for Discovery and Innovation, Hackensack-Meridian Health, 340 Kingsland Street, Nutley, NJ 07110, USA
| | - Rachel A Montel
- Department of Biological Sciences and Chemistry and Biochemistry, Seton Hall University, 400 South Orange Avenue, South Orange, NJ 07079, USA
| | - Keith Smith
- Department of Biological Sciences and Chemistry and Biochemistry, Seton Hall University, 400 South Orange Avenue, South Orange, NJ 07079, USA
| | - Eugenia Dziopa
- Center for Discovery and Innovation, Hackensack-Meridian Health, 340 Kingsland Street, Nutley, NJ 07110, USA
| | - Andrieh Darwich
- Department of Biological Sciences and Chemistry and Biochemistry, Seton Hall University, 400 South Orange Avenue, South Orange, NJ 07079, USA
| | - Zheng Yang
- Center for Discovery and Innovation, Hackensack-Meridian Health, 340 Kingsland Street, Nutley, NJ 07110, USA
| | - Constantine Bitsaktsis
- Department of Biological Sciences and Chemistry and Biochemistry, Seton Hall University, 400 South Orange Avenue, South Orange, NJ 07079, USA
| | - Robert Korngold
- Center for Discovery and Innovation, Hackensack-Meridian Health, 340 Kingsland Street, Nutley, NJ 07110, USA
| | - David Sabatino
- Department of Biological Sciences and Chemistry and Biochemistry, Seton Hall University, 400 South Orange Avenue, South Orange, NJ 07079, USA
| |
Collapse
|
61
|
Immune checkpoint molecules B7-H6 and PD-L1 co-pattern the tumor inflammatory microenvironment in human breast cancer. Sci Rep 2021; 11:7550. [PMID: 33824367 PMCID: PMC8024320 DOI: 10.1038/s41598-021-87216-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Accepted: 03/23/2021] [Indexed: 01/29/2023] Open
Abstract
B7-H6 and PD-L1 belong to the B7 family co-stimulatory molecules fine-tuning the immune response. The present work investigates the clinical effect of B7-H6 protein expression with PD-L1 status and the infiltration of natural killer cells as potential biomarkers in breast tumor inflammatory microenvironment. The expression levels of B7-H6 protein by cancer cells and immune infiltrating cells in human breast cancer tissues and evaluate their associations with PD-L1 expression, NK cell status, clinical pathological features and prognosis were explored. The immunohistochemistry labeling method was used to assess B7-H6 and PD-L1 proteins expression by cancer and immune cells. The associations between immune checkpoint, major clinical pathological variables and survival rates were analyzed. B7-H6 protein was depicted in both breast and immune cells. Results showed that Tumor B7-H6 expression is highly associated with Her-2 over expression. B7-H6 + immune cells are highly related to the Scarff–Bloom–Richardson grade and associated with PD-L1 expression and NK cells status. Survival analysis revealed a better prognosis in patients with low expression of B7-H6 by cancer cells. Conversely, B7-H6 + immune cells were significantly associated with longer survival. Findings strongly suggest an interaction between B7 molecules that contributes to a particular design of the inflammatory microenvironment. This may influence the efficiency of therapies based on antibodies blocking the PD-L1/PD1 pathway and can explain the detection of clinical benefits only in a fraction of patients treated with immune checkpoint inhibitors.
Collapse
|
62
|
Zhang W, Qiu Y, Xie X, Fu Y, Wang L, Cai Z. B7 Family Members in Lymphoma: Promising Novel Targets for Tumor Immunotherapy? Front Oncol 2021; 11:647526. [PMID: 33869045 PMCID: PMC8044412 DOI: 10.3389/fonc.2021.647526] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Accepted: 03/15/2021] [Indexed: 12/12/2022] Open
Abstract
T cells play a vital role in the immune responses against tumors. Costimulatory or coinhibitory molecules regulate T cell activation. Immune checkpoint inhibitors, such as programmed cell death protein 1 (PD-1) and programmed death ligand 1 (PD-L1) have shown remarkable benefits in patients with various tumor, but few patients have displayed significant immune responses against tumors after PD-1/PD-L1 immunotherapy and many have been completely unresponsive. Thus, researchers must explore novel immune checkpoints that trigger durable antitumor responses and improve clinical outcomes. In this regard, other B7 family checkpoint molecules have been identified, namely PD-L2, B7-H2, B7-H3, B7-H4 and B7-H6. The aim of the present article was to address the expression, clinical significance and roles of B7 family molecules in lymphoma, as well as in T and NK cell-mediated tumor immunity. B7 family checkpoints may offer novel and immunotherapeutic strategies for patients with lymphoma.
Collapse
Affiliation(s)
- Wei Zhang
- School of Clinical Medicine, Binzhou Medical University, Yantai, China.,Central Laboratory, Linyi People's Hospital, Linyi, China
| | - Yu Qiu
- School of Clinical Medicine, Binzhou Medical University, Yantai, China.,Central Laboratory, Linyi People's Hospital, Linyi, China
| | - Xiaoli Xie
- Central Laboratory, Linyi People's Hospital, Linyi, China
| | - Yao Fu
- Central Laboratory, Linyi People's Hospital, Linyi, China
| | - Lijuan Wang
- School of Clinical Medicine, Binzhou Medical University, Yantai, China.,Central Laboratory, Linyi People's Hospital, Linyi, China
| | - Zhen Cai
- Bone Marrow Transplantation Center, Department of Hematology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
63
|
Baragaño Raneros A, Rodriguez RM, Bernardo Flórez A, Palomo P, Colado E, Minguela A, Suárez Álvarez B, López-Larrea C. Bromodomain protein BRD4 is an epigenetic activator of B7-H6 expression in acute myeloid leukemia. Oncoimmunology 2021; 10:1897294. [PMID: 33796404 PMCID: PMC8007156 DOI: 10.1080/2162402x.2021.1897294] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Accepted: 02/24/2021] [Indexed: 12/27/2022] Open
Abstract
B7-H6, a ligand for the NK activating receptor NKp30, has been identified as a biomarker of poor prognosis in several solid cancers. However, little is known about the role of B7-H6 and the mechanisms that control its expression in acute myeloid leukemia (AML). Epigenome modulation, including epigenomic reader dysregulation, is one of the hallmarks of AML. Bromodomain-containing protein 4 (BRD4), the best-known member of the BET family of epigenetic readers, is overexpressed in AML cells and regulates the transcription of genes involved in the pathogenesis of AML, as MYC oncogene. Here, we analyze the role of BRD4 in regulating B7-H6 in AML cells. Results demonstrated that the specific inhibition of BRD4 drastically reduces the expression of B7-H6 in AML cells. Histone acetylation mediated by CBP30/P300 facilitates the binding of BRD4 to the B7-H6 promoter, which recruits the P-TEFb elongation factor that phosphorylates RNA polymerase II, thereby activating B7-H6 transcription. BRD4 also co-bounded with JMJD6 at the distal enhancer of the B7-H6 gene. Metabolic modulation with metformin modifies the acetylation pattern in the B7-H6 promoter, impairing BRD4 binding, thereby inhibiting B7-H6 expression. B7-H6 knockdown induces the apoptosis in HEL-R cell line. Moreover, a high level of B7-H6 expression in AML patients is related to increased BRD4 levels, myelodysplastic-derived AML, and del5q, the two latter being associated with poor prognosis. Our data show that BRD4 is a positive regulator of the pro-tumorigenic molecule B7-H6 and that the blockage of the B7-H6 is a potential therapeutic target for the treatment of AML.
Collapse
Affiliation(s)
- Aroa Baragaño Raneros
- Translation Immunology Laboratory, Instituto De Investigación Biosanitaria Del Principado De Asturias-ISPA, Oviedo, Spain
| | - Ramon M Rodriguez
- Translation Immunology Laboratory, Instituto De Investigación Biosanitaria Del Principado De Asturias-ISPA, Oviedo, Spain
| | - Aida Bernardo Flórez
- Translation Immunology Laboratory, Instituto De Investigación Biosanitaria Del Principado De Asturias-ISPA, Oviedo, Spain
| | - Pilar Palomo
- Translation Immunology Laboratory, Instituto De Investigación Biosanitaria Del Principado De Asturias-ISPA, Oviedo, Spain
- Department of Hematology, Hospital Universitario Central De Asturias, Oviedo, Spain
| | - Enrique Colado
- Department of Hematology, Hospital Universitario Central De Asturias, Oviedo, Spain
- Department of Laboratory Medicine, Hospital Universitario Central De Asturias, Oviedo, Spain
| | - Alfredo Minguela
- Immunology Service, Instituto Murciano De Investigación Biosanitaria (IMIB), Hospital Clínico Universitario Virgen De La Arrixaca, Murcia, Spain
| | - Beatriz Suárez Álvarez
- Translation Immunology Laboratory, Instituto De Investigación Biosanitaria Del Principado De Asturias-ISPA, Oviedo, Spain
| | - Carlos López-Larrea
- Translation Immunology Laboratory, Instituto De Investigación Biosanitaria Del Principado De Asturias-ISPA, Oviedo, Spain
- Department of Immunology, Hospital Universitario Central De Asturias, Oviedo, Spain
| |
Collapse
|
64
|
Lee H, Da Silva IP, Palendira U, Scolyer RA, Long GV, Wilmott JS. Targeting NK Cells to Enhance Melanoma Response to Immunotherapies. Cancers (Basel) 2021; 13:cancers13061363. [PMID: 33802954 PMCID: PMC8002669 DOI: 10.3390/cancers13061363] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 03/09/2021] [Accepted: 03/12/2021] [Indexed: 12/23/2022] Open
Abstract
Natural killer (NK) cells are a key component of an innate immune system. They are important not only in initiating, but also in augmenting adaptive immune responses. NK cell activation is mediated by a carefully orchestrated balance between the signals from inhibitory and activating NK cell receptors. NK cells are potent producers of proinflammatory cytokines and are also able to elicit strong antitumor responses through secretion of perforin and granzyme B. Tumors can develop many mechanisms to evade NK cell antitumor responses, such as upregulating ligands for inhibitory receptors, secreting anti-inflammatory cytokines and recruiting immunosuppressive cells. Enhancing NK cell responses will likely augment the effectiveness of immunotherapies, and strategies to accomplish this are currently being evaluated in clinical trials. A comprehensive understanding of NK cell biology will likely provide additional opportunities to further leverage the antitumor effects of NK cells. In this review, we therefore sought to highlight NK cell biology, tumor evasion of NK cells and clinical trials that target NK cells.
Collapse
Affiliation(s)
- Hansol Lee
- Melanoma Institute Australia, The University of Sydney, Sydney 2006, Australia; (H.L.); (I.P.D.S.); (U.P.); (R.A.S.); (J.S.W.)
- Faculty of Medicine and Health Sciences, The University of Sydney, Sydney 2006, Australia
| | - Inês Pires Da Silva
- Melanoma Institute Australia, The University of Sydney, Sydney 2006, Australia; (H.L.); (I.P.D.S.); (U.P.); (R.A.S.); (J.S.W.)
| | - Umaimainthan Palendira
- Melanoma Institute Australia, The University of Sydney, Sydney 2006, Australia; (H.L.); (I.P.D.S.); (U.P.); (R.A.S.); (J.S.W.)
- Department of Infectious Diseases and Immunology, The Charles Perkins Centre, School of Medical Sciences, The University of Sydney, Sydney 2006, Australia
| | - Richard A. Scolyer
- Melanoma Institute Australia, The University of Sydney, Sydney 2006, Australia; (H.L.); (I.P.D.S.); (U.P.); (R.A.S.); (J.S.W.)
- Faculty of Medicine and Health Sciences, The University of Sydney, Sydney 2006, Australia
- Department of Tissue Pathology and Diagnostic Oncology, Royal Prince Alfred Hospital and NSW Health Pathology, Sydney 2006, Australia
| | - Georgina V. Long
- Melanoma Institute Australia, The University of Sydney, Sydney 2006, Australia; (H.L.); (I.P.D.S.); (U.P.); (R.A.S.); (J.S.W.)
- Department of Medical Oncology, Royal North Shore Hospital and Mater Hospital, Sydney 2065, Australia
- Sydney Medical School, The University of Sydney, Sydney 2006, Australia
- Correspondence: ; Tel.: +61-2-9911-7336
| | - James S. Wilmott
- Melanoma Institute Australia, The University of Sydney, Sydney 2006, Australia; (H.L.); (I.P.D.S.); (U.P.); (R.A.S.); (J.S.W.)
- Faculty of Medicine and Health Sciences, The University of Sydney, Sydney 2006, Australia
| |
Collapse
|
65
|
Ahangar NK, Hemmat N, Khalaj-Kondori M, Shadbad MA, Sabaie H, Mokhtarzadeh A, Alizadeh N, Derakhshani A, Baghbanzadeh A, Dolatkhah K, Silvestris N, Baradaran B. The Regulatory Cross-Talk between microRNAs and Novel Members of the B7 Family in Human Diseases: A Scoping Review. Int J Mol Sci 2021; 22:2652. [PMID: 33800752 PMCID: PMC7962059 DOI: 10.3390/ijms22052652] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 02/21/2021] [Accepted: 03/02/2021] [Indexed: 12/18/2022] Open
Abstract
The members of the B7 family, as immune checkpoint molecules, can substantially regulate immune responses. Since microRNAs (miRs) can regulate gene expression post-transcriptionally, we conducted a scoping review to summarize and discuss the regulatory cross-talk between miRs and new B7 family immune checkpoint molecules, i.e., B7-H3, B7-H4, B7-H5, butyrophilin like 2 (BTNL2), B7-H6, B7-H7, and immunoglobulin like domain containing receptor 2 (ILDR2). The current study was performed using a six-stage methodology structure and Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guideline. PubMed, Embase, Scopus, Cochrane, ProQuest, and Google Scholar were systematically searched to obtain the relevant records to 5 November 2020. Two authors independently reviewed the obtained records and extracted the desired data. After quantitative and qualitative analyses, we used bioinformatics approaches to extend our knowledge about the regulatory cross-talk between miRs and the abovementioned B7 family members. Twenty-seven articles were identified that fulfilled the inclusion criteria. Studies with different designs reported gene-miR regulatory axes in various cancer and non-cancer diseases. The regulatory cross-talk between the aforementioned B7 family molecules and miRs might provide valuable insights into the pathogenesis of various human diseases.
Collapse
Affiliation(s)
- Noora Karim Ahangar
- Department of Animal Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz 5166616471, Iran; (N.K.A.); (M.K.-K.)
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz 5165665811, Iran; (N.H.); (M.A.S.); (A.M.); (N.A.); (A.D.); (A.B.); (K.D.)
| | - Nima Hemmat
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz 5165665811, Iran; (N.H.); (M.A.S.); (A.M.); (N.A.); (A.D.); (A.B.); (K.D.)
| | - Mohammad Khalaj-Kondori
- Department of Animal Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz 5166616471, Iran; (N.K.A.); (M.K.-K.)
| | - Mahdi Abdoli Shadbad
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz 5165665811, Iran; (N.H.); (M.A.S.); (A.M.); (N.A.); (A.D.); (A.B.); (K.D.)
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz 5166614766, Iran;
| | - Hani Sabaie
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz 5166614766, Iran;
| | - Ahad Mokhtarzadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz 5165665811, Iran; (N.H.); (M.A.S.); (A.M.); (N.A.); (A.D.); (A.B.); (K.D.)
| | - Nazila Alizadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz 5165665811, Iran; (N.H.); (M.A.S.); (A.M.); (N.A.); (A.D.); (A.B.); (K.D.)
| | - Afshin Derakhshani
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz 5165665811, Iran; (N.H.); (M.A.S.); (A.M.); (N.A.); (A.D.); (A.B.); (K.D.)
- IRCCS IstitutoTumori “Giovanni Paolo II” of Bari, 70124 Bari, Italy
| | - Amir Baghbanzadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz 5165665811, Iran; (N.H.); (M.A.S.); (A.M.); (N.A.); (A.D.); (A.B.); (K.D.)
| | - Katayoun Dolatkhah
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz 5165665811, Iran; (N.H.); (M.A.S.); (A.M.); (N.A.); (A.D.); (A.B.); (K.D.)
| | - Nicola Silvestris
- IRCCS IstitutoTumori “Giovanni Paolo II” of Bari, 70124 Bari, Italy
- Department of Biomedical Sciences and Human Oncology, University of Bari “Aldo Moro”, 70124 Bari, Italy
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz 5165665811, Iran; (N.H.); (M.A.S.); (A.M.); (N.A.); (A.D.); (A.B.); (K.D.)
| |
Collapse
|
66
|
Carreca AP, Pravatà VM, D’Apolito D, Bonelli S, Calligaris M, Monaca E, Müller SA, Lichtenthaler SF, Scilabra SD. Quantitative Proteomics Reveals Changes Induced by TIMP-3 on Cell Membrane Composition and Novel Metalloprotease Substrates. Int J Mol Sci 2021; 22:ijms22052392. [PMID: 33673623 PMCID: PMC7957584 DOI: 10.3390/ijms22052392] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 02/20/2021] [Accepted: 02/22/2021] [Indexed: 12/11/2022] Open
Abstract
Ectodomain shedding is a key mechanism of several biological processes, including cell-communication. Disintegrin and metalloproteinases (ADAMs), together with the membrane-type matrix metalloproteinases, play a pivotal role in shedding transmembrane proteins. Aberrant shedding is associated to several pathological conditions, including arthritis. Tissue inhibitor of metalloproteases 3 (TIMP-3), an endogenous inhibitor of ADAMs and matrix metalloproteases (MMPs), has been proven to be beneficial in such diseases. Thus, strategies to increase TIMP-3 bioavailability in the tissue have been sought for development of therapeutics. Nevertheless, high levels of TIMP-3 may lead to mechanism-based side-effects, as its overall effects on cell behavior are still unknown. In this study, we used a high-resolution mass-spectrometry-based workflow to analyze alterations induced by sustained expression of TIMP-3 in the cell surfaceome. In agreement with its multifunctional properties, TIMP-3 induced changes on the protein composition of the cell surface. We found that TIMP-3 had differential effects on metalloproteinase substrates, with several that accumulated in TIMP-3-overexpressing cells. In addition, our study identified potentially novel ADAM substrates, including ADAM15, whose levels at the cell surface are regulated by the inhibitor. In conclusion, our study reveals that high levels of TIMP-3 induce modifications in the cell surfaceome and identifies molecular pathways that can be deregulated via TIMP-3-based therapies.
Collapse
Affiliation(s)
- Anna Paola Carreca
- Proteomics Group of Fondazione Ri.MED, Department of Research IRCCS ISMETT, via Ernesto Tricomi 5, 90145 Palermo, Italy; (A.P.C.); (S.B.); (M.C.)
| | - Veronica Maria Pravatà
- Division of Gene Regulation and Expression, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK;
- German Center for Neurodegenerative Diseases (DZNE), Feodor-Lynen Strasse 17, 81377 Munich, Germany; (S.A.M.); (S.F.L.)
| | - Danilo D’Apolito
- Unità di Medicina di Laboratorio e Biotecnologie Avanzate, IRCCS-ISMETT (Istituto Mediterraneo per i Trapianti e Terapie ad Alta Specializzazione), Via E. Tricomi 5, 90127 Palermo, Italy;
- Unità Prodotti Cellulari (GMP), Fondazione Ri.MED c/o IRCCS-ISMETT, Via E. Tricomi 5, 90127 Palermo, Italy
| | - Simone Bonelli
- Proteomics Group of Fondazione Ri.MED, Department of Research IRCCS ISMETT, via Ernesto Tricomi 5, 90145 Palermo, Italy; (A.P.C.); (S.B.); (M.C.)
| | - Matteo Calligaris
- Proteomics Group of Fondazione Ri.MED, Department of Research IRCCS ISMETT, via Ernesto Tricomi 5, 90145 Palermo, Italy; (A.P.C.); (S.B.); (M.C.)
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126 Pisa, Italy
| | | | - Stephan A. Müller
- German Center for Neurodegenerative Diseases (DZNE), Feodor-Lynen Strasse 17, 81377 Munich, Germany; (S.A.M.); (S.F.L.)
| | - Stefan F. Lichtenthaler
- German Center for Neurodegenerative Diseases (DZNE), Feodor-Lynen Strasse 17, 81377 Munich, Germany; (S.A.M.); (S.F.L.)
- Neuroproteomics, Klinikum rechts der Isar, Technische Universität München, 81675 Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), 81377 Munich, Germany
| | - Simone Dario Scilabra
- Proteomics Group of Fondazione Ri.MED, Department of Research IRCCS ISMETT, via Ernesto Tricomi 5, 90145 Palermo, Italy; (A.P.C.); (S.B.); (M.C.)
- Correspondence: ; Tel.: +39-(0)91-219-2430
| |
Collapse
|
67
|
Ponath V, Hoffmann N, Bergmann L, Mäder C, Alashkar Alhamwe B, Preußer C, Pogge von Strandmann E. Secreted Ligands of the NK Cell Receptor NKp30: B7-H6 Is in Contrast to BAG6 Only Marginally Released via Extracellular Vesicles. Int J Mol Sci 2021; 22:ijms22042189. [PMID: 33671836 PMCID: PMC7926927 DOI: 10.3390/ijms22042189] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 02/12/2021] [Accepted: 02/15/2021] [Indexed: 12/11/2022] Open
Abstract
NKp30 (Natural Cytotoxicity Receptor 1, NCR1) is a powerful cytotoxicity receptor expressed on natural killer (NK) cells which is involved in tumor cell killing and the regulation of antitumor immune responses. Ligands for NKp30, including BAG6 and B7-H6, are upregulated in virus-infected and tumor cells but rarely detectable on healthy cells. These ligands are released by tumor cells as part of the cellular secretome and interfere with NK cell activity. BAG6 is secreted via the exosomal pathway, and BAG6-positive extracellular vesicles (EV-BAG6) trigger NK cell cytotoxicity and cytokine release, whereas the soluble protein diminishes NK cell activity. However, the extracellular format and activity of B7-H6 remain elusive. Here, we used HEK293 as a model cell line to produce recombinant ligands and to study their impact on NK cell activity. Using this system, we demonstrate that soluble B7-H6 (sB7-H6), like soluble BAG6 (sBAG6), inhibits NK cell-mediated target cell killing. This was associated with a diminished cell surface expression of NKG2D and NCRs (NKp30, NKp40, and NKp46). Strikingly, a reduced NKp30 mRNA expression was observed exclusively in response to sBAG6. Of note, B7-H6 was marginally released in association with EVs, and EVs collected from B7-H6 expressing cells did not stimulate NK cell-mediated killing. The molecular analysis of EVs on a single EV level using nano flow cytometry (NanoFCM) revealed a similar distribution of vesicle-associated tetraspanins within EVs purified from wildtype, BAG6, or B7-H6 overexpressing cells. NKp30 is a promising therapeutic target to overcome NK cell immune evasion in cancer patients, and it is important to unravel how extracellular NKp30 ligands inhibit NK cell functions.
Collapse
|
68
|
Killing the Invaders: NK Cell Impact in Tumors and Anti-Tumor Therapy. Cancers (Basel) 2021; 13:cancers13040595. [PMID: 33546248 PMCID: PMC7913353 DOI: 10.3390/cancers13040595] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 01/30/2021] [Accepted: 01/31/2021] [Indexed: 01/12/2023] Open
Abstract
Simple Summary NK cells are innate lymphoid cells involved in the control of tumor growth and metastatic spread. Given their significant cytolytic capacity, several promising strategies have been developed to target NK cells in cancer immunotherapy. Abstract Natural Killer cells belong to group 1 innate lymphoid cells, which also includes ILC1s. NK/ILC1s are highly heterogeneous cell types showing distinct phenotypes across tissues and conditions. NK cells have long been described as innate lymphocytes able to directly and rapidly kill tumor cells without antigen-restriction. Different mechanisms were shown to modulate NK cell activation and tumor resistance, mainly based on cytokine stimulation and receptor–ligand interactions, and several strategies have been developed to target NK cells in tumor immunotherapy to promote NK cell function and overcome tumor evasion. The characterization of ILC1 distinct phenotype and function and the specific role in tumors still needs further investigation and will be essential to better understand the impact of innate lymphoid cells in tumors. Here, we review key aspects of NK cell biology that are relevant in tumor immune surveillance, emphasizing the most recent findings in the field. We describe the novel therapeutical strategies that have been developed in tumor immunotherapy targeting NK cells, and we summarize some recent findings related to NK cell/ILC1 transition in tumor models.
Collapse
|
69
|
Yuan L, Sun L, Yang S, Chen X, Wang J, Jing H, Zhao Y, Ke X. B7-H6 is a new potential biomarker and therapeutic target of T-lymphoblastic lymphoma. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:328. [PMID: 33708955 PMCID: PMC7944329 DOI: 10.21037/atm-20-5308] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Background B7-H6 is a novel co-stimulatory protein exclusively expressed on a variety of cancer cells and associated with poor prognosis. T-cell lymphoblastic lymphoma (T-LBL) is a highly aggressive hematological malignancy whose treatment requires reliable prognostic biomarkers and therapeutic targets. However, the rare nature and delayed progression of T-LBL have limited its clinical management. Methods The expression of B7-H6 was analyzed by immunohistochemistry (IHC) in 65 T-LBL samples; the association with the clinicopathological characteristics and prognosis was also investigated. B7-H6-depleted Jurkat cells were also generated to investigate the effect of B7-H6 on cell proliferation, migration, and invasion. RNA sequencing was used to explore differentially expressed genes. Results B7-H6 was expressed in 61.5% (40/65) of T-LBL patients; of note, 38.5% (25/65) of patients showed membrane/cytoplasmic expression of B7-H6. Although the expression of B7-H6 varied across samples and did not correlate with patient survival, it was significantly associated with B symptoms, high ECOG scores (3 to 4), elevated serum lactate dehydrogenase level, and reduced complete remission at interim evaluation. B7-H6 underwent translocation into the nucleus of T-LBL cells, showing a specific nuclear localization sequence in the C-terminus. Moreover, the depletion of B7-H6 in Jurkat cells impaired cell proliferation, migration, and invasion. RNAseq showed the differential expression of RAG-1, which may be involved in the tumorigenesis of T-LBL. Conclusions B7-H6 may serve as a novel prognostic biomarker and therapeutic target of T-LBL.
Collapse
Affiliation(s)
- Lei Yuan
- Department of Hematology and Lymphoma Research Center, Peking University Third Hospital, Beijing, China
| | - Lu Sun
- Department of Pathology, Chinese PLA General Hospital, Beijing, China
| | - Siyuan Yang
- Department of Hematology and Lymphoma Research Center, Peking University Third Hospital, Beijing, China
| | - Xin Chen
- Department of Pathology, Chinese PLA General Hospital, Beijing, China
| | - Jing Wang
- Department of Hematology and Lymphoma Research Center, Peking University Third Hospital, Beijing, China
| | - Hongmei Jing
- Department of Hematology and Lymphoma Research Center, Peking University Third Hospital, Beijing, China
| | - Yu Zhao
- Department of Hematology, Chinese PLA General Hospital, Beijing, China
| | - Xiaoyan Ke
- Department of Hematology and Lymphoma Research Center, Peking University Third Hospital, Beijing, China
| |
Collapse
|
70
|
Cao G, Cheng Y, Zheng X, Wei H, Tian Z, Sun R, Sun H. All-trans retinoic acid induces leukemia resistance to NK cell cytotoxicity by down-regulating B7-H6 expression via c-Myc signaling. Cancer Commun (Lond) 2021; 41:51-61. [PMID: 34236140 PMCID: PMC7819554 DOI: 10.1002/cac2.12121] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 10/31/2020] [Accepted: 11/23/2020] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND The interaction between activating receptor NKp30 and its major tumor ligand B7-H6 is important for NK cell-mediated tumor rejection. However, the regulation of B7-H6 by tumor therapeutics remains largely unknown. In this study, we investigated the regulation of B7-H6 by all-trans retinoic acid (atRA), a terminal differentiation inducer of tumor cells that is extensively used for clinical leukemia therapy. METHODS We investigated the role of NKp30:B7-H6 axis in NK cell-mediated tumor lysis against leukemia cells and the influence of atRA treatment on the cytotoxicity of NK cells using NK cell lines (NK92 and NKG) and leukemia cell lines (U-937 and THP-1). We evaluated the effect of atRA treatment on the expression of B7-H6 using real-time PCR, flow cytometry and western blotting. We used CRISPR/Cas9 to knockdown B7-H6 expression and siRNA to knockdown c-Myc in U-937 cells to evaluate the role of B7-H6 and c-Myc in atRA-induced tumor resistance against NK cells. RESULTS NK cell-mediated U-937 cell lysis was mainly dependent on NKp30/B7-H6 interaction. Blockade of B7-H6 by monoclonal antibody significantly impaired NK cytotoxicity. atRA treatment induced U-937 resistance to NK cell cytotoxicity by reducing B7-H6 expression, and showed no effect on NK cytotoxicity against B7-H6 knockdown U-937 cells. Epigenetic modifications, such as DNA methylation and histone deacetylase (HDAC), were not responsible for atRA-mediated B7-H6 down-regulation as inhibitors of these pathways could not restore B7-H6 mRNA expression. On the other hand, atRA treatment reduced c-Myc expression, which in turn inhibited the transcription of B7-H6 on leukemia cells. CONCLUSION atRA treatment promotes tumor cell resistance against NK cell-mediated lysis by down-regulating B7-H6 expression via the c-Myc signaling pathway, suggesting that more attention needs to be paid to the immunological adverse effects in the clinical use of atRA treatment.
Collapse
Affiliation(s)
- Guoshuai Cao
- Hefei National Laboratory for Physical Sciences at Microscalethe CAS Key Laboratory of Innate Immunity and Chronic DiseaseSchool of Basic Medical SciencesDivision of Life Sciences and MedicineUniversity of Science and Technology of ChinaHefeiAnhui230027P. R. China
- Institute of ImmunologyUniversity of Science and Technology of ChinaHefeiAnhui230027P. R. China
| | - Ying Cheng
- Hefei National Laboratory for Physical Sciences at Microscalethe CAS Key Laboratory of Innate Immunity and Chronic DiseaseSchool of Basic Medical SciencesDivision of Life Sciences and MedicineUniversity of Science and Technology of ChinaHefeiAnhui230027P. R. China
- Institute of ImmunologyUniversity of Science and Technology of ChinaHefeiAnhui230027P. R. China
| | - Xiaodong Zheng
- Hefei National Laboratory for Physical Sciences at Microscalethe CAS Key Laboratory of Innate Immunity and Chronic DiseaseSchool of Basic Medical SciencesDivision of Life Sciences and MedicineUniversity of Science and Technology of ChinaHefeiAnhui230027P. R. China
- Institute of ImmunologyUniversity of Science and Technology of ChinaHefeiAnhui230027P. R. China
| | - Haiming Wei
- Hefei National Laboratory for Physical Sciences at Microscalethe CAS Key Laboratory of Innate Immunity and Chronic DiseaseSchool of Basic Medical SciencesDivision of Life Sciences and MedicineUniversity of Science and Technology of ChinaHefeiAnhui230027P. R. China
- Institute of ImmunologyUniversity of Science and Technology of ChinaHefeiAnhui230027P. R. China
| | - Zhigang Tian
- Hefei National Laboratory for Physical Sciences at Microscalethe CAS Key Laboratory of Innate Immunity and Chronic DiseaseSchool of Basic Medical SciencesDivision of Life Sciences and MedicineUniversity of Science and Technology of ChinaHefeiAnhui230027P. R. China
- Institute of ImmunologyUniversity of Science and Technology of ChinaHefeiAnhui230027P. R. China
- Research Unit of Natural Killer Cell StudyChinese Academy of Medical SciencesBeijing100864P. R. China
| | - Rui Sun
- Hefei National Laboratory for Physical Sciences at Microscalethe CAS Key Laboratory of Innate Immunity and Chronic DiseaseSchool of Basic Medical SciencesDivision of Life Sciences and MedicineUniversity of Science and Technology of ChinaHefeiAnhui230027P. R. China
- Institute of ImmunologyUniversity of Science and Technology of ChinaHefeiAnhui230027P. R. China
| | - Haoyu Sun
- Hefei National Laboratory for Physical Sciences at Microscalethe CAS Key Laboratory of Innate Immunity and Chronic DiseaseSchool of Basic Medical SciencesDivision of Life Sciences and MedicineUniversity of Science and Technology of ChinaHefeiAnhui230027P. R. China
- Institute of ImmunologyUniversity of Science and Technology of ChinaHefeiAnhui230027P. R. China
| |
Collapse
|
71
|
Gong P, Wang Y, Zhang P, Yang Z, Deng W, Sun Z, Yang M, Li X, Ma G, Deng G, Dong S, Cai L, Jiang W. Immunocyte Membrane-Coated Nanoparticles for Cancer Immunotherapy. Cancers (Basel) 2020; 13:E77. [PMID: 33396603 PMCID: PMC7794746 DOI: 10.3390/cancers13010077] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 12/15/2020] [Accepted: 12/17/2020] [Indexed: 12/16/2022] Open
Abstract
Despite the advances in surface bioconjugation of synthetic nanoparticles for targeted drug delivery, simple biological functionalization is still insufficient to replicate complex intercellular interactions naturally. Therefore, these foreign nanoparticles are inevitably exposed to the immune system, which results in phagocytosis by the reticuloendothelial system and thus, loss of their biological significance. Immunocyte membranes play a key role in intercellular interactions, and can protect foreign nanomaterials as a natural barrier. Therefore, biomimetic nanotechnology based on cell membranes has developed rapidly in recent years. This paper summarizes the development of immunocyte membrane-coated nanoparticles in the immunotherapy of tumors. We will introduce several immunocyte membrane-coated nanocarriers and review the challenges to their large-scale preparation and application.
Collapse
Affiliation(s)
- Ping Gong
- Guangdong Key Laboratory of Nanomedicine, Shenzhen Engineering Laboratory of Nanomedicine and Nanoformulations, CAS-HK Joint Lab for Biomaterials, CAS Key Laboratory of Health Informatics, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; (P.Z.); (Z.S.); (G.M.); (G.D.); (L.C.)
- Department of Radiation Oncology, University of Texas Southwestern Medical Center, 2280 Inwood Road, Dallas, TX 75235, USA; (Y.W.); (Z.Y.); (W.D.); (M.Y.); (X.L.); (S.D.)
| | - Yifan Wang
- Department of Radiation Oncology, University of Texas Southwestern Medical Center, 2280 Inwood Road, Dallas, TX 75235, USA; (Y.W.); (Z.Y.); (W.D.); (M.Y.); (X.L.); (S.D.)
| | - Pengfei Zhang
- Guangdong Key Laboratory of Nanomedicine, Shenzhen Engineering Laboratory of Nanomedicine and Nanoformulations, CAS-HK Joint Lab for Biomaterials, CAS Key Laboratory of Health Informatics, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; (P.Z.); (Z.S.); (G.M.); (G.D.); (L.C.)
| | - Zhaogang Yang
- Department of Radiation Oncology, University of Texas Southwestern Medical Center, 2280 Inwood Road, Dallas, TX 75235, USA; (Y.W.); (Z.Y.); (W.D.); (M.Y.); (X.L.); (S.D.)
| | - Weiye Deng
- Department of Radiation Oncology, University of Texas Southwestern Medical Center, 2280 Inwood Road, Dallas, TX 75235, USA; (Y.W.); (Z.Y.); (W.D.); (M.Y.); (X.L.); (S.D.)
| | - Zhihong Sun
- Guangdong Key Laboratory of Nanomedicine, Shenzhen Engineering Laboratory of Nanomedicine and Nanoformulations, CAS-HK Joint Lab for Biomaterials, CAS Key Laboratory of Health Informatics, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; (P.Z.); (Z.S.); (G.M.); (G.D.); (L.C.)
- Yantai Yuhuangding Hospital, Yantai 264000, China
| | - Mingming Yang
- Department of Radiation Oncology, University of Texas Southwestern Medical Center, 2280 Inwood Road, Dallas, TX 75235, USA; (Y.W.); (Z.Y.); (W.D.); (M.Y.); (X.L.); (S.D.)
| | - Xuefeng Li
- Department of Radiation Oncology, University of Texas Southwestern Medical Center, 2280 Inwood Road, Dallas, TX 75235, USA; (Y.W.); (Z.Y.); (W.D.); (M.Y.); (X.L.); (S.D.)
| | - Gongcheng Ma
- Guangdong Key Laboratory of Nanomedicine, Shenzhen Engineering Laboratory of Nanomedicine and Nanoformulations, CAS-HK Joint Lab for Biomaterials, CAS Key Laboratory of Health Informatics, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; (P.Z.); (Z.S.); (G.M.); (G.D.); (L.C.)
| | - Guanjun Deng
- Guangdong Key Laboratory of Nanomedicine, Shenzhen Engineering Laboratory of Nanomedicine and Nanoformulations, CAS-HK Joint Lab for Biomaterials, CAS Key Laboratory of Health Informatics, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; (P.Z.); (Z.S.); (G.M.); (G.D.); (L.C.)
| | - Shiyan Dong
- Department of Radiation Oncology, University of Texas Southwestern Medical Center, 2280 Inwood Road, Dallas, TX 75235, USA; (Y.W.); (Z.Y.); (W.D.); (M.Y.); (X.L.); (S.D.)
| | - Lintao Cai
- Guangdong Key Laboratory of Nanomedicine, Shenzhen Engineering Laboratory of Nanomedicine and Nanoformulations, CAS-HK Joint Lab for Biomaterials, CAS Key Laboratory of Health Informatics, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; (P.Z.); (Z.S.); (G.M.); (G.D.); (L.C.)
| | - Wen Jiang
- Department of Radiation Oncology, University of Texas Southwestern Medical Center, 2280 Inwood Road, Dallas, TX 75235, USA; (Y.W.); (Z.Y.); (W.D.); (M.Y.); (X.L.); (S.D.)
| |
Collapse
|
72
|
Qiu H, Gao S, Sun Z, Wang J. Dual role of B7-H6 as a novel prognostic marker in hepatocellular carcinoma. APMIS 2020; 129:105-117. [PMID: 33220098 DOI: 10.1111/apm.13099] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Accepted: 11/18/2020] [Indexed: 12/18/2022]
Abstract
B7 homolog 6 (B7-H6), a new member of the B7 family, is identified as an activating ligand for cytotoxicity triggering receptor 3 (NKp30) expressing on natural killer cells. The purpose of this study was to investigate the clinical significance of B7-H6 in hepatocellular carcinoma (HCC). We evaluated B7-H6 expression by immunohistochemistry in a cohort of 90 HCC tumors with clinical follow-up, the potential relationship between the B7-H6 expression and the clinicopathological characteristics of HCC patients was also analyzed. Stable B7-H6 knockdown in hepatoma cell line was established to explore the function and mechanism of B7-H6 in HCC. This study showed that high expression of B7-H6 was significantly associated with smaller tumor size, single tumor number in HCC, but no significant association was found between B7-H6 overexpression and other clinicopathological parameters. Moreover, Kaplan-Meier survival analysis showed that high expression of B7-H6 was significantly correlated with better survival of HCC patients. Knockdown of B7-H6 inhibited tumor cell proliferation and induced cell apoptosis. However, it also impaired the sensitivity of tumor cells to NK-mediated lysis together with significantly decreased degranulation and IFN-γ release of NK cells. These results indicated that B7-H6 has a dual role in HCC. It could be an independent indicator for better survival of HCC and maybe a potential target for future cancer treatment.
Collapse
Affiliation(s)
- Hao Qiu
- Department of Biochemistry and Molecular Biology, School of Biological and Basic Medical Science, Soochow University, Suzhou, China
| | - Shangshang Gao
- Department of Biochemistry and Molecular Biology, School of Biological and Basic Medical Science, Soochow University, Suzhou, China
| | - Ziling Sun
- Department of Biochemistry and Molecular Biology, School of Biological and Basic Medical Science, Soochow University, Suzhou, China
| | - Jiamin Wang
- Department of Biochemistry and Molecular Biology, School of Biological and Basic Medical Science, Soochow University, Suzhou, China
| |
Collapse
|
73
|
Ferretti E, Carlomagno S, Pesce S, Muccio L, Obino V, Greppi M, Solari A, Setti C, Marcenaro E, Della Chiesa M, Sivori S. Role of the Main Non HLA-Specific Activating NK Receptors in Pancreatic, Colorectal and Gastric Tumors Surveillance. Cancers (Basel) 2020; 12:E3705. [PMID: 33321719 PMCID: PMC7763095 DOI: 10.3390/cancers12123705] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 12/01/2020] [Accepted: 12/07/2020] [Indexed: 12/19/2022] Open
Abstract
Human NK cells can control tumor growth and metastatic spread thanks to their powerful cytolytic activity which relies on the expression of an array of activating receptors. Natural cytotoxicity receptors (NCRs) NKG2D and DNAM-1 are those non-HLA-specific activating NK receptors that are mainly involved in sensing tumor transformation by the recognition of different ligands, often stress-induced molecules, on the surface of cancer cells. Tumors display several mechanisms aimed at dampening/evading NK-mediated responses, a relevant fraction of which is based on the downregulation of the expression of activating receptors and/or their ligands. In this review, we summarize the role of the main non-HLA-specific activating NK receptors, NCRs, NKG2D and DNAM-1, in controlling tumor growth and metastatic spread in solid malignancies affecting the gastrointestinal tract with high incidence in the world population, i.e., pancreatic ductal adenocarcinoma (PDAC), colorectal cancer (CRC), and gastric cancer (GC), also describing the phenotypic and functional alterations induced on NK cells by their tumor microenvironment.
Collapse
Affiliation(s)
- Elisa Ferretti
- Centro di Eccellenza per la Ricerca Biomedica, University of Genoa, 16132 Genoa, Italy;
| | - Simona Carlomagno
- Dipartimento di Medicina Sperimentale (DIMES), University of Genoa, 16132 Genoa, Italy; (S.C.); (S.P.); (L.M.); (V.O.); (M.G.); (A.S.); (C.S.)
| | - Silvia Pesce
- Dipartimento di Medicina Sperimentale (DIMES), University of Genoa, 16132 Genoa, Italy; (S.C.); (S.P.); (L.M.); (V.O.); (M.G.); (A.S.); (C.S.)
| | - Letizia Muccio
- Dipartimento di Medicina Sperimentale (DIMES), University of Genoa, 16132 Genoa, Italy; (S.C.); (S.P.); (L.M.); (V.O.); (M.G.); (A.S.); (C.S.)
| | - Valentina Obino
- Dipartimento di Medicina Sperimentale (DIMES), University of Genoa, 16132 Genoa, Italy; (S.C.); (S.P.); (L.M.); (V.O.); (M.G.); (A.S.); (C.S.)
| | - Marco Greppi
- Dipartimento di Medicina Sperimentale (DIMES), University of Genoa, 16132 Genoa, Italy; (S.C.); (S.P.); (L.M.); (V.O.); (M.G.); (A.S.); (C.S.)
| | - Agnese Solari
- Dipartimento di Medicina Sperimentale (DIMES), University of Genoa, 16132 Genoa, Italy; (S.C.); (S.P.); (L.M.); (V.O.); (M.G.); (A.S.); (C.S.)
| | - Chiara Setti
- Dipartimento di Medicina Sperimentale (DIMES), University of Genoa, 16132 Genoa, Italy; (S.C.); (S.P.); (L.M.); (V.O.); (M.G.); (A.S.); (C.S.)
| | - Emanuela Marcenaro
- Dipartimento di Medicina Sperimentale (DIMES) and Centro di Eccellenza per la Ricerca Biomedica, University of Genoa, 16132 Genoa, Italy;
| | - Mariella Della Chiesa
- Dipartimento di Medicina Sperimentale (DIMES) and Centro di Eccellenza per la Ricerca Biomedica, University of Genoa, 16132 Genoa, Italy;
| | - Simona Sivori
- Dipartimento di Medicina Sperimentale (DIMES) and Centro di Eccellenza per la Ricerca Biomedica, University of Genoa, 16132 Genoa, Italy;
| |
Collapse
|
74
|
Cózar B, Greppi M, Carpentier S, Narni-Mancinelli E, Chiossone L, Vivier E. Tumor-Infiltrating Natural Killer Cells. Cancer Discov 2020; 11:34-44. [PMID: 33277307 DOI: 10.1158/2159-8290.cd-20-0655] [Citation(s) in RCA: 298] [Impact Index Per Article: 59.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 08/03/2020] [Accepted: 08/14/2020] [Indexed: 12/21/2022]
Abstract
Because of their potent antitumor activity and their proinflammatory role, natural killer (NK) cells are at the forefront of efforts to develop immuno-oncologic treatments. NK cells participate in immune responses to tumors by killing target cells and producing cytokines. However, in the immunosuppressive tumor microenvironment, NK cells become dysfunctional through exposure to inhibitory molecules produced by cancer cells, leading to tumor escape. We provide an overview of what is known about NK tumor infiltration and surveillance and about the mechanisms by which NK cells become dysfunctional. SIGNIFICANCE: The functions of tumor-infiltrating NK cells may be impaired. This review aims to describe the various mechanisms by which tumors alter NK-cell functions.
Collapse
Affiliation(s)
- Beatriz Cózar
- Innate Pharma Research Laboratories, Innate Pharma, Marseille, France
| | - Marco Greppi
- Innate Pharma Research Laboratories, Innate Pharma, Marseille, France.,Center of Excellence for Biomedical Research, University of Genoa, Genoa, Italy
| | | | | | - Laura Chiossone
- Innate Pharma Research Laboratories, Innate Pharma, Marseille, France
| | - Eric Vivier
- Innate Pharma Research Laboratories, Innate Pharma, Marseille, France. .,Aix Marseille University, CNRS, INSERM, CIML, Marseille, France.,APHM, Hôpital de la Timone, Service d'Immunologie, Marseille-Immunopôle, Marseille, France
| |
Collapse
|
75
|
Pekar L, Klausz K, Busch M, Valldorf B, Kolmar H, Wesch D, Oberg HH, Krohn S, Boje AS, Gehlert CL, Toleikis L, Krah S, Gupta T, Rabinovich B, Zielonka S, Peipp M. Affinity Maturation of B7-H6 Translates into Enhanced NK Cell-Mediated Tumor Cell Lysis and Improved Proinflammatory Cytokine Release of Bispecific Immunoligands via NKp30 Engagement. THE JOURNAL OF IMMUNOLOGY 2020; 206:225-236. [PMID: 33268483 DOI: 10.4049/jimmunol.2001004] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 11/02/2020] [Indexed: 02/06/2023]
Abstract
Activating NK cell receptors represent promising target structures to elicit potent antitumor immune responses. In this study, novel immunoligands were generated that bridge the activating NK cell receptor NKp30 on NK cells with epidermal growth factor receptor (EGFR) on tumor cells in a bispecific IgG-like format based on affinity-optimized versions of B7-H6 and the Fab arm derived from cetuximab. To enhance NKp30 binding, the solitary N-terminal IgV domain of B7-H6 (ΔB7-H6) was affinity matured by an evolutionary library approach combined with yeast surface display. Biochemical and functional characterization of 36 of these novel ΔB7-H6-derived NK cell engagers revealed an up to 45-fold-enhanced affinity for NKp30 and significantly improved NK cell-mediated, EGFR-dependent killing of tumor cells compared with the NK cell engager based on the wild-type ΔB7-H6 domain. In this regard, potencies (EC50 killing) of the best immunoligands were substantially improved by up to 87-fold. Moreover, release of IFN-γ and TNF-α was significantly increased. Importantly, equipment of the ΔB7-H6-based NK cell engagers with a human IgG1 Fc part competent in Fc receptor binding resulted in an almost 10-fold superior killing of EGFR-overexpressing tumor cells compared with molecules either triggering FcγRIIIa or NKp30. Additionally, INF-γ and TNF-α release was increased compared with molecules solely triggering FcγRIIIa, including the clinically approved Ab cetuximab. Thus, incorporating affinity-matured ligands for NK cell-activating receptors might represent an effective strategy for the generation of potent novel therapeutic agents with unique effector functions in cancer immunotherapy.
Collapse
Affiliation(s)
- Lukas Pekar
- Protein Engineering and Antibody Technologies, Merck KGaA, D-64293 Darmstadt, Germany.,Discovery Pharmacology, Merck KGaA, D-64293 Darmstadt, Germany
| | - Katja Klausz
- Division of Stem Cell Transplantation and Immunotherapy, Department of Medicine II, University Hospital Schleswig-Holstein and Christian-Albrechts-University of Kiel, D-24105 Kiel, Germany
| | - Michael Busch
- Discovery Pharmacology, Merck KGaA, D-64293 Darmstadt, Germany
| | - Bernhard Valldorf
- Chemical and Pharmaceutical Development, Merck KGaA, D-64293 Darmstadt, Germany
| | - Harald Kolmar
- Institute for Organic Chemistry and Biochemistry, Technische Universität Darmstadt, D-64287 Darmstadt, Germany
| | - Daniela Wesch
- Institute of Immunology, University Hospital Schleswig-Holstein and Christian-Albrechts-University of Kiel, D-24105 Kiel, Germany; and
| | - Hans-Heinrich Oberg
- Institute of Immunology, University Hospital Schleswig-Holstein and Christian-Albrechts-University of Kiel, D-24105 Kiel, Germany; and
| | - Steffen Krohn
- Division of Stem Cell Transplantation and Immunotherapy, Department of Medicine II, University Hospital Schleswig-Holstein and Christian-Albrechts-University of Kiel, D-24105 Kiel, Germany
| | - Ammelie Svea Boje
- Division of Stem Cell Transplantation and Immunotherapy, Department of Medicine II, University Hospital Schleswig-Holstein and Christian-Albrechts-University of Kiel, D-24105 Kiel, Germany
| | - Carina Lynn Gehlert
- Division of Stem Cell Transplantation and Immunotherapy, Department of Medicine II, University Hospital Schleswig-Holstein and Christian-Albrechts-University of Kiel, D-24105 Kiel, Germany
| | - Lars Toleikis
- Protein Engineering and Antibody Technologies, Merck KGaA, D-64293 Darmstadt, Germany
| | - Simon Krah
- Protein Engineering and Antibody Technologies, Merck KGaA, D-64293 Darmstadt, Germany
| | - Tushar Gupta
- Department of Immuno-oncology, EMD Serono Research & Development Institute Inc., Billerica, MA 01821
| | - Brian Rabinovich
- Department of Immuno-oncology, EMD Serono Research & Development Institute Inc., Billerica, MA 01821
| | - Stefan Zielonka
- Protein Engineering and Antibody Technologies, Merck KGaA, D-64293 Darmstadt, Germany;
| | - Matthias Peipp
- Division of Stem Cell Transplantation and Immunotherapy, Department of Medicine II, University Hospital Schleswig-Holstein and Christian-Albrechts-University of Kiel, D-24105 Kiel, Germany;
| |
Collapse
|
76
|
Arianfar E, Shahgordi S, Memarian A. Natural Killer Cell Defects in Breast Cancer: A Key Pathway for Tumor Evasion. Int Rev Immunol 2020; 40:197-216. [PMID: 33258393 DOI: 10.1080/08830185.2020.1845670] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
As the most important innate immune component cancers invader, natural killer (NK) cells have a magnificent role in antitumor immunity without any prior sensitization. Different subsets of NK cells have distinct responses during tumor cell exposure, according to their phenotypes and environments. Their function is induced mainly by the activity of both inhibitory and activating receptors against cancerous cells. Since the immunosuppression in the tumor microenvironment of breast cancer patients has directly deteriorated the phenotype and disturbed the function of NK cells, recruiting compensatory mechanisms indicate promising outcomes for immunotherapeutic approaches. These evidences accentuate the importance of NK cell distinct features in protection against breast tumors. In this review, we discuss the several mechanisms involved in NK cells suppression which consequently promote tumor progression and disease recurrence in patients with breast cancer.
Collapse
Affiliation(s)
- Elaheh Arianfar
- Student Research Committee, Faculty of Medicine, Department of Immunology, Golestan University of Medical Sciences, Gorgan, Iran
| | - Sanaz Shahgordi
- Student Research Committee, Faculty of Medicine, Department of Immunology, Golestan University of Medical Sciences, Gorgan, Iran
| | - Ali Memarian
- Golestan Research Center of Gastroenterology and Hepatology, Golestan University of Medical Sciences, Gorgan, Iran.,Immunology department, Faculty of Medicine, Golestan University of Medical Sciences, Gorgan, Iran
| |
Collapse
|
77
|
Cheng H, Zong L, Kong Y, Gu Y, Yang J, Xiang Y. Emerging Targets of Immunotherapy in Gynecologic Cancer. Onco Targets Ther 2020; 13:11869-11882. [PMID: 33239889 PMCID: PMC7681579 DOI: 10.2147/ott.s282530] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 10/31/2020] [Indexed: 12/18/2022] Open
Abstract
Although programmed cell death protein 1/programmed death-ligand 1 (PD-1/PD-L1) and cytotoxic T lymphocyte antigen-4 (CTLA-4) have been successfully applied in the treatment of tumors, their efficiency is still not high enough. New immune targets need to be identified in order to seek alternative treatment strategies for patients with refractory tumors. Immune targets can be divided into stimulating and inhibiting molecules according to their function after receptor-ligand binding. We herein present a compendious summary of emerging immune targets in gynecologic tumors. These targets included coinhibitory molecules, such as T cell immunoglobulin-3 (TIM-3), T cell immunoglobulin and ITIM domain (TIGIT), lymphocyte activation gene-3 (LAG-3), V-type immunoglobulin domain-containing suppressor of T cell activation (VISTA), and B7-H3 and B7-H4, and co-stimulatory molecules, such as CD27, OX40, 4-1BB, CD40, glucocorticoid-induced tumor necrosis factor receptor (GITR) and inducible co-stimulator (ICOS). In this review, the characteristics and preclinical/clinical progress of gynecological malignancies are briefly discussed. However, the potential mechanisms and interactions of immune targets need to be elucidated in further studies.
Collapse
Affiliation(s)
- Hongyan Cheng
- Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China
| | - Liju Zong
- Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China.,Department of Pathology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China
| | - Yujia Kong
- Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China
| | - Yu Gu
- Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China
| | - Junjun Yang
- Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China
| | - Yang Xiang
- Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China
| |
Collapse
|
78
|
Banu N, Riera-Leal A, Haramati J, Ortiz-Lazareno PC, Panikar SS, Bastidas-Ramirez BE, Gutierrez-Silerio GY, Solorzano-Ibarra F, Tellez-Bañuelos MC, Gutierrez-Franco J, Bueno-Topete MR, Pereira-Suarez AL, Del Toro-Arreola S. B7-H6, an immunoligand for the natural killer cell activating receptor NKp30, reveals inhibitory effects on cell proliferation and migration, but not apoptosis, in cervical cancer derived-cell lines. BMC Cancer 2020; 20:1083. [PMID: 33172426 PMCID: PMC7654602 DOI: 10.1186/s12885-020-07608-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Accepted: 10/31/2020] [Indexed: 12/20/2022] Open
Abstract
Background Although great progress has been made in treatment regimens, cervical cancer remains as one of the most common cancer in women worldwide. Studies focusing on molecules that regulate carcinogenesis may provide potential therapeutic strategies for cervical cancer. B7-H6, an activating immunoligand expressed by several tumor cells, is known to activate NK cell-mediated cytotoxicity once engaged with its natural receptor NKp30. However, the opposite, that is, the effects in the tumor cell triggered by B7-H6 after interacting with NKp30 has not yet been well explored. Methods In this study, we evaluated the surface expression of B7-H6 by flow cytometry. Later, we stimulated B7-H6 positive cervical cancer derived-cell lines (HeLa and SiHa) with recombinant soluble NKp30 (sNKp30) protein and evaluated biological effects using the impedance RTCA system for cell proliferation, the scratch method for cell migration, and flow cytometry for apoptosis. Cellular localization of B7-H6 was determined using confocal microscopy. Results Notably, we observed that the addition of sNKp30 to the cervical cancer cell lines decreased tumor cell proliferation and migration rate, but had no effect on apoptosis. We also found that B7-H6 is selectively maintained in tumor cell lines, and that efforts to sort and purify B7-H6 negative or positive cells were futile, as negative cells, when cultured, regained the expression of B7-H6 and B7-H6 positive cells, when sorted and cultivated, lost a percentage of B7-H6 expression. Conclusions Our results suggest that B7-H6 has an important, as of yet undescribed, role in the biology of the cervical tumor cells themselves, suggesting that this protein might be a promising target for anti-tumor therapy in the future.
Collapse
Affiliation(s)
- Nehla Banu
- Instituto de Enfermedades Crónico Degenerativas, Departamento de Biología Molecular y Genómica, CUCS, Universidad de Guadalajara, Sierra Mojada # 950, Colonia Independencia, CP, 44340, Guadalajara, Jalisco, Mexico.,Laboratorio de Inmunología, Departamento de Fisiología, CUCS, Universidad de Guadalajara, Guadalajara, Mexico
| | - Annie Riera-Leal
- Institute for Regenerative Cures, Department of Dermatology, University of California-Davis, Davis, USA
| | - Jesse Haramati
- Laboratorio de Inmunobiología, Departamento de Biología Celular y Molecular, CUCBA, Universidad de Guadalajara, Guadalajara, Mexico
| | | | - Sandeep Surendra Panikar
- Centro de Física Aplicada y Tecnología Avanzada, Universidad Nacional Autónoma de México, Querétaro, Mexico
| | - Blanca Estela Bastidas-Ramirez
- Instituto de Enfermedades Crónico Degenerativas, Departamento de Biología Molecular y Genómica, CUCS, Universidad de Guadalajara, Sierra Mojada # 950, Colonia Independencia, CP, 44340, Guadalajara, Jalisco, Mexico
| | - Gloria Yareli Gutierrez-Silerio
- Instituto de Enfermedades Crónico Degenerativas, Departamento de Biología Molecular y Genómica, CUCS, Universidad de Guadalajara, Sierra Mojada # 950, Colonia Independencia, CP, 44340, Guadalajara, Jalisco, Mexico.,Laboratorio de Inmunología, Departamento de Fisiología, CUCS, Universidad de Guadalajara, Guadalajara, Mexico
| | - Fabiola Solorzano-Ibarra
- Instituto de Enfermedades Crónico Degenerativas, Departamento de Biología Molecular y Genómica, CUCS, Universidad de Guadalajara, Sierra Mojada # 950, Colonia Independencia, CP, 44340, Guadalajara, Jalisco, Mexico
| | - Martha Cecilia Tellez-Bañuelos
- Laboratorio de Inmunobiología, Departamento de Biología Celular y Molecular, CUCBA, Universidad de Guadalajara, Guadalajara, Mexico
| | - Jorge Gutierrez-Franco
- Unidad Académica de Ciencias Químico Biológicas y Farmacéuticas, Universidad Autónoma de Nayarit, Tepic, Mexico
| | - Miriam Ruth Bueno-Topete
- Instituto de Enfermedades Crónico Degenerativas, Departamento de Biología Molecular y Genómica, CUCS, Universidad de Guadalajara, Sierra Mojada # 950, Colonia Independencia, CP, 44340, Guadalajara, Jalisco, Mexico
| | - Ana Laura Pereira-Suarez
- Laboratorio de Inmunología, Departamento de Fisiología, CUCS, Universidad de Guadalajara, Guadalajara, Mexico
| | - Susana Del Toro-Arreola
- Instituto de Enfermedades Crónico Degenerativas, Departamento de Biología Molecular y Genómica, CUCS, Universidad de Guadalajara, Sierra Mojada # 950, Colonia Independencia, CP, 44340, Guadalajara, Jalisco, Mexico. .,Laboratorio de Inmunología, Departamento de Fisiología, CUCS, Universidad de Guadalajara, Guadalajara, Mexico.
| |
Collapse
|
79
|
Okumura G, Iguchi-Manaka A, Murata R, Yamashita-Kanemaru Y, Shibuya A, Shibuya K. Tumor-derived soluble CD155 inhibits DNAM-1-mediated antitumor activity of natural killer cells. J Exp Med 2020; 217:133708. [PMID: 32040157 PMCID: PMC7144518 DOI: 10.1084/jem.20191290] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2019] [Revised: 12/06/2019] [Accepted: 01/03/2020] [Indexed: 11/24/2022] Open
Abstract
CD155 is a ligand for DNAM-1, TIGIT, and CD96 and is involved in tumor immune responses. Unlike mouse cells, human cells express both membranous CD155 and soluble CD155 (sCD155) encoded by splicing isoforms of CD155. However, the role of sCD155 in tumor immunity remains unclear. Here, we show that, after intravenous injection with sCD155-producing B16/BL6 melanoma, the numbers of tumor colonies in wild-type (WT), TIGIT knock-out (KO), or CD96 KO mice, but not DNAM-1 KO mice, were greater than after injection with parental B16/BL6 melanoma. NK cell depletion canceled the difference in the numbers of tumor colonies in WT mice. In vitro assays showed that sCD155 interfered with DNAM-1–mediated NK cell degranulation. In addition, DNAM-1 had greater affinity than TIGIT and CD96 for sCD155, suggesting that sCD155 bound preferentially to DNAM-1. Together, these results demonstrate that sCD155 inhibits DNAM-1–mediated cytotoxic activity of NK cells, thus promoting the lung colonization of B16/BL6 melanoma.
Collapse
Affiliation(s)
- Genki Okumura
- Department of Immunology, University of Tsukuba, Tsukuba, Ibaraki, Japan.,Doctoral Program of Biomedical Sciences, Comprehensive Human Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Akiko Iguchi-Manaka
- Breast and Endocrine Surgery, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Rikito Murata
- Department of Immunology, University of Tsukuba, Tsukuba, Ibaraki, Japan.,PhD Program in Human Biology, School of Integrative and Global Majors, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | | | - Akira Shibuya
- Department of Immunology, University of Tsukuba, Tsukuba, Ibaraki, Japan.,Life Science Center for Survival Dynamics, Tsukuba Advanced Research Alliance, University of Tsukuba, Tsukuba, Ibaraki, Japan.,R&D Center for Innovative Drug Discovery, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Kazuko Shibuya
- Department of Immunology, University of Tsukuba, Tsukuba, Ibaraki, Japan.,R&D Center for Innovative Drug Discovery, University of Tsukuba, Tsukuba, Ibaraki, Japan
| |
Collapse
|
80
|
Anti-fouling SERS-based immunosensor for point-of-care detection of the B7–H6 tumor biomarker in cervical cancer patient serum. Anal Chim Acta 2020; 1138:110-122. [DOI: 10.1016/j.aca.2020.09.019] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Revised: 09/04/2020] [Accepted: 09/08/2020] [Indexed: 12/13/2022]
|
81
|
Cantoni C, Wurzer H, Thomas C, Vitale M. Escape of tumor cells from the NK cell cytotoxic activity. J Leukoc Biol 2020; 108:1339-1360. [PMID: 32930468 DOI: 10.1002/jlb.2mr0820-652r] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 08/11/2020] [Accepted: 08/13/2020] [Indexed: 12/15/2022] Open
Abstract
In recent years, NK cells, initially identified as potent cytotoxic effector cells, have revealed an unexpected complexity, both at phenotypic and functional levels. The discovery of different NK cell subsets, characterized by distinct gene expression and phenotypes, was combined with the characterization of the diverse functions NK cells can exert, not only as circulating cells, but also as cells localized or recruited in lymphoid organs and in multiple tissues. Besides the elimination of tumor and virus-infected cells, these functions include the production of cytokines and chemokines, the regulation of innate and adaptive immune cells, the influence on tissue homeostasis. In addition, NK cells display a remarkable functional plasticity, being able to adapt to the environment and to develop a kind of memory. Nevertheless, the powerful cytotoxic activity of NK cells remains one of their most relevant properties, particularly in the antitumor response. In this review, the process of tumor cell recognition and killing mediated by NK cells, starting from the generation of cytolytic granules and recognition of target cell, to the establishment of the NK cell immunological synapse, the release of cytotoxic molecules, and consequent tumor cell death is described. Next, the review focuses on the heterogeneous mechanisms, either intrinsic to tumors or induced by the tumor microenvironment, by which cancer cells can escape the NK cell-mediated attack.
Collapse
Affiliation(s)
- Claudia Cantoni
- Department of Experimental Medicine and Center of Excellence for Biomedical Research, University of Genoa, Genoa, Italy.,Laboratory of Clinical and Experimental Immunology, Integrated Department of Services and Laboratories, IRCCS Istituto G. Gaslini, Genoa, Italy
| | - Hannah Wurzer
- Cytoskeleton and Cancer Progression, Department of Oncology, Luxembourg Institute of Health, Luxembourg, Luxembourg.,Faculty of Science, Technology and Medicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Clément Thomas
- Cytoskeleton and Cancer Progression, Department of Oncology, Luxembourg Institute of Health, Luxembourg, Luxembourg
| | - Massimo Vitale
- UO Immunologia, IRCCS Ospedale Policlinico San Martino Genova, Genoa, Italy
| |
Collapse
|
82
|
Chinnadurai R, Scandolara R, Alese OB, Arafat D, Ravindranathan D, Farris AB, El-Rayes BF, Gibson G. Correlation Patterns Among B7 Family Ligands and Tryptophan Degrading Enzymes in Hepatocellular Carcinoma. Front Oncol 2020; 10:1632. [PMID: 33014820 PMCID: PMC7494748 DOI: 10.3389/fonc.2020.01632] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Accepted: 07/27/2020] [Indexed: 12/30/2022] Open
Abstract
Mechanisms of dysfunctional T cell immunity in Hepatocellular Carcinoma (HCC) need to be well defined. B7 family molecules provide both co-stimulatory and co-inhibitory signals to T cells while tryptophan degrading enzymes like Indoleamine 2,3 dioxygenase (IDO) and Tryptophan 2,3 Dioxygenase (TDO) mediate tumor immune tolerance. It is necessary to identify their in situ correlative expression, which informs targets for combined immunotherapy approaches. We investigated B7 family molecules, IDO, TDO and immune responsive effectors in the tumor tissues of patients with HCC (n = 28) using a pathway-focused quantitative nanoscale chip real-time PCR. Four best correlative expressions, namely (1) B7-1 & PD-L2, (2) B7-H2 & B7-H3, (3) B7-2 & PD-L1, (4) PD-L1 & PD-L2, were identified among B7 family ligands, albeit they express at different levels. Although TDO expression is higher than IDO, PD-L1 correlates only with IDO but not TDO. Immune effector (Granzyme B) and suppressive (PD-1 and TGF-β) genes correlate with IDO and B7-1, B7-H5, PD-L2. Identification of the in situ correlation of PD-L1, PD-L2 and IDO suggest their cumulative immuno suppressive role in HCC. The distinct correlations among B7-1, B7-2, B7-H2, and B7-H3, correlation of PD-1 with non-cognate ligands such as B7-1 and B7-H5, and correlation of tumor lytic enzyme Granzyme B with IDO and PD-L2 suggest that HCC microenvironment is complexly orchestrated with both stimulatory and inhibitory molecules which together neutralize and blunt anti-HCC immunity. Functional assays demonstrate that both PDL-1 and IDO synergistically inhibit T cell responses. Altogether, the present data suggest the usage of combined immune checkpoint blocking strategies targeting co-inhibitory B7 molecules and IDO for HCC management.
Collapse
Affiliation(s)
- Raghavan Chinnadurai
- Department of Biomedical Sciences, Mercer University School of Medicine, Savannah, GA, United States
| | - Rafaela Scandolara
- Department of Biomedical Sciences, Mercer University School of Medicine, Savannah, GA, United States
| | - Olatunji B Alese
- Department of Hematology and Oncology, Winship Cancer Institute, Emory University, Atlanta, GA, United States
| | - Dalia Arafat
- School of Biology, Georgia Institute of Technology, Atlanta, GA, United States
| | - Deepak Ravindranathan
- Department of Hematology and Oncology, Winship Cancer Institute, Emory University, Atlanta, GA, United States
| | - Alton B Farris
- Department of Pathology and Laboratory Medicine, Emory University, Atlanta, GA, United States
| | - Bassel F El-Rayes
- Department of Hematology and Oncology, Winship Cancer Institute, Emory University, Atlanta, GA, United States
| | - Greg Gibson
- School of Biology, Georgia Institute of Technology, Atlanta, GA, United States
| |
Collapse
|
83
|
Sivori S, Pende D, Quatrini L, Pietra G, Della Chiesa M, Vacca P, Tumino N, Moretta F, Mingari MC, Locatelli F, Moretta L. NK cells and ILCs in tumor immunotherapy. Mol Aspects Med 2020; 80:100870. [PMID: 32800530 DOI: 10.1016/j.mam.2020.100870] [Citation(s) in RCA: 169] [Impact Index Per Article: 33.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 05/05/2020] [Accepted: 06/10/2020] [Indexed: 02/06/2023]
Abstract
Cells of the innate immunity play an important role in tumor immunotherapy. Thus, NK cells can control tumor growth and metastatic spread. Thanks to their strong cytolytic activity against tumors, different approaches have been developed for exploiting/harnessing their function in patients with leukemia or solid tumors. Pioneering trials were based on the adoptive transfer of autologous NK cell-enriched cell populations that were expanded in vitro and co-infused with IL-2. Although relevant results were obtained in patients with advanced melanoma, the effect was mostly limited to certain metastatic localizations, particularly to the lung. In addition, the severe IL-2-related toxicity and the preferential IL-2-induced expansion of Treg limited this type of approach. This limitation may be overcome by the use of IL-15, particularly of modified IL-15 molecules to improve its half-life and optimize the biological effects. Other approaches to harness NK cell function include stimulation via TLR, the use of bi- and tri-specific NK cell engagers (BiKE and TriKE) linking activating NK receptors (e.g. CD16) to tumor-associated antigens and even incorporating an IL-15 moiety (TriKE). As recently shown, in tumor patients, NK cells may also express inhibitory checkpoints, primarily PD-1. Accordingly, the therapeutic use of checkpoint inhibitors may unleash NK cells against PD-L1+ tumors. This effect may be predominant and crucial in tumors that have lost HLA cl-I expression, thus resulting "invisible" to T lymphocytes. Additional approaches in which NK cells may represent an important tool for cancer therapy, are to exploit the unique properties of the "adaptive" NK cells. These CD57+ NKG2C+ cells, despite their mature stage and a potent cytolytic activity, maintain a strong proliferating capacity. This property revealed to be crucial in hematopoietic stem cell transplantation (HSCT), particularly in the haplo-HSCT setting, to cure high-risk leukemias. T depleted haplo-HSCT (e.g. from one of the parents) allowed to save the life of thousands of patients lacking a HLA-compatible donor. In this setting, NK cells have been shown to play an essential role against leukemia cells and infections. Another major advance is represented by chimeric antigen receptor (CAR)-engineered NK cells. CAR-NK, different from CAR-T cells, may be obtained from allogeneic donors since they do not cause GvHD. Accordingly, they may represent "off-the-shelf" products to promptly treat tumor patients, with affordable costs. Different from NK cells, helper ILC (ILC1, ILC2 and ILC3), the innate counterpart of T helper cell subsets, remain rather ambiguous with respect to their anti-tumor activity. A possible exception is represented by a subset of ILC3: their frequency in peri-tumoral tissues in patients with NSCLC directly correlates with a better prognosis, possibly reflecting their ability to contribute to the organization of tertiary lymphoid structures, an important site of T cell-mediated anti-tumor responses. It is conceivable that innate immunity may significantly contribute to the major advances that immunotherapy has ensured and will continue to ensure to the cure of cancer.
Collapse
Affiliation(s)
- Simona Sivori
- Department of Experimental Medicine, University of Genoa, Italy; Centre of Excellence for Biomedical Research, University of Genoa, Italy
| | - Daniela Pende
- UO Immunologia, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Linda Quatrini
- Department of Immunology, IRCCS Ospedale Pediatrico Bambino Gesù, Rome, Italy
| | - Gabriella Pietra
- Department of Experimental Medicine, University of Genoa, Italy; UO Immunologia, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Mariella Della Chiesa
- Department of Experimental Medicine, University of Genoa, Italy; Centre of Excellence for Biomedical Research, University of Genoa, Italy
| | - Paola Vacca
- Department of Immunology, IRCCS Ospedale Pediatrico Bambino Gesù, Rome, Italy
| | - Nicola Tumino
- Department of Immunology, IRCCS Ospedale Pediatrico Bambino Gesù, Rome, Italy
| | - Francesca Moretta
- Department of Laboratory Medicine, IRCCS Sacro Cuore Don Calabria Hospital, Negrar, Verona, Italy
| | - Maria Cristina Mingari
- Department of Experimental Medicine, University of Genoa, Italy; UO Immunologia, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Franco Locatelli
- Department of Hematology/Oncology, IRCCS Ospedale Pediatrico Bambino Gesù, Rome, Italy; Department of Gynecology/Obstetrics and Pediatrics, Sapienza University, Rome, Italy
| | - Lorenzo Moretta
- Department of Immunology, IRCCS Ospedale Pediatrico Bambino Gesù, Rome, Italy.
| |
Collapse
|
84
|
Sun X, Zhao J, Ma L, Sun X, Ge J, Yu Y, Ma J, Zhang M. B7-H6 as an efficient target for T cell-induced cytotoxicity in haematologic malignant cells. Invest New Drugs 2020; 39:24-33. [PMID: 32770284 DOI: 10.1007/s10637-020-00976-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Accepted: 07/22/2020] [Indexed: 12/27/2022]
Abstract
T cells play crucial roles in the antitumour immune response. However, their dysfunction leads to inefficient tumour eradication. New members of the B7 family have moved to the fore of cancer research because of their involvement in T cell-mediated immune escape and tumorigenesis. Recently, bispecific antibodies (Bi-Abs) have become attractive because of their ability to activate T cells to target tumours. In this study, we examined the expression of new B7 family members B7-H4, B7-H5, B7-H6, and B7-H7 in human haematological tumour cells. Furthermore, we explored whether B7-H6 is an efficient target for T cell-induced cytotoxicity in haematologic malignant cells. We determined the capability of T cells armed with the bispecific antibody anti-CD3 × anti-B7-H6 (B7-H6Bi-Ab) to target haematological tumours in K562, Thp-1, Daudi, Jurkat, and U266 cells. Compared with their T cell counterparts, B7-H6Bi-Ab-armed T cells demonstrated significant cytotoxicity induction in B7-H6+ haematological tumour cells, according to quantitative luciferase and lactate dehydrogenase assays, and their activity was accompanied by increased levels of the secreted killing mediators granzyme B and perforin. Moreover, B7-H6Bi-Ab-armed T cells produced more T cell-derived cytokines: TNF-α, IFN-γ, and IL-2. In addition, compared to the control T cells, a higher level of the activation marker CD69 was detected on the B7-H6Bi-Ab-armed T cells. Taken together, these data suggest that the antitumour effect of B7-H6Bi-Ab-armed T cells may be a promising immunotherapy for use in future haematologic treatments.
Collapse
Affiliation(s)
- Xin Sun
- Department of Clinical Laboratory Medicine, Beijing Shijitan Hospital, Capital Medical University, 10 Tieyi Road, Haidian District, Beijing, 100038, China
| | - Jingyuan Zhao
- Department of Orthopaedic, Aerospace Central Hospital, 15 Yuquan Road, Haidian District, Beijng, 100049, China
| | - Li Ma
- Department of Gynecology and Obstetrics, China-Japan Friendship Hospital, Capital Medical University, Beijing, 100029, China
| | - Ximing Sun
- Department of Clinical Laboratory Medicine, Beijing Shijitan Hospital, Capital Medical University, 10 Tieyi Road, Haidian District, Beijing, 100038, China.,Peking University Ninth School of Clinical Medicine, Beijing, 100038, China.,Beijing Key Laboratory of Urinary Cellular Molecular Diagnostics, Beijing, 100038, China
| | - Jing Ge
- Department of Clinical Laboratory Medicine, Beijing Shijitan Hospital, Capital Medical University, 10 Tieyi Road, Haidian District, Beijing, 100038, China.,Peking University Ninth School of Clinical Medicine, Beijing, 100038, China.,Beijing Key Laboratory of Urinary Cellular Molecular Diagnostics, Beijing, 100038, China
| | - Yang Yu
- Peking University Ninth School of Clinical Medicine, Beijing, 100038, China.,Department of Hematology, Beijing Shijitan Hospital, Capital Medical University, Beijing, 100038, China
| | - Juan Ma
- Department of Clinical Laboratory Medicine, Beijing Shijitan Hospital, Capital Medical University, 10 Tieyi Road, Haidian District, Beijing, 100038, China. .,Peking University Ninth School of Clinical Medicine, Beijing, 100038, China. .,Beijing Key Laboratory of Urinary Cellular Molecular Diagnostics, Beijing, 100038, China.
| | - Man Zhang
- Department of Clinical Laboratory Medicine, Beijing Shijitan Hospital, Capital Medical University, 10 Tieyi Road, Haidian District, Beijing, 100038, China. .,Peking University Ninth School of Clinical Medicine, Beijing, 100038, China. .,Beijing Key Laboratory of Urinary Cellular Molecular Diagnostics, Beijing, 100038, China.
| |
Collapse
|
85
|
Abstract
Immunotherapy with checkpoint blockade induces rapid and durable immune control of cancer in some patients and has driven a monumental shift in cancer treatment. Neoantigen-specific CD8+ T cells are at the forefront of current immunotherapy strategies, and the majority of drug discovery and clinical trials revolve around further harnessing these immune effectors. Yet the immune system contains a diverse range of antitumour effector cells, and these must function in a coordinated and synergistic manner to overcome the immune-evasion mechanisms used by tumours and achieve complete control with tumour eradication. A key antitumour effector is the natural killer (NK) cells, cytotoxic innate lymphocytes present at high frequency in the circulatory system and identified by their exquisite ability to spontaneously detect and lyse transformed or stressed cells. Emerging data show a role for intratumoural NK cells in driving immunotherapy response and, accordingly, there have been renewed efforts to further elucidate and target the pathways controlling NK cell antitumour function. In this Review, we discuss recent clinical evidence that NK cells are a key immune constituent in the protective antitumour immune response and highlight the major stages of the cancer-NK cell immunity cycle. We also perform a new analysis of publicly available transcriptomic data to provide an overview of the prognostic value of NK cell gene expression in 25 tumour types. Furthermore, we discuss how the role of NK cells evolves with tumour progression, presenting new opportunities to target NK cell function to enhance cancer immunotherapy response rates across a more diverse range of cancers.
Collapse
Affiliation(s)
- Nicholas D Huntington
- Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia.
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, Australia.
- oNKo-Innate Pty Ltd, Moonee Ponds, Victoria, Australia.
| | - Joseph Cursons
- Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia.
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, Australia.
- oNKo-Innate Pty Ltd, Moonee Ponds, Victoria, Australia.
| | - Jai Rautela
- Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, Australia
- oNKo-Innate Pty Ltd, Moonee Ponds, Victoria, Australia
| |
Collapse
|
86
|
Obajdin J, Davies DM, Maher J. Engineering of chimeric natural killer cell receptors to develop precision adoptive immunotherapies for cancer. Clin Exp Immunol 2020; 202:11-27. [PMID: 32544282 PMCID: PMC7488126 DOI: 10.1111/cei.13478] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 06/04/2020] [Accepted: 06/07/2020] [Indexed: 12/15/2022] Open
Abstract
Natural killer (NK) cells are innate immune effectors which play a crucial role in recognizing and eliminating virally infected and cancerous cells. They effectively distinguish between healthy and distressed self through the integration of signals delivered by germline‐encoded activating and inhibitory cell surface receptors. The frequent up‐regulation of stress markers on genetically unstable cancer cells has prompted the development of novel immunotherapies that exploit such innate receptors. One prominent example entails the development of chimeric antigen receptors (CAR) that detect cell surface ligands bound by NK receptors, coupling this engagement to the delivery of tailored immune activating signals. Here, we review strategies to engineer CARs in which specificity is conferred by natural killer group 2D (NKG2D) or other NK receptor types. Multiple preclinical studies have demonstrated the remarkable ability of chimeric NK receptor‐targeted T cells and NK cells to effectively and specifically eliminate cancer cells and to reject established tumour burdens. Importantly, such systems act not only acutely but, in some cases, they also incite immunological memory. Moreover, CARs targeted with the NKG2D ligand binding domain have also been shown to disrupt the tumour microenvironment, through the targeting of suppressive T regulatory cells, myeloid‐derived suppressor cells and tumour vasculature. Collectively, these findings have led to the initiation of early‐phase clinical trials evaluating both autologous and allogeneic NKG2D‐targeted CAR T cells in the haematological and solid tumour settings.
Collapse
Affiliation(s)
- J Obajdin
- School of Cancer and Pharmaceutical Sciences, CAR Mechanics Laboratory, Guy's Cancer Centre, King's College London, London, UK
| | - D M Davies
- School of Cancer and Pharmaceutical Sciences, CAR Mechanics Laboratory, Guy's Cancer Centre, King's College London, London, UK
| | - J Maher
- School of Cancer and Pharmaceutical Sciences, CAR Mechanics Laboratory, Guy's Cancer Centre, King's College London, London, UK.,Department of Clinical Immunology and Allergy, King's College Hospital NHS Foundation Trust, London, UK.,Department of Immunology, Eastbourne Hospital, Eastbourne, UK.,Leucid Bio Ltd, Guy's Hospital, London, UK
| |
Collapse
|
87
|
Natural Killer Cell Activation Receptor NKp30 Oligomerization Depends on Its N-Glycosylation. Cancers (Basel) 2020; 12:cancers12071998. [PMID: 32708305 PMCID: PMC7409301 DOI: 10.3390/cancers12071998] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 06/22/2020] [Accepted: 07/14/2020] [Indexed: 12/29/2022] Open
Abstract
NKp30 is one of the main human natural killer (NK) cell activating receptors used in directed immunotherapy. The oligomerization of the NKp30 ligand binding domain depends on the length of the C-terminal stalk region, but our structural knowledge of NKp30 oligomerization and its role in signal transduction remains limited. Moreover, ligand binding of NKp30 is affected by the presence and type of N-glycosylation. In this study, we assessed whether NKp30 oligomerization depends on its N-glycosylation. Our results show that NKp30 forms oligomers when expressed in HEK293S GnTI- cell lines with simple N-glycans. However, NKp30 was detected only as monomers after enzymatic deglycosylation. Furthermore, we characterized the interaction between NKp30 and its best-studied cognate ligand, B7-H6, with respect to glycosylation and oligomerization, and we solved the crystal structure of this complex with glycosylated NKp30, revealing a new glycosylation-induced mode of NKp30 dimerization. Overall, this study provides new insights into the structural basis of NKp30 oligomerization and explains how the stalk region and glycosylation of NKp30 affect its ligand affinity. This furthers our understanding of the molecular mechanisms involved in NK cell activation, which is crucial for the successful design of novel NK cell-based targeted immunotherapeutics.
Collapse
|
88
|
Mechanisms of Resistance to NK Cell Immunotherapy. Cancers (Basel) 2020; 12:cancers12040893. [PMID: 32272610 PMCID: PMC7226138 DOI: 10.3390/cancers12040893] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 04/01/2020] [Accepted: 04/02/2020] [Indexed: 12/19/2022] Open
Abstract
Immunotherapy has recently been a major breakthrough in cancer treatment. Natural killer (NK) cells are suitable targets for immunotherapy owing to their potent cytotoxic activity that may target cancer cells in a major histocompatibility complex (MHC) and antigen-unrestricted manner. Current therapies targeting NK cells include monoclonal antibodies that promote NK cell antibody-dependent cell-mediated cytotoxicity (ADCC), hematopoietic stem cell transplantation (HSCT), the adoptive transfer of NK cells, the redirection of NK cells using chimeric antigen receptor (CAR)-NK cells and the use of cytokines and immunostimulatory drugs to boost the anti-tumor activity of NK cells. Despite some encouraging clinical results, patients receiving these therapies frequently develop resistance, and a myriad of mechanisms of resistance affecting both the immune system and cancer cells have been reported. A first contributing factor that modulates the efficacy of the NK cell therapy is the genetic profile of the individual, which regulates all aspects of NK cell biology. Additionally, the resistance of cancer cells to apoptosis and the immunoediting of cancer cells, a process that decreases their immunogenicity and promotes immunosuppression, are major determinants of the resistance to NK cell therapy. Consequently, the efficacy of NK cell anti-tumor therapy is specific to each patient and disease. The elucidation of such immunosubversive mechanisms is crucial to developing new procedures and therapeutic strategies to fully harness the anti-tumor potential of NK cells.
Collapse
|
89
|
Preferential Expression of B7-H6 in Glioma Stem-Like Cells Enhances Tumor Cell Proliferation via the c-Myc/RNMT Axis. J Immunol Res 2020; 2020:2328675. [PMID: 32322592 PMCID: PMC7165331 DOI: 10.1155/2020/2328675] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 12/19/2019] [Accepted: 02/05/2020] [Indexed: 12/11/2022] Open
Abstract
B7 homologue 6 (B7-H6), a newly identified member of the B7 costimulatory molecule family, is not only a crucial regulator of NK cell-mediated immune responses through binding to NKp30 but also has clinical implications due to its abnormal expression in human cancers. Here, we show that B7-H6 expression is abnormally upregulated in glioma tissue and that B7-H6 is coexpressed with stem cell marker Sox2. Intriguingly, B7-H6 was rarely detected on the surface of glioma cell lines but was abundantly expressed in glioma stem-like cells (GSLCs) that were derived from the glioma cell lines in vitro. Surprisingly, B7-H6 was the only one that was preferentially expressed in the GSLCs among the B7 family members. Functionally, knockdown of B7-H6 in GSLCs by siRNAs led to the inhibition of cell proliferation, with decrease in the expression of the oncogene Myc as well as inactivation of PI3K/Akt and ERK/MAPK signaling pathways. Moreover, we determined that three genes CBL (Casitas B-Lineage Lymphoma Proto-Oncogene), CCNT1 (Cyclin T1), and RNMT (RNA guanine-7 methyltransferase) were coexpressed with B7-H6 and c-myc in glioma tissue samples from the TCGA database and found, however that only RNMT expression was inhibited by the knockdown of B7-H6 expression in the GSLCs, suggesting the involvement of RNMT in the B7-H6/c-myc axis. Extending this to 293T cells, we observed that knocking out of B7-H6 with CRISPR-Cas9 system also suppressed cell proliferation. Thus, our findings suggest B7-H6 as a potential molecule for glioma stem cell targeted immunotherapy.
Collapse
|
90
|
Abstract
The dynamic interplay between neoplastic cells and the immune microenvironment regulates every step of the metastatic process. Immune cells contribute to invasion by secreting a cornucopia of inflammatory factors that promote epithelial-to-mesenchymal transition and remodeling of the stroma. Cancer cells then intravasate to the circulatory system assisted by macrophages and use several pathways to avoid recognition by cytotoxtic lymphocytes and phagocytes. Circulating tumor cells that manage to adhere to the vasculature and encounter premetastic niches are able to use the associated myeloid cells to extravasate into ectopic organs and establish a dormant microscopic colony. If successful at avoiding repetitive immune attack, dormant cells can subsequently grow into overt, clinically detectable metastatic lesions, which ultimately account to most cancer-related deaths. Understanding how disseminated tumor cells evade and corrupt the immune system during the final stages of metastasis will be pivotal in developing new therapeutic modalities that combat metastasis.
Collapse
Affiliation(s)
- Asmaa El-Kenawi
- Department of Immunology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida 33612, USA
| | - Kay Hänggi
- Department of Immunology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida 33612, USA
| | - Brian Ruffell
- Department of Immunology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida 33612, USA
- Department of Breast Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida 33612, USA
| |
Collapse
|
91
|
Gutierrez-Silerio GY, Franco-Topete RA, Haramati J, Navarrete-Medina EM, Gutierrez-Franco J, Bueno-Topete MR, Bastidas-Ramirez BE, Ramos-Marquez ME, Del Toro-Arreola S. Positive staining of the immunoligand B7-H6 in abnormal/transformed keratinocytes consistently accompanies the progression of cervical cancer. BMC Immunol 2020; 21:9. [PMID: 32138659 PMCID: PMC7059382 DOI: 10.1186/s12865-020-0341-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Accepted: 02/26/2020] [Indexed: 12/26/2022] Open
Abstract
Background B7-H6 has been revealed as an endogenous immunoligand expressed in a variety of tumors, but not expressed in healthy tissues. Heretofore, no studies have been reported describing B7-H6 in women with cervical cancer. To investigate this question, our present study was conducted. Results This retrospective study comprised a total of 62 paraffinized cervical biopsies, which were distributed in five groups: low-grade squamous intraepithelial lesions (LSIL), high-grade squamous intraepithelial lesions (HSIL), squamous cervical carcinoma (SCC), uterine cervical adenocarcinoma (UCAC), and a group of cervicitis (as a control for non-abnormal/non-transformed cells). Cervical sections were stained by immunohistochemistry to explore the expression of B7-H6, which was reported according to the immunoreactive score (IRS) system. We observed a complete lack of B7-H6 in LSIL abnormal epithelial cells. Interestingly, B7-H6 began to be seen in HSIL abnormal epithelial cells; more than half of this group had B7-H6 positive cells, with staining characterized by a cytoplasmic and membranous pattern. B7-H6 in the SCC group was also seen in the majority of the sections, showing the same cytoplasmic and membranous pattern. Strong evidence of B7-H6 was notably found in UCAC tumor columnar cells (in 100% of the specimens, also with cytoplasmic and membranous pattern). Moreover, consistent B7-H6 staining was observed in infiltrating plasma cells in all groups. Conclusions B7-H6 IRS positively correlated with disease stage in the development of cervical cancer; additionally, B7-H6 scores were found to be even higher in the more aggressive uterine cervical adenocarcinoma, suggesting a possible future therapeutic target for this cancer type.
Collapse
Affiliation(s)
- Gloria Yareli Gutierrez-Silerio
- Instituto de Enfermedades Crónico Degenerativas, Departamento de Biología Molecular y Genómica, CUCS, Universidad de Guadalajara, Sierra Mojada # 950, Colonia Independencia, CP 44340, Guadalajara, Jalisco, Mexico.,Instituto Transdisciplinar de Investigación y Servicios, CUCEI, Universidad de Guadalajara, Guadalajara, Jalisco, Mexico
| | - Ramon Antonio Franco-Topete
- Laboratorio de Patología, Departamento de Microbiología y Patología, CUCS, Universidad de Guadalajara, Guadalajara, Jalisco, Mexico.,Departamento de Anatomía Patológica, Nuevo Hospital Civil de Guadalajara "Dr. Juan I. Menchaca", Guadalajara, Jalisco, Mexico
| | - Jesse Haramati
- Laboratorio de Inmunobiología, Departamento de Biología Celular y Molecular, CUCBA, Universidad de Guadalajara, Guadalajara, Jalisco, Mexico
| | - Eduardo Miguel Navarrete-Medina
- Laboratorio de Patología, Departamento de Microbiología y Patología, CUCS, Universidad de Guadalajara, Guadalajara, Jalisco, Mexico.,Departamento de Anatomía Patológica, Nuevo Hospital Civil de Guadalajara "Dr. Juan I. Menchaca", Guadalajara, Jalisco, Mexico
| | - Jorge Gutierrez-Franco
- Unidad Académica de Ciencias Químico Biológicas y Farmacéuticas, Universidad Autónoma de Nayarit, Tepic, Nayarit, Mexico
| | - Miriam Ruth Bueno-Topete
- Instituto de Enfermedades Crónico Degenerativas, Departamento de Biología Molecular y Genómica, CUCS, Universidad de Guadalajara, Sierra Mojada # 950, Colonia Independencia, CP 44340, Guadalajara, Jalisco, Mexico.,Instituto Transdisciplinar de Investigación y Servicios, CUCEI, Universidad de Guadalajara, Guadalajara, Jalisco, Mexico
| | - Blanca Estela Bastidas-Ramirez
- Instituto de Enfermedades Crónico Degenerativas, Departamento de Biología Molecular y Genómica, CUCS, Universidad de Guadalajara, Sierra Mojada # 950, Colonia Independencia, CP 44340, Guadalajara, Jalisco, Mexico.,Instituto Transdisciplinar de Investigación y Servicios, CUCEI, Universidad de Guadalajara, Guadalajara, Jalisco, Mexico
| | - Martha Eloisa Ramos-Marquez
- Instituto de Enfermedades Crónico Degenerativas, Departamento de Biología Molecular y Genómica, CUCS, Universidad de Guadalajara, Sierra Mojada # 950, Colonia Independencia, CP 44340, Guadalajara, Jalisco, Mexico
| | - Susana Del Toro-Arreola
- Instituto de Enfermedades Crónico Degenerativas, Departamento de Biología Molecular y Genómica, CUCS, Universidad de Guadalajara, Sierra Mojada # 950, Colonia Independencia, CP 44340, Guadalajara, Jalisco, Mexico. .,Instituto Transdisciplinar de Investigación y Servicios, CUCEI, Universidad de Guadalajara, Guadalajara, Jalisco, Mexico. .,Laboratorio de Inmunología, Departamento de Fisiología, CUCS, Universidad de Guadalajara, Guadalajara, Jalisco, Mexico.
| |
Collapse
|
92
|
Fasbender F, Obholzer M, Metzler S, Stöber R, Hengstler JG, Watzl C. Enhanced activation of human NK cells by drug-exposed hepatocytes. Arch Toxicol 2020; 94:439-448. [PMID: 32060585 DOI: 10.1007/s00204-020-02668-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Accepted: 02/06/2020] [Indexed: 01/06/2023]
Abstract
Drug-induced liver injury (DILI) represents one of the major causes why drugs have to be withdrawn from the market. In this study, we describe a new interaction between drug-exposed hepatocytes and natural killer (NK) cells. In a previous genome-wide expression analysis of primary human hepatocytes that had been exposed to clinically relevant concentrations of 148 drugs, we found that several activating ligands for NK cell receptors were regulated by various drugs (e.g., valproic acid, ketoconazole, promethazine, isoniazid). Especially expression of the activating NKG2D ligands (MICA, MICB and ULBPs) and the NKp30 ligand B7-H6 were upregulated in primary human hepatocytes upon exposure to many different drugs. Using the human hepatocyte cell lines Huh7 and HepG2, we confirmed that protein levels of activating NK cell ligands were elevated after drug exposure. Hepatocyte cell lines or primary human hepatocytes co-cultivated with NK cells caused enhanced NK cell activation after pretreatment with drugs at in vivo relevant concentrations compared to solvent controls. Enhanced NK cell activation was evident by increased cytotoxicity against hepatocytes and interferon (IFN)-γ production. NK cell activation could be blocked by specific antibodies against activating NK cell receptors. These data support the hypothesis that NK cells can modulate drug-induced liver injury by direct interaction with hepatocytes resulting in cytotoxicity and IFN-γ production.
Collapse
Affiliation(s)
- Frank Fasbender
- Department of Immunology, Leibniz Research Centre for Working Environment and Human Factors at the Technical University Dortmund (IfADo), Ardeystrasse 67, 44139, Dortmund, Germany
| | - Martin Obholzer
- Department of Immunology, Leibniz Research Centre for Working Environment and Human Factors at the Technical University Dortmund (IfADo), Ardeystrasse 67, 44139, Dortmund, Germany
| | - Sarah Metzler
- Department of Immunology, Leibniz Research Centre for Working Environment and Human Factors at the Technical University Dortmund (IfADo), Ardeystrasse 67, 44139, Dortmund, Germany
- Department of Toxicology, Leibniz Research Centre for Working Environment and Human Factors at the Technical University Dortmund (IfADo), Ardeystrasse 67, 44139, Dortmund, Germany
| | - Regina Stöber
- Department of Toxicology, Leibniz Research Centre for Working Environment and Human Factors at the Technical University Dortmund (IfADo), Ardeystrasse 67, 44139, Dortmund, Germany
| | - Jan G Hengstler
- Department of Toxicology, Leibniz Research Centre for Working Environment and Human Factors at the Technical University Dortmund (IfADo), Ardeystrasse 67, 44139, Dortmund, Germany
| | - Carsten Watzl
- Department of Immunology, Leibniz Research Centre for Working Environment and Human Factors at the Technical University Dortmund (IfADo), Ardeystrasse 67, 44139, Dortmund, Germany.
| |
Collapse
|
93
|
Rossi GR, Trindade ES, Souza-Fonseca-Guimaraes F. Tumor Microenvironment-Associated Extracellular Matrix Components Regulate NK Cell Function. Front Immunol 2020; 11:73. [PMID: 32063906 PMCID: PMC7000552 DOI: 10.3389/fimmu.2020.00073] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2019] [Accepted: 01/13/2020] [Indexed: 12/22/2022] Open
Abstract
The tumor microenvironment (TME) is composed of multiple infiltrating host cells (e.g., endothelial cells, fibroblasts, lymphocytes, and myeloid cells), extracellular matrix, and various secreted or cell membrane-presented molecules. Group 1 innate lymphoid cells (ILCs), which includes natural killer (NK) cells and ILC1, contribute to protecting the host against cancer and infection. Both subsets are able to quickly produce cytokines such as interferon gamma (IFN-γ), chemokines, and other growth factors in response to activating signals. However, the TME provides many molecules that can prevent the potential effector function of these cells, thereby protecting the tumor. For example, TME-derived tumor growth factor (TGF)-β and associated members of the superfamily downregulate NK cell cytotoxicity, cytokine secretion, metabolism, proliferation, and induce effector NK cells to upregulate ILC1-like characteristics. In concert, a family of carbohydrate-binding proteins called galectins, which can be produced by different cells composing the TME, can downregulate NK cell function. Matrix metalloproteinase (MMP) and a disintegrin and metalloproteinase (ADAM) are also enzymes that can remodel the extracellular matrix and shred receptors from the tumor cell surface, impairing the activation of NK cells and leading to less effective effector functions. Gaining a better understanding of the characteristics of the TME and its associated factors, such as infiltrating cells and extracellular matrix, could lead to tailoring of new personalized immunotherapy approaches. This review provides an overview of our current knowledge on the impact of the TME and extracellular matrix-associated components on differentiation, impairment, and function of NK cells.
Collapse
Affiliation(s)
| | - Edvaldo S Trindade
- Cellular Biology Department, Federal University of Paraná, Curitiba, Brazil
| | | |
Collapse
|
94
|
Hu Y, Zeng T, Xiao Z, Hu Q, Li Y, Tan X, Yue H, Wang W, Tan H, Zou J. Immunological role and underlying mechanisms of B7-H6 in tumorigenesis. Clin Chim Acta 2020; 502:191-198. [PMID: 31904350 DOI: 10.1016/j.cca.2019.12.030] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 12/31/2019] [Accepted: 12/31/2019] [Indexed: 02/07/2023]
Abstract
B7 homolog 6 (B7-H6) has been identified as involved in tumorigenesis. Elucidating its role and potential mechanism of action is essential for understanding tumorigenesis and the potential development of an effective clinical strategy. Abnormal overexpression of B7-H6 in various types of tumors was reported to be linked with poor prognosis. B7-H6 suppresses the initiation of the "caspase cascade" and induces anti-apoptosis by STAT3 pathway activation to provoke tumorigenesis. B7-H6 facilitates tumor proliferation and cell cycle progression by regulating apoptosis suppressors. B7-H6 induces cellular cytotoxicity, secretion of TNF-α and IFN-γ and B7-H6-specific BiTE triggers T cells to accelerate tumorigenesis. B7-H6 induces abnormal immunological progression by HER2-scFv mediated ADCC and NKp30 immune escape to promote tumorigenesis. B7-H6 promotes tumorigenesis via apoptosis inhibition, proliferation and immunological progression. B7-H6 may a valuable potential biomarker and therapeutic strategy for diagnostics, prognostics and treatment in cancer.
Collapse
Affiliation(s)
- Yuxuan Hu
- Hunan Province Key Laboratory of Tumor Cellular & Molecular Pathology, Cancer Research Institute, University of South China, Hengyang, Hunan 421001, PR China
| | - Tian Zeng
- Hunan Province Key Laboratory of Tumor Cellular & Molecular Pathology, Cancer Research Institute, University of South China, Hengyang, Hunan 421001, PR China
| | - Zheng Xiao
- Hunan Province Key Laboratory of Tumor Cellular & Molecular Pathology, Cancer Research Institute, University of South China, Hengyang, Hunan 421001, PR China
| | - Qihao Hu
- Cardiothoracic Surgery, The Second Affiliated Hospital, University of South China, Hengyang, Hunan 421001, PR China
| | - Yukun Li
- Hunan Province Key Laboratory of Tumor Cellular & Molecular Pathology, Cancer Research Institute, University of South China, Hengyang, Hunan 421001, PR China
| | - Xiongjin Tan
- The Second Department of Orthopaedic, 922 Hospital of PLA, Hengyang, Hunan 410011, PR China
| | - Haiyan Yue
- Hunan Province Key Laboratory of Tumor Cellular & Molecular Pathology, Cancer Research Institute, University of South China, Hengyang, Hunan 421001, PR China; Department of Pathology, The Central Hospital of Shaoyang, Shaoyang, Hunan 422000, PR China
| | - Wensong Wang
- Hunan Province Key Laboratory of Tumor Cellular & Molecular Pathology, Cancer Research Institute, University of South China, Hengyang, Hunan 421001, PR China
| | - Hui Tan
- Hunan Province Key Laboratory of Tumor Cellular & Molecular Pathology, Cancer Research Institute, University of South China, Hengyang, Hunan 421001, PR China.
| | - Juan Zou
- Hunan Province Key Laboratory of Tumor Cellular & Molecular Pathology, Cancer Research Institute, University of South China, Hengyang, Hunan 421001, PR China.
| |
Collapse
|
95
|
Zhou H, Dong J, Guo L, Wang X, Wang K, Cai X, Yang S. The prognostic value of B7-H6 in esophageal squamous cell carcinoma. Sci Rep 2019; 9:18122. [PMID: 31792298 PMCID: PMC6889130 DOI: 10.1038/s41598-019-54731-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Accepted: 11/18/2019] [Indexed: 02/07/2023] Open
Abstract
B7-H6, a member of the B7 family molecules, participates in the clearance of tumor cells by binding to NKp30 on NK cells. B7-H6 expression level in esophageal squamous cell carcinoma (ESCC) and the clinical value remain unknown. The goal of this study was to determine the expression of B7-H6 in ESCC and further explore its clinical significance. We retrospectively collected the clinical data of 145 patients diagnosed with ESCC between January 2007 and December 2008. The expression of B7-H6 of the pathological tissue samples was detected by immunohistochemistry. The chi-square (χ2) test was used to analyse the relationships of B7-H6 and clinicopathological characteristics. Survival and hazard functions were estimated using the Kaplan-Meier method, and survival between groups was compared using the two-sided log-rank test. The Cox proportional hazards regression model was used to adjust for the risk factors related to overall survival (OS). 133/145 (91.72%) of the ESCC tissue samples exhibited B7-H6 expression. The expression level of B7-H6 was correlated with T stage (P = 0.036) and lymphatic metastasis status (P = 0.044). High B7-H6 expression (P = 0.003) was associated with a significantly worse OS than low B7-H6 expression. Multivariate Cox proportional hazards regression analysis demonstrated that tumour size (P = 0.021), B7-H6 expression (P = 0.025) and lymphatic metastasis status (P = 0.049) were independent prognostic factors of OS for ESCC. Collectively, our findings suggest that B7-H6 is widely expressed in ESCC samples. And B7-H6 may represent a predictor of poor prognosis for ESCC.
Collapse
Affiliation(s)
- Huan Zhou
- Department of Oncology, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, Guangdong, China
| | - Jun Dong
- Department of VIP Region, Sun Yat-Sen University Cancer Center, Guangzhou, Guangdong, China
| | - Liyi Guo
- Department of Radiotherapy, Huiyang Hospital Affiliated Southern Medical University, Huizhou, Guangdong, China
| | - Xicheng Wang
- Department of Oncology, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, Guangdong, China
| | - Kailin Wang
- Department of Oncology, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, Guangdong, China
| | - Xiuyu Cai
- Department of VIP Region, Sun Yat-Sen University Cancer Center, Guangzhou, Guangdong, China.
| | - Shu Yang
- Department of Oncology, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, Guangdong, China.
| |
Collapse
|
96
|
Molfetta R, Zingoni A, Santoni A, Paolini R. Post-translational Mechanisms Regulating NK Cell Activating Receptors and Their Ligands in Cancer: Potential Targets for Therapeutic Intervention. Front Immunol 2019; 10:2557. [PMID: 31736972 PMCID: PMC6836727 DOI: 10.3389/fimmu.2019.02557] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Accepted: 10/15/2019] [Indexed: 12/12/2022] Open
Abstract
Efficient clearance of transformed cells by Natural Killer (NK) cells is regulated by several activating receptors, including NKG2D, NCRs, and DNAM-1. Expression of these receptors as well as their specific “induced self” ligands is finely regulated during malignant transformation through the integration of different mechanisms acting on transcriptional, post-transcriptional, and post-translational levels. Among post-translational mechanisms, the release of activating ligands in the extracellular milieu through protease-mediated cleavage or by extracellular vesicle secretion represents some relevant cancer immune escape processes. Moreover, covalent modifications including ubiquitination and SUMOylation also contribute to negative regulation of NKG2D and DNAM-1 ligand surface expression resulting either in ligand intracellular retention and/or ligand degradation. All these mechanisms greatly impact on NK cell mediated recognition and killing of cancer cells and may be targeted to potentiate NK cell surveillance against tumors. Our mini review summarizes the main post-translational mechanisms regulating the expression of activating receptors and their ligands with particular emphasis on the contribution of ligand shedding and of ubiquitin and ubiquitin-like modifications in reducing target cell susceptibility to NK cell-mediated killing. Strategies aimed at inhibiting shedding of activating ligands and their modifications in order to preserve ligand expression on cancer cells will be also discussed.
Collapse
Affiliation(s)
- Rosa Molfetta
- Department of Molecular Medicine, Sapienza University of Rome, Laboratory Affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Rome, Italy
| | - Alessandra Zingoni
- Department of Molecular Medicine, Sapienza University of Rome, Laboratory Affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Rome, Italy
| | - Angela Santoni
- Department of Molecular Medicine, Sapienza University of Rome, Laboratory Affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Rome, Italy
| | - Rossella Paolini
- Department of Molecular Medicine, Sapienza University of Rome, Laboratory Affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Rome, Italy
| |
Collapse
|
97
|
Ponomarev AV, Shubina IZ. Insights Into Mechanisms of Tumor and Immune System Interaction: Association With Wound Healing. Front Oncol 2019; 9:1115. [PMID: 31709183 PMCID: PMC6823879 DOI: 10.3389/fonc.2019.01115] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Accepted: 10/07/2019] [Indexed: 12/14/2022] Open
Abstract
A large number of studies have presented a great deal of information about tumor and immune system interaction. Nevertheless, the problem of tumor evasion from the immune reaction is still difficult to resolve. Understanding the ways in which immunosuppressive tumor microenvironment develops and maintains its potential is of utmost importance to ensure the best use of the suppressed immune functions. The study presents a review covering the data on tumor-associated antigens, mechanisms of tumor evasion from the immune reactions, and search for common immunosuppressive processes of tumor growth and normal wound healing. The study discusses the important role of monocytes/macrophages in the regulation of immune system reactions. We suggest that the simultaneous actions of growth factors and pro-inflammatory cytokines may result in the suppression of the immune system. The study describes intracellular signaling molecules that take part in the regulation of the myeloid cell functions. If the hypothesis is proved correct, the indicated interaction of cytokines could be regarded as a prospective target for antitumor therapy.
Collapse
Affiliation(s)
| | - Irina Zh Shubina
- N.N. Blokhin National Medical Research Center of Oncology, Moscow, Russia
| |
Collapse
|
98
|
Chapoval AI, Chapoval SP, Shcherbakova NS, Shcherbakov DN. Immune Checkpoints of the B7 Family. Part 2. Representatives of the B7 Family B7-H3, B7-H4, B7-H5, B7-H6, B7-H7, and ILDR2 and Their Receptors. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2019. [DOI: 10.1134/s1068162019050091] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
99
|
Sivori S, Meazza R, Quintarelli C, Carlomagno S, Della Chiesa M, Falco M, Moretta L, Locatelli F, Pende D. NK Cell-Based Immunotherapy for Hematological Malignancies. J Clin Med 2019; 8:E1702. [PMID: 31623224 PMCID: PMC6832127 DOI: 10.3390/jcm8101702] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Revised: 10/10/2019] [Accepted: 10/11/2019] [Indexed: 12/31/2022] Open
Abstract
Natural killer (NK) lymphocytes are an integral component of the innate immune system and represent important effector cells in cancer immunotherapy, particularly in the control of hematological malignancies. Refined knowledge of NK cellular and molecular biology has fueled the interest in NK cell-based antitumor therapies, and recent efforts have been made to exploit the high potential of these cells in clinical practice. Infusion of high numbers of mature NK cells through the novel graft manipulation based on the selective depletion of T cells and CD19+ B cells has resulted into an improved outcome in children with acute leukemia given human leucocyte antigen (HLA)-haploidentical hematopoietic transplantation. Likewise, adoptive transfer of purified third-party NK cells showed promising results in patients with myeloid malignancies. Strategies based on the use of cytokines or monoclonal antibodies able to induce and optimize NK cell activation, persistence, and expansion also represent a novel field of investigation with remarkable perspectives of favorably impacting on outcome of patients with hematological neoplasia. In addition, preliminary results suggest that engineering of mature NK cells through chimeric antigen receptor (CAR) constructs deserve further investigation, with the goal of obtaining an "off-the-shelf" NK cell bank that may serve many different recipients for granting an efficient antileukemia activity.
Collapse
Affiliation(s)
- Simona Sivori
- Department of Experimental Medicine, University of Genoa, 16132 Genoa, Italy (S.C.); (M.D.C.)
- Centre of Excellence for Biomedical Research, University of Genoa, 16132 Genoa, Italy
| | - Raffaella Meazza
- Department of Integrated Oncological Therapies, IRCCS Ospedale Policlinico San Martino, 16132 Genoa, Italy;
| | - Concetta Quintarelli
- Department of Hematology/Oncology, IRCCS Ospedale Pediatrico Bambino Gesù, 00165 Rome, Italy; (C.Q.); (F.L.)
- Department of Clinical Medicine and Surgery, University of Naples Federico II, 80131 Naples, Italy
| | - Simona Carlomagno
- Department of Experimental Medicine, University of Genoa, 16132 Genoa, Italy (S.C.); (M.D.C.)
| | - Mariella Della Chiesa
- Department of Experimental Medicine, University of Genoa, 16132 Genoa, Italy (S.C.); (M.D.C.)
- Centre of Excellence for Biomedical Research, University of Genoa, 16132 Genoa, Italy
| | - Michela Falco
- Integrated Department of Services and Laboratories, IRCCS Istituto Giannina Gaslini, 16147 Genoa, Italy;
| | - Lorenzo Moretta
- Department of Immunology, IRCCS Ospedale Pediatrico Bambino Gesù, 00146 Rome, Italy;
| | - Franco Locatelli
- Department of Hematology/Oncology, IRCCS Ospedale Pediatrico Bambino Gesù, 00165 Rome, Italy; (C.Q.); (F.L.)
- Department of Gynecology/Obstetrics and Pediatrics, Sapienza University, 00185 Rome, Italy
| | - Daniela Pende
- Department of Integrated Oncological Therapies, IRCCS Ospedale Policlinico San Martino, 16132 Genoa, Italy;
| |
Collapse
|
100
|
Bernson E, Christenson K, Pesce S, Pasanen M, Marcenaro E, Sivori S, Thorén FB. Downregulation of HLA Class I Renders Inflammatory Neutrophils More Susceptible to NK Cell-Induced Apoptosis. Front Immunol 2019; 10:2444. [PMID: 31681321 PMCID: PMC6803460 DOI: 10.3389/fimmu.2019.02444] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Accepted: 10/01/2019] [Indexed: 12/19/2022] Open
Abstract
Neutrophils are potent effector cells and contain a battery of harmful substances and degrading enzymes. A silent neutrophil death, i.e., apoptosis, is therefore of importance to avoid damage to the surrounding tissue and to enable termination of the acute inflammatory process. There is a pile of evidence supporting the role for pro-inflammatory cytokines in extending the life-span of neutrophils, but relatively few studies have been devoted to mechanisms actively driving apoptosis induction in neutrophils. We have previously demonstrated that natural killer (NK) cells can promote apoptosis in healthy neutrophils. In this study, we set out to investigate how neutrophil sensitivity to NK cell-mediated cytotoxicity is regulated under inflammatory conditions. Using in vitro-activated neutrophils and a human skin chamber model that allowed collection of in vivo-transmigrated neutrophils, we performed a comprehensive characterization of neutrophil expression of ligands to NK cell receptors. These studies revealed a dramatic downregulation of HLA class I molecules in inflammatory neutrophils, which was associated with an enhanced susceptibility to NK cell cytotoxicity. Collectively, our data shed light on the complex regulation of interactions between NK cells and neutrophils during an inflammatory response and provide further support for a role of NK cells in the resolution phase of inflammation.
Collapse
Affiliation(s)
- Elin Bernson
- TIMM Laboratory, Sahlgrenska Cancer Center, University of Gothenburg, Gothenburg, Sweden.,Department of Infectious Diseases, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| | - Karin Christenson
- TIMM Laboratory, Sahlgrenska Cancer Center, University of Gothenburg, Gothenburg, Sweden.,Department of Infectious Diseases, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden.,Department of Oral Microbiology and Immunology, University of Gothenburg, Gothenburg, Sweden
| | - Silvia Pesce
- TIMM Laboratory, Sahlgrenska Cancer Center, University of Gothenburg, Gothenburg, Sweden.,Department of Infectious Diseases, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden.,Department of Experimental Medicine, University of Genoa, Genoa, Italy
| | - Malin Pasanen
- TIMM Laboratory, Sahlgrenska Cancer Center, University of Gothenburg, Gothenburg, Sweden.,Department of Infectious Diseases, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| | - Emanuela Marcenaro
- Department of Experimental Medicine, University of Genoa, Genoa, Italy.,Center of Excellence for Biomedical Research (CEBR), University of Genoa, Genoa, Italy
| | - Simona Sivori
- Department of Experimental Medicine, University of Genoa, Genoa, Italy.,Center of Excellence for Biomedical Research (CEBR), University of Genoa, Genoa, Italy
| | - Fredrik B Thorén
- TIMM Laboratory, Sahlgrenska Cancer Center, University of Gothenburg, Gothenburg, Sweden.,Department of Infectious Diseases, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|