51
|
Petrosyan V, Dobrolecki LE, LaPlante EL, Srinivasan RR, Bailey MH, Welm AL, Welm BE, Lewis MT, Milosavljevic A. Immunologically "cold" triple negative breast cancers engraft at a higher rate in patient derived xenografts. NPJ Breast Cancer 2022; 8:104. [PMID: 36088362 PMCID: PMC9464188 DOI: 10.1038/s41523-022-00476-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 08/23/2022] [Indexed: 11/17/2022] Open
Abstract
TNBC is a heterogeneous subtype of breast cancer, and only a subset of TNBC can be established as PDXs. Here, we show that there is an engraftment bias toward TNBC with low levels of immune cell infiltration. Additionally, TNBC that failed to engraft show gene expression consistent with a cancer-promoting immunological state, leading us to hypothesize that the immunological state of the tumor and possibly the state of the immune system of the host may be essential for engraftment.
Collapse
Affiliation(s)
- Varduhi Petrosyan
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Lacey E Dobrolecki
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX, USA
| | - Emily L LaPlante
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | | | - Matthew H Bailey
- Eccles Institute of Human Genetics, University of Utah, Salt Lake City, UT, USA
- Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA
| | - Alana L Welm
- Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA
- Department of Oncological Sciences, University of Utah, Salt Lake City, UT, USA
| | - Bryan E Welm
- Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA
- Department of Surgery, University of Utah, Salt Lake City, UT, USA
| | - Michael T Lewis
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX, USA
- Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, USA
- Departments of Molecular and Cellular Biology and Radiology, Baylor College of Medicine, Houston, TX, USA
| | | |
Collapse
|
52
|
He F, Zhou X, Huang G, Jiang Q, Wan L, Qiu J. Establishment and Identification of Patient-Derived Xenograft Model for Oral Squamous Cell Carcinoma. JOURNAL OF ONCOLOGY 2022; 2022:3135470. [PMID: 36213829 PMCID: PMC9536988 DOI: 10.1155/2022/3135470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 08/16/2022] [Indexed: 11/17/2022]
Abstract
Oral squamous cell carcinoma is the most common head and neck malignancy with high morbidity and mortality. Currently, platinum-based chemotherapy is the conventional chemotherapy regimen for patients with oral squamous cell carcinoma. However, due to the heterogeneity of tumors and individual differences of patients, chemotherapy regimens lacking individualized evaluation of tumor patients are often less effective. Therefore, personalized tumor chemotherapy is one of the effective methods for the future treatment of malignant tumors. The patient-derived xenograft model is a relatively new tumor xenograft model that relies on immunodeficient mice. This model can better maintain various histological characteristics of primary tumor grafts, such as pathological structural features, molecular diversity, and gene expression profiles. Therefore, the patient-derived xenograft model combined with drug screening technology to explore new tumor chemotherapy is the critical research direction for future tumor treatment. This study successfully established the patient-derived xenograft model of oral squamous cell carcinoma. It was verified by hematoxylin-eosin staining and immunohistochemistry that the constructed patient-derived xenograft model retained the pathological and molecular biological characteristics of primary tumors. Our patient-derived xenograft model can be used further to study the oncological characteristics of oral squamous carcinoma and can also be applied to personalize the treatment of oral squamous carcinoma patients, providing a practical resource for screening chemotherapy drugs.
Collapse
Affiliation(s)
- Fei He
- Department of Stomatology, The First Affiliated Hospital of Nanchang University, Nanchang 330006, Jiangxi, China
| | - Xiongming Zhou
- Department of Stomatology, The First Affiliated Hospital of Nanchang University, Nanchang 330006, Jiangxi, China
| | - Gan Huang
- Department of Stomatology, The First Affiliated Hospital of Nanchang University, Nanchang 330006, Jiangxi, China
| | - Qingkun Jiang
- Department of Stomatology, The First Affiliated Hospital of Nanchang University, Nanchang 330006, Jiangxi, China
| | - Li Wan
- Department of Stomatology, The First Affiliated Hospital of Nanchang University, Nanchang 330006, Jiangxi, China
| | - Jiaxuan Qiu
- Department of Stomatology, The First Affiliated Hospital of Nanchang University, Nanchang 330006, Jiangxi, China
| |
Collapse
|
53
|
Xu Y, Xin W, Yan C, Shi Y, Li Y, Hu Y, Ying K. Organoids in lung cancer: A teenager with infinite growth potential. Lung Cancer 2022; 172:100-107. [PMID: 36041323 DOI: 10.1016/j.lungcan.2022.08.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 08/05/2022] [Accepted: 08/06/2022] [Indexed: 10/15/2022]
Abstract
Despite the rapid advancement in lung cancer research, morbidity and mortality remain high in recent years. Therefore, deeper learning of the underlying molecular mechanisms of pathogenesis and discovery of novel effective therapeutic strategies of treatment in lung cancer research are around the corner. Among these, applying an efficient and reliable preclinical model would be a critical step that exists throughout the whole process. Traditional 2D models used in lung cancer research, including lung cancer cell lines and cell-derived xenograft models, cannot recapitulate the situations of patients due to the lack of a tumor microenvironment or tumor heterogeneity. Organoids, newly developed 3D in vitro structures, more comprehensively imitate the architecture, interaction and genetics of human organs. Cancer organoids, especially those derived from individual patients, can better resemble primary tumor tissues and thus have a greater potential for making breakthroughs in future cancer studies. Here, we mainly review recent advances in the methodologies and applications of lung cancer organoids, which are just developing but have huge potential.
Collapse
Affiliation(s)
- Yiming Xu
- Department of Respiratory and Critical Medicine, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China; Cancer Center, Zhejiang University, Hangzhou, China
| | - Wanghao Xin
- Department of Respiratory and Critical Medicine, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China; Cancer Center, Zhejiang University, Hangzhou, China
| | - Chao Yan
- Department of Respiratory and Critical Medicine, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China; Cancer Center, Zhejiang University, Hangzhou, China
| | - Yangfeng Shi
- Department of Respiratory and Critical Medicine, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, China
| | - Yeping Li
- Department of Respiratory and Critical Medicine, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China; Cancer Center, Zhejiang University, Hangzhou, China
| | - Yanjie Hu
- Department of Respiratory and Critical Medicine, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China; Cancer Center, Zhejiang University, Hangzhou, China
| | - Kejing Ying
- Department of Respiratory and Critical Medicine, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China; Cancer Center, Zhejiang University, Hangzhou, China.
| |
Collapse
|
54
|
Duncan BB, Dunbar CE, Ishii K. Applying a Clinical Lens to Animal Models of CAR-T Cell Therapies. Mol Ther Methods Clin Dev 2022; 27:17-31. [PMID: 36156878 PMCID: PMC9478925 DOI: 10.1016/j.omtm.2022.08.008] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Chimeric antigen receptor (CAR)-T cells have emerged as a promising treatment modality for various hematologic and solid malignancies over the past decade. Animal models remain the cornerstone of pre-clinical evaluation of human CAR-T cell products and are generally required by regulatory agencies prior to clinical translation. However, pharmacokinetics and pharmacodynamics of adoptively transferred T cells are dependent on various recipient factors, posing challenges for accurately predicting human engineered T cell behavior in non-human animal models. For example, murine xenograft models did not forecast now well-established cytokine-driven systemic toxicities of CAR-T cells seen in humans, highlighting the limitations of animal models that do not perfectly recapitulate complex human immune systems. Understanding the concordance as well as discrepancies between existing pre-clinical animal data and human clinical experiences, along with established advantages and limitations of each model, will facilitate investigators’ ability to appropriately select and design animal models for optimal evaluation of future CAR-T cell products. We summarize the current state of animal models in this field, and the advantages and disadvantages of each approach depending on the pre-clinical questions being asked.
Collapse
|
55
|
Chen H, Jayasinghe MK, Yeo EYM, Wu Z, Pirisinu M, Usman WM, Pham TT, Lim KW, Tran NV, Leung AYH, Du X, Zhang Q, Phan AT, Le MTN. CD33
‐targeting extracellular vesicles deliver antisense oligonucleotides against
FLT3‐ITD
and
miR
‐125b for specific treatment of acute myeloid leukaemia. Cell Prolif 2022; 55:e13255. [PMID: 35851970 PMCID: PMC9436904 DOI: 10.1111/cpr.13255] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 04/20/2022] [Accepted: 04/25/2022] [Indexed: 11/30/2022] Open
Abstract
Introduction Acute Myeloid Leukaemia (AML) is the most common blood cancer in adults. Although 2 out of 3 AML patients go into total remission after chemotherapies and targeted therapies, the disease recurs in 60%–65% of younger adult patients within 3 years after diagnosis with a dramatically decreased survival rate. Therapeutic oligonucleotides are promising treatments under development for AML as they can be designed to silence oncogenes with high specificity and flexibility. However, there are not many well validated approaches for safely and efficiently delivering oligonucleotide drugs. This issue could be resolved by utilizing a new generation of delivery vehicles such as extracellular vesicles (EVs). Methods In this study, we harness red blood cell‐derived EVs (RBCEVs) and engineer them via exogenous drug loading and surface functionalization to develop an efficient drug delivery system for AML. Particularly, EVs are designed to target CD33, a common surface marker with elevated expression in AML cells via the conjugation of a CD33‐binding monoclonal antibody onto the EV surface. Results The conjugation of RBCEVs with the CD33‐binding antibody significantly increases the uptake of RBCEVs by CD33‐positive AML cells, but not by CD33‐negative cells. We also load CD33‐targeting RBCEVs with antisense oligonucleotides (ASOs) targeting FLT3‐ITD or miR‐125b, 2 common oncogenes in AML, and demonstrate that the engineered EVs improve leukaemia suppression in in vitro and in vivo models of AML. Conclusion Targeted RBCEVs represent an innovative, efficient, and versatile delivery platform for therapeutic ASOs and can expedite the clinical translation of oligonucleotide drugs for AML treatments by overcoming current obstacles in oligonucleotide delivery.
Collapse
Affiliation(s)
- Huan Chen
- Department of Pharmacology, Institute for Digital Medicine, Yong Loo Lin School of Medicine National University of Singapore Singapore Singapore
- Department of Surgery, Immunology Program, Cancer Program and Nanomedicine Translational Program, Yong Loo Lin School of Medicine National University of Singapore Singapore Singapore
- Department of Biomedical Sciences, Jockey Club College of Veterinary Medicine and Life Sciences City University of Hong Kong Kowloon Hong Kong SAR
| | - Migara Kavishka Jayasinghe
- Department of Pharmacology, Institute for Digital Medicine, Yong Loo Lin School of Medicine National University of Singapore Singapore Singapore
- Department of Surgery, Immunology Program, Cancer Program and Nanomedicine Translational Program, Yong Loo Lin School of Medicine National University of Singapore Singapore Singapore
| | - Eric Yew Meng Yeo
- Department of Pharmacology, Institute for Digital Medicine, Yong Loo Lin School of Medicine National University of Singapore Singapore Singapore
- Department of Surgery, Immunology Program, Cancer Program and Nanomedicine Translational Program, Yong Loo Lin School of Medicine National University of Singapore Singapore Singapore
| | - Zhiyuan Wu
- Department of Pharmacology, Institute for Digital Medicine, Yong Loo Lin School of Medicine National University of Singapore Singapore Singapore
- Department of Surgery, Immunology Program, Cancer Program and Nanomedicine Translational Program, Yong Loo Lin School of Medicine National University of Singapore Singapore Singapore
| | - Marco Pirisinu
- Department of Biomedical Sciences, Jockey Club College of Veterinary Medicine and Life Sciences City University of Hong Kong Kowloon Hong Kong SAR
| | - Waqas Muhammad Usman
- Department of Biomedical Sciences, Jockey Club College of Veterinary Medicine and Life Sciences City University of Hong Kong Kowloon Hong Kong SAR
| | - Thach Tuan Pham
- Department of Pharmacology, Institute for Digital Medicine, Yong Loo Lin School of Medicine National University of Singapore Singapore Singapore
- Department of Surgery, Immunology Program, Cancer Program and Nanomedicine Translational Program, Yong Loo Lin School of Medicine National University of Singapore Singapore Singapore
| | - Kah Wai Lim
- Division of Physics & Applied Physics, School of Physical & Mathematical Sciences Nanyang Technological University Singapore Singapore
| | - Nhan Van Tran
- Division of Physics & Applied Physics, School of Physical & Mathematical Sciences Nanyang Technological University Singapore Singapore
| | - Anskar Y. H. Leung
- Department of Medicine, Li Ka Shing Faculty of Medicine, Queen Mary Hospital The University of Hong Kong Pok Fu Lam Hong Kong SAR
| | - Xin Du
- Department of Hematology and Shenzhen Bone Marrow Transplantation Public Service Platform, Shenzhen Second People's Hospital The First Affiliated Hospital of Shenzhen University, Shenzhen University School of Medicine Shenzhen China
| | - Qiaoxia Zhang
- Department of Hematology and Shenzhen Bone Marrow Transplantation Public Service Platform, Shenzhen Second People's Hospital The First Affiliated Hospital of Shenzhen University, Shenzhen University School of Medicine Shenzhen China
| | - Anh Tuân Phan
- Division of Physics & Applied Physics, School of Physical & Mathematical Sciences Nanyang Technological University Singapore Singapore
| | - Minh T. N. Le
- Department of Pharmacology, Institute for Digital Medicine, Yong Loo Lin School of Medicine National University of Singapore Singapore Singapore
- Department of Surgery, Immunology Program, Cancer Program and Nanomedicine Translational Program, Yong Loo Lin School of Medicine National University of Singapore Singapore Singapore
| |
Collapse
|
56
|
Di Franco G, Usai A, Piccardi M, Cateni P, Palmeri M, Pollina LE, Gaeta R, Marmorino F, Cremolini C, Dente L, Massolo A, Raffa V, Morelli L. Zebrafish Patient-Derived Xenograft Model to Predict Treatment Outcomes of Colorectal Cancer Patients. Biomedicines 2022; 10:biomedicines10071474. [PMID: 35884780 PMCID: PMC9313122 DOI: 10.3390/biomedicines10071474] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Revised: 06/14/2022] [Accepted: 06/20/2022] [Indexed: 11/16/2022] Open
Abstract
The use of zebrafish embryos for personalized medicine has become increasingly popular. We present a co-clinical trial aiming to evaluate the use of zPDX (zebrafish Patient-Derived Xenografts) in predicting the response to chemotherapy regimens used for colorectal cancer patients. zPDXs are generated by xenografting tumor tissues in two days post-fertilization zebrafish embryos. zPDXs were exposed to chemotherapy regimens (5-FU, FOLFIRI, FOLFOX, FOLFOXIRI) for 48 h. We used a linear mixed effect model to evaluate the zPDX-specific response to treatments showing for 4/36 zPDXs (11%), a statistically significant reduction of tumor size compared to controls. We used the RECIST criteria to compare the outcome of each patient after chemotherapy with the objective response of its own zPDX model. Of the 36 patients enrolled, 8 metastatic colorectal cancer (mCRC), response rate after first-line therapy, and the zPDX chemosensitivity profile were available. Of eight mCRC patients, five achieved a partial response and three had a stable disease. In 6/8 (75%) we registered a concordance between the response of the patient and the outcomes reported in the corresponding zPDX. Our results provide evidence that the zPDX model can reflect the outcome in mCRC patients, opening a new frontier to personalized medicine.
Collapse
Affiliation(s)
- Gregorio Di Franco
- General Surgery Unit, Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Via Paradisa 2, 56124 Pisa, Italy; (G.D.F.); (M.P.)
| | - Alice Usai
- Department of Biology, University of Pisa, S.S. 12 Abetone e Brennero 4, 56127 Pisa, Italy; (A.U.); (M.P.); (P.C.); (L.D.); (A.M.); (V.R.)
| | - Margherita Piccardi
- Department of Biology, University of Pisa, S.S. 12 Abetone e Brennero 4, 56127 Pisa, Italy; (A.U.); (M.P.); (P.C.); (L.D.); (A.M.); (V.R.)
| | - Perla Cateni
- Department of Biology, University of Pisa, S.S. 12 Abetone e Brennero 4, 56127 Pisa, Italy; (A.U.); (M.P.); (P.C.); (L.D.); (A.M.); (V.R.)
| | - Matteo Palmeri
- General Surgery Unit, Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Via Paradisa 2, 56124 Pisa, Italy; (G.D.F.); (M.P.)
| | - Luca Emanuele Pollina
- Department of Surgical, Medical, Molecular Pathology and Critical Area, Division of Surgical Pathology, University of Pisa, Via Paradisa 2, 56124 Pisa, Italy; (L.E.P.); (R.G.)
| | - Raffaele Gaeta
- Department of Surgical, Medical, Molecular Pathology and Critical Area, Division of Surgical Pathology, University of Pisa, Via Paradisa 2, 56124 Pisa, Italy; (L.E.P.); (R.G.)
| | - Federica Marmorino
- Unit of Medical Oncology 2, Azienda Ospedaliero-Universitaria Pisana, Via Roma 67, 56126 Pisa, Italy; (F.M.); (C.C.)
- Department of Translational Research and New Technology in Medicine and Surgery, University of Pisa, 56124 Pisa, Italy
| | - Chiara Cremolini
- Unit of Medical Oncology 2, Azienda Ospedaliero-Universitaria Pisana, Via Roma 67, 56126 Pisa, Italy; (F.M.); (C.C.)
- Department of Translational Research and New Technology in Medicine and Surgery, University of Pisa, 56124 Pisa, Italy
| | - Luciana Dente
- Department of Biology, University of Pisa, S.S. 12 Abetone e Brennero 4, 56127 Pisa, Italy; (A.U.); (M.P.); (P.C.); (L.D.); (A.M.); (V.R.)
| | - Alessandro Massolo
- Department of Biology, University of Pisa, S.S. 12 Abetone e Brennero 4, 56127 Pisa, Italy; (A.U.); (M.P.); (P.C.); (L.D.); (A.M.); (V.R.)
| | - Vittoria Raffa
- Department of Biology, University of Pisa, S.S. 12 Abetone e Brennero 4, 56127 Pisa, Italy; (A.U.); (M.P.); (P.C.); (L.D.); (A.M.); (V.R.)
| | - Luca Morelli
- General Surgery Unit, Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Via Paradisa 2, 56124 Pisa, Italy; (G.D.F.); (M.P.)
- Correspondence: ; Tel.: +39-050-996820
| |
Collapse
|
57
|
Miyamoto S, Tanaka T, Hirosuna K, Nishie R, Ueda S, Hashida S, Terada S, Konishi H, Kogata Y, Taniguchi K, Komura K, Ohmichi M. Validation of a Patient-Derived Xenograft Model for Cervical Cancer Based on Genomic and Phenotypic Characterization. Cancers (Basel) 2022; 14:cancers14122969. [PMID: 35740635 PMCID: PMC9221029 DOI: 10.3390/cancers14122969] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 06/09/2022] [Accepted: 06/14/2022] [Indexed: 12/04/2022] Open
Abstract
Simple Summary The rate of total tumor engraftment of patient-derived xenografts is 50% in cervical cancer. These cancers retain their histopathological characteristics. The gene mutations and expression patterns associated with carcinogenesis and infiltration and the expression levels of genes in extracellular vesicles released from the tumors are similar between patient-derived xenograft models and primary tumors. Patient-derived xenograft models of cervical cancer could be potentially useful tools for translational research. Abstract Patient-derived xenograft (PDX) models are useful tools for preclinical drug evaluation, biomarker identification, and personalized medicine strategies, and can be developed by the heterotopic or orthotopic grafting of surgically resected tumors into immunodeficient mice. We report the PDX models of cervical cancer and demonstrate the similarities among original and different generations of PDX tumors. Fresh tumor tissues collected from 22 patients with primary cervical cancer were engrafted subcutaneously into NOD.CB17-PrkdcSCID/J mice. Histological and immunohistochemical analyses were performed to compare primary and different generations of PDX tumors. DNA and RNA sequencing were performed to verify the similarity between the genetic profiles of primary and PDX tumors. Total RNA in extracellular vesicles (EVs) released from primary and PDX tumors was also quantified to evaluate gene expression. The total tumor engraftment rate was 50%. Histologically, no major differences were observed between the original and PDX tumors. Most of the gene mutations and expression patterns related to carcinogenesis and infiltration were similar between the primary tumor and xenograft. Most genes associated with carcinogenesis and infiltration showed similar expression levels in the primary tumor and xenograft EVs. Therefore, compared with primary tumors, PDX models could be potentially more useful for translational research.
Collapse
Affiliation(s)
- Shunsuke Miyamoto
- Department of Obstetrics and Gynecology, Educational Foundation of Osaka Medical and Pharmaceutical University, 2-7, Daigaku-machi, Takatsuki 569-8686, Osaka, Japan; (S.M.); (R.N.); (S.U.); (S.H.); (S.T.); (H.K.); (Y.K.); (M.O.)
- Translational Research Program, Educational Foundation of Osaka Medical and Pharmaceutical University, 2-7, Daigaku-machi, Takatsuki 569-8686, Osaka, Japan; (K.H.); (K.T.); (K.K.)
| | - Tomohito Tanaka
- Department of Obstetrics and Gynecology, Educational Foundation of Osaka Medical and Pharmaceutical University, 2-7, Daigaku-machi, Takatsuki 569-8686, Osaka, Japan; (S.M.); (R.N.); (S.U.); (S.H.); (S.T.); (H.K.); (Y.K.); (M.O.)
- Translational Research Program, Educational Foundation of Osaka Medical and Pharmaceutical University, 2-7, Daigaku-machi, Takatsuki 569-8686, Osaka, Japan; (K.H.); (K.T.); (K.K.)
- Correspondence: ; Tel.: +81-726-83-1221
| | - Kensuke Hirosuna
- Translational Research Program, Educational Foundation of Osaka Medical and Pharmaceutical University, 2-7, Daigaku-machi, Takatsuki 569-8686, Osaka, Japan; (K.H.); (K.T.); (K.K.)
| | - Ruri Nishie
- Department of Obstetrics and Gynecology, Educational Foundation of Osaka Medical and Pharmaceutical University, 2-7, Daigaku-machi, Takatsuki 569-8686, Osaka, Japan; (S.M.); (R.N.); (S.U.); (S.H.); (S.T.); (H.K.); (Y.K.); (M.O.)
| | - Shoko Ueda
- Department of Obstetrics and Gynecology, Educational Foundation of Osaka Medical and Pharmaceutical University, 2-7, Daigaku-machi, Takatsuki 569-8686, Osaka, Japan; (S.M.); (R.N.); (S.U.); (S.H.); (S.T.); (H.K.); (Y.K.); (M.O.)
| | - Sousuke Hashida
- Department of Obstetrics and Gynecology, Educational Foundation of Osaka Medical and Pharmaceutical University, 2-7, Daigaku-machi, Takatsuki 569-8686, Osaka, Japan; (S.M.); (R.N.); (S.U.); (S.H.); (S.T.); (H.K.); (Y.K.); (M.O.)
| | - Shinichi Terada
- Department of Obstetrics and Gynecology, Educational Foundation of Osaka Medical and Pharmaceutical University, 2-7, Daigaku-machi, Takatsuki 569-8686, Osaka, Japan; (S.M.); (R.N.); (S.U.); (S.H.); (S.T.); (H.K.); (Y.K.); (M.O.)
| | - Hiromi Konishi
- Department of Obstetrics and Gynecology, Educational Foundation of Osaka Medical and Pharmaceutical University, 2-7, Daigaku-machi, Takatsuki 569-8686, Osaka, Japan; (S.M.); (R.N.); (S.U.); (S.H.); (S.T.); (H.K.); (Y.K.); (M.O.)
| | - Yuhei Kogata
- Department of Obstetrics and Gynecology, Educational Foundation of Osaka Medical and Pharmaceutical University, 2-7, Daigaku-machi, Takatsuki 569-8686, Osaka, Japan; (S.M.); (R.N.); (S.U.); (S.H.); (S.T.); (H.K.); (Y.K.); (M.O.)
| | - Kohei Taniguchi
- Translational Research Program, Educational Foundation of Osaka Medical and Pharmaceutical University, 2-7, Daigaku-machi, Takatsuki 569-8686, Osaka, Japan; (K.H.); (K.T.); (K.K.)
| | - Kazumasa Komura
- Translational Research Program, Educational Foundation of Osaka Medical and Pharmaceutical University, 2-7, Daigaku-machi, Takatsuki 569-8686, Osaka, Japan; (K.H.); (K.T.); (K.K.)
| | - Masahide Ohmichi
- Department of Obstetrics and Gynecology, Educational Foundation of Osaka Medical and Pharmaceutical University, 2-7, Daigaku-machi, Takatsuki 569-8686, Osaka, Japan; (S.M.); (R.N.); (S.U.); (S.H.); (S.T.); (H.K.); (Y.K.); (M.O.)
| |
Collapse
|
58
|
Abdolahi S, Ghazvinian Z, Muhammadnejad S, Saleh M, Asadzadeh Aghdaei H, Baghaei K. Patient-derived xenograft (PDX) models, applications and challenges in cancer research. J Transl Med 2022; 20:206. [PMID: 35538576 PMCID: PMC9088152 DOI: 10.1186/s12967-022-03405-8] [Citation(s) in RCA: 128] [Impact Index Per Article: 42.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 04/24/2022] [Indexed: 12/12/2022] Open
Abstract
The establishing of the first cancer models created a new perspective on the identification and evaluation of new anti-cancer therapies in preclinical studies. Patient-derived xenograft models are created by tumor tissue engraftment. These models accurately represent the biology and heterogeneity of different cancers and recapitulate tumor microenvironment. These features have made it a reliable model along with the development of humanized models. Therefore, they are used in many studies, such as the development of anti-cancer drugs, co-clinical trials, personalized medicine, immunotherapy, and PDX biobanks. This review summarizes patient-derived xenograft models development procedures, drug development applications in various cancers, challenges and limitations.
Collapse
Affiliation(s)
- Shahrokh Abdolahi
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Zeinab Ghazvinian
- Department of Applied Cell Sciences, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Samad Muhammadnejad
- Cell-Based Therapies Research Center, Digestive Diseases Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahshid Saleh
- Department of Applied Cell Sciences, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Hamid Asadzadeh Aghdaei
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Kaveh Baghaei
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
59
|
Connolly KA, Fitzgerald B, Damo M, Joshi NS. Novel Mouse Models for Cancer Immunology. ANNUAL REVIEW OF CANCER BIOLOGY 2022; 6:269-291. [PMID: 36875867 PMCID: PMC9979244 DOI: 10.1146/annurev-cancerbio-070620-105523] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Mouse models for the study of cancer immunology provide excellent systems in which to test biological mechanisms of the immune response against cancer. Historically, these models have been designed to have different strengths based on the current major research questions at the time. As such, many mouse models of immunology used today were not originally developed to study questions currently plaguing the relatively new field of cancer immunology, but instead have been adapted for such purposes. In this review, we discuss various mouse model of cancer immunology in a historical context as a means to provide a fuller perspective of each model's strengths. From this outlook, we discuss the current state of the art and strategies for tackling future modeling challenges.
Collapse
Affiliation(s)
- Kelli A. Connolly
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06519, USA
| | - Brittany Fitzgerald
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06519, USA
| | - Martina Damo
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06519, USA
| | - Nikhil S. Joshi
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06519, USA
| |
Collapse
|
60
|
Milic M, Mondini M, Deutsch E. How to Improve SBRT Outcomes in NSCLC: From Pre-Clinical Modeling to Successful Clinical Translation. Cancers (Basel) 2022; 14:cancers14071705. [PMID: 35406477 PMCID: PMC8997119 DOI: 10.3390/cancers14071705] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 03/14/2022] [Accepted: 03/22/2022] [Indexed: 02/01/2023] Open
Abstract
Simple Summary Despite major research and clinical efforts, lung cancer remains the leading cause of cancer-related death. Stereotactic body radiotherapy (SBRT) has emerged as a major treatment modality for lung cancer in the last decade. Additional research is needed to elucidate underlying mechanisms of resistance and to develop improved therapeutic strategies. Clinical progress relies on accurate preclinical modelling of human disease in order to yield clinically meaningful results; however, successful translation of pre-clinical research is still lagging behind. In this review, we summarize the major clinical developments of radiation therapy for non-small-cell lung cancer (NSCLC), and we discuss the pre-clinical research models at our disposal, highlighting ongoing translational challenges and future perspectives. Abstract Despite major research and clinical efforts, lung cancer remains the leading cause of cancer-related death. While the delivery of conformal radiotherapy and image guidance of stereotactic body radiotherapy (SBRT) have revolutionized the treatment of early-stage non-small-cell lung cancer (NSCLC), additional research is needed to elucidate underlying mechanisms of resistance and identify novel therapeutic combinations. Clinical progress relies on the successful translation of pre-clinical work, which so far has not always yielded expected results. Improved clinical modelling involves characterizing the preclinical models and selecting appropriate experimental designs that faithfully mimic precise clinical scenarios. Here, we review the current role of SBRT and the scope of pre-clinical armamentarium at our disposal to improve successful clinical translation of pre-clinical research in the radiation oncology of NSCLC.
Collapse
Affiliation(s)
- Marina Milic
- Gustave Roussy, Université Paris-Saclay, INSERM U1030, F-94805 Villejuif, France;
| | - Michele Mondini
- Gustave Roussy, Université Paris-Saclay, INSERM U1030, F-94805 Villejuif, France;
- Correspondence: (M.M.); (E.D.)
| | - Eric Deutsch
- Gustave Roussy, Université Paris-Saclay, INSERM U1030, F-94805 Villejuif, France;
- Gustave Roussy, Département d’Oncologie-Radiothérapie, F-94805 Villejuif, France
- Correspondence: (M.M.); (E.D.)
| |
Collapse
|
61
|
Comparison of clonal architecture between primary and immunodeficient mouse-engrafted acute myeloid leukemia cells. Nat Commun 2022; 13:1624. [PMID: 35338146 PMCID: PMC8956585 DOI: 10.1038/s41467-022-29304-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 03/02/2022] [Indexed: 01/23/2023] Open
Abstract
Patient-derived xenografts (PDX) are widely used as human cancer models. Previous studies demonstrated clonal discordance between PDX and primary cells. However, in acute myeloid leukemia (AML)-PDX models, the significance of the clonal dynamics occurring in PDX remains unclear. By evaluating changes in the variant allele frequencies (VAF) of somatic mutations in serial samples of paired primary AML and their PDX bone marrow cells, we identify the skewing engraftment of relapsed or refractory (R/R) AML clones in 57% of PDX models generated from multiclonal AML cells at diagnosis, even if R/R clones are minor at <5% of VAF in patients. The event-free survival rate of patients whose AML cells successfully engraft in PDX models is consistently lower than that of patients with engraftment failure. We herein demonstrate that primary AML cells including potentially chemotherapy-resistant clones dominantly engraft in AML-PDX models and they enrich pre-existing treatment-resistant subclones.
Collapse
|
62
|
Fernando W, Coyle KM, Marcato P. Breast Cancer Xenograft Murine Models. Methods Mol Biol 2022; 2508:31-44. [PMID: 35737231 DOI: 10.1007/978-1-0716-2376-3_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Mice are used as model organisms to understand the pathological basis of a variety of human diseases, including breast cancer. Both immunocompetent and immunocompromised mouse models are used depending on the scope of the study. Immunocompetent models allow the study of the impact of the immune system in murine models of mammary cancer, while immunodeficient mice serve as ideal host organisms to understand the behavior of human breast cancers within a biological system. Xenografting of human breast cancer cells into immunocompromised mouse models continues to be the most used fundamental animal model in preclinical breast cancer research. These in vivo models allow critical understanding of tumor biology and assessment of novel treatments, a necessary prelude to testing new drugs in the clinic. In this chapter, we provide detailed methodology for the use of non-obese diabetic (NOD) severe combined immunodeficient (SCID) mice in several breast cancer xenografting procedures, including established cell lines and patient-derived xenografts (PDXs).
Collapse
Affiliation(s)
- Wasundara Fernando
- Department of Pathology, Faculty of Medicine, Dalhousie University, Halifax, NS, Canada
| | - Krysta M Coyle
- Department of Molecular Biology and Biochemistry, Faculty of Sciences, Simon Fraser University, Vancouver, BC, Canada
| | - Paola Marcato
- Department of Pathology, Faculty of Medicine, Dalhousie University, Halifax, NS, Canada.
- Department of Microbiology and Immunology, Faculty of Medicine, Dalhousie University, Halifax, NS, Canada.
| |
Collapse
|
63
|
Kuiken HJ, Dhakal S, Selfors LM, Friend CM, Zhang T, Callari M, Schackmann RCJ, Gray GK, Crowdis J, Bhang HEC, Baslan T, Stegmeier F, Gygi SP, Caldas C, Brugge JS. Clonal populations of a human TNBC model display significant functional heterogeneity and divergent growth dynamics in distinct contexts. Oncogene 2022; 41:112-124. [PMID: 34703030 PMCID: PMC8727509 DOI: 10.1038/s41388-021-02075-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Revised: 10/01/2021] [Accepted: 10/11/2021] [Indexed: 11/09/2022]
Abstract
Intratumoral heterogeneity has been described for various tumor types and models of human cancer, and can have profound effects on tumor progression and drug resistance. This study describes an in-depth analysis of molecular and functional heterogeneity among subclonal populations (SCPs) derived from a single triple-negative breast cancer cell line, including copy number analysis, whole-exome and RNA sequencing, proteome analysis, and barcode analysis of clonal dynamics, as well as functional assays. The SCPs were found to have multiple unique genetic alterations and displayed significant variation in anchorage independent growth and tumor forming ability. Analyses of clonal dynamics in SCP mixtures using DNA barcode technology revealed selection for distinct clonal populations in different in vitro and in vivo environmental contexts, demonstrating that in vitro propagation of cancer cell lines using different culture conditions can contribute to the establishment of unique strains. These analyses also revealed strong enrichment of a single SCP during the development of xenograft tumors in immune-compromised mice. This SCP displayed attenuated interferon signaling in vivo and reduced sensitivity to the antiproliferative effects of type I interferons. Reduction in interferon signaling was found to provide a selective advantage within the xenograft microenvironment specifically. In concordance with the previously described role of interferon signaling as tumor suppressor, these findings suggest that similar selective pressures may be operative in human cancer and patient-derived xenograft models.
Collapse
Affiliation(s)
- Hendrik J Kuiken
- Department of Cell Biology, Harvard Medical School, Boston, MA, 02115, USA
- Ludwig Center at Harvard, Boston, MA, 02115, USA
- Division of Molecular Carcinogenesis, The Netherlands Cancer Institute, Amsterdam, 1066 CX, the Netherlands
| | - Sabin Dhakal
- Department of Cell Biology, Harvard Medical School, Boston, MA, 02115, USA
- Ludwig Center at Harvard, Boston, MA, 02115, USA
- Inzen Therapeutics, Cambridge, MA, 02142, USA
| | - Laura M Selfors
- Department of Cell Biology, Harvard Medical School, Boston, MA, 02115, USA
- Ludwig Center at Harvard, Boston, MA, 02115, USA
| | - Chandler M Friend
- Department of Cell Biology, Harvard Medical School, Boston, MA, 02115, USA
- Ludwig Center at Harvard, Boston, MA, 02115, USA
| | - Tian Zhang
- Department of Cell Biology, Harvard Medical School, Boston, MA, 02115, USA
| | - Maurizio Callari
- Cancer Research UK Cambridge Institute, University of Cambridge, Li Ka Shing Centre, Robinson Way, Cambridge, CB2 0RE, UK
| | - Ron C J Schackmann
- Department of Cell Biology, Harvard Medical School, Boston, MA, 02115, USA
- Ludwig Center at Harvard, Boston, MA, 02115, USA
- Merus, Utrecht, 3584 CM, the Netherlands
| | - G Kenneth Gray
- Department of Cell Biology, Harvard Medical School, Boston, MA, 02115, USA
- Ludwig Center at Harvard, Boston, MA, 02115, USA
| | - Jett Crowdis
- Department of Cell Biology, Harvard Medical School, Boston, MA, 02115, USA
- Ludwig Center at Harvard, Boston, MA, 02115, USA
- Broad Institute, Cambridge, MA, 02142, USA
| | - Hyo-Eun C Bhang
- Department of Oncology, Novartis Institutes for Biomedical Research, Cambridge, MA, 02139, USA
- Civetta Therapeutics, Cambridge, MA, 02142, USA
| | - Timour Baslan
- Cancer Biology and Genetics Program, Memorial Sloan-Kettering Cancer Center, New York, NY, 10065, USA
| | - Frank Stegmeier
- Department of Oncology, Novartis Institutes for Biomedical Research, Cambridge, MA, 02139, USA
- KSQ Therapeutics, Inc., Cambridge, MA, 02139, USA
| | - Steven P Gygi
- Department of Cell Biology, Harvard Medical School, Boston, MA, 02115, USA
| | - Carlos Caldas
- Cancer Research UK Cambridge Institute, University of Cambridge, Li Ka Shing Centre, Robinson Way, Cambridge, CB2 0RE, UK
| | - Joan S Brugge
- Department of Cell Biology, Harvard Medical School, Boston, MA, 02115, USA.
- Ludwig Center at Harvard, Boston, MA, 02115, USA.
| |
Collapse
|
64
|
Obaid G, Hasan T. Subcutaneous Xenograft Models for Studying PDT In Vivo. Methods Mol Biol 2022; 2451:127-149. [PMID: 35505015 PMCID: PMC10516195 DOI: 10.1007/978-1-0716-2099-1_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The most facile, reproducible, and robust in vivo models for evaluating the anticancer efficacy of photodynamic therapy (PDT) are subcutaneous xenograft models of human tumors. The accessibility and practicality of light irradiation protocols for treating subcutaneous xenograft models also increase their value as relatively rapid tools to expedite the testing of novel photosensitizers, respective formulations, and treatment regimens for PDT. This chapter summarizes the methods used in the literature to prepare various types of subcutaneous xenograft models of human cancers and syngeneic models to explore the role of PDT in immuno-oncology. This chapter also summarizes the PDT treatment protocols tested on the subcutaneous models, and the procedures used to evaluate the efficacy at the molecular, macromolecular, and host organism levels.
Collapse
Affiliation(s)
- Girgis Obaid
- Wellman Center for Photomedicine, Department of Dermatology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
| | - Tayyaba Hasan
- Wellman Center for Photomedicine, Department of Dermatology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
65
|
Li Y, Chan JWY, Lau RWH, Cheung WWY, Wong AM, Wong AM, Wong N, Ng CSH. Organoids in Lung Cancer Management. Front Surg 2021; 8:753801. [PMID: 34957199 PMCID: PMC8698743 DOI: 10.3389/fsurg.2021.753801] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 11/08/2021] [Indexed: 12/12/2022] Open
Abstract
Lung cancer is a complex milieu of genomically altered cancer cells, a diverse collection of differentiated cells and nonneoplastic stroma. Lung cancer organoids is a three-dimensional structure grown from patient cancer tissue that could mimic in vivo complex behavior and cellular architecture of the cancer. Furthermore, the genomic alterations of the primary lung tumor is captured ex vivo. Lung cancer organoids have become an important preclinical model for oncology studies in recent years. It could be used to model the development of lung cancer, investigate the process of tumorigenesis, and also study the signaling pathways. The organoids could also be a platform to perform drug screening and biomarker validation of lung cancer, providing a promising prediction of patient-specific drug response. In this review, we described how lung cancer organoids have opened new avenues for translating basic cancer research into clinical therapy and discussed the latest and future developments in organoid technology, which could be further applied in lung cancer organoids research.
Collapse
Affiliation(s)
- Yushi Li
- Department of Surgery, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Joyce W Y Chan
- Department of Surgery, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Rainbow W H Lau
- Department of Surgery, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Winnie W Y Cheung
- Department of Surgery, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Alissa Michelle Wong
- Department of Surgery, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Aikha M Wong
- Department of Surgery, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Nathalie Wong
- Department of Surgery, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Calvin Sze Hang Ng
- Department of Surgery, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| |
Collapse
|
66
|
Suto H, Funakoshi Y, Nagatani Y, Imamura Y, Toyoda M, Kiyota N, Matsumoto H, Tanaka S, Takai R, Hasegawa H, Yamashita K, Matsuda T, Kakeji Y, Minami H. Microsatellite instability-high colorectal cancer patient-derived xenograft models for cancer immunity research. J Cancer Res Ther 2021; 17:1358-1369. [PMID: 34916366 DOI: 10.4103/jcrt.jcrt_1092_20] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Context There is an increasing demand for appropriate preclinical mice models for evaluating the efficacy of cancer immunotherapies. Aims Therefore, we established a humanized patient-derived xenograft (PDX) model using microsatellite instability-high (MSI-H) colorectal cancer (CRC) tissues and patient-derived peripheral blood mononuclear cells (PBMCs). Subjects and Methods The CRC tissues of patients scheduled for surgery were tested for MSI status, and CRC tumors were transplanted into NOD/LtSz-scid/IL-2Rg-/-(NSG) mice to establish MSI-H PDX models. PDX tumors were compared to the original patient tumors in terms of histological and genetic characteristics. To humanize the immune system of MSI-H PDX models, patient PBMCs were injected through the tail vein. Results PDX models were established from two patients with MSI-H CRC; one patient had a germline mutation in MLH1 (c.1990-2A > G), and the other patient had MLH1 promoter hypermethylation. PDX with the germline mutation was histologically similar to the patient tumor, and retained the genetic characteristics, including MSI-H, deficient mismatch repair (dMMR), and MLH1 mutation. In contrast, the histological features of the other PDX from a tumor with MLH1 promoter hypermethylation were clearly different from those of the original tumor, and MLH1 promoter hypermethylation and MSI-H/dMMR were lost in the PDX. When T cells from the same patient with MLH1 mutation were injected into the PDX through the tail vein, they were detected in the PDX tumor. Conclusions The MSI-H tumor with an MMR mutation is suitable for MSI-H PDX model generation. The PBMC humanized MSI-H PDX has the potential to be used as an efficient model for cancer immunotherapy research.
Collapse
Affiliation(s)
- Hirotaka Suto
- Department of Medicine, Division of Medical Oncology/Hematology, Kobe University Hospital and Graduate School of Medicine, Kobe, Japan
| | - Yohei Funakoshi
- Department of Medicine, Division of Medical Oncology/Hematology, Kobe University Hospital and Graduate School of Medicine, Kobe, Japan
| | - Yoshiaki Nagatani
- Department of Medicine, Division of Medical Oncology/Hematology, Kobe University Hospital and Graduate School of Medicine, Kobe, Japan
| | - Yoshinori Imamura
- Department of Medicine, Division of Medical Oncology/Hematology, Kobe University Hospital and Graduate School of Medicine, Kobe, Japan
| | - Masanori Toyoda
- Department of Medicine, Division of Medical Oncology/Hematology, Kobe University Hospital and Graduate School of Medicine, Kobe, Japan
| | - Naomi Kiyota
- Department of Medicine, Division of Medical Oncology/Hematology, Kobe University Hospital and Graduate School of Medicine; Cancer Center, Kobe University Hospital, Kobe, Japan
| | - Hisayuki Matsumoto
- Department of Clinical Laboratory, Kobe University Hospital, Kobe, Japan
| | - Shinwa Tanaka
- Department of Medicine, Division of Gastroenterology, Kobe University Hospital and Graduate School of Medicine, Kobe, Japan
| | - Ryo Takai
- Department of Surgery, Division of Gastrointestinal Surgery, Kobe University Hospital and Graduate School of Medicine, Chuo-ku, Kobe, Japan
| | - Hiroshi Hasegawa
- Department of Surgery, Division of Gastrointestinal Surgery, Kobe University Hospital and Graduate School of Medicine, Chuo-ku, Kobe, Japan
| | - Kimihiro Yamashita
- Department of Surgery, Division of Gastrointestinal Surgery, Kobe University Hospital and Graduate School of Medicine, Chuo-ku, Kobe, Japan
| | - Takeru Matsuda
- Department of Surgery, Division of Gastrointestinal Surgery, Kobe University Hospital and Graduate School of Medicine, Chuo-ku, Kobe, Japan
| | - Yoshihiro Kakeji
- Department of Surgery, Division of Gastrointestinal Surgery, Kobe University Hospital and Graduate School of Medicine, Chuo-ku, Kobe, Japan
| | - Hironobu Minami
- Department of Medicine, Division of Medical Oncology/Hematology, Kobe University Hospital and Graduate School of Medicine; Cancer Center, Kobe University Hospital, Kobe, Japan
| |
Collapse
|
67
|
Eckel-Passow JE, Kitange GJ, Decker PA, Kosel ML, Burgenske DM, Oberg AL, Sarkaria JN. Experimental design of preclinical experiments: number of PDX lines vs subsampling within PDX lines. Neuro Oncol 2021; 23:2066-2075. [PMID: 34107029 PMCID: PMC8643474 DOI: 10.1093/neuonc/noab137] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Appropriately designed preclinical patient-derived xenograft (PDX) experiments are important to accurately inform human clinical trials. There is little experimental design guidance regarding choosing the number of PDX lines to study, and the number of mice within each PDX line. METHODS Retrospective data from IDH-wildtype glioblastoma preclinical experiments evaluating a uniform regimen of fractionated radiation (RT), temozolomide (TMZ) chemotherapy, and concurrent RT/TMZ across 27 PDX lines were used to evaluate experimental designs and empirically estimate statistical power for ANOVA and Cox regression. RESULTS Increasing the number of PDX lines resulted in more precise and reproducible estimates of effect size. To achieve 80% statistical power using ANOVA, experiments using a single PDX line required subsampling of 6 mice per PDX for each treatment group to detect a difference in survival of 135 days, and 9 mice per PDX to detect a difference of 100 days. Alternatively, a design that used 10 PDX lines had greater than 80% power to detect a difference of 135 days with a single mouse per PDX per treatment group, a difference of 100 days with 2 mice per PDX per treatment, and 35 days with more than 10 mice per PDX per treatment. Power for Cox regression was slightly smaller than ANOVA for very small experiments regardless of effect size and slightly higher than ANOVA for detecting a smaller effect size of 35 days difference in survival for moderate-to-large experiments. CONCLUSIONS Experimental designs using few mice across many PDX lines can provide robust results and account for inter-tumor variability.
Collapse
Affiliation(s)
| | - Gaspar J Kitange
- Department of Radiation Oncology, Mayo Clinic, Rochester, Minnesota, USA
| | - Paul A Decker
- Division of Biomedical Statistics and Informatics, Mayo Clinic, Rochester, Minnesota, USA
| | - Matthew L Kosel
- Division of Biomedical Statistics and Informatics, Mayo Clinic, Rochester, Minnesota, USA
| | | | - Ann L Oberg
- Division of Biomedical Statistics and Informatics, Mayo Clinic, Rochester, Minnesota, USA
| | - Jann N Sarkaria
- Department of Radiation Oncology, Mayo Clinic, Rochester, Minnesota, USA
| |
Collapse
|
68
|
Contreras-Trujillo H, Eerdeng J, Akre S, Jiang D, Contreras J, Gala B, Vergel-Rodriguez MC, Lee Y, Jorapur A, Andreasian A, Harton L, Bramlett CS, Nogalska A, Xiao G, Lee JW, Chan LN, Müschen M, Merchant AA, Lu R. Deciphering intratumoral heterogeneity using integrated clonal tracking and single-cell transcriptome analyses. Nat Commun 2021; 12:6522. [PMID: 34764253 PMCID: PMC8586369 DOI: 10.1038/s41467-021-26771-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Accepted: 10/20/2021] [Indexed: 02/08/2023] Open
Abstract
Cellular heterogeneity is a major cause of treatment resistance in cancer. Despite recent advances in single-cell genomic and transcriptomic sequencing, it remains difficult to relate measured molecular profiles to the cellular activities underlying cancer. Here, we present an integrated experimental system that connects single cell gene expression to heterogeneous cancer cell growth, metastasis, and treatment response. Our system integrates single cell transcriptome profiling with DNA barcode based clonal tracking in patient-derived xenograft models. We show that leukemia cells exhibiting unique gene expression respond to different chemotherapies in distinct but consistent manners across multiple mice. In addition, we uncover a form of leukemia expansion that is spatially confined to the bone marrow of single anatomical sites and driven by cells with distinct gene expression. Our integrated experimental system can interrogate the molecular and cellular basis of the intratumoral heterogeneity underlying disease progression and treatment resistance. DNA barcoding is a promising technology for the simultaneous analysis of genetic and phenotypic heterogeneity. Here, the authors combine DNA barcoding and single-cell RNA-seq to study heterogeneity, progression and response to therapy in B-cell acute lymphoblastic leukaemia patient-derived xenografts.
Collapse
Affiliation(s)
- Humberto Contreras-Trujillo
- Department of Stem Cell Biology and Regenerative Medicine, Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA
| | - Jiya Eerdeng
- Department of Stem Cell Biology and Regenerative Medicine, Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA
| | - Samir Akre
- Department of Stem Cell Biology and Regenerative Medicine, Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA
| | - Du Jiang
- Department of Stem Cell Biology and Regenerative Medicine, Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA
| | - Jorge Contreras
- Department of Stem Cell Biology and Regenerative Medicine, Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA
| | - Basia Gala
- Department of Stem Cell Biology and Regenerative Medicine, Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA
| | - Mary C Vergel-Rodriguez
- Department of Stem Cell Biology and Regenerative Medicine, Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA
| | - Yeachan Lee
- Department of Stem Cell Biology and Regenerative Medicine, Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA
| | - Aparna Jorapur
- Division of Hematology, USC Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA
| | - Areen Andreasian
- Department of Stem Cell Biology and Regenerative Medicine, Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA
| | - Lisa Harton
- Division of Hematology, USC Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA
| | - Charles S Bramlett
- Department of Stem Cell Biology and Regenerative Medicine, Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA
| | - Anna Nogalska
- Department of Stem Cell Biology and Regenerative Medicine, Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA
| | - Gang Xiao
- Center of Molecular and Cellular Oncology, Yale Cancer Center, Yale University, New Haven, CT, 06511, USA
| | - Jae-Woong Lee
- Center of Molecular and Cellular Oncology, Yale Cancer Center, Yale University, New Haven, CT, 06511, USA
| | - Lai N Chan
- Center of Molecular and Cellular Oncology, Yale Cancer Center, Yale University, New Haven, CT, 06511, USA
| | - Markus Müschen
- Center of Molecular and Cellular Oncology, Yale Cancer Center, Yale University, New Haven, CT, 06511, USA.,Department of Immunobiology, Yale University, New Haven, CT, 06511, USA
| | - Akil A Merchant
- Division of Hematology and Cellular Therapy, Cedars-Sinai Medical Center, Los Angeles, CA, 90048, USA.
| | - Rong Lu
- Department of Stem Cell Biology and Regenerative Medicine, Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA.
| |
Collapse
|
69
|
Hu H, Piotrowska Z, Hare PJ, Chen H, Mulvey HE, Mayfield A, Noeen S, Kattermann K, Greenberg M, Williams A, Riley AK, Wilson JJ, Mao YQ, Huang RP, Banwait MK, Ho J, Crowther GS, Hariri LP, Heist RS, Kodack DP, Pinello L, Shaw AT, Mino-Kenudson M, Hata AN, Sequist LV, Benes CH, Niederst MJ, Engelman JA. Three subtypes of lung cancer fibroblasts define distinct therapeutic paradigms. Cancer Cell 2021; 39:1531-1547.e10. [PMID: 34624218 PMCID: PMC8578451 DOI: 10.1016/j.ccell.2021.09.003] [Citation(s) in RCA: 134] [Impact Index Per Article: 33.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 04/27/2021] [Accepted: 09/03/2021] [Indexed: 12/20/2022]
Abstract
Cancer-associated fibroblasts (CAFs) are highly heterogeneous. With the lack of a comprehensive understanding of CAFs' functional distinctions, it remains unclear how cancer treatments could be personalized based on CAFs in a patient's tumor. We have established a living biobank of CAFs derived from biopsies of patients' non-small lung cancer (NSCLC) that encompasses a broad molecular spectrum of CAFs in clinical NSCLC. By functionally interrogating CAF heterogeneity using the same therapeutics received by patients, we identify three functional subtypes: (1) robustly protective of cancers and highly expressing HGF and FGF7; (2) moderately protective of cancers and highly expressing FGF7; and (3) those providing minimal protection. These functional differences among CAFs are governed by their intrinsic TGF-β signaling, which suppresses HGF and FGF7 expression. This CAF functional classification correlates with patients' clinical response to targeted therapies and also associates with the tumor immune microenvironment, therefore providing an avenue to guide personalized treatment.
Collapse
Affiliation(s)
- Haichuan Hu
- Massachusetts General Hospital Cancer Center and Department of Medicine, Harvard Medical School, Boston, MA 02114, USA.
| | - Zofia Piotrowska
- Massachusetts General Hospital Cancer Center and Department of Medicine, Harvard Medical School, Boston, MA 02114, USA
| | - Patricia J Hare
- Massachusetts General Hospital Cancer Center and Department of Medicine, Harvard Medical School, Boston, MA 02114, USA
| | - Huidong Chen
- Massachusetts General Hospital and Department of Pathology, Harvard Medical School, Boston, MA 02114, USA; Molecular Pathology Unit, Massachusetts General Hospital Research Institute, Charlestown, MA 02129, USA; Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
| | - Hillary E Mulvey
- Massachusetts General Hospital Cancer Center and Department of Medicine, Harvard Medical School, Boston, MA 02114, USA
| | - Aislinn Mayfield
- Massachusetts General Hospital Cancer Center and Department of Medicine, Harvard Medical School, Boston, MA 02114, USA
| | - Sundus Noeen
- Massachusetts General Hospital Cancer Center and Department of Medicine, Harvard Medical School, Boston, MA 02114, USA
| | - Krystina Kattermann
- Massachusetts General Hospital Cancer Center and Department of Medicine, Harvard Medical School, Boston, MA 02114, USA
| | - Max Greenberg
- Massachusetts General Hospital Cancer Center and Department of Medicine, Harvard Medical School, Boston, MA 02114, USA
| | - August Williams
- Massachusetts General Hospital Cancer Center and Department of Medicine, Harvard Medical School, Boston, MA 02114, USA
| | - Amanda K Riley
- Massachusetts General Hospital Cancer Center and Department of Medicine, Harvard Medical School, Boston, MA 02114, USA
| | | | - Ying-Qing Mao
- RayBiotech Inc, Norcross, GA 30092, USA; RayBiotech Inc, Guangzhou, Guangdong 510630, China
| | - Ruo-Pan Huang
- RayBiotech Inc, Norcross, GA 30092, USA; RayBiotech Inc, Guangzhou, Guangdong 510630, China; Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, Guangdong 510095, China
| | - Mandeep K Banwait
- Massachusetts General Hospital Cancer Center and Department of Medicine, Harvard Medical School, Boston, MA 02114, USA
| | - Jeffrey Ho
- Massachusetts General Hospital Cancer Center and Department of Medicine, Harvard Medical School, Boston, MA 02114, USA
| | - Giovanna S Crowther
- Massachusetts General Hospital Cancer Center and Department of Medicine, Harvard Medical School, Boston, MA 02114, USA
| | - Lida P Hariri
- Massachusetts General Hospital and Department of Pathology, Harvard Medical School, Boston, MA 02114, USA
| | - Rebecca S Heist
- Massachusetts General Hospital Cancer Center and Department of Medicine, Harvard Medical School, Boston, MA 02114, USA
| | - David P Kodack
- Novartis Institutes for BioMedical Research, Cambridge, MA 02139, USA
| | - Luca Pinello
- Massachusetts General Hospital and Department of Pathology, Harvard Medical School, Boston, MA 02114, USA; Molecular Pathology Unit, Massachusetts General Hospital Research Institute, Charlestown, MA 02129, USA; Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
| | - Alice T Shaw
- Massachusetts General Hospital Cancer Center and Department of Medicine, Harvard Medical School, Boston, MA 02114, USA
| | - Mari Mino-Kenudson
- Massachusetts General Hospital and Department of Pathology, Harvard Medical School, Boston, MA 02114, USA
| | - Aaron N Hata
- Massachusetts General Hospital Cancer Center and Department of Medicine, Harvard Medical School, Boston, MA 02114, USA
| | - Lecia V Sequist
- Massachusetts General Hospital Cancer Center and Department of Medicine, Harvard Medical School, Boston, MA 02114, USA
| | - Cyril H Benes
- Massachusetts General Hospital Cancer Center and Department of Medicine, Harvard Medical School, Boston, MA 02114, USA.
| | | | | |
Collapse
|
70
|
Singh M, Dahal A, Brastianos PK. Preclinical Solid Tumor Models to Study Novel Therapeutics in Brain Metastases. Curr Protoc 2021; 1:e284. [PMID: 34762346 PMCID: PMC8597918 DOI: 10.1002/cpz1.284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Metastases are the most common malignancy of the adult central nervous system and are becoming an increasingly troubling problem in oncology largely due to the lack of successful therapeutic options. The limited selection of treatments is a result of the currently poor understanding of the biological mechanisms of metastatic development, which in turn is difficult to achieve because of limited preclinical models that can accurately represent the clinical progression of metastasis. Described in this article are in vitro and in vivo model systems that are used to enhance the understanding of metastasis and to identify new therapies for the treatment of brain metastasis. © 2021 Wiley Periodicals LLC.
Collapse
Affiliation(s)
- Mohini Singh
- Cancer Center, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| | - Ashish Dahal
- Cancer Center, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| | | |
Collapse
|
71
|
Li Y, Qiu X, Wang X, Liu H, Geck RC, Tewari AK, Xiao T, Font-Tello A, Lim K, Jones KL, Morrow M, Vadhi R, Kao PL, Jaber A, Yerrum S, Xie Y, Chow KH, Cejas P, Nguyen QD, Long HW, Liu XS, Toker A, Brown M. FGFR-inhibitor-mediated dismissal of SWI/SNF complexes from YAP-dependent enhancers induces adaptive therapeutic resistance. Nat Cell Biol 2021; 23:1187-1198. [PMID: 34737445 DOI: 10.1038/s41556-021-00781-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 09/26/2021] [Indexed: 12/20/2022]
Abstract
How cancer cells adapt to evade the therapeutic effects of drugs targeting oncogenic drivers is poorly understood. Here we report an epigenetic mechanism leading to the adaptive resistance of triple-negative breast cancer (TNBC) to fibroblast growth factor receptor (FGFR) inhibitors. Prolonged FGFR inhibition suppresses the function of BRG1-dependent chromatin remodelling, leading to an epigenetic state that derepresses YAP-associated enhancers. These chromatin changes induce the expression of several amino acid transporters, resulting in increased intracellular levels of specific amino acids that reactivate mTORC1. Consistent with this mechanism, addition of mTORC1 or YAP inhibitors to FGFR blockade synergistically attenuated the growth of TNBC patient-derived xenograft models. Collectively, these findings reveal a feedback loop involving an epigenetic state transition and metabolic reprogramming that leads to adaptive therapeutic resistance and provides potential therapeutic strategies to overcome this mechanism of resistance.
Collapse
Affiliation(s)
- Yihao Li
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA.,Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Xintao Qiu
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA.,Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Xiaoqing Wang
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA.,Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Hui Liu
- Department of Pathology, and Cancer Center, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Renee C Geck
- Department of Pathology, and Cancer Center, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Alok K Tewari
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA.,Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Tengfei Xiao
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA.,Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Alba Font-Tello
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA.,Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Klothilda Lim
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA.,Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Kristen L Jones
- Lurie Family Imaging Center, Center for Biomedical Imaging in Oncology, Dana-Farber Cancer Institute, Boston, Boston, MA, USA
| | - Murry Morrow
- Lurie Family Imaging Center, Center for Biomedical Imaging in Oncology, Dana-Farber Cancer Institute, Boston, Boston, MA, USA
| | - Raga Vadhi
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA.,Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Pei-Lun Kao
- Department of Oncologic Pathology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA.,Center for Patient Derived Models, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Aliya Jaber
- Department of Oncologic Pathology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA.,Center for Patient Derived Models, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Smitha Yerrum
- Department of Oncologic Pathology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA.,Center for Patient Derived Models, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Yingtian Xie
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA.,Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Kin-Hoe Chow
- Department of Oncologic Pathology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA.,Center for Patient Derived Models, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Paloma Cejas
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA.,Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Quang-Dé Nguyen
- Lurie Family Imaging Center, Center for Biomedical Imaging in Oncology, Dana-Farber Cancer Institute, Boston, Boston, MA, USA
| | - Henry W Long
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA.,Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, MA, USA
| | - X Shirley Liu
- Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, MA, USA.,Department of Data Science, Dana-Farber Cancer Institute, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Alex Toker
- Department of Pathology, and Cancer Center, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA.,Ludwig Center at Harvard, Harvard Medical School, Boston, MA, USA
| | - Myles Brown
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA. .,Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, MA, USA. .,Ludwig Center at Harvard, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
72
|
Cao B, Liu M, Huang J, Zhou J, Li J, Lian H, Huang W, Guo Y, Yang S, Lin L, Cai M, Zhi C, Wu J, Liang L, Hu Y, Hu H, He J, Liang B, Zhao Q, Zhu K. Development of mesothelin-specific CAR NK-92 cells for the treatment of gastric cancer. Int J Biol Sci 2021; 17:3850-3861. [PMID: 34671203 PMCID: PMC8495380 DOI: 10.7150/ijbs.64630] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 08/26/2021] [Indexed: 12/19/2022] Open
Abstract
Background: The application of chimeric antigen receptor (CAR) NK cells in solid tumors is hindered by lack of tumor-specific targets and inefficient CAR NK cell efficacy. It has been reported that mesothelin (MSLN) may be an ideal immunotherapy target for gastric cancer. However, the feasibility of using anti-MSLN CAR NK cells to treat gastric cancer remains to be studied. Methods: MSLN expression in primary human gastric cancer, normal tissues and cell lines were detected. MSLN and CD19 targeted CAR NK-92 (MSLN- and CD19-CAR NK) cells were constructed, purified and verified. N87, MKN-28, AGS and Huh-7 cells expressing the GFP and luciferase genes were transduced. Cell- and patient-derived xenograft (PDX) were established via NSG mice. The ability of MSLN-CAR NK cells to kill MSLN-positive gastric cancer cells were evaluated in vitro and in vivo. Results: MSLN-CAR NK cells can specifically kill MSLN-positive gastric cancer cells (N87, MKN-28 and AGS), rather than MSLN negative cell (Huh-7), in vitro. Moreover, compared with parental NK-92 cells and CD19-CAR NK cells, stronger cytokine secretions were secreted in MSLN-CAR NK cells cocultured with N87, MKN-28 and AGS. Furthermore, MSLN-CAR NK cells can effectively eliminate gastric cancer cells in both subcutaneous and intraperitoneal tumor models. They could also significantly prolong the survival of intraperitoneally tumor-bearing mice. More importantly, the potent antitumor effect and considerable NK cell infiltration were observed in the patient-derived xenograft treated with MSLN-CAR NK cells, which further warranted the therapeutic effects of MSLN-CAR NK cells to treat gastric cancer. Conclusion: These results demonstrate that MSLN-CAR NK cells possess strong antitumor activity and represent a promising therapeutic approach to gastric cancer.
Collapse
Affiliation(s)
- Bihui Cao
- Department of Minimally Invasive Interventional Radiology and Department of Radiology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, 510260, China
| | - Manting Liu
- Department of Minimally Invasive Interventional Radiology and Department of Radiology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, 510260, China
| | - Jingjun Huang
- Department of Minimally Invasive Interventional Radiology and Department of Radiology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, 510260, China
| | - Jingwen Zhou
- Department of Minimally Invasive Interventional Radiology and Department of Radiology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, 510260, China
| | - Junping Li
- Department of Minimally Invasive Interventional Radiology and Department of Radiology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, 510260, China
| | - Hui Lian
- Department of Minimally Invasive Interventional Radiology and Department of Radiology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, 510260, China
| | - Wensou Huang
- Department of Minimally Invasive Interventional Radiology and Department of Radiology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, 510260, China
| | - Yongjian Guo
- Department of Minimally Invasive Interventional Radiology and Department of Radiology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, 510260, China
| | - Shuo Yang
- Department of Pharmacy, Guangzhou Medical University, 511436, China
| | - Liteng Lin
- Department of Minimally Invasive Interventional Radiology and Department of Radiology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, 510260, China
| | - Mingyue Cai
- Department of Minimally Invasive Interventional Radiology and Department of Radiology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, 510260, China
| | - Cheng Zhi
- Department of Pathology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510260, China
| | - Jingqiang Wu
- Department of Minimally Invasive Interventional Radiology and Department of Radiology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, 510260, China
| | - Licong Liang
- Department of Minimally Invasive Interventional Radiology and Department of Radiology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, 510260, China
| | - Yuling Hu
- Department of Minimally Invasive Interventional Radiology and Department of Radiology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, 510260, China
| | - Hong Hu
- Department of Minimally Invasive Interventional Radiology and Department of Radiology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, 510260, China
| | - Jinping He
- Department of Minimally Invasive Interventional Radiology and Department of Radiology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, 510260, China
| | - Baoxia Liang
- Department of Minimally Invasive Interventional Radiology and Department of Radiology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, 510260, China
| | - Qi Zhao
- MoE Frontiers Science Center for Precision Oncology, Faculty of Health Sciences, University of Macau, Macau SAR, 999078 China
| | - Kangshun Zhu
- Department of Minimally Invasive Interventional Radiology and Department of Radiology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, 510260, China
| |
Collapse
|
73
|
Liu Z, Liu Y, Qian L, Jiang S, Gai X, Ye S, Chen Y, Wang X, Zhai L, Xu J, Pu C, Li J, He F, Huang M, Tan M. A proteomic and phosphoproteomic landscape of KRAS mutant cancers identifies combination therapies. Mol Cell 2021; 81:4076-4090.e8. [PMID: 34375582 DOI: 10.1016/j.molcel.2021.07.021] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 05/20/2021] [Accepted: 07/15/2021] [Indexed: 12/17/2022]
Abstract
KRAS mutant cancer, characterized by the activation of a plethora of phosphorylation signaling pathways, remains a major challenge for cancer therapy. Despite recent advancements, a comprehensive profile of the proteome and phosphoproteome is lacking. This study provides a proteomic and phosphoproteomic landscape of 43 KRAS mutant cancer cell lines across different tissue origins. By integrating transcriptomics, proteomics, and phosphoproteomics, we identify three subsets with distinct biological, clinical, and therapeutic characteristics. The integrative analysis of phosphoproteome and drug sensitivity information facilitates the identification of a set of drug combinations with therapeutic potentials. Among them, we demonstrate that the combination of DOT1L and SHP2 inhibitors is an effective treatment specific for subset 2 of KRAS mutant cancers, corresponding to a set of TCGA clinical tumors with the poorest prognosis. Together, this study provides a resource to better understand KRAS mutant cancer heterogeneity and identify new therapeutic possibilities.
Collapse
Affiliation(s)
- Zhiwei Liu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China; University of Chinese Academy of Sciences, Beijing, China
| | - Yingluo Liu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China; University of Chinese Academy of Sciences, Beijing, China
| | - Lili Qian
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Shangwen Jiang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Xiameng Gai
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, China
| | - Shu Ye
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China; Xinhua Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Yuehong Chen
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Xiaomin Wang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Linhui Zhai
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China; School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, China; Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang, China
| | - Jun Xu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Congying Pu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China; University of Chinese Academy of Sciences, Beijing, China
| | - Jing Li
- Department of Bioinformatics and Biostatistics, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Fuchu He
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, China
| | - Min Huang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China; University of Chinese Academy of Sciences, Beijing, China; School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, China.
| | - Minjia Tan
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China; University of Chinese Academy of Sciences, Beijing, China; School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, China.
| |
Collapse
|
74
|
Lee SW, Park SE, Jeong GS. Sporadic cell death in macroscale 3D tumor grafts with high drug resistance by activating cell-ECM interactions. Biofabrication 2021; 13. [PMID: 34496353 DOI: 10.1088/1758-5090/ac24dd] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 09/08/2021] [Indexed: 02/07/2023]
Abstract
In the tumor microenvironment (TME), the extracellular matrix (ECM) provides a dynamic structure for cell adhesion and cancer cell motility, such as migration and invasion, as well as remodeling. Matrix metalloproteinases (MMPs) promote cancer cell motility, which contributes to inducing drug resistance and thereby acquiring aggressive features. The drug resistance-induced 3Din vitrotumor model can be an effective model for therapeutic strategies for anticancer drugs targeting aggressive cancer cells. Here, we describe highly drug-resistant multicellular tumoroids (MCTs)-ECM tumor grafts under a macroscale dense 3Din vitromodel through a combination of numerous MCTs and a collagen matrix. MCTs-ECM tumor grafts promote the high activity of MMP2 and MMP9 compared to general MCTs and induced cancer cell motility. Then, after the administration of anticancer drugs, the tumor grafts show increased drug resistance, with both the sporadic distribution of necrotic cells and the reduction of apoptotic portions, by activating cancer cell motility. MCTs-ECM tumor graft could be useful as a macroscale tumor graft model for inducing drug resistance by activating cancer cell motility and evaluating the efficacy of anticancer drugs targeting cancer with aggressive features.
Collapse
Affiliation(s)
- Sang Woo Lee
- Biomedical Engineering Research Center, Asan Institute for Life Sciences, Asan Medical Center, Seoul, Republic of Korea
| | - Se Eun Park
- Biomedical Engineering Research Center, Asan Institute for Life Sciences, Asan Medical Center, Seoul, Republic of Korea
| | - Gi Seok Jeong
- Biomedical Engineering Research Center, Asan Institute for Life Sciences, Asan Medical Center, Seoul, Republic of Korea.,Department of Convergence Medicine, University of Ulsan College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
75
|
da Mata S, Franchi-Mendes T, Abreu S, Filipe B, Morgado S, Mesquita M, Albuquerque C, Fonseca R, Santo VE, Boghaert ER, Rosa I, Brito C. Patient-Derived Explants of Colorectal Cancer: Histopathological and Molecular Analysis of Long-Term Cultures. Cancers (Basel) 2021; 13:cancers13184695. [PMID: 34572922 PMCID: PMC8465429 DOI: 10.3390/cancers13184695] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 09/14/2021] [Indexed: 12/11/2022] Open
Abstract
Simple Summary Colorectal cancer is the third most common cancer type among men and women. Prescription of medical treatments for cancer often relies on a process of trial and potential error, more recently guided by patient stratification based on biomarkers. Nonetheless, available biomarkers do not accurately predict patient response and there is a need for predictive and translational models to provide proper clinical information on treatment guidance. Herein, we developed an ex vivo model of colorectal cancer, using fresh tumour samples to establish explant cultures, taking advantage of agitation-based culture systems. We performed a thorough characterisation over one month in culture and observed preservation of original tumour genetic features and partial preservation of architecture and non-malignant cells that compose the tumour microenvironment. Our findings highlight the importance of detailed model characterisation and support the applicability of our model in pre- and co-clinical settings. Abstract Colorectal cancer (CRC) is one of the most common cancers worldwide. Although short-term cultures of tumour sections and xenotransplants have been used to determine drug efficacy, the results frequently fail to confer clinically useful information. Biomarker discovery has changed the paradigm for advanced CRC, though the presence of a biomarker does not necessarily translate into therapeutic success. To improve clinical outcomes, translational models predictive of drug response are needed. We describe a simple method for the fast establishment of CRC patient-derived explant (CRC-PDE) cultures from different carcinogenesis pathways, employing agitation-based platforms. A total of 26 CRC-PDE were established and a subset was evaluated for viability (n = 23), morphology and genetic key alterations (n = 21). CRC-PDE retained partial tumor glandular architecture and microenvironment features were partially lost over 4 weeks of culture. Key proteins (p53 and Mismatch repair) and oncogenic driver mutations of the original tumours were sustained throughout the culture. Drug challenge (n = 5) revealed differential drug response from distinct CRC-PDE cases. These findings suggest an adequate representation of the original tumour and highlight the importance of detailed model characterisation. The preservation of key aspects of the CRC microenvironment and genetics supports CRC-PDE potential applicability in pre- and co-clinical settings, as long as temporal dynamics are considered.
Collapse
Affiliation(s)
- Sara da Mata
- Serviço de Anatomia Patológica, Instituto Português de Oncologia de Lisboa Francisco Gentil (IPOLFG, EPE), Rua Prof. Lima Basto, 1099-023 Lisboa, Portugal; (S.d.M.); (S.M.); (M.M.); (R.F.)
- NOVA Medical School, Universidade Nova de Lisboa, Campo dos Mártires da Pátria 130, 1169-056 Lisboa, Portugal
| | - Teresa Franchi-Mendes
- Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2780-901 Oeiras, Portugal; (T.F.-M.); (S.A.); (V.E.S.)
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal
| | - Sofia Abreu
- Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2780-901 Oeiras, Portugal; (T.F.-M.); (S.A.); (V.E.S.)
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal
| | - Bruno Filipe
- Unidade de Investigação em Patobiologia Molecular (UIPM), Instituto Português de Oncologia de Lisboa Francisco Gentil (IPOLFG, EPE), Rua Prof. Lima Basto, 1099-023 Lisboa, Portugal; (B.F.); (C.A.)
| | - Sónia Morgado
- Serviço de Anatomia Patológica, Instituto Português de Oncologia de Lisboa Francisco Gentil (IPOLFG, EPE), Rua Prof. Lima Basto, 1099-023 Lisboa, Portugal; (S.d.M.); (S.M.); (M.M.); (R.F.)
| | - Marta Mesquita
- Serviço de Anatomia Patológica, Instituto Português de Oncologia de Lisboa Francisco Gentil (IPOLFG, EPE), Rua Prof. Lima Basto, 1099-023 Lisboa, Portugal; (S.d.M.); (S.M.); (M.M.); (R.F.)
| | - Cristina Albuquerque
- Unidade de Investigação em Patobiologia Molecular (UIPM), Instituto Português de Oncologia de Lisboa Francisco Gentil (IPOLFG, EPE), Rua Prof. Lima Basto, 1099-023 Lisboa, Portugal; (B.F.); (C.A.)
| | - Ricardo Fonseca
- Serviço de Anatomia Patológica, Instituto Português de Oncologia de Lisboa Francisco Gentil (IPOLFG, EPE), Rua Prof. Lima Basto, 1099-023 Lisboa, Portugal; (S.d.M.); (S.M.); (M.M.); (R.F.)
- Faculdade de Medicina da Universidade de Lisboa, Avenida Prof. Egas Moniz MB, 1649-028 Lisboa, Portugal
| | - Vítor E. Santo
- Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2780-901 Oeiras, Portugal; (T.F.-M.); (S.A.); (V.E.S.)
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal
| | - Erwin R. Boghaert
- Abbvie Inc., 1 North Waukegan Road, North Chicago, IL 60064-6098, USA;
| | - Isadora Rosa
- Serviço de Gastrenterologia, Instituto Português de Oncologia de Lisboa Francisco Gentil (IPOLFG, EPE), Rua Prof. Lima Basto, 1099-023 Lisboa, Portugal
- Correspondence: (I.R.); (C.B.)
| | - Catarina Brito
- Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2780-901 Oeiras, Portugal; (T.F.-M.); (S.A.); (V.E.S.)
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal
- The Discoveries Centre for Regenerative and Precision Medicine, Lisbon Campus, Av. da República, 2780-157 Oeiras, Portugal
- Correspondence: (I.R.); (C.B.)
| |
Collapse
|
76
|
Ando Y, Mariano C, Shen K. Engineered in vitro tumor models for cell-based immunotherapy. Acta Biomater 2021; 132:345-359. [PMID: 33857692 PMCID: PMC8434941 DOI: 10.1016/j.actbio.2021.03.076] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Revised: 03/26/2021] [Accepted: 03/30/2021] [Indexed: 12/15/2022]
Abstract
Tumor immunotherapy is rapidly evolving as one of the major pillars of cancer treatment. Cell-based immunotherapies, which utilize patient's own immune cells to eliminate cancer cells, have shown great promise in treating a range of malignancies, especially those of hematopoietic origins. However, their performance on a broader spectrum of solid tumor types still fall short of expectations in the clinical stage despite promising preclinical assessments. In this review, we briefly introduce cell-based immunotherapies and the inhibitory mechanisms in tumor microenvironments that may have contributed to this discrepancy. Specifically, a major obstacle to the clinical translation of cell-based immunotherapies is in the lack of preclinical models that can accurately assess the efficacies and mechanisms of these therapies in a (patho-)physiologically relevant manner. Lately, tissue engineering and organ-on-a-chip tools and microphysiological models have allowed for more faithful recapitulation of the tumor microenvironments, by incorporating crucial tumor tissue features such as cellular phenotypes, tissue architecture, extracellular matrix, physical parameters, and their dynamic interactions. This review summarizes the existing engineered tumor models with a focus on tumor immunology and cell-based immunotherapy. We also discuss some key considerations for the future development of engineered tumor models for immunotherapeutics. STATEMENT OF SIGNIFICANCE: Cell-based immunotherapies have shown great promise in treating hematological malignancies and some epithelial tumors. However, their performance on a broader spectrum of solid tumor types still fall short of expectations. Major obstacles include the inhibitory mechanisms in tumor microenvironments (TME) and the lack of preclinical models that can accurately assess the efficacies and mechanisms of cellular therapies in a (patho-)physiologically relevant manner. In this review, we introduce recent progress in tissue engineering and microphysiological models for more faithful recapitulation of TME for cell-based immunotherapies, and some key considerations for the future development of engineered tumor models. This overview will provide a better understanding on the role of engineered models in accelerating immunotherapeutic discoveries and clinical translations.
Collapse
Affiliation(s)
- Yuta Ando
- Department of Biomedical Engineering, Viterbi School of Engineering, University of Southern California, Los Angeles, CA 90089, United States
| | - Chelsea Mariano
- Department of Biomedical Engineering, Viterbi School of Engineering, University of Southern California, Los Angeles, CA 90089, United States
| | - Keyue Shen
- Department of Biomedical Engineering, Viterbi School of Engineering, University of Southern California, Los Angeles, CA 90089, United States; Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, United States; USC Stem Cell, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, United States.
| |
Collapse
|
77
|
Nagy D, Gillis CMC, Davies K, Fowden AL, Rees P, Wills JW, Hughes K. Developing ovine mammary terminal duct lobular units have a dynamic mucosal and stromal immune microenvironment. Commun Biol 2021; 4:993. [PMID: 34417554 PMCID: PMC8379191 DOI: 10.1038/s42003-021-02502-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Accepted: 07/27/2021] [Indexed: 11/29/2022] Open
Abstract
The human breast and ovine mammary gland undergo striking levels of postnatal development, leading to formation of terminal duct lobular units (TDLUs). Here we interrogate aspects of sheep TDLU growth as a model of breast development and to increase understanding of ovine mammogenesis. The distributions of epithelial nuclear Ki67 positivity differ significantly between younger and older lambs. Ki67 expression is polarised to the leading edge of the developing TDLUs. Intraepithelial ductal macrophages exhibit periodicity and considerably increased density in lambs approaching puberty. Stromal macrophages are more abundant centrally than peripherally. Intraepithelial T lymphocytes are more numerous in older lambs. Stromal hotspots of Ki67 expression colocalize with immune cell aggregates that exhibit distinct organisation consistent with tertiary lymphoid structures. The lamb mammary gland thus exhibits a dynamic mucosal and stromal immune microenvironment and constitutes a valuable model system that provides new insights into postnatal breast development.
Collapse
Affiliation(s)
- Dorottya Nagy
- Department of Veterinary Medicine, University of Cambridge, Cambridge, UK
- Equine Clinic, Department of Companion Animals and Equids, Faculty of Veterinary Medicine, University of Liège, Liège, Belgium
| | - Clare M C Gillis
- Department of Veterinary Medicine, University of Cambridge, Cambridge, UK
| | - Katie Davies
- Department of Physiology, Development, and Neuroscience, University of Cambridge, Cambridge, UK
| | - Abigail L Fowden
- Department of Physiology, Development, and Neuroscience, University of Cambridge, Cambridge, UK
| | - Paul Rees
- College of Engineering, Swansea University, Fabian Way, Crymlyn Burrows, Swansea, UK
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - John W Wills
- Department of Veterinary Medicine, University of Cambridge, Cambridge, UK.
| | - Katherine Hughes
- Department of Veterinary Medicine, University of Cambridge, Cambridge, UK.
| |
Collapse
|
78
|
Xu J, Liao K, Yang X, Wu C, Wu W, Han S. Using single-cell sequencing technology to detect circulating tumor cells in solid tumors. Mol Cancer 2021; 20:104. [PMID: 34412644 PMCID: PMC8375060 DOI: 10.1186/s12943-021-01392-w] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Accepted: 07/12/2021] [Indexed: 12/30/2022] Open
Abstract
Circulating tumor cells are tumor cells with high vitality and high metastatic potential that invade and shed into the peripheral blood from primary solid tumors or metastatic foci. Due to the heterogeneity of tumors, it is difficult for high-throughput sequencing analysis of tumor tissues to find the genomic characteristics of low-abundance tumor stem cells. Single-cell sequencing of circulating tumor cells avoids interference from tumor heterogeneity by comparing the differences between single-cell genomes, transcriptomes, and epigenetic groups among circulating tumor cells, primary and metastatic tumors, and metastatic lymph nodes in patients' peripheral blood, providing a new perspective for understanding the biological process of tumors. This article describes the identification, biological characteristics, and single-cell genome-wide variation in circulating tumor cells and summarizes the application of single-cell sequencing technology to tumor typing, metastasis analysis, progression detection, and adjuvant therapy.
Collapse
Affiliation(s)
- Jiasheng Xu
- Department of Oncology, Huzhou Central Hospital, Affiliated Central Hospital Huzhou University, No.1558, Sanhuan North Road, Wuxing District Zhejiang Province, Huzhou, China.,Department of Vascular Surgery, the Second Affiliated Hospital of Nanchang University, No. 1 Minde Road, Nanchang, 330006, Jiangxi, China
| | - Kaili Liao
- Department of Clinical Laboratory, the Second Affiliated Hospital of Nanchang University, No. 1 Minde Road, Nanchang, 330006, Jiangxi, China
| | - Xi Yang
- Department of Oncology, Huzhou Central Hospital, Affiliated Central Hospital Huzhou University, No.1558, Sanhuan North Road, Wuxing District Zhejiang Province, Huzhou, China
| | - Chengfeng Wu
- Department of Vascular Surgery, the Second Affiliated Hospital of Nanchang University, No. 1 Minde Road, Nanchang, 330006, Jiangxi, China
| | - Wei Wu
- Department of Gastroenterology, Huzhou Central Hospital, Affiliated Central Hospital Huzhou University, No.1558, Sanhuan North Road, Wuxing District Zhejiang Province, 313000, Huzhou, China
| | - Shuwen Han
- Department of Oncology, Huzhou Central Hospital, Affiliated Central Hospital Huzhou University, No.1558, Sanhuan North Road, Wuxing District Zhejiang Province, Huzhou, China.
| |
Collapse
|
79
|
Gao Y, Zhou R, Huang JF, Hu B, Cheng JW, Huang XW, Wang PX, Peng HX, Guo W, Zhou J, Fan J, Yang XR. Patient-Derived Xenograft Models for Intrahepatic Cholangiocarcinoma and Their Application in Guiding Personalized Medicine. Front Oncol 2021; 11:704042. [PMID: 34327143 PMCID: PMC8315044 DOI: 10.3389/fonc.2021.704042] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Accepted: 06/25/2021] [Indexed: 11/17/2022] Open
Abstract
Background Intrahepatic cholangiocarcinoma (ICC) remains one of the most intractable malignancies. The development of effective drug treatments for ICC is seriously hampered by the lack of reliable tumor models. At present, patient derived xenograft (PDX) models prove to accurately reflect the genetic and biological diversity required to decipher tumor biology and therapeutic vulnerabilities. This study was designed to investigate the establishment and potential application of PDX models for guiding personalized medicine and identifying potential biomarker for lenvatinib resistance. Methods We generated PDX models from 89 patients with ICC and compared the morphological and molecular similarities of parental tumors and passaged PDXs. The clinicopathologic features affecting PDX engraftment and the prognostic significance of PDX engraftment were analyzed. Drug treatment responses were analyzed in IMF-138, IMF-114 PDX models and corresponding patients. Finally, lenvatinib treatment response was examined in PDX models and potential drug resistance mechanism was revealed. Results Forty-nine PDX models were established (take rate: 55.1%). Successful PDX engraftment was associated with negative HbsAg (P = 0.031), presence of mVI (P = 0.001), poorer tumor differentiation (P = 0.023), multiple tumor number (P = 0.003), presence of lymph node metastasis (P = 0.001), and later TNM stage (P = 0.039). Moreover, patients with tumor engraftment had significantly shorter time to recurrence (TTR) (P < 0.001) and worse overall survival (OS) (P < 0.001). Multivariate analysis indicated that PDX engraftment was an independent risk factor for shortened TTR (HR = 1.84; 95% CI, 1.05–3.23; P = 0.034) and OS (HR = 2.13; 95% CI, 1.11–4.11; P = 0.024). PDXs were histologically and genetically similar to their parental tumors. We also applied IMF-138 and IMF-114 PDX drug testing results to guide clinical treatment for patients with ICC and found similar treatment responses. PDX models also facilitated personalized medicine for patients with ICC based on drug screening results using whole exome sequencing data. Additionally, PDX models reflected the heterogeneous sensitivity to lenvatinib treatment and CDH1 might be vital to lenvatinib-resistance. Conclusion PDX models provide a powerful platform for preclinical drug discovery, and potentially facilitate the implementation of personalized medicine and improvement of survival of ICC cancer patient.
Collapse
Affiliation(s)
- Yang Gao
- Department of Liver Surgery & Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai, China
| | - Rong Zhou
- Department of Blood Transfusion, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Jun-Feng Huang
- Department of Intensive Care Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Bo Hu
- Department of Liver Surgery & Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai, China
| | - Jian-Wen Cheng
- Department of Liver Surgery & Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai, China
| | - Xiao-Wu Huang
- Department of Liver Surgery & Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai, China
| | - Peng-Xiang Wang
- Department of Liver Surgery & Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai, China
| | - Hai-Xiang Peng
- Shanghai Dunwill Medical Technology Co., Ltd., Shanghai, China.,Shanghai Epione Medlab Co., Ltd., Shanghai, China
| | - Wei Guo
- Department of Laboratory Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Jian Zhou
- Department of Liver Surgery & Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai, China.,Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Jia Fan
- Department of Liver Surgery & Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai, China.,Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Xin-Rong Yang
- Department of Liver Surgery & Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai, China
| |
Collapse
|
80
|
Affolter A, Lammert A, Kern J, Scherl C, Rotter N. Precision Medicine Gains Momentum: Novel 3D Models and Stem Cell-Based Approaches in Head and Neck Cancer. Front Cell Dev Biol 2021; 9:666515. [PMID: 34307351 PMCID: PMC8296983 DOI: 10.3389/fcell.2021.666515] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 04/30/2021] [Indexed: 12/12/2022] Open
Abstract
Despite the current progress in the development of new concepts of precision medicine for head and neck squamous cell carcinoma (HNSCC), in particular targeted therapies and immune checkpoint inhibition (CPI), overall survival rates have not improved during the last decades. This is, on the one hand, caused by the fact that a significant number of patients presents with late stage disease at the time of diagnosis, on the other hand HNSCC frequently develop therapeutic resistance. Distinct intratumoral and intertumoral heterogeneity is one of the strongest features in HNSCC and has hindered both the identification of specific biomarkers and the establishment of targeted therapies for this disease so far. To date, there is a paucity of reliable preclinical models, particularly those that can predict responses to immune CPI, as these models require an intact tumor microenvironment (TME). The "ideal" preclinical cancer model is supposed to take both the TME as well as tumor heterogeneity into account. Although HNSCC patients are frequently studied in clinical trials, there is a lack of reliable prognostic biomarkers allowing a better stratification of individuals who might benefit from new concepts of targeted or immunotherapeutic strategies. Emerging evidence indicates that cancer stem cells (CSCs) are highly tumorigenic. Through the process of stemness, epithelial cells acquire an invasive phenotype contributing to metastasis and recurrence. Specific markers for CSC such as CD133 and CD44 expression and ALDH activity help to identify CSC in HNSCC. For the majority of patients, allocation of treatment regimens is simply based on histological diagnosis and on tumor location and disease staging (clinical risk assessments) rather than on specific or individual tumor biology. Hence there is an urgent need for tools to stratify HNSCC patients and pave the way for personalized therapeutic options. This work reviews the current literature on novel approaches in implementing three-dimensional (3D) HNSCC in vitro and in vivo tumor models in the clinical daily routine. Stem-cell based assays will be particularly discussed. Those models are highly anticipated to serve as a preclinical prediction platform for the evaluation of stable biomarkers and for therapeutic efficacy testing.
Collapse
Affiliation(s)
- Annette Affolter
- Department of Otorhinolaryngology, Head and Neck Surgery, University Hospital Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | | | | | | | | |
Collapse
|
81
|
Shi X, Zhang Y, Xie X, Pang M, Laster K, Li J, Ma X, Liu K, Dong Z, Kim DJ. Ipriflavone Suppresses Growth of Esophageal Squamous Cell Carcinoma Through Inhibiting mTOR In Vitro and In Vivo. Front Oncol 2021; 11:648809. [PMID: 34178634 PMCID: PMC8222593 DOI: 10.3389/fonc.2021.648809] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2021] [Accepted: 05/12/2021] [Indexed: 11/13/2022] Open
Abstract
Ipriflavone, a synthetic isoflavone that inhibits osteoclastic bone resorption, has been used clinically for the treatment of osteoporosis. However, the anticancer activity of Ipriflavone and its molecular mechanisms in the context of esophageal squamous cell carcinoma (ESCC) have not been investigated. In this study, we report that Ipriflavone is a novel mammalian target of rapamycin (mTOR) inhibitor that suppresses cell proliferation and induces cell apoptosis in ESCC cells. Ipriflavone inhibited anchorage-dependent and -independent growth of ESCC cells. Ipriflavone induced G1 phase cell cycle arrest and intrinsic cell apoptosis by activating caspase 3 and increasing the expression of cytochrome c. Based on the results of in vitro screening and cell-based assays, Ipriflavone inhibited mTOR signaling pathway through directly targeting mTOR. Knockdown of mTOR strongly inhibited the growth of ESCC cells, and the cell growth inhibitory effect exerted by Ipriflavone was found to be dependent upon mTOR signaling pathway. Remarkably, Ipriflavone strongly inhibited ESCC patient-derived xenograft tumor growth in an in vivo mouse model. Our findings suggest that Ipriflavone is an mTOR inhibitor that could be potentially useful for treating ESCC.
Collapse
Affiliation(s)
- Xiaodan Shi
- China-US (Henan) Hormel Cancer Institute, Zhengzhou, China
| | - Yuanyuan Zhang
- China-US (Henan) Hormel Cancer Institute, Zhengzhou, China.,Department of Pathophysiology, School of Basic Medical Sciences, Academy of Medical Science, College of Medicine, Zhengzhou University, Zhengzhou, China
| | - Xiaomeng Xie
- China-US (Henan) Hormel Cancer Institute, Zhengzhou, China.,Department of Pathophysiology, School of Basic Medical Sciences, Academy of Medical Science, College of Medicine, Zhengzhou University, Zhengzhou, China
| | - Mengjun Pang
- China-US (Henan) Hormel Cancer Institute, Zhengzhou, China.,Department of Pathophysiology, School of Basic Medical Sciences, Academy of Medical Science, College of Medicine, Zhengzhou University, Zhengzhou, China
| | - Kyle Laster
- China-US (Henan) Hormel Cancer Institute, Zhengzhou, China
| | - Jian Li
- China-US (Henan) Hormel Cancer Institute, Zhengzhou, China
| | - Xinli Ma
- China-US (Henan) Hormel Cancer Institute, Zhengzhou, China
| | - Kangdong Liu
- China-US (Henan) Hormel Cancer Institute, Zhengzhou, China.,Department of Pathophysiology, School of Basic Medical Sciences, Academy of Medical Science, College of Medicine, Zhengzhou University, Zhengzhou, China.,The Affiliated Cancer Hospital, Zhengzhou University, Zhengzhou, China.,The Collaborative Innovation Center of Henan Province for Cancer Chemoprevention, Zhengzhou, China.,International Joint Research Center of Cancer Chemoprevention, Zhengzhou, China
| | - Zigang Dong
- China-US (Henan) Hormel Cancer Institute, Zhengzhou, China.,Department of Pathophysiology, School of Basic Medical Sciences, Academy of Medical Science, College of Medicine, Zhengzhou University, Zhengzhou, China.,The Affiliated Cancer Hospital, Zhengzhou University, Zhengzhou, China.,The Collaborative Innovation Center of Henan Province for Cancer Chemoprevention, Zhengzhou, China.,International Joint Research Center of Cancer Chemoprevention, Zhengzhou, China
| | - Dong Joon Kim
- China-US (Henan) Hormel Cancer Institute, Zhengzhou, China.,Department of Pathophysiology, School of Basic Medical Sciences, Academy of Medical Science, College of Medicine, Zhengzhou University, Zhengzhou, China.,The Collaborative Innovation Center of Henan Province for Cancer Chemoprevention, Zhengzhou, China
| |
Collapse
|
82
|
Wang Y, Yu H, Xie X, Deng T, Ye L, Wu L, Ding X, Yang Z, Zhu Q, Li J, Zheng Y, Yu Z, Chen G. Plasmalemma vesicle-associated protein promotes angiogenesis in cholangiocarcinoma via the DKK1/CKAP4/PI3K signaling pathway. Oncogene 2021; 40:4324-4337. [PMID: 34079085 DOI: 10.1038/s41388-021-01844-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2019] [Revised: 04/26/2021] [Accepted: 05/17/2021] [Indexed: 02/07/2023]
Abstract
Cholangiocarcinoma (CCA) is aggressive and has poor clinical outcomes because of typically delayed diagnosis and a lack of effective non-surgical therapeutic options. Recent studies have shown that plasmalemma vesicle-associated protein (PLVAP) is related to angiogenesis in various tumors, and in vivo PLVAP targeting therapy has been proven effective against hepatocellular carcinoma and pancreatic cancer. The goal of this study was to determine the potential therapeutic utility of targeting PLVAP and thus angiogenesis in CCA and explore the underlying molecular mechanisms. We found that the PLVAP expression levels were significantly higher in CCA tissues when compared with matched adjacent non-tumor tissues obtained from a total of 90 CCA patients; higher expression levels of PLVAP were associated with shorter overall survival of patients. In addition, overexpression of PLVAP was associated with higher micro-vessel density in CCA tissues. In a PLVAP overexpressing CCA patient-derived xenograft model, a novel humanized anti-PLVAP antibody in combination with Gemcitabine plus Cisplatin was significantly inhibited tumor growth. Molecular analysis of CCA cells co-cultured with human umbilical vascular endothelial cells or human hepatic sinusoidal endothelial cells showed that Dickkopf-related protein 1 (DKK1) secreted by CCA cells activated the PI3K/Akt pathway after binding to its receptor, cytoskeleton-associated protein 4 (CKAP4), resulting in the upregulation of PLVAP. Thus, CCA cells increased the angiogenic potency of endothelial cells in a paracrine fashion. Consistently, patients bearing CKAP4 and PLVAP overexpressing tumors had a poor prognosis. In conclusion, the DKK1/CKAP4/PI3K/PLVAP pathway increases angiogenesis in CCA and is therefore a potential anti-angiogenic target.
Collapse
Affiliation(s)
- Yi Wang
- Division of Preventive Medicine, School of Public Health and Management, Wenzhou Medical University, Wenzhou, China.
| | - Haitao Yu
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Xiaozai Xie
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Tuo Deng
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Longyun Ye
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Lijun Wu
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Xiwei Ding
- Department of Gastroenterology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu, China
| | - Zhen Yang
- Department of Infectious Diseases, Shandong Provincial Hospital affiliated to Shandong University, Jinan, China
| | - Qiandong Zhu
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Junjian Li
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yihu Zheng
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Zhengping Yu
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Gang Chen
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China.
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China.
| |
Collapse
|
83
|
Rizzo G, Bertotti A, Leto SM, Vetrano S. Patient-derived tumor models: a more suitable tool for pre-clinical studies in colorectal cancer. J Exp Clin Cancer Res 2021; 40:178. [PMID: 34074330 PMCID: PMC8168319 DOI: 10.1186/s13046-021-01970-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 05/02/2021] [Indexed: 12/15/2022] Open
Abstract
Colorectal cancer (CRC), despite the advances in screening and surveillance, remains the second most common cause of cancer death worldwide. The biological inadequacy of pre-clinical models to fully recapitulate the multifactorial etiology and the complexity of tumor microenvironment and human CRC's genetic heterogeneity has limited cancer treatment development. This has led to the development of Patient-derived models able to phenocopy as much as possible the original inter- and intra-tumor heterogeneity of CRC, reflecting the tumor microenvironment's cellular interactions. Implantation of patient tissue into immunodeficient mice hosts and the culture of tumor organoids have allowed advances in cancer biology and metastasis. This review highlights the advantages and limits of Patient-derived models as innovative and valuable pre-clinical tools to study progression and metastasis of CRC, develop novel therapeutic strategies by creating a drug screening platform, and predict the efficacy of clinical response to therapy.
Collapse
Affiliation(s)
- Giulia Rizzo
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini, Pieve Emanuele, 20090, Milan, Italy
| | - Andrea Bertotti
- Laboratory of Translational Cancer Medicine, Candiolo Cancer Institute - FPO IRCCs, Candiolo, 10060, Torino, Italy
- Department of Oncology, University of Torino School of Medicine, Candiolo, 10060, Torino, Italy
| | - Simonetta Maria Leto
- Laboratory of Translational Cancer Medicine, Candiolo Cancer Institute - FPO IRCCs, Candiolo, 10060, Torino, Italy
| | - Stefania Vetrano
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini, Pieve Emanuele, 20090, Milan, Italy.
- IBD Center, Department of Gastroenterology, Humanitas Clinical and Research Center-IRCCS, Rozzano, Milan, Italy.
| |
Collapse
|
84
|
Xuan Y, Sheng Y, Zhang D, Zhang K, Zhang Z, Ping Y, Wang S, Shi X, Lian J, Liu K, Zhang Y, Li F. Targeting CD276 by CAR-T cells induces regression of esophagus squamous cell carcinoma in xenograft mouse models. Transl Oncol 2021; 14:101138. [PMID: 34052626 PMCID: PMC8176370 DOI: 10.1016/j.tranon.2021.101138] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 05/20/2021] [Indexed: 12/24/2022] Open
Abstract
CD276 is homogeneously overexpressed in ESCC and EAC. CD276-directed CAR-T cells demonstrate remarkable anti-tumor effects in ESCC PDX model. CD276-targeting CAR-T cells are successfully generated with patients T cells and show potent cytotoxicity against autologous tumor cells.
Esophageal cancer, including esophageal squamous cell carcinoma (ESCC) and esophageal adenocarcinoma (EAC), has a poor prognosis and limited therapeutic options. Chimeric antigen receptor (CAR)-T cells represent a potential ESCC treatment. In this study, we examined CD276 expression in healthy and esophageal tumor tissues and explored the tumoricidal potential of CD276-targeting CAR-T cells in ESCC. CD276 was strongly and homogenously expressed in ESCC and EAC tumor lesions but mildly in healthy tissues, representing a good target for CAR-T cell therapy. We generated CD276-directed CAR-T cells with a humanized antigen-recognizing domain and CD28 or 4–1BB co-stimulation. CD276-specific CAR-T cells efficiently killed ESCC tumor cells in an antigen-dependent manner both in vitro and in vivo. In patient-derived xenograft models, CAR-T cells induced tumor regression and extended mouse survival. In addition, CAR-T cells generated from patient T cells demonstrated potent cytotoxicity against autologous tumor cells. Our study indicates that CD276 is an attractive target for ESCC therapy, and CD276-targeting CAR-T cells are worth testing in ESCC clinical trials.
Collapse
Affiliation(s)
- Yujing Xuan
- Biotherapy Center, Cancer Center, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China; Henan Key Laboratory for Tumor Immunology and Biotherapy, Zhengzhou, Henan, China; State Key Laboratory of Esophageal Cancer Prevention and Treatment, Zhengzhou, Henan, China
| | - Yuqiao Sheng
- Medical Research Center, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Daiqun Zhang
- Biotherapy Center, Cancer Center, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China; Henan Key Laboratory for Tumor Immunology and Biotherapy, Zhengzhou, Henan, China; State Key Laboratory of Esophageal Cancer Prevention and Treatment, Zhengzhou, Henan, China
| | - Kai Zhang
- Biotherapy Center, Cancer Center, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China; Henan Key Laboratory for Tumor Immunology and Biotherapy, Zhengzhou, Henan, China; State Key Laboratory of Esophageal Cancer Prevention and Treatment, Zhengzhou, Henan, China
| | - Zhen Zhang
- Biotherapy Center, Cancer Center, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China; Henan Key Laboratory for Tumor Immunology and Biotherapy, Zhengzhou, Henan, China; State Key Laboratory of Esophageal Cancer Prevention and Treatment, Zhengzhou, Henan, China
| | - Yu Ping
- Biotherapy Center, Cancer Center, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China; Henan Key Laboratory for Tumor Immunology and Biotherapy, Zhengzhou, Henan, China; State Key Laboratory of Esophageal Cancer Prevention and Treatment, Zhengzhou, Henan, China
| | - Shumin Wang
- Biotherapy Center, Cancer Center, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China; Henan Key Laboratory for Tumor Immunology and Biotherapy, Zhengzhou, Henan, China; State Key Laboratory of Esophageal Cancer Prevention and Treatment, Zhengzhou, Henan, China
| | - Xiaojuan Shi
- Biotherapy Center, Cancer Center, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China; Henan Key Laboratory for Tumor Immunology and Biotherapy, Zhengzhou, Henan, China; State Key Laboratory of Esophageal Cancer Prevention and Treatment, Zhengzhou, Henan, China
| | - Jingyao Lian
- Biotherapy Center, Cancer Center, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China; Henan Key Laboratory for Tumor Immunology and Biotherapy, Zhengzhou, Henan, China; State Key Laboratory of Esophageal Cancer Prevention and Treatment, Zhengzhou, Henan, China
| | - Kangdong Liu
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan, China; State Key Laboratory of Esophageal Cancer Prevention and Treatment, Zhengzhou, Henan, China; China-US Hormel (Henan) Cancer Institute, Zhengzhou, Henan, China.
| | - Yi Zhang
- Biotherapy Center, Cancer Center, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China; Henan Key Laboratory for Tumor Immunology and Biotherapy, Zhengzhou, Henan, China; School of Life Sciences, Zhengzhou University, Zhengzhou, Henan, China; State Key Laboratory of Esophageal Cancer Prevention and Treatment, Zhengzhou, Henan, China.
| | - Feng Li
- Biotherapy Center, Cancer Center, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China; Henan Key Laboratory for Tumor Immunology and Biotherapy, Zhengzhou, Henan, China; State Key Laboratory of Esophageal Cancer Prevention and Treatment, Zhengzhou, Henan, China.
| |
Collapse
|
85
|
Na D, Moon HG. Patient-Derived Xenograft Models in Breast Cancer Research. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1187:283-301. [PMID: 33983584 DOI: 10.1007/978-981-32-9620-6_14] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Patient-derived xenograft (PDX) model can be used as a platform to study the individual patient's sensitivity to targeted agents as well as its ability to guide our understanding in various aspects of tumor biology including the tumor's clonal evolution and interaction with microenvironment. In this chapter, we review the history of PDX models in various tumor types. Additionally, we highlight the key studies that suggested potential value of PDX models in cancer treatment. Specifically, we will briefly introduce several studies on the issue of PDX models for precision medicine. In latter part of this chapter, we focus on the studies that used PDX models to investigate the molecular biology of breast cancer that underlies the process of drug resistance and tumor metastasis. Also, we will address our own experience in developing PDX models using breast cancer tissues from Korean breast cancer patients.
Collapse
Affiliation(s)
- Deukchae Na
- Institute of Convergence Medicine, Ewha Womans University Mokdong Hospital, Seoul, South Korea
| | - Hyeong-Gon Moon
- Department of Surgery, Seoul National University College of Medicine, Seoul, South Korea.
| |
Collapse
|
86
|
Chen M, Shi H, Gou S, Wang X, Li L, Jin Q, Wu H, Zhang H, Li Y, Wang L, Li H, Lin J, Guo W, Jiang Z, Yang X, Xu A, Zhu Y, Zhang C, Lai L, Li X. In vivo genome editing in mouse restores dystrophin expression in Duchenne muscular dystrophy patient muscle fibers. Genome Med 2021; 13:57. [PMID: 33845891 PMCID: PMC8042958 DOI: 10.1186/s13073-021-00876-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Accepted: 03/22/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Mutations in the DMD gene encoding dystrophin-a critical structural element in muscle cells-cause Duchenne muscular dystrophy (DMD), which is the most common fatal genetic disease. Clustered regularly interspaced short palindromic repeat (CRISPR)-mediated gene editing is a promising strategy for permanently curing DMD. METHODS In this study, we developed a novel strategy for reframing DMD mutations via CRISPR-mediated large-scale excision of exons 46-54. We compared this approach with other DMD rescue strategies by using DMD patient-derived primary muscle-derived stem cells (DMD-MDSCs). Furthermore, a patient-derived xenograft (PDX) DMD mouse model was established by transplanting DMD-MDSCs into immunodeficient mice. CRISPR gene editing components were intramuscularly delivered into the mouse model by adeno-associated virus vectors. RESULTS Results demonstrated that the large-scale excision of mutant DMD exons showed high efficiency in restoring dystrophin protein expression. We also confirmed that CRISPR from Prevotella and Francisella 1(Cas12a)-mediated genome editing could correct DMD mutation with the same efficiency as CRISPR-associated protein 9 (Cas9). In addition, more than 10% human DMD muscle fibers expressed dystrophin in the PDX DMD mouse model after treated by the large-scale excision strategies. The restored dystrophin in vivo was functional as demonstrated by the expression of the dystrophin glycoprotein complex member β-dystroglycan. CONCLUSIONS We demonstrated that the clinically relevant CRISPR/Cas9 could restore dystrophin in human muscle cells in vivo in the PDX DMD mouse model. This study demonstrated an approach for the application of gene therapy to other genetic diseases.
Collapse
Affiliation(s)
- Menglong Chen
- Department of Neurology, The First Affiliated Hospital, Sun Yat-sen University; Guangdong Provincial Key Laboratory of Diagnosis and Treatment of Major Neurological Diseases, National Key Clinical Department and Key Discipline of Neurology; Zhongshan Medical School, Sun Yat-sen University; Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Guangzhou, 510080, China
| | - Hui Shi
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Shixue Gou
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiaomin Wang
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Lei Li
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Qin Jin
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Han Wu
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
| | - Huili Zhang
- Department of Neurology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, 510180, Guangdong, China
| | - Yaqin Li
- Department of Neurology, Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, 518017, Guangdong, China
| | - Liang Wang
- Department of Neurology, The First Affiliated Hospital, Sun Yat-sen University; Guangdong Provincial Key Laboratory of Diagnosis and Treatment of Major Neurological Diseases, National Key Clinical Department and Key Discipline of Neurology; Zhongshan Medical School, Sun Yat-sen University; Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Guangzhou, 510080, China
| | - Huan Li
- Department of Neurology, The First Affiliated Hospital, Sun Yat-sen University; Guangdong Provincial Key Laboratory of Diagnosis and Treatment of Major Neurological Diseases, National Key Clinical Department and Key Discipline of Neurology; Zhongshan Medical School, Sun Yat-sen University; Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Guangzhou, 510080, China
| | - Jinfu Lin
- Department of Neurology, The First Affiliated Hospital, Sun Yat-sen University; Guangdong Provincial Key Laboratory of Diagnosis and Treatment of Major Neurological Diseases, National Key Clinical Department and Key Discipline of Neurology; Zhongshan Medical School, Sun Yat-sen University; Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Guangzhou, 510080, China
| | - Wenjing Guo
- Scientific Instruments Centre, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, Guangdong, China
| | - Zhiwu Jiang
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
| | - Xiaoyu Yang
- Institute of Physical Science and Information Technology, Anhui University, Hefei, 230601, Anhui, China
| | - Anding Xu
- Department of Neurology and Stroke Centre, The First Affiliated Hospital, Jinan University, Guangzhou, 510630, Guangdong, China
| | - Yuling Zhu
- Department of Neurology, The First Affiliated Hospital, Sun Yat-sen University; Guangdong Provincial Key Laboratory of Diagnosis and Treatment of Major Neurological Diseases, National Key Clinical Department and Key Discipline of Neurology; Zhongshan Medical School, Sun Yat-sen University; Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Guangzhou, 510080, China
| | - Cheng Zhang
- Department of Neurology, The First Affiliated Hospital, Sun Yat-sen University; Guangdong Provincial Key Laboratory of Diagnosis and Treatment of Major Neurological Diseases, National Key Clinical Department and Key Discipline of Neurology; Zhongshan Medical School, Sun Yat-sen University; Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Guangzhou, 510080, China.
| | - Liangxue Lai
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China.
- Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory, GRMH-GDL), Guangzhou, 510005, China.
- Research Unit of Generation of Large Animal Disease Models, Chinese Academy of Medical Sciences (2019RU015), Guangzhou, 510530, China.
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Xiaoping Li
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China.
- Current address: Zhongshan Medical School, Sun Yat-sen University, No.72 Zhongshan Road 2, Guangzhou, 510080, China.
| |
Collapse
|
87
|
Takahashi N, Higa A, Hiyama G, Tamura H, Hoshi H, Dobashi Y, Katahira K, Ishihara H, Takagi K, Goda K, Okabe N, Muto S, Suzuki H, Shimomura K, Watanabe S, Takagi M. Construction of in vitro patient-derived tumor models to evaluate anticancer agents and cancer immunotherapy. Oncol Lett 2021; 21:406. [PMID: 33841567 PMCID: PMC8020396 DOI: 10.3892/ol.2021.12667] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Accepted: 02/22/2021] [Indexed: 12/13/2022] Open
Abstract
An in vitro assay system using patient-derived tumor models represents a promising preclinical cancer model that replicates the disease better than traditional cell culture models. Patient-derived tumor organoid (PDO) and patient-derived tumor xenograft (PDX) models have been previously established from different types of human tumors to recapitulate accurately and efficiently their tissue architecture and function. However, these models have low throughput and are challenging to construct. Thus, the present study aimed to establish a simple in vitro high-throughput assay system using PDO and PDX models. Furthermore, the current study aimed to evaluate different classes of anticancer drugs, including chemotherapeutic, molecular targeted and antibody drugs, using PDO and PDX models. First, an in vitro high-throughput assay system was constructed using PDO and PDX established from solid and hematopoietic tumors cultured in 384-well plates to evaluate anticancer agents. In addition, an in vitro evaluation system of the immune response was developed using PDO and PDX. Novel cancer immunotherapeutic agents with marked efficacy have been used against various types of tumor. Thus, there is an urgent need for in vitro functional potency assays that can simulate the complex interaction of immune cells with tumor cells and can rapidly test the efficacy of different immunotherapies or antibody drugs. An evaluation system for the antibody-dependent cellular cytotoxic activity of anti-epidermal growth factor receptor antibody and the cytotoxic activity of activated lymphocytes, such as cytotoxic T lymphocytes and natural killer cells, was constructed. Moreover, immune response assay systems with bispecific T-cell engagers were developed using effector cells. The present results demonstrated that in vitro assay systems using PDO and PDX may be suitable for evaluating anticancer agents and immunotherapy potency with high reproducibility and simplicity.
Collapse
Affiliation(s)
- Nobuhiko Takahashi
- Medical-Industrial Translational Research Center, Fukushima Medical University, Fukushima, Fukushima 960-1295, Japan.,Department of Bioregulation and Pharmacological Medicine, Fukushima Medical University, Fukushima, Fukushima 960-1295, Japan
| | - Arisa Higa
- Medical-Industrial Translational Research Center, Fukushima Medical University, Fukushima, Fukushima 960-1295, Japan
| | - Gen Hiyama
- Medical-Industrial Translational Research Center, Fukushima Medical University, Fukushima, Fukushima 960-1295, Japan
| | - Hirosumi Tamura
- Medical-Industrial Translational Research Center, Fukushima Medical University, Fukushima, Fukushima 960-1295, Japan
| | - Hirotaka Hoshi
- Medical-Industrial Translational Research Center, Fukushima Medical University, Fukushima, Fukushima 960-1295, Japan
| | - Yuu Dobashi
- Medical-Industrial Translational Research Center, Fukushima Medical University, Fukushima, Fukushima 960-1295, Japan
| | - Kiyoaki Katahira
- Medical-Industrial Translational Research Center, Fukushima Medical University, Fukushima, Fukushima 960-1295, Japan
| | - Hiroya Ishihara
- Research and Development, Department of Biological Evaluation Technology 2, Olympus Corporation, Hachioji, Tokyo 192-8512, Japan
| | - Kosuke Takagi
- Research and Development, Department of Technology Innovation 3, Olympus Corporation, Hachioji, Tokyo 192-8512, Japan
| | - Kazuhito Goda
- Research and Development, Department of Biological Evaluation Technology 2, Olympus Corporation, Hachioji, Tokyo 192-8512, Japan
| | - Naoyuki Okabe
- Department of Chest Surgery, Fukushima Medical University School of Medicine, Fukushima, Fukushima 960-1295, Japan
| | - Satoshi Muto
- Department of Chest Surgery, Fukushima Medical University School of Medicine, Fukushima, Fukushima 960-1295, Japan
| | - Hiroyuki Suzuki
- Department of Chest Surgery, Fukushima Medical University School of Medicine, Fukushima, Fukushima 960-1295, Japan
| | - Kenju Shimomura
- Department of Bioregulation and Pharmacological Medicine, Fukushima Medical University, Fukushima, Fukushima 960-1295, Japan
| | - Shinya Watanabe
- Medical-Industrial Translational Research Center, Fukushima Medical University, Fukushima, Fukushima 960-1295, Japan
| | - Motoki Takagi
- Medical-Industrial Translational Research Center, Fukushima Medical University, Fukushima, Fukushima 960-1295, Japan
| |
Collapse
|
88
|
Investigating T Cell Immunity in Cancer: Achievements and Prospects. Int J Mol Sci 2021; 22:ijms22062907. [PMID: 33809369 PMCID: PMC7999898 DOI: 10.3390/ijms22062907] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 03/04/2021] [Accepted: 03/10/2021] [Indexed: 12/21/2022] Open
Abstract
T cells play a key role in tumour surveillance, both identifying and eliminating transformed cells. However, as tumours become established they form their own suppressive microenvironments capable of shutting down T cell function, and allowing tumours to persist and grow. To further understand the tumour microenvironment, including the interplay between different immune cells and their role in anti-tumour immune responses, a number of studies from mouse models to clinical trials have been performed. In this review, we examine mechanisms utilized by tumour cells to reduce their visibility to CD8+ Cytotoxic T lymphocytes (CTL), as well as therapeutic strategies trialled to overcome these tumour-evasion mechanisms. Next, we summarize recent advances in approaches to enhance CAR T cell activity and persistence over the past 10 years, including bispecific CAR T cell design and early evidence of efficacy. Lastly, we examine mechanisms of T cell infiltration and tumour regression, and discuss the strengths and weaknesses of different strategies to investigate T cell function in murine tumour models.
Collapse
|
89
|
Validation of a multicellular tumor microenvironment system for modeling patient tumor biology and drug response. Sci Rep 2021; 11:5535. [PMID: 33692370 PMCID: PMC7946945 DOI: 10.1038/s41598-021-84612-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 02/09/2021] [Indexed: 02/06/2023] Open
Abstract
Lung cancer rates are rising globally and non-small cell lung cancer (NSCLC) has a five year survival rate of only 24%. Unfortunately, the development of drugs to treat cancer is severely hampered by the inefficiency of translating pre-clinical studies into clinical benefit. Thus, we sought to apply a tumor microenvironment system (TMES) to NSCLC. Using microvascular endothelial cells, lung cancer derived fibroblasts, and NSCLC tumor cells in the presence of in vivo tumor-derived hemodynamic flow and transport, we demonstrate that the TMES generates an in-vivo like biological state and predicts drug response to EGFR inhibitors. Transcriptomic and proteomic profiling indicate that the TMES recapitulates the in vivo and patient molecular biological state providing a mechanistic rationale for the predictive nature of the TMES. This work further validates the TMES for modeling patient tumor biology and drug response indicating utility of the TMES as a predictive tool for drug discovery and development and potential for use as a system for patient avatars.
Collapse
|
90
|
Subia B, Dahiya UR, Mishra S, Ayache J, Casquillas GV, Caballero D, Reis RL, Kundu SC. Breast tumor-on-chip models: From disease modeling to personalized drug screening. J Control Release 2021; 331:103-120. [PMID: 33417986 PMCID: PMC8172385 DOI: 10.1016/j.jconrel.2020.12.057] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 12/30/2020] [Accepted: 12/31/2020] [Indexed: 02/06/2023]
Abstract
Breast cancer is one of the leading causes of mortality worldwide being the most common cancer among women. Despite the significant progress obtained during the past years in the understanding of breast cancer pathophysiology, women continue to die from it. Novel tools and technologies are needed to develop better diagnostic and therapeutic approaches, and to better understand the molecular and cellular players involved in the progression of this disease. Typical methods employed by the pharmaceutical industry and laboratories to investigate breast cancer etiology and evaluate the efficiency of new therapeutic compounds are still based on traditional tissue culture flasks and animal models, which have certain limitations. Recently, tumor-on-chip technology emerged as a new generation of in vitro disease model to investigate the physiopathology of tumors and predict the efficiency of drugs in a native-like microenvironment. These microfluidic systems reproduce the functional units and composition of human organs and tissues, and importantly, the rheological properties of the native scenario, enabling precise control over fluid flow or local gradients. Herein, we review the most recent works related to breast tumor-on-chip for disease modeling and drug screening applications. Finally, we critically discuss the future applications of this emerging technology in breast cancer therapeutics and drug development.
Collapse
Affiliation(s)
- Bano Subia
- Elvesys Microfluidics Innovation Centre, Paris 75011, France..
| | | | - Sarita Mishra
- CSIR-Institute of Genomics and Integrative Biology, New Delhi 110025, India..
| | - Jessica Ayache
- Elvesys Microfluidics Innovation Centre, Paris 75011, France..
| | | | - David Caballero
- 3B's Research Group, I3Bs-Institute on Biomaterials, Biodegradables and Biomimetics, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, University of Minho, AvePark, Barco, Guimarãaes 4805-017, Portugal; ICVS/3B's - PT Government Associate Laboratory, 4805-017, Braga/Guimarães, Portugal.
| | - Rui L Reis
- 3B's Research Group, I3Bs-Institute on Biomaterials, Biodegradables and Biomimetics, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, University of Minho, AvePark, Barco, Guimarãaes 4805-017, Portugal; ICVS/3B's - PT Government Associate Laboratory, 4805-017, Braga/Guimarães, Portugal.
| | - Subhas C Kundu
- 3B's Research Group, I3Bs-Institute on Biomaterials, Biodegradables and Biomimetics, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, University of Minho, AvePark, Barco, Guimarãaes 4805-017, Portugal; ICVS/3B's - PT Government Associate Laboratory, 4805-017, Braga/Guimarães, Portugal.
| |
Collapse
|
91
|
Guo D, Ji X, Luo J. Rational nanocarrier design towards clinical translation of cancer nanotherapy. Biomed Mater 2021; 16. [DOI: 10.1088/1748-605x/abe35a] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 02/04/2021] [Indexed: 02/06/2023]
|
92
|
Giffin MJ, Cooke K, Lobenhofer EK, Estrada J, Zhan J, Deegen P, Thomas M, Murawsky CM, Werner J, Liu S, Lee F, Homann O, Friedrich M, Pearson JT, Raum T, Yang Y, Caenepeel S, Stevens J, Beltran PJ, Canon J, Coxon A, Bailis JM, Hughes PE. AMG 757, a Half-Life Extended, DLL3-Targeted Bispecific T-Cell Engager, Shows High Potency and Sensitivity in Preclinical Models of Small-Cell Lung Cancer. Clin Cancer Res 2021; 27:1526-1537. [PMID: 33203642 DOI: 10.1158/1078-0432.ccr-20-2845] [Citation(s) in RCA: 71] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 10/21/2020] [Accepted: 11/13/2020] [Indexed: 12/12/2022]
Abstract
PURPOSE Small-cell lung cancer (SCLC) is an aggressive neuroendocrine tumor with a high relapse rate, limited therapeutic options, and poor prognosis. We investigated the antitumor activity of AMG 757, a half-life extended bispecific T-cell engager molecule targeting delta-like ligand 3 (DLL3)-a target that is selectively expressed in SCLC tumors, but with minimal normal tissue expression. EXPERIMENTAL DESIGN AMG 757 efficacy was evaluated in SCLC cell lines and in orthotopic and patient-derived xenograft (PDX) mouse SCLC models. Following AMG 757 administration, changes in tumor volume, pharmacodynamic changes in tumor-infiltrating T cells (TILs), and the spatial relationship between the appearance of TILs and tumor histology were examined. Tolerability was assessed in nonhuman primates (NHPs). RESULTS AMG 757 showed potent and specific killing of even those SCLC cell lines with very low DLL3 expression (<1,000 molecules per cell). AMG 757 effectively engaged systemically administered human T cells, induced T-cell activation, and redirected T cells to lyse tumor cells to promote significant tumor regression and complete responses in PDX models of SCLC and in orthotopic models of established primary lung SCLC and metastatic liver lesions. AMG 757 was well tolerated with no AMG 757-related adverse findings up to the highest tested dose (4.5 mg/kg weekly) in NHP. AMG 757 exhibits an extended half-life in NHP, which is projected to enable intermittent administration in patients. CONCLUSIONS AMG 757 has a compelling safety and efficacy profile in preclinical studies making it a viable option for targeting DLL3-expressing SCLC tumors in the clinical setting.
Collapse
Affiliation(s)
| | - Keegan Cooke
- Oncology Research, Amgen Research, Thousand Oaks, California
| | - Edward K Lobenhofer
- Translational Safety & Bioanalytical Sciences, Amgen Research, Thousand Oaks, California
| | - Juan Estrada
- Oncology Research, Amgen Research, Thousand Oaks, California
| | - Jinghui Zhan
- Oncology Research, Amgen Research, Thousand Oaks, California
| | - Petra Deegen
- Translational Safety & Bioanalytical Sciences, Amgen Research (Munich) GmbH, Munich, Germany
| | - Melissa Thomas
- Therapeutic Discovery, Amgen Research, South San Francisco, California
| | | | - Jonathan Werner
- Translational Safety & Bioanalytical Sciences, Amgen Research, Thousand Oaks, California
| | - Siyuan Liu
- Oncology Research, Amgen Research, Thousand Oaks, California
| | - Fei Lee
- Oncology Research, Amgen Research, South San Francisco, California
| | - Oliver Homann
- Genome Analysis Unit, Amgen Research, South San Francisco, California
| | - Matthias Friedrich
- Translational Safety & Bioanalytical Sciences, Amgen Research (Munich) GmbH, Munich, Germany
| | - Joshua T Pearson
- Pharmacokinetics & Drug Metabolism, Amgen Research, South San Francisco, California
| | - Tobias Raum
- Therapeutic Discovery, Amgen Research (Munich) GmbH, Munich, Germany
| | - Yajing Yang
- Oncology Research, Amgen Research, Thousand Oaks, California
| | - Sean Caenepeel
- Oncology Research, Amgen Research, Thousand Oaks, California
| | - Jennitte Stevens
- Therapeutic Discovery, Amgen Research, Thousand Oaks, California
| | - Pedro J Beltran
- Oncology Research, Amgen Research, Thousand Oaks, California
| | - Jude Canon
- Oncology Research, Amgen Research, Thousand Oaks, California
| | - Angela Coxon
- Oncology Research, Amgen Research, Thousand Oaks, California
| | - Julie M Bailis
- Oncology Research, Amgen Research, South San Francisco, California.
| | - Paul E Hughes
- Oncology Research, Amgen Research, Thousand Oaks, California.
| |
Collapse
|
93
|
Lee MW, Miljanic M, Triplett T, Ramirez C, Aung KL, Eckhardt SG, Capasso A. Current methods in translational cancer research. Cancer Metastasis Rev 2021; 40:7-30. [PMID: 32929562 PMCID: PMC7897192 DOI: 10.1007/s10555-020-09931-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 09/04/2020] [Indexed: 12/22/2022]
Abstract
Recent developments in pre-clinical screening tools, that more reliably predict the clinical effects and adverse events of candidate therapeutic agents, has ushered in a new era of drug development and screening. However, given the rapid pace with which these models have emerged, the individual merits of these translational research tools warrant careful evaluation in order to furnish clinical researchers with appropriate information to conduct pre-clinical screening in an accelerated and rational manner. This review assesses the predictive utility of both well-established and emerging pre-clinical methods in terms of their suitability as a screening platform for treatment response, ability to represent pharmacodynamic and pharmacokinetic drug properties, and lastly debates the translational limitations and benefits of these models. To this end, we will describe the current literature on cell culture, organoids, in vivo mouse models, and in silico computational approaches. Particular focus will be devoted to discussing gaps and unmet needs in the literature as well as current advancements and innovations achieved in the field, such as co-clinical trials and future avenues for refinement.
Collapse
Affiliation(s)
- Michael W Lee
- Department of Medical Education, Dell Medical School, University of Texas at Austin, Austin, TX, USA
- Department of Oncology, Dell Medical School, University of Texas at Austin, Austin, TX, USA
- Livestrong Cancer Institutes, Dell Medical School, University of Texas at Austin, Austin, TX, USA
| | - Mihailo Miljanic
- Department of Oncology, Dell Medical School, University of Texas at Austin, Austin, TX, USA
- Livestrong Cancer Institutes, Dell Medical School, University of Texas at Austin, Austin, TX, USA
| | - Todd Triplett
- Department of Oncology, Dell Medical School, University of Texas at Austin, Austin, TX, USA
- Livestrong Cancer Institutes, Dell Medical School, University of Texas at Austin, Austin, TX, USA
| | - Craig Ramirez
- Department of Oncology, Dell Medical School, University of Texas at Austin, Austin, TX, USA
- Livestrong Cancer Institutes, Dell Medical School, University of Texas at Austin, Austin, TX, USA
| | - Kyaw L Aung
- Department of Oncology, Dell Medical School, University of Texas at Austin, Austin, TX, USA
- Livestrong Cancer Institutes, Dell Medical School, University of Texas at Austin, Austin, TX, USA
| | - S Gail Eckhardt
- Department of Oncology, Dell Medical School, University of Texas at Austin, Austin, TX, USA
- Livestrong Cancer Institutes, Dell Medical School, University of Texas at Austin, Austin, TX, USA
| | - Anna Capasso
- Department of Oncology, Dell Medical School, University of Texas at Austin, Austin, TX, USA.
- Livestrong Cancer Institutes, Dell Medical School, University of Texas at Austin, Austin, TX, USA.
| |
Collapse
|
94
|
Decarli MC, do Amaral RLF, Dos Santos DP, Tofani LB, Katayama E, Rezende RA, Silva JVLD, Swiech K, Suazo CAT, Mota C, Moroni L, Moraes ÂM. Cell spheroids as a versatile research platform: formation mechanisms, high throughput production, characterization and applications. Biofabrication 2021; 13. [PMID: 33592595 DOI: 10.1088/1758-5090/abe6f2] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 02/16/2021] [Indexed: 11/12/2022]
Abstract
Three-dimensional cell culture has tremendous advantages to closely mimic the in vivo architecture and microenvironment of healthy tissue and organs, as well as of solid tumors. Spheroids are currently the most attractive 3D model to produce uniform reproducible cell structures as well as a potential basis for engineering large tissues and complex organs. In this review we discuss, from an engineering perspective, processes to obtain uniform 3D cell spheroids, comparing dynamic and static cultures and considering aspects such as mass transfer and shear stress. In addition, computational and mathematical modelling of complex cell spheroid systems are discussed. The non-cell-adhesive hydrogel-based method and dynamic cell culture in bioreactors are focused in detail and the myriad of developed spheroid characterization techniques is presented. The main bottlenecks and weaknesses are discussed, especially regarding the analysis of morphological parameters, cell quantification and viability, gene expression profiles, metabolic behavior and high-content analysis. Finally, a vast set of applications of spheroids as tools for in vitro study model systems is examined, including drug screening, tissue formation, pathologies development, tissue engineering and biofabrication, 3D bioprinting and microfluidics, together with their use in high-throughput platforms.
Collapse
Affiliation(s)
- Monize Caiado Decarli
- School of Chemical Engineering/Department of Engineering of Materials and of Bioprocesses, University of Campinas, Av. Albert Einstein, 500 - Bloco A - Cidade Universitária Zeferino Vaz, Cidade Universitária Zeferino Vaz, Campinas, SP, 13083-852, BRAZIL
| | - Robson Luis Ferraz do Amaral
- School of Pharmaceutical Sciences of Ribeirão Preto/Department of Pharmaceutical Sciences, University of São Paulo, Avenida do Café, no number, Ribeirão Preto, SP, 14040-903, BRAZIL
| | - Diogo Peres Dos Santos
- Departament of Chemical Engineering, Federal University of São Carlos, Rod. Washington Luiz (SP-310), km 235, São Carlos, SP, 13565-905, BRAZIL
| | - Larissa Bueno Tofani
- School of Pharmaceutical Sciences of Ribeirão Preto/Department of Pharmaceutical Sciences, University of São Paulo, Avenida do Café, no number, Ribeirão Preto, SP, 14040-903, BRAZIL
| | - Eric Katayama
- Departament of Chemical Engineering, Federal University of São Carlos, Rod. Washington Luiz (SP-310), km 235, São Carlos, SP, 13565-905, BRAZIL
| | - Rodrigo Alvarenga Rezende
- Centro de Tecnologia da Informacao Renato Archer, Rod. Dom Pedro I (SP-65), km 143,6 - Amarais, Campinas, SP, 13069-901, BRAZIL
| | - Jorge Vicente Lopes da Silva
- Centro de Tecnologia da Informacao Renato Archer, Rod. Dom Pedro I (SP-65), km 143,6 - Amarais, Campinas, SP, 13069-901, BRAZIL
| | - Kamilla Swiech
- University of Sao Paulo, School of Pharmaceutical Sciences of Ribeirão Preto/Department of Pharmaceutical Sciences, Ribeirao Preto, SP, 14040-903, BRAZIL
| | - Cláudio Alberto Torres Suazo
- Department of Chemical Engineering, Federal University of São Carlos, Rod. Washington Luiz (SP-310), km 235, São Carlos, SP, 13565-905, BRAZIL
| | - Carlos Mota
- Department of Complex Tissue Regeneration (CTR), University of Maastricht , Universiteitssingel, 40, office 3.541A, Maastricht, 6229 ER, NETHERLANDS
| | - Lorenzo Moroni
- Complex Tissue Regeneration, Maastricht University, Universiteitsingel, 40, Maastricht, 6229ER, NETHERLANDS
| | - Ângela Maria Moraes
- School of Chemical Engineering/Department of Engineering of Materials and of Bioprocesses, University of Campinas, Av. Albert Einstein, 500 - Bloco A - Cidade Universitária Zeferino Vaz, Campinas, SP, 13083-852, BRAZIL
| |
Collapse
|
95
|
Chen S, Chen C, Hu Y, Zhu C, Luo X, Wang L, Wang X, Sun X, Chen X, Xie W, Lou H, Huang X, Li C, Xu J, Xue X, Shen X. Three-Dimensional Ex Vivo Culture for Drug Responses of Patient-Derived Gastric Cancer Tissue. Front Oncol 2021; 10:614096. [PMID: 33659211 PMCID: PMC7917258 DOI: 10.3389/fonc.2020.614096] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Accepted: 12/14/2020] [Indexed: 12/24/2022] Open
Abstract
Gastric cancer (GC) is one of the most common malignancies with high mortality and substantial morbidity. Although the traditional treatment strategies for GC revolve around surgery, radiotherapy, and chemotherapy, none have been able to optimally treat most affected patients. To improve clinical outcomes and overcome potential GC resistance, we established a three-dimensional (3D) culturing platform that accurately predicts drug responses in a time- and cost-effective manner. We collected tumor tissues from patients following surgeries and cultured them for 3 days using our protocol. We first evaluated cell proliferation, viability, and apoptosis using the following markers: Ki67 and cleaved caspase 3 (Cas3). We demonstrated that cell viability was maintained for 72 h in culture and that the tumor microenvironments and vascular integrities of the tissues were intact throughout the culture period. We then administered chemotherapeutics to assess drug responses and found differential sensitivity across different patient-derived tissues, enabling us to determine individualized medication plans. Overall, our study validated this rapid, cost-effective, scalable, and reproducible protocol for GC tissue culture that can be employed for drug response assessments. Our 3D culture platform paves a new way for personalized medication in GC and other tumors and can greatly impact future oncological research.
Collapse
Affiliation(s)
- Sian Chen
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital & Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China.,Department of Microbiology and Immunology, School of Basic Medical Sciences, Institute of Molecular Virology and Immunology, Wenzhou Medical University, Wenzhou, China
| | - Chenbin Chen
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital & Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China.,Department of Microbiology and Immunology, School of Basic Medical Sciences, Institute of Molecular Virology and Immunology, Wenzhou Medical University, Wenzhou, China
| | - Yuanbo Hu
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital & Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China.,Department of Microbiology and Immunology, School of Basic Medical Sciences, Institute of Molecular Virology and Immunology, Wenzhou Medical University, Wenzhou, China
| | - Ce Zhu
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital & Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Xiaozhi Luo
- Department of Microbiology and Immunology, School of Basic Medical Sciences, Institute of Molecular Virology and Immunology, Wenzhou Medical University, Wenzhou, China.,Department of Pathology, The Second Affiliated Hospital & Yuying Children's, Hospital of Wenzhou Medical University, Wenzhou, China
| | - Lizhu Wang
- Department of Microbiology and Immunology, School of Basic Medical Sciences, Institute of Molecular Virology and Immunology, Wenzhou Medical University, Wenzhou, China
| | - Xiang Wang
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital & Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Xiangwei Sun
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital & Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China.,Department of Microbiology and Immunology, School of Basic Medical Sciences, Institute of Molecular Virology and Immunology, Wenzhou Medical University, Wenzhou, China
| | - Xiaodong Chen
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital & Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China.,Department of Microbiology and Immunology, School of Basic Medical Sciences, Institute of Molecular Virology and Immunology, Wenzhou Medical University, Wenzhou, China
| | - Wangkai Xie
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital & Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China.,Department of Microbiology and Immunology, School of Basic Medical Sciences, Institute of Molecular Virology and Immunology, Wenzhou Medical University, Wenzhou, China
| | - Han Lou
- Department of Microbiology and Immunology, School of Basic Medical Sciences, Institute of Molecular Virology and Immunology, Wenzhou Medical University, Wenzhou, China
| | - Xielin Huang
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital & Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Chao Li
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital & Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Jun Xu
- The First School of Medicine, Wenzhou Medical University, Wenzhou, China
| | - Xiangyang Xue
- Department of Microbiology and Immunology, School of Basic Medical Sciences, Institute of Molecular Virology and Immunology, Wenzhou Medical University, Wenzhou, China
| | - Xian Shen
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital & Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
96
|
Early stability and late random tumor progression of a HER2-positive primary breast cancer patient-derived xenograft. Sci Rep 2021; 11:1563. [PMID: 33452364 PMCID: PMC7810859 DOI: 10.1038/s41598-021-81085-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 12/31/2020] [Indexed: 01/03/2023] Open
Abstract
We established patient-derived xenografts (PDX) from human primary breast cancers and studied whether stability or progressive events occurred during long-term in vivo passages (up to 4 years) in severely immunodeficient mice. While most PDX showed stable biomarker expression and growth phenotype, a HER2-positive PDX (PDX-BRB4) originated a subline (out of 6 studied in parallel) that progressively acquired a significantly increased tumor growth rate, resistance to cell senescence of in vitro cultures, increased stem cell marker expression and high lung metastatic ability, along with a strong decrease of BCL2 expression. RNAseq analysis of the progressed subline showed that BCL2 was connected to three main hub genes also down-regulated (CDKN2A, STAT5A and WT1). Gene expression of progressed subline suggested a partial epithelial-to-mesenchymal transition. PDX-BRB4 with its progressed subline is a preclinical model mirroring the clinical paradox of high level-BCL2 as a good prognostic factor in breast cancer. Sequential in vivo passages of PDX-BRB4 chronically treated with trastuzumab developed progressive loss of sensitivity to trastuzumab while HER2 expression and sensitivity to the pan-HER tyrosine kinase inhibitor neratinib were maintained. Long-term PDX studies, even though demanding, can originate new preclinical models, suitable to investigate the mechanisms of breast cancer progression and new therapeutic approaches.
Collapse
|
97
|
Seol HS, Akiyama Y, Lee SE, Shimada S, Jang SJ. Loss of miR-100 and miR-125b results in cancer stem cell properties through IGF2 upregulation in hepatocellular carcinoma. Sci Rep 2020; 10:21412. [PMID: 33293585 PMCID: PMC7722933 DOI: 10.1038/s41598-020-77960-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Accepted: 11/09/2020] [Indexed: 12/31/2022] Open
Abstract
Stemness factors control microRNA expression in cancer stem cells. Downregulation of miR-100 and miR-125b is associated with tumor progression and prognosis of various cancers. Comparing miRNA profiling of patient-derived tumorsphere (TS) and adherent (2D) hepatocellular carcinoma cells, miR-100 and miR-125b are identified to have association with stemness. In TS cells, miR-100 and miR-125b were downregulated comparing to 2D cells. The finding was reproduced in Hep3B cells. Overexpression of stemness factors NANOG, OCT4 and SOX2 by introduction of gene constructs in Hep3B cells suppressed these two miRNA expression levels. Treatment of chromeceptin, an IGF signaling pathway inhibitor, decreased numbers of TS and inhibited the AKT/mTOR pathway. Stable cell line of miR-100 and miR-125b overexpression decreased IGF2 expression and inhibited tumor growth in the xenograft model. In conclusion, miR-100 and miR-125b have tumor suppressor role in hepatocellular carcinoma through inhibiting IGF2 expression and activation of the AKT/mTOR pathway.
Collapse
Affiliation(s)
- Hyang Sook Seol
- Asan Institute for Life Science, Asan Medical Center, Seoul, 05505, South Korea.
| | - Yoshimitsu Akiyama
- Department of Molecular Oncology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, 113-8519, Japan
| | - San-Eun Lee
- Asan Institute for Life Science, Asan Medical Center, Seoul, 05505, South Korea
| | - Shu Shimada
- Department of Molecular Oncology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, 113-8519, Japan
| | - Se Jin Jang
- Asan Institute for Life Science, Asan Medical Center, Seoul, 05505, South Korea. .,Department of Pathology, Asan Medical Center, University of Ulsan College of Medicine, 05505, Seoul, South Korea.
| |
Collapse
|
98
|
Zhang J, Zhao B, Chen S, Wang Y, Zhang Y, Wang Y, Wei D, Zhang L, Rong G, Weng Y, Hao J, Li B, Hou XQ, Kang X, Zhao Y, Wang F, Zhao Y, Yu Y, Wu QP, Liang XJ, Xiao H. Near-Infrared Light Irradiation Induced Mild Hyperthermia Enhances Glutathione Depletion and DNA Interstrand Cross-Link Formation for Efficient Chemotherapy. ACS NANO 2020; 14:14831-14845. [PMID: 33084319 DOI: 10.1021/acsnano.0c03781] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
DNA alkylating agents generally kill tumor cells by covalently binding with DNA to form interstrand or intrastrand cross-links. However, in the case of cisplatin, only a few DNA adducts (<1%) are highly toxic irreparable interstrand cross-links. Furthermore, cisplatin is rapidly detoxified by high levels of intracellular thiols such as glutathione (GSH). Since the discovery of its mechanism of action, people have been looking for ways to directly and efficiently remove intracellular GSH and increase interstrand cross-links to improve drug efficacy and overcome resistance, but there has been little breakthrough. Herein, we hypothesized that the anticancer efficiency of cisplatin can be enhanced through iodo-thiol click chemistry mediated GSH depletion and increased formation of DNA interstrand cross-links via mild hyperthermia triggered by near-infrared (NIR) light. This was achieved by preparing an amphiphilic polymer with platinum(IV) (Pt(IV)) prodrugs and pendant iodine atoms (iodides). The polymer was further used to encapsulate IR780 and assembled into Pt-I-IR780 nanoparticles. Induction of mild hyperthermia (43 °C) at the tumor site by NIR light irradiation had three effects: (1) it accelerated the GSH-mediated reduction of Pt(IV) in the polymer main chain to platinum(II) (Pt(II)); (2) it boosted the iodo-thiol substitution click reaction between GSH and iodide, thereby attenuating the GSH-mediated detoxification of cisplatin; (3) it increased the proportion of highly toxic and irreparable Pt-DNA interstrand cross-links. Therefore, we find that mild hyperthermia induced via NIR irradiation can enhance the killing of cancer cells and reduce the tumor burden, thus delivering efficient chemotherapy.
Collapse
Affiliation(s)
- Jimei Zhang
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China
- Laboratory of Controllable Nanopharmaceuticals, Chinese Academy of Sciences (CAS) Center for Excellence in Nanoscience and CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology, Beijing 100190, China
- School of Pharmacy, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian 271016, China
| | - Baochang Zhao
- School of Life Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian 271016, China
| | - Shizhu Chen
- Beijing Pharmaceutical Group Company Limited, Beijing 100101, China
- The National Institutes of Pharmaceutical R&D Co., Ltd., China Resources Pharmaceutical Group Limited, Beijing 102206, China
| | - Yongchao Wang
- Laboratory of Controllable Nanopharmaceuticals, Chinese Academy of Sciences (CAS) Center for Excellence in Nanoscience and CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuxuan Zhang
- Laboratory of Controllable Nanopharmaceuticals, Chinese Academy of Sciences (CAS) Center for Excellence in Nanoscience and CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yufei Wang
- Laboratory of Controllable Nanopharmaceuticals, Chinese Academy of Sciences (CAS) Center for Excellence in Nanoscience and CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Dengshuai Wei
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Polymer Physics and Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lingpu Zhang
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Polymer Physics and Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Guanghua Rong
- Department of Oncology, The Fifth Medical Center of PLA General Hospital, Beijing 100039, China
| | - Yuhua Weng
- Institute of Engineering Medicine, Beijing Institute of Technology, Beijing 100081, China
| | - Jifu Hao
- School of Pharmacy, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian 271016, China
| | - Binglong Li
- School of Pharmacy, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian 271016, China
| | - Xue-Qin Hou
- School of Pharmacy, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian 271016, China
| | - Xiaoxu Kang
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Polymer Physics and Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yao Zhao
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Analytical Chemistry for Living Biosystems, National Centre for Mass Spectrometry in Beijing, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Fuyi Wang
- University of Chinese Academy of Sciences, Beijing 100049, China
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Analytical Chemistry for Living Biosystems, National Centre for Mass Spectrometry in Beijing, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Yongxiang Zhao
- National Center for International Research of Bio-targeting Theranostics, Guangxi Key Laboratory of Bio-targeting Theranostics, Collaborative Innovation Center for Targeting Tumour Theranostics and Therapy, Guangxi Medical University, Nanning 530021, China
| | - Yingjie Yu
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Polymer Physics and Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qin-Pei Wu
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Xing-Jie Liang
- Laboratory of Controllable Nanopharmaceuticals, Chinese Academy of Sciences (CAS) Center for Excellence in Nanoscience and CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Haihua Xiao
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Polymer Physics and Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
99
|
Adityan S, Tran M, Bhavsar C, Wu SY. Nano-therapeutics for modulating the tumour microenvironment: Design, development, and clinical translation. J Control Release 2020; 327:512-532. [DOI: 10.1016/j.jconrel.2020.08.016] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 08/08/2020] [Accepted: 08/10/2020] [Indexed: 12/12/2022]
|
100
|
Patient-derived xenografts in surgical oncology: A short research review. Surgery 2020; 168:1021-1025. [PMID: 33010939 DOI: 10.1016/j.surg.2020.07.031] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Accepted: 07/30/2020] [Indexed: 12/23/2022]
|