51
|
Gutierrez A, Arendt BK, Tschumper RC, Kay NE, Zent CS, Jelinek DF. Differentiation of chronic lymphocytic leukemia B cells into immunoglobulin secreting cells decreases LEF-1 expression. PLoS One 2011; 6:e26056. [PMID: 21998751 PMCID: PMC3188588 DOI: 10.1371/journal.pone.0026056] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2011] [Accepted: 09/16/2011] [Indexed: 11/18/2022] Open
Abstract
Lymphocyte enhancer binding factor 1 (LEF-1) plays a crucial role in B lineage development and is only expressed in B cell precursors as B cell differentiation into mature B and plasma cells silences its expression. Chronic lymphocytic leukemia (CLL) cells aberrantly express LEF-1 and its expression is required for cellular survival. We hypothesized that modification of the differentiation status of CLL cells would result in loss of LEF-1 expression and eliminate the survival advantage provided by its aberrant expression. In this study, we first established a methodology that induces CLL cells to differentiate into immunoglobulin (Ig) secreting cells (ISC) using the TLR9 agonist, CpG, together with cytokines (CpG/c). CpG/c stimulation resulted in dramatic CLL cell phenotypic and morphologic changes, expression of cytoplasmic Ig, and secretion of light chain restricted Ig. CpG/c stimulation also resulted in decreased CLL cell LEF-1 expression and increased Blimp-1 expression, which is crucial for plasma cell differentiation. Further, Wnt pathway activation and cellular survival were impaired in differentiated CLL cells compared to undifferentiated CLL cells. These data support the notion that CLL can differentiate into ISC and that this triggers decreased leukemic cell survival secondary to the down regulation of LEF-1 and decreased Wnt pathway activation.
Collapse
MESH Headings
- Aged
- Aged, 80 and over
- B-Lymphocytes/cytology
- B-Lymphocytes/drug effects
- B-Lymphocytes/metabolism
- Cell Differentiation/drug effects
- Cell Differentiation/immunology
- Cell Proliferation/drug effects
- Cell Survival/drug effects
- Cell Survival/immunology
- Cytokines/pharmacology
- Cytoplasm/metabolism
- Female
- Gene Expression Regulation, Neoplastic/drug effects
- Gene Expression Regulation, Neoplastic/immunology
- Humans
- Immunoglobulin Light Chains/metabolism
- Leukemia, Lymphocytic, Chronic, B-Cell/genetics
- Leukemia, Lymphocytic, Chronic, B-Cell/immunology
- Leukemia, Lymphocytic, Chronic, B-Cell/pathology
- Lymphoid Enhancer-Binding Factor 1/metabolism
- Male
- Middle Aged
- Oligodeoxyribonucleotides/pharmacology
- Positive Regulatory Domain I-Binding Factor 1
- Repressor Proteins/metabolism
- Signal Transduction/drug effects
- Signal Transduction/immunology
- Wnt Proteins/metabolism
Collapse
Affiliation(s)
- Albert Gutierrez
- Department of Immunology, Mayo Graduate School, College of Medicine, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Bonnie K. Arendt
- Department of Immunology, Mayo Graduate School, College of Medicine, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Renee C. Tschumper
- Department of Immunology, Mayo Graduate School, College of Medicine, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Neil E. Kay
- Department of Internal Medicine, Mayo Graduate School, College of Medicine, Rochester, Mayo Clinic, Minnesota, United States of America
| | - Clive S. Zent
- Department of Internal Medicine, Mayo Graduate School, College of Medicine, Rochester, Mayo Clinic, Minnesota, United States of America
| | - Diane F. Jelinek
- Department of Immunology, Mayo Graduate School, College of Medicine, Mayo Clinic, Rochester, Minnesota, United States of America
- * E-mail:
| |
Collapse
|
52
|
Abstract
Cancer initiation, progression, and invasion occur in a complex and dynamic microenvironment which depends on the hosts and sites where tumors develop. Tumors arising in mucosal tissues may progress in an inflammatory context linked to local viral and/or bacterial infections. At the opposite, tumors developing in immunoprivileged sites are protected from microorganisms and grow in an immunosuppressive environment. In the present review, we summarize and present our recent data on the influence of infectious context and immune cell infiltration organization in human Non-Small Cell Lung Cancers (NSCLC) progression. We show that stimulation of tumor cells by TLR for viral ssRNA, such as TLR7/8, or bacteria, such as TLR4, promotes cell survival and induces chemoresistance. On the opposite, stimulation by TLR3, receptor for double-stranded viral RNA, decreases tumor cell viability and induces chemosensitivity in some lung tumor cell lines. Since fresh lung tumor cells exhibit a gene expression profile characteristic of TLR-stimulated lung tumor cell lines, we suspect that viral and bacterial influence may not only act on the host immune system but also directly on tumor growth and sensitivity to chemotherapy. The stroma of NSCLC contains tertiary lymphoid structures (or Tumor-induced Bronchus-Associated Lymphoid Tissues (Ti-BALT)) with mature DC, follicular DC, and T and B cells. Two subsets of immature DC, Langerhans cells (LC) and interstitial DC (intDC), were detected in the tumor nests and the stroma, respectively. Here, we show that the densities of the three DC subsets, mature DC, LC, and intDC, are highly predictive of disease-specific survival in a series of 74 early-stage NSCLC patients. We hypothesize that the mature DC may derive from local activation and migration of the immature DC--and especially LC which contact the tumor cells--to the tertiary lymphoid structures, after sampling and processing of the tumor antigens. In view of the prominent role of DC in the immune response, we suggest that the microenvironment of early-stage NSCLC may allow the in situ activation of the adaptive response. Finally, we find that the eyes or brain of mice with growing B cell lymphoma are infiltrated with T cells and that the cytokines produced ex vivo by the tumoral tissues have an impaired Th1 cytokine profile. Our work illustrates that the host and external tumor microenvironments are multifaceted and strongly influence tumor progression and anti-tumor immune responses.
Collapse
|
53
|
Zent CS, Smith BJ, Ballas ZK, Wooldridge JE, Link BK, Call TG, Shanafelt TD, Bowen DA, Kay NE, Witzig TE, Weiner GJ. Phase I clinical trial of CpG oligonucleotide 7909 (PF-03512676) in patients with previously treated chronic lymphocytic leukemia. Leuk Lymphoma 2011; 53:211-7. [PMID: 21812536 DOI: 10.3109/10428194.2011.608451] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
CpG oligonucleotide 7909 (CpG 7909, PF-03512676), a synthetic 24mer single stranded agonist of TLR9 expressed by B cells and plasmacytoid dendritic cells, is immunomodulatory and can cause activation-induced death of chronic lymphocytic leukemia (CLL) cells. We report a phase I study of CpG 7909 in 41 patients with early relapsed CLL. A single intravenous dose of CpG 7909 was well tolerated with no clinical effects and no significant toxicity up to 1.05 mg/kg. Single dose subcutaneous CpG 7909 had a maximum tolerated dose (MTD) of 0.45 mg/kg with dose limiting toxicity of myalgia and constitutional effects. Multiple weekly subcutaneous doses at the MTD were well tolerated. CpG 7909 administration induced immunologic changes in CLL and non-malignant cells that were dose and route dependent. We conclude that multidose therapy with subcutaneous CpG 7909 (0.45 mg/kg) could be used in future phase II combination clinical trials for CLL.
Collapse
Affiliation(s)
- Clive S Zent
- Division of Hematology, Mayo Clinic, Rochester, MN 55905, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
54
|
The rs5743836 polymorphism in TLR9 confers a population-based increased risk of non-Hodgkin lymphoma. Genes Immun 2011; 13:197-201. [PMID: 21866115 DOI: 10.1038/gene.2011.59] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Non-Hodgkin lymphoma (NHL) has been associated with immunological defects, chronic inflammatory and autoimmune conditions. Given the link between immune dysfunction and NHL, genetic variants in toll-like receptors (TLRs) have been regarded as potential predictive factors of susceptibility to NHL. Adequate anti-tumoral responses are known to depend on TLR9 function, such that the use of its synthetic ligand is being targeted as a therapeutic strategy. We investigated the association between the functional rs5743836 polymorphism in the TLR9 promoter and risk for B-cell NHL and its major subtypes in three independent case-control association studies from Portugal (1160 controls, 797 patients), Italy (468 controls, 494 patients) and the US (972 controls, 868 patients). We found that the rs5743836 polymorphism was significantly overtransmitted in both Portuguese (odds ratio (OR), 1.85; P=7.3E-9) and Italian (OR, 1.84; P=6.0E-5) and not in the US cohort of NHL patients. Moreover, the increased transcriptional activity of TLR9 in mononuclear cells from patients harboring rs5743836 further supports a functional effect of this polymorphism on NHL susceptibility in a population-dependent manner.
Collapse
|
55
|
Human B cells differentiate into granzyme B‐secreting cytotoxic B lymphocytes upon incomplete T‐cell help. Immunol Cell Biol 2011; 90:457-67. [DOI: 10.1038/icb.2011.64] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
56
|
Buchanan RM, Popowych Y, Arsic N, Townsend HGG, Mutwiri GK, Potter AA, Babiuk LA, Griebel PJ, Wilson HL. B-cell activating factor (BAFF) promotes CpG ODN-induced B cell activation and proliferation. Cell Immunol 2011; 271:16-28. [PMID: 21724179 DOI: 10.1016/j.cellimm.2011.05.016] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2011] [Revised: 05/18/2011] [Accepted: 05/27/2011] [Indexed: 01/07/2023]
Abstract
It is controversial whether naïve B cells are directly activated in response to TLR9 ligand, CpG ODN. Although bovine blood-derived CD21(+) B cells express TLR9 and proliferate in response to CpG in mixed-cell populations, purified bovine B cells do not proliferate significantly in response to CpG ODN, even when the B cell receptor is engaged. When co-cultured with CD14(+) myeloid cells and/or B-cell activating factor (BAFF), a cytokine produced by activated myeloid cells, there was a significant increase in CpG-specific B cell proliferation, and the number of large B cells in general or positive for CD25, all of which are markers for B cell activation. These data suggest that activated myeloid cells and BAFF prime B cells for significant CpG-specific activation. Understanding the signals required to mediate efficient CpG-induced, antigen-independent and T-cell independent activation of B cells has implications for polyclonal B cell activation and the development of autoimmune diseases.
Collapse
Affiliation(s)
- Rachelle M Buchanan
- Vaccine and Infectious Disease Organization, University of Saskatchewan, Saskatchewan, Canada
| | | | | | | | | | | | | | | | | |
Collapse
|
57
|
Fabricius D, Breckerbohm L, Vollmer A, Queudeville M, Eckhoff SM, Fulda S, Strauss G, Debatin KM, Jahrsdörfer B, Meyer LH. Acute lymphoblastic leukemia cells treated with CpG oligodeoxynucleotides, IL-4 and CD40 ligand facilitate enhanced anti-leukemic CTL responses. Leukemia 2011; 25:1111-21. [PMID: 21527935 DOI: 10.1038/leu.2011.87] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Acute lymphoblastic leukemia (ALL) is the most common pediatric malignancy. Although the majority of patients initially respond to upfront chemotherapy, relapses with poor prognosis occur in approximately 20% of cases. Thus, novel therapeutic strategies are required to improve long-term survival. B-cell precursor (BCP)-ALL cells express low levels of immunogenic molecules and, therefore, are poorly recognized by the immune system. In the present study, we investigated the effect of various combinations of potent B-cell stimulators including CpG, Interleukin (IL)-2 family cytokines and CD40 ligand (CD40L) on the immunogenicity of primary BCP-ALL cells and a series of BCP-ALL cell lines. The combination of CpG, IL-4 and CD40L was identified as most effective to enhance expression of immunogenic molecules on BCP-ALL cells, resulting in an increased capacity to induce both allogeneic and autologous cytotoxic T lymphocytes (CTL). Importantly, such CTL exhibited significant anti-leukemic cytotoxicity not only towards treated, but also towards untreated BCP-ALL cells. Our results demonstrate that the combination of CpG with other B-cell stimulators is more efficient than CpG alone in generating immunogenic BCP-ALL cells and anti-leukemic CTL. Our results may stimulate the development of novel adoptive T cell transfer approaches for the management of BCP-ALL.
Collapse
Affiliation(s)
- D Fabricius
- Department of Pediatrics, University of Ulm, Ulm, Germany.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
58
|
Dunne A, Marshall NA, Mills KHG. TLR based therapeutics. Curr Opin Pharmacol 2011; 11:404-11. [PMID: 21501972 DOI: 10.1016/j.coph.2011.03.004] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2011] [Accepted: 03/16/2011] [Indexed: 12/11/2022]
Abstract
Toll-like receptors (TLRs) play a crucial role in innate immune responses to infection. Binding of agonists to TLRs promotes maturation of antigen presenting cells, such as dendritic cells, which in turn directs the induction of adaptive immune responses. For this reason TLR agonists are being exploited as vaccine adjuvants for infectious disease or cancer and as therapeutics against tumors. However TLR agonists also promote inflammatory cytokine production and have a pathogenic role in many diseases with an inflammatory basis, including autoimmune diseases. Consequently, antibodies to TLRs and inhibitors of TLR signalling pathways have considerable potential as therapeutics for inflammatory disorders. Some have shown to be efficacious in pre-clinical models, and have now entered clinical trials.
Collapse
Affiliation(s)
- Aisling Dunne
- School of Biochemistry and Immunology, and Immunology Research Centre, Trinity College Dublin, Ireland
| | | | | |
Collapse
|
59
|
Holtick U, Scheulen ME, von Bergwelt-Baildon MS, Weihrauch MR. Toll-like receptor 9 agonists as cancer therapeutics. Expert Opin Investig Drugs 2011; 20:361-72. [PMID: 21254877 DOI: 10.1517/13543784.2011.553187] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
INTRODUCTION Toll-like receptor 9 (TLR9) agonists, commonly referred to as CpG oligodeoxynucleotides (ODN), have been added to the arsenal of anti-cancer drugs as monotherapy or in combination with chemotherapy, radiotherapy and other immunotherapeutic approaches as they increase antigen presentation and boost anti-tumor T- and B-cell responses. Several synthetic TLR9 agonists have been developed for clinical grade use and displayed substantial efficacy in the preclinical and clinical models. AREAS COVERED This review summarizes TLR9 signaling and the impact of TLR9 agonists on the immune response. The most recent experimental and clinical data are analyzed as well as the development of new TLR9 agonists in current clinical trials. EXPERT OPINION Application of TLR9 agonists, in particular, combination strategies with chemo- or radiotherapy seem a promising and efficient immunotherapeutic approach in cancer patients even with refractory disease. Simultaneous application of TLR9 agonists aims at supporting the patient's immune response and overcoming specific immunosuppressant strategies developed by tumors. Combinatory approaches of the future might also seek for synergism of TLR9 agonists with other immunomodulatory strategies such as B-cell activation using the CD40-CD40L system.
Collapse
Affiliation(s)
- Udo Holtick
- University of Cologne, Department I for Internal Medicine, Hematology, Oncology, Cologne, Germany.
| | | | | | | |
Collapse
|
60
|
Smith TJ, Yamamoto K, Kurata M, Yukimori A, Suzuki S, Umeda S, Sugawara E, Kojima Y, Sawabe M, Nakagawa Y, Suzuki K, Crawley JTB, Kitagawa M. Differential expression of Toll-like receptors in follicular lymphoma, diffuse large B-cell lymphoma and peripheral T-cell lymphoma. Exp Mol Pathol 2010; 89:284-90. [PMID: 20800061 DOI: 10.1016/j.yexmp.2010.08.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2010] [Revised: 08/09/2010] [Accepted: 08/09/2010] [Indexed: 01/16/2023]
Abstract
Although Toll-like receptors (TLRs) in mammals are well-known to play important roles in innate immunity, newer roles for the TLRs have suggested that cells with aberrant TLR expression may have a survival advantage over normal cells. Lymphocytes are one of a small number of cell types that express many of the TLRs, suggesting that abnormal TLR levels/signaling may potentially influence the progression of malignant lymphomas. Thus, frozen samples of 51 lymph nodes from patients with follicular lymphoma (FL), diffuse large B-cell lymphoma (DLBCL) and peripheral T-cell lymphoma (PTCL) were analyzed for the expression of TLR1 to 9 using quantitative real-time PCR, and compared to those in reactive lymphadenopathy (RL) samples. TLR2 was over-expressed in both DLBCL and PTCL but not in FL when compared to RL. TLR1 and TLR4 expression was up-regulated in PTCL, while TLR8 was highly expressed in DLBCL. Although TLR5 showed lower expression in FL, expression of TLR3, TLR6, TLR7 and TLR9 did not vary significantly between different lymphoma subtypes. Double immunostaining revealed an increase in the number of TLR2 and/or TLR8 expressing lymphoma cells in DLBCL. In PTCL, TLR2 and TLR4 expression was localized to neoplastic T cells. TLR expression is highly variable among lymphoma subtypes. However, despite this some significant differences exist that may prove useful in the development of novel therapeutic strategies.
Collapse
Affiliation(s)
- Thomas J Smith
- Department of Comprehensive Pathology, Ageing and Developmental Sciences, Graduate School, Tokyo Medical and Dental University, 1-5-45 Bunkyo-ku, Tokyo, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
61
|
Brody JD, Ai WZ, Czerwinski DK, Torchia JA, Levy M, Advani RH, Kim YH, Hoppe RT, Knox SJ, Shin LK, Wapnir I, Tibshirani RJ, Levy R. In situ vaccination with a TLR9 agonist induces systemic lymphoma regression: a phase I/II study. J Clin Oncol 2010; 28:4324-32. [PMID: 20697067 DOI: 10.1200/jco.2010.28.9793] [Citation(s) in RCA: 397] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
PURPOSE Combining tumor antigens with an immunostimulant can induce the immune system to specifically eliminate cancer cells. Generally, this combination is accomplished in an ex vivo, customized manner. In a preclinical lymphoma model, intratumoral injection of a Toll-like receptor 9 (TLR9) agonist induced systemic antitumor immunity and cured large, disseminated tumors. PATIENTS AND METHODS We treated 15 patients with low-grade B-cell lymphoma using low-dose radiotherapy to a single tumor site and-at that same site-injected the C-G enriched, synthetic oligodeoxynucleotide (also referred to as CpG) TLR9 agonist PF-3512676. Clinical responses were assessed at distant, untreated tumor sites. Immune responses were evaluated by measuring T-cell activation after in vitro restimulation with autologous tumor cells. RESULTS This in situ vaccination maneuver was well-tolerated with only grade 1 to 2 local or systemic reactions and no treatment-limiting adverse events. One patient had a complete clinical response, three others had partial responses, and two patients had stable but continually regressing disease for periods significantly longer than that achieved with prior therapies. Vaccination induced tumor-reactive memory CD8 T cells. Some patients' tumors were able to induce a suppressive, regulatory phenotype in autologous T cells in vitro; these patients tended to have a shorter time to disease progression. One clinically responding patient received a second course of vaccination after relapse resulting in a second, more rapid clinical response. CONCLUSION In situ tumor vaccination with a TLR9 agonist induces systemic antilymphoma clinical responses. This maneuver is clinically feasible and does not require the production of a customized vaccine product.
Collapse
|
62
|
Abstract
Toll-like receptors (TLRs) are part of the innate immune system, and they belong to the pattern recognition receptors (PRR) family. The PRR family is designed to recognize and bind conserved pathogen-associated molecular patterns, which are not generated by the host and are restricted and essential to micro-organisms. TLR9, which recognizes unmethylated CpG (cytosine guanosine dinucleotide), is a very promising target for therapeutic activation. Stimulation of TLR9 activates human plasmacytoid dendritic cells and B cells, and results in potent T helper-1 (T(h)1)-type immune responses and antitumor responses in mouse tumor models and in patients. Several pharmaceutical companies, such as Pfizer, Idera, and Dynavax, are developing CpG oligodeoxynucleotides (ODNs) for the treatment of cancer, along with other conditions, such as infections and allergy. CpG ODNs have shown promising results as vaccine adjuvants and in combination with cancer immunotherapy. Several TLR9 agonists are being developed and have entered clinical trials to evaluate their safety and efficacy for the treatment of several hematopoietic and solid tumors. In this review, we discuss the use of CpG ODNs in several phase I and II clinical trials for the treatment of NHL, renal cell carcinoma, melanoma, and non-small cell lung cancer, either alone or in combination with other agents.
Collapse
Affiliation(s)
- Yanal M Murad
- Duke University Medical Center, Department of Surgery, Program in Molecular Therapeutics, Comprehensive Cancer Center, 401 MSRB, Research Drive, Durham, NC 27710, USA
| | | |
Collapse
|
63
|
Abstract
Patients with mantle cell lymphoma (MCL) typically respond to initial treatment but subsequently relapse. This pattern suggests that a population of MCL cells is both drug resistant and capable of clonogenic growth. The intracellular enzyme retinaldehyde dehydrogenase (ALDH) provides resistance to several toxic agents. ALDH can also identify stem cells in normal adult tissues and tumorigenic cancer stem cells in several human malignancies. We studied ALDH expression in MCL and found small populations of ALDH(+) cells that were highly clonogenic. Moreover, ALDH(+) MCL cells were relatively quiescent and resistant to a wide range of agents. Normal B cells can be activated by specific unmethylated cytosine-phosphate-guanosine (CpG) DNA motifs through toll-like receptor 9, and we found that the synthetic CpG oligonucleotide 2006 (CpG) reduced the frequency of quiescent ALDH(+) MCL cells, induced terminal plasma cell differentiation, and limited tumor formation in vitro and in vivo. Treatment with CpG also significantly enhanced the activity of the proteasome inhibitor bortezomib that was associated with induction of the unfolded protein response. Our data suggest that CpG may target clonogenic and resistant ALDH(+) cells as well as improve the activity of proteasome inhibitors in MCL.
Collapse
|
64
|
Antiapoptotic effect of interleukin-2 (IL-2) in B-CLL cells with low and high affinity IL-2 receptors. Ann Hematol 2010; 89:1125-32. [PMID: 20544350 DOI: 10.1007/s00277-010-0994-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2010] [Accepted: 05/11/2010] [Indexed: 10/19/2022]
Abstract
Although B chronic lymphocytic leukemia (B-CLL) cells express the alpha chain of the interleukin-2 (IL-2) receptor CD25, little is known about the effect of IL-2 on apoptosis in B-CLL cells. We have shown previously that stimulation of B-CLL cells with a CpG-oligonucleotide induces IL-2 high affinity receptors. In our current work, we analyzed the effect of IL-2 on apoptosis in resting B-CLL cells and in our model of activated B-CLL cells (CD25 high cells). IL-2 had modest antiapoptotic activity in resting B-CLL cells. In contrast, IL-2 was much more potent to prevent apoptosis in activated cells. Prevention of cell death was also associated with the maintenance of the mitochondrial membrane potential. While only limited regulation of apoptosis controlling proteins was observed in resting B-CLL cells, IL-2 had strong effects on MCL-1, Bcl-xl, and survivin expression and inhibited Bax cleavage in CD25 high cells. Interestingly, expression of Bcl-2 was reduced. Addition of IL-2 to activated B-CLL cells caused rapid phosphorylation of Akt, while IL-2 failed to significantly phosphorylate Akt in resting B-CLL cells. Pharmacological inhibition of Akt by LY294002 restored sensitivity of activated B-CLL cells to fludarabine. IL-2 might be an important survival factor in activated B-CLL cells and might contribute to disease progression by upregulation of several critical antiapoptotic proteins.
Collapse
|
65
|
Nair P, O'Donnell CM, Janasek K, Sajduk MK, Smith EA, Golden JM, Vasta CA, Huggins AB, Kurt RA. Lipopolysacchride-treated mammary carcinomas secrete proinflammatory chemokines and exhibit reduced growth rates in vivo, but not in vitro. Immunol Invest 2010; 38:730-48. [PMID: 19860585 DOI: 10.3109/08820130903177810] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Toll-like receptors (TLR) are pattern recognition receptors that play a pivotal role in the initiation of immune responses. Here we report that the murine mammary carcinoma 4T1 constitutively expressed genes encoding TLR2, 3, 4 and 5. Moreover, treatment of the 4T1 cell line with peptidoglycan (PGN), polyinosinic-polycytidylic acid (Poly(I:C)) or lipopolysaccharide (LPS), agonists for TLR2, 3 or 4 respectively, induced nuclear translocation of NFkappaB and secretion of CCL2, CCL5 and CXCL1 in a dose dependent manner. Although treating the tumor cells with the TLR agonists did not modulate growth or viability of the tumor cells in vitro, 4T1 exhibited a decreased growth rate in vivo following treatment with LPS that was dependent upon the presence of CD8(+) T cells. Analysis of 3 additional murine mammary carcinomas revealed that they also secreted CCL2, CCL5 and CXCL1 in response to TLR agonist treatment, and LPS treated 168 and SM1 tumors exhibited decreased growth rates in vivo, but not in vitro. These data indicated that 4 out of 4 murine mammary carcinomas secreted proinflammatory chemokines following treatment with TLR agonists, and 3 out of 4 of the mammary carcinomas responded to LPS treatment in a manner that decreased tumor growth in vivo.
Collapse
Affiliation(s)
- P Nair
- Department of Biology, Lafayette College, Easton, PA 18042, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
66
|
Muzio M, Bertilaccio MTS, Simonetti G, Frenquelli M, Caligaris-Cappio F. The role of toll-like receptors in chronic B-cell malignancies. Leuk Lymphoma 2010; 50:1573-80. [PMID: 19672768 DOI: 10.1080/10428190903115410] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Toll-like receptors (TLR) are key players in host defence from infection. They recognize a specific set of molecular patterns of microbial origin, immediately trigger an innate immune response, and bridge innate and adaptive immunity. TLR have also been shown to play a role in tumor development. In this context, chronic B-cell malignancies are an interesting example as clonal B lymphocytes remain responsive to and dependent on stimuli originating from the microenvironment which then become crucial for maintaining and propagating the disease. Emerging evidences suggest that, among other microenvironmental elements, TLR ligands may play a role in the pathogenesis of chronic B-cell lymphoid malignancies. Conceivably, their manipulation may find a place in specific settings of treatment of these tumors.
Collapse
Affiliation(s)
- Marta Muzio
- Laboratory of Lymphoid Malignancies, Division of Molecular Oncology, San Raffaele Scientific Institute, Milano, Italy
| | | | | | | | | |
Collapse
|
67
|
Klaschik S, Tross D, Shirota H, Klinman DM. Short- and long-term changes in gene expression mediated by the activation of TLR9. Mol Immunol 2009; 47:1317-24. [PMID: 20005572 DOI: 10.1016/j.molimm.2009.11.014] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2009] [Revised: 11/10/2009] [Accepted: 11/16/2009] [Indexed: 01/26/2023]
Abstract
CpG DNA binds to Toll-like receptor 9 to stimulate a strong innate immune response. The magnitude, duration and scope of CpG-induced changes in gene expression are incompletely understood despite extensive studies of TLR9 mediated signal transduction pathways. In particular, the prolonged effects of CpG DNA on gene activation have not been investigated despite evidence that a single dose of CpG DNA alters immune reactivity for several weeks. This study used gene expression analysis to monitor changes in mRNA levels for 14 days, and identified the genes, pathways and functional groups triggered in vivo following CpG DNA administration. Two discrete peaks of gene activation (at 3h and 5 days) were observed after CpG injection. Both the behavior and function of genes activated during the second peak differed from those triggered shortly after CpG administration. Initial gene up-regulation corresponded to a period when TLR9 ligation stimulated genes functionally associated with the generation of innate and adaptive immune responses (e.g. the NF-kappaB and B-cell receptor pathways). The second peak reflected processes associated with cell division (e.g. cell cycle and DNA replication and repair). The complex bimodal pattern of gene expression elicited by CpG DNA administration provides novel insights into the long-term effects of TLR9 engagement on genes associated with immunity and cell proliferation.
Collapse
Affiliation(s)
- Sven Klaschik
- Laboratory of Experimental Immunology, Cancer and Inflammation Program, National Cancer Institute, NIH, Frederick, MD 21702, USA
| | | | | | | |
Collapse
|
68
|
Aue G, Njuguna N, Tian X, Soto S, Hughes T, Vire B, Keyvanfar K, Gibellini F, Valdez J, Boss C, Samsel L, McCoy JP, Wilson WH, Pittaluga S, Wiestner A. Lenalidomide-induced upregulation of CD80 on tumor cells correlates with T-cell activation, the rapid onset of a cytokine release syndrome and leukemic cell clearance in chronic lymphocytic leukemia. Haematologica 2009; 94:1266-73. [PMID: 19734418 DOI: 10.3324/haematol.2009.005835] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND In chronic lymphocytic leukemia lenalidomide causes striking immune activation, possibly leading to clearance of tumor cells. We conducted this study to investigate the mechanism of action of lenalidomide and the basis for its unique toxicities in chronic lymphocytic leukemia. DESIGN AND METHODS Patients with relapsed chronic lymphocytic leukemia were treated with lenalidomide 20 mg (n=10) or 10 mg (n=8) daily for 3 weeks on a 6-week cycle. Correlative studies assessed expression of co-stimulatory molecules on tumor cells, T-cell activation, cytokine levels, and changes in lymphocyte subsets. RESULTS Lenalidomide upregulated the co-stimulatory molecule CD80 on chronic lymphocytic leukemia and mantle cell lymphoma cells but not on normal peripheral blood B cells in vitro. T-cell activation was apparent in chronic lymphocytic leukemia, weak in mantle cell lymphoma, but absent in normal peripheral blood mononuclear cells and correlated with the upregulation of CD80 on B cells. Strong CD80 upregulation and T-cell activation predicted more severe side effects, manifesting in 83% of patients as a cytokine release syndrome within 8-72 h after the first dose of lenalidomide. Serum levels of various cytokines, including tumor necrosis factor-alpha, increased during treatment. CD80 upregulation on tumor cells correlated with rapid clearance of leukemic cells from the peripheral blood. In contrast, neither the severity of the cytokine release syndrome nor the degree of T-cell activation in vitro correlated with clinical response. CONCLUSIONS Upregulation of CD80 on tumor cells and T-cell activation correlate with unique toxicities of lenalidomide in chronic lymphocytic leukemia. However, T-cell activation appears to be dispensable for the drug's anti-tumor effects. This provides a rationale for combinations of lenalidomide with fludarabine or alemtuzumab.
Collapse
Affiliation(s)
- Georg Aue
- Hematology Branch, National Heart, Lung, and Blood Institute/NIH, 10 Center Drive, Bethesda, MD 20892-1202, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
69
|
Takeuchi A, Kamiryou Y, Yamada H, Eto M, Shibata K, Haruna K, Naito S, Yoshikai Y. Oral administration of xanthan gum enhances antitumor activity through Toll-like receptor 4. Int Immunopharmacol 2009; 9:1562-7. [DOI: 10.1016/j.intimp.2009.09.012] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2009] [Revised: 09/18/2009] [Accepted: 09/19/2009] [Indexed: 10/20/2022]
|
70
|
Varghese B, Widman A, Do J, Taidi B, Czerwinski DK, Timmerman J, Levy S, Levy R. Generation of CD8+ T cell-mediated immunity against idiotype-negative lymphoma escapees. Blood 2009; 114:4477-85. [PMID: 19762487 PMCID: PMC2777127 DOI: 10.1182/blood-2009-05-223263] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2009] [Accepted: 08/13/2009] [Indexed: 11/20/2022] Open
Abstract
We investigated the ability of CpG-oligodeoxynucleotide to generate an anti-tumor CD8+ T-cell immune response and to synergize with passive antibody therapy. For these studies, we generated an antibody against the idiotype on the A20 B-cell lymphoma line. This antibody caused the regression of established tumors, but ultimately the tumors relapsed. The escaping surface IgG-negative tumor cells were resistant to both antibody-dependent cellular cytotoxicity and signaling-induced cell death. Addition of intratumoral CpG to antibody therapy cured large established tumors and prevented the occurrence of tumor escapees. The failure of the combination therapy in mice deficient for CD8+ T cells demonstrates the critical role of CD8+ T cells in tumor eradication. When mice were inoculated with 2 tumors and treated systemically with antibody followed by intratumoral CpG in just one tumor, both tumors regressed, indicating that a systemic immune response was generated. Although antibody therapy can eliminate tumor cells bearing the target antigen, it frequently selects for antigen loss variants. However, when a poly-specific T-cell response was generated against the tumor by intratumoral CpG, even large established tumors were cured. Such an immune response can prevent the emergence of antibody selected tumor escapees and provide long-lasting tumor protection.
Collapse
Affiliation(s)
- Bindu Varghese
- Division of Oncology, Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | | | | | | | | | | | | | | |
Collapse
|
71
|
Put N, Konings P, Rack K, Jamar M, Van Roy N, Libouton JM, Vannuffel P, Sartenaer D, Ameye G, Speleman F, Herens C, Poirel HA, Moreau Y, Hagemeijer A, Vandenberghe P, Michaux L. Improved detection of chromosomal abnormalities in chronic lymphocytic leukemia by conventional cytogenetics using CpG oligonucleotide and interleukin-2 stimulation: A Belgian multicentric study. Genes Chromosomes Cancer 2009; 48:843-53. [PMID: 19582829 DOI: 10.1002/gcc.20691] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
We performed a multicentric study to assess the impact of two different culture procedures on the detection of chromosomal abnormalities in 217 consecutive unselected cases with chronic lymphocytic leukemia (CLL) referred for routine analysis either at the time of diagnosis (n = 172) or during disease evolution (n = 45). Parallel cultures of peripheral blood or bone marrow were set up with the addition of either the conventional B-cell mitogen 12-O-tetradecanoyl-phorbol-13-acetate (TPA) or a combination of CpG oligonucleotide (CpG) and interleukin-2 (IL-2). Cytogenetic analyses were performed on both cultures. Clonal abnormalities were identified in 116 cases (53%). In 78 cases (36%), the aberrant clone was detected in both cultures. Among these, the percentages of aberrant metaphases were similar in both conditions in 17 cases, higher in the CpG/IL-2 culture in 43 cases, and higher in the TPA culture in 18 cases. Clonal aberrations were detected in only one culture, either in CpG/IL-2 or TPA in 33 (15%) and 5 (2%) cases, respectively. Taken together, abnormal karyotypes were observed in 51% with CpG/IL-2 and 38% with TPA (P < 0.0001). Application of FISH (n = 201) allowed the detection of abnormalities not visible by conventional cytogenetic analysis in 80 cases: del(13q) (n = 71), del(11q) (n = 5), +12 (n = 2), del(14q) (n = 1), and del(17p) (n = 1). In conclusion, our results confirm that CpG/IL-2 stimulation increases the detection rate of chromosomal abnormalities in CLL compared with TPA and that further improvement can be obtained by FISH. However, neither conventional cytogenetics nor FISH detected all aberrations, demonstrating the complementary nature of these techniques.
Collapse
Affiliation(s)
- Natalie Put
- Centrum voor Menselijke Erfelijkheid, Katholieke Universiteit Leuven, Leuven, Belgium
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
72
|
Intratumoral but not systemic delivery of CpG oligodeoxynucleotide augments the efficacy of anti-CD20 monoclonal antibody therapy against B cell lymphoma. J Immunother 2009; 32:622-31. [PMID: 19483647 DOI: 10.1097/cji.0b013e3181ab23f1] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The anti-CD20 monoclonal antibody rituximab (Rituxan) has become a mainstay in the treatment of B cell non-Hodgkin lymphomas. The mechanisms of action for rituximab include antibody-dependent cellular cytotoxicity (ADCC), complement-dependent cytotoxicity, and apoptosis induction. Combination of anti-CD20 antibodies with immunostimulatory agents may improve their efficacy via enhancement of one or more of these mechanisms. Toll-like receptor 9 agonist CpG oligodeoxynucleotides administered systemically have been studied in clinical trials with and without rituximab. However, recent data suggest that intratumoral (IT) delivery of CpG has advantages in the treatment of tumors. Using a syngeneic murine B cell lymphoma line expressing human CD20, we found that IT, but not systemically administered CpG significantly improved the efficacy of rituximab against 7-day established tumors. Rituximab plus IT CpG could eradicate tumors from 42% of mice, whereas systemically administered CpG, with or without rituximab, did not achieve tumor eradication. Both natural killer cells and complement participated in the cure of tumors by rituximab plus IT CpG, apparently by increasing tumor cell sensitivity to complement and ADCC lysis, and by augmenting the cytotoxicity of ADCC effectors. No role for T cells in mediating tumor eradication was demonstrated in this model. These results suggest that previous clinical trials in B cell lymphoma combining systemic administration of CpG with rituximab may have employed suboptimal routes of CpG delivery. Future trials combining IT CpG with anti-CD20 antibodies or the antibody-mediated targeting of CpG directly to the sites of B cell lymphoma may thus be warranted.
Collapse
|
73
|
Friedberg JW, Kelly JL, Neuberg D, Peterson DR, Kutok JL, Salloum R, Brenn T, Fisher DC, Ronan E, Dalton V, Rich L, Marquis D, Sims P, Rothberg PG, Liesveld J, Fisher RI, Coffman R, Mosmann T, Freedman AS. Phase II study of a TLR-9 agonist (1018 ISS) with rituximab in patients with relapsed or refractory follicular lymphoma. Br J Haematol 2009; 146:282-91. [PMID: 19519691 DOI: 10.1111/j.1365-2141.2009.07773.x] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Toll-like receptor-9 (TLR-9) agonists have pleotropic effects on both the innate and adaptive immune systems, including increased antigen expression, enhanced antibody-dependent cell-mediated cytotoxicity (ADCC) and T helper cell type 1 shift in the immune response. We combined a TLR-9 agonist (1018 ISS, 0.2 mg/kg sc weekly x 4 beginning day 8) with standard rituximab (375 mg/m(2) weekly x 4) in patients (n = 23) with relapsed/refractory, histologically confirmed follicular lymphoma, and evaluated immunological changes following the combination. Treatment was well-tolerated with no significant adverse events attributable to therapy. Clinical responses were observed in 48% of patients; the overall median progression-free survival was 9 months. Biologically relevant increases in ADCC and circulating CD-3 positive T cells were observed in 35% and 39% of patients, respectively. Forty-five percent of patients had increased T cells and dendritic cells in skin biopsies of 1018 ISS injection sites 24 h post-therapy. Pre- and post-biopsies of tumour tissue demonstrated an infiltration of CD8(+) T cells and macrophages following treatment. This group of patients had favourable clinical outcome despite adverse prognostic factors. This study is the first to histologically confirm perturbation of the local immune microenvironment following systemic biological therapy of follicular lymphoma.
Collapse
Affiliation(s)
- Jonathan W Friedberg
- James P. Wilmot Cancer Center, University of Rochester Medical Center, Rochester, NY, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
74
|
Assaf A, Esteves H, Curnow SJ, Browning MJ. A threshold level of TLR9 mRNA predicts cellular responsiveness to CpG-ODN in haematological and non-haematological tumour cell lines. Cell Immunol 2009; 259:90-9. [PMID: 19573862 DOI: 10.1016/j.cellimm.2009.06.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2008] [Revised: 06/01/2009] [Accepted: 06/01/2009] [Indexed: 01/04/2023]
Abstract
The human toll like receptor 9 (TLR9) detects differences between microbial and host DNA, based on unmethylated deoxycytidyl deoxyguanosine dinucleotide (CpG) motifs, leading to activation of both innate and adaptive immune mechanisms. The synthetic TLR9 agonist, CpG-ODN, can substitute for microbial DNA in these responses, and is in clinical trials as an immunomodulatory agent in diseases as diverse as infections, cancer and allergic disorders. Human TLR9 is expressed on cells of haematopoietic origin (principally plasmacytoid dendritic cells and B cells), but has also been described as being expressed on a number of other cell types. In order to clarify the expression and function of TLR9 in a range of cells of both haematopoietic and non-haematopoietic origin, we investigated the level of expression of TLR9 mRNA, and the ability of the cells to respond to CpG-ODN by upregulation of cell surface markers, cytokine production, cellular proliferation and activation of NFkappaB. Our data show that the cellular response to CpG-ODN depended on a threshold level of expression of TLR9. TLR9 was widely expressed amongst B cell tumours (with the exception of myeloma cell lines), but we did not find either threshold levels of expression of TLR9 or responses to CpG-ODN in several myeloma or myeloid tumour cell lines or any non-haematological tumour cell lines tested in our study. TLR9-positive cells varied significantly in their responses to CpG-ODN, and the level of TLR9 expression beyond the threshold did not correlate with the magnitude of the response to CpG-ODN. Finally, CpG-ODN induced NFkappaB activation and increased cellular proliferation in Hek293 cells that had been stably transfected with hTLR9, but did not affect the expression of surface markers or synthesis of IL-6, IL-10 or TNF-alpha. Thus both haematological and non-haematological cells expressing appropriate levels of TLR9 respond to CpG-ODN, but the nature of the TLR9-mediated response is dependent on cell type.
Collapse
Affiliation(s)
- Areej Assaf
- Department of Infection, Immunity & Inflammation, University of Leicester, Maurice Shock Building, England, UK
| | | | | | | |
Collapse
|
75
|
Vollmer J, Krieg AM. Immunotherapeutic applications of CpG oligodeoxynucleotide TLR9 agonists. Adv Drug Deliv Rev 2009; 61:195-204. [PMID: 19211030 DOI: 10.1016/j.addr.2008.12.008] [Citation(s) in RCA: 429] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/15/2008] [Indexed: 12/21/2022]
Abstract
Toll-like receptor 9 (TLR9) agonists have demonstrated substantial potential as vaccine adjuvants, and as mono- or combination therapies for the treatment of cancer and infectious and allergic diseases. Commonly referred to as CpG oligodeoxynucleotides (ODN), TLR9 agonists directly induce the activation and maturation of plasmacytoid dendritic cells and enhance differentiation of B cells into antibody-secreting plasma cells. Preclinical and early clinical data support the use of TLR9 agonists as vaccine adjuvants, where they can enhance both the humoral and cellular responses to diverse antigens. In mouse tumor models TLR9 agonists have shown activity not only as monotherapy, but also in combination with multiple other therapies including vaccines, antibodies, cellular therapies, other immunotherapies, antiangiogenic agents, radiotherapy, cryotherapy, and some chemotherapies. Phase I and II clinical trials have indicated that these agents have antitumor activity as single agents and enhance the development of antitumor T-cell responses when used as therapeutic vaccine adjuvants. CpG ODN have shown benefit in multiple rodent and primate models of asthma and other allergic diseases, with encouraging results in some early human clinical trials. Although their potential clinical contributions are enormous, the safety and efficacy of these TLR9 agonists in humans remain to be determined.
Collapse
|
76
|
Weiner GJ. CpG oligodeoxynucleotide-based therapy of lymphoid malignancies. Adv Drug Deliv Rev 2009; 61:263-7. [PMID: 19168102 DOI: 10.1016/j.addr.2008.12.006] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/15/2008] [Indexed: 01/22/2023]
Abstract
Preclinical and early clinical trials indicate synthetic oligodeoxynucleotides containing unmethylated CG dinucleotides (CpG ODN) have potent immunostimulatory effects. CpG ODN are being explored as immune adjuvants in vaccination strategies and as potential treatments for a wide variety of disorders including cancer and asthma. Therapeutic approaches designed to take advantage of this potent class of agents are based largely on the ability of CpG ODN to activate professional antigen presenting cells (APCs) that express the target receptor - Toll-Like Receptor 9 (TLR9). B-cell malignancies are unique in that the malignant cells themselves express TLR9. CpG ODN can have a direct effect on the malignant B cells and lead to activation induced cell death. CpG ODN also alter the phenotype of target malignant B cells as indicated by upregulation of MHC, immunostimulatory molecules, and antigens that serve as targets for other approaches to lymphoma immunotherapy such as CD20. B cell malignancies are also relatively sensitive to the cytokines that are produced by dendritic cells in response to CpG ODN. Thus, B cell malignancies appear to be uniquely sensitive to CpG ODN because of both the direct and indirect effects the CpG ODN on target cells and the sensitivity of B cell malignancies to an immune response. Preclinical studies support further exploration of the potential of CpG ODN as a component of therapy for lymphoid malignancies. Ongoing clinical trials are exploring the potential of CpG ODN, both alone and in combination with other agents.
Collapse
Affiliation(s)
- George J Weiner
- Holden Comprehensive Cancer Center at the University of Iowa, Department of Internal Medicine, Iowa City, 52242, USA.
| |
Collapse
|
77
|
Klaschik S, Tross D, Klinman DM. Inductive and suppressive networks regulate TLR9-dependent gene expression in vivo. J Leukoc Biol 2009; 85:788-95. [PMID: 19179452 DOI: 10.1189/jlb.1008671] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Bacterial DNA expressing unmethylated CpG motifs binds to TLR9, thereby stimulating a broadly protective, innate immune response. Although CpG-mediated signal transduction has been studied, the scope of TLR9-dependent gene expression is incompletely understood. To resolve these issues, mice were treated with immunostimulatory CpG oligonucleotides (ODN) and splenic mRNA levels monitored from 30 min through 3 days by microarray. Through the unique application of bioinformatic analysis to these experimental data, this study is the first to describe the complex regulatory networks responsible for TLR9-mediated gene expression. Current results are the first to establish that CpG-induced stimulation of the innate immune system proceeds in multiple waves over time, and gene up-regulation is mediated by a small number of temporally activated "major inducers" and "minor inducers". An additional study of TNF knockout mice supports the conclusion that the regulatory networks identified by our bioinformatic analysis accurately identified CpG ODN-driven gene-gene interactions in vivo. Equally important, this work identifies the counter-regulatory mechanisms embedded within the signaling cascade that suppresses the proinflammatory response triggered in vivo by CpG DNA stimulation. Identifying these network interactions provides novel and global insights into the regulation of TLR9-mediated gene activation, improves our understanding of TLR-mediated host defense, and facilitates the development of interventions designed to optimize the nature and duration of the ensuing response.
Collapse
Affiliation(s)
- Sven Klaschik
- Laboratory of Experimental Immunology, Cancer and Inflammation Program, National Cancer Institute, National Institutes of Health, Frederick, MD 21702, USA
| | | | | |
Collapse
|
78
|
Bekeredjian-Ding I, Doster A, Schiller M, Heyder P, Lorenz HM, Schraven B, Bommhardt U, Heeg K. TLR9-activating DNA up-regulates ZAP70 via sustained PKB induction in IgM+ B cells. THE JOURNAL OF IMMUNOLOGY 2009; 181:8267-77. [PMID: 19050243 DOI: 10.4049/jimmunol.181.12.8267] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
In the past, ZAP70 was considered a T cell-specific kinase, and its aberrant expression in B-CLL cells was interpreted as a sign of malignant transformation and dedifferentiation. It was only recently that ZAP70 was detected in normal human B cells. In this study, we show that TLR9-activated B cells resemble B-cell chronic lymphocytic leukemia cells with regard to CD5, CD23, CD25, and heat shock protein 90 expression. Furthermore, stimulatory CpG and GpC DNA oligonucleotides target CD27(+)IgM(+) and CD27(-)IgM(+) B cells (but not IgM(-) B cells) and enhance ZAP70 expression predominantly in the IgM(+)CD27(+) B cell subset. ZAP70 is induced via activation of TLR-7 or -9 in a MyD88-dependent manner, depends on protein kinase B (PKB)/mammalian target of rapamycin signaling and is rapamycin sensitive. Furthermore, ZAP70 expression levels correlate with induction of cyclin A2, prolonged B cell proliferation, and sustained induction of PKB. These events are not observed upon CD40 ligation. However, this deficit can be overcome by the expression of constitutively active PKB, given that CD40 ligation of PKB-transgenic B cells induces B cell proliferation and ZAP70 expression. These results highlight a major difference between CD40- and TLR-7/9-mediated B cell activation and suggest that ZAP70 expression levels in B cells give an estimate of the proliferative potential and the associated PKB availability.
Collapse
Affiliation(s)
- Isabelle Bekeredjian-Ding
- Department of Medical Microbiology and Hygiene, University Hospital Heidelberg, Heidelberg, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
79
|
|
80
|
Muzio M, Scielzo C, Bertilaccio MTS, Frenquelli M, Ghia P, Caligaris-Cappio F. Expression and function of toll like receptors in chronic lymphocytic leukaemia cells. Br J Haematol 2008; 144:507-16. [PMID: 19036098 DOI: 10.1111/j.1365-2141.2008.07475.x] [Citation(s) in RCA: 97] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Mature B-cells can recognize microbial antigens via B-cell-receptor (BCR) in a specific way and via Toll-like receptors (TLR) in a costimulatory manner. A wealth of information is gathering on the possible role of antigenic stimulation in the natural history of Chronic Lymphocytic Leukaemia (CLL). However little is known regarding the repertoire and function of TLR in CLL cells. The TLR family includes 10 different transmembrane proteins devoted to recognize specific pathogen-associated molecular patterns and to alarm immunocompetent cells to trigger an immune response. Here, we studied fresh leukaemic cells for the expression pattern of TLR1 to TLR10, NOD1, NOD2 and SIGIRR (also known as TIR8). CLL cells were found to express several pattern recognition receptors including TLR1, TLR2, TLR6, TLR10, NOD1 and NOD2. The specific TLR expressed by CLL cells were functional. Leukaemic cells, upon stimulation with TLR1/2/6 ligands, such as bacterial lipopeptides, activated the nuclear factor-kappaB signalling pathway, expressed CD86 and CD25 activation molecules, and were protected from spontaneous apoptosis. These findings further support the hypothesis that CLL cells resemble antigen-activated B-cells and suggest a potential role of TLR in modulating CLL cell response in the context of specific antigen recognition.
Collapse
Affiliation(s)
- Marta Muzio
- Department of Oncology, Unit and Laboratory of Lymphoid Malignancies, Istituto Scientifico San Raffaele and Università Vita-Salute San Raffaele, Milano, Italy
| | | | | | | | | | | |
Collapse
|
81
|
The Role of Complement in the Mechanism of Action of Rituximab for B‐Cell Lymphoma: Implications for Therapy. Oncologist 2008; 13:954-66. [DOI: 10.1634/theoncologist.2008-0089] [Citation(s) in RCA: 116] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
|
82
|
Christopher ME, Wong JP. Broad-spectrum drugs against viral agents. Int J Mol Sci 2008; 9:1561-1594. [PMID: 19325820 PMCID: PMC2635754 DOI: 10.3390/ijms9091561] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2008] [Revised: 08/21/2008] [Accepted: 08/29/2008] [Indexed: 01/06/2023] Open
Abstract
Development of antivirals has focused primarily on vaccines and on treatments for specific viral agents. Although effective, these approaches may be limited in situations where the etiologic agent is unknown or when the target virus has undergone mutation, recombination or reassortment. Augmentation of the innate immune response may be an effective alternative for disease amelioration. Nonspecific, broad-spectrum immune responses can be induced by double-stranded (ds)RNAs such as poly (ICLC), or oligonucleotides (ODNs) containing unmethylated deocycytidyl-deoxyguanosinyl (CpG) motifs. These may offer protection against various bacterial and viral pathogens regardless of their genetic makeup, zoonotic origin or drug resistance.
Collapse
|
83
|
Abstract
The humoral immune system senses microbes via recognition of specific microbial molecular motifs by Toll-like receptors (TLRs). These encounters promote plasma cell differentiation and antibody production. Recent studies have demonstrated the importance of the TLR system in enhancing antibody-mediated defense against infections and maintaining memory B cells. These results have led the way to the design of vaccines that target B cells by engaging TLRs. In hematologic malignancies, cells often retain B cell-specific receptors and associated functions. Among these, TLRs are currently exploited to target different subclasses of B-cell leukemia, and TLR agonists are currently being evaluated in clinical trials. However, accumulating evidence suggests that endogenous TLR ligands or chronic infections promote tumor growth, thus providing a need for further investigations to decipher the exact function of TLRs in the B-cell lineage and in neoplastic B cells. The aim of this review is to present and discuss the latest advances with regard to the expression and function of TLRs in both healthy and malignant B cells. Special attention will be focused on the growth-promoting effects of TLR ligands on leukemic B cells and their potential clinical impact.
Collapse
|
84
|
Abstract
Preclinical and early clinical trials indicate synthetic oligodeoxynucleotides containing unmethylated CG dinucleotides (CpG ODN) have potent immunostimulatory effects and can enhance the anti-cancer activity of a variety of cancer treatments. Synergy between CpG ODN and monoclonal antibodies has been noted in various preclinical models. Early clinical trials indicate CpG ODN and monoclonal antibodies can be administered safely together. Preclinical models indicate CpG ODN can enhance the anti-tumor activity of both chemotherapy and radiation therapy. Thus, one possible approach to the use of CpG ODN was to use it in combination with cytotoxic chemotherapy with the goal of enhancing presentation of tumor antigen from dying cancer cells. Promising results in a randomized phase II trial in patients with non-small cell lung cancer led to initiation of two large randomized phase III trials comparing CpG ODN plus chemotherapy to chemotherapy alone. Unfortunately, interim analysis of these trials indicated CpG ODN was unlikely to enhance efficacy of chemotherapy, and they were stopped. CpG ODN also holds promise as a component of cancer vaccines including those composed of protein antigen, peptides, whole tumor cells, and antigen-pulsed dendritic cells. Finally, CpG ODN has been combined with a variety of cytokines to enhance NK activation, promote development of an active anti-tumor immune response or induce apoptosis of malignant cells that express the TLR9 receptor. Overall, both preclinical and early clinical trials suggest CpG ODN may be a valuable component of a variety of approaches to cancer therapy. However, clinical development of this recently discovered, novel class of immunostimulatory agents is just beginning, and we still have much to learn about the optimal approach to their use, and their potential.
Collapse
|
85
|
Jurk M, Vollmer J. Therapeutic applications of synthetic CpG oligodeoxynucleotides as TLR9 agonists for immune modulation. BioDrugs 2008; 21:387-401. [PMID: 18020622 DOI: 10.2165/00063030-200721060-00006] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Vertebrate toll-like receptors (TLRs) sense invading pathogens by recognizing bacterial and viral structures and, as a result, activate innate and adaptive immune responses. Ten human functional TLRs have been reported so far; three of these (TLR7, 8, and 9) are expressed in intracellular compartments and respond to single-stranded nucleic acids as natural ligands. The pathogen structure selectively recognized by TLR9 in bacterial or viral DNA was identified to be CpG dinucleotides in specific sequence contexts (CpG motifs). Short phosphorothioate-stabilized oligodeoxynucleotides (ODNs) containing such motifs are used as synthetic TLR9 agonists, and different classes of ODN TLR9 agonists have been identified with distinct immune modulatory profiles. The TLR9-mediated activation of the vertebrate immune system suggests using such TLR9 agonists as effective vaccine adjuvants for infectious disease, and for the treatment of cancer and asthma/allergy. Immune activation by CpG ODNs has been demonstrated to be beneficial in animal models as a vaccine adjuvant and for the treatment of a variety of viral, bacterial, and parasitic diseases. Antitumor activity of CpG ODNs has also been established in numerous mouse models. In clinical vaccine trials in healthy human volunteers or in immunocompromised HIV-infected patients, CpG ODNs strongly enhanced vaccination efficiency. Most encouraging results in the treatment of cancers have come from human phase I and II clinical trials using CpG ODNs as a tumor vaccine adjuvant, monotherapy, or in combination with chemotherapy. Therefore, CpG ODNs represent targeted immune modulatory drugs with a broad range of potential applications.
Collapse
Affiliation(s)
- Marion Jurk
- Coley Pharmaceutical GmbH, Dusseldorf, Germany
| | | |
Collapse
|
86
|
Abstract
Toll-like receptors (TLRs) function as pathogen pattern recognition molecules that sensor and initiate innate and adaptive immune responses against microbes and cancer cells. Recognition of pathogen-derived ligands by TLRs expressed on many types of cells, including dendritic cells and T cells, triggers the nuclear factor (NF)-kappaB and type-1 interferon pathways, leading to the production of proinflammatory cytokines that are essential in stimulating CD4(+) T cells to differentiate to T helper (Th) 1, Th2 Th17 and regulatory T (Treg) cells. Recent studies indicate that Treg cells play a critical role in suppressing immune responses and inducing immune tolerance to cancer and infectious diseases. Of particular interest, the human TLR8 signaling pathway is essential for reversing the suppressive function of Treg cells. Thus, TLRs regulate cancer immunity and tolerance through innate immune responses mediated by Treg, dendritic and other immune cells. In this review, we focus on the current understanding of TLRs and Treg cells with emphasis on their roles in cancer immunity. Related information on non-TLR immune receptors will be briefly discussed.
Collapse
|
87
|
Sanz I, Wei C, Lee FEH, Anolik J. Phenotypic and functional heterogeneity of human memory B cells. Semin Immunol 2008; 20:67-82. [PMID: 18258454 PMCID: PMC2440717 DOI: 10.1016/j.smim.2007.12.006] [Citation(s) in RCA: 261] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2007] [Accepted: 12/06/2007] [Indexed: 12/25/2022]
Abstract
Memory B cells are more heterogeneous than previously thought. Given that B cells play powerful antibody-independent effector functions, it seems reasonable to assume division of labor between distinct memory B cells subpopulations in both protective and pathogenic immune responses. Here we review the information emerging regarding the heterogeneity of human memory B cells. A better understanding of this topic should greatly improve our ability to target specific B cell subsets either in vaccine responses or in autoimmune diseases and organ rejection among other pathological conditions where B cells play central pathogenic roles.
Collapse
Affiliation(s)
- Iñaki Sanz
- Division of Allergy, Immunology and Rheumatology, Department of Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA.
| | | | | | | |
Collapse
|
88
|
Knuefermann P, Schwederski M, Velten M, Krings P, Ehrentraut H, Rüdiger M, Boehm O, Fink K, Dreiner U, Grohé C, Hoeft A, Baumgarten G, Koch A, Zacharowski K, Meyer R. Bacterial DNA induces myocardial inflammation and reduces cardiomyocyte contractility: role of toll-like receptor 9. Cardiovasc Res 2008; 78:26-35. [PMID: 18194990 DOI: 10.1093/cvr/cvn011] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
AIMS Myocardial function is severely compromised during sepsis. Several underlying mechanisms have been proposed. The innate immune system, i.e. toll-like receptor (TLR) 2 and 4, significantly contributes to cardiac dysfunction. Little is known regarding TLR9 and its pathogenic ligand bacterial DNA in the myocardium. We therefore studied the role of TLR9 in myocardial inflammation and cardiac contractility. METHODS AND RESULTS Wild-type (WT, C57BL/6) and TLR9-deficient (TLR9-D) mice and isolated cardiomyocytes were challenged with synthetic bacterial DNA (CpG-ODN). Myocardial contractility as well as markers of inflammation/signalling were determined. Isolated cardiomyocytes incorporated fluorescence-marked CpG-ODN. In WT mice, CpG-ODN caused a robust response in hearts demonstrated by increased levels of tumour necrosis factor (TNF-alpha), interleukin (IL)-1beta, IL-6, inducible nitric oxide synthase (iNOS), and nuclear factor kappaB activity. This inflammatory response was absent in TLR9-D mice. Under similar conditions, contractility measurements of isolated ventricular cardiomyocytes demonstrated a TLR9-dependent loss of sarcomeric shortening after CpG-ODN exposure. This observation was iNOS dependent as the application of a specific iNOS inhibitor reversed sarcomeric shortening to normal levels. CONCLUSION Our data suggest that bacterial DNA contributes to myocardial cytokine production and loss of cardiomyocyte contractility via TLR9.
Collapse
Affiliation(s)
- Pascal Knuefermann
- Department for Anesthesiology and Intensive Care Medicine, University Hospital Bonn, Sigmund-Freud-Strasse 25, Bonn 53105, Germany.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
89
|
Obstacles to effective Toll-like receptor agonist therapy for hematologic malignancies. Oncogene 2008; 27:208-17. [DOI: 10.1038/sj.onc.1210905] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
90
|
Preventive and therapeutic antitumor effect of tumor vaccine composed of CpG ODN class C and irradiated tumor cells is triggered through the APCs and activation of CTLs. Vaccine 2007; 25:8241-56. [PMID: 17980936 DOI: 10.1016/j.vaccine.2007.09.067] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2007] [Revised: 08/31/2007] [Accepted: 09/25/2007] [Indexed: 11/22/2022]
Abstract
The present study was aimed at assessing the ability of tumor vaccine - CpG ODN class C in combination with irradiated melanoma tumor cells B16F1 to trigger the antitumor immunity in experimental tumor model in mice (i.p. B16F1) as well as at evaluating some of its mechanisms of action. A significant preventive antitumor immunity was achieved with the vaccine and two additional injections of CpG ODN (the proportion of protected mice was between 75% and 100%). In more than 80% of survivors, a long-lasting immunity was triggered. The therapy with the vaccine and two additional injections of CpG ODN significantly prolonged survival of tumor bearing mice. The rates of cured mice were 21.1% and 11.1% in mice with smaller or larger tumor masses, respectively. The mechanism of stimulation of the immune system by this kind of vaccine is likely to be through the augmentation of APC maturation (a significantly increased proportion of CD86+ CD11c+ was determined in vaccinated mice), consequent activation of T lymphocytes (the proportions of CD25+ and CD69+ splenic lymphocytes increased after the exposure to activated DCs) and establishment of memory cells. In conclusion, vaccine composed of CpG ODN class C and irradiated tumor cells powerfully triggers the immune system bringing about both preventive and therapeutic effects.
Collapse
|
91
|
Chen K, Huang J, Gong W, Iribarren P, Dunlop NM, Wang JM. Toll-like receptors in inflammation, infection and cancer. Int Immunopharmacol 2007; 7:1271-85. [PMID: 17673142 DOI: 10.1016/j.intimp.2007.05.016] [Citation(s) in RCA: 248] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2007] [Accepted: 05/25/2007] [Indexed: 01/11/2023]
Abstract
Members of the Toll-like receptor (TLR) family play key roles in both innate and adaptive immune responses. TLR proteins enable host to recognize a large number of pathogen-associated molecular patterns such as bacterial lipopolysaccharides, viral RNA, CPG-containing DNA, and flagellin, among others. TLRs are also apparently able to mediate responses to host molecules, including one defensin, ROS, HMGB1 (high-mobility group box protein 1), surfactant protein A, fibrinogen, breakdown products of tissue matrix, heat shock proteins (hsp) and eosinophil-derived neurotoxin (EDN). Thus, TLR are involved in the development of many pathological conditions including infectious diseases, tissue damage, autoimmune and neurodegenerative diseases and cancer. In this review, the contribution of TLRs to diseases of the central nervous system (CNS), lung, gastrointestinal tract, kidney and skin as well as cancer is evaluated. We hope to provide new insight into the pathogenesis and progression of diseases and more importantly, into the potential for TLRs as targets of therapeutics.
Collapse
Affiliation(s)
- Keqiang Chen
- Laboratory of Molecular Immunoregulation, Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute-Frederick, Frederick, MD 21702, USA.
| | | | | | | | | | | |
Collapse
|
92
|
Taubman MA, Han X, Larosa KB, Socransky SS, Smith DJ. Periodontal bacterial DNA suppresses the immune response to mutans streptococcal glucosyltransferase. Infect Immun 2007; 75:4088-96. [PMID: 17517867 PMCID: PMC1952018 DOI: 10.1128/iai.00623-07] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Certain CpG motifs found in bacterial DNA enhance immune responses through Toll-like receptor 9 (TLR-9) and may also demonstrate adjuvant properties. Our objective was to determine if DNA from bacteria associated with periodontal disease could affect the immune response to other bacterial antigens in the oral cavity. Streptococcus sobrinus glucosyltransferase (GTF), an enzyme involved in dental caries pathogenesis, was used as a test antigen. Rowett rats were injected with aluminum hydroxide (alum) with buffer, alum-GTF, or alum-GTF together with either Escherichia coli DNA, Fusobacterium nucleatum DNA, or Porphyromonas gingivalis DNA. Contrary to expectation, animals receiving alum-GTF plus bacterial DNA (P. gingivalis in particular) demonstrated significantly reduced serum immunoglobulin G (IgG) antibody, salivary IgA antibody, and T-cell proliferation to GTF compared to animals immunized with alum-GTF alone. A diminished antibody response was also observed after administration of alum-GTF with the P. gingivalis DNA either together or separately, indicating that physical complexing of antigen and DNA was not responsible for the reduction in antibody. Since TLR triggering by DNA induces synthesis of prospective suppressive factors (e.g., suppressor of cytokine signaling [SOCS]), the effects of P. gingivalis DNA and GTF exposure on rat splenocyte production of SOCS family molecules and inflammatory cytokines were investigated in vitro. P. gingivalis DNA significantly up-regulated SOCS1 and SOCS5 expression and down-regulated interleukin-10 expression by cultured splenocytes. These results suggested that DNA from periodontal disease-associated bacteria did not enhance, but in fact suppressed, the immune response to a protein antigen from cariogenic streptococci, potentially through suppressive SOCS components triggered by innate mechanisms.
Collapse
Affiliation(s)
- Martin A Taubman
- Department of Immunology, The Forsyth Institute, 140 The Fenway, Boston, MA 02115-3799, USA.
| | | | | | | | | |
Collapse
|
93
|
Abstract
In vertebrates, the TLRs are a family of specialized immune receptors that induce protective immune responses when they detect highly conserved pathogen-expressed molecules. Synthetic agonists for several TLRs, including TLR3, TLR4, TLR7, TLR8, and TLR9, have been or are being developed for the treatment of cancer. TLR9 detects the unmethylated CpG dinucleotides prevalent in bacterial and viral DNA but not in vertebrate genomes. As discussed in this Review, short synthetic oligodeoxynucleotides containing these immune stimulatory CpG motifs activate TLR9 in vitro and in vivo, inducing innate and adaptive immunity, and are currently being tested in multiple phase II and phase III human clinical trials as adjuvants to cancer vaccines and in combination with conventional chemotherapy and other therapies.
Collapse
Affiliation(s)
- Arthur M Krieg
- Coley Pharmaceutical Group, 93 Worcester Street, Wellesley, MA 02481, USA.
| |
Collapse
|
94
|
|
95
|
Jego G, Bataille R, Geffroy-Luseau A, Descamps G, Pellat-Deceunynck C. Pathogen-associated molecular patterns are growth and survival factors for human myeloma cells through Toll-like receptors. Leukemia 2006; 20:1130-7. [PMID: 16628189 DOI: 10.1038/sj.leu.2404226] [Citation(s) in RCA: 119] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Multiple myeloma (MM) patients are strongly vulnerable to infections, which remain a major cause of death. During infection, human immune cells sense the presence of invading pathogens through the Toll-like receptor family (TLR), which recognizes pathogen-associated molecular patterns (PAMP). We hypothesized that MM cells also could sense the presence of microorganisms, thus promoting myeloma disease progression. Here, we report that human myeloma cell lines (HMCL) and primary myeloma cells express a broad range of TLR, and are sensitive to the corresponding PAMP. Toll-like receptor 1, 7 and 9 are most frequently expressed by HMCL. The expression pattern of TLR does not correlate with the one of B cells, as TLR2 and 10 are lost while TLR3, 4 and 8 are acquired by some HMCL. Culture with TLR7- and TLR9-ligands saves HMCL from serum-deprivation or dexamethasone-induced apoptosis. Similarly, both ligands increase myeloma cell growth. These effects are mediated by an autocrine secretion of interleukin-6 (IL-6) since the neutralization of IL-6 blocks the growth and survival of HMCL. Thus, TLR expression and function are not restricted to the cells of the immune system and could be of advantage for cancer cells. In MM, recurrent infections could promote tumor growth and favor escape from standard therapies.
Collapse
Affiliation(s)
- G Jego
- INSERM, U601, Nantes, France.
| | | | | | | | | |
Collapse
|
96
|
Bohnhorst J, Rasmussen T, Moen SH, Fløttum M, Knudsen L, Børset M, Espevik T, Sundan A. Toll-like receptors mediate proliferation and survival of multiple myeloma cells. Leukemia 2006; 20:1138-44. [PMID: 16617319 DOI: 10.1038/sj.leu.2404225] [Citation(s) in RCA: 122] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Multiple myeloma (MM) is an incurable B-cell malignancy characterized by accumulation of malignant plasma cells in bone marrow (BM) and recurrent or persistent infections. Toll-like receptors (TLRs) are essential in the host defense against infections and today 10 human TLRs (TLR1-TLR10) and one TLR-homolog (RP105) have been characterized. B cells express several TLRs (mainly TLR1, 6, 7, 9, 10 and RP105) and TLR-initiated responses in B cells include proliferation, anti-apoptosis effect and plasma cell (PC) differentiation. The present study was designed to analyze the role of TLRs in MM. We show that frequent expressions of TLRs were detected in cell lines from MM patients (minimum six TLRs in each). In comparison, only few TLRs (mainly TLR1 and or RP105) were found expressed in PCs from BM of healthy donors. In addition, TLR-specific ligands induce increased proliferation and survival of the MM cell lines, partially due to an autocrine interleukin-6 production. Importantly, we demonstrate that also PC from MM patients proliferates in response to TLR-specific ligands. In conclusion, TLR-ligands may contribute to increased growth and survival of MM cells in MM patients.
Collapse
Affiliation(s)
- J Bohnhorst
- Department of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway.
| | | | | | | | | | | | | | | |
Collapse
|
97
|
Spaner DE, Masellis A. Toll-like receptor agonists in the treatment of chronic lymphocytic leukemia. Leukemia 2006; 21:53-60. [PMID: 17066089 DOI: 10.1038/sj.leu.2404456] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Advances in our understanding of the Toll-like receptors (TLRs) have led to the identification of several agonists that are suitable for clinical development. Chronic lymphocytic leukemia (CLL) may be especially amenable to TLR agonists because it is an immunologically susceptible tumor with strong expression of several TLRs, particularly TLR-7 and TLR-9. TLR agonists may indirectly clear CLL cells by enhancing the activity of natural killer and tumor-reactive T cells, or by altering the tumor microenvironment and inhibiting angiogenesis. However, signaling pathways can be activated directly in CLL cells by TLR-7 and TLR-9 agonists, leading to the production of cytokines and costimulatory molecules in a manner that is dependent on the underlying cytogenetic abnormalities, but rendering the tumor cells more sensitive to killing by cytotoxic T cells, immunotoxins and some chemotherapeutic drugs. Imidazoquinolines are TLR-7 agonists with strong local activity against CLL, and phase I trials of systemically administered imidazoquinolines (and also cytosine-phosphate-guanosine oligonucleotides that are TLR-9 agonists) are currently ongoing at different centers. The potential importance of these TLR agonists in the treatment of CLL is suggested by their ability to sensitize tumor cells to cytotoxic agents, and their future probably lies in combination with radiotherapies, chemotherapies, monoclonal antibodies and cancer vaccines.
Collapse
MESH Headings
- Antineoplastic Agents/pharmacology
- Antineoplastic Agents/therapeutic use
- Cell Death/drug effects
- Clinical Trials as Topic
- Humans
- Leukemia, Lymphocytic, Chronic, B-Cell/drug therapy
- Leukemia, Lymphocytic, Chronic, B-Cell/immunology
- Leukemia, Lymphocytic, Chronic, B-Cell/metabolism
- Leukemia, Lymphocytic, Chronic, B-Cell/pathology
- Oligonucleotides/pharmacology
- Oligonucleotides/therapeutic use
- Quinolones/pharmacology
- Quinolones/therapeutic use
- T-Lymphocytes, Cytotoxic/immunology
- Toll-Like Receptor 7/agonists
- Toll-Like Receptor 9/agonists
Collapse
Affiliation(s)
- D E Spaner
- Division of Molecular and Cellular Biology, Research Institute, Sunnybrook and Women's College Health Sciences Center, Toronto, Ontario, Canada.
| | | |
Collapse
|
98
|
Longo PG, Laurenti L, Gobessi S, Petlickovski A, Pelosi M, Chiusolo P, Sica S, Leone G, Efremov DG. The Akt signaling pathway determines the different proliferative capacity of chronic lymphocytic leukemia B-cells from patients with progressive and stable disease. Leukemia 2006; 21:110-20. [PMID: 17024114 DOI: 10.1038/sj.leu.2404417] [Citation(s) in RCA: 125] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Chronic lymphocytic leukemia (CLL) B-cells are hyporesponsive to many proliferative signals that induce activation of normal B-lymphocytes. However, a heterogeneous response has recently been observed with immunostimulatory CpG-oligodeoxynucleotides (CpG ODN). We now show that CpG ODN induce proliferation mainly in CLL B-cells from patients with progressive disease and unmutated immunoglobulin V(H) genes, whereas G(1)/S cell cycle arrest and apoptosis are induced in leukemic B-cells from stable/V(H) mutated CLL. Examination of early signaling events demonstrated that all CLL B-cells respond to CpG ODN stimulation by degradation of the NF-kappaB inhibitor IkappaB and activation of the Akt, ERK, JNK and p38 MAPK kinases, but the magnitude and duration of the signaling response was greater in the proliferating cases. Pharmacological inhibition of these pathways showed that simultaneous activation of Akt, ERK and JNK is required for cell cycle progression and proliferation. Conversely, introduction of constitutively active Akt in nonproliferating CLL B-cells resulted in induction of cyclin A following CpG ODN stimulation, indicating that increased Akt activation is sufficient to overcome the hyporesponsiveness of these cells to proliferative signals. Thus, the magnitude of Akt signaling may determine the distinct responses observed in leukemic B-cells belonging to the different prognostic subgroups.
Collapse
MESH Headings
- Adult
- Aged
- Aged, 80 and over
- B-Lymphocytes/immunology
- B-Lymphocytes/metabolism
- B-Lymphocytes/pathology
- Cell Cycle
- Cell Proliferation
- Cyclins/biosynthesis
- Disease Progression
- Female
- Genes, Immunoglobulin
- Humans
- Leukemia, Lymphocytic, Chronic, B-Cell/immunology
- Leukemia, Lymphocytic, Chronic, B-Cell/metabolism
- Leukemia, Lymphocytic, Chronic, B-Cell/pathology
- MAP Kinase Signaling System/drug effects
- Male
- Middle Aged
- Oligodeoxyribonucleotides/immunology
- Oligodeoxyribonucleotides/pharmacology
- Proto-Oncogene Proteins c-akt/metabolism
- Signal Transduction/drug effects
Collapse
Affiliation(s)
- P G Longo
- ICGEB Hematology Group, Monterotondo-Outstation, CNR Campus Adriano Buzzati-Traverso, Rome, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
99
|
CpG oligodeoxynucleotide-induced immunity prevents growth of germinal center-derived B lymphoma cells. Int Immunopharmacol 2006; 6:2057-68. [PMID: 17161362 DOI: 10.1016/j.intimp.2006.08.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2006] [Revised: 08/10/2006] [Accepted: 08/12/2006] [Indexed: 01/06/2023]
Abstract
Therapeutic efficacy of CpG oligodeoxynucleotide (ODN) ISS 1018 was tested in a murine B cell lymphoma model. Previous studies showed that the B lymphoma cells of SJL mice stimulate vigorous proliferation of host CD4(+) TH cells that is unaccompanied by development of tumor-specific CTL. In the presence of ISS 1018, however, tumor cells stimulated high levels of CTL activity in vitro, and this cytotoxic activity was inhibited when anti-IL-12 mAb was added to the cultures. Tumor cells pre-incubated with ISS 1018 were also able to generate CTL without addition of exogenous ODN, and FACS analysis revealed that following incubation with ISS 1018 for 24 h, tumor cells exhibited upregulation of MHC I, MHC II, and co-stimulatory molecule CD80. Finally, tumor-injected mice treated with ISS 1018 showed significantly less growth of tumor cells in lymph nodes and spleen, and exhibited prolonged survival compared to mice treated with a control ODN. The documented effects of CpG ODNs to stimulate cytokines, such as IL-12, from antigen presenting cells, and to upregulate expression of MHC Class I and Class II, as well as co-stimulatory molecules on tumor cells, are also the likely mechanisms by which CTL are generated by ISS 1018 in the SJL B cell lymphoma model.
Collapse
|
100
|
Killeen SD, Wang JH, Andrews EJ, Redmond HP. Exploitation of the Toll-like receptor system in cancer: a doubled-edged sword? Br J Cancer 2006; 95:247-52. [PMID: 16892041 PMCID: PMC2360630 DOI: 10.1038/sj.bjc.6603275] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2006] [Revised: 06/20/2006] [Accepted: 06/23/2006] [Indexed: 12/25/2022] Open
Abstract
The toll-like receptor (TLR) system constitutes a pylogenetically ancient, evolutionary conserved, archetypal pattern recognition system, which underpins pathogen recognition by and activation of the immune system. Toll-like receptor agonists have long been used as immunoadjuvants in anti cancer immunotherapy. However, TLRs are increasingly implicated in human disease pathogenesis and an expanding body of both clinical and experimental evidence suggests that the neoplastic process may subvert TLR signalling pathways to advance cancer progression. Recent discoveries in the TLR system open a multitude of potential therapeutic avenues. Extrapolation of such TLR system manipulations to a clinical oncological setting demands care to prevent potentially deleterious activation of TLR-mediated survival pathways. Thus, the TLR system is a double-edge sword, which needs to be carefully wielded in the setting of neoplastic disease.
Collapse
Affiliation(s)
- S D Killeen
- Department of Academic Surgery, National University of Ireland (NUI)/University College Cork (UCC), Cork University Hospital, Cork, Ireland
| | - J H Wang
- Department of Academic Surgery, National University of Ireland (NUI)/University College Cork (UCC), Cork University Hospital, Cork, Ireland
| | - E J Andrews
- Department of Academic Surgery, National University of Ireland (NUI)/University College Cork (UCC), Cork University Hospital, Cork, Ireland
| | - H P Redmond
- Department of Academic Surgery, National University of Ireland (NUI)/University College Cork (UCC), Cork University Hospital, Cork, Ireland
| |
Collapse
|