51
|
Tsai WC, Hueng DY, Nieh S, Gao HW. ARID4B is a good biomarker to predict tumour behaviour and decide WHO grades in gliomas and meningiomas. J Clin Pathol 2016; 70:162-167. [DOI: 10.1136/jclinpath-2016-203804] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Revised: 06/23/2016] [Accepted: 07/02/2016] [Indexed: 12/14/2022]
Abstract
AimsAlthough ARID4B is known to promote tumour metastasis in breast cancer and inhibit transformation and progression in leukaemia, the possible effect of ARID4B on primary brain tumours (PBTs) is not well characterised. We tested the hypothesis that expression of ARID4B correlates with WHO grade and survival in patients with PBTs.MethodsWestern blot analysis was performed on protein lysates prepared from normal brain tissue and glioma cell lines (U87MG, LN229, GBM8401 and U118MG). Subsequently, immunohistochemical analysis of ARID4B was performed on 2 tissue microarrays, including 12 normal brain tissues, 63 meningiomas with different subtypes, 232 gliomas of various grades and degrees of differentiation, 8 central neurocytomas and 4 chordomas. The ARID4B immunostaining score was calculated by multiplying the intensity score by the percentage of tumour cells expressing ARID4B.ResultsIn vitro, ARID4B protein expression was increased in some glioma cell lines. In addition, the average ARID4B immunostaining score was 38.03, 79.09, 129.76 and 119.32, respectively, in gliomas of WHO grade I, II, III and IV. Higher ARID4B immunostaining score was significantly correlated with more advanced WHO grade of gliomas (p=7.4×10–6) and meningiomas. Finally, higher ARID4B expression tended to the shorter survival rates, but did not reach statistical significance.ConclusionsARID4B overexpression presented in most of PBTs, rather than non-neoplastic brain tissue, and correlated with WHO grades in meningiomas and gliomas. Therefore, ARID4B is a satisfactory biomarker to highlight tumour component and predict tumour behaviour in primary brain neoplasms.
Collapse
|
52
|
Zhang ZY, Chan AKY, Ding XJ, Qin ZY, Hong CS, Chen LC, Zhang X, Zhao FP, Wang Y, Wang Y, Zhou LF, Zhuang Z, Ng HK, Yan H, Yao Y, Mao Y. TERT promoter mutations contribute to IDH mutations in predicting differential responses to adjuvant therapies in WHO grade II and III diffuse gliomas. Oncotarget 2016; 6:24871-83. [PMID: 26314843 PMCID: PMC4694799 DOI: 10.18632/oncotarget.4549] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2015] [Accepted: 06/26/2015] [Indexed: 12/21/2022] Open
Abstract
IDH mutations frequently occur in WHO grade II and III diffuse gliomas and have favorable prognosis compared to wild-type tumors. However, whether IDH mutations in WHO grade II and II diffuse gliomas predict enhanced sensitivity to adjuvant radiation (RT) or chemotherapy (CHT) is still being debated. Recent studies have identified recurrent mutations in the promoter region of telomerase reverse transcriptase (TERT) in gliomas. We previously demonstrated that TERT promoter mutations may be promising biomarkers in glioma survival prognostication when combined with IDH mutations. This study analyzed IDH and TERT promoter mutations in 295 WHO grade II and III diffuse gliomas treated with or without adjuvant therapies to explore their impact on the sensitivity of tumors to genotoxic therapies. IDH mutations were found in 216 (73.2%) patients and TERT promoter mutations were found in 112 (38%) patients. In multivariate analysis, IDH mutations (p < 0.001) were independent prognostic factors for PFS and OS in patients receiving genotoxic therapies while TERT promoter mutations were not. In univariate analysis, IDH and TERT promoter mutations were not significant prognostic factors in patients who did not receive genotoxic therapies. Adjuvant RT and CHT were factors independently impacting PFS (RT p = 0.001, CHT p = 0.026) in IDH mutated WHO grade II and III diffuse gliomas but not in IDH wild-type group. Univariate and multivariate analyses demonstrated TERT promoter mutations further stratified IDH wild-type WHO grade II and III diffuse gliomas into two subgroups with different responses to genotoxic therapies. Adjuvant RT and CHT were significant parameters influencing PFS in the IDH wt/TERT mut subgroup (RT p = 0.015, CHT p = 0.015) but not in the IDH wt/TERT wt subgroup. Our data demonstrated that IDH mutated WHO grade II and III diffuse gliomas had better PFS and OS than their IDH wild-type counterparts when genotoxic therapies were administered after surgery. Importantly, we also found that TERT promoter mutations further stratify IDH wild-type WHO grade II and III diffuse gliomas into two subgroups with different responses to adjuvant therapies. Taken together, TERT promoter mutations may predict enhanced sensitivity to genotoxic therapies in IDH wild-type WHO grade II and III diffuse gliomas and may justify intensified treatment in this subgroup.
Collapse
Affiliation(s)
- Zhen-Yu Zhang
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, China
| | - Aden Ka-Yin Chan
- Department of Anatomical and Cellular Pathology, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong, China
| | - Xiao-Jie Ding
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, China
| | - Zhi-Yong Qin
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, China
| | - Christopher S Hong
- Surgical Neurology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland, USA
| | - Ling-Chao Chen
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, China
| | - Xin Zhang
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, China
| | - Fang-Ping Zhao
- Genetron Health, Inc., Chaoyang District, Beijing, China
| | - Yin Wang
- Department of Neuropathology, Huashan Hospital, Fudan University, Shanghai, China
| | - Yang Wang
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, China
| | - Liang-Fu Zhou
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, China
| | - Zhengping Zhuang
- Surgical Neurology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland, USA
| | - Ho-Keung Ng
- Department of Anatomical and Cellular Pathology, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong, China
| | - Hai Yan
- Department of Pathology, Duke University Medical Center, The Preston Robert Tisch Brain Tumor Center, The Pediatric Brain Tumor Foundation Institute, Durham, North Carolina, USA
| | - Yu Yao
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, China
| | - Ying Mao
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
53
|
Hattori N, Hirose Y, Sasaki H, Nakae S, Hayashi S, Ohba S, Adachi K, Hayashi T, Nishiyama Y, Hasegawa M, Abe M. World Health Organization grade II-III astrocytomas consist of genetically distinct tumor lineages. Cancer Sci 2016; 107:1159-64. [PMID: 27196377 PMCID: PMC4982592 DOI: 10.1111/cas.12969] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2015] [Revised: 03/17/2016] [Accepted: 05/15/2016] [Indexed: 12/15/2022] Open
Abstract
Recent investigations revealed genetic analysis provides important information in management of gliomas, and we previously reported grade II-III gliomas could be classified into clinically relevant subgroups based on the DNA copy number aberrations (CNAs). To develop more precise genetic subgrouping, we investigated the correlation between CNAs and mutational status of the gene encoding isocitrate dehydrogenase (IDH) of those tumors. We analyzed the IDH status and CNAs of 174 adult supratentorial gliomas of astrocytic or oligodendroglial origin by PCR-based direct sequencing and comparative genomic hybridization, respectively. We analyzed the relationship between genetic subclassification and clinical features. We found the most frequent aberrations in IDH mutant tumors were the combined whole arm-loss of 1p and 19q (1p/19q codeletion) followed by gain on chromosome arm 7q (+7q). The gain of whole chromosome 7 (+7) and loss of 10q (-10q) were detected in IDH wild-type tumors. Kaplan-Meier estimates for progression-free survival showed that the tumors with mutant IDH, -1p/19q, or +7q (in the absence of +7p) survived longer than tumors with wild-type IDH, +7, or -10q. As tumors with +7 (IDH wild-type) showed a more aggressive clinical nature, they are probably not a subtype that developed from the slowly progressive tumors with +7q (IDH mutant). Thus, tumors with a gain on chromosome 7 (mostly astrocytic) comprise multiple lineages, and such differences in their biological nature should be taken into consideration during their clinical management.
Collapse
Affiliation(s)
- Natsuki Hattori
- Department of Neurosurgery, Fujita Health University, Toyoake, Japan
| | - Yuichi Hirose
- Department of Neurosurgery, Fujita Health University, Toyoake, Japan
| | - Hikaru Sasaki
- Department of Neurosurgery, Keio University School of Medicine, Tokyo, Japan
| | - Shunsuke Nakae
- Department of Neurosurgery, Fujita Health University, Toyoake, Japan
| | - Saeko Hayashi
- Department of Neurosurgery, Keio University School of Medicine, Tokyo, Japan
| | - Shigeo Ohba
- Department of Neurosurgery, Fujita Health University, Toyoake, Japan
| | - Kazuhide Adachi
- Department of Neurosurgery, Fujita Health University, Toyoake, Japan
| | - Takuro Hayashi
- Department of Neurosurgery, Fujita Health University, Toyoake, Japan
| | - Yuya Nishiyama
- Department of Neurosurgery, Fujita Health University, Toyoake, Japan
| | | | - Masato Abe
- Faculty of Medical Technology, Fujita Health University, Toyoake, Japan
| |
Collapse
|
54
|
Chan AKY, Yao Y, Zhang Z, Shi Z, Chen L, Chung NYF, Liu JSM, Li KKW, Chan DTM, Poon WS, Wang Y, Zhou L, Ng HK. Combination genetic signature stratifies lower-grade gliomas better than histological grade. Oncotarget 2016; 6:20885-901. [PMID: 26369702 PMCID: PMC4673237 DOI: 10.18632/oncotarget.4928] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2015] [Accepted: 07/30/2015] [Indexed: 01/01/2023] Open
Abstract
We studied if combination genetic signature potentially stratifies lower-grade gliomas better than histology by investigating 214 lower-grade gliomas for IDH1/2 and TERTp mutations, 1p/19q codeletion and EGFR amplification as to their impact on prognostication. Prognostic association of grading was independent of other prognostic variables including age, histological type, IDH1/2, 1p/19q and TERTp status. No single marker, including IDH1/2, superseded grading in prognostication, indicating grading was still a very important tool. Prognosis was most favorable in 31.7% of patients with IDH1/2 mutation and either 1p/19q codeletion or TERTp mutation (IDHmut-OT), intermediate in 45.8% of patients with IDH1/2 mutation only (IDHmut) and 16.9% of patients without any of the alterations (IDHwt), and poorest in 5.6% of patients with wild-type IDH1/2 and either TERTp mutation or EGFR amplification (IDHwt-ET). Our results suggested not all IDH1/2 wild-type lower-grade gliomas are aggressive and additional biomarkers are required to identify glioblastoma-equivalent tumors. Multivariate analysis revealed independent prognostic values of grading and genetic signature. Grade II IDHwt-ET gliomas exhibited shorter survival than IDH1/2 mutated grade III gliomas, suggesting combination genetic signature potentially superseded grading in prognostication. In summary, biomarker-based stratification is useful in the diagnosis and prognostication of lower-grade gliomas, and should be used together with grading.
Collapse
Affiliation(s)
- Aden Ka-Yin Chan
- Department of Anatomical and Cellular Pathology, The Chinese University of Hong Kong, Shatin, Hong Kong.,Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, China
| | - Yu Yao
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, China
| | - Zhenyu Zhang
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, China
| | - Zhifeng Shi
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, China
| | - Liang Chen
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, China
| | - Nellie Yuk-Fei Chung
- Department of Anatomical and Cellular Pathology, The Chinese University of Hong Kong, Shatin, Hong Kong.,Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, China
| | - Joseph Shu-Ming Liu
- Department of Anatomical and Cellular Pathology, The Chinese University of Hong Kong, Shatin, Hong Kong.,Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, China
| | - Kay Ka-Wai Li
- Department of Anatomical and Cellular Pathology, The Chinese University of Hong Kong, Shatin, Hong Kong.,Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, China
| | - Danny Tat-Ming Chan
- Neurosurgery Division, Department of Surgery, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Wai Sang Poon
- Neurosurgery Division, Department of Surgery, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Ying Wang
- Department of Neuropathology, Huashan Hospital, Fudan University, Shanghai, China
| | - Liangfu Zhou
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, China
| | - Ho-Keung Ng
- Department of Anatomical and Cellular Pathology, The Chinese University of Hong Kong, Shatin, Hong Kong.,Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, China
| |
Collapse
|
55
|
Abstract
Background IDH (Isocitrate dehydrogenase) mutations occur frequently in gliomas, but their prognostic impact has not been fully assessed. We performed a meta-analysis of the association between IDH mutations and survival in gliomas. Methods Pubmed and EMBASE databases were searched for studies reporting IDH mutations (IHD1/2 and IDH1) and survival in gliomas. The primary outcome was overall survival (OS); the secondary outcome was progression-free survival (PFS). Hazard ratios (HR) with 95% confidence interval (CI) were determined using the Mantel-Haenszel random-effect modeling. Funnel plot and Egger's test were conducted to examine the risk of publication bias. Results Fifty-five studies (9487 patients) were included in the analysis. Fifty-four and twenty-seven studies investigated the association between IDH1/2 mutations and OS/PFS respectively in patients with glioma. The results showed that patients possessing an IDH1/2 mutation had significant advantages in OS (HR = 0.39, 95%CI: 0.34–0.45; P < 0.001) and PFS (HR = 0.42, 95% CI: 0.35–0.51; P < 0.001). Subgroup analysis showed a consistent result with pooled analysis, and patients with glioma of WHO grade III or II-III had better outcomes. Conclusions These findings provide further indication that patients with glioma harboring IDH mutations have improved OS and PFS, especially for patients with WHO grade III and grade II-III.
Collapse
|
56
|
Chen JR, Yao Y, Xu HZ, Qin ZY. Isocitrate Dehydrogenase (IDH)1/2 Mutations as Prognostic Markers in Patients With Glioblastomas. Medicine (Baltimore) 2016; 95:e2583. [PMID: 26945349 PMCID: PMC4782833 DOI: 10.1097/md.0000000000002583] [Citation(s) in RCA: 83] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
The purpose of this study was to perform a meta-analysis examining the association of isocitrate dehydrogenase (IDH)1/2 mutations with overall survival (OS) and progression-free survival (PFS) in patients with glioblastomas. Medline, Cochrane, EMBASE, and Google Scholar were searched from inception to January 28, 2015, using combinations of the following keywords: IDH mutation, brain tumor, glioma, glioblastoma, oligodendroglioma, prognosis. Randomized controlled trials, and prospective and retrospective studies of patients with glioblastomas that provided IDH mutation and survival data were included. OS and PFS were used to evaluate the association of IDH1 and IDH1/2 mutations and prognosis. Hazard ratios (HRs) with corresponding 95% confidence intervals (CIs) for OS and PFS were calculated and compared between patients with and without mutations. Of 165 studies that were identified, 136 nonrelevant studies were excluded. Twenty-nine full-text articles were assessed, and of these, 5 were excluded as they did not provide a quantitative outcome. Therefore, 24 studies were included in the qualitative synthesis. The pooled HR of 0.358 (95% CI 0.264-0.487, P < 0.001) indicated that IDH mutations were associated with better OS. Similarly, the pooled HR of 0.322 (95% CI 0.24200.455, P < 0.001) indicated that IDH mutations were associated with better PFS. When patients were stratified by surgery versus no surgery or IDH1 versus IDH1/2 mutations, the results also indicated that the presence of IDH mutations was associated with better OS and PFS. The IDH mutations are associated with improved survival in patients with glioblastomas.
Collapse
Affiliation(s)
- Jun-Rui Chen
- From the Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | | | | | | |
Collapse
|
57
|
Jungk C, Chatziaslanidou D, Ahmadi R, Capper D, Bermejo JL, Exner J, von Deimling A, Herold-Mende C, Unterberg A. Chemotherapy with BCNU in recurrent glioma: Analysis of clinical outcome and side effects in chemotherapy-naïve patients. BMC Cancer 2016; 16:81. [PMID: 26865253 PMCID: PMC4748520 DOI: 10.1186/s12885-016-2131-6] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2014] [Accepted: 02/07/2016] [Indexed: 12/03/2022] Open
Abstract
Background To date, standardized strategies for the treatment of recurrent glioma are lacking. Chemotherapy with the alkylating agent BCNU (1,3-bis (2-chloroethyl)-1-nitroso-urea) is a therapeutic option even though its efficacy and safety, particularly the risk of pulmonary fibrosis, remains controversial. To address these issues, we performed a retrospective analysis on clinical outcome and side effects of BCNU-based chemotherapy in recurrent glioma. Methods Survival data of 34 mostly chemotherapy-naïve glioblastoma patients treated with BCNU at 1st relapse were compared to 29 untreated control patients, employing a multiple Cox regression model which considered known prognostic factors including MGMT promoter hypermethylation. Additionally, medical records of 163 patients treated with BCNU for recurrent glioma WHO grade II to IV were retrospectively evaluated for BCNU-related side effects classified according to the National Cancer Institute Common Toxicity Criteria for Adverse Events (CTCAE) version 2.0. Results In recurrent glioblastoma, multiple regression survival analysis revealed a significant benefit of BCNU-based chemotherapy on survival after relapse (p = 0.02; HR = 0.48; 95 % CI = 0.26–0.89) independent of known clinical and molecular prognostic factors. Exploratory analyses suggested that survival benefit was most pronounced in MGMT-hypermethylated, BCNU-treated patients. Moreover, BCNU was well tolerated by 46 % of the 163 patients analyzed for side effects; otherwise, predominantly mild side effects occurred (CTCAE I/II; 45 %). Severe side effects CTCAE III/IV were observed in 9 % of patients including severe hematotoxicity, thromboembolism, intracranial hemorrhage and injection site reaction requiring surgical intervention. One patient presented with a clinically apparent pulmonary fibrosis CTCAE IV requiring temporary mechanical ventilation. Conclusion In this study, BCNU was rarely associated with severe side effects, particularly pulmonary toxicity, and, in case of recurrent glioblastoma, even conferred a favorable outcome. Therefore BCNU appears to be an appropriate alternative to other nitrosoureas although the efficacy against newer drugs needs further evaluation.
Collapse
Affiliation(s)
- Christine Jungk
- Department of Neurosurgery, University Hospital Heidelberg, INF 400, 69120, Heidelberg, Germany.
| | - Despina Chatziaslanidou
- Department of Neurosurgery, University Hospital Heidelberg, INF 400, 69120, Heidelberg, Germany
| | - Rezvan Ahmadi
- Department of Neurosurgery, University Hospital Heidelberg, INF 400, 69120, Heidelberg, Germany
| | - David Capper
- Institute of Neuropathology, University of Heidelberg, INF 224, 69120, Heidelberg, Germany
| | - Justo Lorenzo Bermejo
- Institute of Medical Biometry & Informatics, University of Heidelberg, INF 305, 69120, Heidelberg, Germany
| | - Janina Exner
- Department of Neurosurgery, University Hospital Heidelberg, INF 400, 69120, Heidelberg, Germany
| | - Andreas von Deimling
- Institute of Neuropathology, University of Heidelberg, INF 224, 69120, Heidelberg, Germany
| | - Christel Herold-Mende
- Department of Neurosurgery, University Hospital Heidelberg, INF 400, 69120, Heidelberg, Germany
| | - Andreas Unterberg
- Department of Neurosurgery, University Hospital Heidelberg, INF 400, 69120, Heidelberg, Germany
| |
Collapse
|
58
|
Liu A, Hou C, Chen H, Zong X, Zong P. Genetics and Epigenetics of Glioblastoma: Applications and Overall Incidence of IDH1 Mutation. Front Oncol 2016; 6:16. [PMID: 26858939 PMCID: PMC4731485 DOI: 10.3389/fonc.2016.00016] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2015] [Accepted: 01/16/2016] [Indexed: 12/02/2022] Open
Abstract
Glioblastoma is the most fatal brain cancer found in humans. Patients suffering from glioblastoma have a dismal prognosis, with a median survival of 15 months. The tumor may develop rapidly de novo in older patients or through progression from anaplastic astrocytomas in younger patients if glioblastoma is primary or secondary, respectively. During the past decade, significant advances have been made in the understanding of processes leading to glioblastoma, and several important genetic defects that appear to be important for the development and progression of this tumor have been identified. Particularly, the discovery of recurrent mutations in the isocitrate dehydrogenase 1 (IDH1) gene has shed new light on the molecular landscape in glioblastoma. Indeed, emerging research on the consequences of mutant IDH1 protein expression suggests that its neomorphic enzymatic activity catalyzing the production of the oncometabolite 2-hydroxyglutarate influences a range of cellular programs that affect the epigenome and contribute to glioblastoma development. One of the exciting observations is the presence of IDH1 mutation in the vast majority of secondary glioblastoma, while it is almost absent in primary glioblastoma. Growing data indicate that this particular mutation has clinical and prognostic importance and will become a critical early distinction in diagnosis of glioblastoma.
Collapse
Affiliation(s)
- Aizhen Liu
- Department of Oncology, Yidu Central Hospital , Jinan , China
| | - Chunfeng Hou
- Department of Oncology Nursing, Yidu Central Hospital , Jinan , China
| | - Hongfang Chen
- Department of Oncology, Yidu Central Hospital , Jinan , China
| | - Xuan Zong
- Department of Oncology, Shandong University School of Medicine , Jinan , China
| | - Peijun Zong
- Department of Oncology, Yidu Central Hospital , Jinan , China
| |
Collapse
|
59
|
Abstract
Sorting and grading of glial tumors by the WHO classification provide clinicians with guidance as to the predicted course of the disease and choice of treatment. Nonetheless, histologically identical tumors may have very different outcome and response to treatment. Molecular markers that carry both diagnostic and prognostic information add useful tools to traditional classification by redefining tumor subtypes within each WHO category. Therefore, molecular markers have become an integral part of tumor assessment in modern neuro-oncology and biomarker status now guides clinical decisions in some subtypes of gliomas. The routine assessment of IDH status improves histological diagnostic accuracy by differentiating diffuse glioma from reactive gliosis. It carries a favorable prognostic implication for all glial tumors and it is predictive for chemotherapeutic response in anaplastic oligodendrogliomas with codeletion of 1p/19q chromosomes. Glial tumors that contain chromosomal codeletion of 1p/19q are defined as tumors of oligodendroglial lineage and have favorable prognosis. MGMT promoter methylation is a favorable prognostic marker in astrocytic high-grade gliomas and it is predictive for chemotherapeutic response in anaplastic gliomas with wild-type IDH1/2 and in glioblastoma of the elderly. The clinical implication of other molecular markers of gliomas like mutations of EGFR and ATRX genes and BRAF fusion or point mutation is highlighted. The potential of molecular biomarker-based classification to guide future therapeutic approach is discussed and accentuated.
Collapse
|
60
|
Cahill DP, Sloan AE, Nahed BV, Aldape KD, Louis DN, Ryken TC, Kalkanis SN, Olson JJ. The role of neuropathology in the management of patients with diffuse low grade glioma: A systematic review and evidence-based clinical practice guideline. J Neurooncol 2015; 125:531-49. [PMID: 26530263 DOI: 10.1007/s11060-015-1909-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2015] [Accepted: 08/29/2015] [Indexed: 10/22/2022]
Abstract
TARGET POPULATION Adult patients (age ≥18 years) who have suspected low-grade diffuse glioma. QUESTION What are the optimal neuropathological techniques to diagnose low-grade diffuse glioma in the adult? RECOMMENDATION LEVEL I: Histopathological analysis of a representative surgical sample of the lesion should be used to provide the diagnosis of low-grade diffuse glioma. LEVEL III Both frozen section and cytopathologic/smear evaluation should be used to aid the intra-operative assessment of low-grade diffuse glioma diagnosis. A resection specimen is preferred over a biopsy specimen, to minimize the potential for sampling error issues. TARGET POPULATION Patients with histologically-proven WHO grade II diffuse glioma. QUESTION In adult patients (age ≥18 years) with histologically-proven WHO grade II diffuse glioma, is testing for IDH1 mutation (R132H and/or others) warranted? If so, is there a preferred method? RECOMMENDATION LEVEL II IDH gene mutation assessment, via IDH1 R132H antibody and/or IDH1/2 mutation hotspot sequencing, is highly-specific for low-grade diffuse glioma, and is recommended as an additional test for classification and prognosis. TARGET POPULATION Patients with histologically-proven WHO grade II diffuse glioma. QUESTION In adult patients (age ≥18 years) with histologically-proven WHO grade II diffuse glioma, is testing for 1p/19q loss warranted? If so, is there a preferred method? RECOMMENDATION LEVEL III 1p/19q loss-of-heterozygosity testing, by FISH, array-CGH or PCR, is recommended as an additional test in oligodendroglial cases for prognosis and potential treatment planning. TARGET POPULATION Patients with histologically-proven WHO grade II diffuse glioma. QUESTION In adult patients (age ≥18 years) with histologically-proven WHO grade II diffuse glioma, is MGMT promoter methylation testing warranted? If so, is there a preferred method? RECOMMENDATION There is insufficient evidence to recommend methyl-guanine methyl-transferase (MGMT) promoter methylation testing as a routine for low-grade diffuse gliomas. It is recommended that patients be enrolled in properly designed clinical trials to assess the value of this and related markers for this target population. TARGET POPULATION Patients with histologically-proven WHO grade II diffuse glioma. QUESTION In adult patients (age ≥18 years) with histologically-proven WHO grade II diffuse glioma, is Ki-67/MIB1 immunohistochemistry warranted? If so, is there a preferred method to quantitate results? RECOMMENDATION LEVEL III Ki67/MIB1 immunohistochemistry is recommended as an option for prognostic assessment.
Collapse
Affiliation(s)
- Daniel P Cahill
- Department of Neurosurgery, Massachusetts General Hospital, 32 Fruit Street, Yankey 9E, Boston, MA, 02114, USA.
| | | | | | - Kenneth D Aldape
- University of Texas M. D. Anderson Cancer Center, Houston, TX, USA
| | - David N Louis
- Department of Pathology, Massachusetts General Hospital, Boston, MA, USA
| | - Timothy C Ryken
- Department of Neurosurgery, Kansas University Medical Center, Kansas City, KS, USA
| | - Steven N Kalkanis
- Department of Neurosurgery, Henry Ford Health System, Detroit, MI, USA
| | | |
Collapse
|
61
|
Nahed BV, Redjal N, Brat DJ, Chi AS, Oh K, Batchelor TT, Ryken TC, Kalkanis SN, Olson JJ. Management of patients with recurrence of diffuse low grade glioma: A systematic review and evidence-based clinical practice guideline. J Neurooncol 2015; 125:609-30. [PMID: 26530264 DOI: 10.1007/s11060-015-1910-2] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2015] [Accepted: 08/29/2015] [Indexed: 01/28/2023]
Abstract
TARGET POPULATION These recommendations apply to adult patients with recurrent low-grade glioma (LGG) with initial pathologic diagnosis of a WHO grade II infiltrative glioma (oligodendroglioma, astrocytoma, or oligo-astrocytoma). PATHOLOGY AT RECURRENCE QUESTION Do pathologic and molecular characteristics predict outcome/malignant transformation at recurrence? RECOMMENDATIONS IDH STATUS AND RECURRENCE: (Level III) IDH mutation status should be determined as LGGs with IDH mutations have a shortened time to recurrence. It is unclear whether knowledge of IDH mutation status provides benefit in predicting time to progression or overall survival. TP53 STATUS AND RECURRENCE: (Level III) TP53 mutations occur early in LGG pathogenesis, remain stable, and are not recommended as a marker of predisposition to malignant transformation at recurrence or other measures of prognosis. MGMT STATUS AND RECURRENCE: (Level III) Assessment of MGMT status is recommended as an adjunct to assessing prognosis as LGGs with MGMT promoter methylation are associated with shorter PFS (in the absence of TMZ) and longer post-recurrence survival (in the presence of TMZ), ultimately producing similar overall survival to LGGs without MGMT methylation. The available retrospective reports are conflicting and comparisons between reports are limited CDK2NA STATUS AND RECURRENCE: (Level III) Assessment of CDK2NA status is recommended when possible as the loss of expression of the CDK2NA via either methylation or loss of chromosome 9p is associated with malignant progression of LGGs. PROLIFERATIVE INDEX AND RECURRENCE: (Level III) It is recommended that proliferative indices (MIB-1 or BUdR) be measured in LGGs as higher proliferation indices are associated with increased likelihood of recurrence and shorter progression free and overall survival. 1P/19Q STATUS AND RECURRENCE: There is insufficient evidence to make any recommendations. CHEMOTHERAPY AT RECURRENCE QUESTION What role does chemotherapy have in LGG recurrence? RECOMMENDATIONS TEMOZOLOMIDE AND RECURRENCE: (Level III) Temozolomide is recommended in the therapy of recurrent LGG as it may improve clinical symptoms. Oligodendrogliomas and tumors with 1p/19q co-deletion may derive the most benefit. PCV AND RECURRENCE: (Level III) PCV is recommended in the therapy of LGG at recurrence as it may improve clinical symptoms with the strongest evidence being for oligodendrogliomas. CARBOPLATIN AND RECURRENCE : (Level III) Carboplatin is not recommended as there is no significant benefit from carboplatin as single agent therapy for recurrent LGGs. OTHER TREATMENTS (NITROSUREAS, HYDROXYUREA/IMANITIB, IRINOTECAN, PACLITAXEL) AND RECURRENCE: There is insufficient evidence to make any recommendations. It is recommended that individuals with recurrent LGGs be enrolled in a properly designed clinical trial to assess these chemotherapeutic agents. RADIATION AT RECURRENCE QUESTION What role does radiation have in LGG recurrence? RECOMMENDATIONS RADIATION AT RECURRENCE WITH NO PREVIOUS IRRADIATION: (Level III) Radiation is recommended at recurrence if there was no previous radiation treatment. RE-IRRADIATION AT RECURRENCE: (Level III) It is recommended that re-irradiation be considered in the setting of LGG recurrence as it may provide benefit in disease control. SURGERY AT RECURRENCE There is insufficient evidence to make any specific recommendations. It is recommended that individuals with recurrent LGGs be enrolled in a properly designed clinical trial to assess the role of surgery at recurrence.
Collapse
Affiliation(s)
- Brian V Nahed
- Department of Neurosurgery, Massachusetts General Hospital, 15 Parkman Street, Wang 745, Boston, MA, 02114, USA.
| | - Navid Redjal
- Department of Neurosurgery, Massachusetts General Hospital, Boston, MA, USA
| | - Daniel J Brat
- Department of Pathology, Emory University School of Medicine, Atlanta, GA, USA
| | - Andrew S Chi
- Laura and Isaac Perlmutter Cancer Center, NYU Langone Medical Center, New York, NY, USA
| | - Kevin Oh
- Department of Radiation Oncology, Massachusetts General Hospital, Boston, MA, USA
| | - Tracy T Batchelor
- Laura and Isaac Perlmutter Cancer Center, NYU Langone Medical Center, New York, NY, USA
| | - Timothy C Ryken
- Department of Neurosurgery, Kansas University Medical Center, Kansas City, KS, USA
| | - Steven N Kalkanis
- Department of Neurosurgery, Henry Ford Health System, Detroit, MI, USA
| | - Jeffrey J Olson
- Department of Neurosurgery, Emory University School of Medicine, Atlanta, GA, USA
| |
Collapse
|
62
|
Second Surgery in Insular Low-Grade Gliomas. BIOMED RESEARCH INTERNATIONAL 2015; 2015:497610. [PMID: 26539503 PMCID: PMC4619843 DOI: 10.1155/2015/497610] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/15/2015] [Revised: 08/15/2015] [Accepted: 08/31/2015] [Indexed: 12/03/2022]
Abstract
Background. Given the technical difficulties, a limited number of works have been published on insular gliomas surgery and risk factors for tumor recurrence (TR) are poorly documented. Objective. The aim of the study was to determine TR in adult patients with initial diagnosis of insular Low-Grade Gliomas (LGGs) that subsequently underwent second surgery. Methods. A consecutive series of 53 patients with insular LGGs was retrospectively reviewed; 23 patients had two operations for TR. Results. At the time of second surgery, almost half of the patients had experienced progression into high-grade gliomas (HGGs). Univariate analysis showed that TR is influenced by the following: extent of resection (EOR) (P < 0.002), ΔVT2T1 value (P < 0.001), histological diagnosis of oligodendroglioma (P = 0.017), and mutation of IDH1 (P = 0.022). The multivariate analysis showed that EOR at first surgery was the independent predictor for TR (P < 0.001). Conclusions. In patients with insular LGG the EOR at first surgery represents the major predictive factor for TR. At time of TR, more than 50% of cases had progressed in HGG, raising the question of the oncological management after the first surgery.
Collapse
|
63
|
Sabha N, Knobbe CB, Maganti M, Al Omar S, Bernstein M, Cairns R, Çako B, von Deimling A, Capper D, Mak TW, Kiehl TR, Carvalho P, Garrett E, Perry A, Zadeh G, Guha A. Analysis of IDH mutation, 1p/19q deletion, and PTEN loss delineates prognosis in clinical low-grade diffuse gliomas. Neuro Oncol 2015; 16:914-23. [PMID: 24470545 DOI: 10.1093/neuonc/not299] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Grades II and III gliomas have unpredictable rates of progression, making management decisions difficult. Currently, several clinical and radiological characteristics are utilized to predict progression and survival but collectively are suboptimal. METHODS In this study, we analyzed a set of 108 nonenhancing hemispheric grade II-III gliomas. Demographic variables, including patient age, tumor diameter, extent of resection, and performance status, were combined with molecular data (IDH mutation status [mIDH], 1p/19q codeletion, PTEN deletion, and EGFR amplification). A complete dataset for all variables was compiled for 70 of the 108 patients. Both univariable and multivariable analyses were performed to determine whether the molecular data singly or in combination offer advantages over tumor type and grade for prediction of overall survival (OS) and/or progression-free rate (PFR). RESULTS Patient age, clinical variables (tumor diameter, extent of resection, performance status), and pathology (tumor type and grade) were not predictive of OS or PFR. IDH mutation status alone was predictive of longer OS and PFR for the entire group of tumors; 1p/19q deletion alone was predictive of OS but not PFR. In the multivariable analysis, none of the clinical or demographic factors were predictive of OS or PFR. IDH mutation status, 1p/19q codeletion, and PTEN deletion were predictive of OS (P = .003, P = .005, P = .02, respectively). Both mIDH (P < .001) and the interaction term of 1p/19q and PTEN (P < .001) were found to be predictive of PFR. CONCLUSIONS We conclude that the combination of mIDH, 1p/19q codeletion, and PTEN deletion may be particularly effective in discriminating good prognosis from poor prognosis hemispheric gliomas. We propose that such a scheme merits testing on larger prospective cohorts. Should our findings be confirmed, routine clinical analysis of hemispheric gliomas for mIDH, 1p/19q codeletion, and PTEN deletion would be justified.
Collapse
|
64
|
Claus EB, Walsh KM, Wiencke JK, Molinaro AM, Wiemels JL, Schildkraut JM, Bondy ML, Berger M, Jenkins R, Wrensch M. Survival and low-grade glioma: the emergence of genetic information. Neurosurg Focus 2015; 38:E6. [PMID: 25552286 DOI: 10.3171/2014.10.focus12367] [Citation(s) in RCA: 292] [Impact Index Per Article: 32.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Significant gaps exist in our understanding of the causes and clinical management of glioma. One of the biggest gaps is how best to manage low-grade (World Health Organization [WHO] Grade II) glioma. Low-grade glioma (LGG) is a uniformly fatal disease of young adults (mean age 41 years), with survival averaging approximately 7 years. Although LGG patients have better survival than patients with high-grade (WHO Grade III or IV) glioma, all LGGs eventually progress to high-grade glioma and death. Data from the Surveillance, Epidemiology and End Results (SEER) program of the National Cancer Institute suggest that for the majority of LGG patients, overall survival has not significantly improved over the past 3 decades, highlighting the need for intensified study of this tumor. Recently published research suggests that historically used clinical variables are not sufficient (and are likely inferior) prognostic and predictive indicators relative to information provided by recently discovered tumor markers (e.g., 1p/19q deletion and IDH1 or IDH2 mutation status), tumor expression profiles (e.g., the proneural profile) and/or constitutive genotype (e.g., rs55705857 on 8q24.21). Discovery of such tumor and constitutive variation may identify variables needed to improve randomization in clinical trials as well as identify patients more sensitive to current treatments and targets for improved treatment in the future. This article reports on survival trends for patients diagnosed with LGG within the United States from 1973 through 2011 and reviews the emerging role of tumor and constitutive genetics in refining risk stratification, defining targeted therapy, and improving survival for this group of relatively young patients.
Collapse
|
65
|
Iwadate Y, Matsutani T, Hirono S, Ikegami S, Shinozaki N, Saeki N. IDH1 mutation is prognostic for diffuse astrocytoma but not low-grade oligodendrogliomas in patients not treated with early radiotherapy. J Neurooncol 2015; 124:493-500. [PMID: 26243269 DOI: 10.1007/s11060-015-1863-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2014] [Accepted: 07/27/2015] [Indexed: 12/20/2022]
Abstract
Despite accumulating knowledge regarding molecular backgrounds, the optimal management strategy for low-grade gliomas remains controversial. One reason is the marked heterogeneity in the clinical course. To establish an accurate subclassification of low-grade gliomas, we retrospectively evaluated isocitrate dehydrogenase-1 (IDH1) mutation in clinical specimens of diffuse astrocytomas (DA) and oligodendroglial tumors separately. No patients were treated with early radiotherapy, and modified PCV chemotherapy was used for postoperative residual tumors or recurrence in oligodendroglial tumors. Immunohistochemical evaluation of IDH status, p53 status, O(6)-methylguanine methyltransferase expression, and the MIB-1 index were performed. The 1p and 19q status was analyzed with fluorescence in situ hybridization. Ninety-four patients were followed for a median period of 8.5 years. For DAs, p53 was prognostic for progression- free survival (PFS) and IDH1 was significant for overall survival (OS) with multivariate analysis. In contrast, for oligodendroglial tumors, none of the parameters was significant for PFS or OS. Thus, the significance of IDH1 mutation is not clear in oligodendroglial tumors that are homogeneously indolent and chemosensitive. In contrast, DAs are heterogeneous tumors including some potentially malignant tumors that can be predicted by examining the IDH1 mutation status.
Collapse
Affiliation(s)
- Yasuo Iwadate
- Department of Neurological Surgery, Chiba University Graduate School of Medicine, 1-8-1 Inohana, Chuo-ku, Chiba City, Chiba, 260-8670, Japan.
| | - Tomoo Matsutani
- Department of Neurological Surgery, Chiba University Graduate School of Medicine, 1-8-1 Inohana, Chuo-ku, Chiba City, Chiba, 260-8670, Japan
| | - Seiichiro Hirono
- Department of Neurological Surgery, Chiba University Graduate School of Medicine, 1-8-1 Inohana, Chuo-ku, Chiba City, Chiba, 260-8670, Japan
| | - Shiro Ikegami
- Department of Neurological Surgery, Chiba University Graduate School of Medicine, 1-8-1 Inohana, Chuo-ku, Chiba City, Chiba, 260-8670, Japan
| | - Natsuki Shinozaki
- Department of Neurosurgery, Narita Red-Cross Hospital, 90-1 Iida-cho, Narita, Chiba, 286-8523, Japan
| | - Naokatsu Saeki
- Department of Neurological Surgery, Chiba University Graduate School of Medicine, 1-8-1 Inohana, Chuo-ku, Chiba City, Chiba, 260-8670, Japan
| |
Collapse
|
66
|
Tanaka K, Sasayama T, Mizukawa K, Takata K, Sulaiman NS, Nishihara M, Kohta M, Sasaki R, Hirose T, Itoh T, Kohmura E. Combined IDH1 mutation and MGMT methylation status on long-term survival of patients with cerebral low-grade glioma. Clin Neurol Neurosurg 2015; 138:37-44. [PMID: 26276726 DOI: 10.1016/j.clineuro.2015.07.019] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2015] [Revised: 06/22/2015] [Accepted: 07/21/2015] [Indexed: 12/13/2022]
Abstract
OBJECTIVE The management of low-grade glioma (LGG) still remains controversial because the effectiveness of early and extensive resection is unclear, and the use of radiation therapy or chemotherapy is not well-defined. In particular, the importance of prognostic factors for survival remains a matter of discussion. The purpose of this study was to validate prognostic factors for survival in patients with LGG. MATERIALS AND METHODS A consecutive series of 55 patients with WHO grade II LGG treated in our institute between 1983 and 2013 were retrospectively reviewed to determine the prognostic factors for survival. All data were retrospectively analyzed from the aspect of baseline characteristics, pathological findings, genetic change, surgical treatments, adjuvant therapies, and survival time. Cox multivariate analysis was performed to determine the prognostic factors for survival. RESULTS There were 28 patients with diffuse astrocytoma (DA), 21 patients with oligodendroglioma (OG), and 6 patients with oligoastrocytoma (OA) diagnosed on initial surgery. The median overall survival was 193 months and fifteen patients (27.3%) died. A mutation in isocitrate dehydrogenase-1 (IDH1) was found in 72.9% of LGG, and this mutation was positively correlated with methylation of O6-methylguanine-DNA methyltransferase (MGMT) (p=0.02). A better prognosis was significantly associated with combined IDH1 mutation and MGMT methylation status (both positive vs both negative, HR 0.079 [95% CI 0.008-0.579], p=0.012), as well as histology (OG vs DA and OA, HR 0.158 [95% CI 0.022-0.674], p=0.011) and tumor size (<6 cm vs ≥6 cm, HR 0.120 [95% CI 0.017-0.595], p=0.008). CONCLUSIONS Tumor histology, size and IDH-mutation status are important predictors for prolonged overall survival in patients with LGG and may provide a reliable tool for standardizing future treatment strategies.
Collapse
Affiliation(s)
- Kazuhiro Tanaka
- Department of Neurosurgery, Kobe University Graduate School of Medicine, Kobe, Japan.
| | - Takashi Sasayama
- Department of Neurosurgery, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Katsu Mizukawa
- Department of Neurosurgery, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Kumi Takata
- Department of Neurosurgery, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Nor Shazrina Sulaiman
- Department of Radiation Oncology, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Masamitsu Nishihara
- Department of Neurosurgery, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Masaaki Kohta
- Department of Neurosurgery, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Ryohei Sasaki
- Department of Radiation Oncology, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Takanori Hirose
- Department of Pathology for Regional Communication, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Tomoo Itoh
- Department of Diagnostic Pathology, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Eiji Kohmura
- Department of Neurosurgery, Kobe University Graduate School of Medicine, Kobe, Japan
| |
Collapse
|
67
|
Abstract
Low-grade diffuse gliomas are a heterogeneous group of primary glial brain tumors with highly variable survival. Currently, patients with low-grade diffuse gliomas are stratified into risk subgroups by subjective histopathologic criteria with significant interobserver variability. Several key molecular signatures have emerged as diagnostic, prognostic, and predictor biomarkers for tumor classification and patient risk stratification. In this review, we discuss the effect of the most critical molecular alterations described in diffuse (IDH1/2, 1p/19q codeletion, ATRX, TERT, CIC, and FUBP1) and circumscribed (BRAF-KIAA1549, BRAF(V600E), and C11orf95-RELA fusion) gliomas. These molecular features reflect tumor heterogeneity and have specific associations with patient outcome that determine appropriate patient management. This has led to an important, fundamental shift toward developing a molecular classification of World Health Organization grade II-III diffuse glioma.
Collapse
Affiliation(s)
- Adriana Olar
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Erik P Sulman
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX.
| |
Collapse
|
68
|
Alentorn A, Duran-Peña A, Pingle SC, Piccioni DE, Idbaih A, Kesari S. Molecular profiling of gliomas: potential therapeutic implications. Expert Rev Anticancer Ther 2015; 15:955-62. [PMID: 26118895 DOI: 10.1586/14737140.2015.1062368] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Gliomas are the most common primary malignant brain tumor. Over the last decade, significant advances have been made in the molecular characterization of this tumor group, identifying predictive biomarkers or molecular actionable targets, and paving the way to molecular-based targeted therapies. This personalized therapeutic approach is effective and illustrated in the present review. Among many molecular abnormalities, BRAF mutation and mTOR activation in pilocytic astrocytomas and subependymal giant cell astrocytomas are actionable targets sensitive to vemurafenib and everolimus, respectively. Chromosome arms 1p/19q co-deletion and IDH mutational status are pivotal in driving delivery of early procarbazine, lomustine and vincristine chemotherapy in anaplastic oligodendroglial tumors. Although consensus to assess MGMT promoter methylation is not reached yet, it may be useful in predicting resistance to temozolomide in elderly patients.
Collapse
Affiliation(s)
- Agusti Alentorn
- AP-HP, Groupe Hospitalier Pitié-Salpêtrière, Service de neurologie 2-Mazarin, Paris, France
| | | | | | | | | | | |
Collapse
|
69
|
Isocitrate dehydrogenase 1 Gene Mutation Is Associated with Prognosis in Clinical Low-Grade Gliomas. PLoS One 2015; 10:e0130872. [PMID: 26115094 PMCID: PMC4482584 DOI: 10.1371/journal.pone.0130872] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2014] [Accepted: 05/26/2015] [Indexed: 01/11/2023] Open
Abstract
Isocitrate dehydrogenase 1 gene mutations are found in most World Health Organization grade II and III gliomas and secondary glioblastomas. Isocitrate dehydrogenase 1 mutations are known to have prognostic value in high-grade gliomas. However, their prognostic significance in low-grade gliomas remains controversial. We determined the predictive and prognostic value of isocitrate dehydrogenase 1 status in low-grade gliomas. The association of isocitrate dehydrogenase 1 status with clinicopathological and genetic factors was also evaluated. Clinical information and genetic data including isocitrate dehydrogenase 1 mutation, O 6-methylguanine DNA methyltransferase promoter methylation, 1p/19q chromosome loss, and TP53 mutation of 417 low-grade gliomas were collected from the Chinese Glioma Genome Atlas database. Kaplan-Meier and Cox proportional hazards regression analyses were performed to evaluate the prognostic effect of clinical characteristics and molecular biomarkers. Isocitrate dehydrogenase 1 mutation was identified as an independent prognostic factor for overall, but not progression-free, survival. Notably, isocitrate dehydrogenase 1 mutation was found to be a significant prognostic factor in patients with oligodendrogliomas, but not in patients with astrocytomas. Furthermore, O 6-methylguanine DNA methyltransferase promoter methylation (p = 0.017) and TP53 mutation (p < 0.001), but not 1p/19q loss (p = 0.834), occurred at a higher frequency in isocitrate dehydrogenase 1-mutated tumors than in isocitrate dehydrogenase 1 wild-type tumors. Younger patient age (p = 0.041) and frontal lobe location (p = 0.010) were significantly correlated with isocitrate dehydrogenase 1 mutation. Chemotherapy did not provide a survival benefit in patients with isocitrate dehydrogenase 1-mutated tumors. Isocitrate dehydrogenase 1 mutation was an independent prognostic factor in low-grade gliomas, whereas it showed no predictive value for chemotherapy response. Isocitrate dehydrogenase 1 mutation was highly associated with O 6-methylguanine DNA methyltransferase promoter methylation and TP53 mutation.
Collapse
|
70
|
Affiliation(s)
- David W Ellison
- From the Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN
| |
Collapse
|
71
|
Ichimura K, Narita Y, Hawkins CE. Diffusely infiltrating astrocytomas: pathology, molecular mechanisms and markers. Acta Neuropathol 2015; 129:789-808. [PMID: 25975377 DOI: 10.1007/s00401-015-1439-7] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2015] [Revised: 04/26/2015] [Accepted: 04/30/2015] [Indexed: 11/28/2022]
Abstract
Diffusely infiltrating astrocytomas include diffuse astrocytomas WHO grade II and anaplastic astrocytomas WHO grade III and are classified under astrocytic tumours according to the current WHO Classification. Although the patients generally have longer survival as compared to those with glioblastoma, the timing of inevitable malignant progression ultimately determines the prognosis. Recent advances in molecular genetics have uncovered that histopathologically diagnosed astrocytomas may consist of two genetically different groups of tumours. The majority of diffusely infiltrating astrocytomas regardless of WHO grade have concurrent mutations of IDH1 or IDH2, TP53 and ATRX. Among these astrocytomas, no other genetic markers that may distinguish grade II and grade III tumours have been identified. Those astrocytomas without IDH mutation tend to have a distinct genotype and a poor prognosis comparable to that of glioblastomas. On the other hand, diffuse astrocytomas that arise in children do not harbour IDH/TP53 mutations, but instead display mutations of BRAF or structural alterations involving MYB/MYBL1 or FGFR1. A molecular classification may thus help delineate diffusely infiltrating astrocytomas into distinct pathogenic and prognostic groups, which could aid in determining individualised therapeutic strategies.
Collapse
Affiliation(s)
- Koichi Ichimura
- Division of Brain Tumor Translational Research, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-Ku, Tokyo, 104-0045, Japan,
| | | | | |
Collapse
|
72
|
Olar A, Wani KM, Alfaro-Munoz KD, Heathcock LE, van Thuijl HF, Gilbert MR, Armstrong TS, Sulman EP, Cahill DP, Vera-Bolanos E, Yuan Y, Reijneveld JC, Ylstra B, Wesseling P, Aldape KD. IDH mutation status and role of WHO grade and mitotic index in overall survival in grade II-III diffuse gliomas. Acta Neuropathol 2015; 129:585-96. [PMID: 25701198 PMCID: PMC4369189 DOI: 10.1007/s00401-015-1398-z] [Citation(s) in RCA: 248] [Impact Index Per Article: 27.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2014] [Revised: 02/11/2015] [Accepted: 02/12/2015] [Indexed: 12/31/2022]
Abstract
Diffuse gliomas are up till now graded based upon morphology. Recent findings indicate that isocitrate dehydrogenase (IDH) mutation status defines biologically distinct groups of tumors. The role of tumor grade and mitotic index in patient outcome has not been evaluated following stratification by IDH mutation status. To address this, we interrogated 558 WHO grade II-III diffuse gliomas for IDH1/2 mutations and investigated the prognostic impact of WHO grade within IDH-mutant and IDH-wild type tumor subsets independently. The prognostic impact of grade was modest in IDH-mutant [hazard ratio (HR) = 1.21, 95 % confidence interval (CI) = 0.91-1.61] compared to IDH-wild type tumors (HR = 1.74, 95 % CI = 0.95-3.16). Using a dichotomized mitotic index cut-off of 4/1000 tumor cells, we found that while mitotic index was significantly associated with outcome in IDH-wild type tumors (log-rank p < 0.0001, HR = 4.41, 95 % CI = 2.55-7.63), it was not associated with outcome in IDH-mutant tumors (log-rank p = 0.5157, HR = 1.10, 95 % CI = 0.80-1.51), and could demonstrate a statistical interaction (p < 0.0001) between IDH mutation and mitotic index (i.e., suggesting that the effect of mitotic index on patient outcome is dependent on IDH mutation status). Patient age, an established prognostic factor in diffuse glioma, was significantly associated with outcome only in the IDH-wild type subset, and consistent with prior data, 1p/19q co-deletion conferred improved outcome in the IDH-mutant cohort. These findings suggest that stratification of grade II-III gliomas into subsets defined by the presence or absence of IDH mutation leads to subgroups with distinct prognostic characteristics. Further evaluation of grading criteria and prognostic markers is warranted within IDH-mutant versus IDH-wild type diffuse grade II-III gliomas as independent entities.
Collapse
Affiliation(s)
- Adriana Olar
- Department of Pathology, G1.3510, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd., Houston, TX, 77030, USA,
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
73
|
Abstract
Recent advances in molecular diagnostics have led to better understanding of glioma tumorigenesis and biology. Numerous glioma biomarkers with diagnostic, prognostic, and predictive value have been identified. Although some of these markers are already part of the routine clinical management of glioma patients, data regarding others are limited and difficult to apply routinely. In addition, multiple methods for molecular subclassification have been proposed either together with or as an alternative to the current morphologic classification and grading scheme. This article reviews the literature regarding glioma biomarkers and offers a few practical suggestions.
Collapse
Affiliation(s)
- Melike Pekmezci
- Division of Neuropathology, Department of Pathology, University of California, San Francisco, 505 Parnassus Avenue, #M551, Box 0102, San Francisco, CA 94143, USA
| | - Arie Perry
- Division of Neuropathology, Department of Pathology, University of California, San Francisco, 505 Parnassus Avenue, #M551, Box 0102, San Francisco, CA 94143, USA; Department of Neurological Surgery, University of California, San Francisco, 505 Parnassus Avenue, San Francisco, CA 94143, USA.
| |
Collapse
|
74
|
Bourdillon P, Hlaihel C, Guyotat J, Guillotton L, Honnorat J, Ducray F, Cotton F. Prediction of anaplastic transformation in low-grade oligodendrogliomas based on magnetic resonance spectroscopy and 1p/19q codeletion status. J Neurooncol 2015; 122:529-37. [PMID: 25716744 DOI: 10.1007/s11060-015-1737-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2014] [Accepted: 02/01/2015] [Indexed: 11/28/2022]
Abstract
The aim of this study was to assess whether combining multimodal magnetic resonance imaging (MRI) with the determination of the 1p/19q codeletion status could improve the ability to predict anaplastic transformation in low-grade oligodendrogliomas. Twenty patients with grade II oligodendrogliomas were followed-up using multimodal MR [proton MR spectroscopy (MRS), perfusion, and conventional MR imaging]. All patients diagnoses were histologically proven, and 1p/19q codeletion status was analyzed for all patients. Median follow-up was 30.5 ± 11.4 months. Anaplastic transformation was observed in six patients. The only MRI feature that was associated with anaplastic transformation was an elevation of the choline/creatine ratio >2.4 which was observed in 4 out of 6 patients with anaplastic transformation versus 1 out of 14 patients without anaplastic transformation. In patients without 1p/19q codeletion, an elevation of the choline/creatine ratio >2.4 was associated with the occurrence of anaplastic transformation in all cases (4 out of 4 patients), with a mean time of 12 months. In contrast, in patients with a 1p/19q codeletion, no anaplastic transformation was observed in the patient who had an elevation of >2.4 of the choline/creatine ratio and two patients demonstrated an anaplastic transformation without any elevation of this ratio.Prospective validation in a larger series is needed, yet the present study suggests that combining data from in vivo proton MRS and genetic analysis could be a promising strategy to predict time to anaplastic transformation at the individual level in patients with low-grade oligodendrogliomas and may help deciding when chemotherapy and/or radiotherapy should be initiated in these tumors.
Collapse
Affiliation(s)
- Pierre Bourdillon
- Department of Neurosurgery, Hôpital Pierre Wertheimer, Hospices civils de Lyon, Université Claude Bernard Lyon 1, Université de Lyon, Lyon, France
| | | | | | | | | | | | | |
Collapse
|
75
|
Abstract
The tumors classified as gliomas include a wide variety of histologies including the more common (astrocytoma, glioblastoma), as well as the less common histologies (oligodendroglioma, mixed oligoastrocytoma, pilocytic astrocytoma). Recent efforts at comprehensive genetic characterization of various primary brain tumor types have identified a number of common alterations and pathways common to multiple tumor types. Common pathways in glioma biology include growth factor receptor tyrosine kinases and their downstream signaling via the MAP kinase cascade or PI3K signaling, loss of apoptosis through p53, cell cycle regulation, angiogenesis via VEGF signaling, and invasion. However, in addition to these common general pathway alterations, a number of specific alterations have been identified in particular tumor types, and a number of these have direct therapeutic implications. These include mutations or fusions in the BRAF gene seen in pilocytic astrocytomas (and gangliogliomas). In oligodendrogliomas, mutations in IDH1 and codeletion of chromosomes 1p and 19q are associated with improved survival with upfront use of combined chemotherapy and radiation, and these tumors also have unique mutations of CIC and FUBP1 genes. Low grade gliomas are increasingly seen to be divided into two groups based on IDH mutation status, with astrocytomas developing through IDH mutation followed by p53 mutation, while poor prognosis low grade gliomas and primary glioblastomas (GBMs) are characterized by EGFR amplification, loss of PTEN, and loss of cyclin-dependent kinase inhibitors. GBMs can be further characterized based on gene expression and gene methylation patterns into three or four distinct subgroups. Prognostic markers in diffuse gliomas include IDH mutation, 1p/19q codeletion, and MGMT methylation, and MGMT is also a predictive marker in elderly patients with glioblastoma treated with temozolomide monotherapy.
Collapse
Affiliation(s)
- Adam L Cohen
- Huntsman Cancer Institute, 2000 Circle of Hope, 84112, Salt Lake City, UT,
| | | |
Collapse
|
76
|
Siegal T. Clinical impact of molecular biomarkers in gliomas. J Clin Neurosci 2014; 22:437-44. [PMID: 25533211 DOI: 10.1016/j.jocn.2014.10.004] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2014] [Accepted: 10/01/2014] [Indexed: 12/21/2022]
Abstract
The World Health Organization (WHO) classification system for glial tumors provides guidance as to the predicted course of the disease and choice of treatment. However, histologically identical tumors may have a very different outcome and response to treatment. Molecular markers that carry both diagnostic and prognostic information add valuable tools by redefining tumor subtypes within each WHO category. Therefore, molecular biomarkers have become an integral part of tumor assessment in modern neuro-oncology and biomarker status now guides clinical decisions in some subtypes of gliomas, including anaplastic oligodendroglioma and glioblastoma in the elderly. This review discusses the prognostic and predictive impact of molecular markers that have undergone extensive study in recent years. The clinical relevance of contemporary molecular classification of gliomas using the routine assessment of IDH mutations, promoter methylation of MGMT, chromosomal deletion of 1p/19q, mutations of EGFR and ATRX genes, and BRAF fusion or point mutation is highlighted. The potential of molecular biomarker-based classification to guide future therapeutic approach is discussed and accentuated.
Collapse
Affiliation(s)
- Tali Siegal
- Center for Neuro-Oncology, Davidoff Institute of Oncology, Rabin Medical Center, Campus Beilinson, 49100 Petach Tikva, Israel.
| |
Collapse
|
77
|
Abstract
This review covers the medical options for malignant gliomas based on the results of recent clinical trials and updated information on molecular markers of prognostic and predictive value. In addition to alkylating agents, the antiangiogenic drug bevacizumab is increasingly used, particularly in cases of recurrence. Supportive care, including antiedema agents, antiepileptic drugs and anticoagulants, represent complementary treatment approaches of the utmost clinical importance.
Collapse
|
78
|
Barresi V, Mondello S, Branca G, Rajan TS, Vitarelli E, Tuccari G. p-CREB expression in human gliomas: potential use in the differential diagnosis between astrocytoma and oligodendroglioma. Hum Pathol 2014; 46:231-8. [PMID: 25476123 DOI: 10.1016/j.humpath.2014.10.011] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2014] [Revised: 10/16/2014] [Accepted: 10/19/2014] [Indexed: 01/06/2023]
Abstract
Phosphorylated cyclic-AMP responsive element binding protein (p-CREB) is a transcription factor that is involved in gliomagenesis. For this reason, it was recently proposed as a potential therapeutic target in gliomas; however, gliomas comprise tumors with different biomolecular profile, clinical behavior, and response to chemotherapy. In the present study, we aimed to investigate whether p-CREB expression varies in the 2 main types of gliomas, astrocytomas and oligodendrogliomas. Thus, we analyzed the expression of p-CREB in a series of astrocytomas and oligodendrogliomas of different histologic grades by immunohistochemistry and Western blot analysis. p53 overexpression and the Ki-67 labeling index were also assessed in all the tumors. p-CREB immunohistochemical expression was present in 100% of the astrocytic tumors, but in only 46% of oligodendrogliomas (P = .0033 for grade II; P = .0041 for grade III tumors). Absence of p-CREB immunohistochemical expression was significantly associated with 1p/19q codeletion (P < .0001) and identified 1p/19q codeleted tumors, with 70% sensitivity and 100% specificity (area under the curve = 0.85; P < .0001). In addition, p-CREB expression correlated with higher Ki-67 labeling index (P = .049) and p53 overexpression (P < .0001) as well as with the histologic grade of astrocytomas (P = .044). Immunohistochemical results were further confirmed by Western blot analysis. Our findings demonstrate that astrocytomas and oligodendrogliomas are characterized by distinctive patterns of p-CREB expression. These distinct expression patterns might provide insight into the mechanism of tumorigenesis of glial tumors and represent a useful tool for the differential diagnosis of astrocytoma and oligodendroglioma.
Collapse
Affiliation(s)
- Valeria Barresi
- Department of Human Pathology "Gaetano Barresi," AOU G. Martino, Pad D, Via Consolare Valeria, 98125 Messina, Italy.
| | - Stefania Mondello
- Department of Neurosciences, AOU G. Martino, Pad D, Via Consolare Valeria, 98125 Messina, Italy.
| | - Giovanni Branca
- Department of Human Pathology "Gaetano Barresi," AOU G. Martino, Pad D, Via Consolare Valeria, 98125 Messina, Italy.
| | | | - Enrica Vitarelli
- Department of Human Pathology "Gaetano Barresi," AOU G. Martino, Pad D, Via Consolare Valeria, 98125 Messina, Italy.
| | - Giovanni Tuccari
- Department of Human Pathology "Gaetano Barresi," AOU G. Martino, Pad D, Via Consolare Valeria, 98125 Messina, Italy.
| |
Collapse
|
79
|
Kato Y. Specific monoclonal antibodies against IDH1/2 mutations as diagnostic tools for gliomas. Brain Tumor Pathol 2014; 32:3-11. [DOI: 10.1007/s10014-014-0202-4] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2014] [Accepted: 09/29/2014] [Indexed: 12/19/2022]
|
80
|
Wang Y, Zhang T, Li S, Fan X, Ma J, Wang L, Jiang T. Anatomical localization of isocitrate dehydrogenase 1 mutation: a voxel-based radiographic study of 146 low-grade gliomas. Eur J Neurol 2014; 22:348-54. [PMID: 25318355 DOI: 10.1111/ene.12578] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2014] [Accepted: 08/27/2014] [Indexed: 10/24/2022]
Abstract
BACKGROUND AND PURPOSE A brain tumor's location is associated with the genetic profile of its tumor precursor cells. Mutations in isocitrate dehydrogenase 1 (IDH1) are an early event in tumor development and play a critical role in gliomagenesis. This study was conducted to specify the anatomical characteristics of IDH1 mutation in low-grade gliomas and to further explore the origin of gliomas with IDH1 mutation. The impact of IDH1 mutation on disease prognosis was also evaluated. METHODS The pre-operative magnetic resonance images obtained from 146 patients with histologically confirmed low-grade glioma were analyzed retrospectively. All tumors were manually marked and registered to the standard location. Voxel-based lesion-symptom mapping analysis was used to identify brain regions associated with a high occurrence of IDH1 mutation. Progression-free survival and overall survival were estimated using the Kaplan-Meier method, and potential prognostic factors were evaluated using the multivariate proportional hazards model. RESULTS Isocitrate dehydrogenase 1 mutated low-grade gliomas occurred most frequently in the frontal lobe, and specifically in the area surrounding the rostral extension of the lateral ventricles. Additionally, it was demonstrated that IDH1 mutation was an independent predictor for longer progression-free survival and overall survival. CONCLUSIONS Low-grade gliomas with IDH1 mutation are region-specific and preferentially located surrounding the rostral extension of the lateral ventricles. Furthermore, such mutations are associated with a favorable clinical outcome.
Collapse
Affiliation(s)
- Y Wang
- Beijing Neurosurgical Institute, Capital Medical University, Beijing, China; Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | | | | | | | | | | | | |
Collapse
|
81
|
Decreasing GSH and increasing ROS in chemosensitivity gliomas with IDH1 mutation. Tumour Biol 2014; 36:655-62. [PMID: 25283382 DOI: 10.1007/s13277-014-2644-z] [Citation(s) in RCA: 95] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2013] [Accepted: 12/17/2013] [Indexed: 12/20/2022] Open
Abstract
Gliomas are the most malignant and aggressive primary brain tumor in adults. Despite concerted efforts to improve therapies, their prognosis remains very poor. Isocitrate dehydrogenase 1 (IDH1) mutations have been discovered frequently in glioma patients and are strongly correlated with improved survival. However, the effect of IDH1 mutations on the chemosensitivity of gliomas remains unclear. In this study, we generated clonal U87 and U251 glioma cell lines overexpressing the R132H mutant protein (IDH1-R132H). Compared with control cells and cells overexpressing IDH wild type (IDH1-WT), both types of IDH1-R132H cells were more sensitive to temozolomide (TMZ) and cis-diamminedichloroplatinum (CDDP) in a time- and dose-dependent manner. The IDH1-R132H-induced higher chemosensitivity was associated with nicotine adenine disphosphonucleotide (NADPH), glutathione (GSH) depletion, and reactive oxygen species (ROS) generation. Accordingly, this IDH1-R132H-induced growth inhibition was effectively abrogated by GSH in vitro and in vivo. Our study provides direct evidence that the improved survival in patients with IDH1-R132H tumors may partly result from the effects of the IDH1-R132H protein on chemosensitivity. The primary cellular events associated with improved survival are the GSH depletion and increased ROS generation.
Collapse
|
82
|
Wang YY, Zhang T, Li SW, Qian TY, Fan X, Peng XX, Ma J, Wang L, Jiang T. Mapping p53 mutations in low-grade glioma: a voxel-based neuroimaging analysis. AJNR Am J Neuroradiol 2014; 36:70-6. [PMID: 25104286 DOI: 10.3174/ajnr.a4065] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
BACKGROUND AND PURPOSE Brain tumor location has proved to be a prognostic factor that may be associated with features of neoplastic origin. Mutation of p53 is an atypical genetic change that occurs during tumorigenesis. Thus, a potential correlation may exist between tumor location and p53 status. The purpose of the current study was to identify anatomic characteristics of mutant p53 expression by using quantitative neuroimaging analyses. MATERIALS AND METHODS Preoperative MR images from 182 patients with histologically confirmed low-grade gliomas were retrospectively analyzed. All tumors were manually marked and registered to the standard space. Using a voxel-based lesion-symptom mapping analysis, we located brain regions associated with a high occurrence of p53 mutation and corrected them by using a permutation test. The acquired clusters were further included as a factor in survival analyses. RESULTS Statistical analysis demonstrated that the left medial temporal lobe and right anterior temporal lobe were specifically associated with high expression of mutant p53. Kaplan-Meier curves showed that tumors located in these regions were associated with significantly worse progression-free survival compared with tumors occurring elsewhere. CONCLUSIONS Our voxel-level imaging analysis provides new evidence that genetic changes during cancer may have anatomic specificity. Additionally, the current study suggests that tumor location identified on structural MR images could potentially be used for customized presurgical outcome prediction.
Collapse
Affiliation(s)
- Y Y Wang
- From the Beijing Neurosurgical Institute (Y.Y.W., T.J.) Departments of Neurosurgery (Y.Y.W., T.Z., X.F., L.W., T.J.)
| | - T Zhang
- Departments of Neurosurgery (Y.Y.W., T.Z., X.F., L.W., T.J.)
| | - S W Li
- Neuroradiology (S.W.L., J.M.), Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - T Y Qian
- Siemens Healthcare (T.Y.Q.), MR Collaboration NE Asia, Beijing, China
| | - X Fan
- Departments of Neurosurgery (Y.Y.W., T.Z., X.F., L.W., T.J.)
| | - X X Peng
- Department of Epidemiology and Biostatistics (X.X.P.), School of Public Health and Family Medicine, Capital Medical University, Beijing, China
| | - J Ma
- Neuroradiology (S.W.L., J.M.), Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - L Wang
- Departments of Neurosurgery (Y.Y.W., T.Z., X.F., L.W., T.J.) China National Clinical Research Center for Neurological Diseases (L.W.), Beijing, China
| | - T Jiang
- From the Beijing Neurosurgical Institute (Y.Y.W., T.J.) Departments of Neurosurgery (Y.Y.W., T.Z., X.F., L.W., T.J.) Beijing Institute for Brain Disorders (T.J.), Beijing, China.
| |
Collapse
|
83
|
Dirven L, Reijneveld JC, Taphoorn MJ. Health-Related Quality of Life or Quantity of Life: A Difficult Trade-Off in Primary Brain Tumors? Semin Oncol 2014; 41:541-552. [DOI: 10.1053/j.seminoncol.2014.06.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
84
|
Arita H, Narita Y, Yoshida A, Hashimoto N, Yoshimine T, Ichimura K. IDH1/2 mutation detection in gliomas. Brain Tumor Pathol 2014; 32:79-89. [PMID: 25008158 DOI: 10.1007/s10014-014-0197-x] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2014] [Accepted: 06/17/2014] [Indexed: 12/25/2022]
Abstract
Somatic mutations of isocitrate dehydrogenase 1 and 2 (IDH1/2) are strongly associated with pathological subtypes, genetic profiles, and clinical features in gliomas. The IDH1/2 status is currently regarded as one of the most important molecular markers in gliomas and should be assessed accurately and robustly. However, the methods used for IDH1/2 testing are not fully standardized. The purpose of this paper is to review the clinical significance of IDH1/2 mutations and the methods used for IDH1/2 testing. The optimal method for IDH1/2 testing varies depending on a number of factors, including the purpose, sample types, sample number, or laboratory equipment. It is therefore important to acknowledge the advantages and disadvantages of each method.
Collapse
Affiliation(s)
- Hideyuki Arita
- Department of Neurosurgery and Neuro-Oncology, National Cancer Center Hospital, Tokyo, Japan,
| | | | | | | | | | | |
Collapse
|
85
|
Collins V. Pathology of Gliomas and Developments in Molecular Testing. Clin Oncol (R Coll Radiol) 2014; 26:377-84. [DOI: 10.1016/j.clon.2014.04.025] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2014] [Accepted: 04/08/2014] [Indexed: 01/14/2023]
|
86
|
Duval C, de Tayrac M, Sanschagrin F, Michaud K, Gould PV, Saikali S. ImmunoFISH is a reliable technique for the assessment of 1p and 19q status in oligodendrogliomas. PLoS One 2014; 9:e100342. [PMID: 24949947 PMCID: PMC4065070 DOI: 10.1371/journal.pone.0100342] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2014] [Accepted: 05/23/2014] [Indexed: 11/19/2022] Open
Abstract
Objective To develop a new ImmunoFISH technique for the study of oligodendrogliomas by combining a standard immunohistochemical stain using MIB-1 antibody with a standard FISH technique using commercial 1p36 and 19q13 chromosomal probes. Methods Validation was performed by two observers on a series of 36 pre-selected oligodendrogliomas and compared to the results previously determined by FISH alone. Results The ImFISH technique is easy to perform and to analyze and is no more time-consuming than the usual FISH technique. Our results show that the inter-observer reliability of ImFISH is high (κ = 0.86 and 0.95 respectively for 1p and 19q). Compared to FISH, the ImFISH exhibits a very high sensitivity (∼100%) and specificity (∼90%) for 1p and/or 19q deleted cases. The sensitivity is high for normal cases (∼85%) and imbalanced cases (∼90%) with a specificity ranging between 50 and 85%. Finally, there were no significant differences between FISH and ImFISH results calculated on 60, 40 or 20 cells. Conclusion Our study demonstrates the reliability of the ImFISH technique in oligodendrogliomas and emphasizes its advantage in poorly cellular tumoral specimen.
Collapse
MESH Headings
- Adult
- Aged
- Aged, 80 and over
- Antibodies, Antinuclear/metabolism
- Antibodies, Monoclonal/metabolism
- Brain Neoplasms/genetics
- Brain Neoplasms/metabolism
- Chromosomes, Human, Pair 1/genetics
- Chromosomes, Human, Pair 1/metabolism
- Chromosomes, Human, Pair 19/genetics
- Chromosomes, Human, Pair 19/metabolism
- Female
- Humans
- Immunohistochemistry
- In Situ Hybridization, Fluorescence/methods
- Male
- Middle Aged
- Observer Variation
- Oligodendroglioma/genetics
- Oligodendroglioma/metabolism
- Reproducibility of Results
Collapse
Affiliation(s)
- Céline Duval
- Department of Pathology, Centre Hospitalier Universitaire de Québec, Québec, Canada
| | - Marie de Tayrac
- Department of genomic and molecular genetics, Centre Hospitalier Universitaire de Rennes, Rennes, France
| | - François Sanschagrin
- Department of Pathology, Centre Hospitalier Universitaire de Québec, Québec, Canada
| | - Karine Michaud
- Department of Neurosurgery, Centre Hospitalier Universitaire de Québec, Québec, Canada
| | - Peter Vincent Gould
- Department of Pathology, Centre Hospitalier Universitaire de Québec, Québec, Canada
| | - Stéphan Saikali
- Department of Pathology, Centre Hospitalier Universitaire de Québec, Québec, Canada
- * E-mail:
| |
Collapse
|
87
|
Abiria SA, Williams TV, Munden AL, Grover VK, Wallace A, Lundberg CJ, Valadez JG, Cooper MK. Expression of Hedgehog ligand and signal transduction components in mutually distinct isocitrate dehydrogenase mutant glioma cells supports a role for paracrine signaling. J Neurooncol 2014; 119:243-51. [PMID: 24867209 DOI: 10.1007/s11060-014-1481-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2013] [Accepted: 05/07/2014] [Indexed: 11/26/2022]
Abstract
Hedgehog (Hh) signaling regulates the growth of malignant gliomas by a ligand-dependent mechanism. The cellular source of Sonic Hh ligand and mode of signaling have not been clearly defined due to the lack of methods to definitively identify neoplastic cells in glioma specimens. Using an antibody specific for mutant isocitrate dehydrogenase protein expression to identify glioma cells, we demonstrate that Sonic Hh ligand and the pathway components Patched1 (PTCH1) and GLI1 are expressed in neoplastic cells. Further, Sonic Hh ligand and its transcriptional targets, PTCH1 and GLI1, are expressed in mutually distinct populations of neoplastic cells. These findings support a paracrine mode of intratumoral Hh signaling in malignant gliomas.
Collapse
Affiliation(s)
- Sunday A Abiria
- Department of Neurology, Vanderbilt University Medical Center, MRB III, Rm. 6160, 465 21st Avenue South, Nashville, TN, 37232, USA
| | | | | | | | | | | | | | | |
Collapse
|
88
|
Molenaar RJ, Radivoyevitch T, Maciejewski JP, van Noorden CJF, Bleeker FE. The driver and passenger effects of isocitrate dehydrogenase 1 and 2 mutations in oncogenesis and survival prolongation. Biochim Biophys Acta Rev Cancer 2014; 1846:326-41. [PMID: 24880135 DOI: 10.1016/j.bbcan.2014.05.004] [Citation(s) in RCA: 100] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2014] [Revised: 04/30/2014] [Accepted: 05/22/2014] [Indexed: 01/06/2023]
Abstract
Mutations in isocitrate dehydrogenase 1 and 2 (IDH1 and IDH2) are key events in the development of glioma, acute myeloid leukemia (AML), chondrosarcoma, intrahepatic cholangiocarcinoma (ICC), and angioimmunoblastic T-cell lymphoma. They also cause D-2-hydroxyglutaric aciduria and Ollier and Maffucci syndromes. IDH1/2 mutations are associated with prolonged survival in glioma and in ICC, but not in AML. The reason for this is unknown. In their wild-type forms, IDH1 and IDH2 convert isocitrate and NADP(+) to α-ketoglutarate (αKG) and NADPH. Missense mutations in the active sites of these enzymes induce a neo-enzymatic reaction wherein NADPH reduces αKG to D-2-hydroxyglutarate (D-2HG). The resulting D-2HG accumulation leads to hypoxia-inducible factor 1α degradation, and changes in epigenetics and extracellular matrix homeostasis. Such mutations also imply less NADPH production capacity. Each of these effects could play a role in cancer formation. Here, we provide an overview of the literature and discuss which downstream molecular effects are likely to be the drivers of the oncogenic and survival-prolonging properties of IDH1/2 mutations. We discuss interactions between mutant IDH1/2 inhibitors and conventional therapies. Understanding of the biochemical consequences of IDH1/2 mutations in oncogenesis and survival prolongation will yield valuable information for rational therapy design: it will tell us which oncogenic processes should be blocked and which "survivalogenic" effects should be retained.
Collapse
Affiliation(s)
- Remco J Molenaar
- Department of Cell Biology & Histology, Academic Medical Center, University of Amsterdam, The Netherlands.
| | - Tomas Radivoyevitch
- Department of Epidemiology and Biostatistics, Case Western Reserve University, Cleveland, OH, USA
| | - Jaroslaw P Maciejewski
- Department of Translational Hematology and Oncology Research, Taussig Cancer Center, Cleveland Clinic, Cleveland, OH, USA
| | - Cornelis J F van Noorden
- Department of Cell Biology & Histology, Academic Medical Center, University of Amsterdam, The Netherlands
| | - Fonnet E Bleeker
- Department of Clinical Genetics, Academic Medical Center, University of Amsterdam, The Netherlands
| |
Collapse
|
89
|
Abstract
Low-grade gliomas (LGGs) are a diverse group of primary brain tumors that often arise in young, otherwise healthy patients and generally have an indolent course with longer-term survival in comparison with high-grade gliomas. Treatment options include observation, surgery, radiation, chemotherapy, or a combined approach, and management is individualized based on tumor location, histology, molecular profile, and patient characteristics. Moreover, in this type of brain tumor with a relatively good prognosis and prolonged survival, the potential benefits of treatment must be carefully weighed against potential treatment-related risks. We review in this article current management strategies for LGG, including surgery, radiotherapy, and chemotherapy. In addition, the importance of profiling the genetic and molecular properties of LGGs in the development of targeted anticancer therapies is also reviewed. Finally, given the prevalence of these tumors in otherwise healthy young patients, the impact of treatment on neurocognitive function and quality of life is also evaluated.
Collapse
Affiliation(s)
- Deborah A Forst
- Departments of Neurology, Neurosurgery, and Radiation Oncology, and Division of Hematology and Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | | | | | | |
Collapse
|
90
|
TP53 and p53 statuses and their clinical impact in diffuse low grade gliomas. J Neurooncol 2014; 118:131-9. [PMID: 24590827 DOI: 10.1007/s11060-014-1407-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2013] [Accepted: 02/17/2014] [Indexed: 10/25/2022]
Abstract
TP53 is a pivotal gene frequently mutated in diffuse gliomas and particularly in astrocytic tumors. The majority of studies dedicated to TP53 in gliomas were focused on mutational hotspots located in exons 5-8. Recent studies have suggested that TP53 is also mutated outside the classic mutational hotspots reported in gliomas. Therefore, we have sequenced all TP53 coding exons in a retrospective series of 61 low grade gliomas (LGG) using high throughput sequencing technology. In addition, TP53 mutational status was correlated with: (i) p53 expression, (ii) tumor type, (iii) chromosome arms 1p/19q status and (iv) clinical features of patients. The cohort included 32 oligodendrogliomas (O), 21 oligoastrocytomas (M) and 8 astrocytomas (A). TP53 mutation was detected in 52.4% (32/61) of tumors (34% of O, 71.4% of M and 75% of A). All mutations (38 mutations in 32 samples) were detected in exons 4, 5, 6, 7, 8 and 10. Missense and non-missense mutations, including seven novel mutations, were detected in 42.6 and 9.8% of tumors respectively. TP53 mutations were almost mutually exclusive with 1p/19q co-deletion and were associated with: (i) astrocytic phenotype, (ii) younger age, (iii) p53 expression. Using a threshold of 10% p53-positive tumor cells, p53 expression is an interesting surrogate marker for missense TP53 mutations (Se = 92%; Sp = 79.4%) but not for non-missense mutation (18.4% of mutations). TP53 and p53 statuses were not prognostic in LGG. In conclusion, we have identified novel TP53 mutations in LGG. TP53 mutations outside exons 4-8 are rare. Although it remains imperfect, p53 expression with a threshold of 10% is a good surrogate marker for missense TP53 mutations and appears helpful in the setting of LGG phenotype diagnosis.
Collapse
|
91
|
Management of low-grade gliomas: a review of patient-perceived quality of life and neurocognitive outcome. World Neurosurg 2014; 82:e299-309. [PMID: 24560709 DOI: 10.1016/j.wneu.2014.02.033] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2013] [Revised: 11/08/2013] [Accepted: 02/18/2014] [Indexed: 01/23/2023]
Abstract
Low-grade glioma (LGG) comprises nearly 20% of all central nervous system glial tumors, with approximately 2000-3000 patients diagnosed annually in the United States. Because of their infiltrative ability and aggressive nature, the average 10-year survival is 30% when <90% of the tumor is resected. Since the 1970s, prognosis for LGGs has improved significantly. This improvement is primarily attributable to earlier diagnoses via magnetic resonance imaging scanning, increased awareness of the more favorable oligo component, technical advances in intraoperative neurosurgery, and stratification for young age. Using a number of prognostic factors, LGGs have been classified into low-risk and high-risk subgroups. Optimal therapy for patients with low-risk, supratentorial grade II glioma remains a highly controversial issue in the neuro-oncology community. The concerns regarding the toxicity of therapy often outweigh the benefits of delaying tumor progression. The recommendation for observation is made without full prospective understanding of the impact of radiologic tumor progression on the quality of life (QOL), neurocognitive function (NCF), seizure control, and functional status of these patients. We present a review of the current knowledge of the management of LGG with emphasis upon patient-reported outcomes of QOL, NCF, and seizure control. We also discuss current clinical trials with proposals to evaluate QOL, NCF, and seizure control in patients undergoing observation alone after newly diagnosed low-risk LGG or treatment options for those patients in the high-risk group.
Collapse
|
92
|
NDRG1 prognosticates the natural course of disease in WHO grade II glioma. J Neurooncol 2014; 117:25-32. [DOI: 10.1007/s11060-013-1357-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2013] [Accepted: 12/31/2013] [Indexed: 10/25/2022]
|
93
|
Dirven L, Aaronson NK, Heimans JJ, Taphoorn MJB. Health-related quality of life in high-grade glioma patients. CHINESE JOURNAL OF CANCER 2014; 33:40-5. [PMID: 24384239 PMCID: PMC3905089 DOI: 10.5732/cjc.013.10214] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 11/20/2013] [Accepted: 12/04/2013] [Indexed: 12/26/2022]
Abstract
Gliomas are malignant primary brain tumors and yet incurable. Palliation and the maintenance or improvement of the patient's quality of life is therefore of main importance. For that reason, health-related quality of life (HRQoL) has become an important outcome measure in clinical trials, next to traditional outcome measures such as overall and progression-free survivals, and radiological response to treatment. HRQoL is a multidimensional concept covering physical, psychological, and social domains, as well as symptoms induced by the disease and its treatment. HRQoL is assessed by using self-reported, validated questionnaires. Various generic HRQoL questionnaires, which can be supplemented with a brain tumor- specific module, are available. Both the tumor and its treatment can have a negative effect on HRQoL. However, treatment with surgery, radiotherapy, chemotherapy, and supportive treatment may also improve patients' HRQoL, in addition to extending survival. It is expected that the impact of HRQoL measurements in both clinical trials and clinical practice will increase. Hence, it is important that HRQoL data are collected, analyzed, and interpreted correctly. Methodological issues such as selection bias and missing data may hamper the interpretation of HRQoL data and should therefore be accounted. In clinical trials, HRQoL can be used to assess the benefits of a new treatment strategy, which should be weighed carefully against the adverse effects of that treatment. In daily clinical practice, HRQoL assessments of an individual patient can be used to inform physicians about the impact of a specific treatment strategy, and it may facilitate the communication between the physicians and the patients.
Collapse
Affiliation(s)
- Linda Dirven
- Department of Neurology, VU University Medical Center, PO Box 7057, 1007 MB Amsterdam, Netherlands.
| | | | | | | |
Collapse
|
94
|
Alentorn A, van Thuijl HF, Marie Y, Alshehhi H, Carpentier C, Boisselier B, Laigle-Donadey F, Mokhtari K, Scheinin I, Wesseling P, Ylstra B, Capelle L, Hoang-Xuan K, Sanson M, Delattre JY, Reijneveld JC, Idbaih A. Clinical value of chromosome arms 19q and 11p losses in low-grade gliomas. Neuro Oncol 2013; 16:400-8. [PMID: 24335697 DOI: 10.1093/neuonc/not227] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
BACKGROUND Diffuse low-grade gliomas (LGGs) form a heterogeneous subgroup of gliomas in adults. Chromosome (chr) arms 1p/19q codeletion and IDH mutation have been shown to be closely associated with oligodendroglial phenotype and better prognosis. We sought to identify relevant biomarkers in non 1p/19q codeleted LGGs. METHODS We characterized a retrospective series of 126 LGGs using genomic arrays, microsatellite analysis, IDH sequencing, MGMT promoter methylation assay, and p53 expression analysis. RESULTS Our study confirms that 1p/19q codeletion, mutually exclusive with p53 overexpression, was associated with: (i) better prognosis, (ii) oligodendroglial phenotype, (iii) MGMT promoter methylation, and (iv) IDH mutation. Interestingly, 1p/19q codeleted tumors occur in older patients at diagnosis. Our study shows that non 1p/19q codeleted LGGs can be divided in 5 main genomic subgroups: (i) 11p loss, (ii) 19q loss (iii) 7 gain, (iv) 19 gain, and (v) unclassified. In non 1p/19q codeleted LGGs, we demonstrated that (i) 11p loss is associated with astrocytoma phenotype and has an independent negative prognostic value, and (ii) 19q loss diminished the favorable prognostic value of IDH mutation. Our findings were validated in an independent cohort of 98 LGGs. CONCLUSION Novel genomic entities and biomarkers have been identified in non 1p/19q codeleted LGGs. Our findings may help to stratify non 1p/19q codeleted LGGs, facilitating future individualization of treatment. Further prospective studies are warranted to support our findings.
Collapse
Affiliation(s)
- Agustí Alentorn
- Centre de Recherche de l'Institut du Cerveau et de la Moelle Epinière (CRICM), UMRS 975, Inserm U 975, CNRS, UMR 7225, Université Pierre et Marie Curie, Paris, France (A.A., Y.M, C.C., B.B., K.M., K.H.-X., M.S., J.-Y.D., A.I.); Department of Neuropathology (H.A., K.M.); Department of Neurology 2-Mazarin (F.L.-D., K.H.-X., M.S., J.-Y.D., A.I.); Department of Neurosurgery, AP-HP, Groupe Hospitalier Pitié-Salpêtriére, Paris, France (L.C.); Department of Neurology (H.F.v.T., J.C.R.); Department of Pathology, VU University Medical Center, Amsterdam, The Netherlands (I.S., P.W., B.Y.); Department of Pathology, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands (P.W.)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
95
|
Zhao J, Ma W, Zhao H. Loss of heterozygosity 1p/19q and survival in glioma: a meta-analysis. Neuro Oncol 2013; 16:103-12. [PMID: 24311641 DOI: 10.1093/neuonc/not145] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Glioma is rarely curable, and factors that influence the prognosis of glioma patients are not fully understood. Loss of heterozygosity (LOH) of 1p/19q has long been known to be a typical molecular signature of oligodendroglial neoplasms. However, whether LOH of 1p/19q is associated with survival in gliomas remains controversial. Here our goal was to evaluate the association between LOH of 1p/19q and progression-free survival (PFS) and overall survival (OS) by conducting a meta-analysis among glioma cases. METHODS The PubMed and Embase databases were searched from the earliest records to May 2013 to identify studies that met prestated inclusion criteria. Reference lists of retrieved articles were also reviewed. Three authors independently extracted information needed for further analysis. Either a fixed- or a random-effects model was used to calculate the overall combined hazard ratio (HR) estimates. RESULTS Twenty-eight eligible studies involving 3 408 cases were included in the meta-analysis. Compared with the chromosomal intact group, codeletion of 1p and 19q was associated with a better PFS (HR = 0.63; 95% CI, 0.52-0.76) and OS (HR = 0.43; 95% CI, 0.35-0.53). Subgroup analyses showed this association to be independent of detection methods and the grades and subtypes of gliomas. Furthermore, isodeletion of chromosome 1p predicted a similar favorable disease outcome (PFS: HR = 0.68; 95% CI, 0.47-0.97) (OS: HR = 0.51; 95% CI, 0.35-0.75), especially in low-grade gliomas, whereas isodeletion of 19q only indicated longer PFS (HR = 0.70; 95% CI, 0.56-0.87). CONCLUSION Codeletion of 1p and 19q is associated with better survival rates in glioma. Isodeletion of 1p predicts similar outcomes but to a lesser extent, whereas the effects of isodeletion of 19q remained only marginal.
Collapse
Affiliation(s)
- Jiaxin Zhao
- Corresponding author: Jiaxin Zhao, MD, Department of Neurosurgery, the Fourth Affiliated Hospital of Harbin Medical University, 37 Yiyuan Street, Nangang District, Harbin, Heilongjiang, China 150001.
| | | | | |
Collapse
|
96
|
Laxton RC, Popov S, Doey L, Jury A, Bhangoo R, Gullan R, Chandler C, Brazil L, Sadler G, Beaney R, Sibtain N, King A, Bodi I, Jones C, Ashkan K, Al-Sarraj S. Primary glioblastoma with oligodendroglial differentiation has better clinical outcome but no difference in common biological markers compared with other types of glioblastoma. Neuro Oncol 2013; 15:1635-43. [PMID: 24158110 DOI: 10.1093/neuonc/not125] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Glioblastoma multiforme with an oligodendroglial component (GBMO) has been recognized in the World Health Organization classification-however, the diagnostic criteria, molecular biology, and clinical outcome of primary GBMO remain unclear. Our aim was to investigate whether primary GBMO is a distinct clinicopathological subgroup of GBM and to determine the relative frequency of prognostic markers such as loss of heterozygosity (LOH) on 1p and/or 19q, O(6)-methylguanine-DNA methyltransferase (MGMT) promoter methylation, and isocitrate dehydrogenase 1 (IDH1) mutation. METHODS We examined 288 cases of primary GBM and assessed the molecular markers in 57 GBMO and 50 cases of other primary GBM, correlating the data with clinical parameters and outcome. RESULTS GBMO comprised 21.5% of our GBM specimens and showed significantly longer survival compared with our other GBM (12 mo vs 5.8 mo, P = .006); there was also a strong correlation with younger age at diagnosis (56.4 y vs 60.6 y, P = .005). Singular LOH of 19q (P = .04) conferred a 1.9-fold increased hazard of shorter survival. There was no difference in the frequencies of 1p or 19q deletion, MGMT promoter methylation, or IDH1 mutation (P = .8, P = 1.0, P = 1.0, respectively). CONCLUSIONS Primary GBMO is a subgroup of GBM associated with longer survival and a younger age group but shows no difference in the frequency of LOH of 1p/19q, MGMT, and IDH1 mutation compared with other primary GBM.
Collapse
Affiliation(s)
- Ross C Laxton
- Corresponding Author: Ross Laxton, PhD, Department of Clinical Neuropathology, King's College Hospital, Denmark Hill, London SE5 9RS, UK.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
97
|
Weller M, Pfister SM, Wick W, Hegi ME, Reifenberger G, Stupp R. Molecular neuro-oncology in clinical practice: a new horizon. Lancet Oncol 2013; 14:e370-9. [PMID: 23896276 DOI: 10.1016/s1470-2045(13)70168-2] [Citation(s) in RCA: 139] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Primary brain tumours are heterogeneous in histology, genetics, and outcome. Although WHO's classification of tumours of the CNS has greatly helped to standardise diagnostic criteria worldwide, it does not consider the substantial progress that has been made in the molecular classification of many brain tumours. Recent practice-changing clinical trials have defined a role for routine assessment of MGMT promoter methylation in glioblastomas in elderly people, and 1p and 19q codeletions in anaplastic oligodendroglial tumours. Moreover, large-scale molecular profiling approaches have identified new mutations in gliomas, affecting IDH1, IDH2, H3F3, ATRX, and CIC, which has allowed subclassification of gliomas into distinct molecular subgroups with characteristic features of age, localisation, and outcome. However, these molecular approaches cannot yet predict patients' benefit from therapeutic interventions. Similarly, transcriptome-based classification of medulloblastoma has delineated four variants that might now be candidate diseases in which to explore novel targeted agents.
Collapse
Affiliation(s)
- Michael Weller
- Department of Neurology, University Hospital Zurich, Zurich, Switzerland.
| | | | | | | | | | | |
Collapse
|
98
|
Abstract
Mutations in isocitrate dehydrogenase (IDH) 1 and 2, originally discovered in 2008, occur in the vast majority of low-grade gliomas and secondary high-grade gliomas. These mutations, which occur early in gliomagenesis, change the function of the enzymes, causing them to produce 2-hydroxyglutarate, a possible oncometabolite, and to not produce NADPH. IDH mutations are oncogenic, although whether the mechanism is through alterations in hydroxylases, redox potential, cellular metabolism, or gene expression is not clear. The mutations also drive increased methylation in gliomas. Gliomas with mutated IDH1 and IDH2 have improved prognosis compared with gliomas with wild-type IDH. Mutated IDH can now be detected by immunohistochemistry and magnetic resonance spectroscopy. No drugs currently target mutated IDH, although this remains an area of active research.
Collapse
Affiliation(s)
- Adam L Cohen
- Division of Medical Oncology, Department of Internal Medicine, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT 84112, USA.
| | | | | |
Collapse
|
99
|
Zhang C, Moore LM, Li X, Yung WKA, Zhang W. IDH1/2 mutations target a key hallmark of cancer by deregulating cellular metabolism in glioma. Neuro Oncol 2013; 15:1114-26. [PMID: 23877318 DOI: 10.1093/neuonc/not087] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Isocitrate dehydrogenase (IDH) enzymes have recently become a focal point for research aimed at understanding the biology of glioma. IDH1 and IDH2 are mutated in 50%-80% of astrocytomas, oligodendrogliomas, oligoastrocytomas, and secondary glioblastomas but are seldom mutated in primary glioblastomas. Gliomas with IDH1/2 mutations always harbor other molecular aberrations, such as TP53 mutation or 1p/19q loss. IDH1 and IDH2 mutations may serve as prognostic factors because patients with an IDH-mutated glioma survive significantly longer than those with an IDH-wild-type tumor. However, the molecular pathogenic role of IDH1/2 mutations in the development of gliomas is unclear. The production of 2-hydroxyglutarate and enhanced NADP+ levels in tumor cells with mutant IDH1/2 suggest mechanisms through which these mutations contribute to tumorigenesis. Elucidating the pathogenesis of IDH mutations will improve understanding of the molecular mechanisms of gliomagenesis and may lead to development of a new molecular classification system and novel therapies.
Collapse
Affiliation(s)
- Chunzhi Zhang
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | | | | | | | | |
Collapse
|
100
|
Cankovic M, Nikiforova MN, Snuderl M, Adesina AM, Lindeman N, Wen PY, Lee EQ. The role of MGMT testing in clinical practice: a report of the association for molecular pathology. J Mol Diagn 2013; 15:539-55. [PMID: 23871769 DOI: 10.1016/j.jmoldx.2013.05.011] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2012] [Revised: 04/11/2013] [Accepted: 05/13/2013] [Indexed: 11/25/2022] Open
Abstract
Recent advances in modern molecular technologies allow for the examination and measurement of cancer-related genomic changes. The number of molecular tests for evaluation of diagnostic, prognostic, or predictive markers is expected to increase. In recent years, O(6)-methylguanine-DNA methyltransferase (MGMT) promoter methylation has been firmly established as a biomarker in patients diagnosed with gliomas, for both clinical trials and routine clinical management. Similarly, molecular markers, such as loss of heterozygosity (LOH) for 1p/19q have already demonstrated clinical utility in treatment of oligodendroglial tumors, and others might soon show clinical utility. Furthermore, nonrandom associations are being discovered among MGMT, 1p/19q LOH, isocitrate dehydrogenase (IDH) mutations, and other tumor-specific modifications that could possibly enhance our ability to predict outcome and response to therapy. While pathologists are facing new and more complicated requests for clinical genomic testing, clinicians are challenged with increasing numbers of molecular data coming from molecular pathology and genomic medicine. Both pathologists and oncologists need to understand the clinical utility of molecular tests and test results, including issues of turnaround time, and their impact on the application of targeted treatment regimens. This review summarizes the existing data that support the rationale for MGMT promoter methylation testing and possibly other molecular testing in clinically defined glioma subtypes. Various molecular testing platforms for evaluation of MGMT methylation status are also discussed.
Collapse
Affiliation(s)
- Milena Cankovic
- Department of Pathology, Henry Ford Hospital, Detroit, Michigan, USA.
| | | | | | | | | | | | | |
Collapse
|