51
|
Palmeri JR, Lax BM, Peters JM, Duhamel L, Stinson JA, Santollani L, Lutz EA, Pinney W, Bryson BD, Dane Wittrup K. CD8 + T cell priming that is required for curative intratumorally anchored anti-4-1BB immunotherapy is constrained by Tregs. Nat Commun 2024; 15:1900. [PMID: 38429261 PMCID: PMC10907589 DOI: 10.1038/s41467-024-45625-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 01/30/2024] [Indexed: 03/03/2024] Open
Abstract
Although co-stimulation of T cells with agonist antibodies targeting 4-1BB (CD137) improves antitumor immune responses in preclinical studies, clinical success has been limited by on-target, off-tumor activity. Here, we report the development of a tumor-anchored ɑ4-1BB agonist (ɑ4-1BB-LAIR), which consists of a ɑ4-1BB antibody fused to the collagen-binding protein LAIR. While combination treatment with an antitumor antibody (TA99) shows only modest efficacy, simultaneous depletion of CD4+ T cells boosts cure rates to over 90% of mice. Mechanistically, this synergy depends on ɑCD4 eliminating tumor draining lymph node regulatory T cells, resulting in priming and activation of CD8+ T cells which then infiltrate the tumor microenvironment. The cytotoxic program of these newly primed CD8+ T cells is then supported by the combined effect of TA99 and ɑ4-1BB-LAIR. The combination of TA99 and ɑ4-1BB-LAIR with a clinically approved ɑCTLA-4 antibody known for enhancing T cell priming results in equivalent cure rates, which validates the mechanistic principle, while the addition of ɑCTLA-4 also generates robust immunological memory against secondary tumor rechallenge. Thus, our study establishes the proof of principle for a clinically translatable cancer immunotherapy.
Collapse
Affiliation(s)
- Joseph R Palmeri
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology (MIT), Cambridge, MA, USA
- Department of Chemical Engineering, Massachusetts Institute of Technology (MIT), Cambridge, MA, USA
| | - Brianna M Lax
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology (MIT), Cambridge, MA, USA
- Department of Chemical Engineering, Massachusetts Institute of Technology (MIT), Cambridge, MA, USA
| | - Joshua M Peters
- Department of Biological Engineering, Massachusetts Institute of Technology (MIT), Cambridge, MA, USA
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, USA
| | - Lauren Duhamel
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology (MIT), Cambridge, MA, USA
- Department of Biological Engineering, Massachusetts Institute of Technology (MIT), Cambridge, MA, USA
| | - Jordan A Stinson
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology (MIT), Cambridge, MA, USA
- Department of Biological Engineering, Massachusetts Institute of Technology (MIT), Cambridge, MA, USA
| | - Luciano Santollani
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology (MIT), Cambridge, MA, USA
- Department of Chemical Engineering, Massachusetts Institute of Technology (MIT), Cambridge, MA, USA
| | - Emi A Lutz
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology (MIT), Cambridge, MA, USA
- Department of Biological Engineering, Massachusetts Institute of Technology (MIT), Cambridge, MA, USA
| | - William Pinney
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology (MIT), Cambridge, MA, USA
- Department of Biological Engineering, Massachusetts Institute of Technology (MIT), Cambridge, MA, USA
| | - Bryan D Bryson
- Department of Biological Engineering, Massachusetts Institute of Technology (MIT), Cambridge, MA, USA
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, USA
| | - K Dane Wittrup
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology (MIT), Cambridge, MA, USA.
- Department of Chemical Engineering, Massachusetts Institute of Technology (MIT), Cambridge, MA, USA.
- Department of Biological Engineering, Massachusetts Institute of Technology (MIT), Cambridge, MA, USA.
| |
Collapse
|
52
|
Kiem D, Ocker M, Greil R, Neureiter D, Melchardt T. Enhancing anti-CD274 (PD-L1) targeting through combinatorial immunotherapy with bispecific antibodies and fusion proteins: from preclinical to phase II clinical trials. Expert Opin Investig Drugs 2024; 33:229-242. [PMID: 38354028 DOI: 10.1080/13543784.2024.2319317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Accepted: 02/12/2024] [Indexed: 02/24/2024]
Abstract
INTRODUCTION Immune checkpoint inhibitors have achieved great success in the treatment of many different types of cancer. Programmed cell death protein ligand 1 (PD-L1, CD274) is a major immunosuppressive immune checkpoint and a target for several already approved monoclonal antibodies. Despite this, novel strategies are under development, as the overall response remains low. AREAS COVERED In this review, an overview of the current biomarkers for response to PD-L1 inhibitor treatment is given, followed by a discussion of potential novel biomarkers, including tumor mutational burden and circulating tumor DNA. Combinatorial immunotherapy is a potential novel strategy to increase the response to PD-L1 inhibitor treatment and currently, several interesting bispecific antibodies as well as bispecific fusion proteins are undergoing early clinical investigation. We focus on substances targeting PD-L1 and a secondary target, and a secondary immunomodulatory target like CTLA-4, TIGIT, or CD47. EXPERT OPINION Overall, the presented studies show anti-tumor activity of these combinatorial immunotherapeutic approaches. However, still relatively low response rates suggest a need for better biomarkers.
Collapse
Affiliation(s)
- Dominik Kiem
- III Medical Department, Paracelsus Medical University, Salzburg, Austria
| | - Matthias Ocker
- Medical Department, Division of Hematology, Oncology, and Cancer Immunology, Campus, Charité Mitte, Charité University Medicine Berlin, Berlin, Germany
- EO Translational Insights Consulting GmbH, Berlin, Germany
- Tacalyx GmbH, Berlin, Germany
| | - Richard Greil
- III Medical Department, Paracelsus Medical University, Salzburg, Austria
- Cancer Cluster Salzburg, Salzburg, Austria
| | - Daniel Neureiter
- Cancer Cluster Salzburg, Salzburg, Austria
- Institute of Pathology, Paracelsus Medical University, University Hospital Salzburg (SALK), Salzburg, Austria
| | - Thomas Melchardt
- III Medical Department, Paracelsus Medical University, Salzburg, Austria
- Cancer Cluster Salzburg, Salzburg, Austria
| |
Collapse
|
53
|
Ma Y, Luo F, Zhang Y, Liu Q, Xue J, Huang Y, Zhao Y, Yang Y, Fang W, Zhou T, Chen G, Cao J, Chen Q, She X, Luo P, Liu G, Zhang L, Zhao H. Preclinical characterization and phase 1 results of ADG106 in patients with advanced solid tumors and non-Hodgkin's lymphoma. Cell Rep Med 2024; 5:101414. [PMID: 38330942 PMCID: PMC10897605 DOI: 10.1016/j.xcrm.2024.101414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 11/13/2023] [Accepted: 01/15/2024] [Indexed: 02/10/2024]
Abstract
ADG106, a ligand-blocking agonistic antibody targeting CD137 (4-1BB), exhibits promising results in preclinical studies, demonstrating tumor suppression in various animal models and showing a balanced profile between safety and efficacy. This phase 1 study enrolls 62 patients with advanced malignancies, revealing favorable tolerability up to the 5.0 mg/kg dose level. Dose-limiting toxicity occurs in only one patient (6.3%) at 10.0 mg/kg, resulting in grade 4 neutropenia. The most frequent treatment-related adverse events include leukopenia (22.6%), neutropenia (22.6%), elevated alanine aminotransferase (22.6%), rash (21.0%), itching (17.7%), and elevated aspartate aminotransferase (17.7%). The overall disease control rates are 47.1% for advanced solid tumors and 54.5% for non-Hodgkin's lymphoma. Circulating biomarkers suggest target engagement by ADG106 and immune modulation of circulating T, B, and natural killer cells and cytokines interferon γ and interleukin-6, which may affect the probability of clinical efficacy. ADG106 has a manageable safety profile and preliminary anti-tumor efficacy in patients with advanced cancers (this study was registered at ClinicalTrials.gov: NCT03802955).
Collapse
Affiliation(s)
- Yuxiang Ma
- Department of Clinical Research, State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou 510060, P.R. China
| | - Fan Luo
- Department of Intensive Care Unit, State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou 510060, P.R. China
| | - Yang Zhang
- Department of Clinical Research, State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou 510060, P.R. China
| | - Qianwen Liu
- Department of Clinical Research, State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou 510060, P.R. China
| | - Jinhui Xue
- Department of Clinical Research, State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou 510060, P.R. China
| | - Yan Huang
- Department of Medical Oncology, State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou 510060, P.R. China
| | - Yuanyuan Zhao
- Department of Medical Oncology, State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou 510060, P.R. China
| | - Yunpeng Yang
- Department of Medical Oncology, State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou 510060, P.R. China
| | - Wenfeng Fang
- Department of Medical Oncology, State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou 510060, P.R. China
| | - Ting Zhou
- Department of Medical Oncology, State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou 510060, P.R. China
| | - Gang Chen
- Department of Medical Oncology, State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou 510060, P.R. China
| | - Jiaxin Cao
- Department of Anesthesiology, State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou 510060, P.R. China
| | - Qun Chen
- Department of Clinical Research, State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou 510060, P.R. China
| | | | | | | | - Li Zhang
- Department of Medical Oncology, State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou 510060, P.R. China.
| | - Hongyun Zhao
- Department of Clinical Research, State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou 510060, P.R. China.
| |
Collapse
|
54
|
Rakké YS, Buschow SI, IJzermans JNM, Sprengers D. Engaging stimulatory immune checkpoint interactions in the tumour immune microenvironment of primary liver cancers - how to push the gas after having released the brake. Front Immunol 2024; 15:1357333. [PMID: 38440738 PMCID: PMC10910082 DOI: 10.3389/fimmu.2024.1357333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Accepted: 01/31/2024] [Indexed: 03/06/2024] Open
Abstract
Hepatocellular carcinoma (HCC) and cholangiocarcinoma (CCA) are the first and second most common primary liver cancer (PLC). For decades, systemic therapies consisting of tyrosine kinase inhibitors (TKIs) or chemotherapy have formed the cornerstone of treating advanced-stage HCC and CCA, respectively. More recently, immunotherapy using immune checkpoint inhibition (ICI) has shown anti-tumour reactivity in some patients. The combination regimen of anti-PD-L1 and anti-VEGF antibodies has been approved as new first-line treatment of advanced-stage HCC. Furthermore, gemcibatine plus cisplatin (GEMCIS) with an anti-PD-L1 antibody is awaiting global approval for the treatment of advanced-stage CCA. As effective anti-tumour reactivity using ICI is achieved in a minor subset of both HCC and CCA patients only, alternative immune strategies to sensitise the tumour microenvironment of PLC are waited for. Here we discuss immune checkpoint stimulation (ICS) as additional tool to enhance anti-tumour reactivity. Up-to-date information on the clinical application of ICS in onco-immunology is provided. This review provides a rationale of the application of next-generation ICS either alone or in combination regimen to potentially enhance anti-tumour reactivity in PLC patients.
Collapse
Affiliation(s)
- Yannick S. Rakké
- Department of Surgery, Erasmus MC-Transplant Institute, University Medical Center, Rotterdam, Netherlands
| | - Sonja I. Buschow
- Department of Gastroenterology and Hepatology, Erasmus MC-Cancer Institute-University Medical Center, Rotterdam, Netherlands
| | - Jan N. M. IJzermans
- Department of Surgery, Erasmus MC-Transplant Institute, University Medical Center, Rotterdam, Netherlands
| | - Dave Sprengers
- Department of Gastroenterology and Hepatology, Erasmus MC-Cancer Institute-University Medical Center, Rotterdam, Netherlands
| |
Collapse
|
55
|
Xu C, Zhou X, Webb L, Yalavarthi S, Zheng W, Saha S, Schweickhardt R, Soloviev M, Jenkins MH, Brandstetter S, Belousova N, Alimzhanov M, Rabinovich B, Deshpande AM, Brewis N, Helming L. M9657 Is a Bispecific Tumor-Targeted Anti-CD137 Agonist That Induces MSLN-Dependent Antitumor Immunity without Liver Inflammation. Cancer Immunol Res 2024; 12:195-213. [PMID: 38091375 DOI: 10.1158/2326-6066.cir-23-0243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 07/13/2023] [Accepted: 12/11/2023] [Indexed: 02/03/2024]
Abstract
The costimulatory receptor CD137 (also known as TNFRSF9 or 4-1BB) sustains effective cytotoxic T-cell responses. Agonistic anti-CD137 cancer immunotherapies are being investigated in clinical trials. Development of the first-generation CD137-agonist monotherapies utomilumab and urelumab was unsuccessful due to low antitumor efficacy mediated by the epitope recognized on CD137 or hepatotoxicity mediated by Fcγ receptors (FcγR) ligand-dependent CD137 activation, respectively. M9657 was engineered as a tetravalent bispecific antibody (mAb2) in a human IgG1 backbone with LALA mutations to reduce binding to FCγRs. Here, we report that M9657 selectively binds to mesothelin (MSLN) and CD137 with similar affinity in humans and cynomolgus monkeys. In a cellular functional assay, M9657 enhanced CD8+ T cell-mediated cytotoxicity and cytokine release in the presence of tumor cells, which was dependent on both MSLN expression and T-cell receptor/CD3 activation. Both FS122m, a murine surrogate with the same protein structure as M9657, and chimeric M9657, a modified M9657 antibody with the Fab portion replaced with an anti-murine MSLN motif, demonstrated in vivo antitumor efficacy against various tumors in wild-type and human CD137 knock-in mice, and this was accompanied by activated CD8+ T-cell infiltration in the tumor microenvironment. The antitumor immunity of M9657 and FS122m depended on MSLN expression density and the mAb2 structure. Compared with 3H3, a murine surrogate of urelumab, FS122m and chimeric M9657 displayed significantly lower on-target/off-tumor toxicity. Taken together, M9657 exhibits a promising profile for development as a tumor-targeting immune agonist with potent anticancer activity without systemic immune activation and associated hepatotoxicity.
Collapse
Affiliation(s)
- Chunxiao Xu
- Research Unit Oncology, EMD Serono, Billerica, Massachusetts
| | - Xueyuan Zhou
- Research Unit Oncology, EMD Serono, Billerica, Massachusetts
| | - Lindsay Webb
- Research Unit Oncology, EMD Serono, Billerica, Massachusetts
| | | | - Wenxin Zheng
- Research Unit Oncology, EMD Serono, Billerica, Massachusetts
| | - Somdutta Saha
- Research Unit Oncology, EMD Serono, Billerica, Massachusetts
| | - Rene Schweickhardt
- Discovery and Development Technologies, EMD Serono, Billerica, Massachusetts
| | - Maria Soloviev
- Discovery and Development Technologies, EMD Serono, Billerica, Massachusetts
| | - Molly H Jenkins
- Research Unit Oncology, EMD Serono, Billerica, Massachusetts
| | | | | | | | | | | | - Neil Brewis
- F-star Therapeutics, Cambridge, United Kingdom
| | - Laura Helming
- Research Unit Oncology, EMD Serono, Billerica, Massachusetts
| |
Collapse
|
56
|
Singh R, Kim YH, Lee SJ, Eom HS, Choi BK. 4-1BB immunotherapy: advances and hurdles. Exp Mol Med 2024; 56:32-39. [PMID: 38172595 PMCID: PMC10834507 DOI: 10.1038/s12276-023-01136-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 09/22/2023] [Accepted: 10/09/2023] [Indexed: 01/05/2024] Open
Abstract
Since its initial description 35 years ago as an inducible molecule expressed in cytotoxic and helper T cells, 4-1BB has emerged as a crucial receptor in T-cell-mediated immune functions. Numerous studies have demonstrated the involvement of 4-1BB in infection and tumor immunity. However, the clinical development of 4-1BB agonist antibodies has been impeded by the occurrence of strong adverse events, notably hepatotoxicity, even though these antibodies have exhibited tremendous promise in in vivo tumor models. Efforts are currently underway to develop a new generation of agonist antibodies and recombinant proteins with modified effector functions that can harness the potent T-cell modulation properties of 4-1BB while mitigating adverse effects. In this review, we briefly examine the role of 4-1BB in T-cell biology, explore its clinical applications, and discuss future prospects in the field of 4-1BB agonist immunotherapy.
Collapse
Affiliation(s)
- Rohit Singh
- Immuno-oncology Branch, Division of Rare and Refractory Cancer, National Cancer Center, Goyang, 10408, Republic of Korea
| | - Young-Ho Kim
- Diagnostics and Therapeutics Technology Branch, Division of Technology Convergence, Research Institute, National Cancer Center, Goyang, 10408, Republic of Korea.
| | - Sang-Jin Lee
- Immuno-oncology Branch, Division of Rare and Refractory Cancer, National Cancer Center, Goyang, 10408, Republic of Korea
| | - Hyeon-Seok Eom
- Hematological Malignancy Center, National Cancer Center, Goyang, 10408, Republic of Korea
| | - Beom K Choi
- Immuno-oncology Branch, Division of Rare and Refractory Cancer, National Cancer Center, Goyang, 10408, Republic of Korea.
- Innobationbio, Co., Ltd., Mapo-gu, Seoul, 03929, Republic of Korea.
| |
Collapse
|
57
|
Galvez-Cancino F, Simpson AP, Costoya C, Matos I, Qian D, Peggs KS, Litchfield K, Quezada SA. Fcγ receptors and immunomodulatory antibodies in cancer. Nat Rev Cancer 2024; 24:51-71. [PMID: 38062252 DOI: 10.1038/s41568-023-00637-8] [Citation(s) in RCA: 27] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/10/2023] [Indexed: 12/24/2023]
Abstract
The discovery of both cytotoxic T lymphocyte-associated antigen 4 (CTLA4) and programmed cell death protein 1 (PD1) as negative regulators of antitumour immunity led to the development of numerous immunomodulatory antibodies as cancer treatments. Preclinical studies have demonstrated that the efficacy of immunoglobulin G (IgG)-based therapies depends not only on their ability to block or engage their targets but also on the antibody's constant region (Fc) and its interactions with Fcγ receptors (FcγRs). Fc-FcγR interactions are essential for the activity of tumour-targeting antibodies, such as rituximab, trastuzumab and cetuximab, where the killing of tumour cells occurs at least in part due to these mechanisms. However, our understanding of these interactions in the context of immunomodulatory antibodies designed to boost antitumour immunity remains less explored. In this Review, we discuss our current understanding of the contribution of FcγRs to the in vivo activity of immunomodulatory antibodies and the challenges of translating results from preclinical models into the clinic. In addition, we review the impact of genetic variability of human FcγRs on the activity of therapeutic antibodies and how antibody engineering is being utilized to develop the next generation of cancer immunotherapies.
Collapse
Affiliation(s)
- Felipe Galvez-Cancino
- Cancer Immunology Unit, Research Department of Haematology, University College London Cancer Institute, London, UK
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, UK
| | - Alexander P Simpson
- Cancer Immunology Unit, Research Department of Haematology, University College London Cancer Institute, London, UK
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, UK
| | - Cristobal Costoya
- Cancer Immunology Unit, Research Department of Haematology, University College London Cancer Institute, London, UK
| | - Ignacio Matos
- Cancer Immunology Unit, Research Department of Haematology, University College London Cancer Institute, London, UK
| | - Danwen Qian
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, UK
- Tumour Immunogenomics and Immunosurveillance Laboratory, University College London Cancer Institute, London, UK
| | - Karl S Peggs
- Cancer Immunology Unit, Research Department of Haematology, University College London Cancer Institute, London, UK
| | - Kevin Litchfield
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, UK
- Tumour Immunogenomics and Immunosurveillance Laboratory, University College London Cancer Institute, London, UK
| | - Sergio A Quezada
- Cancer Immunology Unit, Research Department of Haematology, University College London Cancer Institute, London, UK.
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, UK.
| |
Collapse
|
58
|
Wang H, Sun D, Chen J, Li H, Chen L. Nectin-4 has emerged as a compelling target for breast cancer. Eur J Pharmacol 2023; 960:176129. [PMID: 38059449 DOI: 10.1016/j.ejphar.2023.176129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 10/08/2023] [Accepted: 10/18/2023] [Indexed: 12/08/2023]
Abstract
The incidence of breast cancer in women has increased year by year, becoming one of the most common malignant tumors in females worldwide. Most patients can be treated with surgery and endocrine drugs, but there are still some patients who lack effective treatment, such as triple-negative breast cancer (TNBC). Nectin-4, a protein encoded by poliovirus receptor-associated protein 4, is a Ca2+-independent immunoglobulin-like protein. It is mainly involved in the adhesion between cells. In recent years, studies have found that Nectin-4 is overexpressed in breast cancer and several other malignancies. Otherwise, several monoclonal antibodies and inhibitors targeting Nectin-4 have shown prosperous outcomes, so Nectin-4 has great potential to be a therapeutic target for breast cancer. The present review systematically describes the significance of Nectin-4 in each aspect of breast cancer, as well as the molecular mechanisms of these aspects mediated by Nectin-4. We further highlight ongoing or proposed therapeutic strategies for breast cancer specific to Nectin-4.
Collapse
Affiliation(s)
- Hui Wang
- Wuya College of Innovation, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Dejuan Sun
- Wuya College of Innovation, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Jinxia Chen
- Wuya College of Innovation, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Hua Li
- Wuya College of Innovation, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, China; Institute of Structural Pharmacology & TCM Chemical Biology, College of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, China.
| | - Lixia Chen
- Wuya College of Innovation, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, China.
| |
Collapse
|
59
|
Enell Smith K, Fritzell S, Nilsson A, Barchan K, Rosén A, Schultz L, Varas L, Säll A, Rose N, Håkansson M, von Schantz L, Ellmark P. ATOR-1017 (evunzekibart), an Fc-gamma receptor conditional 4-1BB agonist designed for optimal safety and efficacy, activates exhausted T cells in combination with anti-PD-1. Cancer Immunol Immunother 2023; 72:4145-4159. [PMID: 37796298 PMCID: PMC10700433 DOI: 10.1007/s00262-023-03548-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Accepted: 09/11/2023] [Indexed: 10/06/2023]
Abstract
BACKGROUND 4-1BB (CD137) is a co-stimulatory receptor highly expressed on tumor reactive effector T cells and NK cells, which upon stimulation prolongs persistence of tumor reactive effector T and NK cells within the tumor and induces long-lived memory T cells. 4-1BB agonistic antibodies have been shown to induce strong anti-tumor effects that synergize with immune checkpoint inhibitors. The first generation of 4-1BB agonists was, however, hampered by dose-limiting toxicities resulting in suboptimal dose levels or poor agonistic activity. METHODS ATOR-1017 (evunzekibart), a second-generation Fc-gamma receptor conditional 4-1BB agonist in IgG4 format, was designed to overcome the limitations of the first generation of 4-1BB agonists, providing strong agonistic effect while minimizing systemic immune activation and risk of hepatoxicity. The epitope of ATOR-1017 was determined by X-ray crystallography, and the functional activity was assessed in vitro and in vivo as monotherapy or in combination with anti-PD1. RESULTS ATOR-1017 binds to a unique epitope on 4-1BB enabling ATOR-1017 to activate T cells, including cells with an exhausted phenotype, and NK cells, in a cross-linking dependent, FcγR-conditional, manner. This translated into a tumor-directed and potent anti-tumor therapeutic effect in vivo, which was further enhanced with anti-PD-1 treatment. CONCLUSIONS These preclinical data demonstrate a strong safety profile of ATOR-1017, together with its potent therapeutic effect as monotherapy and in combination with anti-PD1, supporting further clinical development of ATOR-1017.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Anna Säll
- Alligator Bioscience AB, Lund, Sweden
| | | | | | | | - Peter Ellmark
- Alligator Bioscience AB, Lund, Sweden.
- Department of Immunotechnology, Lund University, Lund, Sweden.
| |
Collapse
|
60
|
Jin X, Yi L, Wang X, Yan Z, Wei P, Yang B, Zhang H. Costimulatory capacity of CD137 mAbs on T cells depends on elaborate CRD structures but not on blocking ligand-receptor binding. Eur J Immunol 2023; 53:e2350493. [PMID: 37675596 DOI: 10.1002/eji.202350493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Revised: 07/17/2023] [Accepted: 09/05/2023] [Indexed: 09/08/2023]
Abstract
CD137 is mainly a costimulatory receptor of CD8+ T cells. Two representative CD137 antibodies, utomilumab, and urelumab, show different costimulatory capacities in clinical trials. Balancing the antitumor effect and systemic toxicity of T cells activated by CD137 signaling is a challenge that requires clinical consideration. In this study, a panel of specific anti-human CD137 monoclonal antibodies (mAbs) were prepared and their affinities, isotypes, CD137-CRD (cysteine-rich domain) binding regions, cross-reactivity to mouse and rhesus CD137, inhibition of ligand-receptor binding and costimulatory activities were analyzed. The results showed that anti-human CD137 mAbs had high cross-reactivity with rhesus CD137. MAbs fell into three clusters according to their different binding regions of the CD137 extracellular domain. They bound to CRDI+CRDII, CRDIII or CRDIV+STP. CRDIII-binding mAbs had the strongest blocking activity. Highly costimulatory CD137 mAbs showed stronger abilities to promote CD8+ T-cell proliferation. However, the costimulatory capacity of mAbs on T cells was not closely related to their ability to block CD137L-CD137 binding and may be controlled by more elaborate CRD conformational structures. This study provides additional information for the development of next-generation CD137 mAbs to meet clinical needs.
Collapse
Affiliation(s)
- Xin Jin
- Department of Central Laboratory, Beijing Tuberculosis and Thoracic Tumour Research Institute, Beijing Chest Hospital, Capital Medical University, Beijing, China
| | - Ling Yi
- Department of Central Laboratory, Beijing Tuberculosis and Thoracic Tumour Research Institute, Beijing Chest Hospital, Capital Medical University, Beijing, China
| | - Xiaojue Wang
- Department of Central Laboratory, Beijing Tuberculosis and Thoracic Tumour Research Institute, Beijing Chest Hospital, Capital Medical University, Beijing, China
| | - Zhuohong Yan
- Department of Central Laboratory, Beijing Tuberculosis and Thoracic Tumour Research Institute, Beijing Chest Hospital, Capital Medical University, Beijing, China
| | - Panjian Wei
- Department of Central Laboratory, Beijing Tuberculosis and Thoracic Tumour Research Institute, Beijing Chest Hospital, Capital Medical University, Beijing, China
| | - Bin Yang
- Department of Central Laboratory, Beijing Tuberculosis and Thoracic Tumour Research Institute, Beijing Chest Hospital, Capital Medical University, Beijing, China
| | - Hongtao Zhang
- Department of Central Laboratory, Beijing Tuberculosis and Thoracic Tumour Research Institute, Beijing Chest Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
61
|
Kuah CY, Monfries R, Quartagno M, Seckl MJ, Ghorani E. What is the optimal duration, dose and frequency for anti-PD1 therapy of non-small cell lung cancer? Ther Adv Med Oncol 2023; 15:17588359231210271. [PMID: 37954230 PMCID: PMC10638879 DOI: 10.1177/17588359231210271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 10/09/2023] [Indexed: 11/14/2023] Open
Abstract
Over the past decade, immune checkpoint inhibitors (ICIs) have transformed the management of multiple malignancies including lung cancer. However, the optimal use of these agents in terms of duration, dose and administration frequency remains unknown. Focusing on anti-PD1 agents nivolumab and pembrolizumab in the context of non-small cell lung cancer, we argue that several lines of evidence suggest current administration regimens of these drugs may result in overtreatment with potentially important implications for cost, quality of life and toxicity. This review summarizes evidence for the scope to optimize anti-PD1 regimens, the limitations of existing data and potential approaches to solve these problems including with a novel multi-arm clinical trial design implemented in the recently opened REFINE-Lung study.
Collapse
Affiliation(s)
- Chii Yang Kuah
- Department of Medical Oncology, Charing Cross Hospital Campus of Imperial College London, UK
| | - Robert Monfries
- Department of Medical Oncology, Charing Cross Hospital Campus of Imperial College London, UK
| | - Matteo Quartagno
- Institute for Clinical Trials and Methodology, University College London, London, UK
| | - Michael J. Seckl
- Department of Medical Oncology, Charing Cross Hospital Campus of Imperial College London W6 8RF, UK
| | - Ehsan Ghorani
- Department of Medical Oncology, Charing Cross Hospital Campus of Imperial College London W6 8RF, UK
| |
Collapse
|
62
|
Gulen AE, Rudraboina R, Tarique M, Ulker V, Shirwan H, Yolcu ES. A novel agonist of 4-1BB costimulatory receptor shows therapeutic efficacy against a tobacco carcinogen-induced lung cancer. Cancer Immunol Immunother 2023; 72:3567-3579. [PMID: 37605009 PMCID: PMC10991934 DOI: 10.1007/s00262-023-03507-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 07/23/2023] [Indexed: 08/23/2023]
Abstract
Immunotherapy utilizing checkpoint inhibitors has shown remarkable success in the treatment of cancers. In addition to immune checkpoint inhibitors, immune co-stimulation has the potential to enhance immune activation and destabilize the immunosuppressive tumor microenvironment. CD137, also known as 4-1BB, is one of the potent immune costimulatory receptors that could be targeted for effective immune co-stimulation. The interaction of the 4-1BB receptor with its natural ligand (4-1BBL) generates a strong costimulatory signal for T cell proliferation and survival. 4-1BBL lacks costimulatory activity in soluble form. To obtain co-stimulatory activity in soluble form, a recombinant 4-1BBL protein was generated by fusing the extracellular domains of murine 4-1BBL to a modified version of streptavidin (SA-4-1BBL). Treatment with SA-4-1BBL inhibited the development of lung tumors in A/J mice induced by weekly injections of the tobacco carcinogen NNK for eight weeks. The inhibition was dependent on the presence of T cells and NK cells; depletion of these cells diminished the SA-4-1BBL antitumor protective effect. The number of lung tumor nodules was significantly reduced by the administration of SA-4-1BBL to mice during ongoing exposure to NNK. The data presented in this paper suggest that utilizing an immune checkpoint stimulator as a single agent generate a protective immune response against lung cancer in the presence of a carcinogen. More broadly, this study suggests that immune checkpoint stimulation can be extended to a number of other cancer types, including breast and prostate cancers, for which improved diagnostics can detect disease at the preneoplastic stage.
Collapse
Affiliation(s)
- Ayse Ece Gulen
- Department of Child Health, University of Missouri, Columbia, MO, USA
- NextGen Precision Health, University of Missouri, Columbia, MO, USA
| | - Rakesh Rudraboina
- Department of Child Health, University of Missouri, Columbia, MO, USA
- NextGen Precision Health, University of Missouri, Columbia, MO, USA
| | - Mohammad Tarique
- Department of Child Health, University of Missouri, Columbia, MO, USA
- NextGen Precision Health, University of Missouri, Columbia, MO, USA
| | - Vahap Ulker
- Department of Child Health, University of Missouri, Columbia, MO, USA
- NextGen Precision Health, University of Missouri, Columbia, MO, USA
| | - Haval Shirwan
- Department of Child Health, University of Missouri, Columbia, MO, USA.
- Department of Molecular Microbiology and Immunology, University of Missouri, Columbia, MO, USA.
- NextGen Precision Health, University of Missouri, Columbia, MO, USA.
| | - Esma S Yolcu
- Department of Child Health, University of Missouri, Columbia, MO, USA.
- Department of Molecular Microbiology and Immunology, University of Missouri, Columbia, MO, USA.
- NextGen Precision Health, University of Missouri, Columbia, MO, USA.
| |
Collapse
|
63
|
Sánchez J, Claus C, Albrecht R, Gaillard BC, Marinho J, McIntyre C, Tanos T, Boehnke A, Friberg LE, Jönsson S, Frances N. A model-based approach leveraging in vitro data to support dose selection from the outset: A framework for bispecific antibodies in immuno-oncology. CPT Pharmacometrics Syst Pharmacol 2023; 12:1804-1818. [PMID: 37964753 PMCID: PMC10681425 DOI: 10.1002/psp4.13065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 10/02/2023] [Accepted: 10/03/2023] [Indexed: 11/16/2023] Open
Abstract
FAP-4-1BBL is a bispecific antibody exerting 4-1BB-associated T-cell activation only while simultaneously bound to the fibroblast activation protein (FAP) receptor, expressed on the surface of cancer-associated fibroblasts. The trimeric complex formed when FAP-4-1BBL is simultaneously bound to FAP and 4-1BB represents a promising mechanism to achieve tumor-specific 4-1BB stimulation. We integrated in vitro data with mathematical modeling to characterize the pharmacology of FAP-4-1BBL as a function of trimeric complex formation when combined with the T-cell engager cibisatamab. This relationship was used to prospectively predict a range of clinical doses where trimeric complex formation is expected to be at its maximum. Depending on the dosing schedule and FAP-4-1BBL plasma: tumor distribution, doses between 2 and 145 mg could lead to maximum trimeric complex formation in the clinic. Due to the expected variability in both pharmacokinetic and FAP expression in the patient population, we predict that detecting a clear dose-response relationship would remain difficult without a large number of patients per dose level, highlighting that mathematical modeling techniques based on in vitro data could aid dose selection.
Collapse
Affiliation(s)
- Javier Sánchez
- Roche Pharma Research and Early Development (pRED)Roche Innovation Center BaselBaselSwitzerland
- Department of PharmacyUppsala UniversityUppsalaSweden
| | - Christina Claus
- Roche Pharma Research and Early Development (pRED)Roche Innovation Center ZurichSchlierenSwitzerland
| | - Rosmarie Albrecht
- Roche Pharma Research and Early Development (pRED)Roche Innovation Center ZurichSchlierenSwitzerland
| | - Brenda C. Gaillard
- Roche Pharma Research and Early Development (pRED)Roche Innovation Center ZurichSchlierenSwitzerland
| | - Joana Marinho
- Roche Pharma Research and Early Development (pRED)Roche Innovation Center ZurichSchlierenSwitzerland
| | - Christine McIntyre
- Roche Pharma Research and Early DevelopmentRoche Innovation Center WelwynWelwyn Garden CityUK
| | - Tamara Tanos
- Roche Pharma Research and Early Development (pRED)Roche Innovation Center BaselBaselSwitzerland
| | - Axel Boehnke
- Roche Pharma Research and Early Development (pRED)Roche Innovation Center BaselBaselSwitzerland
| | | | - Siv Jönsson
- Department of PharmacyUppsala UniversityUppsalaSweden
| | - Nicolas Frances
- Roche Pharma Research and Early Development (pRED)Roche Innovation Center BaselBaselSwitzerland
| |
Collapse
|
64
|
Jain MD, Miklos DB, Jacobson CA, Timmerman JM, Sun J, Nater J, Fang X, Patel A, Davis M, Heeke D, Trinh T, Mattie M, Neumann F, Kim JJ, To C, Filosto S, Reshef R. Axicabtagene Ciloleucel in Combination with the 4-1BB Agonist Utomilumab in Patients with Relapsed/Refractory Large B-Cell Lymphoma: Phase 1 Results from ZUMA-11. Clin Cancer Res 2023; 29:4118-4127. [PMID: 37527011 PMCID: PMC10570684 DOI: 10.1158/1078-0432.ccr-23-0916] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 06/15/2023] [Accepted: 07/28/2023] [Indexed: 08/03/2023]
Abstract
PURPOSE Chimeric antigen receptor (CAR) T-cell therapies have shown clinical benefit for patients with relapsed/refractory (R/R) large B-cell lymphoma (LBCL), yet approximately 60% of patients do not respond or eventually relapse. We investigated the safety and feasibility of the CD19-directed CAR T-cell therapy axicabtagene ciloleucel (axi-cel) in combination with the 4-1BB agonist antibody utomilumab as an approach to improve efficacy of CAR T-cell therapy. PATIENTS AND METHODS In phase 1 of the single-arm ZUMA-11 trial, patients with R/R LBCL received a single axi-cel infusion (target dose, 2 × 106 cells/kg) plus utomilumab 10 to 200 mg intravenously every 4 weeks for up to 6 months in a dose-escalation design. The primary endpoint was incidence of dose-limiting toxicities (DLT) with utomilumab. Key secondary endpoints were safety, antitumor activity, pharmacokinetics, and pharmacodynamics. RESULTS No DLTs were observed among patients treated with axi-cel and utomilumab (n = 12). Grade ≥3 adverse events occurred in 10 patients (83%); none were Grade ≥3 cytokine release syndrome or neurologic events. The objective response rate was 75% and seven patients (58%) had a complete response. Peak CAR T-cell levels increased in a utomilumab dose-dependent manner up to 100 mg. Patients who received utomilumab 100 mg had persistently increased CAR T cells on days 57 to 168 compared with other dose levels. Utomilumab was associated with dose-dependent increases in IL2, IFNγ, and IL10. CONCLUSIONS Utomilumab-mediated 4-1BB agonism combined with axi-cel therapy had a manageable safety profile. Dual 4-1BB and CD28 costimulation is a feasible therapeutic approach that may enhance CAR T-cell expansion in patients with LBCL.
Collapse
Affiliation(s)
| | | | | | - John M. Timmerman
- University of California, Los Angeles Medical Center, Los Angeles, California
| | - Jennifer Sun
- Kite, a Gilead Company, Santa Monica, California
| | - Jenny Nater
- Kite, a Gilead Company, Santa Monica, California
| | - Xiang Fang
- Kite, a Gilead Company, Santa Monica, California
| | - Ankit Patel
- Kite, a Gilead Company, Santa Monica, California
| | | | - Darren Heeke
- Kite, a Gilead Company, Santa Monica, California
| | - Tan Trinh
- Kite, a Gilead Company, Santa Monica, California
| | - Mike Mattie
- Kite, a Gilead Company, Santa Monica, California
| | | | - Jenny J. Kim
- Kite, a Gilead Company, Santa Monica, California
| | - Christina To
- Kite, a Gilead Company, Santa Monica, California
| | | | - Ran Reshef
- Columbia University Irving Medical Center, New York, New York
| |
Collapse
|
65
|
Luo H, Wang W, Mai J, Yin R, Cai X, Li Q. The nexus of dynamic T cell states and immune checkpoint blockade therapy in the periphery and tumor microenvironment. Front Immunol 2023; 14:1267918. [PMID: 37881432 PMCID: PMC10597640 DOI: 10.3389/fimmu.2023.1267918] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 09/18/2023] [Indexed: 10/27/2023] Open
Abstract
Immune checkpoint blockade (ICB) therapies, that is, using monoclonal antibodies to reinvigorate tumor-reactive, antigen-specific T cells from the inhibitory effects of CTLA-4, PD-1 and PD-L1 immune checkpoints, have revolutionized the therapeutic landscape of modern oncology. However, only a subset of patients can benefit from the ICB therapy. Biomarkers associated with ICB response, resistance and prognosis have been subjected to intensive research in the past decade. Early studies focused on the analysis of tumor specimens and their residing microenvironment. However, biopsies can be challenging to obtain in clinical practice, and do not reflect the dynamic changes of immunological parameters during the ICB therapy. Recent studies have investigated profiles of antigen-specific T cells derived from the peripheral compartment using multi-omics approaches. By tracking the clonotype and diversity of tumor-reactive T cell receptor repertoire, these studies collectively establish that de novo priming of antigen-specific T cells in peripheral blood occurs throughout the course of ICB, whereas preexisting T cells prior to ICB are exhausted to various degrees. Here, we review what is known about ICB-induced T cell phenotypic and functional changes in cancer patients both within the tumor microenvironment and in the peripheral compartment. A better understanding of parameters influencing the response to ICBs will provide rationales for developing novel diagnostics and combinatorial therapeutic strategies to maximize the clinical efficacies of ICB therapies.
Collapse
Affiliation(s)
- Hong Luo
- Department of Obstetrics & Gynecology, Laboratory Medicine and Pediatrics, West China Second University Hospital, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, Development and Related Diseases of Women and Children Key Laboratory of Sichuan Province, Center of Growth, Metabolism and Aging, State Key Laboratory of Biotherapy and Collaborative Innovation Center of Biotherapy, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Wenxiang Wang
- Xinxiang Central Hospital, The Fourth Clinical College of Xinxiang Medical University, Xinxiang, Henan, China
| | - Jia Mai
- Department of Obstetrics & Gynecology, Laboratory Medicine and Pediatrics, West China Second University Hospital, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, Development and Related Diseases of Women and Children Key Laboratory of Sichuan Province, Center of Growth, Metabolism and Aging, State Key Laboratory of Biotherapy and Collaborative Innovation Center of Biotherapy, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Rutie Yin
- Department of Obstetrics & Gynecology, Laboratory Medicine and Pediatrics, West China Second University Hospital, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, Development and Related Diseases of Women and Children Key Laboratory of Sichuan Province, Center of Growth, Metabolism and Aging, State Key Laboratory of Biotherapy and Collaborative Innovation Center of Biotherapy, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Xuyu Cai
- Institute of Respiratory Health, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Qintong Li
- Department of Obstetrics & Gynecology, Laboratory Medicine and Pediatrics, West China Second University Hospital, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, Development and Related Diseases of Women and Children Key Laboratory of Sichuan Province, Center of Growth, Metabolism and Aging, State Key Laboratory of Biotherapy and Collaborative Innovation Center of Biotherapy, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
66
|
Malyshkina A, Bayer W, Podschwadt P, Otto L, Karakoese Z, Sutter K, Bruderek K, Wang B, Lavender KJ, Santiago ML, Leipe PM, Elsner C, Esser S, Brandau S, Gunzer M, Dittmer U. Immunotherapy-induced cytotoxic T follicular helper cells reduce numbers of retrovirus-infected reservoir cells in B cell follicles. PLoS Pathog 2023; 19:e1011725. [PMID: 37883584 PMCID: PMC10602292 DOI: 10.1371/journal.ppat.1011725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 09/29/2023] [Indexed: 10/28/2023] Open
Abstract
Antiretroviral therapy (ART) transformed HIV from a life-threatening disease to a chronic condition. However, eliminating the virus remains an elusive therapy goal. For several decades, Friend virus (FV) infection serves as a murine model to study retrovirus immunity. Similar to HIV, FV persists at low levels in lymph nodes B cell follicles avoiding elimination by immune cells. Such immune-privileged reservoirs exclude cytotoxic T cells from entry. However, CXCR5+ T cells are permitted to traffic through germinal centers. This marker is predominantly expressed by CD4+ follicular helper T cells (Tfh). Therefore, we explored immunotherapy to induce cytotoxic Tfh, which are rarely found under physiological conditions. The TNF receptor family member CD137 was first identified as a promising target for cancer immunotherapy. We demonstrated that FV-infected mice treatment with αCD137 antibody resulted in an induction of the cytotoxic program in Tfh. The therapy significantly increased numbers of cytotoxic Tfh within B cell follicles and contributed to viral load reduction. Moreover, αCD137 antibody combined with ART delayed virus rebound upon treatment termination without disturbing the lymph node architecture or antibody responses. Thus, αCD137 antibody therapy might be a novel strategy to target the retroviral reservoir and an interesting approach for HIV cure research.
Collapse
Affiliation(s)
- Anna Malyshkina
- Institute for Virology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Wibke Bayer
- Institute for Virology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Philip Podschwadt
- Institute for Virology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Lucas Otto
- Institute for Virology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
- Institute for Experimental Immunology and Imaging, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Zehra Karakoese
- Institute for Virology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
- Institute for Translational HIV Research, University of Duisburg-Essen, Essen, Germany
| | - Kathrin Sutter
- Institute for Virology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
- Institute for Translational HIV Research, University of Duisburg-Essen, Essen, Germany
| | - Kirsten Bruderek
- Department of Otorhinolaryngology, Head and Neck Surgery, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Baoxiao Wang
- Department of Otorhinolaryngology, Head and Neck Surgery, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Kerry J. Lavender
- Department of Biochemistry, Microbiology and Immunology, College of Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Mario L. Santiago
- Division of Infectious Diseases, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States of America
| | - Pia Madeleine Leipe
- Institute for Virology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Carina Elsner
- Institute for Virology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Stefan Esser
- Institute for Translational HIV Research, University of Duisburg-Essen, Essen, Germany
| | - Sven Brandau
- Department of Otorhinolaryngology, Head and Neck Surgery, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Matthias Gunzer
- Institute for Experimental Immunology and Imaging, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Ulf Dittmer
- Institute for Virology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
- Institute for Translational HIV Research, University of Duisburg-Essen, Essen, Germany
| |
Collapse
|
67
|
Garman B, Jiang C, Daouti S, Kumar S, Mehta P, Jacques MK, Menard L, Manjarrez-Orduno N, Dolfi S, Mukherjee P, Rai SC, Lako A, Koenitzer JD, David JM. Comprehensive immunophenotyping of solid tumor-infiltrating immune cells reveals the expression characteristics of LAG-3 and its ligands. Front Immunol 2023; 14:1151748. [PMID: 37795090 PMCID: PMC10546411 DOI: 10.3389/fimmu.2023.1151748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 09/04/2023] [Indexed: 10/06/2023] Open
Abstract
Background Immune cell expression profiling from patient samples is critical for the successful development of immuno-oncology agents and is useful to understand mechanism-of-action, to identify exploratory biomarkers predictive of response, and to guide treatment selection and combination therapy strategies. LAG-3 is an inhibitory immune checkpoint that can suppress antitumor T-cell responses and targeting LAG-3, in combination with PD-1, is a rational approach to enhance antitumor immunity that has recently demonstrated clinical success. Here, we sought to identify human immune cell subsets that express LAG-3 and its ligands, to characterize the marker expression profile of these subsets, and to investigate the potential relationship between LAG-3 expressing subsets and clinical outcomes to immuno-oncology therapies. Methods Comprehensive high-parameter immunophenotyping was performed using mass and flow cytometry of tumor-infiltrating lymphocytes (TILs) and peripheral blood mononuclear cells (PBMCs) from two independent cohorts of samples from patients with various solid tumor types. Profiling of circulating immune cells by single cell RNA-seq was conducted on samples from a clinical trial cohort of melanoma patients treated with immunotherapy. Results LAG-3 was most highly expressed by subsets of tumor-infiltrating CD8 T central memory (TCM) and effector memory (TEM) cells and was frequently co-expressed with PD-1. We determined that these PD-1+ LAG-3+ CD8 memory T cells exhibited a unique marker profile, with greater expression of activation (CD69, HLA-DR), inhibitory (TIM-3, TIGIT, CTLA-4) and stimulatory (4-1BB, ICOS) markers compared to cells that expressed only PD-1 or LAG-3, or that were negative for both checkpoints. In contrast to tumors, LAG-3 expression was more limited in circulating immune cells from healthy donors and solid tumor patients. Additionally, we found abundant expression of the LAG-3 ligands MHC-II and galectin-3 in diverse immune cell types, whereas FGL1 and LSECtin were minimally expressed by immune cells in the tumor microenvironment (TME). Lastly, we found an inverse relationship between baseline and on-treatment levels of circulating LAG3 transcript-expressing CD8 memory T cells and response to combination PD-1 and CTLA-4 blockade in a clinical trial cohort of melanoma patients profiled by scRNAseq. Conclusions These results provide insights into the nature of LAG-3- and ligand-expressing immune cells within the TME, and suggest a biological basis for informing mechanistic hypotheses, treatment selection strategies, and combination immunotherapy approaches to support continued development of dual PD-1 and LAG-3 blockade.
Collapse
Affiliation(s)
- Bradley Garman
- Translational Medicine, Bristol Myers Squibb, Lawrenceville, NJ, United States
| | - Can Jiang
- Translational Medicine, Bristol Myers Squibb, Lawrenceville, NJ, United States
| | - Sherif Daouti
- Translational Medicine, Bristol Myers Squibb, Lawrenceville, NJ, United States
| | - Sanah Kumar
- Translational Medicine, Bristol Myers Squibb, Lawrenceville, NJ, United States
| | - Priyanka Mehta
- Translational Medicine, Bristol Myers Squibb, Lawrenceville, NJ, United States
| | - Miye K. Jacques
- Translational Medicine, Bristol Myers Squibb, Lawrenceville, NJ, United States
| | - Laurence Menard
- Translational Medicine, Bristol Myers Squibb, Lawrenceville, NJ, United States
| | | | - Sonia Dolfi
- Translational Medicine, Bristol Myers Squibb, Lawrenceville, NJ, United States
| | - Piali Mukherjee
- Translational Medicine, Bristol Myers Squibb, Lawrenceville, NJ, United States
- Epigenomics Core Facility, Weill Cornell Medicine, New York City, NY, United States
| | | | - Ana Lako
- Translational Medicine, Bristol Myers Squibb, Lawrenceville, NJ, United States
| | | | - Justin M. David
- Translational Medicine, Bristol Myers Squibb, Lawrenceville, NJ, United States
| |
Collapse
|
68
|
Fromm G, de Silva S, Schreiber TH. Reconciling intrinsic properties of activating TNF receptors by native ligands versus synthetic agonists. Front Immunol 2023; 14:1236332. [PMID: 37795079 PMCID: PMC10546206 DOI: 10.3389/fimmu.2023.1236332] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 08/30/2023] [Indexed: 10/06/2023] Open
Abstract
The extracellular domain of tumor necrosis factor receptors (TNFR) generally require assembly into a homotrimeric quaternary structure as a prerequisite for initiation of signaling via the cytoplasmic domains. TNF receptor homotrimers are natively activated by similarly homo-trimerized TNF ligands, but can also be activated by synthetic agonists including engineered antibodies and Fc-ligand fusion proteins. A large body of literature from pre-clinical models supports the hypothesis that synthetic agonists targeting a diverse range of TNF receptors (including 4-1BB, CD40, OX40, GITR, DR5, TNFRSF25, HVEM, LTβR, CD27, and CD30) could amplify immune responses to provide clinical benefit in patients with infectious diseases or cancer. Unfortunately, however, the pre-clinical attributes of synthetic TNF receptor agonists have not translated well in human clinical studies, and have instead raised fundamental questions regarding the intrinsic biology of TNF receptors. Clinical observations of bell-shaped dose response curves have led some to hypothesize that TNF receptor overstimulation is possible and can lead to anergy and/or activation induced cell death of target cells. Safety issues including liver toxicity and cytokine release syndrome have also been observed in humans, raising questions as to whether those toxicities are driven by overstimulation of the targeted TNF receptor, a non-TNF receptor related attribute of the synthetic agonist, or both. Together, these clinical findings have limited the development of many TNF receptor agonists, and may have prevented generation of clinical data which reflects the full potential of TNF receptor agonism. A number of recent studies have provided structural insights into how different TNF receptor agonists bind and cluster TNF receptors, and these insights aid in deconvoluting the intrinsic biology of TNF receptors with the mechanistic underpinnings of synthetic TNF receptor agonist therapeutics.
Collapse
|
69
|
Battin C, De Sousa Linhares A, Leitner J, Grossmann A, Lupinek D, Izadi S, Castilho A, Waidhofer-Söllner P, Grabmeier-Pfistershammer K, Stritzker J, Steinberger P. Engineered soluble, trimerized 4-1BBL variants as potent immunomodulatory agents. Cancer Immunol Immunother 2023; 72:3029-3043. [PMID: 37310433 PMCID: PMC10412504 DOI: 10.1007/s00262-023-03474-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Accepted: 05/22/2023] [Indexed: 06/14/2023]
Abstract
Targeting co-stimulatory receptors promotes the activation and effector functions of anti-tumor lymphocytes. 4-1BB (CD137/TNFSF9), a member of the tumor necrosis factor receptor superfamily (TNFR-SF), is a potent co-stimulatory receptor that plays a prominent role in augmenting effector functions of CD8+ T cells, but also CD4+ T cells and NK cells. Agonistic antibodies against 4-1BB have entered clinical trials and shown signs of therapeutic efficacy. Here, we have used a T cell reporter system to evaluate various formats of 4-1BBL regarding their capacity to functionally engage its receptor. We found that a secreted 4-1BBL ectodomain harboring a trimerization domain derived from human collagen (s4-1BBL-TriXVIII) is a strong inducer of 4-1BB co-stimulation. Similar to the 4-1BB agonistic antibody urelumab, s4-1BBL-TriXVIII is very potent in inducing CD8+ and CD4+ T cell proliferation. We provide first evidence that s4-1BBL-TriXVIII can be used as an effective immunomodulatory payload in therapeutic viral vectors. Oncolytic measles viruses encoding s4-1BBL-TriXVIII significantly reduced tumor burden in a CD34+ humanized mouse model, whereas measles viruses lacking s4-1BBL-TriXVIII were not effective. Natural soluble 4-1BB ligand harboring a trimerization domain might have utility in tumor therapy especially when delivered to tumor tissue as systemic administration might induce liver toxicity.
Collapse
Affiliation(s)
- Claire Battin
- Themis Bioscience GmbH, Vienna, Austria; a subsidiary of Merck & Co., Inc., Rahway, NJ, USA
- Loop Lab Bio GmbH, Vienna, Austria
| | - Annika De Sousa Linhares
- Themis Bioscience GmbH, Vienna, Austria; a subsidiary of Merck & Co., Inc., Rahway, NJ, USA
- Loop Lab Bio GmbH, Vienna, Austria
| | - Judith Leitner
- Division of Immune Receptors and T Cell Activation, Center for Pathophysiology, Infectiology, Institute of Immunology, Medical University of Vienna, Vienna, Austria
| | - Anna Grossmann
- Themis Bioscience GmbH, Vienna, Austria; a subsidiary of Merck & Co., Inc., Rahway, NJ, USA
- Loop Lab Bio GmbH, Vienna, Austria
| | - Daniela Lupinek
- Themis Bioscience GmbH, Vienna, Austria; a subsidiary of Merck & Co., Inc., Rahway, NJ, USA
- Loop Lab Bio GmbH, Vienna, Austria
| | - Shiva Izadi
- Department of Applied Genetics and Cell Biology, Institute for Plant Biotechnology and Cell Biology, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Alexandra Castilho
- Department of Applied Genetics and Cell Biology, Institute for Plant Biotechnology and Cell Biology, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Petra Waidhofer-Söllner
- Center for Pathophysiology, Infectiology and Immunology, Institute of Immunology, Medical University of Vienna, Vienna, Austria
| | | | - Jochen Stritzker
- Themis Bioscience GmbH, Vienna, Austria; a subsidiary of Merck & Co., Inc., Rahway, NJ, USA.
- Loop Lab Bio GmbH, Vienna, Austria.
| | - Peter Steinberger
- Division of Immune Receptors and T Cell Activation, Center for Pathophysiology, Infectiology, Institute of Immunology, Medical University of Vienna, Vienna, Austria.
| |
Collapse
|
70
|
Shen X, Zhang R, Nie X, Yang Y, Hua Y, Lü P. 4-1BB Targeting Immunotherapy: Mechanism, Antibodies, and Chimeric Antigen Receptor T. Cancer Biother Radiopharm 2023; 38:431-444. [PMID: 37433196 DOI: 10.1089/cbr.2023.0022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/13/2023] Open
Abstract
4-1BB (CD137, TNFRSF9) is a type I transmembrane protein which binds its natural ligand, 4-1BBL. This interaction has been exploited to improve cancer immunotherapy. With ligand binding by 4-1BB, the nuclear factor-kappa B signaling pathway is activated, which results in transcription of corresponding genes such as interleukin-2 and interferon-γ, as well as the induction of T cell proliferation and antiapoptotic signals. Moreover, monoclonal antibodies that target-4-1BB, for example, Urelumab and Utomilumab, are widely used in the treatments of B cell non-Hodgkin lymphoma, lung cancer, breast cancer, soft tissue sarcoma, and other solid tumors. Furthermore, 4-1BB as a costimulatory domain, for chimeric antigen receptor T (CAR-T) cells, improves T cell proliferation and survival as well as reduces T cell exhaustion. As such, a deeper understanding of 4-1BB will contribute to improvements in cancer immunotherapy. This review provides a comprehensive analysis of current 4-1BB studies, with a focus on the use of targeting-4-1BB antibodies and 4-1BB activation domains in CAR-T cells for the treatment of cancer.
Collapse
Affiliation(s)
- Xiaoling Shen
- School of Life Sciences, Jiangsu University, Zhenjiang, China
| | - Rusong Zhang
- School of Life Sciences, Jiangsu University, Zhenjiang, China
| | - Xiaojuan Nie
- School of Life Sciences, Jiangsu University, Zhenjiang, China
| | - Yanhua Yang
- School of Life Sciences, Jiangsu University, Zhenjiang, China
| | - Ye Hua
- Institute of Oncology, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Peng Lü
- School of Life Sciences, Jiangsu University, Zhenjiang, China
| |
Collapse
|
71
|
Cina ML, Venegas J, Young A. Stocking the toolbox-Using preclinical models to understand the development and treatment of immune checkpoint inhibitor-induced immune-related adverse events. Immunol Rev 2023; 318:110-137. [PMID: 37565407 PMCID: PMC10529261 DOI: 10.1111/imr.13250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 06/23/2023] [Indexed: 08/12/2023]
Abstract
Cancer patients treated with immune checkpoint inhibitors (ICIs) are susceptible to a broad and variable array of immune-related adverse events (irAEs). With increasing clinical use of ICIs, defining the mechanism for irAE development is more critical than ever. However, it currently remains challenging to predict when these irAEs occur and which organ may be affected, and for many of the more severe irAEs, inaccessibility to the tissue site hampers mechanistic insight. This lack of understanding of irAE development in the clinical setting emphasizes the need for greater use of preclinical models that allow for improved prediction of biomarkers for ICI-initiated irAEs or that validate treatment options that inhibit irAEs without hampering the anti-tumor immune response. Here, we discuss the utility of preclinical models, ranging from exploring databases to in vivo animal models, focusing on where they are most useful and where they could be improved.
Collapse
Affiliation(s)
- Morgan L Cina
- Huntsman Cancer Institute, University of Utah Health Sciences Center, Salt Lake City, Utah, USA
- Department of Pathology, University of Utah School of Medicine, Salt Lake City, Utah, USA
| | - Jessica Venegas
- Huntsman Cancer Institute, University of Utah Health Sciences Center, Salt Lake City, Utah, USA
- Department of Pathology, University of Utah School of Medicine, Salt Lake City, Utah, USA
| | - Arabella Young
- Huntsman Cancer Institute, University of Utah Health Sciences Center, Salt Lake City, Utah, USA
- Department of Pathology, University of Utah School of Medicine, Salt Lake City, Utah, USA
| |
Collapse
|
72
|
Glez-Vaz J, Azpilikueta A, Ochoa MC, Olivera I, Gomis G, Cirella A, Luri-Rey C, Álvarez M, Pérez-Gracia JL, Ciordia S, Eguren-Santamaria I, Alexandru R, Berraondo P, de Andrea C, Teijeira Á, Corrales F, Zapata JM, Melero I. CD137 (4-1BB) requires physically associated cIAPs for signal transduction and antitumor effects. SCIENCE ADVANCES 2023; 9:eadf6692. [PMID: 37595047 PMCID: PMC11044178 DOI: 10.1126/sciadv.adf6692] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Accepted: 07/20/2023] [Indexed: 08/20/2023]
Abstract
CD137 (4-1BB) is a member of the TNFR family that mediates potent T cell costimulatory signals upon ligation by CD137L or agonist monoclonal antibodies (mAbs). CD137 agonists attain immunotherapeutic antitumor effects in cancer mouse models, and multiple agents of this kind are undergoing clinical trials. We show that cIAP1 and cIAP2 are physically associated with the CD137 signaling complex. Moreover, cIAPs are required for CD137 signaling toward the NF-κB and MAPK pathways and for costimulation of human and mouse T lymphocytes. Functional evidence was substantiated with SMAC mimetics that trigger cIAP degradation and by transfecting cIAP dominant-negative variants. Antitumor effects of agonist anti-CD137 mAbs are critically dependent on the integrity of cIAPs in cancer mouse models, and cIAPs are also required for signaling from CARs encompassing CD137's cytoplasmic tail.
Collapse
Affiliation(s)
- Javier Glez-Vaz
- Program of Immunology and Immunotherapy, Cima Universidad de Navarra, Pamplona, Spain
- Navarra Institute for Health Research (IDISNA), Pamplona, Spain
| | - Arantza Azpilikueta
- Program of Immunology and Immunotherapy, Cima Universidad de Navarra, Pamplona, Spain
- Navarra Institute for Health Research (IDISNA), Pamplona, Spain
| | - María C. Ochoa
- Program of Immunology and Immunotherapy, Cima Universidad de Navarra, Pamplona, Spain
- Navarra Institute for Health Research (IDISNA), Pamplona, Spain
- Departments of Immunology-Immunotherapy, Pathology and Oncology, Clínica Universidad de Navarra, Pamplona, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
| | - Irene Olivera
- Program of Immunology and Immunotherapy, Cima Universidad de Navarra, Pamplona, Spain
- Navarra Institute for Health Research (IDISNA), Pamplona, Spain
| | - Gabriel Gomis
- Program of Immunology and Immunotherapy, Cima Universidad de Navarra, Pamplona, Spain
| | - Asunta Cirella
- Program of Immunology and Immunotherapy, Cima Universidad de Navarra, Pamplona, Spain
- Navarra Institute for Health Research (IDISNA), Pamplona, Spain
- Departments of Immunology-Immunotherapy, Pathology and Oncology, Clínica Universidad de Navarra, Pamplona, Spain
| | - Carlos Luri-Rey
- Program of Immunology and Immunotherapy, Cima Universidad de Navarra, Pamplona, Spain
- Navarra Institute for Health Research (IDISNA), Pamplona, Spain
| | - Maite Álvarez
- Program of Immunology and Immunotherapy, Cima Universidad de Navarra, Pamplona, Spain
- Navarra Institute for Health Research (IDISNA), Pamplona, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
| | - Jose L. Pérez-Gracia
- Departments of Immunology-Immunotherapy, Pathology and Oncology, Clínica Universidad de Navarra, Pamplona, Spain
| | - Sergio Ciordia
- Functional Proteomics Laboratory, CNB-CSIC, Proteored-ISCIII, Madrid, Spain
| | - Iñaki Eguren-Santamaria
- Program of Immunology and Immunotherapy, Cima Universidad de Navarra, Pamplona, Spain
- Departments of Immunology-Immunotherapy, Pathology and Oncology, Clínica Universidad de Navarra, Pamplona, Spain
| | - Raluca Alexandru
- Departments of Immunology-Immunotherapy, Pathology and Oncology, Clínica Universidad de Navarra, Pamplona, Spain
| | - Pedro Berraondo
- Program of Immunology and Immunotherapy, Cima Universidad de Navarra, Pamplona, Spain
- Navarra Institute for Health Research (IDISNA), Pamplona, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
| | - Carlos de Andrea
- Departments of Immunology-Immunotherapy, Pathology and Oncology, Clínica Universidad de Navarra, Pamplona, Spain
| | - Álvaro Teijeira
- Program of Immunology and Immunotherapy, Cima Universidad de Navarra, Pamplona, Spain
- Navarra Institute for Health Research (IDISNA), Pamplona, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
| | - Fernando Corrales
- Functional Proteomics Laboratory, CNB-CSIC, Proteored-ISCIII, Madrid, Spain
| | - Juan M. Zapata
- Instituto de Investigaciones Biomédicas Alberto Sols (IIBm), CSIC-UAM, Madrid, Spain
- Instituto de Investigación Sanitaria La Paz (IdiPaz), Madrid, Spain
| | - Ignacio Melero
- Program of Immunology and Immunotherapy, Cima Universidad de Navarra, Pamplona, Spain
- Navarra Institute for Health Research (IDISNA), Pamplona, Spain
- Departments of Immunology-Immunotherapy, Pathology and Oncology, Clínica Universidad de Navarra, Pamplona, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
- Nuffield Department of Medicine, University of Oxford, Oxford, UK
| |
Collapse
|
73
|
Salek-Ardakani S, Zajonc DM, Croft M. Agonism of 4-1BB for immune therapy: a perspective on possibilities and complications. Front Immunol 2023; 14:1228486. [PMID: 37662949 PMCID: PMC10469789 DOI: 10.3389/fimmu.2023.1228486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 08/03/2023] [Indexed: 09/05/2023] Open
Abstract
Costimulatory receptors on immune cells represent attractive targets for immunotherapy given that these molecules can increase the frequency of individual protective immune cell populations and their longevity, as well as enhance various effector functions. 4-1BB, a member of the TNF receptor superfamily, also known as CD137 and TNFRSF9, is one such molecule that is inducible on several cell types, including T cells and NK cells. Preclinical studies in animal models have validated the notion that stimulating 4-1BB with agonist reagents or its natural ligand could be useful to augment conventional T cell and NK cell immunity to protect against tumor growth and against viral infection. Additionally, stimulating 4-1BB can enhance regulatory T cell function and might be useful in the right context for suppressing autoimmunity. Two human agonist antibodies to 4-1BB have been produced and tested in clinical trials for cancer, with variable results, leading to the production of a wealth of second-generation antibody constructs, including bi- and multi-specifics, with the hope of optimizing activity and selectivity. Here, we review the progress to date in agonism of 4-1BB, discuss the complications in targeting the immune system appropriately to elicit the desired activity, together with challenges in engineering agonists, and highlight the untapped potential of manipulating this molecule in infectious disease and autoimmunity.
Collapse
Affiliation(s)
| | - Dirk M. Zajonc
- Center for Autoimmunity and Inflammation, La Jolla Institute for Immunology, La Jolla, CA, United States
| | - Michael Croft
- Center for Autoimmunity and Inflammation, La Jolla Institute for Immunology, La Jolla, CA, United States
- Department of Medicine, University of California (UC) San Diego, La Jolla, CA, United States
| |
Collapse
|
74
|
Ali A, Gao M, Iskantar A, Wang H, Karlsson-Parra A, Yu D, Jin C. Proinflammatory allogeneic dendritic cells enhance the therapeutic efficacy of systemic anti-4-1BB treatment. Front Immunol 2023; 14:1146413. [PMID: 37654492 PMCID: PMC10466132 DOI: 10.3389/fimmu.2023.1146413] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 07/26/2023] [Indexed: 09/02/2023] Open
Abstract
As an immune adjuvant, proinflammatory allogeneic dendritic cells (AlloDCs) have demonstrated promising immune-priming effects in several preclinical and clinical studies. The effector cells, including NK cells and T cells are widely acknowledged as pivotal factors in the effectiveness of cancer immunotherapy due to their ability to selectively identify and eradicate malignant cells. 4-1BB, as a costimulatory receptor, plays a significant role in the stimulation of effector cell activation. This study evaluated the anti-tumor effects when combining intratumoral administration of the immune-adjuvant AlloDCs with systemic α4-1BB treatment directly acting on effector cells. In both the CT-26 murine colon carcinoma model and B16 murine melanoma model, AlloDCs demonstrated a significant enhancement in the therapeutic efficacy of α4-1BB antibody. This enhancement was observed through the delayed growth of tumors and prolonged survival. Analysis of the tumor microenvironment (TME) in the combined-treatment group revealed an immune-inflamed TME characterized by increased infiltration of activated endogenous DCs and IFNγ+ CD8+ T cells, showing reduced signs of exhaustion. Furthermore, there was an augmented presence of tissue-resident memory (TRM) CD8+ T cells (CD103+CD49a+CD69+). The combination treatment also led to increased infiltration of CD39+CD103+ tumor-specific CD8+ T cells and neoantigen-specific T cells into the tumor. Additionally, the combined treatment resulted in a less immunosuppressive TME, indicated by decreased infiltration of myeloid-derived suppressor cells and Tregs. These findings suggest that the combination of intratumoral AlloDCs administration with systemic agonistic α4-1BB treatment can generate a synergistic anti-tumor response, thereby warranting further investigation through clinical studies.
Collapse
Affiliation(s)
- Arwa Ali
- Department of Immunology, Genetics, and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Menghan Gao
- Department of Immunology, Genetics, and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Alexandros Iskantar
- Department of Immunology, Genetics, and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Hai Wang
- Chinese Academy of Science (CAS) Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | | | - Di Yu
- Department of Immunology, Genetics, and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Chuan Jin
- Department of Immunology, Genetics, and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| |
Collapse
|
75
|
Leitner J, Egerer R, Waidhofer-Söllner P, Grabmeier-Pfistershammer K, Steinberger P. FcγR requirements and costimulatory capacity of Urelumab, Utomilumab, and Varlilumab. Front Immunol 2023; 14:1208631. [PMID: 37575254 PMCID: PMC10413977 DOI: 10.3389/fimmu.2023.1208631] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 06/28/2023] [Indexed: 08/15/2023] Open
Abstract
Introduction Targeting costimulatory receptors of the tumor necrosis factor receptor (TNFR) superfamily with agonistic antibodies is a promising approach in cancer immuno therapy. It is known that their efficacy strongly depends on FcγR cross-linking. Methods In this study, we made use of a Jurkat-based reporter platform to analyze the influence of individual FcγRs on the costimulatory activity of the 41BB agonists, Urelumab and Utomilumab, and the CD27 agonist, Varlilumab. Results We found that Urelumab (IgG4) can activate 41BB-NFκB signaling without FcγR cross-linking, but the presence of the FcγRs (CD32A, CD32B, CD64) augments the agonistic activity of Urelumab. The human IgG2 antibody Utomilumab exerts agonistic function only when crosslinked via CD32A and CD32B. The human IgG1 antibody Varlilumab showed strong agonistic activity with all FcγRs tested. In addition, we analyzed the costimulatory effects of Urelumab, Utomilumab, and Varlilumab in primary human peripheral blood mononuclear cells (PBMCs). Interestingly, we observed a very weak capacity of Varlilumab to enhance cytokine production and proliferation of CD4 and CD8 T cells. In the presence of Varlilumab the percentage of annexin V positive T cells was increased, indicating that this antibody mediated FcγR-dependent cytotoxic effects. Conclusion Collectively, our data underscore the importance to perform studies in reductionist systems as well as in primary PBMC samples to get a comprehensive understanding of the activity of costimulation agonists.
Collapse
Affiliation(s)
- Judith Leitner
- Division of Immune Receptors and T Cell Activation, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Ricarda Egerer
- Division of Immune Receptors and T Cell Activation, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Petra Waidhofer-Söllner
- Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | | | - Peter Steinberger
- Division of Immune Receptors and T Cell Activation, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
76
|
Melo V, Nelemans LC, Vlaming M, Lourens HJ, Wiersma VR, Bilemjian V, Huls G, de Bruyn M, Bremer E. EGFR-selective activation of CD27 co-stimulatory signaling by a bispecific antibody enhances anti-tumor activity of T cells. Front Immunol 2023; 14:1191866. [PMID: 37545491 PMCID: PMC10399592 DOI: 10.3389/fimmu.2023.1191866] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 07/03/2023] [Indexed: 08/08/2023] Open
Abstract
A higher density of tumor infiltrating lymphocytes (TILs) in the tumor microenvironment, particularly cytotoxic CD8+ T cells, is associated with improved clinical outcome in various cancers. However, local inhibitory factors can suppress T cell activity and hinder anti-tumor immunity. Notably, TILs from various cancer types express the co-stimulatory Tumor Necrosis Factor receptor CD27, making it a potential target for co-stimulation and re-activation of tumor-infiltrated and tumor-reactive T cells. Anti-cancer therapeutics based on exploiting CD27-mediated T cell co-stimulation have proven safe, but clinical responses remain limited. This is likely because current monoclonal antibodies fail to effectively activate CD27 signaling, as this receptor requires higher-order receptor cross-linking. Here, we report on a bispecific antibody, CD27xEGFR, that targets both CD27 and the tumor antigen, epidermal growth factor receptor (EGFR). By targeting EGFR, which is commonly expressed on carcinomas, CD27xEGFR induced cancer cell-localized crosslinking and activation of CD27. The design of CD27xEGFR includes an Fc-silent domain, which is designed to minimize potential toxicity by reducing Fc gamma receptor-mediated binding and activation of immune cells. CD27xEGFR bound to both of its targets simultaneously and triggered EGFR-restricted co-stimulation of T cells as measured by T cell proliferation, T cell activation markers, cytotoxicity and IFN-γ release. Further, CD27xEGFR augmented T cell cytotoxicity in a panel of artificial antigen-presenting carcinoma cell line models, leading to Effector-to-Target ratio-dependent elimination of cancer cells. Taken together, we present the in vitro characterization of a novel bispecific antibody that re-activates T cell immunity in EGFR-expressing cancers through targeted co-stimulation of CD27.
Collapse
Affiliation(s)
- Vinicio Melo
- Department of Hematology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Levi Collin Nelemans
- Department of Hematology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Martijn Vlaming
- Department of Hematology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Harm Jan Lourens
- Department of Hematology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Valerie R. Wiersma
- Department of Hematology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Vrouyr Bilemjian
- Department of Hematology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Gerwin Huls
- Department of Hematology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Marco de Bruyn
- Department of Obstetrics & Gynecology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Edwin Bremer
- Department of Hematology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| |
Collapse
|
77
|
Pichler AC, Carrié N, Cuisinier M, Ghazali S, Voisin A, Axisa PP, Tosolini M, Mazzotti C, Golec DP, Maheo S, do Souto L, Ekren R, Blanquart E, Lemaitre L, Feliu V, Joubert MV, Cannons JL, Guillerey C, Avet-Loiseau H, Watts TH, Salomon BL, Joffre O, Grinberg-Bleyer Y, Schwartzberg PL, Lucca LE, Martinet L. TCR-independent CD137 (4-1BB) signaling promotes CD8 +-exhausted T cell proliferation and terminal differentiation. Immunity 2023; 56:1631-1648.e10. [PMID: 37392737 PMCID: PMC10649891 DOI: 10.1016/j.immuni.2023.06.007] [Citation(s) in RCA: 45] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 03/29/2023] [Accepted: 06/08/2023] [Indexed: 07/03/2023]
Abstract
CD137 (4-1BB)-activating receptor represents a promising cancer immunotherapeutic target. Yet, the cellular program driven by CD137 and its role in cancer immune surveillance remain unresolved. Using T cell-specific deletion and agonist antibodies, we found that CD137 modulates tumor infiltration of CD8+-exhausted T (Tex) cells expressing PD1, Lag-3, and Tim-3 inhibitory receptors. T cell-intrinsic, TCR-independent CD137 signaling stimulated the proliferation and the terminal differentiation of Tex precursor cells through a mechanism involving the RelA and cRel canonical NF-κB subunits and Tox-dependent chromatin remodeling. While Tex cell accumulation induced by prophylactic CD137 agonists favored tumor growth, anti-PD1 efficacy was improved with subsequent CD137 stimulation in pre-clinical mouse models. Better understanding of T cell exhaustion has crucial implications for the treatment of cancer and infectious diseases. Our results identify CD137 as a critical regulator of Tex cell expansion and differentiation that holds potential for broad therapeutic applications.
Collapse
Affiliation(s)
- Andrea C Pichler
- Cancer Research Center of Toulouse (CRCT), Institut National de la Santé et de la Recherche Médicale (INSERM), Centre National de la Recherche Scientifique (CNRS), Université Toulouse III-Paul Sabatier (UPS), Toulouse, France; Cell Signaling and Immunity Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Nadège Carrié
- Cancer Research Center of Toulouse (CRCT), Institut National de la Santé et de la Recherche Médicale (INSERM), Centre National de la Recherche Scientifique (CNRS), Université Toulouse III-Paul Sabatier (UPS), Toulouse, France
| | - Marine Cuisinier
- Cancer Research Center of Toulouse (CRCT), Institut National de la Santé et de la Recherche Médicale (INSERM), Centre National de la Recherche Scientifique (CNRS), Université Toulouse III-Paul Sabatier (UPS), Toulouse, France; Institut Universitaire du Cancer, CHU Toulouse, Toulouse, France
| | - Samira Ghazali
- Toulouse Institute for Infectious and Inflammatory Diseases (Infinity), UPS, INSERM, CNRS, Toulouse, France
| | - Allison Voisin
- Centre de Recherche en Cancérologie de Lyon, Labex DEVweCAN, INSERM, CNRS, Université Claude Bernard Lyon 1, Centre Léon Bérard, Lyon, France
| | - Pierre-Paul Axisa
- Cancer Research Center of Toulouse (CRCT), Institut National de la Santé et de la Recherche Médicale (INSERM), Centre National de la Recherche Scientifique (CNRS), Université Toulouse III-Paul Sabatier (UPS), Toulouse, France
| | - Marie Tosolini
- Cancer Research Center of Toulouse (CRCT), Institut National de la Santé et de la Recherche Médicale (INSERM), Centre National de la Recherche Scientifique (CNRS), Université Toulouse III-Paul Sabatier (UPS), Toulouse, France
| | - Céline Mazzotti
- Cancer Research Center of Toulouse (CRCT), Institut National de la Santé et de la Recherche Médicale (INSERM), Centre National de la Recherche Scientifique (CNRS), Université Toulouse III-Paul Sabatier (UPS), Toulouse, France; Institut Universitaire du Cancer, CHU Toulouse, Toulouse, France
| | - Dominic P Golec
- Cell Signaling and Immunity Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Sabrina Maheo
- Cancer Research Center of Toulouse (CRCT), Institut National de la Santé et de la Recherche Médicale (INSERM), Centre National de la Recherche Scientifique (CNRS), Université Toulouse III-Paul Sabatier (UPS), Toulouse, France; Institut Universitaire du Cancer, CHU Toulouse, Toulouse, France
| | - Laura do Souto
- Cancer Research Center of Toulouse (CRCT), Institut National de la Santé et de la Recherche Médicale (INSERM), Centre National de la Recherche Scientifique (CNRS), Université Toulouse III-Paul Sabatier (UPS), Toulouse, France; Institut Universitaire du Cancer, CHU Toulouse, Toulouse, France
| | - Rüçhan Ekren
- Cancer Research Center of Toulouse (CRCT), Institut National de la Santé et de la Recherche Médicale (INSERM), Centre National de la Recherche Scientifique (CNRS), Université Toulouse III-Paul Sabatier (UPS), Toulouse, France
| | - Eve Blanquart
- Cancer Research Center of Toulouse (CRCT), Institut National de la Santé et de la Recherche Médicale (INSERM), Centre National de la Recherche Scientifique (CNRS), Université Toulouse III-Paul Sabatier (UPS), Toulouse, France
| | - Lea Lemaitre
- Cancer Research Center of Toulouse (CRCT), Institut National de la Santé et de la Recherche Médicale (INSERM), Centre National de la Recherche Scientifique (CNRS), Université Toulouse III-Paul Sabatier (UPS), Toulouse, France
| | - Virginie Feliu
- Cancer Research Center of Toulouse (CRCT), Institut National de la Santé et de la Recherche Médicale (INSERM), Centre National de la Recherche Scientifique (CNRS), Université Toulouse III-Paul Sabatier (UPS), Toulouse, France
| | - Marie-Véronique Joubert
- Cancer Research Center of Toulouse (CRCT), Institut National de la Santé et de la Recherche Médicale (INSERM), Centre National de la Recherche Scientifique (CNRS), Université Toulouse III-Paul Sabatier (UPS), Toulouse, France; Institut Universitaire du Cancer, CHU Toulouse, Toulouse, France
| | - Jennifer L Cannons
- Cell Signaling and Immunity Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Camille Guillerey
- Cancer Immunotherapies Group, The University of Queensland, Brisbane, QLD, Australia
| | - Hervé Avet-Loiseau
- Cancer Research Center of Toulouse (CRCT), Institut National de la Santé et de la Recherche Médicale (INSERM), Centre National de la Recherche Scientifique (CNRS), Université Toulouse III-Paul Sabatier (UPS), Toulouse, France; Institut Universitaire du Cancer, CHU Toulouse, Toulouse, France
| | - Tania H Watts
- Department of Immunology, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Benoit L Salomon
- Toulouse Institute for Infectious and Inflammatory Diseases (Infinity), UPS, INSERM, CNRS, Toulouse, France; Sorbonne Université, INSERM, CNRS, Centre d'Immunologie et des Maladies Infectieuses (CIMI-Paris), Paris, France
| | - Olivier Joffre
- Toulouse Institute for Infectious and Inflammatory Diseases (Infinity), UPS, INSERM, CNRS, Toulouse, France
| | - Yenkel Grinberg-Bleyer
- Centre de Recherche en Cancérologie de Lyon, Labex DEVweCAN, INSERM, CNRS, Université Claude Bernard Lyon 1, Centre Léon Bérard, Lyon, France
| | - Pamela L Schwartzberg
- Cell Signaling and Immunity Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Liliana E Lucca
- Cancer Research Center of Toulouse (CRCT), Institut National de la Santé et de la Recherche Médicale (INSERM), Centre National de la Recherche Scientifique (CNRS), Université Toulouse III-Paul Sabatier (UPS), Toulouse, France.
| | - Ludovic Martinet
- Cancer Research Center of Toulouse (CRCT), Institut National de la Santé et de la Recherche Médicale (INSERM), Centre National de la Recherche Scientifique (CNRS), Université Toulouse III-Paul Sabatier (UPS), Toulouse, France; Institut Universitaire du Cancer, CHU Toulouse, Toulouse, France.
| |
Collapse
|
78
|
Wang YA, Ranti D, Bieber C, Galsky M, Bhardwaj N, Sfakianos JP, Horowitz A. NK Cell-Targeted Immunotherapies in Bladder Cancer: Beyond Checkpoint Inhibitors. Bladder Cancer 2023; 9:125-139. [PMID: 38993289 PMCID: PMC11181717 DOI: 10.3233/blc-220109] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 05/15/2023] [Indexed: 07/13/2024]
Abstract
BACKGROUND For decades, immunotherapies have been integral for the treatment and management of bladder cancer, with immune checkpoint inhibitors (ICIs) transforming patient care in recent years. However, response rates are poor to T cell-targeted ICIs such as programmed cell death protein 1 (PD-1) and programmed cell death-ligand 1 (PD-L1) blocking antibodies, framing a critical need for complementary immunotherapies. Promising strategies involve harnessing the activation potential of natural killer (NK) cells. They quickly exert their antitumor activity via signaling through germline-encoded activating receptors and are rapidly sensitized to new tissue microenvironments via their regulation by polymorphic HLA class I, KIR and NKG2A receptors. OBJECTIVE In this review, we examined the roles of currently available NK-targeted antitumor treatment strategies such as engineered viral vectors, small-molecule IMiDs, NK agonist antibodies, interleukins, and chimeric antigen receptor (CAR) NK cells, and their potential for improving the efficacy of immunotherapy in the treatment of bladder cancer. METHODS Through review of current literature, we summarized our knowledge of NK cells in solid tumors and hematologic malignancies as their roles pertain to novel immunotherapies already being applied to the treatment of bladder cancer or that offer rationale for considering as potential novel immunotherapeutic strategies. RESULTS NK cells play a critical role in shaping the tumor microenvironment (TME) that can be exploited to improve T cell-targeted immunotherapies. CONCLUSIONS Emerging evidence suggests that NK cells are a prime target for improving antitumor functions in immunotherapies for the treatment of bladder cancer. Further research into profiling NK cells in settings of immunotherapies for bladder cancer could help identify patients who might maximally benefit from NK cell-targeted immunotherapies and the various approaches for exploiting their antitumor properties.
Collapse
Affiliation(s)
- Yuanshuo A Wang
- The Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Urology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Daniel Ranti
- The Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Urology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Christine Bieber
- The Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Urology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Matthew Galsky
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Division of Hematology and Medical Oncology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Nina Bhardwaj
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Urology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Division of Hematology and Medical Oncology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - John P Sfakianos
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Urology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Amir Horowitz
- The Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
79
|
Heumann T, Judkins C, Li K, Lim SJ, Hoare J, Parkinson R, Cao H, Zhang T, Gai J, Celiker B, Zhu Q, McPhaul T, Durham J, Purtell K, Klein R, Laheru D, De Jesus-Acosta A, Le DT, Narang A, Anders R, Burkhart R, Burns W, Soares K, Wolfgang C, Thompson E, Jaffee E, Wang H, He J, Zheng L. A platform trial of neoadjuvant and adjuvant antitumor vaccination alone or in combination with PD-1 antagonist and CD137 agonist antibodies in patients with resectable pancreatic adenocarcinoma. Nat Commun 2023; 14:3650. [PMID: 37339979 PMCID: PMC10281953 DOI: 10.1038/s41467-023-39196-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 06/01/2023] [Indexed: 06/22/2023] Open
Abstract
A neoadjuvant immunotherapy platform clinical trial allows for rapid evaluation of treatment-related changes in tumors and identifying targets to optimize treatment responses. We enrolled patients with resectable pancreatic adenocarcinoma into such a platform trial (NCT02451982) to receive pancreatic cancer GVAX vaccine with low-dose cyclophosphamide alone (Arm A; n = 16), with anti-PD-1 antibody nivolumab (Arm B; n = 14), and with both nivolumab and anti-CD137 agonist antibody urelumab (Arm C; n = 10), respectively. The primary endpoint for Arms A/B - treatment-related change in IL17A expression in vaccine-induced lymphoid aggregates - was previously published. Here, we report the primary endpoint for Arms B/C: treatment-related change in intratumoral CD8+ CD137+ cells and the secondary outcomes including safety, disease-free and overall survivals for all Arms. Treatment with GVAX+nivolumab+urelumab meets the primary endpoint by significantly increasing intratumoral CD8+ CD137+ cells (p = 0.003) compared to GVAX+Nivolumab. All treatments are well-tolerated. Median disease-free and overall survivals, respectively, are 13.90/14.98/33.51 and 23.59/27.01/35.55 months for Arms A/B/C. GVAX+nivolumab+urelumab demonstrates numerically-improved disease-free survival (HR = 0.55, p = 0.242; HR = 0.51, p = 0.173) and overall survival (HR = 0.59, p = 0.377; HR = 0.53, p = 0.279) compared to GVAX and GVAX+nivolumab, respectively, although not statistically significant due to small sample size. Therefore, neoadjuvant and adjuvant GVAX with PD-1 blockade and CD137 agonist antibody therapy is safe, increases intratumoral activated, cytotoxic T cells, and demonstrates a potentially promising efficacy signal in resectable pancreatic adenocarcinoma that warrants further study.
Collapse
Affiliation(s)
- Thatcher Heumann
- The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Department of Oncology, Cancer Convergence Institute and Bloomberg-Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Vanderbilt University Medical Center, Department of Hematology-Oncology, Nashville, TN, USA
- The Bloomberg-Kimmel Institute for Cancer Immunotherapy at Johns Hopkins, Baltimore, MD, USA
| | - Carol Judkins
- The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Department of Oncology, Cancer Convergence Institute and Bloomberg-Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- The Bloomberg-Kimmel Institute for Cancer Immunotherapy at Johns Hopkins, Baltimore, MD, USA
| | - Keyu Li
- Division of Pancreatic Surgery, Department of General Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Su Jin Lim
- The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Department of Oncology, Cancer Convergence Institute and Bloomberg-Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Division of Quantitative Sciences, Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Jessica Hoare
- The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Department of Oncology, Cancer Convergence Institute and Bloomberg-Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- The Bloomberg-Kimmel Institute for Cancer Immunotherapy at Johns Hopkins, Baltimore, MD, USA
| | - Rose Parkinson
- The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Department of Oncology, Cancer Convergence Institute and Bloomberg-Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- The Bloomberg-Kimmel Institute for Cancer Immunotherapy at Johns Hopkins, Baltimore, MD, USA
| | - Haihui Cao
- The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Department of Oncology, Cancer Convergence Institute and Bloomberg-Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- The Bloomberg-Kimmel Institute for Cancer Immunotherapy at Johns Hopkins, Baltimore, MD, USA
| | - Tengyi Zhang
- The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Department of Oncology, Cancer Convergence Institute and Bloomberg-Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- The Bloomberg-Kimmel Institute for Cancer Immunotherapy at Johns Hopkins, Baltimore, MD, USA
- The Pancreatic Cancer Precision Medicine Center of Excellence Program at Johns Hopkins, Baltimore, MD, USA
| | - Jessica Gai
- The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Department of Oncology, Cancer Convergence Institute and Bloomberg-Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- The Bloomberg-Kimmel Institute for Cancer Immunotherapy at Johns Hopkins, Baltimore, MD, USA
- The Pancreatic Cancer Precision Medicine Center of Excellence Program at Johns Hopkins, Baltimore, MD, USA
| | - Betul Celiker
- The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Department of Oncology, Cancer Convergence Institute and Bloomberg-Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- The Bloomberg-Kimmel Institute for Cancer Immunotherapy at Johns Hopkins, Baltimore, MD, USA
| | - Qingfeng Zhu
- The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Department of Oncology, Cancer Convergence Institute and Bloomberg-Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- The Bloomberg-Kimmel Institute for Cancer Immunotherapy at Johns Hopkins, Baltimore, MD, USA
- The Pancreatic Cancer Precision Medicine Center of Excellence Program at Johns Hopkins, Baltimore, MD, USA
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Thomas McPhaul
- The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Department of Oncology, Cancer Convergence Institute and Bloomberg-Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- The Pancreatic Cancer Precision Medicine Center of Excellence Program at Johns Hopkins, Baltimore, MD, USA
- Department of Radiation Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Jennifer Durham
- The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Department of Oncology, Cancer Convergence Institute and Bloomberg-Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- The Bloomberg-Kimmel Institute for Cancer Immunotherapy at Johns Hopkins, Baltimore, MD, USA
| | - Katrina Purtell
- The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Department of Oncology, Cancer Convergence Institute and Bloomberg-Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- The Bloomberg-Kimmel Institute for Cancer Immunotherapy at Johns Hopkins, Baltimore, MD, USA
| | - Rachel Klein
- The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Department of Oncology, Cancer Convergence Institute and Bloomberg-Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Daniel Laheru
- The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Department of Oncology, Cancer Convergence Institute and Bloomberg-Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- The Bloomberg-Kimmel Institute for Cancer Immunotherapy at Johns Hopkins, Baltimore, MD, USA
- The Pancreatic Cancer Precision Medicine Center of Excellence Program at Johns Hopkins, Baltimore, MD, USA
| | - Ana De Jesus-Acosta
- The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Department of Oncology, Cancer Convergence Institute and Bloomberg-Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- The Bloomberg-Kimmel Institute for Cancer Immunotherapy at Johns Hopkins, Baltimore, MD, USA
- The Pancreatic Cancer Precision Medicine Center of Excellence Program at Johns Hopkins, Baltimore, MD, USA
| | - Dung T Le
- The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Department of Oncology, Cancer Convergence Institute and Bloomberg-Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- The Bloomberg-Kimmel Institute for Cancer Immunotherapy at Johns Hopkins, Baltimore, MD, USA
- The Pancreatic Cancer Precision Medicine Center of Excellence Program at Johns Hopkins, Baltimore, MD, USA
| | - Amol Narang
- The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Department of Oncology, Cancer Convergence Institute and Bloomberg-Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- The Pancreatic Cancer Precision Medicine Center of Excellence Program at Johns Hopkins, Baltimore, MD, USA
- Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Robert Anders
- The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Department of Oncology, Cancer Convergence Institute and Bloomberg-Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- The Bloomberg-Kimmel Institute for Cancer Immunotherapy at Johns Hopkins, Baltimore, MD, USA
- The Pancreatic Cancer Precision Medicine Center of Excellence Program at Johns Hopkins, Baltimore, MD, USA
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Richard Burkhart
- The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Department of Oncology, Cancer Convergence Institute and Bloomberg-Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- The Bloomberg-Kimmel Institute for Cancer Immunotherapy at Johns Hopkins, Baltimore, MD, USA
- The Pancreatic Cancer Precision Medicine Center of Excellence Program at Johns Hopkins, Baltimore, MD, USA
- Department of Radiation Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - William Burns
- The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Department of Oncology, Cancer Convergence Institute and Bloomberg-Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- The Bloomberg-Kimmel Institute for Cancer Immunotherapy at Johns Hopkins, Baltimore, MD, USA
- The Pancreatic Cancer Precision Medicine Center of Excellence Program at Johns Hopkins, Baltimore, MD, USA
- Department of Radiation Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Kevin Soares
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Christopher Wolfgang
- Department of Surgery, New York University School of Medicine and NYU-Langone Medical Center, New York, NY, USA
| | - Elizabeth Thompson
- The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Department of Oncology, Cancer Convergence Institute and Bloomberg-Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- The Bloomberg-Kimmel Institute for Cancer Immunotherapy at Johns Hopkins, Baltimore, MD, USA
- The Pancreatic Cancer Precision Medicine Center of Excellence Program at Johns Hopkins, Baltimore, MD, USA
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Elizabeth Jaffee
- The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Department of Oncology, Cancer Convergence Institute and Bloomberg-Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- The Bloomberg-Kimmel Institute for Cancer Immunotherapy at Johns Hopkins, Baltimore, MD, USA
- The Pancreatic Cancer Precision Medicine Center of Excellence Program at Johns Hopkins, Baltimore, MD, USA
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Hao Wang
- The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Department of Oncology, Cancer Convergence Institute and Bloomberg-Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- The Bloomberg-Kimmel Institute for Cancer Immunotherapy at Johns Hopkins, Baltimore, MD, USA
- Division of Quantitative Sciences, Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Jin He
- The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Department of Oncology, Cancer Convergence Institute and Bloomberg-Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- The Bloomberg-Kimmel Institute for Cancer Immunotherapy at Johns Hopkins, Baltimore, MD, USA
- The Pancreatic Cancer Precision Medicine Center of Excellence Program at Johns Hopkins, Baltimore, MD, USA
- Department of Radiation Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Lei Zheng
- The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Department of Oncology, Cancer Convergence Institute and Bloomberg-Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- The Bloomberg-Kimmel Institute for Cancer Immunotherapy at Johns Hopkins, Baltimore, MD, USA.
- The Pancreatic Cancer Precision Medicine Center of Excellence Program at Johns Hopkins, Baltimore, MD, USA.
- Department of Radiation Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
80
|
Nagai H, Azuma M, Sato A, Shibui N, Ogawara S, Tsutsui Y, Suzuki A, Wakaizumi T, Ito A, Matsuyama S, Morita M, Hikosaka Kuniishi M, Ishii N, So T. Fundamental Characterization of Antibody Fusion-Single-Chain TNF Recombinant Proteins Directed against Costimulatory TNF Receptors Expressed by T-Lymphocytes. Cells 2023; 12:1596. [PMID: 37371066 DOI: 10.3390/cells12121596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 05/24/2023] [Accepted: 06/06/2023] [Indexed: 06/29/2023] Open
Abstract
The costimulatory signal regulated by the members of the tumor necrosis factor receptor (TNFR) superfamily expressed by T cells plays essential roles for T cell responses and has emerged as a promising target for cancer immunotherapy. However, it is unclear how the difference in TNFR costimulation contributes to T cell responses. In this study, to clarify the functional significance of four different TNFRs, OX40, 4-1BB, CD27 and GITR, we prepared corresponding single-chain TNF ligand proteins (scTNFLs) connected to IgG Fc domain with beneficial characteristics, i.e., Fc-scOX40L, Fc-sc4-1BBL, Fc-scCD27L (CD70) and Fc-scGITRL. Without intentional cross-linking, these soluble Fc-scTNFL proteins bound to corresponding TNFRs induced NF-kB signaling and promoted proliferative and cytokine responses in CD4+ and CD8+ T cells with different dose-dependencies in vitro. Mice injected with one of the Fc-scTNFL proteins displayed significantly augmented delayed-type hypersensitivity responses, showing in vivo activity. The results demonstrate that each individual Fc-scTNFL protein provides a critical costimulatory signal and exhibits quantitatively distinct activity toward T cells. Our findings provide important insights into the TNFR costimulation that would be valuable for investigators conducting basic research in cancer immunology and also have implications for T cell-mediated immune regulation by designer TNFL proteins.
Collapse
Affiliation(s)
- Hodaka Nagai
- Laboratory of Molecular Cell Biology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama 930-0194, Japan
| | - Mitsuki Azuma
- Laboratory of Molecular Cell Biology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama 930-0194, Japan
| | - Ayaka Sato
- Laboratory of Molecular Cell Biology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama 930-0194, Japan
| | - Nagito Shibui
- Laboratory of Molecular Cell Biology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama 930-0194, Japan
| | - Sayaka Ogawara
- Laboratory of Molecular Cell Biology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama 930-0194, Japan
| | - Yuta Tsutsui
- Laboratory of Molecular Cell Biology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama 930-0194, Japan
| | - Ayano Suzuki
- Laboratory of Molecular Cell Biology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama 930-0194, Japan
| | - Tomomi Wakaizumi
- Laboratory of Molecular Cell Biology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama 930-0194, Japan
| | - Aya Ito
- Laboratory of Molecular Cell Biology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama 930-0194, Japan
| | - Shimpei Matsuyama
- Laboratory of Molecular Cell Biology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama 930-0194, Japan
| | - Masashi Morita
- Laboratory of Molecular Cell Biology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama 930-0194, Japan
| | - Mari Hikosaka Kuniishi
- Laboratory of Molecular Cell Biology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama 930-0194, Japan
| | - Naoto Ishii
- Department of Microbiology and Immunology, Tohoku University Graduate School of Medicine, Tohoku University, Sendai 980-8575, Japan
| | - Takanori So
- Laboratory of Molecular Cell Biology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama 930-0194, Japan
| |
Collapse
|
81
|
Liu G, Luo P. Targeting CD137 (4-1BB) towards improved safety and efficacy for cancer immunotherapy. Front Immunol 2023; 14:1208788. [PMID: 37334375 PMCID: PMC10272836 DOI: 10.3389/fimmu.2023.1208788] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 05/22/2023] [Indexed: 06/20/2023] Open
Abstract
T cells play a critical role in antitumor immunity, where T cell activation is regulated by both inhibitory and costimulatory receptor signaling that fine-tune T cell activity during different stages of T cell immune responses. Currently, cancer immunotherapy by targeting inhibitory receptors such as CTLA-4 and PD-1/L1, and their combination by antagonist antibodies, has been well established. However, developing agonist antibodies that target costimulatory receptors such as CD28 and CD137/4-1BB has faced considerable challenges, including highly publicized adverse events. Intracellular costimulatory domains of CD28 and/or CD137/4-1BB are essential for the clinical benefits of FDA-approved chimeric antigen receptor T cell (CAR-T) therapies. The major challenge is how to decouple efficacy from toxicity by systemic immune activation. This review focuses on anti-CD137 agonist monoclonal antibodies with different IgG isotypes in clinical development. It discusses CD137 biology in the context of anti-CD137 agonist drug discovery, including the binding epitope selected for anti-CD137 agonist antibody in competition or not with CD137 ligand (CD137L), the IgG isotype of antibodies selected with an impact on crosslinking by Fc gamma receptors, and the conditional activation of anti-CD137 antibodies for safe and potent engagement with CD137 in the tumor microenvironment (TME). We discuss and compare the potential mechanisms/effects of different CD137 targeting strategies and agents under development and how rational combinations could enhance antitumor activities without amplifying the toxicity of these agonist antibodies.
Collapse
Affiliation(s)
- Guizhong Liu
- Adagene Inc., San Diego, CA, United States
- Adagene (Suzhou) Limited., Suzhou, China
| | - Peter Luo
- Adagene Inc., San Diego, CA, United States
- Adagene (Suzhou) Limited., Suzhou, China
| |
Collapse
|
82
|
Gao J, Wang Z, Jiang W, Zhang Y, Meng Z, Niu Y, Sheng Z, Chen C, Liu X, Chen X, Liu C, Jia K, Zhang C, Liao H, Jung J, Sung E, Chung H, Zhang JZ, Zhu AX, Shen L. CLDN18.2 and 4-1BB bispecific antibody givastomig exerts antitumor activity through CLDN18.2-expressing tumor-directed T-cell activation. J Immunother Cancer 2023; 11:e006704. [PMID: 37364935 PMCID: PMC10410885 DOI: 10.1136/jitc-2023-006704] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/21/2023] [Indexed: 06/28/2023] Open
Abstract
BACKGROUND Claudin18.2 (CLDN18.2) is a tight junction protein that has been identified as a clinically proven target in gastric cancer. Stimulation of 4-1BB with agonistic antibodies is also a promising strategy for immunotherapy and 4-1BB+ T cells were reported to be present within the tumor microenvironment of patients with gastric cancer. However, hepatotoxicity-mediated by 4-1BB activation was observed in clinical trials of agonistic anti-4-1BB monoclonal antibodies. METHODS To specifically activate the 4-1BB+ T cells in tumor and avoid the on-target liver toxicity, we developed a novel CLDN18.2×4-1BB bispecific antibody (termed 'givastomig' or 'ABL111'; also known as TJ-CD4B or TJ033721) that was designed to activate 4-1BB signaling in a CLDN18.2 engagement-dependent manner. RESULTS 4-1BB+ T cells were observed to be coexisted with CLDN18.2+ tumor cells in proximity by multiplex immunohistochemical staining of tumor tissues from patients with gastric cancer (n=60). Givastomig/ABL111 could bind to cell lines expressing various levels of CLDN18.2 with a high affinity and induce 4-1BB activation in vitro only in the context of CLDN18.2 binding. The magnitude of T-cell activation by givastomig/ABL111 treatment was closely correlated with the CLDN18.2 expression level of tumor cells from gastric cancer patient-derived xenograft model. Mechanistically, givastomig/ABL111 treatment could upregulate the expression of a panel of pro-inflammatory and interferon-γ-responsive genes in human peripheral blood mononuclear cells when co-cultured with CLDN18.2+ tumor cells. Furthermore, in humanized 4-1BB transgenic mice inoculated with human CLDN18.2-expressing tumor cells, givastomig/ABL111 induced a localized immune activation in tumor as evident by the increased ratio of CD8+/regulatory T cell, leading to the superior antitumor activity and long-lasting memory response against tumor rechallenge. Givastomig/ABL111 was well tolerated, with no systemic immune response and hepatotoxicity in monkeys. CONCLUSIONS Givastomig/ABL111 is a novel CLDN18.2×4-1BB bispecific antibody which has the potential to treat patients with gastric cancer with a wide range of CLDN18.2 expression level through the restricted activation of 4-1BB+ T cells in tumor microenvironment to avoid the risk of liver toxicity and systemic immune response.
Collapse
Affiliation(s)
- Jing Gao
- Department of Oncology, Shenzhen Key Laboratory of Gastrointestinal Cancer Translational Research, Cancer Institute, Peking University Shenzhen Hospital, Shenzhen-Peking University-Hong Kong University of Science and Technology Medical Center, Shenzhen, China
- SIP LifeLink Oncology Research Institute, Suzhou, China
| | | | | | | | | | | | | | | | | | - Xi Chen
- I-Mab Biopharma, Shanghai, China
| | | | - Keren Jia
- Department of Gastrointestinal Oncology, Peking University Cancer Hospital and Institute, Beijing, China
| | - Cheng Zhang
- Department of Gastrointestinal Oncology, Peking University Cancer Hospital and Institute, Beijing, China
| | - Haiyan Liao
- Department of Oncology, Shenzhen Key Laboratory of Gastrointestinal Cancer Translational Research, Cancer Institute, Peking University Shenzhen Hospital, Shenzhen-Peking University-Hong Kong University of Science and Technology Medical Center, Shenzhen, China
| | - Jaeho Jung
- ABL Bio Inc, Seongnam, Republic of Korea
| | | | | | | | | | - Lin Shen
- SIP LifeLink Oncology Research Institute, Suzhou, China
- Department of Gastrointestinal Oncology, Peking University Cancer Hospital and Institute, Beijing, China
| |
Collapse
|
83
|
Martin AL, Powell C, Nagy MZ, Innamarato P, Powers J, Nichols D, Anadon CM, Chaurio RA, Kim S, Wang MH, Gong B, Wang X, Scheutz TJ, Antonia SJ, Conejo-Garcia JR, Perez BA. Anti-4-1BB immunotherapy enhances systemic immune effects of radiotherapy to induce B and T cell-dependent anti-tumor immune activation and improve tumor control at unirradiated sites. Cancer Immunol Immunother 2023; 72:1445-1460. [PMID: 36469096 PMCID: PMC10992043 DOI: 10.1007/s00262-022-03325-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 11/02/2022] [Indexed: 12/08/2022]
Abstract
Radiation therapy (RT) can prime and boost systemic anti-tumor effects via STING activation, resulting in enhanced tumor antigen presentation and antigen recognition by T cells. It is increasingly recognized that optimal anti-tumor immune responses benefit from coordinated cellular (T cell) and humoral (B cell) responses. However, the nature and functional relevance of the RT-induced immune response are controversial, beyond STING signaling, and agonistic interventions are lacking. Here, we show that B and CD4+ T cell accumulation at tumor beds in response to RT precedes the arrival of CD8+ T cells, and both cell types are absolutely required for abrogated tumor growth in non-irradiated tumors. Further, RT induces increased expression of 4-1BB (CD137) in both T and B cells; both in preclinical models and in a cohort of patients with small cell lung cancer treated with thoracic RT. Accordingly, the combination of RT and anti-41BB therapy leads to increased immune cell infiltration in the tumor microenvironment and significant abscopal effects. Thus, 4-1BB therapy enhances radiation-induced tumor-specific immune responses via coordinated B and T cell responses, thereby preventing malignant progression at unirradiated tumor sites. These findings provide a rationale for combining RT and 4-1bb therapy in future clinical trials.
Collapse
Affiliation(s)
- Alexandra L Martin
- Departments of Clinical Science, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, 33612, USA
| | - Chase Powell
- Departments of Clinical Science, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, 33612, USA
| | - Mate Z Nagy
- Department of Immunology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, 33612, USA
| | - Patrick Innamarato
- Department of Immunology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, 33612, USA
| | - John Powers
- Department of Immunology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, 33612, USA
| | - Derek Nichols
- Department of Immunology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, 33612, USA
| | - Carmen M Anadon
- Department of Immunology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, 33612, USA
| | - Ricardo A Chaurio
- Department of Immunology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, 33612, USA
| | - Sungjune Kim
- Department of Immunology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, 33612, USA
- Department of Radiation Oncology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, 33612, USA
| | - Min-Hsuan Wang
- Department of Immunology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, 33612, USA
| | - Bing Gong
- Compass Therapeutics, Boston, MA, 02135, USA
| | | | | | - Scott J Antonia
- Department of Thoracic Oncology, Center for Cancer Immunotherapy, Duke University Medical Center, Durham, 27712, USA
| | - Jose R Conejo-Garcia
- Department of Immunology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, 33612, USA
| | - Bradford A Perez
- Department of Immunology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, 33612, USA.
- Department of Radiation Oncology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, 33612, USA.
| |
Collapse
|
84
|
Cheng LS, Zhu M, Gao Y, Liu WT, Yin W, Zhou P, Zhu Z, Niu L, Zeng X, Zhang D, Fang Q, Wang F, Zhao Q, Zhang Y, Shen G. An Fc-muted bispecific antibody targeting PD-L1 and 4-1BB induces antitumor immune activity in colorectal cancer without systemic toxicity. Cell Mol Biol Lett 2023; 28:47. [PMID: 37259060 DOI: 10.1186/s11658-023-00461-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 05/15/2023] [Indexed: 06/02/2023] Open
Abstract
BACKGROUND Resistance to immune checkpoint inhibitor (ICI) therapy narrows the efficacy of cancer immunotherapy. Although 4-1BB is a promising drug target as a costimulatory molecule of immune cells, no 4-1BB agonist has been given clinical approval because of severe liver toxicity or limited efficacy. Therefore, a safe and efficient immunostimulatory molecule is urgently needed for cancer immunotherapy. METHODS HK010 was generated by antibody engineering, and the Fab/antigen complex structure was analyzed using crystallography. The affinity and activity of HK010 were detected by multiple in vitro bioassays, including enzyme-linked immunosorbent assay (ELISA), surface plasmon resonance (SPR), flow cytometry, and luciferase-reporter assays. Humanized mice bearing human PD-L1-expressing MC38 (MC38/hPDL1) or CT26 (CT26/hPDL1) tumor transplants were established to assess the in vivo antitumor activity of HK010. The pharmacokinetics (PK) and toxicity of HK010 were evaluated in cynomolgus monkeys. RESULTS HK010 was generated as an Fc-muted immunoglobulin (Ig)G4 PD-L1x4-1BB bispecific antibody (BsAb) with a distinguished Fab/antigen complex structure, and maintained a high affinity for human PD-L1 (KD: 2.27 nM) and low affinity for human 4-1BB (KD: 493 nM) to achieve potent PD-1/PD-L1 blockade and appropriate 4-1BB agonism. HK010 exhibited synergistic antitumor activity by blocking the PD-1/PD-L1 signaling pathway and stimulating the 4-1BB signaling pathway simultaneously, and being strictly dependent on the PD-L1 receptor in vitro and in vivo. In particular, when the dose was decreased to 0.3 mg/kg, HK010 still showed a strong antitumor effect in a humanized mouse model bearing MC38/hPDL1 tumors. Strikingly, HK010 treatment enhanced antitumor immunity and induced durable antigen-specific immune memory to prevent rechallenged tumor growth by recruiting CD8+ T cells and other lymphocytes into tumor tissue and activating tumor-infiltrating lymphocytes. Moreover, HK010 not only did not induce nonspecific production of proinflammatory cytokines but was also observed to be well tolerated in cynomolgus monkeys in 5 week repeated-dose (5, 15, or 50 mg/kg) and single-dose (75 or 150 mg/kg) toxicity studies. CONCLUSION We generated an Fc-muted anti-PD-L1x4-1BB BsAb, HK010, with a distinguished structural interaction with PD-L1 and 4-1BB that exhibits a synergistic antitumor effect by blocking the PD-1/PD-L1 signaling pathway and stimulating the 4-1BB signaling pathway simultaneously. It is strictly dependent on the PD-L1 receptor with no systemic toxicity, which may offer a new option for cancer immunotherapy.
Collapse
Affiliation(s)
- Lian-Sheng Cheng
- Department of Geriatrics, The First Affiliated Hospital of University of Science and Technology of China, Gerontology Institute of Anhui Province, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, Anhui, China
- Hefei HankeMab Biotechnology Limited, Hefei, 230088, Anhui, China
- Anhui Provincial Key Laboratory of Tumor Immunotherapy and Nutrition Therapy, Hefei, 230001, Anhui, China
- Anhui Province Key Laboratory of Gene Engineering Pharmaceutical, Biomedicine Technology Innovation Center of Hefei, Anhui Anke Biotechnology (Group) Co., Ltd., Hefei, 230088, Anhui, China
| | - Min Zhu
- School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230026, Anhui, China
| | - Yan Gao
- School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230026, Anhui, China
| | - Wen-Ting Liu
- Hefei HankeMab Biotechnology Limited, Hefei, 230088, Anhui, China
| | - Wu Yin
- Department of Geriatrics, The First Affiliated Hospital of University of Science and Technology of China, Gerontology Institute of Anhui Province, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, Anhui, China
- Anhui Provincial Key Laboratory of Tumor Immunotherapy and Nutrition Therapy, Hefei, 230001, Anhui, China
| | - Pengfei Zhou
- Hefei HankeMab Biotechnology Limited, Hefei, 230088, Anhui, China
| | - Zhongliang Zhu
- School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230026, Anhui, China
| | - Liwen Niu
- School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230026, Anhui, China
| | - Xiaoli Zeng
- Hefei HankeMab Biotechnology Limited, Hefei, 230088, Anhui, China
| | - Dayan Zhang
- Hefei HankeMab Biotechnology Limited, Hefei, 230088, Anhui, China
| | - Qing Fang
- Hefei HankeMab Biotechnology Limited, Hefei, 230088, Anhui, China
| | - Fengrong Wang
- Hefei HankeMab Biotechnology Limited, Hefei, 230088, Anhui, China
| | - Qun Zhao
- Hefei HankeMab Biotechnology Limited, Hefei, 230088, Anhui, China
| | - Yan Zhang
- School of Health Service Management, Anhui Medical University, Hefei, 230032, Anhui, China.
| | - Guodong Shen
- Department of Geriatrics, The First Affiliated Hospital of University of Science and Technology of China, Gerontology Institute of Anhui Province, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, Anhui, China.
- Anhui Provincial Key Laboratory of Tumor Immunotherapy and Nutrition Therapy, Hefei, 230001, Anhui, China.
| |
Collapse
|
85
|
Huang PL, Kan HT, Hsu CH, Hsieh HT, Cheng WC, Huang RY, You JJ. A bispecific antibody AP203 targeting PD-L1 and CD137 exerts potent antitumor activity without toxicity. J Transl Med 2023; 21:346. [PMID: 37226226 PMCID: PMC10210478 DOI: 10.1186/s12967-023-04193-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 05/12/2023] [Indexed: 05/26/2023] Open
Abstract
BACKGROUND Bispecific antibody has garnered considerable attention in the recent years due to its impressive preliminary efficacy in hematological malignancies. For solid tumors, however, the main hindrance is the suppressive tumor microenvironment, which effectively impedes the activation of infiltrating T cells. Herein, we designed a bispecific antibody AP203 with high binding affinity to PD-L1 and CD137 and assessed its safety and anti-tumor efficacy, as well as explored the mechanism of action. METHODS The optimal antibody binders against PD-L1 and CD137 were screened from the OmniMab phagemid library. The binding affinity of the constructed AP203 were evaluated using enzyme-linked immunosorbent assay (ELISA) and biolayer interferometry (BLI). T-cell stimulatory capacity was assessed using the allogeneic mixed lymphocyte reaction (MLR), antigen-specific recall response, and coculture with PD-L1-expressing cells. In vivo antitumor efficacy was evaluated using two models of tumor-xenografted humanized mice with profiling of tumor infiltrating lymphocytes (TILs). The possible toxicity of AP203 was examined using in vitro cytokine release assay by human PBMCs. RESULTS AP203, which simultaneously targeted PD-L1 and costimulatory CD137, elicit superior agonistic effects over parental antibodies alone or in combination in terms of T cell activation, enhanced memory recall responses, and overcoming Treg-mediated immunosuppression (P < 0.05). The agonistic activity of AP203 was further demonstrated PD-L1-dependent by coculturing T cells with PD-L1-expressing cells. In vivo animal studies using immunodeficient or immunocompetent mice both showed a dose-related antitumor efficacy superior to parental antibodies in combination (P < 0.05). Correspondingly, AP203 significantly increased tumor infiltrating CD8 + T cells, while decreased CD4 + T cells, as well as Treg cells (P < 0.05), resulting in a dose-dependent increase in the CD8 + /CD4 + ratio. Moreover, either soluble or immobilized AP203 did not induce the production of inflammatory cytokines by human PBMCs. CONCLUSIONS AP203 exerts potent antitumor activity not only by blocking PD-1/PD-L1 inhibitory signaling, but also by activating CD137 costimulatory signaling in effector T cells that consequently counteracts Treg-mediated immunosuppression. Based on promising preclinical results, AP203 should be a suitable candidate for clinical treatment of solid tumors.
Collapse
Affiliation(s)
- Po-Lin Huang
- AP Biosciences, Inc., 17F., No. 3, Yuanqu St., Nangang Dist., Taipei, 115603, Taiwan.
| | - Hung-Tsai Kan
- AP Biosciences, Inc., 17F., No. 3, Yuanqu St., Nangang Dist., Taipei, 115603, Taiwan
| | - Ching-Hsuan Hsu
- AP Biosciences, Inc., 17F., No. 3, Yuanqu St., Nangang Dist., Taipei, 115603, Taiwan
| | - Hsin-Ta Hsieh
- AP Biosciences, Inc., 17F., No. 3, Yuanqu St., Nangang Dist., Taipei, 115603, Taiwan
| | - Wan-Chien Cheng
- Department of Periodontology, School of Dentistry, Tri-Service General Hospital and National Defense Medical Center, Taipei, Taiwan
| | - Ren-Yeong Huang
- Department of Periodontology, School of Dentistry, Tri-Service General Hospital and National Defense Medical Center, Taipei, Taiwan
| | - Jhong-Jhe You
- AP Biosciences, Inc., 17F., No. 3, Yuanqu St., Nangang Dist., Taipei, 115603, Taiwan.
| |
Collapse
|
86
|
Xue F, Yao H, Cui L, Huang Y, Shao C, Shen N, Hu J, Tang Z, Chen X. An Fc Binding Peptide-Based Facile and Versatile Build Platform for Multispecific Antibodies. NANO LETTERS 2023; 23:4191-4200. [PMID: 37186944 DOI: 10.1021/acs.nanolett.3c00071] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Multispecific antibodies (MsAbs) maintain the specificity of versatile antibodies while simultaneously addressing different epitopes for a cumulative, collaborative effect. They could be an alternative treatment to chimeric antigen receptor-T cell therapy by helping to redirect T cells to tumors in vivo. However, one major limitation of their development is their relatively complex production process, which involves performance of a massive screen with low yield, inconsistent quality, and nonnegligible impurities. Here, a poly(l-glutamic acid)-conjugated multiple Fc binding peptide-based synthesis nanoplatform was proposed, in which MsAbs were constructed by mixing the desired monoclonal antibodies (mAbs) with polymeric Fc binding peptides in aqueous solution without purification. To determine its efficacy, a dual immune checkpoint-based PD1/OX40 bispecific antibody and PDL1/CD3e/4-1BB trispecific antibody-based T cell engager were generated to trigger antitumor CD8+ T responses in mice, showing superior tumor suppression over free mixed mAbs. In this study, a facile, versatile build platform for MsAbs was established.
Collapse
Affiliation(s)
- Fuxin Xue
- Key Laboratory of UV-Emitting Materials and Technology (Northeast Normal University), Ministry of Education, Changchun, Jilin 130024, China
| | - Haochen Yao
- Department of Hepatobiliary and Pancreatic Surgery, The First Hospital of Jilin University, Changchun, Jilin 130021, China
| | - Linjie Cui
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China
- Jilin Biomedical Polymers Engineering Laboratory, Changchun, Jilin 130022, China
| | - Yue Huang
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China
- Jilin Biomedical Polymers Engineering Laboratory, Changchun, Jilin 130022, China
| | - Changlu Shao
- Key Laboratory of UV-Emitting Materials and Technology (Northeast Normal University), Ministry of Education, Changchun, Jilin 130024, China
| | - Na Shen
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China
- Jilin Biomedical Polymers Engineering Laboratory, Changchun, Jilin 130022, China
| | - Junli Hu
- Key Laboratory of UV-Emitting Materials and Technology (Northeast Normal University), Ministry of Education, Changchun, Jilin 130024, China
| | - Zhaohui Tang
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China
- Jilin Biomedical Polymers Engineering Laboratory, Changchun, Jilin 130022, China
| | - Xuesi Chen
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China
- Jilin Biomedical Polymers Engineering Laboratory, Changchun, Jilin 130022, China
| |
Collapse
|
87
|
Melero I, Tanos T, Bustamante M, Sanmamed MF, Calvo E, Moreno I, Moreno V, Hernandez T, Martinez Garcia M, Rodriguez-Vida A, Tabernero J, Azaro A, Ponz-Sarvisé M, Spanggaard I, Rohrberg K, Guarin E, Nüesch E, Davydov II, Ooi C, Duarte J, Chesne E, McIntyre C, Ceppi M, Cañamero M, Krieter O. A first-in-human study of the fibroblast activation protein-targeted, 4-1BB agonist RO7122290 in patients with advanced solid tumors. Sci Transl Med 2023; 15:eabp9229. [PMID: 37163618 DOI: 10.1126/scitranslmed.abp9229] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
This first-in-human study evaluated RO7122290, a bispecific fusion protein carrying a split trimeric 4-1BB (CD137) ligand and a fibroblast activation protein α (FAP) binding site that costimulates T cells for improved tumor cell killing in FAP-expressing tumors. Patients with advanced or metastatic solid tumors received escalating weekly intravenous doses of RO7122290 as a single agent (n = 65) or in combination with a 1200-milligram fixed dose of the anti-programmed death-ligand 1 (anti-PD-L1) antibody atezolizumab given every 3 weeks (n = 50), across a tested RO7122290 dose range of 5 to 2000 milligrams and 45 to 2000 milligrams, respectively. Three dose-limiting toxicities were reported, two at different RO7122290 single-agent doses (grade 3 febrile neutropenia and grade 3 cytokine release syndrome) and one for the combination (grade 3 pneumonitis). No maximum tolerated dose was identified. The pharmacokinetic profile of RO7122290 suggested nonlinearity in elimination. The observed changes in peripheral and tissue pharmacodynamic (PD) biomarkers were consistent with the postulated mechanism of action. Treatment-induced PD changes included an increase in proliferating and activated T cells in peripheral blood both in the single-agent and combination arms. Increased infiltration of intratumoral CD8+ and Ki67+CD8+ T cells was observed for both treatment regimens, accompanied by the up-regulation of T cell activation genes and gene signatures. Eleven patients experienced a complete or partial response, six of whom were confirmed to be immune checkpoint inhibitor naive. These results support further evaluation of RO7122290 in combination with atezolizumab or other immune-oncology agents for the treatment of solid tumors.
Collapse
Affiliation(s)
- Ignacio Melero
- Department of Immunology and Immunotherapy, Clinica Universidad de Navarra and CIMA, 31008 Pamplona, Spain
- CIBERONC, Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Tamara Tanos
- Roche Pharma Research and Early Development, Roche Innovation Center Basel, 4070 Basel, Switzerland
| | - Mariana Bustamante
- Roche Pharma Research and Early Development, Roche Innovation Center Basel, 4070 Basel, Switzerland
| | - Miguel F Sanmamed
- Department of Immunology and Immunotherapy, Clinica Universidad de Navarra and CIMA, 31008 Pamplona, Spain
- CIBERONC, Instituto de Salud Carlos III, 28029 Madrid, Spain
- Department of Medical Oncology, Clinica Universidad de Navarra, 31008 Pamplona, Spain
| | - Emiliano Calvo
- START Madrid-CIOCC, Centro Integral Oncológico Clara Campal, 28050 Madrid, Spain
| | - Irene Moreno
- START Madrid-CIOCC, Centro Integral Oncológico Clara Campal, 28050 Madrid, Spain
| | - Victor Moreno
- START Madrid-FJD, Hospital Fundación Jiménez Díaz, 28040 Madrid, Spain
| | - Tatiana Hernandez
- START Madrid-FJD, Hospital Fundación Jiménez Díaz, 28040 Madrid, Spain
| | | | - Alejo Rodriguez-Vida
- Department of Medical Oncology, Hospital del Mar-CIBERONC, 08003 Barcelona, Spain
| | - Josep Tabernero
- CIBERONC, Instituto de Salud Carlos III, 28029 Madrid, Spain
- Medical Oncology Department, Vall d'Hebron University Hospital, Vall d'Hebron Institute of Oncology (VHIO), 08035 Barcelona, Spain
| | - Analia Azaro
- Medical Oncology Department, Vall d'Hebron University Hospital, Vall d'Hebron Institute of Oncology (VHIO), 08035 Barcelona, Spain
| | - Mariano Ponz-Sarvisé
- CIBERONC, Instituto de Salud Carlos III, 28029 Madrid, Spain
- Department of Medical Oncology, Clinica Universidad de Navarra, 31008 Pamplona, Spain
| | - Iben Spanggaard
- Department of Oncology, Rigshospitalet University Hospital of Copenhagen, 2100 Copenhagen, Denmark
| | - Kristoffer Rohrberg
- Department of Oncology, Rigshospitalet University Hospital of Copenhagen, 2100 Copenhagen, Denmark
| | - Ernesto Guarin
- Roche Pharma Research and Early Development, Roche Innovation Center Basel, 4070 Basel, Switzerland
| | - Eveline Nüesch
- Roche Pharma Research and Early Development, Roche Innovation Center Basel, 4070 Basel, Switzerland
| | - Iakov I Davydov
- Roche Pharma Research and Early Development, Roche Innovation Center Basel, 4070 Basel, Switzerland
| | - Chiahuey Ooi
- Roche Pharma Research and Early Development, Roche Innovation Center Basel, 4070 Basel, Switzerland
| | - José Duarte
- Roche Pharma Research and Early Development, Roche Innovation Center Basel, 4070 Basel, Switzerland
| | - Evelyne Chesne
- Roche Pharma Research and Early Development, Roche Innovation Center Basel, 4070 Basel, Switzerland
| | - Christine McIntyre
- Roche Pharma Research and Early Development, Roche Innovation Center Welwyn, AL7 1TW Welwyn Garden City, UK
| | - Maurizio Ceppi
- Roche Pharma Research and Early Development, Roche Innovation Center Basel, 4070 Basel, Switzerland
| | - Marta Cañamero
- Roche Pharma Research and Early Development, Roche Innovation Center Munich, 82377 Penzberg, Germany
| | - Oliver Krieter
- Roche Pharma Research and Early Development, Roche Innovation Center Munich, 82377 Penzberg, Germany
| |
Collapse
|
88
|
Yang W, Cao J, Cheng H, Chen L, Yu M, Chen Y, Cui X. Nanoformulations targeting immune cells for cancer therapy: mRNA therapeutics. Bioact Mater 2023; 23:438-470. [PMCID: PMC9712057 DOI: 10.1016/j.bioactmat.2022.11.014] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 11/20/2022] [Accepted: 11/22/2022] [Indexed: 12/05/2022] Open
Abstract
The approved worldwide use of two messenger RNA (mRNA) vaccines (BNT162b2 and mRNA-1273) in late 2020 has proven the remarkable success of mRNA therapeutics together with lipid nanoformulation technology in protecting people against coronaviruses during COVID-19 pandemic. This unprecedented and exciting dual strategy with nanoformulations and mRNA therapeutics in play is believed to be a promising paradigm in targeted cancer immunotherapy in future. Recent advances in nanoformulation technologies play a prominent role in adapting mRNA platform in cancer treatment. In this review, we introduce the biologic principles and advancements of mRNA technology, and chemistry fundamentals of intriguing mRNA delivery nanoformulations. We discuss the latest promising nano-mRNA therapeutics for enhanced cancer immunotherapy by modulation of targeted specific subtypes of immune cells, such as dendritic cells (DCs) at peripheral lymphoid organs for initiating mRNA cancer vaccine-mediated antigen specific immunotherapy, and DCs, natural killer (NK) cells, cytotoxic T cells, or multiple immunosuppressive immune cells at tumor microenvironment (TME) for reversing immune evasion. We highlight the clinical progress of advanced nano-mRNA therapeutics in targeted cancer therapy and provide our perspectives on future directions of this transformative integrated technology toward clinical implementation.
Collapse
Affiliation(s)
- Wei Yang
- Department of Urology, Xinhua Hospital, School of Medicine, Shanghai Jiaotong University, 1665 Kongjiang Road, Shanghai, 200092, PR China
| | - Jianwei Cao
- Department of Urology, Xinhua Hospital, School of Medicine, Shanghai Jiaotong University, 1665 Kongjiang Road, Shanghai, 200092, PR China
| | - Hui Cheng
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai, 200444, PR China
| | - Liang Chen
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai, 200444, PR China
| | - Meihua Yu
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai, 200444, PR China,Corresponding author
| | - Yu Chen
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai, 200444, PR China,Corresponding author
| | - Xingang Cui
- Department of Urology, Xinhua Hospital, School of Medicine, Shanghai Jiaotong University, 1665 Kongjiang Road, Shanghai, 200092, PR China,Corresponding author
| |
Collapse
|
89
|
Dadas O, Ertay A, Cragg MS. Delivering co-stimulatory tumor necrosis factor receptor agonism for cancer immunotherapy: past, current and future perspectives. Front Immunol 2023; 14:1147467. [PMID: 37180119 PMCID: PMC10167284 DOI: 10.3389/fimmu.2023.1147467] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 03/27/2023] [Indexed: 05/15/2023] Open
Abstract
The tumor necrosis factor superfamily (TNFSF) and their receptors (TNFRSF) are important regulators of the immune system, mediating proliferation, survival, differentiation, and function of immune cells. As a result, their targeting for immunotherapy is attractive, although to date, under-exploited. In this review we discuss the importance of co-stimulatory members of the TNFRSF in optimal immune response generation, the rationale behind targeting these receptors for immunotherapy, the success of targeting them in pre-clinical studies and the challenges in translating this success into the clinic. The efficacy and limitations of the currently available agents are discussed alongside the development of next generation immunostimulatory agents designed to overcome current issues, and capitalize on this receptor class to deliver potent, durable and safe drugs for patients.
Collapse
Affiliation(s)
- Osman Dadas
- Antibody and Vaccine Group, School of Cancer Sciences, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | - Ayse Ertay
- School of Cancer Sciences, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | - Mark S. Cragg
- Antibody and Vaccine Group, School of Cancer Sciences, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
- Institute for Life Sciences, University of Southampton, Southampton, United Kingdom
| |
Collapse
|
90
|
Cirillo A, Zizzari IG, Botticelli A, Strigari L, Rahimi H, Scagnoli S, Scirocchi F, Pernazza A, Pace A, Cerbelli B, d'Amati G, Marchetti P, Nuti M, Rughetti A, Napoletano C. Circulating CD137 + T Cell Levels Are Correlated with Response to Pembrolizumab Treatment in Advanced Head and Neck Cancer Patients. Int J Mol Sci 2023; 24:ijms24087114. [PMID: 37108276 PMCID: PMC10138766 DOI: 10.3390/ijms24087114] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 04/06/2023] [Accepted: 04/11/2023] [Indexed: 04/29/2023] Open
Abstract
Pembrolizumab, an anti-PD-1 antibody, has been approved as first-line treatment for recurrent or metastatic head and neck squamous cell carcinoma ((R/M) HNSCC). However, only a minority of patients benefit from immunotherapy, which highlights the need to identify novel biomarkers to optimize treatment strategies. CD137+ T cells have been identified as tumour-specific T cells correlated with immunotherapy responses in several solid tumours. In this study, we investigated the role of circulating CD137+ T cells in (R/M) HNSCC patients undergoing pembrolizumab treatment. PBMCs obtained from 40 (R/M) HNSCC patients with a PD-L1 combined positive score (CPS) ≥1 were analysed at baseline via cytofluorimetry for the expression of CD137, and it was found that the percentage of CD3+CD137+ cells is correlated with the clinical benefit rate (CBR), PFS, and OS. The results show that levels of circulating CD137+ T cells are significantly higher in responder patients than in non-responders (p = 0.03). Moreover, patients with CD3+CD137+ percentage ≥1.65% had prolonged OS (p = 0.02) and PFS (p = 0.02). Multivariate analysis, on a combination of biological and clinical parameters, showed that high levels of CD3+CD137+ cells (≥1.65%) and performance status (PS) = 0 are independent prognostic factors of PFS (CD137+ T cells, p = 0.007; PS, p = 0.002) and OS (CD137+ T cells, p = 0.006; PS, p = 0.001). Our results suggest that levels of circulating CD137+ T cells could serve as biomarkers for predicting the response of (R/M) HNSCC patients to pembrolizumab treatment, thus contributing to the success of anti-cancer treatment.
Collapse
Affiliation(s)
- Alessio Cirillo
- Division of Oncology, Department of Radiological, Oncological and Pathological Science, Policlinico Umberto I, "Sapienza" University of Rome, 00161 Rome, Italy
- Laboratory of Tumor Immunology and Cell Therapies, Department of Experimental Medicine, "Sapienza" University of Rome, 00161 Rome, Italy
| | - Ilaria Grazia Zizzari
- Laboratory of Tumor Immunology and Cell Therapies, Department of Experimental Medicine, "Sapienza" University of Rome, 00161 Rome, Italy
| | - Andrea Botticelli
- Division of Oncology, Department of Radiological, Oncological and Pathological Science, Policlinico Umberto I, "Sapienza" University of Rome, 00161 Rome, Italy
| | - Lidia Strigari
- Medical Physics Unit, "Sant'Orsola-Malpighi" Hospital, 40138 Bologna, Italy
| | - Hassan Rahimi
- Laboratory of Tumor Immunology and Cell Therapies, Department of Experimental Medicine, "Sapienza" University of Rome, 00161 Rome, Italy
| | - Simone Scagnoli
- Division of Oncology, Department of Radiological, Oncological and Pathological Science, Policlinico Umberto I, "Sapienza" University of Rome, 00161 Rome, Italy
| | - Fabio Scirocchi
- Laboratory of Tumor Immunology and Cell Therapies, Department of Experimental Medicine, "Sapienza" University of Rome, 00161 Rome, Italy
| | - Angelina Pernazza
- Department of Radiology, Oncology and Pathology, "Sapienza" University of Rome, 00161 Rome, Italy
| | - Angelica Pace
- Laboratory of Tumor Immunology and Cell Therapies, Department of Experimental Medicine, "Sapienza" University of Rome, 00161 Rome, Italy
| | - Bruna Cerbelli
- Department of Radiology, Oncology and Pathology, "Sapienza" University of Rome, 00161 Rome, Italy
| | - Giulia d'Amati
- Department of Radiology, Oncology and Pathology, "Sapienza" University of Rome, 00161 Rome, Italy
| | - Paolo Marchetti
- Istituto Dermopatico dell'Immacolata (IDI-IRCCS), 00161 Rome, Italy
| | - Marianna Nuti
- Laboratory of Tumor Immunology and Cell Therapies, Department of Experimental Medicine, "Sapienza" University of Rome, 00161 Rome, Italy
| | - Aurelia Rughetti
- Laboratory of Tumor Immunology and Cell Therapies, Department of Experimental Medicine, "Sapienza" University of Rome, 00161 Rome, Italy
| | - Chiara Napoletano
- Laboratory of Tumor Immunology and Cell Therapies, Department of Experimental Medicine, "Sapienza" University of Rome, 00161 Rome, Italy
| |
Collapse
|
91
|
Ford BR, Poholek AC. Regulation and Immunotherapeutic Targeting of the Epigenome in Exhausted CD8 T Cell Responses. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2023; 210:869-879. [PMID: 36947818 PMCID: PMC10037537 DOI: 10.4049/jimmunol.2200681] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 01/04/2023] [Indexed: 03/24/2023]
Abstract
Exhaustion is a state of CD8 T cell differentiation that occurs in settings of chronic Ag such as tumors, chronic viral infection, and autoimmunity. Cellular differentiation is driven by a series of environmental signals that promote epigenetic landscapes that set transcriptomes needed for function. For CD8 T cells, the epigenome that underlies exhaustion is distinct from effector and memory cell differentiation, suggesting that signals early on set in motion a process where the epigenome is modified to promote a trajectory toward a dysfunctional state. Although we know many signals that promote exhaustion, putting this in the context of the epigenetic changes that occur during differentiation has been less clear. In this review, we aim to summarize the epigenetic changes associated with exhaustion in the context of signals that promote it, highlighting immunotherapeutic studies that support these observations or areas for future therapeutic opportunities.
Collapse
Affiliation(s)
- B Rhodes Ford
- Division of Pediatric Rheumatology, Department of Pediatrics, University of Pittsburgh, Pittsburgh, PA; and Department of Immunology, University of Pittsburgh, Pittsburgh, PA
| | - Amanda C Poholek
- Division of Pediatric Rheumatology, Department of Pediatrics, University of Pittsburgh, Pittsburgh, PA; and Department of Immunology, University of Pittsburgh, Pittsburgh, PA
| |
Collapse
|
92
|
Simonetti E, Cutarella S, Valente M, Sani T, Ravara M, Maio M, Di Giacomo AM. From Co-Stimulation to Co-Inhibition: A Continuum of Immunotherapy Care Toward Long-Term Survival in Melanoma. Onco Targets Ther 2023; 16:227-232. [PMID: 37041860 PMCID: PMC10083011 DOI: 10.2147/ott.s368408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 04/03/2023] [Indexed: 04/09/2023] Open
Abstract
Harnessing the immune system with immune-checkpoint(s) blockade (ICB) has dramatically changed the treatment landscape of advanced melanoma patients in the last decade. Indeed, durable clinical responses and long-term survival can be achieved with anti-Cytotoxic T-Lymphocyte Antigen-4 (CTLA-4) and anti-Programmed cell Death-1 (PD-1) monoclonal antibodies (mAb) either alone or in combination. Despite these unprecedented results, due to intrinsic or acquired resistance to ICB-based immunotherapy, about half of metastatic melanoma (MM) patients neither respond to therapy nor experience durable clinical benefit or long-term survival. To improve the efficacy of ICB therapy among a larger proportion of MM patients, in addition to the targeting of immune-checkpoint(s) inhibitors (ICI) such as CTLA-4 or PD-1, several co-stimulatory molecules, such as Inducible T-cell COStimulator (ICOS), CD137 and OX40, have been investigated in MM, with initial signs of activity. Thus, a number of MM patients have been exposed to co-inhibitory and co-stimulatory mAb in the course of their disease. Being aware of the clinical outcome of such patients may pave the way to novel and more effective clinical approaches and therapeutic sequences for MM patients. Here we report a paradigmatic clinical case of a cutaneous MM patient who achieved multiple and durable complete responses, leading to an extraordinary long-term survival with sequential ICB therapies, suggesting the possibility to build a highly effective continuum of care with co-inhibitory and co-stimulatory therapeutic mAb.
Collapse
Affiliation(s)
| | | | - Monica Valente
- Center for Immuno-Oncology, Medical Oncology and Immunotherapy, Department of Oncology, University Hospital, Siena, Italy
| | | | | | - Michele Maio
- University of Siena, Siena, Italy
- Center for Immuno-Oncology, Medical Oncology and Immunotherapy, Department of Oncology, University Hospital, Siena, Italy
- NIBIT Foundation Onlus, Genoa, Italy
| | - Anna Maria Di Giacomo
- University of Siena, Siena, Italy
- Center for Immuno-Oncology, Medical Oncology and Immunotherapy, Department of Oncology, University Hospital, Siena, Italy
- NIBIT Foundation Onlus, Genoa, Italy
- Correspondence: Anna Maria Di Giacomo, Center for Immuno-Oncology, Medical Oncology and Immunotherapy, Department of Oncology, University Hospital of Siena, Viale Bracci, 14, Siena, 53100, Italy, Email
| |
Collapse
|
93
|
Entezam M, Sanaei MJ, Mirzaei Y, Mer AH, Abdollahpour-Alitappeh M, Azadegan-Dehkordi F, Bagheri N. Current progress and challenges of immunotherapy in gastric cancer: A focus on CAR-T cells therapeutic approach. Life Sci 2023; 318:121459. [PMID: 36720453 DOI: 10.1016/j.lfs.2023.121459] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 01/22/2023] [Accepted: 01/25/2023] [Indexed: 01/31/2023]
Abstract
Gastric cancer (GC) is a severe malignancy, accounting for the third most common cancer death worldwide. Despite the development of chemo-radiation therapy, there has not been sufficient survival advantage in patients with GC who were treated by these methods. GC immunogenicity is hampered by a highly immunosuppressive microenvironment; therefore, further understanding of the molecular biology of GC is the potential to achieve new therapeutic strategies in GC therapy, including specific immunotherapy. Current immunotherapies are mainly based on cytokines, immune checkpoints, monoclonal antibodies (mAb), bispecific antibodies (BisAbs), antibody-drug conjugates (ADCs), and chimeric antigen receptor (CAR). Immunotherapy has made significant progress in the treatment of GC, so that studies show that nivolumab as a programmed death 1 (PD1) inhibitor has proper safety and effectiveness as a third-line treatment for GC patients. Multiple monoclonal antibodies like ramucirumab and claudiximab were effective in treating GC patients, especially in combination with other treatments. Despite the challenges of CAR therapy in solid tumors, CAR therapy targets various GC cells targets; among them, intercellular adhesion molecule (ICAM)-1 CAR-T cell and CLDN18.2 CAR-T cell have shown promising results. Although responses to all these treatments are encouraging and in some cases, durable, these successes are not seen in all treated patients. The present review represents the development of various immunotherapies especially CAR-T cell therapy, its current use, clinical data in GC, and their limitations.
Collapse
Affiliation(s)
- Mahshad Entezam
- Student Research Committee, Shahrekord University of Medical Sciences, Shahrekord, Iran; Medical Plants Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Mohammad-Javad Sanaei
- Clinical Biochemistry Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Yousef Mirzaei
- Department of Medical Biochemical Analysis, Cihan University-Erbil, Kurdistan Region, Iraq
| | - Ali Hussein Mer
- Department of Nursing, Mergasour Technical Institute, Erbil Polytechnic University, Erbil, Iraq
| | | | - Fatemeh Azadegan-Dehkordi
- Cellular and Molecular Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran.
| | - Nader Bagheri
- Department of Microbiology and Immunology, Faculty of Medicine, Shahrekord University of Medical Sciences, Shahrekord, Iran.
| |
Collapse
|
94
|
Melero I, Sanmamed MF, Glez-Vaz J, Luri-Rey C, Wang J, Chen L. CD137 (4-1BB)-Based Cancer Immunotherapy on Its 25th Anniversary. Cancer Discov 2023; 13:552-569. [PMID: 36576322 DOI: 10.1158/2159-8290.cd-22-1029] [Citation(s) in RCA: 45] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Revised: 10/28/2022] [Accepted: 11/21/2022] [Indexed: 12/29/2022]
Abstract
Twenty-five years ago, we reported that agonist anti-CD137 monoclonal antibodies eradicated transplanted mouse tumors because of enhanced CD8+ T-cell antitumor immunity. Mouse models indicated that anti-CD137 agonist antibodies synergized with various other therapies. In the clinic, the agonist antibody urelumab showed evidence for single-agent activity against melanoma and non-Hodgkin lymphoma but caused severe liver inflammation in a fraction of the patients. CD137's signaling domain is included in approved chimeric antigen receptors conferring persistence and efficacy. A new wave of CD137 agonists targeting tumors, mainly based on bispecific constructs, are in early-phase trials and are showing promising safety and clinical activity. SIGNIFICANCE CD137 (4-1BB) is a costimulatory receptor of T and natural killer lymphocytes whose activity can be exploited in cancer immunotherapy strategies as discovered 25 years ago. Following initial attempts that met unacceptable toxicity, new waves of constructs acting agonistically on CD137 are being developed in patients, offering signs of clinical and pharmacodynamic activity with tolerable safety profiles.
Collapse
Affiliation(s)
- Ignacio Melero
- Program of Immunology and Immunotherapy, Center for Applied Medical Research (CIMA), Pamplona, Spain
- Navarra Institute for Health Research (IdiSNA), Pamplona, Spain
- Departments of Immunology-Immunotherapy and Oncology, Clínica Universidad de Navarra, Pamplona, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
| | - Miguel F Sanmamed
- Program of Immunology and Immunotherapy, Center for Applied Medical Research (CIMA), Pamplona, Spain
- Navarra Institute for Health Research (IdiSNA), Pamplona, Spain
- Departments of Immunology-Immunotherapy and Oncology, Clínica Universidad de Navarra, Pamplona, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
| | - Javier Glez-Vaz
- Program of Immunology and Immunotherapy, Center for Applied Medical Research (CIMA), Pamplona, Spain
- Navarra Institute for Health Research (IdiSNA), Pamplona, Spain
| | - Carlos Luri-Rey
- Program of Immunology and Immunotherapy, Center for Applied Medical Research (CIMA), Pamplona, Spain
- Navarra Institute for Health Research (IdiSNA), Pamplona, Spain
| | - Jun Wang
- Department of Pathology, New York University Grossman School of Medicine, New York, New York
| | - Lieping Chen
- Department of Immunobiology, Yale University, New Haven, Connecticut
| |
Collapse
|
95
|
At the crossroads of immunotherapy for oncogene-addicted subsets of NSCLC. Nat Rev Clin Oncol 2023; 20:143-159. [PMID: 36639452 DOI: 10.1038/s41571-022-00718-x] [Citation(s) in RCA: 70] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/29/2022] [Indexed: 01/15/2023]
Abstract
Non-small-cell lung cancer (NSCLC) has become a paradigm of precision medicine, with the discovery of numerous disease subtypes defined by specific oncogenic driver mutations leading to the development of a range of molecularly targeted therapies. Over the past decade, rapid progress has also been made in the development of immune-checkpoint inhibitors (ICIs), especially antagonistic antibodies targeting the PD-L1-PD-1 axis, for the treatment of NSCLC. Although many of the major oncogenic drivers of NSCLC are associated with intrinsic resistance to ICIs, patients with certain oncogene-driven subtypes of the disease that are highly responsive to specific targeted therapies might also derive benefit from immunotherapy. However, the development of effective immunotherapy approaches for oncogene-addicted NSCLC has been challenged by a lack of predictive biomarkers for patient selection and limited knowledge of how ICIs and oncogene-directed targeted therapies should be combined. Therefore, whether ICIs alone or with chemotherapy or even in combination with molecularly targeted agents would offer comparable benefit in the context of selected oncogenic driver alterations to that observed in the general unselected NSCLC population remains an open question. In this Review, we discuss the effects of oncogenic driver mutations on the efficacy of ICIs and the immune tumour microenvironment as well as the potential vulnerabilities that could be exploited to overcome the challenges of immunotherapy for oncogene-addicted NSCLC.
Collapse
|
96
|
Hamad A, Yusubalieva GM, Baklaushev VP, Chumakov PM, Lipatova AV. Recent Developments in Glioblastoma Therapy: Oncolytic Viruses and Emerging Future Strategies. Viruses 2023; 15:547. [PMID: 36851761 PMCID: PMC9958853 DOI: 10.3390/v15020547] [Citation(s) in RCA: 52] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 01/24/2023] [Accepted: 02/10/2023] [Indexed: 02/18/2023] Open
Abstract
Glioblastoma is the most aggressive form of malignant brain tumor. Standard treatment protocols and traditional immunotherapy are poorly effective as they do not significantly increase the long-term survival of glioblastoma patients. Oncolytic viruses (OVs) may be an effective alternative approach. Combining OVs with some modern treatment options may also provide significant benefits for glioblastoma patients. Here we review virotherapy for glioblastomas and describe several OVs and their combination with other therapies. The personalized use of OVs and their combination with other treatment options would become a significant area of research aiming to develop the most effective treatment regimens for glioblastomas.
Collapse
Affiliation(s)
- Azzam Hamad
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Gaukhar M. Yusubalieva
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
- Federal Research and Clinical Center of Specialized Medical Care and Medical Technologies, Federal Medical and Biological Agency of Russia, 115682 Moscow, Russia
| | - Vladimir P. Baklaushev
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
- Federal Research and Clinical Center of Specialized Medical Care and Medical Technologies, Federal Medical and Biological Agency of Russia, 115682 Moscow, Russia
| | - Peter M. Chumakov
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Anastasiya V. Lipatova
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| |
Collapse
|
97
|
Xing Y, Yasinjan F, Du Y, Geng H, Zhang Y, He M, Guo R, Yang L, Cui J, Mu D, Liu Z, Wang H. Immunotherapy in cervical cancer: From the view of scientometric analysis and clinical trials. Front Immunol 2023; 14:1094437. [PMID: 36817443 PMCID: PMC9935705 DOI: 10.3389/fimmu.2023.1094437] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 01/23/2023] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Cervical cancer is the fourth most cancer and the fourth leading cause of cancer-related deaths in women worldwide. Current treatment for patients with advanced cervical cancer is limited. And in the urgent demand for novel effective therapies both as the first and the second line treatment for these patients, immunotherapy is developing fast and has made some achievements. METHODS This study incorporated 1,255 topic-related articles and reviews from 1999 to 2022 in the Web of Science Core Collection (WoSCC). The WoS platform, Citespace, and VOS viewer provided the annual distribution of publications and citations, the analysis of researching countries and institutions, references, keywords (co-occurrence analysis, burst analysis, and timeline view analysis), and researching authors, respectively. For clinical trials, 720 trials and 114 trials from ClinicalTrials.gov and ICTRP were retrieved, respectively. And 296 trials were finally incorporated into the analysis. RESULTS The scientometric analysis showed that the study of immunotherapies in cervical cancer developed fast in recent years. Most publications were from the United States, followed by China. Seven of the top 10 co-cited references belong to clinical trials, and five of them were published in recent five years. There are lots of clinical trials us specific treatment patterns, some of which have represented excellent effects. CONCLUSIONS Both the scientometric analysis of the 1,255 publications and the analysis of clinical trials showed that the field of immunotherapies in cervical cancer developed so fast in recent years. It was found that a lot of clinical trials using various immunotherapies (mainly vaccine therapy, adoptive cell therapy, immune checkpoint blockade, and antibody-drug conjugate) for advanced cervical cancer are currently ongoing or have represented considerable effect. Centered in immunotherapies, immune checkpoint blockades have represented great efficacy and huge potential, especially combined with other therapies such as chemotherapy, targeted therapy, and other immunotherapies.
Collapse
Affiliation(s)
- Yang Xing
- Cancer Center, The First Hospital of Jilin University, Changchun, China
| | - Feroza Yasinjan
- Cancer Center, The First Hospital of Jilin University, Changchun, China
| | - Yajie Du
- Cancer Center, The First Hospital of Jilin University, Changchun, China
| | - Huayue Geng
- Cancer Center, The First Hospital of Jilin University, Changchun, China
| | - Ying Zhang
- Cancer Center, The First Hospital of Jilin University, Changchun, China
| | - Minghua He
- College of Computer Science and Technology, Jilin University, Changchun, China
| | - Rui Guo
- Clinical Laboratory, The First Hospital of Jilin University, Changchun, China
| | - Lei Yang
- Cancer Center, The First Hospital of Jilin University, Changchun, China
| | - Jiayue Cui
- Department of Histology and Embryology, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Dongmei Mu
- Division of Clinical Research, The First Hospital of Jilin University, Changchun, China
| | - Ziling Liu
- Cancer Center, The First Hospital of Jilin University, Changchun, China
| | - Hong Wang
- Cancer Center, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
98
|
Muthukutty P, Woo HY, Ragothaman M, Yoo SY. Recent Advances in Cancer Immunotherapy Delivery Modalities. Pharmaceutics 2023; 15:pharmaceutics15020504. [PMID: 36839825 PMCID: PMC9967630 DOI: 10.3390/pharmaceutics15020504] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 01/25/2023] [Accepted: 01/31/2023] [Indexed: 02/05/2023] Open
Abstract
Immunotherapy is crucial in fighting cancer and achieving successful remission. Many novel strategies have recently developed, but there are still some obstacles to overcome before we can effectively attack the cancer cells and decimate the cancer environment by inducing a cascade of immune responses. To successfully demonstrate antitumor activity, immune cells must be delivered to cancer cells and exposed to the immune system. Such cutting-edge technology necessitates meticulously designed delivery methods with no loss or superior homing onto cancer environments, as well as high therapeutic efficacy and fewer adverse events. In this paper, we discuss recent advances in cancer immunotherapy delivery techniques, as well as their future prospects.
Collapse
Affiliation(s)
- Palaniyandi Muthukutty
- BIO-IT Foundry Technology Institute, Pusan National University, Busan 46241, Republic of Korea
| | - Hyun Young Woo
- Department of Internal Medicine and Medical Research Institute, Pusan National University Hospital, Busan 49241, Republic of Korea
| | - Murali Ragothaman
- BIO-IT Foundry Technology Institute, Pusan National University, Busan 46241, Republic of Korea
| | - So Young Yoo
- BIO-IT Foundry Technology Institute, Pusan National University, Busan 46241, Republic of Korea
- Correspondence: or ; Tel.: +82-51-510-3402
| |
Collapse
|
99
|
Fendl B, Berghoff AS, Preusser M, Maier B. Macrophage and monocyte subsets as new therapeutic targets in cancer immunotherapy. ESMO Open 2023; 8:100776. [PMID: 36731326 PMCID: PMC10024158 DOI: 10.1016/j.esmoop.2022.100776] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 12/05/2022] [Accepted: 12/11/2022] [Indexed: 02/04/2023] Open
Abstract
The introduction of immune checkpoint inhibitors (ICIs) for the treatment of solid cancers dramatically turned the tables in clinical routine. However, therapy success is still limited with up to 70% of non-responders in patients with ICI treatment. Traditionally, most immunotherapy approaches aim at directly stimulating anti-tumor T cell responses. More recently, tumor-associated macrophages have come into focus due to their predominance in solid tumors. Intensive cross-talk with tumor cells and immune as well as stromal cells within the tumor microenvironment can drive either pro- or anti-tumorigenic macrophage phenotypes. In turn, tumor-associated macrophages strongly shape cytokine and metabolite levels in the tumor microenvironment and thus are central players in anti-tumor immunity. Thus, ambivalent macrophage populations exist which raises therapeutic possibilities to either enhance or diminish their functionality. However, molecular signals controlling tumor-associated macrophage polarization are incompletely understood. Gaining in-depth understanding of monocyte/macrophage properties both in circulation and within distinct tumor microenvironments would (i) allow the development of new therapeutic approaches, and (ii) could additionally aid our understanding of underlying mechanisms limiting current therapy with the option of combinatorial therapies to increase efficacy. In this review, we summarize recent data addressing heterogeneity of tumor-associated macrophage populations and we discuss strategies to target macrophages using known molecular pathways with the potential for straight-forward clinical application.
Collapse
Affiliation(s)
- B Fendl
- Division of Oncology, Department of Medicine I, Medical University of Vienna, Vienna, Austria; Christian Doppler Laboratory for Personalized Immunotherapy, Department of Medicine I, Medical University of Vienna, Vienna, Austria
| | - A S Berghoff
- Division of Oncology, Department of Medicine I, Medical University of Vienna, Vienna, Austria; Christian Doppler Laboratory for Personalized Immunotherapy, Department of Medicine I, Medical University of Vienna, Vienna, Austria
| | - M Preusser
- Division of Oncology, Department of Medicine I, Medical University of Vienna, Vienna, Austria; Christian Doppler Laboratory for Personalized Immunotherapy, Department of Medicine I, Medical University of Vienna, Vienna, Austria
| | - B Maier
- CeMM, Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria.
| |
Collapse
|
100
|
Palmeri JR, Lax BM, Peters JM, Duhamel L, Stinson JA, Santollani L, Lutz EA, Pinney W, Bryson BD, Wittrup KD. Tregs constrain CD8 + T cell priming required for curative intratumorally anchored anti-4-1BB immunotherapy. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.30.526116. [PMID: 36778460 PMCID: PMC9915483 DOI: 10.1101/2023.01.30.526116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Although co-stimulation of T cells with agonist antibodies targeting 4-1BB (CD137) improves antitumor immune responses in preclinical studies, clinical development has been hampered by on-target, off-tumor toxicity. Here, we report the development of a tumor-anchored ɑ4-1BB agonist (ɑ4-1BB-LAIR), which consists of an ɑ4-1BB antibody fused to the collagen binding protein LAIR. While combination treatment with an antitumor antibody (TA99) displayed only modest efficacy, simultaneous depletion of CD4+ T cells boosted cure rates to over 90% of mice. We elucidated two mechanisms of action for this synergy: ɑCD4 eliminated tumor draining lymph node Tregs, enhancing priming and activation of CD8+ T cells, and TA99 + ɑ4-1BB-LAIR supported the cytotoxic program of these newly primed CD8+ T cells within the tumor microenvironment. Replacement of ɑCD4 with ɑCTLA-4, a clinically approved antibody that enhances T cell priming, produced equivalent cure rates while additionally generating robust immunological memory against secondary tumor rechallenge.
Collapse
Affiliation(s)
- Joseph R Palmeri
- Koch Institute for Integrative Cancer Research; Cambridge, MA
- Department of Chemical Engineering of Massachusetts Institute of Technology (MIT); Cambridge, MA
| | - Brianna M Lax
- Koch Institute for Integrative Cancer Research; Cambridge, MA
- Department of Chemical Engineering of Massachusetts Institute of Technology (MIT); Cambridge, MA
| | - Joshua M Peters
- Department of Biological Engineering of Massachusetts Institute of Technology (MIT); Cambridge, MA
- Ragon Institute of MIT, MGH, and Harvard; Cambridge, MA
| | - Lauren Duhamel
- Koch Institute for Integrative Cancer Research; Cambridge, MA
- Department of Biological Engineering of Massachusetts Institute of Technology (MIT); Cambridge, MA
| | - Jordan A Stinson
- Koch Institute for Integrative Cancer Research; Cambridge, MA
- Department of Biological Engineering of Massachusetts Institute of Technology (MIT); Cambridge, MA
| | - Luciano Santollani
- Koch Institute for Integrative Cancer Research; Cambridge, MA
- Department of Chemical Engineering of Massachusetts Institute of Technology (MIT); Cambridge, MA
| | - Emi A Lutz
- Koch Institute for Integrative Cancer Research; Cambridge, MA
- Department of Biological Engineering of Massachusetts Institute of Technology (MIT); Cambridge, MA
| | - William Pinney
- Koch Institute for Integrative Cancer Research; Cambridge, MA
- Department of Biological Engineering of Massachusetts Institute of Technology (MIT); Cambridge, MA
| | - Bryan D Bryson
- Department of Biological Engineering of Massachusetts Institute of Technology (MIT); Cambridge, MA
- Ragon Institute of MIT, MGH, and Harvard; Cambridge, MA
| | - K Dane Wittrup
- Koch Institute for Integrative Cancer Research; Cambridge, MA
- Department of Chemical Engineering of Massachusetts Institute of Technology (MIT); Cambridge, MA
- Department of Biological Engineering of Massachusetts Institute of Technology (MIT); Cambridge, MA
| |
Collapse
|