51
|
Emwas AH, Szczepski K, Poulson BG, Chandra K, McKay RT, Dhahri M, Alahmari F, Jaremko L, Lachowicz JI, Jaremko M. NMR as a "Gold Standard" Method in Drug Design and Discovery. Molecules 2020; 25:E4597. [PMID: 33050240 PMCID: PMC7594251 DOI: 10.3390/molecules25204597] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 10/05/2020] [Accepted: 10/06/2020] [Indexed: 12/11/2022] Open
Abstract
Studying disease models at the molecular level is vital for drug development in order to improve treatment and prevent a wide range of human pathologies. Microbial infections are still a major challenge because pathogens rapidly and continually evolve developing drug resistance. Cancer cells also change genetically, and current therapeutic techniques may be (or may become) ineffective in many cases. The pathology of many neurological diseases remains an enigma, and the exact etiology and underlying mechanisms are still largely unknown. Viral infections spread and develop much more quickly than does the corresponding research needed to prevent and combat these infections; the present and most relevant outbreak of SARS-CoV-2, which originated in Wuhan, China, illustrates the critical and immediate need to improve drug design and development techniques. Modern day drug discovery is a time-consuming, expensive process. Each new drug takes in excess of 10 years to develop and costs on average more than a billion US dollars. This demonstrates the need of a complete redesign or novel strategies. Nuclear Magnetic Resonance (NMR) has played a critical role in drug discovery ever since its introduction several decades ago. In just three decades, NMR has become a "gold standard" platform technology in medical and pharmacology studies. In this review, we present the major applications of NMR spectroscopy in medical drug discovery and development. The basic concepts, theories, and applications of the most commonly used NMR techniques are presented. We also summarize the advantages and limitations of the primary NMR methods in drug development.
Collapse
Affiliation(s)
- Abdul-Hamid Emwas
- Core Labs, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia
| | - Kacper Szczepski
- Biological and Environmental Sciences & Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia; (K.S.); (B.G.P.); (K.C.); (L.J.)
| | - Benjamin Gabriel Poulson
- Biological and Environmental Sciences & Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia; (K.S.); (B.G.P.); (K.C.); (L.J.)
| | - Kousik Chandra
- Biological and Environmental Sciences & Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia; (K.S.); (B.G.P.); (K.C.); (L.J.)
| | - Ryan T. McKay
- Department of Chemistry, University of Alberta, Edmonton, AB T6G 2W2, Canada;
| | - Manel Dhahri
- Biology Department, Faculty of Science, Taibah University, Yanbu El-Bahr 46423, Saudi Arabia;
| | - Fatimah Alahmari
- Nanomedicine Department, Institute for Research and Medical, Consultations (IRMC), Imam Abdulrahman Bin Faisal University (IAU), Dammam 31441, Saudi Arabia;
| | - Lukasz Jaremko
- Biological and Environmental Sciences & Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia; (K.S.); (B.G.P.); (K.C.); (L.J.)
| | - Joanna Izabela Lachowicz
- Department of Medical Sciences and Public Health, Università di Cagliari, Cittadella Universitaria, 09042 Monserrato, Italy
| | - Mariusz Jaremko
- Biological and Environmental Sciences & Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia; (K.S.); (B.G.P.); (K.C.); (L.J.)
| |
Collapse
|
52
|
Burgart YV, Agafonova NA, Shchegolkov EV, Krasnykh OP, Kushch SO, Evstigneeva NP, Gerasimova NA, Maslova VV, Triandafilova GA, Solodnikov SY, Ulitko MV, Makhaeva GF, Rudakova EV, Borisevich SS, Zilberberg NV, Kungurov NV, Saloutin VI, Chupakhin ON. Multiple biological active 4-aminopyrazoles containing trifluoromethyl and their 4-nitroso-precursors: Synthesis and evaluation. Eur J Med Chem 2020; 208:112768. [PMID: 32932211 DOI: 10.1016/j.ejmech.2020.112768] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 08/10/2020] [Accepted: 08/15/2020] [Indexed: 01/04/2023]
Abstract
4-Nitroso-3-trifluoromethyl-5-alkyl[(het)aryl]pyrazoles were synthesized via one-pot nitrosation of 1,3-diketones or their lithium salts followed by treatment of hydrazines. Reduction of nitroso-derivatives made it possible to obtain 4-amino-3-trifluoromethylpyrazoles chlorides. According to computer-aided calculations, all synthesized compounds are expected to have acceptable ADME profile for drug design. Tuberculostatic, antibacterial, antimycotic, antioxidant and cytotoxic activities of the compounds were evaluated in vitro, while their analgesic and anti-inflammatory action was tested in vivo along with acute toxicity studies. N-Unsubstituted 4-nitrosopyrazoles were the most effective tuberculostatics (MIC to 0.36 μg/ml) and antibacterial agents against Streptococcus pyogenes (MIC to 7.8 μg/ml), Staphylococcus aureus,S. aureus MRSA and Neisseria gonorrhoeae (MIC to 15.6 μg/ml). 4-Nitroso-1-methyl-5-phenylpyrazole had the pronounced antimycotic action against a wide range of fungi (Trichophytonrubrum, T. tonsurans, T. violaceum, T. interdigitale, Epidermophytonfloccosum, Microsporumcanis with MIC 0.38-12.5 μg/ml). N-Unsubstituted 4-aminopyrazoles shown high radical-scavenging activity in ABTS test, ORAC/AAPH and oxidative erythrocyte hemolysis assays. 1-Methyl-5-phenyl-3-trifluoromethylpyrazol-4-aminium chloride revealed potential anticancer activity against HeLa cells (SI > 1351). The pronounced analgesic activity was found for 4-nitroso- and 4-aminopyrazoles having phenyl fragment at the position 5 in "hot plate" test. The most of the obtained pyrazoles had a moderate acute toxicity.
Collapse
Affiliation(s)
- Yanina V Burgart
- Postovsky Institute of Organic Synthesis of the Ural Branch of the Russian Academy of Science, S. Kovalevskoi St., 22, Ekaterinburg, 620108, Russia; Ural Federal University Named After the First President of Russia B.N. Yeltsin, Mira St. 19, Ekaterinburg, 620002, Russia
| | - Natalia A Agafonova
- Postovsky Institute of Organic Synthesis of the Ural Branch of the Russian Academy of Science, S. Kovalevskoi St., 22, Ekaterinburg, 620108, Russia
| | - Evgeny V Shchegolkov
- Postovsky Institute of Organic Synthesis of the Ural Branch of the Russian Academy of Science, S. Kovalevskoi St., 22, Ekaterinburg, 620108, Russia; Ural Federal University Named After the First President of Russia B.N. Yeltsin, Mira St. 19, Ekaterinburg, 620002, Russia
| | - Olga P Krasnykh
- Perm National Research Polytechnic University, Komsomolsky Av., 29, Perm, 614990, Russia
| | - Svetlana O Kushch
- Postovsky Institute of Organic Synthesis of the Ural Branch of the Russian Academy of Science, S. Kovalevskoi St., 22, Ekaterinburg, 620108, Russia
| | - Natalia P Evstigneeva
- Ural Research Institute for Dermatology, Venereology and Immunopathology, Shcherbakova St., 8, Ekaterinburg, 620076, Russia
| | - Natalia A Gerasimova
- Ural Research Institute for Dermatology, Venereology and Immunopathology, Shcherbakova St., 8, Ekaterinburg, 620076, Russia
| | - Vera V Maslova
- Perm National Research Polytechnic University, Komsomolsky Av., 29, Perm, 614990, Russia
| | - Galina A Triandafilova
- Perm National Research Polytechnic University, Komsomolsky Av., 29, Perm, 614990, Russia
| | - Sergey Yu Solodnikov
- Perm National Research Polytechnic University, Komsomolsky Av., 29, Perm, 614990, Russia
| | - Maria V Ulitko
- Ural Federal University Named After the First President of Russia B.N. Yeltsin, Mira St. 19, Ekaterinburg, 620002, Russia
| | - Galina F Makhaeva
- Institute of Physiologically Active Compounds of the Russian Academy of Sciences, Severny Proezd 1, Chernogolovka, 142432, Russia
| | - Elena V Rudakova
- Institute of Physiologically Active Compounds of the Russian Academy of Sciences, Severny Proezd 1, Chernogolovka, 142432, Russia
| | - Sophia S Borisevich
- Ufa Institute of Chemistry of Russian Academy of Science, Octyabrya Av., 71, Ufa, 450078, Russia
| | - Natalia V Zilberberg
- Ural Research Institute for Dermatology, Venereology and Immunopathology, Shcherbakova St., 8, Ekaterinburg, 620076, Russia
| | - Nikolai V Kungurov
- Ural Research Institute for Dermatology, Venereology and Immunopathology, Shcherbakova St., 8, Ekaterinburg, 620076, Russia
| | - Victor I Saloutin
- Postovsky Institute of Organic Synthesis of the Ural Branch of the Russian Academy of Science, S. Kovalevskoi St., 22, Ekaterinburg, 620108, Russia; Ural Federal University Named After the First President of Russia B.N. Yeltsin, Mira St. 19, Ekaterinburg, 620002, Russia.
| | - Oleg N Chupakhin
- Postovsky Institute of Organic Synthesis of the Ural Branch of the Russian Academy of Science, S. Kovalevskoi St., 22, Ekaterinburg, 620108, Russia; Ural Federal University Named After the First President of Russia B.N. Yeltsin, Mira St. 19, Ekaterinburg, 620002, Russia
| |
Collapse
|
53
|
Itkonen HM, Poulose N, Steele RE, Martin SES, Levine ZG, Duveau DY, Carelli R, Singh R, Urbanucci A, Loda M, Thomas CJ, Mills IG, Walker S. Inhibition of O-GlcNAc Transferase Renders Prostate Cancer Cells Dependent on CDK9. Mol Cancer Res 2020; 18:1512-1521. [PMID: 32611550 DOI: 10.1158/1541-7786.mcr-20-0339] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 06/15/2020] [Accepted: 06/26/2020] [Indexed: 01/27/2023]
Abstract
O-GlcNAc transferase (OGT) is a nutrient-sensitive glycosyltransferase that is overexpressed in prostate cancer, the most common cancer in males. We recently developed a specific and potent inhibitor targeting this enzyme, and here, we report a synthetic lethality screen using this compound. Our screen identified pan-cyclin-dependent kinase (CDK) inhibitor AT7519 as lethal in combination with OGT inhibition. Follow-up chemical and genetic approaches identified CDK9 as the major target for synthetic lethality with OGT inhibition in prostate cancer cells. OGT expression is regulated through retention of the fourth intron in the gene and CDK9 inhibition blunted this regulatory mechanism. CDK9 phosphorylates carboxy-terminal domain (CTD) of RNA Polymerase II to promote transcription elongation. We show that OGT inhibition augments effects of CDK9 inhibitors on CTD phosphorylation and general transcription. Finally, the combined inhibition of both OGT and CDK9 blocked growth of organoids derived from patients with metastatic prostate cancer, but had minimal effects on normal prostate spheroids. We report a novel synthetic lethal interaction between inhibitors of OGT and CDK9 that specifically kills prostate cancer cells, but not normal cells. Our study highlights the potential of combining OGT inhibitors with other treatments to exploit cancer-specific vulnerabilities. IMPLICATIONS: The primary contribution of OGT to cell proliferation is unknown, and in this study, we used a compound screen to indicate that OGT and CDK9 collaborate to sustain a cancer cell-specific pro-proliferative program. A better understanding of how OGT and CDK9 cross-talk will refine our understanding of this novel synthetic lethal interaction.
Collapse
Affiliation(s)
- Harri M Itkonen
- Centre for Molecular Medicine Norway, Nordic European Molecular Biology Laboratory Partnership, Forskningsparken, University of Oslo, Oslo, Norway. .,Department of Microbiology, Blavatnik Institute, Harvard Medical School, Boston, Massachusetts.,Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York-Presbyterian Hospital, New York, New York
| | - Ninu Poulose
- PCUK/Movember Centre of Excellence for Prostate Cancer Research, Patrick G Johnston Centre for Cancer Research (PGJCCR), Queen's University Belfast, Belfast, United Kingdom.,Nuffield Department of Surgical Sciences, University of Oxford, John Radcliffe Hospital, Oxford, United Kingdom
| | - Rebecca E Steele
- PCUK/Movember Centre of Excellence for Prostate Cancer Research, Patrick G Johnston Centre for Cancer Research (PGJCCR), Queen's University Belfast, Belfast, United Kingdom
| | - Sara E S Martin
- Department of Microbiology, Blavatnik Institute, Harvard Medical School, Boston, Massachusetts
| | - Zebulon G Levine
- Department of Microbiology, Blavatnik Institute, Harvard Medical School, Boston, Massachusetts
| | - Damien Y Duveau
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences, NIH, Rockville, Maryland
| | - Ryan Carelli
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York-Presbyterian Hospital, New York, New York
| | - Reema Singh
- PCUK/Movember Centre of Excellence for Prostate Cancer Research, Patrick G Johnston Centre for Cancer Research (PGJCCR), Queen's University Belfast, Belfast, United Kingdom.,Nuffield Department of Surgical Sciences, University of Oxford, John Radcliffe Hospital, Oxford, United Kingdom
| | - Alfonso Urbanucci
- Centre for Molecular Medicine Norway, Nordic European Molecular Biology Laboratory Partnership, Forskningsparken, University of Oslo, Oslo, Norway.,Department of Core Facilities, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway.,Department of Tumor Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
| | - Massimo Loda
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York-Presbyterian Hospital, New York, New York.,The Broad Institute of Harvard and MIT, Cambridge, Massachusetts.,The New York Genome Center, New York, New York
| | - Craig J Thomas
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences, NIH, Rockville, Maryland.,Lymphoid Malignancies Branch, Center for Cancer Research, NCI, NIH, Bethesda, Maryland
| | - Ian G Mills
- Centre for Molecular Medicine Norway, Nordic European Molecular Biology Laboratory Partnership, Forskningsparken, University of Oslo, Oslo, Norway. .,PCUK/Movember Centre of Excellence for Prostate Cancer Research, Patrick G Johnston Centre for Cancer Research (PGJCCR), Queen's University Belfast, Belfast, United Kingdom.,Nuffield Department of Surgical Sciences, University of Oxford, John Radcliffe Hospital, Oxford, United Kingdom
| | - Suzanne Walker
- Department of Microbiology, Blavatnik Institute, Harvard Medical School, Boston, Massachusetts.
| |
Collapse
|
54
|
Liu Y, Zhao R, Fang S, Li Q, Jin Y, Liu B. Abemaciclib sensitizes HPV-negative cervical cancer to chemotherapy via specifically suppressing CDK4/6-Rb-E2F and mTOR pathways. Fundam Clin Pharmacol 2020; 35:156-164. [PMID: 32446293 DOI: 10.1111/fcp.12574] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 05/14/2020] [Accepted: 05/18/2020] [Indexed: 12/20/2022]
Abstract
Cervical cancer is the second most common malignancy in women, and the novel therapeutic treatment is needed. Abemaciclib is a FDA-approved drug for breast cancer treatment. In this work, we identified that abemaciclib has potent anti-cervical cancer activity. We demonstrate that abemaciclib is the most effective drug against human papillomavirus (HPV)-negative cervical cancer cells compared to ribociclib and palbociclib, with its IC50 at nanomolar concentration range. This is achieved by the inhibition of proliferation and induction of apoptosis, through specifically suppressing CDK4/6-Rb-E2F and mTOR pathways by abemaciclib in HPV-negative cervical cancer cells. Of note, the combination of abemaciclib with paclitaxel and cisplatin at sublethal concentration results in much greater efficacy than chemotherapy alone. In addition, we confirm the efficacy of abemaciclib and its combination with paclitaxel or cisplatin at the doses that are not toxic to mice in HPV-negative cervical cancer xenograft mouse model. Interestingly, we show that abemaciclib and other CDK4/6 inhibitors are not effective in targeting HPV-positive cervical cancer cells, and this is likely to be associated with the high p16 and low Rb expression in HPV-positive cervical cancer cells. Our work is the first to provide the preclinical evidence to demonstrate the potential of abemaciclib for the treatment of HPV-negative cervical cancer. The mechanism analysis highlights the therapeutic value of inhibiting CDK4/6 in HPV-negative but not HPV-positive cervical cancer.
Collapse
Affiliation(s)
- Yuan Liu
- Department of Oncology, Xiangyang Central Hospital, Hubei University of Arts and Science, No.136, Jingzhou Road, Xiangyang, 441000, China
| | - Runsheng Zhao
- Department of Oncology, Xiangyang Central Hospital, Hubei University of Arts and Science, No.136, Jingzhou Road, Xiangyang, 441000, China
| | - Shanshan Fang
- Department of Oncology, Xiangyang Central Hospital, Hubei University of Arts and Science, No.136, Jingzhou Road, Xiangyang, 441000, China
| | - Quan Li
- Department of Oncology, Xiangyang Central Hospital, Hubei University of Arts and Science, No.136, Jingzhou Road, Xiangyang, 441000, China
| | - Yiqiang Jin
- Department of Oncology, Xiangyang Central Hospital, Hubei University of Arts and Science, No.136, Jingzhou Road, Xiangyang, 441000, China
| | - Bo Liu
- Department of Oncology, Xiangyang Central Hospital, Hubei University of Arts and Science, No.136, Jingzhou Road, Xiangyang, 441000, China
| |
Collapse
|
55
|
Abstract
Concerted multidisciplinary efforts have led to the development of Cyclin-Dependent Kinase inhibitors (CDKi’s) as small molecule drugs and chemical probes of intracellular CDK function. However, conflicting data has been reported on the inhibitory potency of CDKi’s and a systematic characterization of affinity and selectivity against intracellular CDKs is lacking. We have developed a panel of cell-permeable energy transfer probes to quantify target occupancy for all 21 human CDKs in live cells, and present a comprehensive evaluation of intracellular isozyme potency and selectivity for a collection of 46 clinically-advanced CDKi’s and tool molecules. We observed unexpected intracellular activity profiles for a number of CDKi’s, offering avenues for repurposing of highly potent molecules as probes for previously unreported targets. Overall, we provide a broadly applicable method for evaluating the selectivity of CDK inhibitors in living cells, and present a refined set of tool molecules to study CDK function. Cyclin-dependent kinase (CDK) inhibitors are widely used both in the clinic and for basic research aimed at dissecting the specific cellular functions of specific CDKs. Here, the authors report the development of a panel of fluorescent reporter probes and provide a comprehensive profile of the inhibitory activity of several CDK inhibitors towards all 21 CDKs in living cells.
Collapse
|
56
|
Therapeutic Targeting of the General RNA Polymerase II Transcription Machinery. Int J Mol Sci 2020; 21:ijms21093354. [PMID: 32397434 PMCID: PMC7246882 DOI: 10.3390/ijms21093354] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 05/06/2020] [Accepted: 05/07/2020] [Indexed: 12/27/2022] Open
Abstract
Inhibitors targeting the general RNA polymerase II (RNAPII) transcription machinery are candidate therapeutics in cancer and other complex diseases. Here, we review the molecular targets and mechanisms of action of these compounds, framing them within the steps of RNAPII transcription. We discuss the effects of transcription inhibitors in vitro and in cellular models (with an emphasis on cancer), as well as their efficacy in preclinical and clinical studies. We also discuss the rationale for inhibiting broadly acting transcriptional regulators or RNAPII itself in complex diseases.
Collapse
|
57
|
Wei X, Nian J, Zheng J, He Y, Zeng M. Inhibition of cyclin-dependent kinases by AT7519 enhances nasopharyngeal carcinoma cell response to chemotherapy. Cancer Chemother Pharmacol 2020; 85:949-957. [PMID: 32279103 DOI: 10.1007/s00280-020-04068-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Accepted: 03/27/2020] [Indexed: 12/19/2022]
Abstract
BACKGROUND The poor outcomes in nasopharyngeal carcinoma (NPC) necessitate new treatments. AT7519 is a potent inhibitor of several cyclin-dependent kinases (CDKs) and is currently in the early phase of clinical development for cancer treatment. The potent anti-cancer activities of AT7519 have been reported in various cancers, but not in NPC. MATERIALS AND METHODS The effects of AT7519 in NPC were systematically analyzed using cell culture assays and xenograft mouse models. The effects of AT7519 on molecules involved in mRNA transcription were examined. RESULTS AT7519, at a nanomolar concentration, significantly inhibits growth via arresting cells at G2/M phase, and induces apoptosis in NPC cells regardless of Epstein-Barr virus (EBV) infection and cellular origin. It also inhibits growth of a subpopulation of cells with highly proliferative and invasive features. Importantly, AT7519 acts synergistically with cisplatin and is effective against chemo-resistant NPC cells. Mechanistically, AT7519 inhibits phosphorylation of Rb, suggesting the inhibition of CDK2 in NPC. It also decreases N-myc level and RNA polymerase II phosphorylation, and inhibits transcription. Consistent with the in vitro findings, we demonstrate that AT7519 is effective as a single agent in two independent NPC xenograft mouse models. The combination of ATP7519 and cisplatin results in greater efficacy than cisplatin alone in inhibiting NPC tumor growth. CONCLUSIONS Our work is the first to report anti-NPC activities of AT7519. Our preclinical evidence suggests that AT7519 is a useful addition to overcome NPC chemo-resistance.
Collapse
Affiliation(s)
- Xin Wei
- Department of Otorhinolaryngology Head and Neck Surgery, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), Haikou, China
| | - Jiabin Nian
- Department of Otorhinolaryngology Head and Neck Surgery, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), Haikou, China
| | - Jing Zheng
- Department of Otorhinolaryngology Head and Neck Surgery, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), Haikou, China
| | - Yangli He
- Medical Center, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), No.19, Xinhua Road, Xiuying Distric, Haikou, 570311, Hainan Province, China
| | - Min Zeng
- Medical Center, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), No.19, Xinhua Road, Xiuying Distric, Haikou, 570311, Hainan Province, China.
| |
Collapse
|
58
|
Abstract
Cyclin-dependent kinase 7 (CDK7) plays crucial roles in the regulation of cell cycle and transcription that are tightly associated with cancer development and metastasis. The recent identification of the first covalent inhibitor which possesses high specificity against CDK7 prompts intense studies on designing highly selective CDK7 inhibitors and exploring their applications in cancer treatments. This review summarizes the latest biological studies on CDK7 and reviews the development of CDK7 inhibitors in preclinical and clinical evaluations, along with the prospects and potential challenges in this research area. CDK7 is an attractive anticancer target, and the discovery and development of CDK7 inhibitors has received much attention.
Collapse
|
59
|
Robert T, Johnson JL, Guichaoua R, Yaron TM, Bach S, Cantley LC, Colas P. Development of a CDK10/CycM in vitro Kinase Screening Assay and Identification of First Small-Molecule Inhibitors. Front Chem 2020; 8:147. [PMID: 32175313 PMCID: PMC7056863 DOI: 10.3389/fchem.2020.00147] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Accepted: 02/17/2020] [Indexed: 12/31/2022] Open
Abstract
Cyclin-dependent kinases (CDKs) constitute a family of 20 serine/threonine protein kinases that play pivotal roles in the regulation of numerous important molecular and cellular processes. CDKs have long been considered promising therapeutic targets in a variety of pathologies, and the recent therapeutic success of CDK4/6 inhibitors in breast cancers has renewed interest in their therapeutic potential. Small-molecule inhibitors have been identified for every human CDK, except for CDK10. The only recent discovery of an activating cyclin (CycM) for CDK10 enabled us to identify its first phosphorylation substrates and gain insights into its biological functions. Yet, our knowledge of this kinase remains incomplete, despite it being the only member of its family that causes severe human developmental syndromes, when mutated either on the cyclin or the CDK moiety. CDK10 small-molecule inhibitors would be useful in exploring the functions of this kinase and gauging its potential as a therapeutic target for some cancers. Here, we report the identification of an optimized peptide phosphorylation substrate of CDK10/CycM and the development of the first homogeneous, miniaturized CDK10/CycM in vitro kinase assay. We reveal the ability of known CDK inhibitors, among which clinically tested SNS-032, riviciclib, flavopiridol, dinaciclib, AZD4573 and AT7519, to potently inhibit CDK10/CycM. We also show that NVP-2, a strong, remarkably selective CDK9 inhibitor is an equally potent CDK10/CycM inhibitor. Finally, we validate this kinase assay for applications in high-throughput screening campaigns to discover new, original CDK10 inhibitors.
Collapse
Affiliation(s)
- Thomas Robert
- Laboratory of Integrative Biology of Marine Models, Station Biologique de Roscoff, Sorbonne Université/CNRS, Roscoff, France.,Kinase Inhibitor Specialized Screening Facility (KISSf), Station Biologique de Roscoff, Sorbonne Université/CNRS, Roscoff, France
| | - Jared L Johnson
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY, United States
| | - Roxane Guichaoua
- Laboratory of Integrative Biology of Marine Models, Station Biologique de Roscoff, Sorbonne Université/CNRS, Roscoff, France
| | - Tomer M Yaron
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY, United States
| | - Stéphane Bach
- Laboratory of Integrative Biology of Marine Models, Station Biologique de Roscoff, Sorbonne Université/CNRS, Roscoff, France.,Kinase Inhibitor Specialized Screening Facility (KISSf), Station Biologique de Roscoff, Sorbonne Université/CNRS, Roscoff, France
| | - Lewis C Cantley
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY, United States
| | - Pierre Colas
- Laboratory of Integrative Biology of Marine Models, Station Biologique de Roscoff, Sorbonne Université/CNRS, Roscoff, France
| |
Collapse
|
60
|
Kidger AM, Munck JM, Saini HK, Balmanno K, Minihane E, Courtin A, Graham B, O'Reilly M, Odle R, Cook SJ. Dual-Mechanism ERK1/2 Inhibitors Exploit a Distinct Binding Mode to Block Phosphorylation and Nuclear Accumulation of ERK1/2. Mol Cancer Ther 2020; 19:525-539. [PMID: 31748345 DOI: 10.1158/1535-7163.mct-19-0505] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Revised: 10/04/2019] [Accepted: 11/13/2019] [Indexed: 11/16/2022]
Abstract
The RAS-regulated RAF-MEK1/2-ERK1/2 signaling pathway is frequently deregulated in cancer due to activating mutations of growth factor receptors, RAS or BRAF. Both RAF and MEK1/2 inhibitors are clinically approved and various ERK1/2 inhibitors (ERKi) are currently undergoing clinical trials. To date, ERKi display two distinct mechanisms of action (MoA): catalytic ERKi solely inhibit ERK1/2 catalytic activity, whereas dual mechanism ERKi additionally prevents the activating phosphorylation of ERK1/2 at its T-E-Y motif by MEK1/2. These differences may impart significant differences in biological activity because T-E-Y phosphorylation is the signal for nuclear entry of ERK1/2, allowing them to access many key transcription factor targets. Here, we characterized the MoA of five ERKi and examined their functional consequences in terms of ERK1/2 signaling, gene expression, and antiproliferative efficacy. We demonstrate that catalytic ERKi promote a striking nuclear accumulation of p-ERK1/2 in KRAS-mutant cell lines. In contrast, dual-mechanism ERKi exploits a distinct binding mode to block ERK1/2 phosphorylation by MEK1/2, exhibit superior potency, and prevent the nuclear accumulation of ERK1/2. Consequently, dual-mechanism ERKi exhibit more durable pathway inhibition and enhanced suppression of ERK1/2-dependent gene expression compared with catalytic ERKi, resulting in increased efficacy across BRAF- and RAS-mutant cell lines.
Collapse
Affiliation(s)
- Andrew M Kidger
- Signalling Laboratory, The Babraham Institute, Babraham Research Campus, Cambridge, United Kingdom.
| | - Joanne M Munck
- Astex Pharmaceuticals, 436 Cambridge Science Park, Cambridge, United Kingdom
| | - Harpreet K Saini
- Astex Pharmaceuticals, 436 Cambridge Science Park, Cambridge, United Kingdom
| | - Kathryn Balmanno
- Signalling Laboratory, The Babraham Institute, Babraham Research Campus, Cambridge, United Kingdom
| | - Emma Minihane
- Signalling Laboratory, The Babraham Institute, Babraham Research Campus, Cambridge, United Kingdom
| | - Aurelie Courtin
- Astex Pharmaceuticals, 436 Cambridge Science Park, Cambridge, United Kingdom
| | - Brent Graham
- Astex Pharmaceuticals, 436 Cambridge Science Park, Cambridge, United Kingdom
| | - Marc O'Reilly
- Astex Pharmaceuticals, 436 Cambridge Science Park, Cambridge, United Kingdom
| | - Richard Odle
- Signalling Laboratory, The Babraham Institute, Babraham Research Campus, Cambridge, United Kingdom
| | - Simon J Cook
- Signalling Laboratory, The Babraham Institute, Babraham Research Campus, Cambridge, United Kingdom.
| |
Collapse
|
61
|
Cao L, Mitra P, Gonda TJ. The mechanism of MYB transcriptional regulation by MLL-AF9 oncoprotein. Sci Rep 2019; 9:20084. [PMID: 31882723 PMCID: PMC6934848 DOI: 10.1038/s41598-019-56426-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Accepted: 12/08/2019] [Indexed: 11/18/2022] Open
Abstract
Acute leukaemias express high levels of MYB which are required for the initiation and maintenance of the disease. Inhibition of MYB expression or activity has been shown to suppress MLL-fusion oncoprotein-induced acute myeloid leukaemias (AML), which are among the most aggressive forms of AML, and indeed MYB transcription has been reported to be regulated by the MLL-AF9 oncoprotein. This highlights the importance of understanding the mechanism of MYB transcriptional regulation in these leukaemias. Here we have demonstrated that the MLL-AF9 fusion protein regulates MYB transcription directly at the promoter region, in part by recruiting the transcriptional regulator kinase CDK9, and CDK9 inhibition effectively suppresses MYB expression as well as cell proliferation. However, MYB regulation by MLL-AF9 does not require H3K79 methylation mediated by the methyltransferase DOT1L, which has also been shown to be a key mediator of MLL-AF9 leukemogenicity. The identification of specific, essential and druggable transcriptional regulators may enable effective targeting of MYB expression, which in turn could potentially lead to new therapeutic approaches for acute myeloid leukaemia with MLL-AF9.
Collapse
Affiliation(s)
- Lu Cao
- School of Pharmacy, University of Queensland, Brisbane, QLD, Australia.,Faculty of Medicine, The University of Queensland, Brisbane, QLD, Australia.,Gallipoli Medical Research Institute, Greenslopes Private Hospital, Brisbane, QLD, Australia
| | - Partha Mitra
- School of Pharmacy, University of Queensland, Brisbane, QLD, Australia.,Institute of Health and Biomedical Innovation, Queensland University of Technology, TRI, Woolloongabba, QLD, Australia
| | - Thomas J Gonda
- School of Pharmacy, University of Queensland, Brisbane, QLD, Australia. .,University of South Australia Cancer Research Institute, Adelaide, SA, Australia.
| |
Collapse
|
62
|
Wang H, Gao Y, Wang J, Cheng M. Computational Strategy Revealing the Structural Determinant of Ligand Selectivity towards Highly Similar Protein Targets. Curr Drug Targets 2019; 21:76-88. [PMID: 31556854 DOI: 10.2174/1389450120666190926113524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2019] [Revised: 08/27/2019] [Accepted: 08/27/2019] [Indexed: 11/22/2022]
Abstract
BACKGROUND Poor selectivity of drug candidates may lead to toxicity and side effects accounting for as high as 60% failure rate, thus, the selectivity is consistently significant and challenging for drug discovery. OBJECTIVE To find highly specific small molecules towards very similar protein targets, multiple strategies are always employed, including (1) To make use of the diverse shape of binding pocket to avoid steric bump; (2) To increase binding affinities for favorite residues; (3) To achieve selectivity through allosteric regulation of target; (4) To stabalize the inactive conformation of protein target and (5) To occupy dual binding pockets of single target. CONCLUSION In this review, we summarize computational strategies along with examples of their successful applications in designing selective ligands, with the aim to provide insights into everdiversifying drug development practice and inspire medicinal chemists to utilize computational strategies to avoid potential side effects due to low selectivity of ligands.
Collapse
Affiliation(s)
- Hanxun Wang
- Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, Liaoning, China
| | - Yinli Gao
- Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, Liaoning, China
| | - Jian Wang
- Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, Liaoning, China
| | - Maosheng Cheng
- Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, Liaoning, China
| |
Collapse
|
63
|
Sánchez-Martínez C, Lallena MJ, Sanfeliciano SG, de Dios A. Cyclin dependent kinase (CDK) inhibitors as anticancer drugs: Recent advances (2015-2019). Bioorg Med Chem Lett 2019; 29:126637. [PMID: 31477350 DOI: 10.1016/j.bmcl.2019.126637] [Citation(s) in RCA: 134] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 08/22/2019] [Accepted: 08/23/2019] [Indexed: 12/15/2022]
Abstract
Sustained proliferative capacity and gene dysregulation are hallmarks of cancer. In mammalian cells, cyclin-dependent kinases (CDKs) control critical cell cycle checkpoints and key transcriptional events in response to extracellular and intracellular signals leading to proliferation. Significant clinical activity for the treatment of hormone receptor positive metastatic breast cancer has been demonstrated by palbociclib, ribociclib and abemaciclib, dual CDK4/6 inhibitors recently FDA-approved. SY-1365, a CDK7 inhibitor has shown initial encouraging data in phase I for solid tumors treatment. These results have rejuvenated the CDKs research field. This review provides an overview of relevant advances on CDK inhibitor research since 2015 to 2019, with special emphasis on transcriptional CDK inhibitors, new emerging strategies such as target protein degradation and compounds under clinical evaluation.
Collapse
Affiliation(s)
| | - María José Lallena
- Discovery Chemistry Research and Technologies, Eli Lilly and Company, Alcobendas (Madrid) 28108, Spain
| | | | - Alfonso de Dios
- Discovery Chemistry Research and Technologies, Eli Lilly and Company, Indianapolis, IN 46285, United States
| |
Collapse
|
64
|
Itkonen HM, Poulose N, Walker S, Mills IG. CDK9 Inhibition Induces a Metabolic Switch that Renders Prostate Cancer Cells Dependent on Fatty Acid Oxidation. Neoplasia 2019; 21:713-720. [PMID: 31151054 PMCID: PMC6541904 DOI: 10.1016/j.neo.2019.05.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Revised: 05/02/2019] [Accepted: 05/03/2019] [Indexed: 11/16/2022] Open
Abstract
Cyclin-dependent kinase 9 (CDK9), a key regulator of RNA-polymerase II, is a candidate drug target for cancers driven by transcriptional deregulation. Here we report a multi-omics-profiling of prostate cancer cell responses to CDK9 inhibition to identify synthetic lethal interactions. These interactions were validated using live-cell imaging, mitochondrial flux-, viability- and cell death activation assays. We show that CDK9 inhibition induces acute metabolic stress in prostate cancer cells. This is manifested by a drastic down-regulation of mitochondrial oxidative phosphorylation, ATP depletion and induction of a rapid and sustained phosphorylation of AMP-activated protein kinase (AMPK), the key sensor of cellular energy homeostasis. We used metabolomics to demonstrate that inhibition of CDK9 leads to accumulation of acyl-carnitines, metabolic intermediates in fatty acid oxidation (FAO). Acyl-carnitines are produced by carnitine palmitoyltransferase enzymes 1 and 2 (CPT), and we used both genetic and pharmacological tools to show that inhibition of CPT-activity is synthetically lethal with CDK9 inhibition. To our knowledge this is the first report to show that CDK9 inhibition dramatically alters cancer cell metabolism.
Collapse
Affiliation(s)
- Harri M Itkonen
- Centre for Molecular Medicine Norway, Nordic European Molecular Biology Laboratory Partnership, Forskningsparken, University of Oslo, Oslo, 0349, Norway; Department of Microbiology, Blavatnik Institute, Harvard Medical School, Boston, MA, 02115, USA.
| | - Ninu Poulose
- PCUK/Movember Centre of Excellence for Prostate Cancer Research, Centre for Cancer Research and Cell Biology (CCRCB), Queen's University Belfast, BT7 1NN, UK.
| | - Suzanne Walker
- Department of Microbiology, Blavatnik Institute, Harvard Medical School, Boston, MA, 02115, USA.
| | - Ian G Mills
- Centre for Molecular Medicine Norway, Nordic European Molecular Biology Laboratory Partnership, Forskningsparken, University of Oslo, Oslo, 0349, Norway; PCUK/Movember Centre of Excellence for Prostate Cancer Research, Centre for Cancer Research and Cell Biology (CCRCB), Queen's University Belfast, BT7 1NN, UK; Nuffield Department of Surgical Sciences, University of Oxford, John Radcliffe Hospital, Oxford, OX3 9DU, UK.
| |
Collapse
|
65
|
Xi C, Wang L, Yu J, Ye H, Cao L, Gong Z. Inhibition of cyclin-dependent kinases by AT7519 is effective to overcome chemoresistance in colon and cervical cancer. Biochem Biophys Res Commun 2019; 513:589-593. [PMID: 30979499 DOI: 10.1016/j.bbrc.2019.04.014] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Accepted: 04/02/2019] [Indexed: 11/15/2022]
Abstract
Cyclin-dependent kinases (CDK), a family of heterodimeric kinases that play central roles in regulation of cell cycle progression and transcription, have garnered attention in recent years because their aberrant activity has been reported in a wide variety of human cancers. AT7519 is a multitargeted CDK inhibitor that is currently in clinical trials for the treatment of refractory blood cancers. In this work, we are the first to provide preclinical evidence that AT7519 is an attractive candidate to overcome chemoresistance in colon and cervical cancer. We show that AT7519 is effective in targeting a panel of colon and cervical cancer cell lines, with IC50 range from 0.1 to 1 μM. Importantly, AT7519 at similar IC50 range inhibits growth and induces apoptosis of paclitaxel-resistant cervical cancer cells and 5-FU-resistant colon cancer cells. AT7519 at sublethal concentration remarkably augments the inhibitory effects of 5-FU and paclitaxel in colon and cervical cancer cells. Mechanistically, we show that AT7519 suppresses phosphorylation of CDK1, CDK2 and RNA polymerase II in chemoresistant colon and cervical cancer cells. We further confirm the efficacy of AT7519 and its mechanisms of the action using two independent chemoresistant xenograft mouse models: 5-FU-resistant colony cancer xenograft and paclitaxel-resistant cervical cancer xenograft. Our findings support the clinical trials of AT7519 for cancer treatment. Our work also demonstrates the therapeutic value of inhibiting CDK in chemoresistant cancers.
Collapse
Affiliation(s)
- Changlei Xi
- Department of Anorectal Surgery, Jingzhou Central Hospital, The Second Clinical Medical College, Yangtze University, Jingzhou, China
| | - Ling Wang
- Department of Obstetrics and Gynaecology, Jingzhou Central Hospital, The Second Clinical Medical College, Yangtze University, Jingzhou, China
| | - Jie Yu
- Department of Anorectal Surgery, Jingzhou Central Hospital, The Second Clinical Medical College, Yangtze University, Jingzhou, China
| | - Hui Ye
- Department of Anorectal Surgery, Jingzhou Central Hospital, The Second Clinical Medical College, Yangtze University, Jingzhou, China
| | - Longlei Cao
- Department of Anorectal Surgery, Jingzhou Central Hospital, The Second Clinical Medical College, Yangtze University, Jingzhou, China
| | - Zhilin Gong
- Department of Anorectal Surgery, Jingzhou Central Hospital, The Second Clinical Medical College, Yangtze University, Jingzhou, China.
| |
Collapse
|
66
|
Abdullah M, Guruprasad L. Computational fragment-based design of Wee1 kinase inhibitors with tricyclic core scaffolds. Struct Chem 2019. [DOI: 10.1007/s11224-018-1176-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
67
|
Tadesse S, Caldon EC, Tilley W, Wang S. Cyclin-Dependent Kinase 2 Inhibitors in Cancer Therapy: An Update. J Med Chem 2018; 62:4233-4251. [PMID: 30543440 DOI: 10.1021/acs.jmedchem.8b01469] [Citation(s) in RCA: 160] [Impact Index Per Article: 26.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Cyclin-dependent kinase 2 (CDK2) drives the progression of cells into the S- and M-phases of the cell cycle. CDK2 activity is largely dispensable for normal development, but it is critically associated with tumor growth in multiple cancer types. Although the role of CDK2 in tumorigenesis has been controversial, emerging evidence proposes that selective CDK2 inhibition may provide a therapeutic benefit against certain tumors, and it continues to appeal as a strategy to exploit in anticancer drug development. Several small-molecule CDK2 inhibitors have progressed to the clinical trials. However, a CDK2-selective inhibitor is yet to be discovered. Here, we discuss the latest understandings of the role of CDK2 in normal and cancer cells, review the core pharmacophores used to target CDK2, and outline strategies for the rational design of CDK2 inhibitors. We attempt to provide an outlook on how CDK2-selective inhibitors may open new avenues for cancer therapy.
Collapse
Affiliation(s)
- Solomon Tadesse
- Centre for Drug Discovery and Development , University of South Australia Cancer Research Institute , Adelaide , SA 5000 , Australia
| | - Elizabeth C Caldon
- The Kinghorn Cancer Centre , Garvan Institute of Medical Research , Darlinghurst , NSW 2010 , Australia.,St Vincent's Clinical School, UNSW Medicine , UNSW Sydney , Darlinghurst , NSW 2010 , Australia
| | - Wayne Tilley
- Adelaide Medical School , University of Adelaide , Adelaide , SA 5000 , Australia
| | - Shudong Wang
- Centre for Drug Discovery and Development , University of South Australia Cancer Research Institute , Adelaide , SA 5000 , Australia
| |
Collapse
|
68
|
Mitra P. Transcription regulation of MYB: a potential and novel therapeutic target in cancer. ANNALS OF TRANSLATIONAL MEDICINE 2018; 6:443. [PMID: 30596073 DOI: 10.21037/atm.2018.09.62] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Basal transcription factors have never been considered as a priority target in the field of drug discovery. However, their unparalleled roles in decoding the genetic information in response to the appropriate signal and their association with the disease progression are very well-established phenomena. Instead of considering transcription factors as such a target, in this review, we discuss about the potential of the regulatory mechanisms that control their gene expression. Based on our recent understanding about the critical roles of c-MYB at the cellular and molecular level in several types of cancers, we discuss here how MLL-fusion protein centred SEC in leukaemia, ligand-estrogen receptor (ER) complex in breast cancer (BC) and NF-κB and associated factors in colorectal cancer regulate the transcription of this gene. We further discuss plausible strategies, specific to each cancer type, to target those bona fide activators/co-activators, which control the regulation of this gene and therefore to shed fresh light in targeting the transcriptional regulation as a novel approach to the future drug discovery in cancer.
Collapse
Affiliation(s)
- Partha Mitra
- Pre-clinical Division, Vaxxas Pty. Ltd. Translational Research Institute, Woolloongabba QLD 4102, Australia.,Institute of Health and Biomedical Innovation, Queensland University of Technology, Translational Research Institute, Woolloongabba QLD 4102, Australia
| |
Collapse
|
69
|
Wang B, Wu J, Wu Y, Chen C, Zou F, Wang A, Wu H, Hu Z, Jiang Z, Liu Q, Wang W, Zhang Y, Liu F, Zhao M, Hu J, Huang T, Ge J, Wang L, Ren T, Wang Y, Liu J, Liu Q. Discovery of 4-(((4-(5-chloro-2-(((1s,4s)-4-((2-methoxyethyl)amino)cyclohexyl)amino)pyridin-4-yl)thiazol-2-yl)amino)methyl)tetrahydro-2H-pyran-4-carbonitrile (JSH-150) as a novel highly selective and potent CDK9 kinase inhibitor. Eur J Med Chem 2018; 158:896-916. [PMID: 30253346 DOI: 10.1016/j.ejmech.2018.09.025] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Revised: 09/06/2018] [Accepted: 09/09/2018] [Indexed: 01/06/2023]
Abstract
Through a structure-guided rational drug design approach, we have discovered a highly selective inhibitor compound 40 (JSH-150), which exhibited an IC50 of 1 nM against CDK9 kinase in the biochemical assay and achieved around 300-10000-fold selectivity over other CDK kinase family members. In addition, it also displayed high selectivity over other 468 kinases/mutants (KINOMEscan S score(1) = 0.01). Compound 40 displayed potent antiproliferative effects against melanoma, neuroblastoma, hepatoma, colon cancer, lung cancer as well as leukemia cell lines. It could dose-dependently inhibit the phosphorylation of RNA Pol II, suppress the expression of MCL-1 and c-Myc, arrest the cell cycle and induce the apoptosis in the leukemia cells. In the MV4-11 cell-inoculated xenograft mouse model, 10 mg/kg dosage of 40 could almost completely suppress the tumor progression. The high selectivity and good in vivo PK/PD profile suggested that 40 would be a good pharmacological tool to study CDK9-mediated physiology and pathology as well as a potential drug candidate for leukemia and other cancers.
Collapse
Affiliation(s)
- Beilei Wang
- High Magnetic Field Laboratory, Chinese Academy of Sciences, Mailbox 1110, 350 Shushanhu Road, Hefei, Anhui, 230031, PR China; University of Science and Technology of China, Hefei, Anhui, 230036, PR China; Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, 230031, PR China
| | - Jiaxin Wu
- High Magnetic Field Laboratory, Chinese Academy of Sciences, Mailbox 1110, 350 Shushanhu Road, Hefei, Anhui, 230031, PR China; University of Science and Technology of China, Hefei, Anhui, 230036, PR China; Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, 230031, PR China
| | - Yun Wu
- High Magnetic Field Laboratory, Chinese Academy of Sciences, Mailbox 1110, 350 Shushanhu Road, Hefei, Anhui, 230031, PR China; Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, 230031, PR China
| | - Cheng Chen
- High Magnetic Field Laboratory, Chinese Academy of Sciences, Mailbox 1110, 350 Shushanhu Road, Hefei, Anhui, 230031, PR China; University of Science and Technology of China, Hefei, Anhui, 230036, PR China; Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, 230031, PR China
| | - Fengming Zou
- High Magnetic Field Laboratory, Chinese Academy of Sciences, Mailbox 1110, 350 Shushanhu Road, Hefei, Anhui, 230031, PR China; Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, 230031, PR China
| | - Aoli Wang
- High Magnetic Field Laboratory, Chinese Academy of Sciences, Mailbox 1110, 350 Shushanhu Road, Hefei, Anhui, 230031, PR China; Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, 230031, PR China
| | - Hong Wu
- High Magnetic Field Laboratory, Chinese Academy of Sciences, Mailbox 1110, 350 Shushanhu Road, Hefei, Anhui, 230031, PR China; Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, 230031, PR China
| | - Zhenquan Hu
- High Magnetic Field Laboratory, Chinese Academy of Sciences, Mailbox 1110, 350 Shushanhu Road, Hefei, Anhui, 230031, PR China; Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, 230031, PR China
| | - Zongru Jiang
- High Magnetic Field Laboratory, Chinese Academy of Sciences, Mailbox 1110, 350 Shushanhu Road, Hefei, Anhui, 230031, PR China; University of Science and Technology of China, Hefei, Anhui, 230036, PR China; Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, 230031, PR China
| | - Qingwang Liu
- Precision Targeted Therapy Discovery Center, Institute of Technology Innovation, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, 230088, PR China
| | - Wei Wang
- High Magnetic Field Laboratory, Chinese Academy of Sciences, Mailbox 1110, 350 Shushanhu Road, Hefei, Anhui, 230031, PR China; Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, 230031, PR China
| | - Yicong Zhang
- High Magnetic Field Laboratory, Chinese Academy of Sciences, Mailbox 1110, 350 Shushanhu Road, Hefei, Anhui, 230031, PR China; University of Science and Technology of China, Hefei, Anhui, 230036, PR China; Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, 230031, PR China
| | - Feiyang Liu
- High Magnetic Field Laboratory, Chinese Academy of Sciences, Mailbox 1110, 350 Shushanhu Road, Hefei, Anhui, 230031, PR China; Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, 230031, PR China
| | - Ming Zhao
- Precision Targeted Therapy Discovery Center, Institute of Technology Innovation, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, 230088, PR China; Precision Medicine Research Laboratory of Anhui Province, Hefei, Anhui, 230088, PR China
| | - Jie Hu
- Precision Targeted Therapy Discovery Center, Institute of Technology Innovation, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, 230088, PR China; Precision Medicine Research Laboratory of Anhui Province, Hefei, Anhui, 230088, PR China
| | - Tao Huang
- Precision Targeted Therapy Discovery Center, Institute of Technology Innovation, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, 230088, PR China; Precision Medicine Research Laboratory of Anhui Province, Hefei, Anhui, 230088, PR China
| | - Juan Ge
- Precision Targeted Therapy Discovery Center, Institute of Technology Innovation, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, 230088, PR China; Precision Medicine Research Laboratory of Anhui Province, Hefei, Anhui, 230088, PR China
| | - Li Wang
- High Magnetic Field Laboratory, Chinese Academy of Sciences, Mailbox 1110, 350 Shushanhu Road, Hefei, Anhui, 230031, PR China; University of Science and Technology of China, Hefei, Anhui, 230036, PR China; Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, 230031, PR China
| | - Tao Ren
- Precision Targeted Therapy Discovery Center, Institute of Technology Innovation, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, 230088, PR China; Precision Medicine Research Laboratory of Anhui Province, Hefei, Anhui, 230088, PR China
| | - Yuxin Wang
- Precision Medicine Research Laboratory of Anhui Province, Hefei, Anhui, 230088, PR China
| | - Jing Liu
- High Magnetic Field Laboratory, Chinese Academy of Sciences, Mailbox 1110, 350 Shushanhu Road, Hefei, Anhui, 230031, PR China; Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, 230031, PR China; Precision Targeted Therapy Discovery Center, Institute of Technology Innovation, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, 230088, PR China; Precision Medicine Research Laboratory of Anhui Province, Hefei, Anhui, 230088, PR China.
| | - Qingsong Liu
- High Magnetic Field Laboratory, Chinese Academy of Sciences, Mailbox 1110, 350 Shushanhu Road, Hefei, Anhui, 230031, PR China; University of Science and Technology of China, Hefei, Anhui, 230036, PR China; Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, 230031, PR China; Precision Targeted Therapy Discovery Center, Institute of Technology Innovation, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, 230088, PR China; Precision Medicine Research Laboratory of Anhui Province, Hefei, Anhui, 230088, PR China; Institute of Physical Science and Information Technology, Anhui University, Hefei, Anhui, 230601, PR China.
| |
Collapse
|
70
|
Chohan TA, Qayyum A, Rehman K, Tariq M, Akash MSH. An insight into the emerging role of cyclin-dependent kinase inhibitors as potential therapeutic agents for the treatment of advanced cancers. Biomed Pharmacother 2018; 107:1326-1341. [PMID: 30257348 DOI: 10.1016/j.biopha.2018.08.116] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Revised: 08/11/2018] [Accepted: 08/23/2018] [Indexed: 01/16/2023] Open
Abstract
Cancer denotes a pathological manifestation that is characterized by hyperproliferation of cells. It has anticipated that a better understanding of disease pathogenesis and the role of cell-cycle regulators may provide an opportunity to develop an effective cancer therapeutic agents. Specifically, the cyclin-dependent kinases (CDKs) which regulate the transition of cell-cycle through different phases; have been identified as fundamental targets for therapeutic advances. It is an evident from experimental studies that several events leading to tumor growth occur by exacerbation of CDK4/CDK6 in G1-phase of cell division cycle. Additionally, the characteristics of S- and G2/M-phase regulated by CDK1/CDK2 are pivotal events that may lead to abrupt the cell division. Although, previously reported CDK inhibitors have shown remarkable results in pre-clinical studies, but have not yielded appreciable clinical results yet. Therefore, the development of clinically potent CDK inhibitors has remained to be a challenging task. However, continuous efforts has led to the development of some novel CDKs inhibitors that have emerged as a potent strategy for the treatment of advanced cancers. In this article, we have summarized the role of CDKs in cell-cycle regulation and tumorigenesis and recent advances in the development of CDKs inhibitors as a promising therapy for the treatment of advanced cancer. In addition, we have also performed a comparison of crystallographic studies to get valuable insight into the interaction mode differences of inhibitors, binding to CDK isoforms with apparently similar binding sites. The knowledge of ligand-specific recognition towards a particular CDK isoform may be applied as a key tool in future for the designing of isoform-specific inhibitors.
Collapse
Affiliation(s)
- Tahir Ali Chohan
- Institute of Pharmaceutical Sciences, University of Veterinary and Animal Sciences, Lahore, Pakistan
| | - Aisha Qayyum
- Department of Paediatrics Medicine, Sabzazar Hospital, Lahore, Pakistan
| | - Kanwal Rehman
- Institute of Pharmacy, Physiology and Pharmacology, University of Agriculture, Faisalabad, Pakistan
| | - Muhammad Tariq
- Faculty of Pharmacy & Alternative Medicine, The Islamia University of Bahawalpur, Pakistan
| | | |
Collapse
|
71
|
Pogorzelska A, Sławiński J, Kawiak A, Żołnowska B, Chojnacki J, Stasiłojć G, Ulenberg S, Szafrański K, Bączek T. Synthesis, molecular structure, and metabolic stability of new series of N'-(2-alkylthio-4-chloro-5-methylbenzenesulfonyl)-1-(5-phenyl-1H-pyrazol-1-yl)amidine as potential anti-cancer agents. Eur J Med Chem 2018; 155:670-680. [PMID: 29936354 DOI: 10.1016/j.ejmech.2018.06.032] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Revised: 05/28/2018] [Accepted: 06/12/2018] [Indexed: 11/26/2022]
Abstract
A series of new N'-(2-alkylthio-4-chloro-5-methylbenzenesulfonyl)-1-(5-phenyl-1H-pyrazol-1-yl)amidine derivatives have been synthesized and evaluated in vitro by MTT assays for their antiproliferative activity against cell lines of colon cancer HCT-116, cervical cancer HeLa and breast cancer MCF-7. The studied compounds display selective activity mainly against HCT-116 and HeLa cells. Thus, five compounds show selective cytotoxic effect against HCT-116 (IC50 = 3-10 μM) and HeLa (IC50 = 7 μM). Importantly, the noticed values of IC50 for four compounds are almost 4-fold lower for HeLa than non-malignant HaCaT cells. More-in-depth biological research revealed that the treatment of HCT-116 and HeLa with active compound resulted in increased numbers of cells in sub-G1 phase in a time dependent manner, while non-active derivative does not influence cell cycle. Metabolic stability assays using liver microsomes and NADPH provide important information on compounds susceptibility to phase 1 biotransformation reactions.
Collapse
Affiliation(s)
- Aneta Pogorzelska
- Department of Organic Chemistry, Medical University of Gdańsk, Al. Gen. J. Hallera 107, 80-416, Gdańsk, Poland.
| | - Jarosław Sławiński
- Department of Organic Chemistry, Medical University of Gdańsk, Al. Gen. J. Hallera 107, 80-416, Gdańsk, Poland.
| | - Anna Kawiak
- Department of Biotechnology, Intercollegiate Faculty of Biotechnology, University of Gdańsk and Medical University of Gdańsk, Ul. Abrahama 58, 80-307, Gdańsk, Poland; Laboratory of Human Physiology, Medical University of Gdańsk, Ul. Tuwima 15, 80-210, Gdańsk, Poland
| | - Beata Żołnowska
- Department of Organic Chemistry, Medical University of Gdańsk, Al. Gen. J. Hallera 107, 80-416, Gdańsk, Poland
| | - Jarosław Chojnacki
- Department of Inorganic Chemistry, Gdańsk University of Technology, Narutowicza 11/12, 80-233, Gdańsk, Poland
| | - Grzegorz Stasiłojć
- Laboratory of Cell Biology, Department of Medical Biotechnology, Intercollegiate Faculty of Biotechnology UG-MUG, Medical University of Gdańsk, Ul. Dębinki 1, Gdańsk, 80-211, Poland
| | - Szymon Ulenberg
- Department of Pharmaceutical Chemistry, Medical University of Gdańsk, Al. Gen. J. Hallera 107, 80-416, Gdańsk, Poland
| | - Krzysztof Szafrański
- Department of Organic Chemistry, Medical University of Gdańsk, Al. Gen. J. Hallera 107, 80-416, Gdańsk, Poland
| | - Tomasz Bączek
- Department of Pharmaceutical Chemistry, Medical University of Gdańsk, Al. Gen. J. Hallera 107, 80-416, Gdańsk, Poland
| |
Collapse
|
72
|
Brägelmann J, Dammert MA, Dietlein F, Heuckmann JM, Choidas A, Böhm S, Richters A, Basu D, Tischler V, Lorenz C, Habenberger P, Fang Z, Ortiz-Cuaran S, Leenders F, Eickhoff J, Koch U, Getlik M, Termathe M, Sallouh M, Greff Z, Varga Z, Balke-Want H, French CA, Peifer M, Reinhardt HC, Örfi L, Kéri G, Ansén S, Heukamp LC, Büttner R, Rauh D, Klebl BM, Thomas RK, Sos ML. Systematic Kinase Inhibitor Profiling Identifies CDK9 as a Synthetic Lethal Target in NUT Midline Carcinoma. Cell Rep 2018; 20:2833-2845. [PMID: 28930680 PMCID: PMC5622049 DOI: 10.1016/j.celrep.2017.08.082] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Revised: 06/27/2017] [Accepted: 08/24/2017] [Indexed: 12/27/2022] Open
Abstract
Kinase inhibitors represent the backbone of targeted cancer therapy, yet only a limited number of oncogenic drivers are directly druggable. By interrogating the activity of 1,505 kinase inhibitors, we found that BRD4-NUT-rearranged NUT midline carcinoma (NMC) cells are specifically killed by CDK9 inhibition (CDK9i) and depend on CDK9 and Cyclin-T1 expression. We show that CDK9i leads to robust induction of apoptosis and of markers of DNA damage response in NMC cells. While both CDK9i and bromodomain inhibition over time result in reduced Myc protein expression, only bromodomain inhibition induces cell differentiation and a p21-induced cell-cycle arrest in these cells. Finally, RNA-seq and ChIP-based analyses reveal a BRD4-NUT-specific CDK9i-induced perturbation of transcriptional elongation. Thus, our data provide a mechanistic basis for the genotype-dependent vulnerability of NMC cells to CDK9i that may be of relevance for the development of targeted therapies for NMC patients.
Collapse
Affiliation(s)
- Johannes Brägelmann
- Molecular Pathology, Institute of Pathology, University of Cologne, Kerpener Str. 62, 50937 Cologne, Germany; Department of Translational Genomics, Medical Faculty, University of Cologne, Weyertal 115b, 50931 Cologne, Germany
| | - Marcel A Dammert
- Molecular Pathology, Institute of Pathology, University of Cologne, Kerpener Str. 62, 50937 Cologne, Germany; Department of Translational Genomics, Medical Faculty, University of Cologne, Weyertal 115b, 50931 Cologne, Germany
| | - Felix Dietlein
- Department I of Internal Medicine and Center for Integrated Oncology, University Hospital of Cologne, Kerpener Str. 62, 50937 Cologne, Germany
| | | | - Axel Choidas
- Lead Discovery Center (LDC) GmbH, Otto-Hahn-Str. 15, 44227 Dortmund, Germany
| | - Stefanie Böhm
- Molecular Pathology, Institute of Pathology, University of Cologne, Kerpener Str. 62, 50937 Cologne, Germany; Department of Translational Genomics, Medical Faculty, University of Cologne, Weyertal 115b, 50931 Cologne, Germany
| | - André Richters
- Faculty of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn-Str. 4a, 44221 Dortmund, Germany
| | - Debjit Basu
- Faculty of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn-Str. 4a, 44221 Dortmund, Germany
| | - Verena Tischler
- Department of Translational Genomics, Medical Faculty, University of Cologne, Weyertal 115b, 50931 Cologne, Germany
| | - Carina Lorenz
- Molecular Pathology, Institute of Pathology, University of Cologne, Kerpener Str. 62, 50937 Cologne, Germany; Department of Translational Genomics, Medical Faculty, University of Cologne, Weyertal 115b, 50931 Cologne, Germany
| | - Peter Habenberger
- Lead Discovery Center (LDC) GmbH, Otto-Hahn-Str. 15, 44227 Dortmund, Germany
| | - Zhizhou Fang
- Faculty of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn-Str. 4a, 44221 Dortmund, Germany
| | - Sandra Ortiz-Cuaran
- Department of Translational Genomics, Medical Faculty, University of Cologne, Weyertal 115b, 50931 Cologne, Germany
| | - Frauke Leenders
- Department of Translational Genomics, Medical Faculty, University of Cologne, Weyertal 115b, 50931 Cologne, Germany
| | - Jan Eickhoff
- Lead Discovery Center (LDC) GmbH, Otto-Hahn-Str. 15, 44227 Dortmund, Germany
| | - Uwe Koch
- Lead Discovery Center (LDC) GmbH, Otto-Hahn-Str. 15, 44227 Dortmund, Germany
| | - Matthäus Getlik
- Faculty of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn-Str. 4a, 44221 Dortmund, Germany
| | - Martin Termathe
- Faculty of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn-Str. 4a, 44221 Dortmund, Germany
| | - Muhammad Sallouh
- Faculty of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn-Str. 4a, 44221 Dortmund, Germany
| | - Zoltán Greff
- Vichem Chemie Research Ltd., Herman Ottó u. 15, Budapest, Hungary
| | - Zoltán Varga
- Vichem Chemie Research Ltd., Herman Ottó u. 15, Budapest, Hungary
| | - Hyatt Balke-Want
- Department of Translational Genomics, Medical Faculty, University of Cologne, Weyertal 115b, 50931 Cologne, Germany; Department I of Internal Medicine and Center for Integrated Oncology, University Hospital of Cologne, Kerpener Str. 62, 50937 Cologne, Germany
| | - Christopher A French
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Martin Peifer
- Department of Translational Genomics, Medical Faculty, University of Cologne, Weyertal 115b, 50931 Cologne, Germany
| | - H Christian Reinhardt
- Department I of Internal Medicine and Center for Integrated Oncology, University Hospital of Cologne, Kerpener Str. 62, 50937 Cologne, Germany; Center for Molecular Medicine Cologne, University of Cologne, 50931 Cologne, Germany
| | - László Örfi
- Vichem Chemie Research Ltd., Herman Ottó u. 15, Budapest, Hungary; Department of Pharmaceutical Chemistry, Semmelweis University, Hőgyes E. U.9, Budapest, Hungary
| | - György Kéri
- Vichem Chemie Research Ltd., Herman Ottó u. 15, Budapest, Hungary
| | - Sascha Ansén
- Department I of Internal Medicine and Center for Integrated Oncology, University Hospital of Cologne, Kerpener Str. 62, 50937 Cologne, Germany
| | - Lukas C Heukamp
- Department of Translational Genomics, Medical Faculty, University of Cologne, Weyertal 115b, 50931 Cologne, Germany; Institute of Pathology, Medical Faculty, University of Cologne, Kerpener Str. 62, 50937 Cologne, Germany
| | - Reinhard Büttner
- Institute of Pathology, Medical Faculty, University of Cologne, Kerpener Str. 62, 50937 Cologne, Germany
| | - Daniel Rauh
- Faculty of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn-Str. 4a, 44221 Dortmund, Germany
| | - Bert M Klebl
- Lead Discovery Center (LDC) GmbH, Otto-Hahn-Str. 15, 44227 Dortmund, Germany
| | - Roman K Thomas
- Department of Translational Genomics, Medical Faculty, University of Cologne, Weyertal 115b, 50931 Cologne, Germany; Institute of Pathology, Medical Faculty, University of Cologne, Kerpener Str. 62, 50937 Cologne, Germany; German Cancer Research Center (DKFZ), German Cancer Consortium (DKTK), Heidelberg, Germany.
| | - Martin L Sos
- Molecular Pathology, Institute of Pathology, University of Cologne, Kerpener Str. 62, 50937 Cologne, Germany; Department of Translational Genomics, Medical Faculty, University of Cologne, Weyertal 115b, 50931 Cologne, Germany; Center for Molecular Medicine Cologne, University of Cologne, 50931 Cologne, Germany.
| |
Collapse
|
73
|
Abstract
Inhibition of CDKs is an attractive approach to cancer therapy due to their vital role in cell growth and transcription. Pan-CDK inhibitors have shown some clinical benefit, and trials are ongoing. Selective CDK4 and CDK6 inhibitors have been licensed for the treatment of hormone responsive, RB-positive breast cancer in combination with antihormonal agents. Selective inhibitors of CDKs 5, 7, 8, 9 and 12 have been identified across a range of chemotypes.
Collapse
|
74
|
Heightman TD, Berdini V, Braithwaite H, Buck IM, Cassidy M, Castro J, Courtin A, Day JEH, East C, Fazal L, Graham B, Griffiths-Jones CM, Lyons JF, Martins V, Muench S, Munck JM, Norton D, O’Reilly M, Palmer N, Pathuri P, Reader M, Rees DC, Rich SJ, Richardson C, Saini H, Thompson NT, Wallis NG, Walton H, Wilsher NE, Woolford AJA, Cooke M, Cousin D, Onions S, Shannon J, Watts J, Murray CW. Fragment-Based Discovery of a Potent, Orally Bioavailable Inhibitor That Modulates the Phosphorylation and Catalytic Activity of ERK1/2. J Med Chem 2018; 61:4978-4992. [DOI: 10.1021/acs.jmedchem.8b00421] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Tom D. Heightman
- Astex Pharmaceuticals, 436 Cambridge Science Park, Cambridge, CB4 0QA, U.K
| | - Valerio Berdini
- Astex Pharmaceuticals, 436 Cambridge Science Park, Cambridge, CB4 0QA, U.K
| | - Hannah Braithwaite
- Astex Pharmaceuticals, 436 Cambridge Science Park, Cambridge, CB4 0QA, U.K
| | - Ildiko M. Buck
- Astex Pharmaceuticals, 436 Cambridge Science Park, Cambridge, CB4 0QA, U.K
| | - Megan Cassidy
- Astex Pharmaceuticals, 436 Cambridge Science Park, Cambridge, CB4 0QA, U.K
| | - Juan Castro
- Astex Pharmaceuticals, 436 Cambridge Science Park, Cambridge, CB4 0QA, U.K
| | - Aurélie Courtin
- Astex Pharmaceuticals, 436 Cambridge Science Park, Cambridge, CB4 0QA, U.K
| | - James E. H. Day
- Astex Pharmaceuticals, 436 Cambridge Science Park, Cambridge, CB4 0QA, U.K
| | - Charlotte East
- Astex Pharmaceuticals, 436 Cambridge Science Park, Cambridge, CB4 0QA, U.K
| | - Lynsey Fazal
- Astex Pharmaceuticals, 436 Cambridge Science Park, Cambridge, CB4 0QA, U.K
| | - Brent Graham
- Astex Pharmaceuticals, 436 Cambridge Science Park, Cambridge, CB4 0QA, U.K
| | | | - John F. Lyons
- Astex Pharmaceuticals, 436 Cambridge Science Park, Cambridge, CB4 0QA, U.K
| | - Vanessa Martins
- Astex Pharmaceuticals, 436 Cambridge Science Park, Cambridge, CB4 0QA, U.K
| | - Sandra Muench
- Astex Pharmaceuticals, 436 Cambridge Science Park, Cambridge, CB4 0QA, U.K
| | - Joanne M. Munck
- Astex Pharmaceuticals, 436 Cambridge Science Park, Cambridge, CB4 0QA, U.K
| | - David Norton
- Astex Pharmaceuticals, 436 Cambridge Science Park, Cambridge, CB4 0QA, U.K
| | - Marc O’Reilly
- Astex Pharmaceuticals, 436 Cambridge Science Park, Cambridge, CB4 0QA, U.K
| | - Nick Palmer
- Astex Pharmaceuticals, 436 Cambridge Science Park, Cambridge, CB4 0QA, U.K
| | - Puja Pathuri
- Astex Pharmaceuticals, 436 Cambridge Science Park, Cambridge, CB4 0QA, U.K
| | - Michael Reader
- Astex Pharmaceuticals, 436 Cambridge Science Park, Cambridge, CB4 0QA, U.K
| | - David C. Rees
- Astex Pharmaceuticals, 436 Cambridge Science Park, Cambridge, CB4 0QA, U.K
| | - Sharna J. Rich
- Astex Pharmaceuticals, 436 Cambridge Science Park, Cambridge, CB4 0QA, U.K
| | | | - Harpreet Saini
- Astex Pharmaceuticals, 436 Cambridge Science Park, Cambridge, CB4 0QA, U.K
| | - Neil T. Thompson
- Astex Pharmaceuticals, 436 Cambridge Science Park, Cambridge, CB4 0QA, U.K
| | - Nicola G. Wallis
- Astex Pharmaceuticals, 436 Cambridge Science Park, Cambridge, CB4 0QA, U.K
| | - Hugh Walton
- Astex Pharmaceuticals, 436 Cambridge Science Park, Cambridge, CB4 0QA, U.K
| | - Nicola E. Wilsher
- Astex Pharmaceuticals, 436 Cambridge Science Park, Cambridge, CB4 0QA, U.K
| | | | - Michael Cooke
- Sygnature Discovery Ltd., BioCity, Pennyfoot Street, Nottingham, NG1 1GF, U.K
| | - David Cousin
- Sygnature Discovery Ltd., BioCity, Pennyfoot Street, Nottingham, NG1 1GF, U.K
| | - Stuart Onions
- Sygnature Discovery Ltd., BioCity, Pennyfoot Street, Nottingham, NG1 1GF, U.K
| | - Jonathan Shannon
- Sygnature Discovery Ltd., BioCity, Pennyfoot Street, Nottingham, NG1 1GF, U.K
| | - John Watts
- Sygnature Discovery Ltd., BioCity, Pennyfoot Street, Nottingham, NG1 1GF, U.K
| | | |
Collapse
|
75
|
Boffo S, Damato A, Alfano L, Giordano A. CDK9 inhibitors in acute myeloid leukemia. J Exp Clin Cancer Res 2018; 37:36. [PMID: 29471852 PMCID: PMC5824552 DOI: 10.1186/s13046-018-0704-8] [Citation(s) in RCA: 108] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2017] [Accepted: 02/12/2018] [Indexed: 02/07/2023] Open
Abstract
Current treatment for acute myeloid leukemia (AML) is less than optimal, but increased understanding of disease pathobiology and genomics has led to clinical investigation of novel targeted therapies and rational combinations. Targeting the cyclin-dependent kinase 9 (CDK9) pathway, which is dysregulated in AML, is an attractive approach. Inhibition of CDK9 leads to downregulation of cell survival genes regulated by super enhancers such as MCL-1, MYC, and cyclin D1. As CDK9 inhibitors are nonselective, predictive biomarkers that may help identify patients most likely to respond to CDK9 inhibitors are now being utilized, with the goal of improving efficacy and safety.
Collapse
Affiliation(s)
- Silvia Boffo
- Sbarro Institute for Cancer Research and Molecular Medicine, Department of Biology, Temple University, 1900 N. 12th St., Room 431, Philadelphia, PA 19122-6017 USA
| | - Angela Damato
- Sbarro Institute for Cancer Research and Molecular Medicine, Department of Biology, Temple University, 1900 N. 12th St., Room 431, Philadelphia, PA 19122-6017 USA
- Medical Oncology Unit, Clinical Cancer Centre, IRCCS–Arcispedale S. Maria Nuova, Reggio Emilia, Italy
| | - Luigi Alfano
- Oncology Research Center of Mercogliano (CROM), Istituto Nazionale Per Lo Studio E La Cura Dei Tumori “Fondazione Giovanni Pascale”, IRCCS, Naples, Italy
| | - Antonio Giordano
- Sbarro Institute for Cancer Research and Molecular Medicine, Department of Biology, Temple University, 1900 N. 12th St., Room 431, Philadelphia, PA 19122-6017 USA
- Department of Medicine, Surgery, and Neuroscience, University of Siena, Siena, Italy
| |
Collapse
|
76
|
Abramson HN. Kinase inhibitors as potential agents in the treatment of multiple myeloma. Oncotarget 2018; 7:81926-81968. [PMID: 27655636 PMCID: PMC5348443 DOI: 10.18632/oncotarget.10745] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Accepted: 06/30/2016] [Indexed: 12/13/2022] Open
Abstract
Recent years have witnessed a dramatic increase in the number of therapeutic options available for the treatment of multiple myeloma (MM) - from immunomodulating agents to proteasome inhibitors to histone deacetylase (HDAC) inhibitors and, most recently, monoclonal antibodies. Used in conjunction with autologous hematopoietic stem cell transplantation, these modalities have nearly doubled the disease's five-year survival rate over the last three decades to about 50%. In spite of these advances, MM still is considered incurable as resistance and relapse are common. While small molecule protein kinase inhibitors have made inroads in the therapy of a number of cancers, to date their application to MM has been less than successful. Focusing on MM, this review examines the roles played by a number of kinases in driving the malignant state and the rationale for target development in the design of a number of kinase inhibitors that have demonstrated anti-myeloma activity in both in vitro and in vivo xenograph models, as well as those that have entered clinical trials. Among the targets and their inhibitors examined are receptor and non-receptor tyrosine kinases, cell cycle control kinases, the PI3K/AKT/mTOR pathway kinases, protein kinase C, mitogen-activated protein kinase, glycogen synthase kinase, casein kinase, integrin-linked kinase, sphingosine kinase, and kinases involved in the unfolded protein response.
Collapse
Affiliation(s)
- Hanley N Abramson
- Department of Pharmaceutical Sciences, Wayne State University, Detroit, MI, USA
| |
Collapse
|
77
|
NMR-Fragment Based Virtual Screening: A Brief Overview. Molecules 2018; 23:molecules23020233. [PMID: 29370102 PMCID: PMC6017141 DOI: 10.3390/molecules23020233] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Revised: 12/12/2017] [Accepted: 12/12/2017] [Indexed: 01/23/2023] Open
Abstract
Fragment-based drug discovery (FBDD) using NMR has become a central approach over the last twenty years for development of small molecule inhibitors against biological macromolecules, to control a variety of cellular processes. Yet, several considerations should be taken into account for obtaining a therapeutically relevant agent. In this review, we aim to list the considerations that make NMR fragment screening a successful process for yielding potent inhibitors. Factors that may govern the competence of NMR in fragment based drug discovery are discussed, as well as later steps that involve optimization of hits obtained by NMR-FBDD.
Collapse
|
78
|
Robb CM, Kour S, Contreras JI, Agarwal E, Barger CJ, Rana S, Sonawane Y, Neilsen BK, Taylor M, Kizhake S, Thakare RN, Chowdhury S, Wang J, Black JD, Hollingsworth MA, Brattain MG, Natarajan A. Characterization of CDK(5) inhibitor, 20-223 (aka CP668863) for colorectal cancer therapy. Oncotarget 2017; 9:5216-5232. [PMID: 29435174 PMCID: PMC5797045 DOI: 10.18632/oncotarget.23749] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Accepted: 11/10/2017] [Indexed: 12/15/2022] Open
Abstract
Colorectal cancer (CRC) remains one of the leading causes of cancer related deaths in the United States. Currently, there are limited therapeutic options for patients suffering from CRC, none of which focus on the cell signaling mechanisms controlled by the popular kinase family, cyclin dependent kinases (CDKs). Here we evaluate a Pfizer developed compound, CP668863, that inhibits cyclin-dependent kinase 5 (CDK5) in neurodegenerative disorders. CDK5 has been implicated in a number of cancers, most recently as an oncogene in colorectal cancers. Our lab synthesized and characterized CP668863 - now called 20-223. In our established colorectal cancer xenograft model, 20-223 reduced tumor growth and tumor weight indicating its value as a potential anti-CRC agent. We subjected 20-223 to a series of cell-free and cell-based studies to understand the mechanism of its anti-tumor effects. In our hands, in vitro 20-223 is most potent against CDK2 and CDK5. The clinically used CDK inhibitor AT7519 and 20-223 share the aminopyrazole core and we used it to benchmark the 20-223 potency. In CDK5 and CDK2 kinase assays, 20-223 was ∼3.5-fold and ∼65.3-fold more potent than known clinically used CDK inhibitor, AT7519, respectively. Cell-based studies examining phosphorylation of downstream substrates revealed 20-223 inhibits the kinase activity of CDK5 and CDK2 in multiple CRC cell lines. Consistent with CDK5 inhibition, 20-223 inhibited migration of CRC cells in a wound-healing assay. Profiling a panel of CRC cell lines for growth inhibitory effects showed that 20-223 has nanomolar potency across multiple CRC cell lines and was on an average >2-fold more potent than AT7519. Cell cycle analyses in CRC cells revealed that 20-223 phenocopied the effects associated with AT7519. Collectively, these findings suggest that 20-223 exerts anti-tumor effects against CRC by targeting CDK 2/5 and inducing cell cycle arrest. Our studies also indicate that 20-223 is a suitable lead compound for colorectal cancer therapy.
Collapse
Affiliation(s)
- Caroline M Robb
- Eppley Institute for Research in Cancer, University of Nebraska Medical Center, 985950 Nebraska Medical Center, Omaha, Nebraska 68198-5950, USA
| | - Smit Kour
- Eppley Institute for Research in Cancer, University of Nebraska Medical Center, 985950 Nebraska Medical Center, Omaha, Nebraska 68198-5950, USA
| | - Jacob I Contreras
- Eppley Institute for Research in Cancer, University of Nebraska Medical Center, 985950 Nebraska Medical Center, Omaha, Nebraska 68198-5950, USA
| | - Ekta Agarwal
- Eppley Institute for Research in Cancer, University of Nebraska Medical Center, 985950 Nebraska Medical Center, Omaha, Nebraska 68198-5950, USA
| | - Carter J Barger
- Eppley Institute for Research in Cancer, University of Nebraska Medical Center, 985950 Nebraska Medical Center, Omaha, Nebraska 68198-5950, USA
| | - Sandeep Rana
- Eppley Institute for Research in Cancer, University of Nebraska Medical Center, 985950 Nebraska Medical Center, Omaha, Nebraska 68198-5950, USA
| | - Yogesh Sonawane
- Eppley Institute for Research in Cancer, University of Nebraska Medical Center, 985950 Nebraska Medical Center, Omaha, Nebraska 68198-5950, USA
| | - Beth K Neilsen
- Eppley Institute for Research in Cancer, University of Nebraska Medical Center, 985950 Nebraska Medical Center, Omaha, Nebraska 68198-5950, USA
| | - Margaret Taylor
- Eppley Institute for Research in Cancer, University of Nebraska Medical Center, 985950 Nebraska Medical Center, Omaha, Nebraska 68198-5950, USA
| | - Smitha Kizhake
- Eppley Institute for Research in Cancer, University of Nebraska Medical Center, 985950 Nebraska Medical Center, Omaha, Nebraska 68198-5950, USA
| | - Rhishikesh N Thakare
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, Nebraska 68198-5950, USA
| | - Sanjib Chowdhury
- Section of Gastroenterology, Department of Medicine, Boston University Medical Center, Boston, Massachusetts 02118, USA
| | - Jing Wang
- Eppley Institute for Research in Cancer, University of Nebraska Medical Center, 985950 Nebraska Medical Center, Omaha, Nebraska 68198-5950, USA.,Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, Nebraska 68198-5950, USA
| | - Jennifer D Black
- Eppley Institute for Research in Cancer, University of Nebraska Medical Center, 985950 Nebraska Medical Center, Omaha, Nebraska 68198-5950, USA.,Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, Nebraska 68198-5950, USA
| | - Michael A Hollingsworth
- Eppley Institute for Research in Cancer, University of Nebraska Medical Center, 985950 Nebraska Medical Center, Omaha, Nebraska 68198-5950, USA.,Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, Nebraska 68198-5950, USA
| | - Michael G Brattain
- Eppley Institute for Research in Cancer, University of Nebraska Medical Center, 985950 Nebraska Medical Center, Omaha, Nebraska 68198-5950, USA.,Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, Nebraska 68198-5950, USA
| | - Amarnath Natarajan
- Eppley Institute for Research in Cancer, University of Nebraska Medical Center, 985950 Nebraska Medical Center, Omaha, Nebraska 68198-5950, USA.,Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, Nebraska 68198-5950, USA.,Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, Nebraska 68198-5950, USA
| |
Collapse
|
79
|
Abstract
Over the past two decades there has been a great deal of interest in the development of inhibitors of the cyclin-dependent kinases (CDKs). This attention initially stemmed from observations that different CDK isoforms have key roles in cancer cell proliferation through loss of regulation of the cell cycle, a hallmark feature of cancer. CDKs have now been shown to regulate other processes, particularly various aspects of transcription. The early non-selective CDK inhibitors exhibited considerable toxicity and proved to be insufficiently active in most cancers. The lack of patient selection biomarkers and an absence of understanding of the inhibitory profile required for efficacy hampered the development of these inhibitors. However, the advent of potent isoform-selective inhibitors with accompanying biomarkers has re-ignited interest. Palbociclib, a selective CDK4/6 inhibitor, is now approved for the treatment of ER+/HER2- advanced breast cancer. Current developments in the field include the identification of potent and selective inhibitors of the transcriptional CDKs; these include tool compounds that have allowed exploration of individual CDKs as cancer targets and the determination of their potential therapeutic windows. Biomarkers that allow the selection of patients likely to respond are now being discovered. Drug resistance has emerged as a major hurdle in the clinic for most protein kinase inhibitors and resistance mechanism are beginning to be identified for CDK inhibitors. This suggests that the selective inhibitors may be best used combined with standard of care or other molecularly targeted agents now in development rather than in isolation as monotherapies.
Collapse
Affiliation(s)
- Steven R Whittaker
- Division of Cancer Therapeutics, The Institute of Cancer Research, London SW7 3RP, United Kingdom
| | - Aurélie Mallinger
- Division of Cancer Therapeutics, The Institute of Cancer Research, London SW7 3RP, United Kingdom; Cancer Research UK Cancer Therapeutics Unit, The Institute of Cancer Research, London SW7 3RP, United Kingdom
| | - Paul Workman
- Division of Cancer Therapeutics, The Institute of Cancer Research, London SW7 3RP, United Kingdom; Cancer Research UK Cancer Therapeutics Unit, The Institute of Cancer Research, London SW7 3RP, United Kingdom
| | - Paul A Clarke
- Division of Cancer Therapeutics, The Institute of Cancer Research, London SW7 3RP, United Kingdom; Cancer Research UK Cancer Therapeutics Unit, The Institute of Cancer Research, London SW7 3RP, United Kingdom.
| |
Collapse
|
80
|
Di Giovanni C, Novellino E, Chilin A, Lavecchia A, Marzaro G. Investigational drugs targeting cyclin-dependent kinases for the treatment of cancer: an update on recent findings (2013-2016). Expert Opin Investig Drugs 2017; 25:1215-30. [PMID: 27606939 DOI: 10.1080/13543784.2016.1234603] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
INTRODUCTION Cell cycle and gene transcription are under the control of cyclin-dependent kinases (CDKs), whose activity depends on the binding with cyclins. Deregulated CDK activities have been reported in a majority of human cancers, representing potential therapeutic targets. AREAS COVERED This review provides preclinical and clinical (phase I/II) updates of promising therapeutic compounds targeting CDKs published between 2013 and 2016 EXPERT OPINION: First generation pan-CDK inhibitors showed marked toxicity in clinical trials and most compounds were discontinued. Despite their failure was ascribed also to inadequate patient selection rules, novel pan-CDK inhibitors have entered clinical trials with still poorly defined selection strategies. The most interesting results have been obtained with dual CDK4/6 inhibitors and through a more accurate evaluation of predictive biomarkers, suggesting the usefulness of CDK inhibitors for personalized treatment. The increased knowledge on the roles of CDKs in cell cycle and gene transcription suggests to review also the anticancer potential of first generation CDK inhibitors by defining more appropriate rules for patients engagement. Recent findings has highlighted CDK8 as a novel target for cancer treatment. Indeed some biomarkers for CDK8 inhibition sensitivity have already been proposed. CDK8 inhibition is also supposed to prevent cancer metastasis.
Collapse
Affiliation(s)
- Carmen Di Giovanni
- a Department of Pharmacy , University of Naples Federico II , Naples , Italy
| | - Ettore Novellino
- a Department of Pharmacy , University of Naples Federico II , Naples , Italy
| | - Adriana Chilin
- b Department of Pharmaceutical and Pharmacological Sciences , University of Padova , Padova , Italy
| | - Antonio Lavecchia
- a Department of Pharmacy , University of Naples Federico II , Naples , Italy
| | - Giovanni Marzaro
- b Department of Pharmaceutical and Pharmacological Sciences , University of Padova , Padova , Italy
| |
Collapse
|
81
|
Abstract
Cancer is characterized by uncontrolled tumour cell proliferation resulting from aberrant activity of various cell cycle proteins. Therefore, cell cycle regulators are considered attractive targets in cancer therapy. Intriguingly, animal models demonstrate that some of these proteins are not essential for proliferation of non-transformed cells and development of most tissues. By contrast, many cancers are uniquely dependent on these proteins and hence are selectively sensitive to their inhibition. After decades of research on the physiological functions of cell cycle proteins and their relevance for cancer, this knowledge recently translated into the first approved cancer therapeutic targeting of a direct regulator of the cell cycle. In this Review, we focus on proteins that directly regulate cell cycle progression (such as cyclin-dependent kinases (CDKs)), as well as checkpoint kinases, Aurora kinases and Polo-like kinases (PLKs). We discuss the role of cell cycle proteins in cancer, the rationale for targeting them in cancer treatment and results of clinical trials, as well as the future therapeutic potential of various cell cycle inhibitors.
Collapse
Affiliation(s)
- Tobias Otto
- Department of Cancer Biology, Dana-Farber Cancer Institute and Department of Genetics, Harvard Medical School, Boston, Massachusetts 02215, USA
- Department of Internal Medicine III, University Hospital RWTH Aachen, 52074 Aachen, Germany
| | - Piotr Sicinski
- Department of Cancer Biology, Dana-Farber Cancer Institute and Department of Genetics, Harvard Medical School, Boston, Massachusetts 02215, USA
| |
Collapse
|
82
|
Hoodless LJ, Lucas CD, Duffin R, Denvir MA, Haslett C, Tucker CS, Rossi AG. Genetic and pharmacological inhibition of CDK9 drives neutrophil apoptosis to resolve inflammation in zebrafish in vivo. Sci Rep 2016; 5:36980. [PMID: 27833165 PMCID: PMC5105078 DOI: 10.1038/srep36980] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Accepted: 10/24/2016] [Indexed: 01/12/2023] Open
Abstract
Neutrophilic inflammation is tightly regulated and subsequently resolves to limit tissue damage and promote repair. When the timely resolution of inflammation is dysregulated, tissue damage and disease results. One key control mechanism is neutrophil apoptosis, followed by apoptotic cell clearance by phagocytes such as macrophages. Cyclin-dependent kinase (CDK) inhibitor drugs induce neutrophil apoptosis in vitro and promote resolution of inflammation in rodent models. Here we present the first in vivo evidence, using pharmacological and genetic approaches, that CDK9 is involved in the resolution of neutrophil-dependent inflammation. Using live cell imaging in zebrafish with labelled neutrophils and macrophages, we show that pharmacological inhibition, morpholino-mediated knockdown and CRISPR/cas9-mediated knockout of CDK9 enhances inflammation resolution by reducing neutrophil numbers via induction of apoptosis after tailfin injury. Importantly, knockdown of the negative regulator La-related protein 7 (LaRP7) increased neutrophilic inflammation. Our data show that CDK9 is a possible target for controlling resolution of inflammation.
Collapse
Affiliation(s)
- Laura J. Hoodless
- MRC Centre for Inflammation Research, The Queen’s Medical Research Institute, The University of Edinburgh, Edinburgh, EH16 4TJ, United Kingdom
| | - Christopher D. Lucas
- MRC Centre for Inflammation Research, The Queen’s Medical Research Institute, The University of Edinburgh, Edinburgh, EH16 4TJ, United Kingdom
| | - Rodger Duffin
- MRC Centre for Inflammation Research, The Queen’s Medical Research Institute, The University of Edinburgh, Edinburgh, EH16 4TJ, United Kingdom
| | - Martin A. Denvir
- BHF Centre for Cardiovascular Science, The Queen’s Medical Research Institute, The University of Edinburgh, Edinburgh, EH16 4TJ, United Kingdom
| | - Christopher Haslett
- MRC Centre for Inflammation Research, The Queen’s Medical Research Institute, The University of Edinburgh, Edinburgh, EH16 4TJ, United Kingdom
| | - Carl S. Tucker
- BHF Centre for Cardiovascular Science, The Queen’s Medical Research Institute, The University of Edinburgh, Edinburgh, EH16 4TJ, United Kingdom
| | - Adriano G. Rossi
- MRC Centre for Inflammation Research, The Queen’s Medical Research Institute, The University of Edinburgh, Edinburgh, EH16 4TJ, United Kingdom
| |
Collapse
|
83
|
Recent progress of cyclin-dependent kinase inhibitors as potential anticancer agents. Future Med Chem 2016; 8:2047-2076. [DOI: 10.4155/fmc-2016-0129] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Deregulation of the cell cycle is a common feature in human cancer. The inhibition of cyclin-dependent kinases (CDKs), which play a crucial role in control of the cell cycle, has always been one of the most promising areas in cancer chemotherapy. This review first summarizes the biology of CDKs and then focuses on the recent advances in both broad-range and selective CDK inhibitors during the last 5 years. The design rationale, structural optimization and structure–activity relationships analysis of these small molecules have been discussed in detail and the key interactions with the amino-acid residues of the most important compounds are highlighted. Future perspectives for CDKs inhibitors will be defined in the development of highly selective CDK inhibitors, an accurate knowledge of gene control mechanism and further predictive biomarker research.
Collapse
|
84
|
Seftel MD, Kuruvilla J, Kouroukis T, Banerji V, Fraser G, Crump M, Kumar R, Chalchal HI, Salim M, Laister RC, Crocker S, Gibson SB, Toguchi M, Lyons JF, Xu H, Powers J, Sederias J, Seymour L, Hay AE. The CDK inhibitor AT7519M in patients with relapsed or refractory chronic lymphocytic leukemia (CLL) and mantle cell lymphoma. A Phase II study of the Canadian Cancer Trials Group. Leuk Lymphoma 2016; 58:1358-1365. [PMID: 27750483 DOI: 10.1080/10428194.2016.1239259] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
AT7519M is a small molecule inhibitor of cyclin-dependent kinases 1, 2, 4, 5, and 9 with in vitro activity against lymphoid malignancies. In two concurrent Phase II trials, we evaluated AT7519M in relapsed or refractory chronic lymphocytic leukemia (CLL) and mantle cell lymphoma (MCL) using the recommended Phase II dosing of 27 mg/m2 twice weekly for 2 of every 3 weeks. Primary objective was objective response rate (ORR). Nineteen patients were accrued (7 CLL, 12 MCL). Four CLL patients achieved stable disease (SD). Two MCL patients achieved partial response (PR), and 6 had SD. One additional MCL patient with SD subsequently achieved PR 9 months after completion of AT7519M. Tumor lysis syndrome was not reported. In conclusion, AT7519M was safely administered to patients with relapsed/refractory CLL and MCL. In CLL, some patients had tumor reductions, but the ORR was low. In MCL, activity was noted with ORR of 27%.
Collapse
Affiliation(s)
- Matthew D Seftel
- a Department of Medical Oncology and Hematology , CancerCare Manitoba and University of Manitoba , Winnipeg , MB , Canada
| | - John Kuruvilla
- b Department of Medical Oncology and Hematology , Princess Margaret Cancer Centre and University of Toronto , Toronto , ON , Canada
| | - Tom Kouroukis
- c Department of Oncology , Juravinski Cancer Centre and McMaster University , Hamilton , ON , Canada
| | - Versha Banerji
- a Department of Medical Oncology and Hematology , CancerCare Manitoba and University of Manitoba , Winnipeg , MB , Canada
| | - Graeme Fraser
- c Department of Oncology , Juravinski Cancer Centre and McMaster University , Hamilton , ON , Canada
| | - Michael Crump
- b Department of Medical Oncology and Hematology , Princess Margaret Cancer Centre and University of Toronto , Toronto , ON , Canada
| | - Rajat Kumar
- a Department of Medical Oncology and Hematology , CancerCare Manitoba and University of Manitoba , Winnipeg , MB , Canada
| | - Haji I Chalchal
- d Department of Hematology , Allan Blair Cancer Centre , Regina , SK , Canada.,e University of Saskatchewan , Saskatchewan , SK , Canada
| | - Muhammad Salim
- d Department of Hematology , Allan Blair Cancer Centre , Regina , SK , Canada.,e University of Saskatchewan , Saskatchewan , SK , Canada
| | - Rob C Laister
- b Department of Medical Oncology and Hematology , Princess Margaret Cancer Centre and University of Toronto , Toronto , ON , Canada
| | - Susan Crocker
- f Department of Pathology and Molecular Medicine , Queen's University , Kingston , ON , Canada
| | - Spencer B Gibson
- g Research Institute of Oncology and Hematology, CancerCare Manitoba and Department of Biochemistry , University of Manitoba , Winnipeg , MB , Canada
| | | | | | - Hao Xu
- i Canadian Cancer Trials Group , Queen's University , Kingston , ON , Canada
| | - Jean Powers
- i Canadian Cancer Trials Group , Queen's University , Kingston , ON , Canada
| | - Joana Sederias
- i Canadian Cancer Trials Group , Queen's University , Kingston , ON , Canada
| | - Lesley Seymour
- i Canadian Cancer Trials Group , Queen's University , Kingston , ON , Canada
| | - Annette E Hay
- i Canadian Cancer Trials Group , Queen's University , Kingston , ON , Canada.,j Department of Medicine , Queen's University , Kingston , ON , Canada
| |
Collapse
|
85
|
Sonawane YA, Taylor MA, Napoleon JV, Rana S, Contreras JI, Natarajan A. Cyclin Dependent Kinase 9 Inhibitors for Cancer Therapy. J Med Chem 2016; 59:8667-8684. [PMID: 27171036 PMCID: PMC5636177 DOI: 10.1021/acs.jmedchem.6b00150] [Citation(s) in RCA: 116] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
![]()
Cyclin dependent kinase (CDK) inhibitors
have been the topic of intense research for nearly 2 decades due to
their widely varied and critical functions within the cell. Recently
CDK9 has emerged as a druggable target for the development of cancer
therapeutics. CDK9 plays a crucial role in transcription regulation;
specifically, CDK9 mediated transcriptional regulation of short-lived
antiapoptotic proteins is critical for the survival of transformed
cells. Focused chemical libraries based on a plethora of scaffolds
have resulted in mixed success with regard to the development of selective
CDK9 inhibitors. Here we review the regulation of CDK9, its cellular
functions, and common core structures used to target CDK9, along with
their selectivity profile and efficacy in vitro and in vivo.
Collapse
Affiliation(s)
- Yogesh A Sonawane
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center , Omaha, Nebraska 68198-6805, United States
| | - Margaret A Taylor
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center , Omaha, Nebraska 68198-6805, United States
| | - John Victor Napoleon
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center , Omaha, Nebraska 68198-6805, United States
| | - Sandeep Rana
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center , Omaha, Nebraska 68198-6805, United States
| | - Jacob I Contreras
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center , Omaha, Nebraska 68198-6805, United States
| | - Amarnath Natarajan
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center , Omaha, Nebraska 68198-6805, United States
| |
Collapse
|
86
|
Mitra P, Yang RM, Sutton J, Ramsay RG, Gonda TJ. CDK9 inhibitors selectively target estrogen receptor-positive breast cancer cells through combined inhibition of MYB and MCL-1 expression. Oncotarget 2016; 7:9069-83. [PMID: 26812885 PMCID: PMC4891027 DOI: 10.18632/oncotarget.6997] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Accepted: 01/17/2016] [Indexed: 11/25/2022] Open
Abstract
Our previous studies showed that MYB is required for proliferation of, and confers protection against apoptosis on, estrogen receptor-positive (ER(+ve)) breast cancer cells, which are almost invariably also MYB(+ve). We have also shown that MYB expression in ER(+ve) breast cancer cells is regulated at the level of transcriptional elongation and as such, is suppressed by CDK9i. Here we examined the effects of CDK9i on breast cancer cells and the involvement of MYB in these effects. ER(+ve) breast cancer cell lines including MCF-7 were much more sensitive (> 10 times) to killing by CDK9i than ER(-ve)/MYB(-ve) cells. Moreover, surviving cells showed a block at the G2/M phase of the cell cycle. Importantly, ectopic MYB expression conferred resistance to apoptosis induction, cell killing and G2/M accumulation. Expression of relevant MYB target genes including BCL2 and CCNB1 was suppressed by CDK9 inhibition, and this too was reversed by ectopic MYB expression. Nevertheless, inhibition of BCL2 alone either by MYB knockdown or by ABT-199 treatment was insufficient for significant induction of apoptosis. Further studies implied that suppression of MCL-1, a well-documented target of CDK9 inhibition, was additionally required for apoptosis induction, while maximal levels of apoptosis induced by CDK9i are likely to also involve inhibition of BCL2L1 expression. Taken together these data suggest that MYB regulation of BCL2 underlies the heightened sensitivity of ER(+ve) compared to ER(-ve) breast cancer cells to CDK9 inhibition, and that these compounds represent a potential therapeutic for ER(+ve) breast cancers and possibly other MYB-dependent cancers.
Collapse
Affiliation(s)
- Partha Mitra
- School of Pharmacy, University of Queensland, Brisbane, QLD, Australia
| | - Ren-Ming Yang
- School of Pharmacy, University of Queensland, Brisbane, QLD, Australia
| | - James Sutton
- Novartis Institute for Biomedical Research, Emeryville, CA, USA
| | - Robert G. Ramsay
- Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, VIC, Australia
| | - Thomas J. Gonda
- School of Pharmacy, University of Queensland, Brisbane, QLD, Australia
| |
Collapse
|
87
|
Costa-Cabral S, Brough R, Konde A, Aarts M, Campbell J, Marinari E, Riffell J, Bardelli A, Torrance C, Lord CJ, Ashworth A. CDK1 Is a Synthetic Lethal Target for KRAS Mutant Tumours. PLoS One 2016; 11:e0149099. [PMID: 26881434 PMCID: PMC4755568 DOI: 10.1371/journal.pone.0149099] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Accepted: 01/27/2016] [Indexed: 12/11/2022] Open
Abstract
Activating KRAS mutations are found in approximately 20% of human cancers but no RAS-directed therapies are currently available. Here we describe a novel, robust, KRAS synthetic lethal interaction with the cyclin dependent kinase, CDK1. This was discovered using parallel siRNA screens in KRAS mutant and wild type colorectal isogenic tumour cells and subsequently validated in a genetically diverse panel of 26 colorectal and pancreatic tumour cell models. This established that the KRAS/CDK1 synthetic lethality applies in tumour cells with either amino acid position 12 (p.G12V, pG12D, p.G12S) or amino acid position 13 (p.G13D) KRAS mutations and can also be replicated in vivo in a xenograft model using a small molecule CDK1 inhibitor. Mechanistically, CDK1 inhibition caused a reduction in the S-phase fraction of KRAS mutant cells, an effect also characterised by modulation of Rb, a master control of the G1/S checkpoint. Taken together, these observations suggest that the KRAS/CDK1 interaction is a robust synthetic lethal effect worthy of further investigation.
Collapse
Affiliation(s)
- Sara Costa-Cabral
- The CRUK Gene Function Laboratory, The Institute of Cancer Research, London, SW3 6JB, United Kingdom
- Breakthrough Breast Cancer Research Centre, The Institute of Cancer Research, London, SW3 6JB, United Kingdom
| | - Rachel Brough
- The CRUK Gene Function Laboratory, The Institute of Cancer Research, London, SW3 6JB, United Kingdom
- Breakthrough Breast Cancer Research Centre, The Institute of Cancer Research, London, SW3 6JB, United Kingdom
| | - Asha Konde
- The CRUK Gene Function Laboratory, The Institute of Cancer Research, London, SW3 6JB, United Kingdom
- Breakthrough Breast Cancer Research Centre, The Institute of Cancer Research, London, SW3 6JB, United Kingdom
| | - Marieke Aarts
- The CRUK Gene Function Laboratory, The Institute of Cancer Research, London, SW3 6JB, United Kingdom
- Breakthrough Breast Cancer Research Centre, The Institute of Cancer Research, London, SW3 6JB, United Kingdom
| | - James Campbell
- The CRUK Gene Function Laboratory, The Institute of Cancer Research, London, SW3 6JB, United Kingdom
- Breakthrough Breast Cancer Research Centre, The Institute of Cancer Research, London, SW3 6JB, United Kingdom
| | - Eliana Marinari
- The CRUK Gene Function Laboratory, The Institute of Cancer Research, London, SW3 6JB, United Kingdom
- Breakthrough Breast Cancer Research Centre, The Institute of Cancer Research, London, SW3 6JB, United Kingdom
| | - Jenna Riffell
- The CRUK Gene Function Laboratory, The Institute of Cancer Research, London, SW3 6JB, United Kingdom
- Breakthrough Breast Cancer Research Centre, The Institute of Cancer Research, London, SW3 6JB, United Kingdom
| | - Alberto Bardelli
- IFOM—FIRC Institute of Molecular Oncology, Via Adamello 16, 20139, Milan, Italy
| | - Christopher Torrance
- Horizon Discovery, 7100 Cambridge Research Park, Waterbeach, Cambridge, CB25 9TL, United Kingdom
| | - Christopher J. Lord
- The CRUK Gene Function Laboratory, The Institute of Cancer Research, London, SW3 6JB, United Kingdom
- Breakthrough Breast Cancer Research Centre, The Institute of Cancer Research, London, SW3 6JB, United Kingdom
| | - Alan Ashworth
- The CRUK Gene Function Laboratory, The Institute of Cancer Research, London, SW3 6JB, United Kingdom
- Breakthrough Breast Cancer Research Centre, The Institute of Cancer Research, London, SW3 6JB, United Kingdom
| |
Collapse
|
88
|
Dolman MEM, Poon E, Ebus ME, den Hartog IJM, van Noesel CJM, Jamin Y, Hallsworth A, Robinson SP, Petrie K, Sparidans RW, Kok RJ, Versteeg R, Caron HN, Chesler L, Molenaar JJ. Cyclin-Dependent Kinase Inhibitor AT7519 as a Potential Drug for MYCN-Dependent Neuroblastoma. Clin Cancer Res 2015; 21:5100-9. [PMID: 26202950 PMCID: PMC4645454 DOI: 10.1158/1078-0432.ccr-15-0313] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2015] [Accepted: 07/09/2015] [Indexed: 12/11/2022]
Abstract
PURPOSE MYCN-dependent neuroblastomas have low cure rates with current multimodal treatment regimens and novel therapeutic drugs are therefore urgently needed. In previous preclinical studies, we have shown that targeted inhibition of cyclin-dependent kinase 2 (CDK2) resulted in specific killing of MYCN-amplified neuroblastoma cells. This study describes the in vivo preclinical evaluation of the CDK inhibitor AT7519. EXPERIMENTAL DESIGN Preclinical drug testing was performed using a panel of MYCN-amplified and MYCN single copy neuroblastoma cell lines and different MYCN-dependent mouse models of neuroblastoma. RESULTS AT7519 killed MYCN-amplified neuroblastoma cell lines more potently than MYCN single copy cell lines with a median LC50 value of 1.7 compared to 8.1 μmol/L (P = 0.0053) and a significantly stronger induction of apoptosis. Preclinical studies in female NMRI homozygous (nu/nu) mice with neuroblastoma patient-derived MYCN-amplified AMC711T xenografts revealed dose-dependent growth inhibition, which correlated with intratumoral AT7519 levels. CDK2 target inhibition by AT7519 was confirmed by significant reductions in levels of phosphorylated retinoblastoma (p-Rb) and nucleophosmin (p-NPM). AT7519 treatment of Th-MYCN transgenic mice resulted in improved survival and clinically significant tumor regression (average tumor size reduction of 86% at day 7 after treatment initiation). The improved efficacy of AT7519 observed in Th-MYCN mice correlated with higher tumor exposure to the drug. CONCLUSIONS This study strongly suggests that AT7519 is a promising drug for the treatment of high-risk neuroblastoma patients with MYCN amplification.
Collapse
Affiliation(s)
- M Emmy M Dolman
- Department of Oncogenomics, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands.
| | - Evon Poon
- Division of Clinical Studies, The Institute of Cancer Research, London, England
| | - Marli E Ebus
- Department of Oncogenomics, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - Ilona J M den Hartog
- Department of Oncogenomics, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - Carel J M van Noesel
- Department of Pathology, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - Yann Jamin
- Division of Radiotherapy and Imaging, The Institute of Cancer Research, London, England
| | - Albert Hallsworth
- Division of Clinical Studies, The Institute of Cancer Research, London, England
| | - Simon P Robinson
- Division of Radiotherapy and Imaging, The Institute of Cancer Research, London, England
| | - Kevin Petrie
- Division of Clinical Studies, The Institute of Cancer Research, London, England
| | - Rolf W Sparidans
- Division of Pharmacoepidemiology and Clinical Pharmacology, Utrecht University, Utrecht, the Netherlands
| | - Robbert J Kok
- Division of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences (UIPS), Faculty of Science, Utrecht University, Utrecht, the Netherlands
| | - Rogier Versteeg
- Department of Oncogenomics, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - Huib N Caron
- Department of Pediatric Oncology, Emma Kinderziekenhuis, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - Louis Chesler
- Division of Clinical Studies, The Institute of Cancer Research, London, England
| | - Jan J Molenaar
- Department of Oncogenomics, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| |
Collapse
|
89
|
Ryan E, Morrow BJ, Hemley CF, Pinson JA, Charman SA, Chiu FCK, Foitzik RC. Evidence for the in Vitro Bioactivation of Aminopyrazole Derivatives: Trapping Reactive Aminopyrazole Intermediates Using Glutathione Ethyl Ester in Human Liver Microsomes. Chem Res Toxicol 2015; 28:1747-52. [DOI: 10.1021/acs.chemrestox.5b00202] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
| | - Benjamin J. Morrow
- Cancer Therapeutics CRC, 343
Royal Parade, Parkville, Victoria 3052 Australia
| | - Catherine F. Hemley
- Cancer Therapeutics CRC, 343
Royal Parade, Parkville, Victoria 3052 Australia
| | - Jo-Anne Pinson
- Cancer Therapeutics CRC, 343
Royal Parade, Parkville, Victoria 3052 Australia
| | | | | | - Richard C. Foitzik
- Cancer Therapeutics CRC, 343
Royal Parade, Parkville, Victoria 3052 Australia
| |
Collapse
|
90
|
Nitulescu GM, Draghici C, Olaru OT, Matei L, Ioana A, Dragu LD, Bleotu C. Synthesis and apoptotic activity of new pyrazole derivatives in cancer cell lines. Bioorg Med Chem 2015; 23:5799-808. [PMID: 26193760 DOI: 10.1016/j.bmc.2015.07.010] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Revised: 07/03/2015] [Accepted: 07/04/2015] [Indexed: 12/28/2022]
Abstract
We designed and synthesized new pyrazole thiourea chimeric derivatives and confirmed their structures by NMR and IR spectra. Apoptotic effects were studied in human cancer cells. The N-[(1-methyl-1H-pyrazol-4-yl)carbonyl]-N'-(3-bromophenyl)-thiourea compound (4b) exhibited the highest apoptosis-inducing effect. Compound 4b and the thiazole derivatives, 5b and 6b, increased the expression of tumor necrosis factor receptors TRAIL-R2 and TRAIL-R1, accompanied by down-modulation of pro-caspase 3 levels, and the augmentation of cleaved caspase 3. They also reduced the levels of apoptosis inhibitory proteins and the expression of the heat-shock proteins Hsp27 and Hsp70. All the tested pyrazole derivatives induced a concentration-dependent increase of cells in G2/M phases. The analysis of the experimental data indicates the reduction of Akt phosphorylation as the most probable cellular mechanism of action for the tested compounds. The in vitro study indicated that compound 4b could be a promising anti-cancer drug, to be further developed in animal models of cancer.
Collapse
Affiliation(s)
- George Mihai Nitulescu
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, 'Carol Davila' University of Medicine and Pharmacy, Traian Vuia 6, Bucharest 020956, Romania.
| | - Constantin Draghici
- C.D. Nenitzescu Institute of Organic Chemistry, 202B Spl. Independentei, Bucharest 060023, Romania
| | - Octavian Tudorel Olaru
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, 'Carol Davila' University of Medicine and Pharmacy, Traian Vuia 6, Bucharest 020956, Romania
| | - Lilia Matei
- Stefan S Nicolau Institute of Virology, 285 Mihai Bravu Avenue, Bucharest 030304, Romania
| | - Aldea Ioana
- Stefan S Nicolau Institute of Virology, 285 Mihai Bravu Avenue, Bucharest 030304, Romania
| | - Laura Denisa Dragu
- Stefan S Nicolau Institute of Virology, 285 Mihai Bravu Avenue, Bucharest 030304, Romania
| | - Coralia Bleotu
- Stefan S Nicolau Institute of Virology, 285 Mihai Bravu Avenue, Bucharest 030304, Romania
| |
Collapse
|
91
|
Vymětalová L, Kryštof V. Potential Clinical Uses of CDK Inhibitors: Lessons from Synthetic Lethality Screens. Med Res Rev 2015; 35:1156-74. [DOI: 10.1002/med.21354] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Revised: 04/24/2015] [Accepted: 05/23/2015] [Indexed: 01/03/2023]
Affiliation(s)
- Ladislava Vymětalová
- Laboratory of Growth Regulators; Centre of the Region Haná for Biotechnological and Agricultural Research, Palacký University and Institute of Experimental Botany AS CR; Šlechtitelů 11 CZ-78371 Olomouc Czech Republic
| | - Vladimír Kryštof
- Laboratory of Growth Regulators; Centre of the Region Haná for Biotechnological and Agricultural Research, Palacký University and Institute of Experimental Botany AS CR; Šlechtitelů 11 CZ-78371 Olomouc Czech Republic
| |
Collapse
|
92
|
Cyclin dependent kinase (CDK) inhibitors as anticancer drugs. Bioorg Med Chem Lett 2015; 25:3420-35. [PMID: 26115571 DOI: 10.1016/j.bmcl.2015.05.100] [Citation(s) in RCA: 183] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2015] [Revised: 05/21/2015] [Accepted: 05/30/2015] [Indexed: 02/01/2023]
Abstract
Sustained proliferative capacity is a hallmark of cancer. In mammalian cells proliferation is controlled by the cell cycle, where cyclin-dependent kinases (CDKs) regulate critical checkpoints. CDK4 and CDK6 are considered highly validated anticancer drug targets due to their essential role regulating cell cycle progression at the G1 restriction point. This review provides an overview of recent advances on cyclin dependent kinase inhibitors in general with special emphasis on CDK4 and CDK6 inhibitors and compounds under clinical evaluation. Chemical structures, structure activity relationships, and relevant preclinical properties will be described.
Collapse
|
93
|
Chae HD, Mitton B, Lacayo NJ, Sakamoto KM. Replication factor C3 is a CREB target gene that regulates cell cycle progression through the modulation of chromatin loading of PCNA. Leukemia 2015; 29:1379-89. [PMID: 25541153 PMCID: PMC4456282 DOI: 10.1038/leu.2014.350] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2014] [Revised: 10/04/2014] [Accepted: 11/11/2014] [Indexed: 11/09/2022]
Abstract
CREB (cyclic AMP response element-binding protein) is a transcription factor overexpressed in normal and neoplastic myelopoiesis and regulates cell cycle progression, although its oncogenic mechanism has not been well characterized. Replication factor C3 (RFC3) is required for chromatin loading of proliferating cell nuclear antigen (PCNA) which is a sliding clamp platform for recruiting numerous proteins in the DNA metabolism. CREB1 expression, which was activated by E2F, was coupled with RFC3 expression during the G1/S progression in the KG-1 acute myeloid leukemia (AML) cell line. There was also a direct correlation between the expression of RFC3 and CREB1 in human AML cell lines as well as in the AML cells from the patients. CREB interacted directly with the CRE site in RFC3 promoter region. CREB-knockdown inhibited primarily G1/S cell cycle transition by decreasing the expression of RFC3 as well as PCNA loading onto the chromatin. Exogenous expression of RFC3 was sufficient to rescue the impaired G1/S progression and PCNA chromatin loading caused by CREB knockdown. These studies suggest that RFC3 may have a role in neoplastic myelopoiesis by promoting the G1/S progression and its expression is regulated by CREB.
Collapse
MESH Headings
- Blotting, Western
- Cell Cycle/physiology
- Cell Proliferation
- Cell Transformation, Neoplastic/genetics
- Cell Transformation, Neoplastic/metabolism
- Cell Transformation, Neoplastic/pathology
- Chromatin/genetics
- Chromatin Immunoprecipitation
- Cyclic AMP Response Element-Binding Protein/genetics
- Cyclic AMP Response Element-Binding Protein/metabolism
- Flow Cytometry
- Humans
- Leukemia, Myeloid, Acute/genetics
- Leukemia, Myeloid, Acute/metabolism
- Leukemia, Myeloid, Acute/pathology
- Proliferating Cell Nuclear Antigen/genetics
- Proliferating Cell Nuclear Antigen/metabolism
- Promoter Regions, Genetic/genetics
- RNA, Messenger/genetics
- Real-Time Polymerase Chain Reaction
- Replication Protein C/genetics
- Replication Protein C/metabolism
- Reverse Transcriptase Polymerase Chain Reaction
- Tumor Cells, Cultured
Collapse
Affiliation(s)
- Hee-Don Chae
- Division of Hematology/Oncology, Department of Pediatrics, Stanford University School of Medicine, Stanford, CA 94305
| | - Bryan Mitton
- Division of Hematology/Oncology, Department of Pediatrics, Stanford University School of Medicine, Stanford, CA 94305
| | - Norman J. Lacayo
- Division of Hematology/Oncology, Department of Pediatrics, Stanford University School of Medicine, Stanford, CA 94305
| | - Kathleen M. Sakamoto
- Division of Hematology/Oncology, Department of Pediatrics, Stanford University School of Medicine, Stanford, CA 94305
| |
Collapse
|
94
|
Aleem E, Arceci RJ. Targeting cell cycle regulators in hematologic malignancies. Front Cell Dev Biol 2015; 3:16. [PMID: 25914884 PMCID: PMC4390903 DOI: 10.3389/fcell.2015.00016] [Citation(s) in RCA: 82] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Accepted: 02/25/2015] [Indexed: 12/20/2022] Open
Abstract
Hematologic malignancies represent the fourth most frequently diagnosed cancer in economically developed countries. In hematologic malignancies normal hematopoiesis is interrupted by uncontrolled growth of a genetically altered stem or progenitor cell (HSPC) that maintains its ability of self-renewal. Cyclin-dependent kinases (CDKs) not only regulate the mammalian cell cycle, but also influence other vital cellular processes, such as stem cell renewal, differentiation, transcription, epigenetic regulation, apoptosis, and DNA repair. Chromosomal translocations, amplification, overexpression and altered CDK activities have been described in different types of human cancer, which have made them attractive targets for pharmacological inhibition. Mouse models deficient for one or more CDKs have significantly contributed to our current understanding of the physiological functions of CDKs, as well as their roles in human cancer. The present review focuses on selected cell cycle kinases with recent emerging key functions in hematopoiesis and in hematopoietic malignancies, such as CDK6 and its role in MLL-rearranged leukemia and acute lymphocytic leukemia, CDK1 and its regulator WEE-1 in acute myeloid leukemia (AML), and cyclin C/CDK8/CDK19 complexes in T-cell acute lymphocytic leukemia. The knowledge gained from gene knockout experiments in mice of these kinases is also summarized. An overview of compounds targeting these kinases, which are currently in clinical development in various solid tumors and hematopoietic malignances, is presented. These include the CDK4/CDK6 inhibitors (palbociclib, LEE011, LY2835219), pan-CDK inhibitors that target CDK1 (dinaciclib, flavopiridol, AT7519, TG02, P276-00, terampeprocol and RGB 286638) as well as the WEE-1 kinase inhibitor, MK-1775. The advantage of combination therapy of cell cycle inhibitors with conventional chemotherapeutic agents used in the treatment of AML, such as cytarabine, is discussed.
Collapse
Affiliation(s)
- Eiman Aleem
- Department of Child Health, The Ronald A. Matricaria Institute of Molecular Medicine at Phoenix Children's Hospital, University of Arizona College of Medicine-Phoenix Phoenix, AZ, USA ; Department of Zoology, Faculty of Science, Alexandria University Alexandria, Egypt
| | - Robert J Arceci
- Department of Child Health, The Ronald A. Matricaria Institute of Molecular Medicine at Phoenix Children's Hospital, University of Arizona College of Medicine-Phoenix Phoenix, AZ, USA
| |
Collapse
|
95
|
Peyressatre M, Prével C, Pellerano M, Morris MC. Targeting cyclin-dependent kinases in human cancers: from small molecules to Peptide inhibitors. Cancers (Basel) 2015; 7:179-237. [PMID: 25625291 PMCID: PMC4381256 DOI: 10.3390/cancers7010179] [Citation(s) in RCA: 219] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Accepted: 01/12/2015] [Indexed: 12/12/2022] Open
Abstract
Cyclin-dependent kinases (CDK/Cyclins) form a family of heterodimeric kinases that play central roles in regulation of cell cycle progression, transcription and other major biological processes including neuronal differentiation and metabolism. Constitutive or deregulated hyperactivity of these kinases due to amplification, overexpression or mutation of cyclins or CDK, contributes to proliferation of cancer cells, and aberrant activity of these kinases has been reported in a wide variety of human cancers. These kinases therefore constitute biomarkers of proliferation and attractive pharmacological targets for development of anticancer therapeutics. The structural features of several of these kinases have been elucidated and their molecular mechanisms of regulation characterized in depth, providing clues for development of drugs and inhibitors to disrupt their function. However, like most other kinases, they constitute a challenging class of therapeutic targets due to their highly conserved structural features and ATP-binding pocket. Notwithstanding, several classes of inhibitors have been discovered from natural sources, and small molecule derivatives have been synthesized through rational, structure-guided approaches or identified in high throughput screens. The larger part of these inhibitors target ATP pockets, but a growing number of peptides targeting protein/protein interfaces are being proposed, and a small number of compounds targeting allosteric sites have been reported.
Collapse
Affiliation(s)
- Marion Peyressatre
- Institut des Biomolécules Max Mousseron, IBMM-CNRS-UMR5247, 15 Av. Charles Flahault, 34093 Montpellier, France.
| | - Camille Prével
- Institut des Biomolécules Max Mousseron, IBMM-CNRS-UMR5247, 15 Av. Charles Flahault, 34093 Montpellier, France.
| | - Morgan Pellerano
- Institut des Biomolécules Max Mousseron, IBMM-CNRS-UMR5247, 15 Av. Charles Flahault, 34093 Montpellier, France.
| | - May C Morris
- Institut des Biomolécules Max Mousseron, IBMM-CNRS-UMR5247, 15 Av. Charles Flahault, 34093 Montpellier, France.
| |
Collapse
|
96
|
Kamal A, Shaik AB, Rao BB, Khan I, Bharath Kumar G, Jain N. Design and synthesis of pyrazole/isoxazole linked arylcinnamides as tubulin polymerization inhibitors and potential antiproliferative agents. Org Biomol Chem 2015; 13:10162-78. [DOI: 10.1039/c5ob01257k] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A series of pyrazole/isoxazole linked arylcinnamide conjugates were synthesized and investigated for their cytotoxic activity against a panel of four human cancer cell lines. Most of them have shown significant cytotoxicity apart from potential tubulin depolymerization activity.
Collapse
Affiliation(s)
- Ahmed Kamal
- Medicinal Chemistry and Pharmacology
- CSIR – Indian Institute of Chemical Technology
- Hyderabad 500007
- India
- Catalytic Chemistry Research Chair
| | - Anver Basha Shaik
- Medicinal Chemistry and Pharmacology
- CSIR – Indian Institute of Chemical Technology
- Hyderabad 500007
- India
| | - Bala Bhaskara Rao
- Centre for Chemical Biology
- CSIR – Indian Institute of Chemical Technology
- Hyderabad 500007
- India
| | - Irfan Khan
- Medicinal Chemistry and Pharmacology
- CSIR – Indian Institute of Chemical Technology
- Hyderabad 500007
- India
| | - G. Bharath Kumar
- Medicinal Chemistry and Pharmacology
- CSIR – Indian Institute of Chemical Technology
- Hyderabad 500007
- India
| | - Nishant Jain
- Centre for Chemical Biology
- CSIR – Indian Institute of Chemical Technology
- Hyderabad 500007
- India
| |
Collapse
|
97
|
Smyth T, Paraiso KHT, Hearn K, Rodriguez-Lopez AM, Munck JM, Haarberg HE, Sondak VK, Thompson NT, Azab M, Lyons JF, Smalley KSM, Wallis NG. Inhibition of HSP90 by AT13387 delays the emergence of resistance to BRAF inhibitors and overcomes resistance to dual BRAF and MEK inhibition in melanoma models. Mol Cancer Ther 2014; 13:2793-2804. [PMID: 25349308 PMCID: PMC4263034 DOI: 10.1158/1535-7163.mct-14-0452] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Emergence of clinical resistance to BRAF inhibitors, alone or in combination with MEK inhibitors, limits clinical responses in melanoma. Inhibiting HSP90 offers an approach to simultaneously interfere with multiple resistance mechanisms. Using the HSP90 inhibitor AT13387, which is currently in clinical trials, we investigated the potential of HSP90 inhibition to overcome or delay the emergence of resistance to these kinase inhibitors in melanoma models. In vitro, treating vemurafenib-sensitive cells (A375 or SK-MEL-28) with a combination of AT13387 and vemurafenib prevented colony growth under conditions in which vemurafenib treatment alone generated resistant colonies. In vivo, when AT13387 was combined with vemurafenib in a SK-MEL-28, vemurafenib-sensitive model, no regrowth of tumors was observed over 5 months, although 2 of 7 tumors in the vemurafenib monotherapy group relapsed in this time. Together, these data suggest that the combination of these agents can delay the emergence of resistance. Cell lines with acquired vemurafenib resistance, derived from these models (A375R and SK-MEL-28R) were also sensitive to HSP90 inhibitor treatment; key clients were depleted, apoptosis was induced, and growth in 3D culture was inhibited. Similar effects were observed in cell lines with acquired resistance to both BRAF and MEK inhibitors (SK-MEL-28RR, WM164RR, and 1205LuRR). These data suggest that treatment with an HSP90 inhibitor, such as AT13387, is a potential approach for combating resistance to BRAF and MEK inhibition in melanoma. Moreover, frontline combination of these agents with an HSP90 inhibitor could delay the emergence of resistance, providing a strong rationale for clinical investigation of such combinations in BRAF-mutated melanoma.
Collapse
Affiliation(s)
- Tomoko Smyth
- Astex Pharmaceuticals, 436 Cambridge Science Park, Milton Road, Cambridge, CB4 0QA, UK
| | - Kim H T Paraiso
- The Department of Molecular Oncology, The Moffitt Cancer Center, 12902 Magnolia Drive, Tampa, FL33612, USA
| | - Keisha Hearn
- Astex Pharmaceuticals, 436 Cambridge Science Park, Milton Road, Cambridge, CB4 0QA, UK
| | - Ana M Rodriguez-Lopez
- Astex Pharmaceuticals, 436 Cambridge Science Park, Milton Road, Cambridge, CB4 0QA, UK
| | - Joanne M Munck
- Astex Pharmaceuticals, 436 Cambridge Science Park, Milton Road, Cambridge, CB4 0QA, UK
| | - H Eirik Haarberg
- The Department of Molecular Oncology, The Moffitt Cancer Center, 12902 Magnolia Drive, Tampa, FL33612, USA
| | - Vernon K Sondak
- The Department of Cutaneous Oncology, The Moffitt Cancer Center, 12902 Magnolia Drive, Tampa, FL33612, USA
| | - Neil T Thompson
- Astex Pharmaceuticals, 436 Cambridge Science Park, Milton Road, Cambridge, CB4 0QA, UK
| | - Mohammad Azab
- Astex Pharmaceuticals, 4140 Dublin Blvd, Suite 200, Dublin, CA94568, USA
| | - John F Lyons
- Astex Pharmaceuticals, 436 Cambridge Science Park, Milton Road, Cambridge, CB4 0QA, UK
| | - Keiran S M Smalley
- The Department of Molecular Oncology, The Moffitt Cancer Center, 12902 Magnolia Drive, Tampa, FL33612, USA
- The Department of Cutaneous Oncology, The Moffitt Cancer Center, 12902 Magnolia Drive, Tampa, FL33612, USA
| | - Nicola G Wallis
- Astex Pharmaceuticals, 436 Cambridge Science Park, Milton Road, Cambridge, CB4 0QA, UK
| |
Collapse
|
98
|
A Phase I study of cyclin-dependent kinase inhibitor, AT7519, in patients with advanced cancer: NCIC Clinical Trials Group IND 177. Br J Cancer 2014; 111:2262-7. [PMID: 25393368 PMCID: PMC4264455 DOI: 10.1038/bjc.2014.565] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2014] [Revised: 09/23/2014] [Accepted: 10/09/2014] [Indexed: 11/30/2022] Open
Abstract
Background: AT7519 is a small-molecular inhibitor of multiple cyclin-dependent kinases (CDKs). It shows encouraging anti-cancer activity against multiple cell lines and in tumour xenografts. This phase I study was conducted to evaluate the safety and tolerability of AT7519 given as 1-h intravenous infusion on days 1, 4, 8 and 11 every 3 weeks. Methods: Patients with advanced refractory solid tumours or non-Hodgkin's lymphoma were enroled. Dose escalation occurred in a 3+3 manner based on toxicity assessment. Pharmacokinetic samples were collected after first AT7519 infusion, whereas pharmacodynamics (PD) samples were obtained in selected patients. Results: Thirty-four patients were enroled, and 32 received study treatments over 4 dose levels. Dose-limiting toxicities included mucositis, febrile neutropenia, rash, fatigue and hypokalemia. The recommended phase II dose (RP2D) was 27.0 mg m−2. Ten of 19 patients evaluable for efficacy had stable disease as the best response (median duration: 3.3 months; range: 2.5 to 11.1 months). There was no clinically significant QTc prolongation. There was an apparent dose proportional increase in AT7519 exposure. The PD studies showed reduction in markers of CDK activity in selected patients' skin biopsies post treatment. Conclusions: AT7519, when administered as an intravenous infusion on days 1, 4, 8 and 11, was well tolerated. The RP2D is 27.0 mg m−2. At this dose level, plasma AT7519 concentrations were above the biologically active concentrations, and preliminary anti-cancer activity was observed in patients. This dosing schedule is being further evaluated in multiple phase II studies.
Collapse
|
99
|
Latham AM, Kankanala J, Fearnley GW, Gage MC, Kearney MT, Homer-Vanniasinkam S, Wheatcroft SB, Fishwick CWG, Ponnambalam S. In silico design and biological evaluation of a dual specificity kinase inhibitor targeting cell cycle progression and angiogenesis. PLoS One 2014; 9:e110997. [PMID: 25393739 PMCID: PMC4230991 DOI: 10.1371/journal.pone.0110997] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2014] [Accepted: 09/24/2014] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Protein kinases play a central role in tumor progression, regulating fundamental processes such as angiogenesis, proliferation and metastasis. Such enzymes are an increasingly important class of drug target with small molecule kinase inhibitors being a major focus in drug development. However, balancing drug specificity and efficacy is problematic with off-target effects and toxicity issues. METHODOLOGY We have utilized a rational in silico-based approach to demonstrate the design and study of a novel compound that acts as a dual inhibitor of vascular endothelial growth factor receptor 2 (VEGFR2) and cyclin-dependent kinase 1 (CDK1). This compound acts by simultaneously inhibiting pro-angiogenic signal transduction and cell cycle progression in primary endothelial cells. JK-31 displays potent in vitro activity against recombinant VEGFR2 and CDK1/cyclin B proteins comparable to previously characterized inhibitors. Dual inhibition of the vascular endothelial growth factor A (VEGF-A)-mediated signaling response and CDK1-mediated mitotic entry elicits anti-angiogenic activity both in an endothelial-fibroblast co-culture model and a murine ex vivo model of angiogenesis. CONCLUSIONS We deduce that JK-31 reduces the growth of both human endothelial cells and human breast cancer cells in vitro. This novel synthetic molecule has broad implications for development of similar multi-kinase inhibitors with anti-angiogenic and anti-cancer properties. In silico design is an attractive and innovative method to aid such drug discovery.
Collapse
Affiliation(s)
- Antony M. Latham
- Endothelial Cell Biology Unit, School of Molecular & Cellular Biology, University of Leeds, Leeds LS2 9JT, United Kingdom
| | | | - Gareth W. Fearnley
- Endothelial Cell Biology Unit, School of Molecular & Cellular Biology, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - Matthew C. Gage
- Leeds Institute of Cardiovascular & Metabolic Medicine, Faculty of Medicine & Health, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - Mark T. Kearney
- Leeds Institute of Cardiovascular & Metabolic Medicine, Faculty of Medicine & Health, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - Shervanthi Homer-Vanniasinkam
- Leeds Institute of Cardiovascular & Metabolic Medicine, Faculty of Medicine & Health, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - Stephen B. Wheatcroft
- Leeds Institute of Cardiovascular & Metabolic Medicine, Faculty of Medicine & Health, University of Leeds, Leeds LS2 9JT, United Kingdom
| | | | - Sreenivasan Ponnambalam
- Endothelial Cell Biology Unit, School of Molecular & Cellular Biology, University of Leeds, Leeds LS2 9JT, United Kingdom
- * E-mail:
| |
Collapse
|
100
|
Chipumuro E, Marco E, Christensen CL, Kwiatkowski N, Zhang T, Hatheway CM, Abraham BJ, Sharma B, Yeung C, Altabef A, Perez-Atayde A, Wong KK, Yuan GC, Gray NS, Young RA, George RE. CDK7 inhibition suppresses super-enhancer-linked oncogenic transcription in MYCN-driven cancer. Cell 2014; 159:1126-1139. [PMID: 25416950 DOI: 10.1016/j.cell.2014.10.024] [Citation(s) in RCA: 460] [Impact Index Per Article: 46.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2014] [Revised: 08/18/2014] [Accepted: 09/24/2014] [Indexed: 02/06/2023]
Abstract
The MYC oncoproteins are thought to stimulate tumor cell growth and proliferation through amplification of gene transcription, a mechanism that has thwarted most efforts to inhibit MYC function as potential cancer therapy. Using a covalent inhibitor of cyclin-dependent kinase 7 (CDK7) to disrupt the transcription of amplified MYCN in neuroblastoma cells, we demonstrate downregulation of the oncoprotein with consequent massive suppression of MYCN-driven global transcriptional amplification. This response translated to significant tumor regression in a mouse model of high-risk neuroblastoma, without the introduction of systemic toxicity. The striking treatment selectivity of MYCN-overexpressing cells correlated with preferential downregulation of super-enhancer-associated genes, including MYCN and other known oncogenic drivers in neuroblastoma. These results indicate that CDK7 inhibition, by selectively targeting the mechanisms that promote global transcriptional amplification in tumor cells, may be useful therapy for cancers that are driven by MYC family oncoproteins.
Collapse
Affiliation(s)
- Edmond Chipumuro
- Department of Pediatric Hematology/Oncology, Dana-Farber Cancer Institute and Boston Children's Hospital, Boston, MA 02215, USA; Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
| | - Eugenio Marco
- Department of Biostatistics and Computational Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Harvard School of Public Health, Boston, MA 02115, USA
| | | | - Nicholas Kwiatkowski
- Whitehead Institute for Biomedical Research and Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Tinghu Zhang
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - Clark M Hatheway
- Department of Pediatric Hematology/Oncology, Dana-Farber Cancer Institute and Boston Children's Hospital, Boston, MA 02215, USA
| | - Brian J Abraham
- Whitehead Institute for Biomedical Research and Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Bandana Sharma
- Department of Pediatric Hematology/Oncology, Dana-Farber Cancer Institute and Boston Children's Hospital, Boston, MA 02215, USA
| | - Caleb Yeung
- Department of Pediatric Hematology/Oncology, Dana-Farber Cancer Institute and Boston Children's Hospital, Boston, MA 02215, USA; Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
| | - Abigail Altabef
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | | | - Kwok-Kin Wong
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Guo-Cheng Yuan
- Department of Biostatistics and Computational Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Harvard School of Public Health, Boston, MA 02115, USA
| | - Nathanael S Gray
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - Richard A Young
- Whitehead Institute for Biomedical Research and Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Rani E George
- Department of Pediatric Hematology/Oncology, Dana-Farber Cancer Institute and Boston Children's Hospital, Boston, MA 02215, USA; Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|