51
|
Kalaora S, Nagler A, Wargo JA, Samuels Y. Mechanisms of immune activation and regulation: lessons from melanoma. Nat Rev Cancer 2022; 22:195-207. [PMID: 35105962 DOI: 10.1038/s41568-022-00442-9] [Citation(s) in RCA: 100] [Impact Index Per Article: 50.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/04/2022] [Indexed: 12/14/2022]
Abstract
Melanoma, a skin cancer that develops from pigment cells, has been studied intensively, particularly in terms of the immune response to tumours, and has been used as a model for the development of immunotherapy. This is due, in part, to the high mutational burden observed in melanomas, which increases both their immunogenicity and the infiltration of immune cells into the tumours, compared with other types of cancers. The immune response to melanomas involves a complex set of components and interactions. As the tumour evolves, it accumulates an increasing number of genetic and epigenetic alterations, some of which contribute to the immunogenicity of the tumour cells and the infiltration of immune cells. However, tumour evolution also enables the development of resistance mechanisms, which, in turn, lead to tumour immune escape. Understanding the interactions between melanoma tumour cells and the immune system, and the evolving changes within the melanoma tumour cells, the immune system and the microenvironment, is essential for the development of new cancer therapies. However, current research suggests that other extrinsic factors, such as the microbiome, may play a role in the immune response to melanomas. Here, we review the mechanisms underlying the immune response in the tumour and discuss recent advances as well as strategies for treatment development.
Collapse
Affiliation(s)
- Shelly Kalaora
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Adi Nagler
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Jennifer A Wargo
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Yardena Samuels
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel.
| |
Collapse
|
52
|
Benboubker V, Boivin F, Dalle S, Caramel J. Cancer Cell Phenotype Plasticity as a Driver of Immune Escape in Melanoma. Front Immunol 2022; 13:873116. [PMID: 35432344 PMCID: PMC9012258 DOI: 10.3389/fimmu.2022.873116] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 03/04/2022] [Indexed: 12/15/2022] Open
Abstract
Immunotherapies blocking negative immune checkpoints are now approved for the treatment of a growing number of cancers. However, even in metastatic melanoma, where sustained responses are observed, a significant number of patients still do not respond or display resistance. Increasing evidence indicates that non-genetic cancer cell-intrinsic alterations play a key role in resistance to therapies and immune evasion. Cancer cell plasticity, mainly associated with the epithelial-to-mesenchymal transition in carcinoma, relies on transcriptional, epigenetic or translational reprogramming. In melanoma, an EMT-like dedifferentiation process is characterized by the acquisition of invasive or neural crest stem cell-like features. Herein, we discuss recent findings on the specific roles of phenotypic reprogramming of melanoma cells in driving immune evasion and resistance to immunotherapies. The mechanisms by which dedifferentiated melanoma cells escape T cell lysis, mediate T cell exclusion or remodel the immune microenvironment will be detailed. The expanded knowledge on tumor cell plasticity in melanoma should contribute to the development of novel therapeutic combination strategies to further improve outcomes in this deadly metastatic cancer.
Collapse
Affiliation(s)
- Valentin Benboubker
- Cancer Research Center of Lyon, Université de Lyon, Université Claude Bernard Lyon 1, INSERM, CNRS, Centre Léon Bérard, “Cancer cell Plasticity in Melanoma” team, Lyon, France
| | - Félix Boivin
- Cancer Research Center of Lyon, Université de Lyon, Université Claude Bernard Lyon 1, INSERM, CNRS, Centre Léon Bérard, “Cancer cell Plasticity in Melanoma” team, Lyon, France
| | - Stéphane Dalle
- Cancer Research Center of Lyon, Université de Lyon, Université Claude Bernard Lyon 1, INSERM, CNRS, Centre Léon Bérard, “Cancer cell Plasticity in Melanoma” team, Lyon, France
- Dermatology Unit, Hospices Civils de Lyon, CH Lyon Sud, Pierre Bénite Cedex, France
| | - Julie Caramel
- Cancer Research Center of Lyon, Université de Lyon, Université Claude Bernard Lyon 1, INSERM, CNRS, Centre Léon Bérard, “Cancer cell Plasticity in Melanoma” team, Lyon, France
| |
Collapse
|
53
|
PRMT7 ablation stimulates anti-tumor immunity and sensitizes melanoma to immune checkpoint blockade. Cell Rep 2022; 38:110582. [PMID: 35354055 PMCID: PMC9838175 DOI: 10.1016/j.celrep.2022.110582] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 01/08/2022] [Accepted: 03/07/2022] [Indexed: 01/17/2023] Open
Abstract
Despite the success of immune checkpoint inhibitor (ICI) therapy for cancer, resistance and relapse are frequent. Combination therapies are expected to enhance response rates and overcome this resistance. Herein, we report that combining PRMT7 inhibition with ICI therapy induces a strong anti-tumor T cell immunity and restrains tumor growth in vivo by increasing immune cell infiltration. PRMT7-deficient B16.F10 melanoma exhibits increased expression of genes in the interferon pathway, antigen presentation, and chemokine signaling. PRMT7 deficiency or inhibition with SGC3027 in B16.F10 melanoma results in reduced DNMT expression, loss of DNA methylation in the regulatory regions of endogenous retroviral elements (ERVs) causing their increased expression. PRMT7-deficient cells increase RIG-I and MDA5 expression with a reduction in the H4R3me2s repressive histone mark at their gene promoters. Our findings identify PRMT7 as a regulatory checkpoint for RIG-I, MDA5, and their ERV-double-stranded RNA (dsRNA) ligands, facilitating immune escape and anti-tumor T cell immunity to restrain tumor growth.
Collapse
|
54
|
Alexander ET, Gilmour SK. Immunomodulatory role of thrombin in cancer progression. Mol Carcinog 2022; 61:527-536. [PMID: 35338515 DOI: 10.1002/mc.23398] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 01/24/2022] [Accepted: 01/26/2022] [Indexed: 11/06/2022]
Abstract
Coagulation proteases and the generation of thrombin are increased in tumors. In addition, chemotherapeutic agents commonly used to treat malignant cancers can exacerbate cancer-associated thromboses. Thrombin can modify tumor cell behavior directly through the activation of protease-activated receptors (PAR) or indirectly by generating fibrin matrices. In addition to its role in generating fibrin to promote hemostasis, thrombin acts directly on multiple effector cells of the immune system impacting both acute and chronic inflammatory processes. Thrombin-mediated release of interleukin-6, tumor necrosis factor-α, and monocyte chemoattractant protein-1 leads to the accumulation of multiple tumor-infiltrating immunosuppressive cell populations including myeloid derived suppresser cells, M2-like macrophages, and T regulatory cells. Ablation of PAR-1 from the tumor microenvironment, but not the tumor, has been shown to dramatically reduce tumor growth and metastasis in multiple tumor models. Thrombin-activated platelets release immunosuppressive cytokines including transforming growth factor-β that can inhibit natural killer cell activity, helping tumor cells to evade host immunosurveillance. Taken together, there is strong evidence that thrombin influences cancer progression via multiple mechanisms, including the tumor immune response, with thrombin emerging as a target for novel therapeutic strategies for cancer.
Collapse
Affiliation(s)
- Eric T Alexander
- Lankenau Institute for Medical Research, Wynnewood, Pennsylvania, USA
| | - Susan K Gilmour
- Lankenau Institute for Medical Research, Wynnewood, Pennsylvania, USA
| |
Collapse
|
55
|
Pérez-Núñez I, Rozalén C, Palomeque JÁ, Sangrador I, Dalmau M, Comerma L, Hernández-Prat A, Casadevall D, Menendez S, Liu DD, Shen M, Berenguer J, Ruiz IR, Peña R, Montañés JC, Albà MM, Bonnin S, Ponomarenko J, Gomis RR, Cejalvo JM, Servitja S, Marzese DM, Morey L, Voorwerk L, Arribas J, Bermejo B, Kok M, Pusztai L, Kang Y, Albanell J, Celià-Terrassa T. LCOR mediates interferon-independent tumor immunogenicity and responsiveness to immune-checkpoint blockade in triple-negative breast cancer. NATURE CANCER 2022; 3:355-370. [PMID: 35301507 DOI: 10.1038/s43018-022-00339-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 01/21/2022] [Indexed: 01/05/2023]
Abstract
Ligand-dependent corepressor (LCOR) mediates normal and malignant breast stem cell differentiation. Cancer stem cells (CSCs) generate phenotypic heterogeneity and drive therapy resistance, yet their role in immunotherapy is poorly understood. Here we show that immune-checkpoint blockade (ICB) therapy selects for LCORlow CSCs with reduced antigen processing/presentation machinery (APM) driving immune escape and ICB resistance in triple-negative breast cancer (TNBC). We unveil an unexpected function of LCOR as a master transcriptional activator of APM genes binding to IFN-stimulated response elements (ISREs) in an IFN signaling-independent manner. Through genetic modification of LCOR expression, we demonstrate its central role in modulation of tumor immunogenicity and ICB responsiveness. In TNBC, LCOR associates with ICB clinical response. Importantly, extracellular vesicle (EV) Lcor-messenger RNA therapy in combination with anti-PD-L1 overcame resistance and eradicated breast cancer metastasis in preclinical models. Collectively, these data support LCOR as a promising target for enhancement of ICB efficacy in TNBC, by boosting of tumor APM independently of IFN.
Collapse
Affiliation(s)
- Iván Pérez-Núñez
- Cancer Research Program, Hospital del Mar Medical Research Institute, Barcelona, Spain
| | - Catalina Rozalén
- Cancer Research Program, Hospital del Mar Medical Research Institute, Barcelona, Spain
| | - José Ángel Palomeque
- Cancer Research Program, Hospital del Mar Medical Research Institute, Barcelona, Spain
| | - Irene Sangrador
- Cancer Research Program, Hospital del Mar Medical Research Institute, Barcelona, Spain
| | - Mariona Dalmau
- Cancer Research Program, Hospital del Mar Medical Research Institute, Barcelona, Spain
| | - Laura Comerma
- Pathology Department, Hospital del Mar, Barcelona, Spain
| | - Anna Hernández-Prat
- Cancer Research Program, Hospital del Mar Medical Research Institute, Barcelona, Spain
| | - David Casadevall
- Cancer Research Program, Hospital del Mar Medical Research Institute, Barcelona, Spain
| | - Silvia Menendez
- Cancer Research Program, Hospital del Mar Medical Research Institute, Barcelona, Spain
| | - Daniel Dan Liu
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, Stanford, CA, USA
| | - Minhong Shen
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA
| | - Jordi Berenguer
- Cancer Research Program, Hospital del Mar Medical Research Institute, Barcelona, Spain
| | - Irene Rius Ruiz
- Preclinical Research Program, Vall d'Hebron Institute of Oncology, Barcelona, Spain
| | - Raul Peña
- Cancer Research Program, Hospital del Mar Medical Research Institute, Barcelona, Spain
| | - José Carlos Montañés
- Research Program on Biomedical Informatics, Hospital del Mar Medical Research Institute and Universitat Pompeu Fabra, Barcelona, Spain
| | - M Mar Albà
- Research Program on Biomedical Informatics, Hospital del Mar Medical Research Institute and Universitat Pompeu Fabra, Barcelona, Spain
- Institució Catalana de Recerca i Estudis Avançats, Barcelona, Spain
| | - Sarah Bonnin
- Centre for Genomic Regulation, The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Julia Ponomarenko
- Centre for Genomic Regulation, The Barcelona Institute of Science and Technology, Barcelona, Spain
- Universitat Pompeu Fabra, Barcelona, Spain
| | - Roger R Gomis
- Institució Catalana de Recerca i Estudis Avançats, Barcelona, Spain
- Cancer Science Program, Institute for Research in Biomedicine, The Barcelona Institute of Science and Technology, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Oncología, Madrid, Spain
| | - Juan Miguel Cejalvo
- Centro de Investigación Biomédica en Red de Oncología, Madrid, Spain
- Medical Oncology Department, Hospital Clínico Universitario; Medicine Department, Universidad de Valencia, Spain, INCLIVA, Valencia, Spain
| | - Sonia Servitja
- Centro de Investigación Biomédica en Red de Oncología, Madrid, Spain
- Medical Oncology Department, Hospital del Mar, Barcelona, Spain
| | - Diego M Marzese
- Fundació Institut d'Investigació Sanitària Illes Balears, Mallorca, Spain
| | - Lluis Morey
- Sylvester Comprehensive Cancer Center, Miami, FL, USA
- Department of Human Genetics, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Leonie Voorwerk
- Division of Tumor Biology & Immunology, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Joaquín Arribas
- Cancer Research Program, Hospital del Mar Medical Research Institute, Barcelona, Spain
- Preclinical Research Program, Vall d'Hebron Institute of Oncology, Barcelona, Spain
- Institució Catalana de Recerca i Estudis Avançats, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Oncología, Madrid, Spain
| | - Begoña Bermejo
- Centro de Investigación Biomédica en Red de Oncología, Madrid, Spain
- Medical Oncology Department, Hospital Clínico Universitario; Medicine Department, Universidad de Valencia, Spain, INCLIVA, Valencia, Spain
| | - Marleen Kok
- Division of Tumor Biology & Immunology, The Netherlands Cancer Institute, Amsterdam, the Netherlands
- Department of Medical Oncology, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Lajos Pusztai
- Breast Medical Oncology, Yale Cancer Center, Yale School of Medicine, New Haven, CT, USA
| | - Yibin Kang
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA
- Ludwig Institute for Cancer Research Princeton Branch, Princeton, NJ, USA
| | - Joan Albanell
- Cancer Research Program, Hospital del Mar Medical Research Institute, Barcelona, Spain.
- Universitat Pompeu Fabra, Barcelona, Spain.
- Centro de Investigación Biomédica en Red de Oncología, Madrid, Spain.
- Medical Oncology Department, Hospital del Mar, Barcelona, Spain.
| | - Toni Celià-Terrassa
- Cancer Research Program, Hospital del Mar Medical Research Institute, Barcelona, Spain.
- Centro de Investigación Biomédica en Red de Oncología, Madrid, Spain.
| |
Collapse
|
56
|
Freeman SS, Sade-Feldman M, Kim J, Stewart C, Gonye AL, Ravi A, Arniella MB, Gushterova I, LaSalle TJ, Blaum EM, Yizhak K, Frederick DT, Sharova T, Leshchiner I, Elagina L, Spiro OG, Livitz D, Rosebrock D, Aguet F, Carrot-Zhang J, Ha G, Lin Z, Chen JH, Barzily-Rokni M, Hammond MR, Vitzthum von Eckstaedt HC, Blackmon SM, Jiao YJ, Gabriel S, Lawrence DP, Duncan LM, Stemmer-Rachamimov AO, Wargo JA, Flaherty KT, Sullivan RJ, Boland GM, Meyerson M, Getz G, Hacohen N. Combined tumor and immune signals from genomes or transcriptomes predict outcomes of checkpoint inhibition in melanoma. Cell Rep Med 2022; 3:100500. [PMID: 35243413 PMCID: PMC8861826 DOI: 10.1016/j.xcrm.2021.100500] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 09/26/2021] [Accepted: 12/20/2021] [Indexed: 12/20/2022]
Abstract
Immune checkpoint blockade (CPB) improves melanoma outcomes, but many patients still do not respond. Tumor mutational burden (TMB) and tumor-infiltrating T cells are associated with response, and integrative models improve survival prediction. However, integrating immune/tumor-intrinsic features using data from a single assay (DNA/RNA) remains underexplored. Here, we analyze whole-exome and bulk RNA sequencing of tumors from new and published cohorts of 189 and 178 patients with melanoma receiving CPB, respectively. Using DNA, we calculate T cell and B cell burdens (TCB/BCB) from rearranged TCR/Ig sequences and find that patients with TMBhigh and TCBhigh or BCBhigh have improved outcomes compared to other patients. By combining pairs of immune- and tumor-expressed genes, we identify three gene pairs associated with response and survival, which validate in independent cohorts. The top model includes lymphocyte-expressed MAP4K1 and tumor-expressed TBX3. Overall, RNA or DNA-based models combining immune and tumor measures improve predictions of melanoma CPB outcomes.
Collapse
Affiliation(s)
- Samuel S. Freeman
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA 02115, USA
| | - Moshe Sade-Feldman
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Department of Medicine, Center for Cancer Research, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Jaegil Kim
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Chip Stewart
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Anna L.K. Gonye
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Department of Medicine, Center for Cancer Research, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Arvind Ravi
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | | | - Irena Gushterova
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Department of Medicine, Center for Cancer Research, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Thomas J. LaSalle
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Department of Medicine, Center for Cancer Research, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Emily M. Blaum
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Department of Medicine, Center for Cancer Research, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Keren Yizhak
- Department of Cell Biology and Cancer Science, Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa 2611001, Israel
| | - Dennie T. Frederick
- Department of Medicine, Center for Cancer Research, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Tatyana Sharova
- Department of Medicine, Center for Cancer Research, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Ignaty Leshchiner
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Department of Medicine, Center for Cancer Research, Massachusetts General Hospital, Boston, MA 02114, USA
| | | | - Oliver G. Spiro
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Dimitri Livitz
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | | | - François Aguet
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Jian Carrot-Zhang
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Gavin Ha
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle 98109, WA, USA
| | - Ziao Lin
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Harvard University, Cambridge MA, 02138
| | - Jonathan H. Chen
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Department of Pathology, Massachusetts General Hospital, Boston 02114, MA, USA
| | - Michal Barzily-Rokni
- Department of Medicine, Center for Cancer Research, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Marc R. Hammond
- Department of Medicine, Center for Cancer Research, Massachusetts General Hospital, Boston, MA 02114, USA
| | | | - Shauna M. Blackmon
- Department of Medicine, Center for Cancer Research, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Yunxin J. Jiao
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Stacey Gabriel
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Donald P. Lawrence
- Department of Medical Oncology, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Lyn M. Duncan
- Department of Pathology, Massachusetts General Hospital, Boston 02114, MA, USA
| | | | - Jennifer A. Wargo
- Department of Surgical Oncology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Keith T. Flaherty
- Department of Medicine, Center for Cancer Research, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Ryan J. Sullivan
- Department of Medicine, Center for Cancer Research, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Genevieve M. Boland
- Department of Surgery, Massachusetts General Hospital, Boston 02115, MA, USA
| | - Matthew Meyerson
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
- Department of Genetics, Harvard Medical School, Boston 02115, MA, USA
| | - Gad Getz
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Department of Medicine, Center for Cancer Research, Massachusetts General Hospital, Boston, MA 02114, USA
- Harvard University, Cambridge MA, 02138
- Department of Pathology, Harvard Medical School, Boston 02115, MA, USA
| | - Nir Hacohen
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Department of Medicine, Center for Cancer Research, Massachusetts General Hospital, Boston, MA 02114, USA
- Department of Medicine, Harvard Medical School, Boston 02115, MA, USA
| |
Collapse
|
57
|
Li Y, Meng Y, Sun H, Ye L, Zeng F, Chen X, Deng G. The Prognostic Significance of Baseline Neutrophil-to-Lymphocyte Ratio in Melanoma Patients Receiving Immunotherapy. J Immunother 2022; 45:43-50. [PMID: 34510106 PMCID: PMC8654256 DOI: 10.1097/cji.0000000000000392] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Accepted: 08/04/2021] [Indexed: 12/15/2022]
Abstract
Immunotherapy has revolutionized the treatment in metastatic melanoma, but alternative biomarkers that are economical, simple and reliable still need to be clarified. In this study, we aimed to comprehensively analyze the prognostic significance of baseline neutrophil-to-lymphocyte ratio (NLR) in melanoma patients with immunotherapy. We searched PubMed, Embase, and Cochrane Library until September 16, 2020. Hazard ratio (HR) and 95% confidence intervals (CIs) were pooled to investigate the association of baseline NLR with overall survival (OS) and progression-free survival (PFS). Sensitivity analysis, subgroup analyses, publication bias assessment, and the Duval and Tweedie trim-and-fill method were used to evaluate the stability of results. A total of 18 studies including 2054 patients were included in our analysis. Pooled data demonstrated that higher baseline NLR was associated with a poorer OS (HR=2.46, 95% CI=1.77, 3.43) and PFS (HR=2.38, 95% CI=1.95, 2.89) of melanoma patients receiving immunotherapy. Subgroup analysis according to immunotherapy type showed that the prognostic effects of baseline NLR existed in all the subtypes of immunotherapy, including anticytotoxic T lymphocyte-associated protein 4 therapy (OS HR=2.26, 95% CI=1.43, 3.59; PFS HR=2.68, 95% CI=1.79, 4.02), antiprogrammed cell death-1 therapy (OS HR=3.08, 95% CI=2.21, 4.27; PFS HR=2.01, 95% CI=1.64, 2.47), and combination therapy (OS HR=1.75, 95% CI=1.13, 2.72; PFS HR=3.13, 95% CI=1.63, 6.03). Conclusions were still consistent in subgroup analyses stratified by study year, region, study type, sample size, analysis of HR and cuttoff of baseline NLR. Altogether, baseline NLR is a promising prognostic biomarker for melanoma patients receiving immunotherapy.
Collapse
Affiliation(s)
- Yayun Li
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Department of Dermatology, Hunan Engineering Research Center of Skin Health and Disease
- National Clinical Research Center for Geriatric Disorders
| | - Yu Meng
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Department of Dermatology, Hunan Engineering Research Center of Skin Health and Disease
- National Clinical Research Center for Geriatric Disorders
| | - Huiyan Sun
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Department of Dermatology, Hunan Engineering Research Center of Skin Health and Disease
- National Clinical Research Center for Geriatric Disorders
| | - Lin Ye
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Department of Dermatology, Hunan Engineering Research Center of Skin Health and Disease
- National Clinical Research Center for Geriatric Disorders
| | - Furong Zeng
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Department of Dermatology, Hunan Engineering Research Center of Skin Health and Disease
- National Clinical Research Center for Geriatric Disorders
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, China
| | - Xiang Chen
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Department of Dermatology, Hunan Engineering Research Center of Skin Health and Disease
- National Clinical Research Center for Geriatric Disorders
| | - Guangtong Deng
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Department of Dermatology, Hunan Engineering Research Center of Skin Health and Disease
- National Clinical Research Center for Geriatric Disorders
| |
Collapse
|
58
|
Xue G, Zheng N, Fang J, Jin G, Li X, Dotti G, Yi Q, Lu Y. Adoptive cell therapy with tumor-specific Th9 cells induces viral mimicry to eliminate antigen-loss-variant tumor cells. Cancer Cell 2021; 39:1610-1622.e9. [PMID: 34678150 PMCID: PMC8678313 DOI: 10.1016/j.ccell.2021.09.011] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 07/06/2021] [Accepted: 09/21/2021] [Indexed: 02/04/2023]
Abstract
Resistance can occur in patients receiving adoptive cell therapy (ACT) due to antigen-loss-variant (ALV) cancer cell outgrowth. Here we demonstrate that murine and human T helper (Th) 9 cells, but not Th1/Tc1 or Th17 cells, expressing tumor-specific T cell receptors (TCRs) or chimeric antigen receptors (CARs), eradicate advanced tumors that contain ALVs. This unprecedented antitumor capacity of Th9 cells is attributed to both enhanced direct tumor cell killing and bystander antitumor effects promoted by intratumor release of interferon (IFN) α/β. Mechanistically, tumor-specific Th9 cells increase the intratumor accumulation of extracellular ATP (eATP; released from dying tumor cells), because of a unique feature of Th9 cells that lack the expression of ATP degrading ectoenzyme cluster of differentiation (CD) 39. Intratumor enrichment of eATP promotes the monocyte infiltration and stimulates their production of IFNα/β by inducing eATP-endogenous retrovirus-Toll-like receptor 3 (TLR3)/mitochondrial antiviral signaling (MAVS) pathway activation. These results identify tumor-specific Th9 cells as a unique T cell subset endowed with the unprecedented capacity to eliminate ALVs for curative responses.
Collapse
Affiliation(s)
- Gang Xue
- Department of Microbiology & Immunology, Wake Forest School of Medicine, Winston-Salem, NC 27101, USA
| | - Ningbo Zheng
- Department of Microbiology & Immunology, Wake Forest School of Medicine, Winston-Salem, NC 27101, USA
| | - Jing Fang
- Department of Microbiology & Immunology, Wake Forest School of Medicine, Winston-Salem, NC 27101, USA
| | - Guangxu Jin
- Department of Cancer Biology, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA
| | - Xiaoyin Li
- Department of Mathematics and Statistics, St. Cloud State University, St Cloud, MN 56301, USA
| | - Gianpietro Dotti
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Qing Yi
- Center for Translational Research in Hematologic Malignancies, Houston Methodist Cancer Center, Houston, TX 77030, USA.
| | - Yong Lu
- Department of Microbiology & Immunology, Wake Forest School of Medicine, Winston-Salem, NC 27101, USA.
| |
Collapse
|
59
|
Pisano S, Lenna S, Healey GD, Izardi F, Meeks L, Jimenez YS, Velazquez OS, Gonzalez D, Conlan RS, Corradetti B. Assessment of the immune landscapes of advanced ovarian cancer in an optimized in vivo model. Clin Transl Med 2021; 11:e551. [PMID: 34709744 PMCID: PMC8506632 DOI: 10.1002/ctm2.551] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 08/06/2021] [Accepted: 08/09/2021] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Ovarian cancer (OC) is typically diagnosed late, associated with high rates of metastasis and the onset of ascites during late stage disease. Understanding the tumor microenvironment and how it impacts the efficacy of current treatments, including immunotherapies, needs effective in vivo models that are fully characterized. In particular, understanding the role of immune cells within the tumor and ascitic fluid could provide important insights into why OC fails to respond to immunotherapies. In this work, we comprehensively described the immune cell infiltrates in tumor nodules and the ascitic fluid within an optimized preclinical model of advanced ovarian cancer. METHODS Green Fluorescent Protein (GFP)-ID8 OC cells were injected intraperitoneally into C57BL/6 mice and the development of advanced stage OC monitored. Nine weeks after tumor injection, mice were sacrificed and tumor nodules analyzed to identify specific immune infiltrates by immunohistochemistry. Ascites, developed in tumor bearing mice over a 10-week period, was characterized by mass cytometry (CyTOF) to qualitatively and quantitatively assess the distribution of the immune cell subsets, and their relationship to ascites from ovarian cancer patients. RESULTS Tumor nodules in the peritoneal cavity proved to be enriched in T cells, antigen presenting cells and macrophages, demonstrating an active immune environment and cell-mediated immunity. Assessment of the immune landscape in the ascites showed the predominance of CD8+ , CD4+ , B- , and memory T cells, among others, and the coexistance of different immune cell types within the same tumor microenvironment. CONCLUSIONS We performed, for the first time, a multiparametric analysis of the ascitic fluid and specifically identify immune cell populations in the peritoneal cavity of mice with advanced OC. Data obtained highlights the impact of CytOF as a diagnostic tool for this malignancy, with the opportunity to concomitantly identify novel targets, and define personalized therapeutic options.
Collapse
Affiliation(s)
- Simone Pisano
- Department of NanomedicineHouston Methodist Research InstituteHoustonTexas
- Center for NanoHealthSwansea University Medical SchoolSwanseaUK
| | - Stefania Lenna
- Department of NanomedicineHouston Methodist Research InstituteHoustonTexas
| | | | | | - Lucille Meeks
- Department of NanomedicineHouston Methodist Research InstituteHoustonTexas
| | - Yajaira S. Jimenez
- Department of NanomedicineHouston Methodist Research InstituteHoustonTexas
- Texas A&M Health Science CenterCollege of MedicineBryanTexas
| | - Oscar S Velazquez
- Department of NanomedicineHouston Methodist Research InstituteHoustonTexas
| | | | - Robert Steven Conlan
- Department of NanomedicineHouston Methodist Research InstituteHoustonTexas
- Center for NanoHealthSwansea University Medical SchoolSwanseaUK
| | - Bruna Corradetti
- Department of NanomedicineHouston Methodist Research InstituteHoustonTexas
- Center for NanoHealthSwansea University Medical SchoolSwanseaUK
- Texas A&M Health Science CenterCollege of MedicineBryanTexas
| |
Collapse
|
60
|
Huang F, Santinon F, Flores González RE, del Rincón SV. Melanoma Plasticity: Promoter of Metastasis and Resistance to Therapy. Front Oncol 2021; 11:756001. [PMID: 34604096 PMCID: PMC8481945 DOI: 10.3389/fonc.2021.756001] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 08/30/2021] [Indexed: 12/14/2022] Open
Abstract
Melanoma is the deadliest form of skin cancer. Although targeted therapies and immunotherapies have revolutionized the treatment of metastatic melanoma, most patients are not cured. Therapy resistance remains a significant clinical challenge. Melanoma comprises phenotypically distinct subpopulations of cells, exhibiting distinct gene signatures leading to tumor heterogeneity and favoring therapeutic resistance. Cellular plasticity in melanoma is referred to as phenotype switching. Regardless of their genomic classification, melanomas switch from a proliferative and differentiated phenotype to an invasive, dedifferentiated and often therapy-resistant state. In this review we discuss potential mechanisms underpinning melanoma phenotype switching, how this cellular plasticity contributes to resistance to both targeted therapies and immunotherapies. Finally, we highlight novel strategies to target plasticity and their potential clinical impact in melanoma.
Collapse
Affiliation(s)
- Fan Huang
- Lady Davis Institute, McGill University, Montréal, QC, Canada
- Department of Experimental Medicine, McGill University, Montréal, QC, Canada
| | - François Santinon
- Lady Davis Institute, McGill University, Montréal, QC, Canada
- Department of Experimental Medicine, McGill University, Montréal, QC, Canada
| | - Raúl Ernesto Flores González
- Lady Davis Institute, McGill University, Montréal, QC, Canada
- Department of Experimental Medicine, McGill University, Montréal, QC, Canada
| | - Sonia V. del Rincón
- Lady Davis Institute, McGill University, Montréal, QC, Canada
- Department of Experimental Medicine, McGill University, Montréal, QC, Canada
- Department of Oncology, McGill University, Montréal, QC, Canada
| |
Collapse
|
61
|
Becerril-Rico J, Alvarado-Ortiz E, Toledo-Guzmán ME, Pelayo R, Ortiz-Sánchez E. The cross talk between gastric cancer stem cells and the immune microenvironment: a tumor-promoting factor. Stem Cell Res Ther 2021; 12:498. [PMID: 34503571 PMCID: PMC8428093 DOI: 10.1186/s13287-021-02562-9] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Accepted: 08/16/2021] [Indexed: 02/07/2023] Open
Abstract
Cross talk between cancer cells and the immune system is determinant for cancer progression. Emerging evidence demonstrates that GC characteristics such as metastasis, treatment resistance, and disease recurrence are associated with a tumor subpopulation called gastric cancer stem cells (GCSCs). However, the specific interaction between GCSCs and the immune microenvironment is still under investigation. Although immune evasion has been well described for cancer stem cells (CSCs), recent studies show that GCSCs can also regulate the immune system and even benefit from it. This review will provide an overview of bidirectional interactions between CSCs and immune cells in GC, compiling relevant data about how CSCs can induce leukocyte reprogramming, resulting in pro-tumoral immune cells that orchestrate promotion of metastasis, chemoresistance, tumorigenicity, and even increase in number of cancer cells with stem properties. Some immune cells studied are tumor-associated macrophages (TAMs), neutrophils, Th17 and T regulatory (Treg) cells, mesenchymal stem cells (MSCs), and cancer-associated fibroblasts (CAFs), as well as the signaling pathways involved in these pro-tumoral activities. Conversely, although there are cytotoxic leukocytes that can potentially eliminate GCSCs, we describe mechanisms for immune evasion in GCSCs and their clinical implications. Furthermore, we describe current available immunotherapy targeting GCSC-related markers as possible treatment for GC, discussing how the CSC-modified immune microenvironment can mitigate or inactivate these immunotherapies, limiting their effectiveness. Finally, we summarize key concepts and relevant evidence to understand the cross talk between GCSCs and the immune microenvironment as an important process for effective design of therapies against GCSCs that improve the outcome of patients with GC.
Collapse
Affiliation(s)
- Jared Becerril-Rico
- Subdirección de Investigación Básica, Instituto Nacional de Cancerología, Secretaría de Salud, Ciudad de México, Mexico
| | - Eduardo Alvarado-Ortiz
- Programa de Posgrado en Ciencias Biológicas, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
- Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México (UNAM), Ciudad de México, Mexico
| | - Mariel E Toledo-Guzmán
- Subdirección de Investigación Básica, Instituto Nacional de Cancerología, Secretaría de Salud, Ciudad de México, Mexico
| | - Rosana Pelayo
- Centro de Investigación Biomédica de Oriente, Instituto Mexicano del Seguro Social, Delegación Puebla, Puebla, Mexico
| | - Elizabeth Ortiz-Sánchez
- Subdirección de Investigación Básica, Instituto Nacional de Cancerología, Secretaría de Salud, Ciudad de México, Mexico.
| |
Collapse
|
62
|
Vendramin R, Katopodi V, Cinque S, Konnova A, Knezevic Z, Adnane S, Verheyden Y, Karras P, Demesmaeker E, Bosisio FM, Kucera L, Rozman J, Gladwyn-Ng I, Rizzotto L, Dassi E, Millevoi S, Bechter O, Marine JC, Leucci E. Activation of the integrated stress response confers vulnerability to mitoribosome-targeting antibiotics in melanoma. J Exp Med 2021; 218:e20210571. [PMID: 34287642 PMCID: PMC8424468 DOI: 10.1084/jem.20210571] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 05/10/2021] [Accepted: 06/16/2021] [Indexed: 12/15/2022] Open
Abstract
The ability to adapt to environmental stress, including therapeutic insult, contributes to tumor evolution and drug resistance. In suboptimal conditions, the integrated stress response (ISR) promotes survival by dampening cytosolic translation. We show that ISR-dependent survival also relies on a concomitant up-regulation of mitochondrial protein synthesis, a vulnerability that can be exploited using mitoribosome-targeting antibiotics. Accordingly, such agents sensitized to MAPK inhibition, thus preventing the development of resistance in BRAFV600E melanoma models. Additionally, this treatment compromised the growth of melanomas that exhibited elevated ISR activity and resistance to both immunotherapy and targeted therapy. In keeping with this, pharmacological inactivation of ISR, or silencing of ATF4, rescued the antitumoral response to the tetracyclines. Moreover, a melanoma patient exposed to doxycycline experienced complete and long-lasting response of a treatment-resistant lesion. Our study indicates that the repurposing of mitoribosome-targeting antibiotics offers a rational salvage strategy for targeted therapy in BRAF mutant melanoma and a therapeutic option for NRAS-driven and immunotherapy-resistant tumors.
Collapse
Affiliation(s)
- Roberto Vendramin
- Laboratory for RNA Cancer Biology, Department of Oncology, Katholieke Universiteit Leuven, Leuven, Belgium
| | - Vicky Katopodi
- Laboratory for RNA Cancer Biology, Department of Oncology, Katholieke Universiteit Leuven, Leuven, Belgium
| | - Sonia Cinque
- Laboratory for RNA Cancer Biology, Department of Oncology, Katholieke Universiteit Leuven, Leuven, Belgium
| | - Angelina Konnova
- Laboratory for RNA Cancer Biology, Department of Oncology, Katholieke Universiteit Leuven, Leuven, Belgium
| | - Zorica Knezevic
- Laboratory for RNA Cancer Biology, Department of Oncology, Katholieke Universiteit Leuven, Leuven, Belgium
| | - Sara Adnane
- Laboratory for RNA Cancer Biology, Department of Oncology, Katholieke Universiteit Leuven, Leuven, Belgium
| | - Yvessa Verheyden
- Laboratory for RNA Cancer Biology, Department of Oncology, Katholieke Universiteit Leuven, Leuven, Belgium
| | - Panagiotis Karras
- Laboratory for Molecular Cancer Biology, Center for Cancer Biology, Vlaams Instituut voor Biotechnologie, Leuven, Belgium
- Department of Oncology, Laboratory for Molecular Cancer Biology, Katholieke Universiteit Leuven, Belgium
| | - Ewout Demesmaeker
- Laboratory for RNA Cancer Biology, Department of Oncology, Katholieke Universiteit Leuven, Leuven, Belgium
| | | | - Lukas Kucera
- Czech Centre for Phenogenomics, Institute of Molecular Genetics of the Czech Academy of Sciences, Vestec, Czech Republic
| | - Jan Rozman
- Czech Centre for Phenogenomics, Institute of Molecular Genetics of the Czech Academy of Sciences, Vestec, Czech Republic
| | | | - Lara Rizzotto
- Trace, Leuven Cancer Institute, Katholieke Universiteit Leuven, Belgium
| | - Erik Dassi
- Laboratory of RNA Regulatory Networks, Department of Cellular, Computational and Integrative Biology, University of Trento, Trento, Italy
| | - Stefania Millevoi
- Cancer Research Centre of Toulouse, Institut national de la santé et de la recherche médicale Joint Research Unit 1037, Toulouse, France
- Université Toulouse III Paul Sabatier, Toulouse, France
- Laboratoire d’Excellence “TOUCAN,” Toulouse, France
| | - Oliver Bechter
- Department of General Medical Oncology, Leuven Cancer Institute, Universitair Ziekenhuis Leuven, Leuven, Belgium
| | - Jean-Christophe Marine
- Laboratory for Molecular Cancer Biology, Center for Cancer Biology, Vlaams Instituut voor Biotechnologie, Leuven, Belgium
- Department of Oncology, Laboratory for Molecular Cancer Biology, Katholieke Universiteit Leuven, Belgium
| | - Eleonora Leucci
- Laboratory for RNA Cancer Biology, Department of Oncology, Katholieke Universiteit Leuven, Leuven, Belgium
- Trace, Leuven Cancer Institute, Katholieke Universiteit Leuven, Belgium
| |
Collapse
|
63
|
Transcriptional Reprogramming and Constitutive PD-L1 Expression in Melanoma Are Associated with Dedifferentiation and Activation of Interferon and Tumour Necrosis Factor Signalling Pathways. Cancers (Basel) 2021; 13:cancers13174250. [PMID: 34503064 PMCID: PMC8428231 DOI: 10.3390/cancers13174250] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 08/07/2021] [Accepted: 08/13/2021] [Indexed: 12/13/2022] Open
Abstract
Simple Summary Melanoma, an aggressive form of skin cancer, is frequently associated with drug resistance in the advanced stages. For instance, frequently resistance is observed in sequential treatment of melanoma with targeted therapy and immunotherapy. In this research, the authors investigated whether potential transcriptional mechanisms and pathways associated with PD-L1 protein expression could underlie targeted therapy drug resistance in melanoma. The authors found a PD-L1 expression transcriptional pattern underlies resistance to targeted therapy in a subgroup of melanomas. These melanomas were markedly dedifferentiated, as compared to melanomas that were not drug resistant. Understanding changes in transcription and molecular pathways that lead to drug resistance could allow researchers to develop interventions to prevent drug resistance from occurring in melanoma, which could also be relevant to other cancer types. Abstract Melanoma is the most aggressive type of skin cancer, with increasing incidence worldwide. Advances in targeted therapy and immunotherapy have improved the survival of melanoma patients experiencing recurrent disease, but unfortunately treatment resistance frequently reduces patient survival. Resistance to targeted therapy is associated with transcriptomic changes and has also been shown to be accompanied by increased expression of programmed death ligand 1 (PD-L1), a potent inhibitor of immune response. Intrinsic upregulation of PD-L1 is associated with genome-wide DNA hypomethylation and widespread alterations in gene expression in melanoma cell lines. However, an in-depth analysis of the transcriptomic landscape of melanoma cells with intrinsically upregulated PD-L1 expression is lacking. To determine the transcriptomic landscape of intrinsically upregulated PD-L1 expression in melanoma, we investigated transcriptomes in melanomas with constitutive versus inducible PD-L1 expression (referred to as PD-L1CON and PD-L1IND). RNA-Seq analysis was performed on seven PD-L1CON melanoma cell lines and ten melanoma cell lines with low inducible PD-L1IND expression. We observed that PD-L1CON melanoma cells had a reprogrammed transcriptome with a characteristic pattern of dedifferentiated gene expression, together with active interferon (IFN) and tumour necrosis factor (TNF) signalling pathways. Furthermore, we identified key transcription factors that were also differentially expressed in PD-L1CON versus PD-L1IND melanoma cell lines. Overall, our studies describe transcriptomic reprogramming of melanomas with PD-L1CON expression.
Collapse
|
64
|
Diener J, Baggiolini A, Pernebrink M, Dalcher D, Lerra L, Cheng PF, Varum S, Häusel J, Stierli S, Treier M, Studer L, Basler K, Levesque MP, Dummer R, Santoro R, Cantù C, Sommer L. Epigenetic control of melanoma cell invasiveness by the stem cell factor SALL4. Nat Commun 2021; 12:5056. [PMID: 34417458 PMCID: PMC8379183 DOI: 10.1038/s41467-021-25326-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 08/03/2021] [Indexed: 02/06/2023] Open
Abstract
Melanoma cells rely on developmental programs during tumor initiation and progression. Here we show that the embryonic stem cell (ESC) factor Sall4 is re-expressed in the Tyr::NrasQ61K; Cdkn2a-/- melanoma model and that its expression is necessary for primary melanoma formation. Surprisingly, while Sall4 loss prevents tumor formation, it promotes micrometastases to distant organs in this melanoma-prone mouse model. Transcriptional profiling and in vitro assays using human melanoma cells demonstrate that SALL4 loss induces a phenotype switch and the acquisition of an invasive phenotype. We show that SALL4 negatively regulates invasiveness through interaction with the histone deacetylase (HDAC) 2 and direct co-binding to a set of invasiveness genes. Consequently, SALL4 knock down, as well as HDAC inhibition, promote the expression of an invasive signature, while inhibition of histone acetylation partially reverts the invasiveness program induced by SALL4 loss. Thus, SALL4 appears to regulate phenotype switching in melanoma through an HDAC2-mediated mechanism.
Collapse
Affiliation(s)
- Johanna Diener
- University of Zürich, Institute of Anatomy, Zürich, Switzerland
| | - Arianna Baggiolini
- University of Zürich, Institute of Anatomy, Zürich, Switzerland
- Developmental Biology, The Center for Stem Cell Biology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Mattias Pernebrink
- Wallenberg Centre for Molecular Medicine, Linköping University, Linköping, Sweden
- Department of Biomedical and Clinical Sciences, Division of Molecular Medicine and Virology; Faculty of Medicine and Health Sciences, Linköping University, Linköping, Sweden
| | - Damian Dalcher
- University of Zürich, Department of Molecular Mechanisms of Disease, Zürich, Switzerland
| | - Luigi Lerra
- University of Zürich, Department of Molecular Mechanisms of Disease, Zürich, Switzerland
| | - Phil F Cheng
- University Hospital of Zürich, Department of Dermatology, Zürich, Switzerland
| | - Sandra Varum
- University of Zürich, Institute of Anatomy, Zürich, Switzerland
| | - Jessica Häusel
- University of Zürich, Institute of Anatomy, Zürich, Switzerland
| | - Salome Stierli
- University of Zürich, Institute of Anatomy, Zürich, Switzerland
| | - Mathias Treier
- Max-Delbrück-Center for Molecular Medicine, Berlin, Germany
- Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Lorenz Studer
- Developmental Biology, The Center for Stem Cell Biology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Konrad Basler
- University of Zürich, Institute of Molecular Life Sciences, Zürich, Switzerland
| | - Mitchell P Levesque
- University Hospital of Zürich, Department of Dermatology, Zürich, Switzerland
| | - Reinhard Dummer
- University Hospital of Zürich, Department of Dermatology, Zürich, Switzerland
| | - Raffaella Santoro
- University of Zürich, Department of Molecular Mechanisms of Disease, Zürich, Switzerland
| | - Claudio Cantù
- Wallenberg Centre for Molecular Medicine, Linköping University, Linköping, Sweden
- Department of Biomedical and Clinical Sciences, Division of Molecular Medicine and Virology; Faculty of Medicine and Health Sciences, Linköping University, Linköping, Sweden
- University of Zürich, Institute of Molecular Life Sciences, Zürich, Switzerland
| | - Lukas Sommer
- University of Zürich, Institute of Anatomy, Zürich, Switzerland.
| |
Collapse
|
65
|
Marin-Bejar O, Rogiers A, Dewaele M, Femel J, Karras P, Pozniak J, Bervoets G, Van Raemdonck N, Pedri D, Swings T, Demeulemeester J, Borght SV, Lehnert S, Bosisio F, van den Oord JJ, Bempt IV, Lambrechts D, Voet T, Bechter O, Rizos H, Levesque MP, Leucci E, Lund AW, Rambow F, Marine JC. Evolutionary predictability of genetic versus nongenetic resistance to anticancer drugs in melanoma. Cancer Cell 2021; 39:1135-1149.e8. [PMID: 34143978 DOI: 10.1016/j.ccell.2021.05.015] [Citation(s) in RCA: 72] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 02/17/2021] [Accepted: 05/20/2021] [Indexed: 12/13/2022]
Abstract
Therapy resistance arises from heterogeneous drug-tolerant persister cells or minimal residual disease (MRD) through genetic and nongenetic mechanisms. A key question is whether specific molecular features of the MRD ecosystem determine which of these two distinct trajectories will eventually prevail. We show that, in melanoma exposed to mitogen-activated protein kinase therapeutics, emergence of a transient neural crest stem cell (NCSC) population in MRD concurs with the development of nongenetic resistance. This increase relies on a glial cell line-derived neurotrophic factor-dependent signaling cascade, which activates the AKT survival pathway in a focal adhesion kinase (FAK)-dependent manner. Ablation of the NCSC population through FAK inhibition delays relapse in patient-derived tumor xenografts. Strikingly, all tumors that ultimately escape this treatment exhibit resistance-conferring genetic alterations and increased sensitivity to extracellular signal-regulated kinase inhibition. These findings identify an approach that abrogates the nongenetic resistance trajectory in melanoma and demonstrate that the cellular composition of MRD deterministically imposes distinct drug resistance evolutionary paths.
Collapse
Affiliation(s)
- Oskar Marin-Bejar
- Laboratory for Molecular Cancer Biology, Center for Cancer Biology, VIB, Leuven, Belgium; Laboratory for Molecular Cancer Biology, Department of Oncology, KU Leuven, Leuven, Belgium
| | - Aljosja Rogiers
- Laboratory for Molecular Cancer Biology, Center for Cancer Biology, VIB, Leuven, Belgium; Laboratory for Molecular Cancer Biology, Department of Oncology, KU Leuven, Leuven, Belgium
| | - Michael Dewaele
- Laboratory for Molecular Cancer Biology, Center for Cancer Biology, VIB, Leuven, Belgium; Laboratory for Molecular Cancer Biology, Department of Oncology, KU Leuven, Leuven, Belgium
| | - Julia Femel
- Ronald O. Perelman Department of Dermatology and Department of Pathology, NYU Grossman School of Medicine, New York, NY, USA
| | - Panagiotis Karras
- Laboratory for Molecular Cancer Biology, Center for Cancer Biology, VIB, Leuven, Belgium; Laboratory for Molecular Cancer Biology, Department of Oncology, KU Leuven, Leuven, Belgium
| | - Joanna Pozniak
- Laboratory for Molecular Cancer Biology, Center for Cancer Biology, VIB, Leuven, Belgium; Laboratory for Molecular Cancer Biology, Department of Oncology, KU Leuven, Leuven, Belgium
| | - Greet Bervoets
- Laboratory for Molecular Cancer Biology, Center for Cancer Biology, VIB, Leuven, Belgium; Laboratory for Molecular Cancer Biology, Department of Oncology, KU Leuven, Leuven, Belgium
| | - Nina Van Raemdonck
- Laboratory for Molecular Cancer Biology, Center for Cancer Biology, VIB, Leuven, Belgium; Laboratory for Molecular Cancer Biology, Department of Oncology, KU Leuven, Leuven, Belgium
| | - Dennis Pedri
- Laboratory for Molecular Cancer Biology, Center for Cancer Biology, VIB, Leuven, Belgium; Laboratory for Molecular Cancer Biology, Department of Oncology, KU Leuven, Leuven, Belgium
| | - Toon Swings
- VIB Technology Watch, Technology Innovation Lab, VIB, Leuven, Belgium
| | - Jonas Demeulemeester
- Laboratory of Reproductive Genomics, Department of Human Genetics, KU Leuven, Leuven, Belgium; Cancer Genomic Laboratory, The Francis Crick Institute, London, UK
| | | | | | - Francesca Bosisio
- Laboratory of Translational Cell and Tissue Research, Department of Pathology, KU Leuven and UZ Leuven, Leuven, Belgium
| | - Joost J van den Oord
- Laboratory of Translational Cell and Tissue Research, Department of Pathology, KU Leuven and UZ Leuven, Leuven, Belgium
| | | | - Diether Lambrechts
- Laboratory of Translational Genetics, Center for Cancer Biology, VIB, Leuven, Belgium; Laboratory of Translational Genetics, Center for Human Genetics, KU Leuven, Belgium
| | - Thierry Voet
- Laboratory of Reproductive Genomics, Department of Human Genetics, KU Leuven, Leuven, Belgium; KU Leuven Institute for Single Cell Omics, LISCO, KU Leuven, Leuven, Belgium
| | - Oliver Bechter
- Department of General Medical Oncology UZ Leuven, Belgium
| | - Helen Rizos
- Macquarie University, Sydney, NSW, Australia; Melanoma Institute Australia, Sydney, NSW, Australia
| | - Mitchell P Levesque
- Department of Dermatology, University of Zürich Hospital, University of Zürich, Zürich, Switzerland
| | - Eleonora Leucci
- Laboratory for RNA Cancer Biology, Department of Oncology, LKI, KU Leuven, Leuven, Belgium; Trace PDX Platform, Department of Oncology, LKI, KU Leuven, Leuven, Belgium
| | - Amanda W Lund
- Ronald O. Perelman Department of Dermatology and Department of Pathology, NYU Grossman School of Medicine, New York, NY, USA
| | - Florian Rambow
- Laboratory for Molecular Cancer Biology, Center for Cancer Biology, VIB, Leuven, Belgium; Laboratory for Molecular Cancer Biology, Department of Oncology, KU Leuven, Leuven, Belgium.
| | - Jean-Christophe Marine
- Laboratory for Molecular Cancer Biology, Center for Cancer Biology, VIB, Leuven, Belgium; Laboratory for Molecular Cancer Biology, Department of Oncology, KU Leuven, Leuven, Belgium.
| |
Collapse
|
66
|
Liao W, Kohler ME, Fry T, Ernst P. Does lineage plasticity enable escape from CAR-T cell therapy? Lessons from MLL-r leukemia. Exp Hematol 2021; 100:1-11. [PMID: 34298117 PMCID: PMC8611617 DOI: 10.1016/j.exphem.2021.07.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 07/08/2021] [Accepted: 07/10/2021] [Indexed: 01/20/2023]
Abstract
The clinical success of engineered, CD19-directed chimeric antigen receptor (CAR) T cells in relapsed, refractory B-cell acute lymphoblastic leukemia (B-ALL) has generated great enthusiasm for the use of CAR T cells in patients with cytogenetics that portend a poor prognosis with conventional cytotoxic therapies. One such group includes infants and children with mixed lineage leukemia (MLL1, KMT2A) rearrangements (MLL-r), who fare much worse than patients with low- or standard-risk B-ALL. Although early clinical trials using CD19 CAR T cells for MLL-r B-ALL produced complete remission in most patients, relapse with CD19-negative disease was a common mechanism of treatment failure. Whereas CD19neg relapse has been observed across a broad spectrum of B-ALL patients treated with CD19-directed therapy, patients with MLL-r have manifested the emergence of AML, often clonally related to the B-ALL, suggesting that the inherent heterogeneity or lineage plasticity of MLL-r B-ALL may predispose patients to a myeloid relapse. Understanding the factors that enable and drive myeloid relapse may be important to devise strategies to improve durability of remissions. In this review, we summarize clinical observations to date with MLL-r B-ALL and generally discuss lineage plasticity as a mechanism of escape from immunotherapy.
Collapse
Affiliation(s)
- Wenjuan Liao
- Department of Pediatrics, Section of Hematology/Oncology/BMT, Center for Cancer and Blood Disorders, Children's Hospital Colorado, University of Colorado, Denver/Anschutz Medical Campus. Aurora, CO
| | - M Eric Kohler
- Department of Pediatrics, Section of Hematology/Oncology/BMT, Center for Cancer and Blood Disorders, Children's Hospital Colorado, University of Colorado, Denver/Anschutz Medical Campus. Aurora, CO
| | - Terry Fry
- Department of Pediatrics, Section of Hematology/Oncology/BMT, Center for Cancer and Blood Disorders, Children's Hospital Colorado, University of Colorado, Denver/Anschutz Medical Campus. Aurora, CO; Immunology Department and HI3 Initiative, University of Colorado, Denver/Anschutz Medical Campus. Aurora, CO
| | - Patricia Ernst
- Department of Pediatrics, Section of Hematology/Oncology/BMT, Center for Cancer and Blood Disorders, Children's Hospital Colorado, University of Colorado, Denver/Anschutz Medical Campus. Aurora, CO; Pharmacology Department, University of Colorado, Denver/Anschutz Medical Campus. Aurora, CO.
| |
Collapse
|
67
|
Qiao X, Zhang Y, Sun L, Ma Q, Yang J, Ai L, Xue J, Chen G, Zhang H, Ji C, Gu X, Lei H, Yang Y, Liu C. Association of human breast cancer CD44 -/CD24 - cells with delayed distant metastasis. eLife 2021; 10:65418. [PMID: 34318746 PMCID: PMC8346282 DOI: 10.7554/elife.65418] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 07/25/2021] [Indexed: 12/09/2022] Open
Abstract
Tumor metastasis remains the main cause of breast cancer-related deaths, especially delayed breast cancer distant metastasis. The current study assessed the frequency of CD44-/CD24- breast cancer cells in 576 tissue specimens for associations with clinicopathological features and metastasis and investigated the underlying molecular mechanisms. The results indicated that higher frequency (≥19.5%) of CD44-/CD24- cells was associated with delayed postoperative breast cancer metastasis. Furthermore, CD44-/CD24-triple negative breast cancer (TNBC) cells spontaneously converted into CD44+/CD24-cancer stem cells (CSCs) with properties similar to CD44+/CD24-CSCs from primary human breast cancer cells and parental TNBC cells in terms of stemness marker expression, self-renewal, differentiation, tumorigenicity, and lung metastasis in vitro and in NOD/SCID mice. RNA sequencing identified several differentially expressed genes (DEGs) in newly converted CSCs and RHBDL2, one of the DEGs, expression was upregulated. More importantly, RHBDL2 silencing inhibited the YAP1/USP31/NF-κB signaling and attenuated spontaneous CD44-/CD24- cell conversion into CSCs and their mammosphere formation. These findings suggest that the frequency of CD44-/CD24- tumor cells and RHBDL2 may be valuable for prognosis of delayed breast cancer metastasis, particularly for TNBC.
Collapse
Affiliation(s)
- Xinbo Qiao
- Department of Oncology, Shengjing Hospital, China Medical University, Shenyang, China
| | - Yixiao Zhang
- Department of Oncology, Shengjing Hospital, China Medical University, Shenyang, China.,Dapartment of Urology, Shengjing Hospital, China Medical University, Shenyang, China
| | - Lisha Sun
- Department of Oncology, Shengjing Hospital, China Medical University, Shenyang, China
| | - Qingtian Ma
- Department of Oncology, Shengjing Hospital, China Medical University, Shenyang, China
| | - Jie Yang
- Department of Oncology, Shengjing Hospital, China Medical University, Shenyang, China
| | - Liping Ai
- Department of Oncology, Shengjing Hospital, China Medical University, Shenyang, China
| | - Jinqi Xue
- Department of Oncology, Shengjing Hospital, China Medical University, Shenyang, China
| | - Guanglei Chen
- Department of Oncology, Shengjing Hospital, China Medical University, Shenyang, China
| | - Hao Zhang
- Department of Oncology, Shengjing Hospital, China Medical University, Shenyang, China.,Department of Breast Surgery, Liaoning Cancer Hospital and Institute, Cancer Hospital of China Medical University, Shenyang, China
| | - Ce Ji
- Department of Oncology, Shengjing Hospital, China Medical University, Shenyang, China.,Department of General Surgery, Shengjing Hospital, China Medical University, Shenyang, China
| | - Xi Gu
- Department of Oncology, Shengjing Hospital, China Medical University, Shenyang, China
| | - Haixin Lei
- Institute of Cancer Stem Cell, Cancer Center, Dalian Medical University, Dalian, China
| | - Yongliang Yang
- Center for Molecular Medicine, School of Life Science and Biotechnology, Dalian University of Technology, Dalian, China
| | - Caigang Liu
- Department of Oncology, Shengjing Hospital, China Medical University, Shenyang, China
| |
Collapse
|
68
|
Krijgsman O, Kemper K, Boshuizen J, Vredevoogd DW, Rozeman EA, Ibanez Molero S, de Bruijn B, Cornelissen-Steijger P, Shahrabi A, Del Castillo Velasco-Herrera M, Song JY, Ligtenberg MA, Kluin RJC, Kuilman T, Ross-Macdonald P, Haanen JBAG, Adams DJ, Blank CU, Peeper DS. Predictive Immune-Checkpoint Blockade Classifiers Identify Tumors Responding to Inhibition of PD-1 and/or CTLA-4. Clin Cancer Res 2021; 27:5389-5400. [PMID: 34230026 DOI: 10.1158/1078-0432.ccr-20-4218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 12/01/2020] [Accepted: 06/25/2021] [Indexed: 11/16/2022]
Abstract
PURPOSE Combining anti-PD-1 + anti-CTLA-4 immune-checkpoint blockade (ICB) shows improved patient benefit, but it is associated with severe immune-related adverse events and exceedingly high cost. Therefore, there is a dire need to predict which patients respond to monotherapy and which require combination ICB treatment. EXPERIMENTAL DESIGN In patient-derived melanoma xenografts (PDX), human tumor microenvironment (TME) cells were swiftly replaced by murine cells upon transplantation. Using our XenofilteR deconvolution algorithm we curated human tumor cell RNA reads, which were subsequently subtracted in silico from bulk (tumor cell + TME) patients' melanoma RNA. This produced a purely tumor cell-intrinsic signature ("InTumor") and a signature comprising tumor cell-extrinsic RNA reads ("ExTumor"). RESULTS We show that whereas the InTumor signature predicts response to anti-PD-1, the ExTumor predicts anti-CTLA-4 benefit. In PDX, InTumorLO, but not InTumorHI, tumors are effectively eliminated by cytotoxic T cells. When used in conjunction, the InTumor and ExTumor signatures identify not only patients who have a substantially higher chance of responding to combination treatment than to either monotherapy, but also those who are likely to benefit little from anti-CTLA-4 on top of anti-PD-1. CONCLUSIONS These signatures may be exploited to distinguish melanoma patients who need combination ICB blockade from those who likely benefit from either monotherapy.
Collapse
Affiliation(s)
- Oscar Krijgsman
- Department of Molecular Oncology and Immunology, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Kristel Kemper
- Department of Molecular Oncology and Immunology, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Julia Boshuizen
- Department of Molecular Oncology and Immunology, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - David W Vredevoogd
- Department of Molecular Oncology and Immunology, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Elisa A Rozeman
- Medical Oncology Department, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Sofia Ibanez Molero
- Department of Molecular Oncology and Immunology, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Beaunelle de Bruijn
- Department of Molecular Oncology and Immunology, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Paulien Cornelissen-Steijger
- Department of Molecular Oncology and Immunology, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Aida Shahrabi
- Department of Molecular Oncology and Immunology, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | | | - Ji-Ying Song
- Animal Pathology, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Maarten A Ligtenberg
- Department of Molecular Oncology and Immunology, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Roelof J C Kluin
- Genomics Core Facility, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Thomas Kuilman
- Department of Molecular Oncology and Immunology, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | | | - John B A G Haanen
- Medical Oncology Department, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - David J Adams
- Experimental Cancer Genetics, The Wellcome Trust Sanger Institute, Hinxton, Cambridge, UK
| | - Christian U Blank
- Medical Oncology Department, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Daniel S Peeper
- Department of Molecular Oncology and Immunology, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, the Netherlands.
| |
Collapse
|
69
|
Kim YJ, Sheu KM, Tsoi J, Abril-Rodriguez G, Medina E, Grasso CS, Torrejon DY, Champhekar AS, Litchfield K, Swanton C, Speiser DE, Scumpia PO, Hoffmann A, Graeber TG, Puig-Saus C, Ribas A. Melanoma dedifferentiation induced by IFN-γ epigenetic remodeling in response to anti-PD-1 therapy. J Clin Invest 2021; 131:145859. [PMID: 33914706 DOI: 10.1172/jci145859] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 04/28/2021] [Indexed: 12/28/2022] Open
Abstract
Melanoma dedifferentiation has been reported to be a state of cellular resistance to targeted therapies and immunotherapies as cancer cells revert to a more primitive cellular phenotype. Here, we show that, counterintuitively, the biopsies of patient tumors that responded to anti-programmed cell death 1 (anti-PD-1) therapy had decreased expression of melanocytic markers and increased neural crest markers, suggesting treatment-induced dedifferentiation. When modeling the effects in vitro, we documented that melanoma cell lines that were originally differentiated underwent a process of neural crest dedifferentiation when continuously exposed to IFN-γ, through global chromatin landscape changes that led to enrichment in specific hyperaccessible chromatin regions. The IFN-γ-induced dedifferentiation signature corresponded with improved outcomes in patients with melanoma, challenging the notion that neural crest dedifferentiation is entirely an adverse phenotype.
Collapse
Affiliation(s)
- Yeon Joo Kim
- Department of Medicine.,Department of Molecular and Medical Pharmacology, and
| | - Katherine M Sheu
- Department of Medicine.,Department of Microbiology, Immunology, and Molecular Genetics, UCLA, Los Angeles, California, USA
| | | | | | | | - Catherine S Grasso
- Department of Surgery, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | | | | | - Kevin Litchfield
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, United Kingdom
| | - Charles Swanton
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, United Kingdom.,Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, London, United Kingdom
| | | | | | - Alexander Hoffmann
- Department of Microbiology, Immunology, and Molecular Genetics, UCLA, Los Angeles, California, USA
| | - Thomas G Graeber
- Department of Molecular and Medical Pharmacology, and.,Jonsson Comprehensive Cancer Center, Los Angeles, California, USA.,Crump Institute for Molecular Imaging, Los Angeles, California, USA
| | - Cristina Puig-Saus
- Department of Medicine.,Jonsson Comprehensive Cancer Center, Los Angeles, California, USA.,Parker Institute for Cancer Immunotherapy, San Francisco, California, USA
| | - Antoni Ribas
- Department of Medicine.,Department of Molecular and Medical Pharmacology, and.,Jonsson Comprehensive Cancer Center, Los Angeles, California, USA.,Parker Institute for Cancer Immunotherapy, San Francisco, California, USA.,Department of Surgery, Division of Surgical Oncology, UCLA, Los Angeles, California, USA
| |
Collapse
|
70
|
Zhou B, Gao Y, Zhang P, Chu Q. Acquired Resistance to Immune Checkpoint Blockades: The Underlying Mechanisms and Potential Strategies. Front Immunol 2021; 12:693609. [PMID: 34194441 PMCID: PMC8236848 DOI: 10.3389/fimmu.2021.693609] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Accepted: 05/28/2021] [Indexed: 01/05/2023] Open
Abstract
The immune checkpoint blockade therapy has completely transformed cancer treatment modalities because of its unprecedented and durable clinical responses in various cancers. With the increasing use of immune checkpoint blockades in clinical practice, a large number of patients develop acquired resistance. However, the knowledge about acquired resistance to immune checkpoint blockades is limited and poorly summarized. In this review, we clarify the principal elements of acquired resistance to immune checkpoint blockades. The definition of acquired resistance is heterogeneous among groups or societies, but the expert consensus of The Society for Immunotherapy of Cancer can be referred. Oligo-progression is the main pattern of acquired resistance. Acquired resistance can be derived from the selection of resistant cancer cell clones that exist in the tumor mass before therapeutic intervention or gradual acquisition in the sensitive cancer cells. Specifically, tumor intrinsic mechanisms include neoantigen depletion, defects in antigen presentation machinery, aberrations of interferon signaling, tumor-induced exclusion/immunosuppression, and tumor cell plasticity. Tumor extrinsic mechanisms include upregulation of other immune checkpoints. Presently, a set of treatment modalities is applied to patients with similar clinical characteristics or resistance mechanisms for overcoming acquired resistance, and hence, further research is required.
Collapse
Affiliation(s)
- Binghan Zhou
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yuan Gao
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Peng Zhang
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qian Chu
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
71
|
Lim SY, Alavi S, Ming Z, Shklovskaya E, Fung C, Stewart A, Rizos H. Melanoma Cell State-Specific Responses to TNFα. Biomedicines 2021; 9:biomedicines9060605. [PMID: 34073253 PMCID: PMC8230114 DOI: 10.3390/biomedicines9060605] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 05/21/2021] [Accepted: 05/24/2021] [Indexed: 11/16/2022] Open
Abstract
Immune checkpoint inhibitors that target the programmed cell death protein 1 (PD1) pathway have revolutionized the treatment of patients with advanced metastatic melanoma. PD1 inhibitors reinvigorate exhausted tumor-reactive T cells, thus restoring anti-tumor immunity. Tumor necrosis factor alpha (TNFα) is abundantly expressed as a consequence of T cell activation and can have pleiotropic effects on melanoma response and resistance to PD1 inhibitors. In this study, we examined the influence of TNFα on markers of melanoma dedifferentiation, antigen presentation and immune inhibition in a panel of 40 melanoma cell lines. We report that TNFα signaling is retained in all melanomas but the downstream impact of TNFα was dependent on the differentiation status of melanoma cells. We show that TNFα is a poor inducer of antigen presentation molecules HLA-ABC and HLA-DR but readily induces the PD-L2 immune checkpoint in melanoma cells. Our results suggest that TNFα promotes dynamic changes in melanoma cells that may favor immunotherapy resistance.
Collapse
Affiliation(s)
- Su Yin Lim
- Department of Biomedical Sciences, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW 2109, Australia; (S.Y.L.); (Z.M.); (E.S.); (C.F.); (A.S.)
- Melanoma Institute Australia, Sydney, NSW 2065, Australia;
| | - Sara Alavi
- Melanoma Institute Australia, Sydney, NSW 2065, Australia;
- Melanoma Oncology and Immunology, Centenary Institute, Camperdown, NSW 2050, Australia
| | - Zizhen Ming
- Department of Biomedical Sciences, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW 2109, Australia; (S.Y.L.); (Z.M.); (E.S.); (C.F.); (A.S.)
- Melanoma Institute Australia, Sydney, NSW 2065, Australia;
| | - Elena Shklovskaya
- Department of Biomedical Sciences, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW 2109, Australia; (S.Y.L.); (Z.M.); (E.S.); (C.F.); (A.S.)
- Melanoma Institute Australia, Sydney, NSW 2065, Australia;
| | - Carina Fung
- Department of Biomedical Sciences, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW 2109, Australia; (S.Y.L.); (Z.M.); (E.S.); (C.F.); (A.S.)
- Melanoma Institute Australia, Sydney, NSW 2065, Australia;
| | - Ashleigh Stewart
- Department of Biomedical Sciences, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW 2109, Australia; (S.Y.L.); (Z.M.); (E.S.); (C.F.); (A.S.)
- Melanoma Institute Australia, Sydney, NSW 2065, Australia;
| | - Helen Rizos
- Department of Biomedical Sciences, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW 2109, Australia; (S.Y.L.); (Z.M.); (E.S.); (C.F.); (A.S.)
- Melanoma Institute Australia, Sydney, NSW 2065, Australia;
- Correspondence: ; Tel.: +61-02-98502762
| |
Collapse
|
72
|
Oba J, Woodman SE. The genetic and epigenetic basis of distinct melanoma types. J Dermatol 2021; 48:925-939. [PMID: 34008215 DOI: 10.1111/1346-8138.15957] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Accepted: 04/14/2021] [Indexed: 12/12/2022]
Abstract
Melanoma represents the deadliest skin cancer. Recent therapeutic developments, including targeted and immune therapies have revolutionized clinical management and improved patient outcome. This progress was achieved by rigorous molecular and functional studies followed by robust clinical trials. The identification of key genomic alterations and gene expression profiles have propelled the understanding of distinct characteristics within melanoma subtypes. The aim of this review is to summarize and highlight the main genetic and epigenetic findings of melanomas and highlight their pathological and therapeutic importance.
Collapse
Affiliation(s)
- Junna Oba
- Genomics Unit, Keio Cancer Center, Keio University School of Medicine, Tokyo, Japan
| | - Scott E Woodman
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
73
|
Pedri D, Karras P, Landeloos E, Marine JC, Rambow F. Epithelial-to-mesenchymal-like transition events in melanoma. FEBS J 2021; 289:1352-1368. [PMID: 33999497 DOI: 10.1111/febs.16021] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Revised: 05/11/2021] [Accepted: 05/14/2021] [Indexed: 11/30/2022]
Abstract
Epithelial-to-mesenchymal transition (EMT), a process through which epithelial tumor cells acquire mesenchymal phenotypic properties, contributes to both metastatic dissemination and therapy resistance in cancer. Accumulating evidence indicates that nonepithelial tumors, including melanoma, can also gain mesenchymal-like properties that increase their metastatic propensity and decrease their sensitivity to therapy. In this review, we discuss recent findings, illustrating the striking similarities-but also knowledge gaps-between the biology of mesenchymal-like state(s) in melanoma and mesenchymal state(s) from epithelial cancers. Based on this comparative analysis, we suggest hypothesis-driven experimental approaches to further deepen our understanding of the EMT-like process in melanoma and how such investigations may pave the way towards the identification of clinically relevant biomarkers for prognosis and new therapeutic strategies.
Collapse
Affiliation(s)
- Dennis Pedri
- Laboratory for Molecular Cancer Biology, Center for Cancer Biology, VIB, Leuven, Belgium.,Laboratory for Molecular Cancer Biology, Department of Oncology, KU Leuven, Belgium.,Laboratory of Membrane Trafficking, Center for Brain and Disease Research, VIB, Leuven, Belgium
| | - Panagiotis Karras
- Laboratory for Molecular Cancer Biology, Center for Cancer Biology, VIB, Leuven, Belgium.,Laboratory for Molecular Cancer Biology, Department of Oncology, KU Leuven, Belgium
| | - Ewout Landeloos
- Laboratory for Molecular Cancer Biology, Center for Cancer Biology, VIB, Leuven, Belgium.,Laboratory for Molecular Cancer Biology, Department of Oncology, KU Leuven, Belgium
| | - Jean-Christophe Marine
- Laboratory for Molecular Cancer Biology, Center for Cancer Biology, VIB, Leuven, Belgium.,Laboratory for Molecular Cancer Biology, Department of Oncology, KU Leuven, Belgium
| | - Florian Rambow
- Laboratory for Molecular Cancer Biology, Center for Cancer Biology, VIB, Leuven, Belgium.,Laboratory for Molecular Cancer Biology, Department of Oncology, KU Leuven, Belgium
| |
Collapse
|
74
|
Giron P, Eggermont C, Noeparast A, Vandenplas H, Teugels E, Forsyth R, De Wever O, Aza‐Blanc P, Gutierrez GJ, De Grève J. Targeting USP13-mediated drug tolerance increases the efficacy of EGFR inhibition of mutant EGFR in non-small cell lung cancer. Int J Cancer 2021; 148:2579-2593. [PMID: 33210294 PMCID: PMC8048518 DOI: 10.1002/ijc.33404] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 10/15/2020] [Accepted: 11/03/2020] [Indexed: 12/11/2022]
Abstract
In non-small cell lung cancer (NSCLC), activating mutations in the epidermal growth factor receptor (EGFR) induce sensitivity to EGFR tyrosine kinase inhibitors. Despite impressive clinical responses, patients ultimately relapse as a reservoir of drug-tolerant cells persist, which ultimately leads to acquired resistance mechanisms. We performed an unbiased high-throughput siRNA screen to identify proteins that abrogate the response of EGFR-mutant NSCLC to EGFR-targeted therapy. The deubiquitinase USP13 was a top hit resulting from this screen. Targeting USP13 increases the sensitivity to EGFR inhibition with small molecules in vitro and in vivo. USP13 selectively stabilizes mutant EGFR in a peptidase-independent manner by counteracting the action of members of the Cbl family of E3 ubiquitin ligases. We conclude that USP13 is a strong mutant EGFR-specific cotarget that could improve the treatment efficacy of EGFR-targeted therapies.
Collapse
Affiliation(s)
- Philippe Giron
- Laboratory of Medical and Molecular Oncology; Oncology Research Center, Faculty of Medicine and PharmacyVrije Universiteit BrusselBrusselsBelgium
- Laboratory of Pathophysiological Cell Signaling, Department of Biology, Faculty of Science and Bioengineering SciencesVrije Universiteit BrusselBrusselsBelgium
- Center of Medical GeneticsUZ BrusselBrusselsBelgium
| | - Carolien Eggermont
- Laboratory of Medical and Molecular Oncology; Oncology Research Center, Faculty of Medicine and PharmacyVrije Universiteit BrusselBrusselsBelgium
- Laboratory of Pathophysiological Cell Signaling, Department of Biology, Faculty of Science and Bioengineering SciencesVrije Universiteit BrusselBrusselsBelgium
| | - Amir Noeparast
- Laboratory of Medical and Molecular Oncology; Oncology Research Center, Faculty of Medicine and PharmacyVrije Universiteit BrusselBrusselsBelgium
| | - Hugo Vandenplas
- Laboratory of Medical and Molecular Oncology; Oncology Research Center, Faculty of Medicine and PharmacyVrije Universiteit BrusselBrusselsBelgium
| | - Erik Teugels
- Laboratory of Medical and Molecular Oncology; Oncology Research Center, Faculty of Medicine and PharmacyVrije Universiteit BrusselBrusselsBelgium
| | - Ramses Forsyth
- Laboratory of Anatomical and Experimental PathologyUZ BrusselBrusselsBelgium
| | - Olivier De Wever
- Laboratory of Experimental Cancer Research, Faculty of Medicine and Health SciencesGhent UniversityGhentBelgium
| | - Pedro Aza‐Blanc
- Sanford‐Burnham‐Prebys Medical Discovery InstituteLa JollaCaliforniaUSA
| | - Gustavo J. Gutierrez
- Laboratory of Pathophysiological Cell Signaling, Department of Biology, Faculty of Science and Bioengineering SciencesVrije Universiteit BrusselBrusselsBelgium
| | - Jacques De Grève
- Laboratory of Medical and Molecular Oncology; Oncology Research Center, Faculty of Medicine and PharmacyVrije Universiteit BrusselBrusselsBelgium
- Center of Medical GeneticsUZ BrusselBrusselsBelgium
| |
Collapse
|
75
|
Huang F, Gonçalves C, Bartish M, Rémy-Sarrazin J, Issa ME, Cordeiro B, Guo Q, Emond A, Attias M, Yang W, Plourde D, Su J, Gimeno MG, Zhan Y, Galán A, Rzymski T, Mazan M, Masiejczyk M, Faber J, Khoury E, Benoit A, Gagnon N, Dankort D, Journe F, Ghanem GE, Krawczyk CM, Saragovi HU, Piccirillo CA, Sonenberg N, Topisirovic I, Rudd CE, Miller WH, del Rincón SV. Inhibiting the MNK1/2-eIF4E axis impairs melanoma phenotype switching and potentiates antitumor immune responses. J Clin Invest 2021; 131:140752. [PMID: 33690225 PMCID: PMC8262472 DOI: 10.1172/jci140752] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 03/03/2021] [Indexed: 12/19/2022] Open
Abstract
Melanomas commonly undergo a phenotype switch, from a proliferative to an invasive state. Such tumor cell plasticity contributes to immunotherapy resistance; however, the mechanisms are not completely understood and thus are therapeutically unexploited. Using melanoma mouse models, we demonstrated that blocking the MNK1/2-eIF4E axis inhibited melanoma phenotype switching and sensitized melanoma to anti-PD-1 immunotherapy. We showed that phospho-eIF4E-deficient murine melanomas expressed high levels of melanocytic antigens, with similar results verified in patient melanomas. Mechanistically, we identified phospho-eIF4E-mediated translational control of NGFR, a critical effector of phenotype switching. Genetic ablation of phospho-eIF4E reprogrammed the immunosuppressive microenvironment, exemplified by lowered production of inflammatory factors, decreased PD-L1 expression on dendritic cells and myeloid-derived suppressor cells, and increased CD8+ T cell infiltrates. Finally, dual blockade of the MNK1/2-eIF4E axis and the PD-1/PD-L1 immune checkpoint demonstrated efficacy in multiple melanoma models regardless of their genomic classification. An increase in the presence of intratumoral stem-like TCF1+PD-1+CD8+ T cells, a characteristic essential for durable antitumor immunity, was detected in mice given a MNK1/2 inhibitor and anti-PD-1 therapy. Using MNK1/2 inhibitors to repress phospho-eIF4E thus offers a strategy to inhibit melanoma plasticity and improve response to anti-PD-1 immunotherapy.
Collapse
Affiliation(s)
- Fan Huang
- Lady Davis Institute, Jewish General Hospital, Montréal, Quebec, Canada
- Division of Experimental Medicine, McGill University, Montréal, Quebec, Canada
| | | | - Margarita Bartish
- Lady Davis Institute, Jewish General Hospital, Montréal, Quebec, Canada
- Division of Experimental Medicine, McGill University, Montréal, Quebec, Canada
| | | | - Mark E. Issa
- Maisonneuve-Rosemont Hospital Research Centre, Montréal, Quebec, Canada
| | | | - Qianyu Guo
- Lady Davis Institute, Jewish General Hospital, Montréal, Quebec, Canada
- Division of Experimental Medicine, McGill University, Montréal, Quebec, Canada
| | - Audrey Emond
- Lady Davis Institute, Jewish General Hospital, Montréal, Quebec, Canada
| | - Mikhael Attias
- Department of Microbiology and Immunology and
- Research Institute of the McGill University Health Centre, McGill University, Montréal, Quebec, Canada
| | - William Yang
- Lady Davis Institute, Jewish General Hospital, Montréal, Quebec, Canada
- Division of Experimental Medicine, McGill University, Montréal, Quebec, Canada
| | - Dany Plourde
- Lady Davis Institute, Jewish General Hospital, Montréal, Quebec, Canada
| | - Jie Su
- Lady Davis Institute, Jewish General Hospital, Montréal, Quebec, Canada
| | - Marina Godoy Gimeno
- University Veterinary Teaching Hospital Camden, Faculty of Science, University of Sydney, Sydney, New South Wales, Australia
| | - Yao Zhan
- Lady Davis Institute, Jewish General Hospital, Montréal, Quebec, Canada
- Division of Experimental Medicine, McGill University, Montréal, Quebec, Canada
| | - Alba Galán
- Lady Davis Institute, Jewish General Hospital, Montréal, Quebec, Canada
| | | | | | | | | | - Elie Khoury
- Lady Davis Institute, Jewish General Hospital, Montréal, Quebec, Canada
- Division of Experimental Medicine, McGill University, Montréal, Quebec, Canada
| | - Alexandre Benoit
- Lady Davis Institute, Jewish General Hospital, Montréal, Quebec, Canada
- Division of Experimental Medicine, McGill University, Montréal, Quebec, Canada
| | - Natascha Gagnon
- Lady Davis Institute, Jewish General Hospital, Montréal, Quebec, Canada
| | - David Dankort
- Department of Biology and
- Goodman Cancer Research Center, McGill University, Montréal, Quebec, Canada
| | - Fabrice Journe
- Laboratory of Oncology and Experimental Surgery, Institut Jules Bordet, Université Libre de Bruxelles, Brussels, Belgium
| | - Ghanem E. Ghanem
- Laboratory of Oncology and Experimental Surgery, Institut Jules Bordet, Université Libre de Bruxelles, Brussels, Belgium
| | | | - H. Uri Saragovi
- Lady Davis Institute, Jewish General Hospital, Montréal, Quebec, Canada
- Department of Pharmacology and Therapeutics
| | - Ciriaco A. Piccirillo
- Department of Microbiology and Immunology and
- Research Institute of the McGill University Health Centre, McGill University, Montréal, Quebec, Canada
| | - Nahum Sonenberg
- Goodman Cancer Research Center, McGill University, Montréal, Quebec, Canada
- Department of Biochemistry, and
| | - Ivan Topisirovic
- Lady Davis Institute, Jewish General Hospital, Montréal, Quebec, Canada
- Division of Experimental Medicine, McGill University, Montréal, Quebec, Canada
- McGill Centre for Translational Research in Cancer, McGill University, Montréal, Quebec, Canada
| | - Christopher E. Rudd
- Maisonneuve-Rosemont Hospital Research Centre, Montréal, Quebec, Canada
- McGill Centre for Translational Research in Cancer, McGill University, Montréal, Quebec, Canada
| | - Wilson H. Miller
- Lady Davis Institute, Jewish General Hospital, Montréal, Quebec, Canada
- Division of Experimental Medicine, McGill University, Montréal, Quebec, Canada
- McGill Centre for Translational Research in Cancer, McGill University, Montréal, Quebec, Canada
| | - Sonia V. del Rincón
- Lady Davis Institute, Jewish General Hospital, Montréal, Quebec, Canada
- Division of Experimental Medicine, McGill University, Montréal, Quebec, Canada
- McGill Centre for Translational Research in Cancer, McGill University, Montréal, Quebec, Canada
| |
Collapse
|
76
|
Lahman MC, Paulson KG, Nghiem PT, Chapuis AG. Quality Is King: Fundamental Insights into Tumor Antigenicity from Virus-Associated Merkel Cell Carcinoma. J Invest Dermatol 2021; 141:1897-1905. [PMID: 33863500 DOI: 10.1016/j.jid.2020.12.037] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 11/27/2020] [Accepted: 12/18/2020] [Indexed: 12/27/2022]
Abstract
Merkel cell carcinoma (MCC) is a rare skin malignancy that is a paradigm cancer for solid tumor immunotherapy. MCCs associated with Merkel cell polyomavirus (virus-positive MCC [VP-MCC]) or chronic UV exposure (virus-negative MCC [VN-MCC]) are anti-PD(L)1 responsive, despite VP-MCC's low mutational burden. This suggests that antigen quality, not merely mutation quantity, dictates immunotherapy responsiveness, and cell-based therapies targeting optimal antigens may be effective. Despite VP-MCC's antigenic homogeneity, diverse T-cell infiltration patterns are observed, implying microenvironment plasticity and multifactorial contributions to immune recognition. Moreover, VP-MCC exemplifies how antitumor adaptive immunity can provide tumor burden biomarkers for early detection and disease monitoring.
Collapse
Affiliation(s)
- Miranda C Lahman
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA; Department of Pathology, University of Washington School of Medicine, Seattle, Washington, USA
| | - Kelly G Paulson
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA; Department of Pathology, University of Washington School of Medicine, Seattle, Washington, USA; Medical Oncology, Swedish Cancer Institute, Seattle, Washington, USA; Elson S. Floyd College of Medicine, Washington State University, Spokane, Washington, USA
| | - Paul T Nghiem
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA; Department of Pathology, University of Washington School of Medicine, Seattle, Washington, USA
| | - Aude G Chapuis
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA; Department of Pathology, University of Washington School of Medicine, Seattle, Washington, USA.
| |
Collapse
|
77
|
Aldea M, Andre F, Marabelle A, Dogan S, Barlesi F, Soria JC. Overcoming Resistance to Tumor-Targeted and Immune-Targeted Therapies. Cancer Discov 2021; 11:874-899. [PMID: 33811122 DOI: 10.1158/2159-8290.cd-20-1638] [Citation(s) in RCA: 114] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 01/13/2021] [Accepted: 02/01/2021] [Indexed: 11/16/2022]
Abstract
Resistance to anticancer therapies includes primary resistance, usually related to lack of target dependency or presence of additional targets, and secondary resistance, mostly driven by adaptation of the cancer cell to the selection pressure of treatment. Resistance to targeted therapy is frequently acquired, driven by on-target, bypass alterations, or cellular plasticity. Resistance to immunotherapy is often primary, orchestrated by sophisticated tumor-host-microenvironment interactions, but could also occur after initial efficacy, mostly when only partial responses are obtained. Here, we provide an overview of resistance to tumor and immune-targeted therapies and discuss challenges of overcoming resistance, and current and future directions of development. SIGNIFICANCE: A better and earlier identification of cancer-resistance mechanisms could avoid the use of ineffective drugs in patients not responding to therapy and provide the rationale for the administration of personalized drug associations. A clear description of the molecular interplayers is a prerequisite to the development of novel and dedicated anticancer drugs. Finally, the implementation of such cancer molecular and immunologic explorations in prospective clinical trials could de-risk the demonstration of more effective anticancer strategies in randomized registration trials, and bring us closer to the promise of cure.
Collapse
Affiliation(s)
- Mihaela Aldea
- Department of Medical Oncology, Gustave Roussy, Villejuif, France
| | - Fabrice Andre
- Department of Medical Oncology, Gustave Roussy, Villejuif, France.,INSERM U981, PRISM Institute, Gustave Roussy, Villejuif, France.,Paris Saclay University, Saint-Aubin, France
| | - Aurelien Marabelle
- INSERM U981, PRISM Institute, Gustave Roussy, Villejuif, France.,Drug Development Department, Gustave Roussy, Villejuif, France
| | - Semih Dogan
- INSERM U981, PRISM Institute, Gustave Roussy, Villejuif, France
| | - Fabrice Barlesi
- Department of Medical Oncology, Gustave Roussy, Villejuif, France.,Aix Marseille University, CNRS, INSERM, CRCM, Marseille, France
| | - Jean-Charles Soria
- Paris Saclay University, Saint-Aubin, France. .,Drug Development Department, Gustave Roussy, Villejuif, France
| |
Collapse
|
78
|
Harbers FN, Thier B, Stupia S, Zhu S, Schwamborn M, Peller V, Chauvistré H, Crivello P, Fleischhauer K, Roesch A, Sucker A, Schadendorf D, Chen Y, Paschen A, Zhao F. Melanoma Differentiation Trajectories Determine Sensitivity Toward Pre-Existing CD8 + Tumor-Infiltrating Lymphocytes. J Invest Dermatol 2021; 141:2480-2489. [PMID: 33798535 DOI: 10.1016/j.jid.2021.03.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 02/23/2021] [Accepted: 03/16/2021] [Indexed: 11/19/2022]
Abstract
The highly plastic nature of melanoma enables its transition among diverse cell states to survive hostile conditions. However, the interplay between specific tumor cell states and intratumoral T cells remains poorly defined. With MAPK inhibitor‒treated BRAFV600-mutant tumors as models, we linked human melanoma state transition to CD8+ T cell responses. Repeatedly, we observed that isogenic melanoma cells could evolve along distinct differentiation trajectories on single BRAF inhibitor (BRAFi) treatment or dual BRAFi/MEKi treatment, resulting in BRAFi‒induced hyperdifferentiated and BRAFi/MEKi‒induced dedifferentiated resistant subtypes. Taking advantage of patient-derived autologous CD8+ tumor-infiltrating lymphocytes (TILs), we demonstrate that progressive melanoma cell state transition profoundly affects TIL function. Tumor cells along the hyperdifferentiation trajectory continuously gained sensitivity toward tumor-reactive CD8+ TILs, whereas those in the dedifferentiation trajectory acquired T cell resistance in part owing to the loss of differentiation antigens. Overall, our data reveal the tight connection of MAPKi‒induced temporary (drug-tolerant transition state) and stable (resistant state) phenotype alterations with T cell function and further broaden the current knowledge on melanoma plasticity in terms of sculpting local antitumor immune responses, with implications for guiding the optimal combination of targeted therapy and immunotherapy.
Collapse
Affiliation(s)
- Franziska Noelle Harbers
- Department of Dermatology, University Hospital Essen, University Duisburg-Essen and German Cancer Consortium (DKTK), Partner Site Essen/Düsseldorf, Essen, Germany
| | - Beatrice Thier
- Department of Dermatology, University Hospital Essen, University Duisburg-Essen and German Cancer Consortium (DKTK), Partner Site Essen/Düsseldorf, Essen, Germany
| | - Simone Stupia
- Department of Dermatology, University Hospital Essen, University Duisburg-Essen and German Cancer Consortium (DKTK), Partner Site Essen/Düsseldorf, Essen, Germany
| | - Si Zhu
- Department of Dermatology, University Hospital Essen, University Duisburg-Essen and German Cancer Consortium (DKTK), Partner Site Essen/Düsseldorf, Essen, Germany
| | - Marion Schwamborn
- Department of Dermatology, University Hospital Essen, University Duisburg-Essen and German Cancer Consortium (DKTK), Partner Site Essen/Düsseldorf, Essen, Germany
| | - Vicky Peller
- Department of Dermatology, University Hospital Essen, University Duisburg-Essen and German Cancer Consortium (DKTK), Partner Site Essen/Düsseldorf, Essen, Germany
| | - Heike Chauvistré
- Department of Dermatology, University Hospital Essen, University Duisburg-Essen and German Cancer Consortium (DKTK), Partner Site Essen/Düsseldorf, Essen, Germany
| | - Pietro Crivello
- Institute for Experimental Cellular Therapy, University Hospital Essen, Essen, Germany
| | | | - Alexander Roesch
- Department of Dermatology, University Hospital Essen, University Duisburg-Essen and German Cancer Consortium (DKTK), Partner Site Essen/Düsseldorf, Essen, Germany
| | - Antje Sucker
- Department of Dermatology, University Hospital Essen, University Duisburg-Essen and German Cancer Consortium (DKTK), Partner Site Essen/Düsseldorf, Essen, Germany
| | - Dirk Schadendorf
- Department of Dermatology, University Hospital Essen, University Duisburg-Essen and German Cancer Consortium (DKTK), Partner Site Essen/Düsseldorf, Essen, Germany
| | - Yong Chen
- Department of Musculoskeletal Oncology, Fudan University Shanghai Cancer Center, Fudan University, Shanghai, China
| | - Annette Paschen
- Department of Dermatology, University Hospital Essen, University Duisburg-Essen and German Cancer Consortium (DKTK), Partner Site Essen/Düsseldorf, Essen, Germany
| | - Fang Zhao
- Department of Dermatology, University Hospital Essen, University Duisburg-Essen and German Cancer Consortium (DKTK), Partner Site Essen/Düsseldorf, Essen, Germany.
| |
Collapse
|
79
|
Čermák V, Škarková A, Merta L, Kolomazníková V, Palušová V, Uldrijan S, Rösel D, Brábek J. RNA-seq Characterization of Melanoma Phenotype Switch in 3D Collagen after p38 MAPK Inhibitor Treatment. Biomolecules 2021; 11:biom11030449. [PMID: 33802847 PMCID: PMC8002814 DOI: 10.3390/biom11030449] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 03/08/2021] [Accepted: 03/15/2021] [Indexed: 12/30/2022] Open
Abstract
Melanoma phenotype plasticity underlies tumour dissemination and resistance to therapy, yet its regulation is incompletely understood. In vivo switching between a more differentiated, proliferative phenotype and a dedifferentiated, invasive phenotype is directed by the tumour microenvironment. We found that treatment of partially dedifferentiated, invasive A375M2 cells with two structurally unrelated p38 MAPK inhibitors, SB2021920 and BIRB796, induces a phenotype switch in 3D collagen, as documented by increased expression of melanocyte differentiation markers and a loss of invasive phenotype markers. The phenotype is accompanied by morphological change corresponding to amoeboid–mesenchymal transition. We performed RNA sequencing with an Illumina HiSeq platform to fully characterise transcriptome changes underlying the switch. Gene expression results obtained with RNA-seq were validated by comparing them with RT-qPCR. Transcriptomic data generated in the study will extend the present understanding of phenotype plasticity in melanoma and its contribution to invasion and metastasis.
Collapse
Affiliation(s)
- Vladimír Čermák
- Department of Cell Biology, Charles University, Viničná 7, 128 44 Prague, Czech Republic; (V.Č.); (A.Š.); (L.M.); (V.K.); (D.R.)
- Biotechnology and Biomedicine Centre of the Academy of Sciences and Charles University (BIOCEV), Průmyslová 595, 252 42 Vestec u Prahy, Czech Republic
| | - Aneta Škarková
- Department of Cell Biology, Charles University, Viničná 7, 128 44 Prague, Czech Republic; (V.Č.); (A.Š.); (L.M.); (V.K.); (D.R.)
- Biotechnology and Biomedicine Centre of the Academy of Sciences and Charles University (BIOCEV), Průmyslová 595, 252 42 Vestec u Prahy, Czech Republic
| | - Ladislav Merta
- Department of Cell Biology, Charles University, Viničná 7, 128 44 Prague, Czech Republic; (V.Č.); (A.Š.); (L.M.); (V.K.); (D.R.)
- Biotechnology and Biomedicine Centre of the Academy of Sciences and Charles University (BIOCEV), Průmyslová 595, 252 42 Vestec u Prahy, Czech Republic
| | - Veronika Kolomazníková
- Department of Cell Biology, Charles University, Viničná 7, 128 44 Prague, Czech Republic; (V.Č.); (A.Š.); (L.M.); (V.K.); (D.R.)
- Biotechnology and Biomedicine Centre of the Academy of Sciences and Charles University (BIOCEV), Průmyslová 595, 252 42 Vestec u Prahy, Czech Republic
| | - Veronika Palušová
- Department of Biology, Faculty of Medicine, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic; (V.P.); (S.U.)
- International Clinical Research Center, St. Anne’s University Hospital, Pekařská 53, 656 91 Brno, Czech Republic
| | - Stjepan Uldrijan
- Department of Biology, Faculty of Medicine, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic; (V.P.); (S.U.)
- International Clinical Research Center, St. Anne’s University Hospital, Pekařská 53, 656 91 Brno, Czech Republic
| | - Daniel Rösel
- Department of Cell Biology, Charles University, Viničná 7, 128 44 Prague, Czech Republic; (V.Č.); (A.Š.); (L.M.); (V.K.); (D.R.)
- Biotechnology and Biomedicine Centre of the Academy of Sciences and Charles University (BIOCEV), Průmyslová 595, 252 42 Vestec u Prahy, Czech Republic
| | - Jan Brábek
- Department of Cell Biology, Charles University, Viničná 7, 128 44 Prague, Czech Republic; (V.Č.); (A.Š.); (L.M.); (V.K.); (D.R.)
- Biotechnology and Biomedicine Centre of the Academy of Sciences and Charles University (BIOCEV), Průmyslová 595, 252 42 Vestec u Prahy, Czech Republic
- Correspondence: ; Tel./Fax: +420-3258-73900
| |
Collapse
|
80
|
De Conti G, Dias MH, Bernards R. Fighting Drug Resistance through the Targeting of Drug-Tolerant Persister Cells. Cancers (Basel) 2021; 13:1118. [PMID: 33807785 PMCID: PMC7961328 DOI: 10.3390/cancers13051118] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 02/24/2021] [Accepted: 02/28/2021] [Indexed: 12/12/2022] Open
Abstract
Designing specific therapies for drug-resistant cancers is arguably the ultimate challenge in cancer therapy. While much emphasis has been put on the study of genetic alterations that give rise to drug resistance, much less is known about the non-genetic adaptation mechanisms that operate during the early stages of drug resistance development. Drug-tolerant persister cells have been suggested to be key players in this process. These cells are thought to have undergone non-genetic adaptations that enable survival in the presence of a drug, from which full-blown resistant cells may emerge. Such initial adaptations often involve engagement of stress response programs to maintain cancer cell viability. In this review, we discuss the nature of drug-tolerant cancer phenotypes, as well as the non-genetic adaptations involved. We also discuss how malignant cells employ homeostatic stress response pathways to mitigate the intrinsic costs of such adaptations. Lastly, we discuss which vulnerabilities are introduced by these adaptations and how these might be exploited therapeutically.
Collapse
Affiliation(s)
| | | | - René Bernards
- Division of Molecular Carcinogenesis, Oncode Institute, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands; (G.D.C.); (M.H.D.)
| |
Collapse
|
81
|
Gramann AK, Frantz WT, Dresser K, Gomes CBF, Lian CG, Deng A, Ceol CJ. BMP Signaling Promotes Neural Crest Identity and Accelerates Melanoma Onset. J Invest Dermatol 2021; 141:2067-2070.e1. [PMID: 33610560 DOI: 10.1016/j.jid.2021.01.021] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 01/11/2021] [Accepted: 01/17/2021] [Indexed: 11/16/2022]
Affiliation(s)
- Alec K Gramann
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, USA; Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - William Tyler Frantz
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, USA; Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Karen Dresser
- Department of Dermatology, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Camilla Borges Ferreira Gomes
- Program in Dermatopathology, Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Christine G Lian
- Program in Dermatopathology, Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - April Deng
- Department of Dermatology, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Craig J Ceol
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, USA; Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, Massachusetts, USA.
| |
Collapse
|
82
|
Rosenbaum SR, Knecht M, Mollaee M, Zhong Z, Erkes DA, McCue PA, Chervoneva I, Berger AC, Lo JA, Fisher DE, Gershenwald JE, Davies MA, Purwin TJ, Aplin AE. FOXD3 Regulates VISTA Expression in Melanoma. Cell Rep 2021; 30:510-524.e6. [PMID: 31940493 PMCID: PMC6995351 DOI: 10.1016/j.celrep.2019.12.036] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 11/01/2019] [Accepted: 12/12/2019] [Indexed: 12/22/2022] Open
Abstract
Immune checkpoint inhibitors have improved patient survival in melanoma, but the innate resistance of many patients necessitates the investigation of alternative immune targets. Many immune checkpoint proteins lack proper characterization, including V-domain Ig suppressor of T cell activation (VISTA). VISTA expression on immune cells can suppress T cell activity; however, few studies have investigated its expression and regulation in cancer cells. In this study, we observe that VISTA is expressed in melanoma patient samples and cell lines. Tumor cell-specific expression of VISTA promotes tumor onset in vivo, associated with increased intratumoral T regulatory cells, and enhanced PDL-1 expression on tumor-infiltrating macrophages. VISTA transcript levels are regulated by the stemness factor Forkhead box D3 (FOXD3). BRAF inhibition upregulates FOXD3 and reduces VISTA expression. Overall, this study demonstrates melanoma cell expression of VISTA and its regulation by FOXD3, contributing to the rationale for therapeutic strategies that combine targeted inhibitors with immune checkpoint blockade. VISTA is an understudied immune checkpoint protein. Through the analysis of patient samples and studies in mouse models, Rosenbaum et al. investigate the functional consequences of VISTA expression on melanoma cells. Furthermore, they demonstrate that the BRAF-regulated transcription factor FOXD3 negatively regulates VISTA expression.
Collapse
Affiliation(s)
- Sheera R Rosenbaum
- Department of Cancer Biology, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Meghan Knecht
- Department of Cancer Biology, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Mehri Mollaee
- Department of Pathology, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Zhijiu Zhong
- Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Dan A Erkes
- Department of Cancer Biology, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Peter A McCue
- Department of Pathology, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Inna Chervoneva
- Division of Biostatistics in the Department of Pharmacology and Experimental Therapeutics, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Adam C Berger
- Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA 19107, USA; Department of Surgery, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Jennifer A Lo
- Department of Dermatology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - David E Fisher
- Department of Dermatology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Jeffrey E Gershenwald
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Michael A Davies
- Department of Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Timothy J Purwin
- Department of Cancer Biology, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Andrew E Aplin
- Department of Cancer Biology, Thomas Jefferson University, Philadelphia, PA 19107, USA; Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA 19107, USA.
| |
Collapse
|
83
|
Mercogliano MF, Bruni S, Mauro F, Elizalde PV, Schillaci R. Harnessing Tumor Necrosis Factor Alpha to Achieve Effective Cancer Immunotherapy. Cancers (Basel) 2021; 13:cancers13030564. [PMID: 33540543 PMCID: PMC7985780 DOI: 10.3390/cancers13030564] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 01/17/2021] [Accepted: 01/22/2021] [Indexed: 12/12/2022] Open
Abstract
Tumor necrosis factor alpha (TNFα) is a pleiotropic cytokine known to have contradictory roles in oncoimmunology. Indeed, TNFα has a central role in the onset of the immune response, inducing both activation and the effector function of macrophages, dendritic cells, natural killer (NK) cells, and B and T lymphocytes. Within the tumor microenvironment, however, TNFα is one of the main mediators of cancer-related inflammation. It is involved in the recruitment and differentiation of immune suppressor cells, leading to evasion of tumor immune surveillance. These characteristics turn TNFα into an attractive target to overcome therapy resistance and tackle cancer. This review focuses on the diverse molecular mechanisms that place TNFα as a source of resistance to immunotherapy such as monoclonal antibodies against cancer cells or immune checkpoints and adoptive cell therapy. We also expose the benefits of TNFα blocking strategies in combination with immunotherapy to improve the antitumor effect and prevent or treat adverse immune-related effects.
Collapse
Affiliation(s)
- María Florencia Mercogliano
- Laboratorio de Biofisicoquímica de Proteínas, Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales-Consejo Nacional de Investigaciones Científicas y Técnicas (IQUIBICEN-CONICET), Buenos Aires 1428, Argentina;
| | - Sofía Bruni
- Laboratory of Molecular Mechanisms of Carcinogenesis, Instituto de Biología y Medicina Experimental (IBYME-CONICET), Buenos Aires 1428, Argentina; (S.B.); (F.M.); (P.V.E.)
| | - Florencia Mauro
- Laboratory of Molecular Mechanisms of Carcinogenesis, Instituto de Biología y Medicina Experimental (IBYME-CONICET), Buenos Aires 1428, Argentina; (S.B.); (F.M.); (P.V.E.)
| | - Patricia Virginia Elizalde
- Laboratory of Molecular Mechanisms of Carcinogenesis, Instituto de Biología y Medicina Experimental (IBYME-CONICET), Buenos Aires 1428, Argentina; (S.B.); (F.M.); (P.V.E.)
| | - Roxana Schillaci
- Laboratory of Molecular Mechanisms of Carcinogenesis, Instituto de Biología y Medicina Experimental (IBYME-CONICET), Buenos Aires 1428, Argentina; (S.B.); (F.M.); (P.V.E.)
- Correspondence: ; Tel.: +54-11-4783-2869; Fax: +54-11-4786-2564
| |
Collapse
|
84
|
|
85
|
Yu S, Wang R, Tang H, Wang L, Zhang Z, Yang S, Jiao S, Wu X, Wang S, Wang M, Xu C, Wang Q, Wu Y. Evolution of Lung Cancer in the Context of Immunotherapy. CLINICAL MEDICINE INSIGHTS-ONCOLOGY 2021; 14:1179554920979697. [PMID: 33447125 PMCID: PMC7780173 DOI: 10.1177/1179554920979697] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Accepted: 11/09/2020] [Indexed: 12/26/2022]
Abstract
Immunotherapy, as a novel treatment, has brought new hope to many patients with cancer, including patients with lung cancer. However, the overall cure rate and survival rate of lung cancer are still not satisfactory. The process of evolution has improved the ability of tumors to adapt to immunotherapy, which induces drug resistance. Many studies have focused on immunoresistance and achieved meaningful results. Therefore, it is necessary to have an in-depth understanding of the current research progress in immunoresistance, which will help to achieve good clinical results more efficiently.
Collapse
Affiliation(s)
- Sheng Yu
- Department of Internal Medicine, Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, China
| | - Ruilin Wang
- Department of Internal Medicine, Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, China
| | - Hong Tang
- Department of Internal Medicine, Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, China
| | - Lili Wang
- Department of Internal Medicine, Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, China
| | - Zhe Zhang
- Department of Internal Medicine, Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, China
| | - Sen Yang
- Department of Internal Medicine, Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, China
| | - Shuyue Jiao
- Department of Internal Medicine, Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, China
| | - Xuan Wu
- Department of Internal Medicine, Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, China
| | - Shuai Wang
- Department of Internal Medicine, Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, China
| | - Mingyue Wang
- Department of Internal Medicine, Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, China
| | - Cong Xu
- Department of Internal Medicine, Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, China
| | - Qiming Wang
- Department of Internal Medicine, Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, China
| | - Yufeng Wu
- Department of Internal Medicine, Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, China
| |
Collapse
|
86
|
Reva BA, Omelchenko T, Nair SS, Tewari AK. Immune Escape in Prostate Cancer: Known and Predicted Mechanisms and Targets. Urol Clin North Am 2021; 47:e9-e16. [PMID: 33446324 DOI: 10.1016/j.ucl.2020.10.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Complex immune evasion mechanisms and lack of biomarkers predicting responsiveness to immune checkpoint blockade therapies compromise immunotherapy's therapeutic efficacy for patients with prostate cancer. The authors review established and nominated immune evasion mechanisms in prostate cancer and discuss how the precise treatment strategies can be developed to improve efficacy of immunotherapy.
Collapse
Affiliation(s)
- Boris A Reva
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
| | - Tatiana Omelchenko
- Cell Biology Program, Sloan Kettering Institute at Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Sujit S Nair
- The Department of Urology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1272, New York, NY 10029, USA
| | - Ashutosh K Tewari
- The Department of Urology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1272, New York, NY 10029, USA
| |
Collapse
|
87
|
Abstract
Adoptive cellular therapy (ACT) is a form of cancer immunotherapy in which lymphocytes are removed from patient blood or tumor samples, expanded and/or genetically modified to improve tumor-fighting capabilities, and infused back into the patient. The main forms of ACT include tumor infiltrating lymphocytes (TILs), engineered T cell receptor (TCR) T cells, and chimeric antigen receptor (CAR) T cells. While ACT has had success in hematological malignancies, particularly in B cell lymphomas targeted with CAR T cells, these favorable outcomes have yet to be replicated in solid tumors. Appropriate solid tumor target antigens are difficult to identify for ACT. Trafficking to tumor sites and infiltrating solid tumor burdens remains a problem for ACT cells. Persistence of ACT cells, which is important in creating a durable response, is also a major challenge, partly attributed to the formidable microtumor environment conditions. The costly and time-intensive manufacturing process for ACT is also an obstacle to widespread adoption. In this review, we discuss the challenges of ACT therapy in the treatment of solid tumors and explore the ongoing efforts to improve this immunotherapy approach in non-hematological malignancies.
Collapse
Affiliation(s)
- Joseph M Grimes
- Columbia University Vagelos College of Physicians and Surgeons, 630 W. 168th St., New York, NY, 10032, United States.
| | - Richard D Carvajal
- Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, 177 Fort Washington Avenue, New York, NY, 10032, United States.
| | - Pawel Muranski
- Department of Medicine, Division of Hematology/Oncology, Columbia University Irving Medical Center, 161 Fort Washington Avenue, New York, NY, 10032, United States.
| |
Collapse
|
88
|
Ballotti R, Cheli Y, Bertolotto C. The complex relationship between MITF and the immune system: a Melanoma ImmunoTherapy (response) Factor? Mol Cancer 2020; 19:170. [PMID: 33276788 PMCID: PMC7718690 DOI: 10.1186/s12943-020-01290-7] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 11/29/2020] [Indexed: 12/18/2022] Open
Abstract
The clinical benefit of immune checkpoint inhibitory therapy (ICT) in advanced melanomas is limited by primary and acquired resistance. The molecular determinants of the resistance have been extensively studied, but these discoveries have not yet been translated into therapeutic benefits. As such, a paradigm shift in melanoma treatment, to surmount the therapeutic impasses linked to the resistance, is an important ongoing challenge.This review outlines the multifaceted interplay between microphthalmia-associated transcription factor (MITF), a major determinant of the biology of melanoma cells, and the immune system. In melanomas, MITF functions downstream oncogenic pathways and microenvironment stimuli that restrain the immune responses. We highlight how MITF, by controlling differentiation and genome integrity, may regulate melanoma-specific antigen expression by interfering with the endolysosomal pathway, KARS1, and antigen processing and presentation. MITF also modulates the expression of coinhibitory receptors, i.e., PD-L1 and HVEM, and the production of an inflammatory secretome, which directly affects the infiltration and/or activation of the immune cells.Furthermore, MITF is also a key determinant of melanoma cell plasticity and tumor heterogeneity, which are undoubtedly one of the major hurdles for an effective immunotherapy. Finally, we briefly discuss the role of MITF in kidney cancer, where it also plays a key role, and in immune cells, establishing MITF as a central mediator in the regulation of immune responses in melanoma and other cancers.We propose that a better understanding of MITF and immune system intersections could help in the tailoring of current ICT in melanomas and pave the way for clinical benefits and long-lasting responses.
Collapse
Affiliation(s)
- Robert Ballotti
- Université Côte d'Azur, Nice, France
- Inserm, Biology and Pathologies of melanocytes, team1, Equipe labellisée Ligue 2020 and Equipe labellisée ARC 2019, Centre Méditerranéen de Médecine Moléculaire, Nice, France
| | - Yann Cheli
- Université Côte d'Azur, Nice, France
- Inserm, Biology and Pathologies of melanocytes, team1, Equipe labellisée Ligue 2020 and Equipe labellisée ARC 2019, Centre Méditerranéen de Médecine Moléculaire, Nice, France
| | - Corine Bertolotto
- Université Côte d'Azur, Nice, France.
- Inserm, Biology and Pathologies of melanocytes, team1, Equipe labellisée Ligue 2020 and Equipe labellisée ARC 2019, Centre Méditerranéen de Médecine Moléculaire, Nice, France.
| |
Collapse
|
89
|
Friedmann Angeli JP, Meierjohann S. NRF2-dependent stress defense in tumor antioxidant control and immune evasion. Pigment Cell Melanoma Res 2020; 34:268-279. [PMID: 33205526 DOI: 10.1111/pcmr.12946] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 10/23/2020] [Accepted: 11/12/2020] [Indexed: 12/17/2022]
Abstract
The transcription factor NRF2 is known as the master regulator of the oxidative stress response. Tumor entities presenting oncogenic activation of NRF2, such as lung adenocarcinoma, are associated with drug resistance, and accumulating evidence demonstrates its involvement in immune evasion. In other cancer types, the KEAP1/NRF2 pathway is not commonly mutated, but NRF2 is activated by other means such as radiation, oncogenic activity, cytokines, or other pro-oxidant triggers characteristic of the tumor niche. The obvious effect of stress-activated NRF2 is the protection from oxidative or electrophilic damage and the adaptation of the tumor metabolism to changing conditions. However, data from melanoma also reveal a role of NRF2 in modulating differentiation and suppressing anti-tumor immunity. This review summarizes the function of NRF2 in this tumor entity and discusses the implications for current tumor therapies.
Collapse
Affiliation(s)
- José Pedro Friedmann Angeli
- Rudolf-Virchow Center for Integrative and Translational Bioimaging, University of Würzburg, Würzburg, Germany
| | - Svenja Meierjohann
- Institute of Pathology, University of Würzburg, Würzburg, Germany.,Comprehensive Cancer Center Mainfranken, University of Würzburg, Würzburg, Germany
| |
Collapse
|
90
|
Abstract
Therapeutic resistance continues to be an indominable foe in our ambition for curative cancer treatment. Recent insights into the molecular determinants of acquired treatment resistance in the clinical and experimental setting have challenged the widely held view of sequential genetic evolution as the primary cause of resistance and brought into sharp focus a range of non-genetic adaptive mechanisms. Notably, the genetic landscape of the tumour and the non-genetic mechanisms used to escape therapy are frequently linked. Remarkably, whereas some oncogenic mutations allow the cancer cells to rapidly adapt their transcriptional and/or metabolic programme to meet and survive the therapeutic pressure, other oncogenic drivers convey an inherent cellular plasticity to the cancer cell enabling lineage switching and/or the evasion of anticancer immunosurveillance. The prevalence and diverse array of non-genetic resistance mechanisms pose a new challenge to the field that requires innovative strategies to monitor and counteract these adaptive processes. In this Perspective we discuss the key principles of non-genetic therapy resistance in cancer. We provide a perspective on the emerging data from clinical studies and sophisticated cancer models that have studied various non-genetic resistance pathways and highlight promising therapeutic avenues that may be used to negate and/or counteract the non-genetic adaptive pathways.
Collapse
Affiliation(s)
- Jean-Christophe Marine
- Laboratory for Molecular Cancer Biology, VIB Center for Cancer Biology, KU Leuven, Leuven, Belgium.
- Department of Oncology, KU Leuven, Leuven, Belgium.
| | - Sarah-Jane Dawson
- Peter MacCallum Cancer Centre, Melbourne, VIC, Australia.
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, VIC, Australia.
- Center for Cancer Research, The University of Melbourne, Melbourne, VIC, Australia.
| | - Mark A Dawson
- Peter MacCallum Cancer Centre, Melbourne, VIC, Australia.
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, VIC, Australia.
- Center for Cancer Research, The University of Melbourne, Melbourne, VIC, Australia.
| |
Collapse
|
91
|
Li J, Stanger BZ. How Tumor Cell Dedifferentiation Drives Immune Evasion and Resistance to Immunotherapy. Cancer Res 2020; 80:4037-4041. [PMID: 32554552 PMCID: PMC7541560 DOI: 10.1158/0008-5472.can-20-1420] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 05/12/2020] [Accepted: 06/15/2020] [Indexed: 02/06/2023]
Abstract
Immunotherapy has revolutionized cancer treatment, yet most patients do not respond. While tumor antigens are needed for effective immunotherapy, a favorable tumor immune microenvironment is also critical. In this review, we discuss emerging evidence that tumor cells exploit cellular plasticity and dedifferentiation programs to avoid immune surveillance, which in turn drives metastatic dissemination and resistance to immunotherapy. A deeper understanding of these programs may provide novel opportunities to enhance the efficacy of existing immunotherapies.
Collapse
Affiliation(s)
- Jinyang Li
- Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
- Department of Cell and Developmental Biology, University of Pennsylvania, Philadelphia, Pennsylvania
- Abramson Family Cancer Research Institute, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Ben Z Stanger
- Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania.
- Department of Cell and Developmental Biology, University of Pennsylvania, Philadelphia, Pennsylvania
- Abramson Family Cancer Research Institute, University of Pennsylvania, Philadelphia, Pennsylvania
| |
Collapse
|
92
|
Adoptive T Cell Therapy Targeting Different Gene Products Reveals Diverse and Context-Dependent Immune Evasion in Melanoma. Immunity 2020; 53:564-580.e9. [DOI: 10.1016/j.immuni.2020.07.007] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 04/05/2020] [Accepted: 07/08/2020] [Indexed: 12/30/2022]
|
93
|
Reversal of pre-existing NGFR-driven tumor and immune therapy resistance. Nat Commun 2020; 11:3946. [PMID: 32770055 PMCID: PMC7414147 DOI: 10.1038/s41467-020-17739-8] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Accepted: 07/10/2020] [Indexed: 01/05/2023] Open
Abstract
Melanomas can switch to a dedifferentiated cell state upon exposure to cytotoxic T cells. However, it is unclear whether such tumor cells pre-exist in patients and whether they can be resensitized to immunotherapy. Here, we chronically expose (patient-derived) melanoma cell lines to differentiation antigen-specific cytotoxic T cells and observe strong enrichment of a pre-existing NGFRhi population. These fractions are refractory also to T cells recognizing non-differentiation antigens, as well as to BRAF + MEK inhibitors. NGFRhi cells induce the neurotrophic factor BDNF, which contributes to T cell resistance, as does NGFR. In melanoma patients, a tumor-intrinsic NGFR signature predicts anti-PD-1 therapy resistance, and NGFRhi tumor fractions are associated with immune exclusion. Lastly, pharmacologic NGFR inhibition restores tumor sensitivity to T cell attack in vitro and in melanoma xenografts. These findings demonstrate the existence of a stable and pre-existing NGFRhi multitherapy-refractory melanoma subpopulation, which ought to be eliminated to revert intrinsic resistance to immunotherapeutic intervention.
Collapse
|
94
|
Tang Y, Durand S, Dalle S, Caramel J. EMT-Inducing Transcription Factors, Drivers of Melanoma Phenotype Switching, and Resistance to Treatment. Cancers (Basel) 2020; 12:E2154. [PMID: 32759677 PMCID: PMC7465730 DOI: 10.3390/cancers12082154] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 07/31/2020] [Accepted: 08/01/2020] [Indexed: 01/06/2023] Open
Abstract
Transcription factors, extensively described for their role in epithelial-mesenchymal transition (EMT-TFs) in epithelial cells, also display essential functions in the melanocyte lineage. Recent evidence has shown specific expression patterns and functions of these EMT-TFs in neural crest-derived melanoma compared to carcinoma. Herein, we present an update of the specific roles of EMT-TFs in melanocyte differentiation and melanoma progression. As major regulators of phenotype switching between differentiated/proliferative and neural crest stem cell-like/invasive states, these factors appear as major drivers of intra-tumor heterogeneity and resistance to treatment in melanoma, which opens new avenues in terms of therapeutic targeting.
Collapse
Affiliation(s)
- Yaqi Tang
- Cancer Cell Plasticity in Melanoma Laboratory, Université de Lyon, Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, Centre Léon Bérard, Centre de Recherche en Cancérologie de Lyon, 69008 Lyon, France; (Y.T.); (S.D.); (S.D.)
| | - Simon Durand
- Cancer Cell Plasticity in Melanoma Laboratory, Université de Lyon, Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, Centre Léon Bérard, Centre de Recherche en Cancérologie de Lyon, 69008 Lyon, France; (Y.T.); (S.D.); (S.D.)
| | - Stéphane Dalle
- Cancer Cell Plasticity in Melanoma Laboratory, Université de Lyon, Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, Centre Léon Bérard, Centre de Recherche en Cancérologie de Lyon, 69008 Lyon, France; (Y.T.); (S.D.); (S.D.)
- Dermatology Unit, Hospices Civils de Lyon, Centre Hospitalier Lyon Sud, 69495 Pierre Bénite, France
| | - Julie Caramel
- Cancer Cell Plasticity in Melanoma Laboratory, Université de Lyon, Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, Centre Léon Bérard, Centre de Recherche en Cancérologie de Lyon, 69008 Lyon, France; (Y.T.); (S.D.); (S.D.)
| |
Collapse
|
95
|
Massi D, Mihic-Probst D, Schadendorf D, Dummer R, Mandalà M. Dedifferentiated melanomas: Morpho-phenotypic profile, genetic reprogramming and clinical implications. Cancer Treat Rev 2020; 88:102060. [PMID: 32619863 DOI: 10.1016/j.ctrv.2020.102060] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Revised: 06/10/2020] [Accepted: 06/12/2020] [Indexed: 01/12/2023]
Abstract
Phenotypic plasticity of malignant melanoma is a well-known phenomenon. Several translational studies and small case series have reported this clinical and biological entity, particularly in metastatic melanoma, showing frequent aberrant expression of non-melanocytic differentiation markers of different lineages, posing remarkable challenges due to several alternative differential diagnoses including undifferentiated carcinoma and sarcomas. When melanoma loses its typical morpho-phenotype by routinely used diagnostic immunohistochemical markers, it is defined as "dedifferentiated melanoma". Historically, this process was closely related to diagnostic interpretative difficulties. In recent years, however, dedifferentiation has been increasingly recognized as an important biological phenomenon that demonstrates the phenotypic and genetic plasticity of melanoma, and specifically the non-irreversibility of the multistep cancerogenesis. Furthermore, dedifferentiation emerged as a general hallmark of cancer evolution and a common denominator of cross-resistance to both targeted and immunotherapy. In this review, we summarize the histopathological features, the genetic and epigenetic bases underlying the dedifferentiated phenotype in melanomas and provide additional support that dedifferentiation is a mechanism of resistance to immunotherapy and targeted therapy.
Collapse
Affiliation(s)
- Daniela Massi
- Section of Anatomic Pathology, Department of Health Sciences, University of Florence, Italy
| | - Daniela Mihic-Probst
- Department of Pathology and Molecular Pathology, University Hospital Zurich, Zurich, Switzerland
| | - Dirk Schadendorf
- Department of Dermatology ,University Hospital Essen, West German Cancer Center, University Duisburg-Essen and the German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Reinhard Dummer
- University Hospital Zürich Skin Cancer Center, Zürich, Switzerland
| | - Mario Mandalà
- Unit of Melanoma, Division of Medical Oncology, Department of Oncology and Haematology, Papa Giovanni XXIII Cancer Center Hospital, Bergamo, Italy.
| |
Collapse
|
96
|
Rebecca VW, Somasundaram R, Herlyn M. Pre-clinical modeling of cutaneous melanoma. Nat Commun 2020; 11:2858. [PMID: 32504051 PMCID: PMC7275051 DOI: 10.1038/s41467-020-15546-9] [Citation(s) in RCA: 126] [Impact Index Per Article: 31.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Accepted: 03/16/2020] [Indexed: 12/19/2022] Open
Abstract
Metastatic melanoma is challenging to manage. Although targeted- and immune therapies have extended survival, most patients experience therapy resistance. The adaptability of melanoma cells in nutrient- and therapeutically-challenged environments distinguishes melanoma as an ideal model for investigating therapy resistance. In this review, we discuss the current available repertoire of melanoma models including two- and three-dimensional tissue cultures, organoids, genetically engineered mice and patient-derived xenograft. In particular, we highlight how each system recapitulates different features of melanoma adaptability and can be used to better understand melanoma development, progression and therapy resistance. Despite the new targeted and immunotherapies for metastatic melanoma, several patients show therapeutic plateau. Here, the authors review the current pre-clinical models of cutaneous melanoma and discuss their strengths and limitations that may help with overcoming therapeutic plateau.
Collapse
Affiliation(s)
- Vito W Rebecca
- The Wistar Institute, Melanoma Research Center, Philadelphia, PA, USA
| | | | - Meenhard Herlyn
- The Wistar Institute, Melanoma Research Center, Philadelphia, PA, USA.
| |
Collapse
|
97
|
Ravindran Menon D, Hammerlindl H, Torrano J, Schaider H, Fujita M. Epigenetics and metabolism at the crossroads of stress-induced plasticity, stemness and therapeutic resistance in cancer. Theranostics 2020; 10:6261-6277. [PMID: 32483452 PMCID: PMC7255038 DOI: 10.7150/thno.42523] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Accepted: 02/13/2020] [Indexed: 12/12/2022] Open
Abstract
Despite the recent advances in the treatment of cancers, acquired drug resistance remains a major challenge in cancer management. While earlier studies suggest Darwinian factors driving acquired drug resistance, recent studies point to a more dynamic process involving phenotypic plasticity and tumor heterogeneity in the evolution of acquired drug resistance. Chronic stress after drug treatment induces intrinsic cellular reprogramming and cancer stemness through a slow-cycling persister state, which subsequently drives cancer progression. Both epigenetic and metabolic mechanisms play an important role in this dynamic process. In this review, we discuss how epigenetic and metabolic reprogramming leads to stress-induced phenotypic plasticity and acquired drug resistance, and how the two reprogramming mechanisms crosstalk with each other.
Collapse
|
98
|
Tiffen J, Gallagher SJ, Filipp F, Gunatilake D, Emran AA, Cullinane C, Dutton-Register K, Aoude L, Hayward N, Chatterjee A, Rodger EJ, Eccles MR, Hersey P. EZH2 Cooperates with DNA Methylation to Downregulate Key Tumor Suppressors and IFN Gene Signatures in Melanoma. J Invest Dermatol 2020; 140:2442-2454.e5. [PMID: 32360600 DOI: 10.1016/j.jid.2020.02.042] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Revised: 02/04/2020] [Accepted: 02/21/2020] [Indexed: 01/14/2023]
Abstract
The histone methylase EZH2 is frequently dysregulated in melanoma and is associated with DNA methylation and silencing of genes involved in tumor suppression. In this study, we used chromatin immunoprecipitation and sequencing to identify key suppressor genes that are silenced by histone methylation in constitutively active EZH2(Y641) mutant melanoma and assessed whether these regions were also sites of DNA methylation. The genes identified were validated by their re-expression after treatment with EZH2 and DNA methyltransferase inhibitors. The expression of putative EZH2 target genes was shown to be highly relevant to the survival of patients with melanoma in clinical datasets. To determine correlates of response to EZH2 inhibitors, we screened a panel of 53 melanoma cell lines for drug sensitivity. We compared RNA sequencing profiles of sensitive to resistant melanoma cells and performed pathway analysis. Sensitivity was associated with strong downregulation of IFN-γ and IFN-α gene signatures that were reversed by treatment with EZH2 inhibitors. This is consistent with EZH2-driven dedifferentiated invasive states associated with treatment resistance and defects in antigen presentation. These results suggest that EZH2 inhibitors may be most effectively targeted to immunologically cold melanoma to both induce direct cytotoxicity and increase immune responses in the context of checkpoint inhibitor immunotherapy.
Collapse
Affiliation(s)
- Jessamy Tiffen
- Melanoma Immunology and Oncology Group, The Centenary Institute, University of Sydney, Camperdown, New South Wales, Australia; Melanoma Institute Australia, The University of Sydney, Sydney, New South Wales, Australia
| | - Stuart J Gallagher
- Melanoma Immunology and Oncology Group, The Centenary Institute, University of Sydney, Camperdown, New South Wales, Australia; Melanoma Institute Australia, The University of Sydney, Sydney, New South Wales, Australia
| | - Fabian Filipp
- Systems Biology and Cancer Metabolism, Program for Quantitative Systems Biology, University of California Merced, Merced, California, USA
| | - Dilini Gunatilake
- Melanoma Immunology and Oncology Group, The Centenary Institute, University of Sydney, Camperdown, New South Wales, Australia; Melanoma Institute Australia, The University of Sydney, Sydney, New South Wales, Australia
| | - Abdullah Al Emran
- Melanoma Immunology and Oncology Group, The Centenary Institute, University of Sydney, Camperdown, New South Wales, Australia; Melanoma Institute Australia, The University of Sydney, Sydney, New South Wales, Australia
| | - Carleen Cullinane
- Translational Research Laboratory, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| | | | - Lauren Aoude
- The University of Queensland Diamantina Institute, Brisbane, Queensland, Australia
| | - Nick Hayward
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Aniruddha Chatterjee
- Department of Pathology, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand; Maurice Wilkins Centre for Molecular Biodiscovery, Auckland, New Zealand
| | - Euan J Rodger
- Department of Pathology, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand; Maurice Wilkins Centre for Molecular Biodiscovery, Auckland, New Zealand
| | - Michael R Eccles
- Department of Pathology, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand; Maurice Wilkins Centre for Molecular Biodiscovery, Auckland, New Zealand
| | - Peter Hersey
- Melanoma Immunology and Oncology Group, The Centenary Institute, University of Sydney, Camperdown, New South Wales, Australia; Melanoma Institute Australia, The University of Sydney, Sydney, New South Wales, Australia.
| |
Collapse
|
99
|
Transcriptional downregulation of MHC class I and melanoma de- differentiation in resistance to PD-1 inhibition. Nat Commun 2020; 11:1897. [PMID: 32312968 PMCID: PMC7171183 DOI: 10.1038/s41467-020-15726-7] [Citation(s) in RCA: 156] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Accepted: 03/26/2020] [Indexed: 12/31/2022] Open
Abstract
Transcriptomic signatures designed to predict melanoma patient responses to PD-1 blockade have been reported but rarely validated. We now show that intra-patient heterogeneity of tumor responses to PD-1 inhibition limit the predictive performance of these signatures. We reasoned that resistance mechanisms will reflect the tumor microenvironment, and thus we examined PD-1 inhibitor resistance relative to T-cell activity in 94 melanoma tumors collected at baseline and at time of PD-1 inhibitor progression. Tumors were analyzed using RNA sequencing and flow cytometry, and validated functionally. These analyses confirm that major histocompatibility complex (MHC) class I downregulation is a hallmark of resistance to PD-1 inhibitors and is associated with the MITFlow/AXLhigh de-differentiated phenotype and cancer-associated fibroblast signatures. We demonstrate that TGFß drives the treatment resistant phenotype (MITFlow/AXLhigh) and contributes to MHC class I downregulation in melanoma. Combinations of anti-PD-1 with drugs that target the TGFß signaling pathway and/or which reverse melanoma de-differentiation may be effective future therapeutic strategies. A significant proportion of patients develop innate or acquired resistance to immune checkpoint inhibitors. Here, the authors show that resistance to anti-PD-1 blockade is associated with TGF-beta driven major histocompatibility complex I (MHCI) down-regulation and a de-differentiated phenotype in melanoma patients.
Collapse
|
100
|
Pérez-Guijarro E, Yang HH, Araya RE, El Meskini R, Michael HT, Vodnala SK, Marie KL, Smith C, Chin S, Lam KC, Thorkelsson A, Iacovelli AJ, Kulaga A, Fon A, Michalowski AM, Hugo W, Lo RS, Restifo NP, Sharan SK, Van Dyke T, Goldszmid RS, Weaver Ohler Z, Lee MP, Day CP, Merlino G. Multimodel preclinical platform predicts clinical response of melanoma to immunotherapy. Nat Med 2020; 26:781-791. [PMID: 32284588 DOI: 10.1038/s41591-020-0818-3] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Accepted: 03/03/2020] [Indexed: 02/07/2023]
Abstract
Although immunotherapy has revolutionized cancer treatment, only a subset of patients demonstrate durable clinical benefit. Definitive predictive biomarkers and targets to overcome resistance remain unidentified, underscoring the urgency to develop reliable immunocompetent models for mechanistic assessment. Here we characterize a panel of syngeneic mouse models, representing a variety of molecular and phenotypic subtypes of human melanomas and exhibiting their diverse range of responses to immune checkpoint blockade (ICB). Comparative analysis of genomic, transcriptomic and tumor-infiltrating immune cell profiles demonstrated alignment with clinical observations and validated the correlation of T cell dysfunction and exclusion programs with resistance. Notably, genome-wide expression analysis uncovered a melanocytic plasticity signature predictive of patient outcome in response to ICB, suggesting that the multipotency and differentiation status of melanoma can determine ICB benefit. Our comparative preclinical platform recapitulates melanoma clinical behavior and can be employed to identify mechanisms and treatment strategies to improve patient care.
Collapse
Affiliation(s)
- Eva Pérez-Guijarro
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Howard H Yang
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Romina E Araya
- Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Rajaa El Meskini
- Center for Advanced Preclinical Research, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD, USA
| | - Helen T Michael
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Suman Kumar Vodnala
- Surgery Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA.,Lyell Immunopharma, South San Francisco, CA, USA
| | - Kerrie L Marie
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Cari Smith
- Laboratory Animal Science Program, Leidos Biomedical Research Inc, Frederick, MD, USA
| | - Sung Chin
- Laboratory Animal Science Program, Leidos Biomedical Research Inc, Frederick, MD, USA
| | - Khiem C Lam
- Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Andres Thorkelsson
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Anthony J Iacovelli
- Center for Advanced Preclinical Research, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD, USA
| | - Alan Kulaga
- Center for Advanced Preclinical Research, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD, USA
| | - Anyen Fon
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Aleksandra M Michalowski
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Willy Hugo
- Division of Dermatology, Department of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Roger S Lo
- Division of Dermatology, Department of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Nicholas P Restifo
- Surgery Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA.,Lyell Immunopharma, South San Francisco, CA, USA
| | - Shyam K Sharan
- Center for Advanced Preclinical Research, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD, USA.,Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD, USA
| | - Terry Van Dyke
- Center for Advanced Preclinical Research, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD, USA.,Path Forward Solutions, Frederick, MD, USA
| | - Romina S Goldszmid
- Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Zoe Weaver Ohler
- Center for Advanced Preclinical Research, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD, USA
| | - Maxwell P Lee
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA.
| | - Chi-Ping Day
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA.
| | - Glenn Merlino
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|