51
|
LIM domain protein FHL1B interacts with PP2A catalytic β subunit - A novel cell cycle regulatory pathway. FEBS Lett 2010; 584:4511-6. [DOI: 10.1016/j.febslet.2010.10.022] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2010] [Revised: 09/27/2010] [Accepted: 10/09/2010] [Indexed: 12/30/2022]
|
52
|
Strøm CC, Kruhøffer M, Knudsen S, Stensgaard-Hansen F, Jonassen TEN, Orntoft TF, Haunsø S, Sheikh SP. Identification of a core set of genes that signifies pathways underlying cardiac hypertrophy. Comp Funct Genomics 2010; 5:459-70. [PMID: 18629135 PMCID: PMC2447423 DOI: 10.1002/cfg.428] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2004] [Revised: 08/30/2004] [Accepted: 09/21/2004] [Indexed: 11/23/2022] Open
Abstract
Although the molecular signals underlying cardiac hypertrophy have been the
subject of intense investigation, the extent of common and distinct gene regulation
between different forms of cardiac hypertrophy remains unclear. We hypothesized
that a general and comparative analysis of hypertrophic gene expression, using
microarray technology in multiple models of cardiac hypertrophy, including aortic
banding, myocardial infarction, an arteriovenous shunt and pharmacologically
induced hypertrophy, would uncover networks of conserved hypertrophy-specific
genes and identify novel genes involved in hypertrophic signalling. From gene
expression analyses (8740 probe sets, n = 46) of rat ventricular RNA, we identified a
core set of 139 genes with consistent differential expression in all hypertrophy models
as compared to their controls, including 78 genes not previously associated with
hypertrophy and 61 genes whose altered expression had previously been reported.
We identified a single common gene program underlying hypertrophic remodelling,
regardless of how the hypertrophy was induced. These genes constitute the molecular
basis for the existence of one main form of cardiac hypertrophy and may be useful
for prediction of a common therapeutic approach. Supplementary material for this
article can be found at: http://www.interscience.wiley.com/jpages/1531-6912/suppmat
Collapse
Affiliation(s)
- Claes C Strøm
- CHARC (Copenhagen Heart Arrhythmia Research Center), Department of Medicine B, H : S Rigshospitalet, University of Copenhagen Medical School, 20 Juliane Mariesvej, Copenhagen DK 2100, Denmark
| | | | | | | | | | | | | | | |
Collapse
|
53
|
Isserlin R, Merico D, Alikhani-Koupaei R, Gramolini A, Bader GD, Emili A. Pathway analysis of dilated cardiomyopathy using global proteomic profiling and enrichment maps. Proteomics 2010; 10:1316-27. [PMID: 20127684 PMCID: PMC2879143 DOI: 10.1002/pmic.200900412] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
Global protein expression profiling can potentially uncover perturbations associated with common forms of heart disease. We have used shotgun MS/MS to monitor the state of biological systems in cardiac tissue correlating with disease onset, cardiac insufficiency and progression to heart failure in a time-course mouse model of dilated cardiomyopathy. However, interpreting the functional significance of the hundreds of differentially expressed proteins has been challenging. Here, we utilize improved enrichment statistical methods and an extensive collection of functionally related gene sets, gaining a more comprehensive understanding of the progressive alterations associated with functional decline in dilated cardiomyopathy. We visualize the enrichment results as an Enrichment Map, where significant gene sets are grouped based on annotation similarity. This approach vastly simplifies the interpretation of the large number of enriched gene sets found. For pathways of specific interest, such as Apoptosis and the MAPK (mitogen-activated protein kinase) cascade, we performed a more detailed analysis of the underlying signaling network, including experimental validation of expression patterns.
Collapse
Affiliation(s)
- Ruth Isserlin
- Banting and Best Department of Medical Research, University of Toronto, Toronto, ON, Canada
| | | | | | | | | | | |
Collapse
|
54
|
Ramasamy R, Goldberg IJ. Aldose reductase and cardiovascular diseases, creating human-like diabetic complications in an experimental model. Circ Res 2010; 106:1449-58. [PMID: 20466987 DOI: 10.1161/circresaha.109.213447] [Citation(s) in RCA: 104] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Hyperglycemia and reduced insulin actions affect many biological processes. One theory is that aberrant metabolism of glucose via several pathways including the polyol pathway causes cellular toxicity. Aldose reductase (AR) is a multifunctional enzyme that reduces aldehydes. Under diabetic conditions AR converts glucose into sorbitol, which is then converted to fructose. This article reviews the biology and pathobiology of AR actions. AR expression varies considerably among species. In humans and rats, the higher level of AR expression is associated with toxicity. Flux via AR is increased by ischemia and its inhibition during ischemia reperfusion reduces injury. However, similar pharmacological effects are not observed in mice unless they express a human AR transgene. This is because mice have much lower levels of AR expression, probably insufficient to generate toxic byproducts. Human AR expression in LDL receptor knockout mice exacerbates vascular disease, but only under diabetic conditions. In contrast, a recent report suggests that genetic ablation of AR increased atherosclerosis and increased hydroxynonenal in arteries. It was hypothesized that AR knockout prevented reduction of toxic aldehydes. Like many in vivo effects found in genetically manipulated animals, interpretation requires the reproduction of human-like physiology. For AR, this will require tissue specific expression of AR in sites and at levels that approximate those in humans.
Collapse
Affiliation(s)
- Ravichandran Ramasamy
- Department of Surgery, Columbia University College of Physicians and Surgeons, New York, NY 10032, USA.
| | | |
Collapse
|
55
|
Molecular distinction between physiological and pathological cardiac hypertrophy: experimental findings and therapeutic strategies. Pharmacol Ther 2010; 128:191-227. [PMID: 20438756 DOI: 10.1016/j.pharmthera.2010.04.005] [Citation(s) in RCA: 604] [Impact Index Per Article: 43.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Cardiac hypertrophy can be defined as an increase in heart mass. Pathological cardiac hypertrophy (heart growth that occurs in settings of disease, e.g. hypertension) is a key risk factor for heart failure. Pathological hypertrophy is associated with increased interstitial fibrosis, cell death and cardiac dysfunction. In contrast, physiological cardiac hypertrophy (heart growth that occurs in response to chronic exercise training, i.e. the 'athlete's heart') is reversible and is characterized by normal cardiac morphology (i.e. no fibrosis or apoptosis) and normal or enhanced cardiac function. Given that there are clear functional, structural, metabolic and molecular differences between pathological and physiological hypertrophy, a key question in cardiovascular medicine is whether mechanisms responsible for enhancing function of the athlete's heart can be exploited to benefit patients with pathological hypertrophy and heart failure. This review summarizes key experimental findings that have contributed to our understanding of pathological and physiological heart growth. In particular, we focus on signaling pathways that play a causal role in the development of pathological and physiological hypertrophy. We discuss molecular mechanisms associated with features of cardiac hypertrophy, including protein synthesis, sarcomeric organization, fibrosis, cell death and energy metabolism and provide a summary of profiling studies that have examined genes, microRNAs and proteins that are differentially expressed in models of pathological and physiological hypertrophy. How gender and sex hormones affect cardiac hypertrophy is also discussed. Finally, we explore how knowledge of molecular mechanisms underlying pathological and physiological hypertrophy may influence therapeutic strategies for the treatment of cardiovascular disease and heart failure.
Collapse
|
56
|
Min KD, Asakura M, Liao Y, Nakamaru K, Okazaki H, Takahashi T, Fujimoto K, Ito S, Takahashi A, Asanuma H, Yamazaki S, Minamino T, Sanada S, Seguchi O, Nakano A, Ando Y, Otsuka T, Furukawa H, Isomura T, Takashima S, Mochizuki N, Kitakaze M. Identification of genes related to heart failure using global gene expression profiling of human failing myocardium. Biochem Biophys Res Commun 2010; 393:55-60. [PMID: 20100464 DOI: 10.1016/j.bbrc.2010.01.076] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2010] [Accepted: 01/18/2010] [Indexed: 11/19/2022]
Abstract
Although various management methods have been developed for heart failure, it is necessary to investigate the diagnostic or therapeutic targets of heart failure. Accordingly, we have developed different approaches for managing heart failure by using conventional microarray analyses. We analyzed gene expression profiles of myocardial samples from 12 patients with heart failure and constructed datasets of heart failure-associated genes using clinical parameters such as pulmonary artery pressure (PAP) and ejection fraction (EF). From these 12 genes, we selected four genes with high expression levels in the heart, and examined their novelty by performing a literature-based search. In addition, we included four G-protein-coupled receptor (GPCR)-encoding genes, three enzyme-encoding genes, and one ion-channel protein-encoding gene to identify a drug target for heart failure using in silico microarray database. After the in vitro functional screening using adenovirus transfections of 12 genes into rat cardiomyocytes, we generated gene-targeting mice of five candidate genes, namely, MYLK3, GPR37L1, GPR35, MMP23, and NBC1. The results revealed that systolic blood pressure differed significantly between GPR35-KO and GPR35-WT mice as well as between GPR37L1-Tg and GPR37L1-KO mice. Further, the heart weight/body weight ratio between MYLK3-Tg and MYLK3-WT mice and between GPR37L1-Tg and GPR37L1-KO mice differed significantly. Hence, microarray analysis combined with clinical parameters can be an effective method to identify novel therapeutic targets for the prevention or management of heart failure.
Collapse
|
57
|
Al-Kafaji G, Malik AN. Hyperglycemia induces elevated expression of thyroid hormone binding protein in vivo in kidney and heart and in vitro in mesangial cells. Biochem Biophys Res Commun 2010; 391:1585-91. [PMID: 20018174 DOI: 10.1016/j.bbrc.2009.12.061] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2009] [Accepted: 12/10/2009] [Indexed: 11/25/2022]
Abstract
During a search for glucose-regulated abundant mRNAs in the diabetic rat kidney, we cloned thyroid hormone binding protein (THBP), also known as mu-crystallin or CRYM. The aim of this study was to investigate the effect of hyperglycemia/high glucose on the expression of THBP. THBP mRNA copy numbers were determined in kidneys and hearts of diabetic GK rats vs normoglycemic Wistar rats, and in human mesangial cells (HMCs) exposed to high glucose using real-time qPCR, and THBP protein levels were measured by Western blotting and immunofluorescence. Intracellular ROS was measured in THBP transfected cells using DCF fluorescence. Hyperglycemia significantly increased THBP mRNA in GK rat kidneys (326+/-50 vs 147+/-54, p<0.05), and hearts (1583+/-277 vs 191+/-63, p<0.05). Moreover, the levels of THBP mRNA increased with age and hyperglycemia in GK rat kidneys, whereas in normoglycemic Wistar rat kidneys there was a decline with age. High glucose significantly increased THBP mRNA (92+/-37 vs 18+/-4, p<0.005), and protein in HMCs. The expression of THBP as a fusion protein in transfected HMCs resulted in reduction of glucose-induced intracellular ROS. We have shown that THBP mRNA is increased in diabetic kidney and heart, is regulated by high glucose in renal cells, and appears to attenuate glucose-induced intracellular ROS. These data suggest that THBP may be involved in the cellular pathways activated in response to glucose. This is the first report linking hyperglycemia with THBP and suggests that the role of THBP in diabetic complications should be further investigated.
Collapse
Affiliation(s)
- Ghada Al-Kafaji
- Diabetes Research Group, Division of Reproduction and Endocrinology, King's College London, UK
| | | |
Collapse
|
58
|
Schrickel JW, Fink K, Meyer R, Grohé C, Stoeckigt F, Tiemann K, Ghanem A, Lickfett L, Nickenig G, Lewalter T. Lack of gelsolin promotes perpetuation of atrial fibrillation in the mouse heart. J Interv Card Electrophysiol 2009; 26:3-10. [DOI: 10.1007/s10840-009-9425-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2009] [Accepted: 06/19/2009] [Indexed: 10/20/2022]
|
59
|
Abstract
Heart failure (HF) is a syndrome that involves multiple cellular mechanisms leading to a common phenotype of reduced ventricular contraction and cardiac chamber dilation. To clarify the mechanisms, a number of microarray analyses of the failing myocardium have been conducted. Gene expression profiles are usually compared between opposing pairs of samples, such as non-failing vs failing hearts, ischemic vs non-ischemic hearts, male vs female failing hearts or atria vs ventricles of failing hearts. Apart from these conventional methods, a different novel approach identified cardiac myosin light chain kinase (MLCK) as a HF-related gene by the comprehensive search for the genes that had an expression level that strongly correlated with the severity of HF; further investigations proved the important role of cardiac MLCK in HF. Moreover, a robust gene expression signature composed of 27 genes was revealed on analysis of 4 independent microarray data sets from the failing myocardium of dilated cardiomyopathy. The authors newly demonstrate 107 HF-related genes that were listed in 2 or more of 7 microarray data sets previously reported. Among these genes, many were observed to be involved in mitochondrial dysfunction and oxidative phosphorylation and 3 extracellular molecules, including periostin, pleiotrophin, and SERPINA3, which might become novel diagnostic and therapeutic targets for HF. These novel strategies warrant the new identification of specific genes that are linked to the pathophysiology of HF.
Collapse
Affiliation(s)
- Masanori Asakura
- Department of Research and Development of Clinical Research, National Cardiovascular Center, Suita, Japan.
| | | |
Collapse
|
60
|
González A, López B, Beaumont J, Ravassa S, Arias T, Hermida N, Zudaire A, Díez J. La genómica y la proteómica en la investigación de la insuficiencia cardiaca. Rev Esp Cardiol (Engl Ed) 2009. [DOI: 10.1016/s0300-8932(09)70375-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
61
|
Sihag S, Li AY, Cresci S, Sucharov CC, Lehman JJ. PGC-1alpha and ERRalpha target gene downregulation is a signature of the failing human heart. J Mol Cell Cardiol 2009; 46:201-12. [PMID: 19061896 PMCID: PMC2681265 DOI: 10.1016/j.yjmcc.2008.10.025] [Citation(s) in RCA: 168] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2008] [Revised: 10/20/2008] [Accepted: 10/21/2008] [Indexed: 12/25/2022]
Abstract
Heart failure is a cause of significant morbidity and mortality in developed nations, and results from a complex interplay between genetic and environmental factors. To discover gene regulatory networks underlying heart failure, we analyzed DNA microarray data based on left ventricular free-wall myocardium from 59 failing (32 ischemic cardiomyopathy, 27 idiopathic dilated cardiomyopathy) and 33 non-failing explanted human hearts from the Cardiogenomics Consortium. In particular, we sought to investigate cardiac gene expression changes at the level of individual genes, as well as biological pathways which contain groups of functionally related genes. Utilizing a combination of computational techniques, including Comparative Marker Selection and Gene Set Enrichment Analysis, we identified a subset of downstream gene targets of the master mitochondrial transcriptional regulator, peroxisome proliferator-activated receptor gamma coactivator-1alpha (PGC-1alpha), whose expression is collectively decreased in failing human hearts. We also observed decreased expression of the key PGC-1alpha regulatory partner, estrogen-related receptor alpha (ERRalpha), as well as ERRalpha target genes which may participate in the downregulation of mitochondrial metabolic capacity. Gene expression of the antiapoptotic Raf-1/extracellular signal-regulated kinase (ERK) pathway was decreased in failing hearts. Alterations in PGC-1alpha and ERRalpha target gene sets were significantly correlated with an important clinical parameter of disease severity - left ventricular ejection fraction, and were predictive of failing vs. non-failing phenotypes. Overall, our results implicate PGC-1alpha and ERRalpha in the pathophysiology of human heart failure, and define dynamic target gene sets sharing known interrelated regulatory mechanisms capable of contributing to the mitochondrial dysfunction characteristic of this disease process.
Collapse
Affiliation(s)
- Smita Sihag
- Center for Cardiovascular Research, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | - Allie Y. Li
- Center for Cardiovascular Research, Department of Medicine, Genetics, Molecular Biology & Pharmacology, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | - Sharon Cresci
- Center for Cardiovascular Research, Department of Medicine, Genetics, Molecular Biology & Pharmacology, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | - Carmen C. Sucharov
- Division of Cardiology, School of Medicine, University of Colorado Health Sciences Center, Denver, Colorado 80262, USA
| | - John J. Lehman
- Center for Cardiovascular Research, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| |
Collapse
|
62
|
Pilbrow AP, Ellmers LJ, Black MA, Moravec CS, Sweet WE, Troughton RW, Richards AM, Frampton CM, Cameron VA. Genomic selection of reference genes for real-time PCR in human myocardium. BMC Med Genomics 2008; 1:64. [PMID: 19114010 PMCID: PMC2632664 DOI: 10.1186/1755-8794-1-64] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2008] [Accepted: 12/29/2008] [Indexed: 11/26/2022] Open
Abstract
Background Reliability of real-time PCR (RT-qPCR) data is dependent on the use of appropriate reference gene(s) for normalization. To date, no validated reference genes have been reported for normalizing gene expression in human myocardium. This study aimed to identify validated reference genes for use in gene expression studies of failed and non-failed human myocardium. Methods Bioinformatic analysis of published human heart gene expression arrays (195 failed hearts, 16 donor hearts) was used to identify 10 stable and abundant genes for further testing. The expression stability of these genes was investigated in 28 failed and 28 non-failed human myocardium samples by RT-qPCR using geNorm software. Results Signal recognition particle 14 kDa (SRP14), tumor protein, translationally-controlled 1 (TPT1) and eukaryotic elongation factor 1A1 (EEF1A1) were ranked the most stable genes. The commonly used reference gene, glyceraldehyde-3-phosphate dehydrogenase (GAPDH) was ranked the least stable of the genes tested. The normalization strategy was tested by comparing RT-qPCR data of both normalized and raw expression levels of brain natriuretic peptide precursor (NPPB), a gene known to be up-regulated in heart failure. Non-normalized levels of NPPB exhibited a marginally significant difference between failed and non-failed samples (p = 0.058). In contrast, normalized NPPB expression levels were significantly higher in heart-failed patients compared with controls (p = 0.023). Conclusion This study used publicly available gene array data to identify a strategy for normalization involving two reference genes in combination that may have broad application for accurate and reliable normalization of RT-qPCR data in failed and non-failed human myocardium.
Collapse
Affiliation(s)
- Anna P Pilbrow
- Christchurch Cardioendocrine Research Group, Department of Medicine, University of Otago-Christchurch, PO Box 4345, Christchurch 8014, New Zealand.
| | | | | | | | | | | | | | | | | |
Collapse
|
63
|
Madan M, Amar S. Toll-like receptor-2 mediates diet and/or pathogen associated atherosclerosis: proteomic findings. PLoS One 2008; 3:e3204. [PMID: 18787704 PMCID: PMC2527517 DOI: 10.1371/journal.pone.0003204] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2008] [Accepted: 08/13/2008] [Indexed: 12/31/2022] Open
Abstract
Background Accumulating evidence implicates a fundamental link between the immune system and atherosclerosis. Toll-like receptors are principal sensors of the innate immune system. Here we report an assessment of the role of the TLR2 pathway in atherosclerosis associated with a high-fat diet and/or bacteria in ApoE+/− mice. Methods and Results To explore the role of TLR2 in inflammation- and infection-associated atherosclerosis, 10 week-old ApoE+/−-TLR2+/+, ApoE+/−-TLR2+/− and ApoE+/−-TLR2−/− mice were fed either a high fat diet or a regular chow diet. All mice were inoculated intravenously, once per week for 24 consecutive weeks, with 50 µl live Porphyromonas gingivalis (P.g) (107 CFU) or vehicle (normal saline). Animals were euthanized 24 weeks after the first inoculation. ApoE+/−-TLR2+/+ mice showed a significant increase in atheromatous lesions in proximal aorta and aortic tree compared to ApoE+/−-TLR2+/− and ApoE+/−-TLR2−/− mice for all diet conditions. They also displayed profound changes in plaque composition, as evidenced by increased macrophage infiltration and apoptosis, increased lipid content, and decreased smooth muscle cell mass, all reflecting an unstable plaque phenotype. SAA levels from ApoE+/−-TLR2+/+ mice were significantly higher than from ApoE+/−-TLR2+/− and ApoE+/−-TLR2−/− mice. Serum cytokine analysis revealed increased levels of pro-inflammatory cytokines in ApoE+/−-TLR2+/+ mice compared to ApoE+/−-TLR2+/− and TLR2−/− mice, irrespective of diet or bacterial challenge. ApoE+/−-TLR2+/+ mice injected weekly for 24 weeks with FSL-1 (a TLR2 agonist) also demonstrated significant increases in atherosclerotic lesions, SAA and serum cytokine levels compared to ApoE+/−-TLR2−/− mice under same treatment condition. Finally, mass-spectrometry (MALDI-TOF-MS) of aortic samples analyzed by 2-dimentional gel electrophoresis differential display, identified 6 proteins upregulated greater than 2-fold in ApoE+/−-TLR2+/+ mice fed the high fat diet and inoculated with P.g compared to any other group. Conclusion Genetic deficiency of TLR2 reduces diet- and/or pathogen-associated atherosclerosis in ApoE+/− mice, along with differences in plaque composition suggesting greater structural stability while TLR-2 ligand-specific activation triggers atherosclerosis. The present data offers new insights into the pathophysiological pathways involved in atherosclerosis and paves the way for new pharmacological interventions aimed at reducing atherosclerosis.
Collapse
Affiliation(s)
- Monika Madan
- Department of Periodontology and Oral Biology, School of Dental Medicine, Boston University, Boston, Massachusetts, United States of America
| | | |
Collapse
|
64
|
Ruppert V, Meyer T, Pankuweit S, Möller E, Funck RC, Grimm W, Maisch B. Gene expression profiling from endomyocardial biopsy tissue allows distinction between subentities of dilated cardiomyopathy. J Thorac Cardiovasc Surg 2008; 136:360-369.e1. [DOI: 10.1016/j.jtcvs.2008.03.016] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2007] [Revised: 02/13/2008] [Accepted: 03/13/2008] [Indexed: 10/22/2022]
|
65
|
Wang X, Su H, Ranek MJ. Protein quality control and degradation in cardiomyocytes. J Mol Cell Cardiol 2008; 45:11-27. [PMID: 18495153 DOI: 10.1016/j.yjmcc.2008.03.025] [Citation(s) in RCA: 93] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2007] [Revised: 03/23/2008] [Accepted: 03/29/2008] [Indexed: 12/19/2022]
Abstract
The heart is constantly under stress and cardiomyocytes face enormous challenges to correctly fold nascent polypeptides and keep mature proteins from denaturing. To meet the challenge, cardiomyocytes have developed multi-layered protein quality control (PQC) mechanisms which are carried out primarily by chaperones and ubiquitin-proteasome system mediated proteolysis. Autophagy may also participate in PQC in cardiomyocytes, especially under pathological conditions. Cardiac PQC often becomes inadequate in heart disease, which may play an important role in the development of congestive heart failure.
Collapse
Affiliation(s)
- Xuejun Wang
- Division of Basic Biomedical Sciences, Sanford School of Medicine of the University of South Dakota, Vermillion, SD 57069, USA.
| | | | | |
Collapse
|
66
|
Kaiserova K, Tang XL, Srivastava S, Bhatnagar A. Role of nitric oxide in regulating aldose reductase activation in the ischemic heart. J Biol Chem 2008; 283:9101-12. [PMID: 18223294 PMCID: PMC2431016 DOI: 10.1074/jbc.m709671200] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2007] [Revised: 01/24/2008] [Indexed: 01/04/2023] Open
Abstract
Aldose reductase (AR) catalyzes the reduction of several aldehydes ranging from lipid peroxidation products to glucose. The activity of AR is increased in the ischemic heart due to oxidation of its cysteine residues, but the underlying mechanisms remain unclear. To examine signaling mechanisms regulating AR activation, we studied the role of nitric oxide (NO). Treatment with the NO synthase (NOS) inhibitor, N-nitro-l-arginine methyl ester prevented ischemia-induced AR activation and myocardial sorbitol accumulation in rat hearts subjected to global ischemia ex vivo or coronary ligation in situ, whereas inhibition of inducible NOS and neuronal NOS had no effect. Activation of AR in the ischemic heart was abolished by pretreatment with peroxynitrite scavengers hesperetin or 5, 10, 15, 20-tetrakis-[4-sulfonatophenyl]-porphyrinato-iron [III]. Site-directed mutagenesis and electrospray ionization mass spectrometry analyses showed that Cys-298 of AR was readily oxidized to sulfenic acid by peroxynitrite. Treatment with bradykinin and insulin led to a phosphatidylinositol 3-kinase (PI3K)-dependent increase in the phosphorylation of endothelial NOS at Ser-1177 and, even in the absence of ischemia, was sufficient in activating AR. Activation of AR by bradykinin and insulin was reversed upon reduction with dithiothreitol or by inhibiting NOS or PI3K. Treatment with AR inhibitors sorbinil or tolrestat reduced post-ischemic recovery in the rat hearts subjected to global ischemia and increased the infarct size when given before ischemia or upon reperfusion. These results suggest that AR is a cardioprotective protein and that its activation in the ischemic heart is due to peroxynitrite-mediated oxidation of Cys-298 to sulfenic acid via the PI3K/Akt/endothelial NOS pathway.
Collapse
Affiliation(s)
- Karin Kaiserova
- Institute of Molecular Cardiology, University of Louisville, Louisville, KY 40202, USA
| | | | | | | |
Collapse
|
67
|
Haddad GE, Saunders LJ, Crosby SD, Carles M, del Monte F, King K, Bristow MR, Spinale FG, Macgillivray TE, Semigran MJ, Dec GW, Williams SA, Hajjar RJ, Gwathmey JK. Human cardiac-specific cDNA array for idiopathic dilated cardiomyopathy: sex-related differences. Physiol Genomics 2008; 33:267-77. [DOI: 10.1152/physiolgenomics.00265.2007] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Idiopathic dilated cardiomyopathy (IDCM) constitutes a large portion of patients with heart failure of unknown etiology. Up to 50% of all transplant recipients carry this clinical diagnosis. Female-specific gene expression in IDCM has not been explored. We report sex-related differences in the gene expression profile of ventricular myocardium from patients undergoing cardiac transplantation. We produced and sequenced subtractive cDNA libraries, using human left ventricular myocardium obtained from male transplant recipients with IDCM and nonfailing human heart donors. With the resulting sequence data, we generated a custom human heart failure microarray for IDCM containing 1,145 cardiac-specific oligonucleotide probes. This array was used to characterize RNA samples from female IDCM transplant recipients. We identified a female gene expression pattern that consists of 37 upregulated genes and 18 downregulated genes associated with IDCM. Upon functional analysis of the gene expression pattern, deregulated genes unique to female IDCM were those that are involved in energy metabolism and regulation of transcription and translation. For male patients we found deregulation of genes related to muscular contraction. These data suggest that 1) the gene expression pattern we have detected for IDCM may be specific for this disease and 2) there is a sex-specific profile to IDCM. Our observations further suggest for the first time ever novel targets for treatment of IDCM in women and men.
Collapse
Affiliation(s)
- Georges E. Haddad
- Department of Physiology and Biophysics, College of Medicine, Howard University, Washington, District of Columbia
| | | | - Seth D. Crosby
- Microarray Core Facility, Washington University Medical School, St. Louis, Missouri
| | - Maria Carles
- Gwathmey, Incorporated, Cambridge, Massachusetts
| | - Federica del Monte
- Cardiovascular Research Center, Beth Israel Deaconess Medical Center, Boston, Massachusetts
| | - Kindra King
- Gwathmey, Incorporated, Cambridge, Massachusetts
| | - Michael R. Bristow
- Division of Cardiology, School of Medicine, University of Colorado Health Sciences Center, Denver, Colorado
| | - Francis G. Spinale
- Cardiothoracic Surgery, Medical University of South Carolina, Charleston, South Carolina
| | | | - Marc J. Semigran
- Cardiology Division, Gray/Bigelow, Massachusetts General Hospital, Boston
| | - G. William Dec
- Cardiology Division, Gray/Bigelow, Massachusetts General Hospital, Boston
| | - Steven A. Williams
- Department of Biological Sciences, Smith College, Northampton, Massachusetts
| | - Roger J. Hajjar
- Cardiovascular Research Center, Mount Sinai School of Medicine, New York, New York
| | - Judith K. Gwathmey
- Gwathmey, Incorporated, Cambridge, Massachusetts
- Boston University School of Medicine, Cambridge, Massachusetts
| |
Collapse
|
68
|
Lowes BD, Zolty R, Shakar SF, Brieke A, Gray N, Reed M, Calalb M, Minobe W, Lindenfeld J, Wolfel EE, Geraci M, Bristow MR, Cleveland J. Assist devices fail to reverse patterns of fetal gene expression despite beta-blockers. J Heart Lung Transplant 2008; 26:1170-6. [PMID: 18022084 DOI: 10.1016/j.healun.2007.08.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2007] [Revised: 08/07/2007] [Accepted: 08/08/2007] [Indexed: 10/22/2022] Open
Abstract
BACKGROUND Heart failure is associated with reversal to a fetal gene expression pattern of contractile and metabolic genes. Substantial recovery of ventricular function with assist devices is rare. Our goal was to evaluate the effects of assist devices on fetal gene expression and hypoxia inducible factor-1 alpha (HIF-1 alpha), a transcriptional factor in hypoxic signaling. METHODS Human heart tissue was obtained from the left ventricular apex at the time of assist device implantation and again from the left ventricular free wall during cardiac transplantation. Non-failing tissue was obtained from unused hearts from human donors. Gene expression was measured with the Affymetrix 133 plus 2 Array. HIF-1 alpha was measured by Western blotting with commercially available antibodies. RESULTS Heart failure was associated with a decrease in alpha-myosin heavy chain and sarcoplasmic reticulum-Ca(2+) adenosine triphosphatase messenger RNA expression along with an increase in skeletal tropomyosin. This pattern persisted after assist device therapy. Heart failure was also associated with abnormalities in regulatory metabolic genes including glucose transporter 1 (GLUT1). These patterns also persisted after assist device therapy despite a reduction in atrial natriuretic peptide expression and normalization of HIF-1 alpha. CONCLUSIONS Failure of assist devices to produce sustained recovery of myocardial contractile function may be due in part to persistent fetal transcriptional patterns of contractile and metabolic genes.
Collapse
Affiliation(s)
- Brian D Lowes
- Division of Cardiology, University of Colorado Health Sciences Center, Denver, Colorado 80262, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
69
|
Bullard TA, Protack TL, Aguilar F, Bagwe S, Massey HT, Blaxall BC. Identification of Nogo as a novel indicator of heart failure. Physiol Genomics 2007; 32:182-9. [PMID: 17971502 DOI: 10.1152/physiolgenomics.00200.2007] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Numerous genetically engineered animal models of heart failure (HF) exhibit multiple characteristics of human HF, including aberrant beta-adrenergic signaling. Several of these HF models can be rescued by cardiac-targeted expression of the Gbetagamma inhibitory carboxy-terminus of the beta-adrenergic receptor kinase (betaARKct). We recently reported microarray analysis of gene expression in multiple animal models of HF and their betaARKct rescue, where we identified gene expression patterns distinct and predictive of HF and rescue. We have further investigated the muscle LIM protein knockout model of HF (MLP-/-), which closely parallels human dilated cardiomyopathy disease progression and aberrant beta-adrenergic signaling, and their betaARKct rescue. A group of known and novel genes was identified and validated by quantitative real-time PCR whose expression levels predicted phenotype in both the larger HF group and in the MLP-/- subset. One of these novel genes is herein identified as Nogo, a protein widely studied in the nervous system, where it plays a role in regeneration. Nogo expression is altered in HF and normalized with rescue, in an isoform-specific manner, using left ventricular tissue harvested from both animal and human subjects. To investigate cell type-specific expression of Nogo in the heart, immunofluorescence and confocal microscopy were utilized. Nogo expression appears to be most clearly associated with cardiac fibroblasts. To our knowledge, this is the first report to demonstrate the relationship between Nogo expression and HF, including cell-type specificity, in both mouse and human HF and phenotypic rescue.
Collapse
Affiliation(s)
- Tara A Bullard
- Cardiovascular Research Institute, Division of Cardiology, Department of Medicine, University of Rochester Medical Center, Rochester, New York, USA
| | | | | | | | | | | |
Collapse
|
70
|
Suzuki S, Mori JI, Hashizume K. mu-crystallin, a NADPH-dependent T(3)-binding protein in cytosol. Trends Endocrinol Metab 2007; 18:286-9. [PMID: 17692531 DOI: 10.1016/j.tem.2007.07.002] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2007] [Revised: 06/19/2007] [Accepted: 07/27/2007] [Indexed: 10/23/2022]
Abstract
Thyroid hormone action is initiated through nuclear thyroid hormone receptors (TRs). Before the discovery of these nuclear receptors, possible major binding sites for thyroid hormones were thought to be cytosolic owing to high thyroid hormone-binding activity in crude cytosolic fractions. Several cytosolic thyroid hormone-binding proteins have been identified, including reduced nicotinamide adenine dinucleotide phosphate (NADPH)-dependent 3,5,3'-triiodo-L-thyronine (T(3))-binding protein, also known as mu-crystallin, which was initially cloned as the ortholog of bacterial ornithine cyclodeaminase. The expression of mu-crystallin is developmentally regulated and cell-type specific. Recently, patients with nonsyndromic deafness were reported to have point mutations in the mu-crystallin gene. Cytosolic thyroid hormone-binding proteins, especially mu-crystallin, have roles in adaptation to environmental alterations by thyroid hormone, which might have a role in hearing function.
Collapse
Affiliation(s)
- Satoru Suzuki
- Department of Aging Medicine and Geriatrics, Institute on Aging and Adaptation, Shinshu University, Graduate School of Medicine, 3-1-1 Asahi, Matsumoto 390-8621, Japan.
| | | | | |
Collapse
|
71
|
Abstract
HYPOTHESIS Damage to heart mitochondrial structure and function occur with aging, and in heart failure (HF). However, the extent of mitochondrial dysfunction, the expression of mitochondrial and nuclear genes, and their cross-talk is not known. OBSERVATIONS Several observations have suggested that somatic mutations in mitochondrial DNA (mtDNA), induced by reactive oxygen species (ROS), appear to be the primary cause of energy decline, and that the generation of ROS is mainly the product of the mitochondrial respiratory chain. The free radical theory of aging, that could also be applied to HF, and in particular the targeting of mtDNA is supported by a plurality of observations from both animal and clinical studies showing decreased mitochondrial function, increased ROS levels and mtDNA mutations in the aging heart. DISCUSSION Aging and HF with their increased ROS-induced defects in mtDNA, including base modifications and frequency of mtDNA deletions, might be expected to cause increased errors or mutations in mtDNA-encoded enzyme subunits, resulting in impaired oxidative phosphorylation and defective electron transport chain (ETC) activity which in turn creates more ROS. These events in both the aging and failing heart involve substantial nuclear-mitochondrial interaction, which is further illustrated in the progression of myocardial apoptosis. In this review the cross-talk between the nucleus and the mitochondrial organelle will be examined based on a number of animal and clinical studies, including our own.
Collapse
Affiliation(s)
- José Marín-García
- The Molecular Cardiology and Neuromuscular Institute, Highland Park, NJ 08904, USA.
| | | | | |
Collapse
|
72
|
Xu W, Zheng S, Goggans TM, Kiser P, Quinones-Mateu ME, Janocha AJ, Comhair SAA, Slee R, Williams BRG, Erzurum SC. Cystic fibrosis and normal human airway epithelial cell response to influenza a viral infection. J Interferon Cytokine Res 2007; 26:609-27. [PMID: 16978065 DOI: 10.1089/jir.2006.26.609] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Viral infections produce severe respiratory morbidity in children with cystic fibrosis (CF). CF cells are more susceptible to virus in part because of impaired airway epithelial activation of signal transducer and activator of transcription 1 (Stat1). As Stat1 is a fundamental regulator of antiviral defenses, we hypothesized that there may be multiple alterations in the antiviral defense of CF epithelium compared with normal (NL). To obtain a comprehensive view of mucosal host responses to influenza and characterize the difference between CF and NL responses to influenza, gene expression profiles of primary human airway epithelial cells (HAEC) were evaluated using an interferon (IFN)-stimulated genes/AU/double-stranded RNA (dsRNA) microarray or quantitative real-time polymerase chain reaction (PCR) following influenza A infection. Gene expression was significantly modified by influenza in NL (228 genes) and CF (101 genes), with a similar pattern of gene response but with overall less numbers of responsive genes in CF (p < 0.05). Moreover, CF cells had less IFN-related antiviral gene induction at 24 h but greater inflammatory cytokine gene induction at 1 h after infection. Taken together, the lesser antiviral and greater early inflammatory response likely contribute to the severe respiratory illness of CF patients with viral infections.
Collapse
Affiliation(s)
- Weiling Xu
- Department of Pathobiology and Pulmonary Allergy and Critical Care Medicine, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH 44195, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
73
|
Ojaimi C, Qanud K, Hintze TH, Recchia FA. Altered expression of a limited number of genes contributes to cardiac decompensation during chronic ventricular tachypacing in dogs. Physiol Genomics 2006; 29:76-83. [PMID: 17164392 DOI: 10.1152/physiolgenomics.00159.2006] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Our aim was to determine the changes in the gene expression profile occurring during the transition from compensated dysfunction (CD) to decompensated heart failure (HF) in pacing-induced dilated cardiomyopathy. Twelve chronically instrumented dogs underwent left ventricular pacing at 210 beats/min for 3 wk and at 240 beats thereafter, and four normal dogs were used as control. The transition from CD to HF occurred between the 3rd and 4th wk of pacing, with end-stage HF at 28 +/- 1 days. RNA was extracted from left ventricular tissue at control and 3 and 4 wk of pacing (n = 4) and tested with the Affymetrix Canine Array. We found 509 genes differentially expressed in CD vs. control (P < or = 0.05, fold change > or = +/-2), with 362 increasing and 147 decreasing; 526 genes were differentially expressed in HF vs. control (P < or = 0.05; fold change > or = +/-2), with 439 increasing and 87 decreasing. To better understand the transition, we compared gene alterations at 3 vs. 4 wk pacing and found that only 30 genes differed (P < or = 0.05; fold change of +/-2). We conclude that a number of processes including normalization of gene regulation during decompensation, appearance of new upregulated genes and maintenance of gene expression all contribute to the transition to overt heart failure with an unexpectedly small number of genes differentially regulated.
Collapse
Affiliation(s)
- Caroline Ojaimi
- Department of Physiology, New York Medical College, Valhalla, New York 10595, USA.
| | | | | | | |
Collapse
|
74
|
Wittchen F, Suckau L, Witt H, Skurk C, Lassner D, Fechner H, Sipo I, Ungethüm U, Ruiz P, Pauschinger M, Tschope C, Rauch U, Kühl U, Schultheiss HP, Poller W. Genomic expression profiling of human inflammatory cardiomyopathy (DCMi) suggests novel therapeutic targets. J Mol Med (Berl) 2006; 85:257-71. [PMID: 17106732 PMCID: PMC1820750 DOI: 10.1007/s00109-006-0122-9] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2006] [Revised: 08/05/2006] [Accepted: 08/28/2006] [Indexed: 01/17/2023]
Abstract
The clinical phenotype of human dilated cardiomyopathy (DCM) encompasses a broad spectrum of etiologically distinct disorders. As targeting of etiology-related pathogenic pathways may be more efficient than current standard heart failure treatment, we obtained the genomic expression profile of a DCM subtype characterized by cardiac inflammation to identify possible new therapeutic targets in humans. In this inflammatory cardiomyopathy (DCMi), a distinctive cardiac expression pattern not described in any previous study of cardiac disorders was observed. Two significantly altered gene networks of particular interest and possible interdependence centered around the cysteine-rich angiogenic inducer 61 (CYR61) and adiponectin (APN) gene. CYR61 overexpression, as in human DCMi hearts in situ, was similarly induced by inflammatory cytokines in vascular endothelial cells in vitro. APN was strongly downregulated in DCMi hearts and completely abolished cytokine-dependent CYR61 induction in vitro. Dysbalance between the CYR61 and APN networks may play a pathogenic role in DCMi and contain novel therapeutic targets. Multiple immune cell-associated genes were also deregulated (e.g., chemokine ligand 14, interleukin-17D, nuclear factors of activated T cells). In contrast to previous investigations in patients with advanced or end-stage DCM where etiology-related pathomechanisms are overwhelmed by unspecific processes, the deregulations detected in this study occurred at a far less severe and most probably fully reversible disease stage.
Collapse
Affiliation(s)
- F. Wittchen
- Department of Cardiology and Pneumology, Campus Benjamin Franklin, Charité-Universitätsmedizin Berlin, Hindenburgdamm 30, 12200 Berlin, Germany
| | - L. Suckau
- Department of Cardiology and Pneumology, Campus Benjamin Franklin, Charité-Universitätsmedizin Berlin, Hindenburgdamm 30, 12200 Berlin, Germany
| | - H. Witt
- Center for Cardiovascular Research, Campus Mitte, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - C. Skurk
- Department of Cardiology and Pneumology, Campus Benjamin Franklin, Charité-Universitätsmedizin Berlin, Hindenburgdamm 30, 12200 Berlin, Germany
| | - D. Lassner
- Department of Cardiology and Pneumology, Campus Benjamin Franklin, Charité-Universitätsmedizin Berlin, Hindenburgdamm 30, 12200 Berlin, Germany
| | - H. Fechner
- Department of Cardiology and Pneumology, Campus Benjamin Franklin, Charité-Universitätsmedizin Berlin, Hindenburgdamm 30, 12200 Berlin, Germany
| | - I. Sipo
- Department of Cardiology and Pneumology, Campus Benjamin Franklin, Charité-Universitätsmedizin Berlin, Hindenburgdamm 30, 12200 Berlin, Germany
| | - U. Ungethüm
- Laboratory for Functional Genome Research, Campus Mitte, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - P. Ruiz
- Center for Cardiovascular Research, Campus Mitte, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - M. Pauschinger
- Department of Cardiology and Pneumology, Campus Benjamin Franklin, Charité-Universitätsmedizin Berlin, Hindenburgdamm 30, 12200 Berlin, Germany
| | - C. Tschope
- Department of Cardiology and Pneumology, Campus Benjamin Franklin, Charité-Universitätsmedizin Berlin, Hindenburgdamm 30, 12200 Berlin, Germany
| | - U. Rauch
- Department of Cardiology and Pneumology, Campus Benjamin Franklin, Charité-Universitätsmedizin Berlin, Hindenburgdamm 30, 12200 Berlin, Germany
| | - U. Kühl
- Department of Cardiology and Pneumology, Campus Benjamin Franklin, Charité-Universitätsmedizin Berlin, Hindenburgdamm 30, 12200 Berlin, Germany
| | - H.-P. Schultheiss
- Department of Cardiology and Pneumology, Campus Benjamin Franklin, Charité-Universitätsmedizin Berlin, Hindenburgdamm 30, 12200 Berlin, Germany
| | - W. Poller
- Department of Cardiology and Pneumology, Campus Benjamin Franklin, Charité-Universitätsmedizin Berlin, Hindenburgdamm 30, 12200 Berlin, Germany
| |
Collapse
|
75
|
Donahue MP, Marchuk DA, Rockman HA. Redefining Heart Failure. J Am Coll Cardiol 2006; 48:1289-98. [PMID: 17010784 DOI: 10.1016/j.jacc.2006.05.062] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2006] [Revised: 05/23/2006] [Accepted: 05/29/2006] [Indexed: 12/11/2022]
Abstract
In this era of genomics, new technologies and the information that they generate have a wide range of potential applications to heart failure. Though there has not been widespread practical use of genomic information in everyday practice, there are many examples of how this information is beginning to transform the way we look at disease states in terms of diagnosis, prognosis, and treatment. The experience of oncology and other fields helps inform the heart failure field of not only the use of this information in investigating diagnosis, prognosis, and treatment response, but the reciprocal nature of this information. This information can be clinically useful (for instance, predicting treatment response) as well as further drive laboratory investigation (teasing out the biological pathways in non-responders to treatment can be a focus of new drug discovery); this is the essence of translational medicine. We believe that this is a good time to review where new technologies and information they generate can be placed into our classic understanding of heart failure: that is how we might redefine cardiomyopathy given our new information. Here we will review genomic evidence to date and how it can and may be considered in the evaluation and management of cardiomyopathies.
Collapse
Affiliation(s)
- Mark P Donahue
- Duke University Medical Center Department of Medicine, Division of Cardiovascular Medicine, Durham, North Carolina 27710, USA.
| | | | | |
Collapse
|
76
|
Gomes AV, Zong C, Ping P. Protein degradation by the 26S proteasome system in the normal and stressed myocardium. Antioxid Redox Signal 2006; 8:1677-91. [PMID: 16987021 DOI: 10.1089/ars.2006.8.1677] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The 26S proteasome is a multicatalytic threonine protease complex responsible for degradation of the majority of proteins in eukaryotic cells. In the last two decades, the ubiquitin proteasome system (UPS) has been increasingly recognized as an integral component in numerous biologic processes including cell proliferation, adaptation to stress, and cell death. The turnover of intracellular proteins inevitably affects the contributions of these molecules to cellular networks and pathways in any given tissue or organ, including the myocardium. Perturbations in the protein-degradation process have been shown to affect protein turnover and thereby affect the cardiac cell functions that these molecules are designated to carry out, engendering diseased cardiac phenotypes. Recent studies have implicated the role of proteasomes in stressed cardiac phenotypes including postischemia-reperfusion injury and cardiac remodeling (e.g., heart failure). The 26S proteasomes also appear to be susceptible to modulation by stresses (e.g., reactive oxygen species). This review focuses on roles of the 26S proteasome system in protein degradation; it provides an overview of the progress made in cardiac proteasome research as well as a discussion of recent controversies regarding the UPS system in diseased cardiac phenotypes.
Collapse
Affiliation(s)
- Aldrin V Gomes
- Department of Physiology, Cardiac Proteomics and Signaling Laboratory at CVRL, UCLA School of Medicine, Los Angeles, California 90095, USA
| | | | | |
Collapse
|
77
|
Schiekofer S, Shiojima I, Sato K, Galasso G, Oshima Y, Walsh K. Microarray analysis of Akt1 activation in transgenic mouse hearts reveals transcript expression profiles associated with compensatory hypertrophy and failure. Physiol Genomics 2006; 27:156-70. [PMID: 16882883 DOI: 10.1152/physiolgenomics.00234.2005] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
To investigate molecular mechanisms involved in the development of cardiac hypertrophy and heart failure, we developed a tetracycline-regulated transgenic system to conditionally switch a constitutively active form of the Akt1 protein kinase on or off in the adult heart. Short-term activation (2 wk) of Akt1 resulted in completely reversible hypertrophy with maintained contractility. In contrast, chronic Akt1 activation (6 wk) induced extensive cardiac hypertrophy, severe contractile dysfunction, and massive interstitial fibrosis. The focus of this study was to create a transcript expression profile of the heart as it undergoes reversible Akt1-mediated hypertrophy and during the transition from compensated hypertrophy to heart failure. Heart tissue was analyzed before transgene induction, 2 wk after transgene induction, 2 wk of transgene induction followed by 2 days of repression, 6 wk after transgene induction, and 6 wk of transgene induction followed by 2 wk of repression. Acute overexpression of Akt1 (2 wk) leads to changes in the expression of 826 transcripts relative to noninduced hearts, whereas chronic induction (6 wk) led to changes in the expression of 1,611, of which 65% represented transcripts that were regulated during the pathological phase of heart growth. Another set of genes identified was uniquely regulated during heart regression but not growth, indicating that nonoverlapping transcription programs participate in the processes of cardiac hypertrophy and atrophy. These data define the gene regulatory programs downstream of Akt that control heart size and contribute to the transition from compensatory hypertrophy to heart failure.
Collapse
Affiliation(s)
- Stephan Schiekofer
- Molecular Cardiology/Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, Massachusetts 02118, USA
| | | | | | | | | | | |
Collapse
|
78
|
Harpster MH, Bandyopadhyay S, Thomas DP, Ivanov PS, Keele JA, Pineguina N, Gao B, Amarendran V, Gomelsky M, McCormick RJ, Stayton MM. Earliest changes in the left ventricular transcriptome postmyocardial infarction. Mamm Genome 2006; 17:701-15. [PMID: 16845475 DOI: 10.1007/s00335-005-0120-1] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2005] [Accepted: 02/15/2006] [Indexed: 01/06/2023]
Abstract
We report a genome-wide survey of early responses of the mouse heart transcriptome to acute myocardial infarction (AMI). For three regions of the left ventricle (LV), namely, ischemic/infarcted tissue (IF), the surviving LV free wall (FW), and the interventricular septum (IVS), 36,899 transcripts were assayed at six time points from 15 min to 48 h post-AMI in both AMI and sham surgery mice. For each transcript, temporal expression patterns were systematically compared between AMI and sham groups, which identified 515 AMI-responsive genes in IF tissue, 35 in the FW, 7 in the IVS, with three genes induced in all three regions. Using the literature, we assigned functional annotations to all 519 nonredundant AMI-induced genes and present two testable models for central signaling pathways induced early post-AMI. First, the early induction of 15 genes involved in assembly and activation of the activator protein-1 (AP-1) family of transcription factors implicates AP-1 as a dominant regulator of earliest post-ischemic molecular events. Second, dramatic increases in transcripts for arginase 1 (ARG1), the enzymes of polyamine biosynthesis, and protein inhibitor of nitric oxide synthase (NOS) activity indicate that NO production may be regulated, in part, by inhibition of NOS and coordinate depletion of the NOS substrate, L: -arginine. ARG1: was the single-most highly induced transcript in the database (121-fold in IF region) and its induction in heart has not been previously reported.
Collapse
Affiliation(s)
- Mark H Harpster
- Department of Molecular Biology, University of Wyoming, Laramie, 82071, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
79
|
Kaiserova K, Srivastava S, Hoetker JD, Awe SO, Tang XL, Cai J, Bhatnagar A. Redox Activation of Aldose Reductase in the Ischemic Heart. J Biol Chem 2006; 281:15110-20. [PMID: 16567803 DOI: 10.1074/jbc.m600837200] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Aldose reductase (AR) reduces cytotoxic aldehydes and glutathione conjugates of aldehydes derived from lipid peroxidation. Its inhibition has been shown to increase oxidative injury and abolish the late phase of ischemic preconditioning. However, the mechanisms by which ischemia regulates AR activity remain unclear. Herein, we report that rat hearts subjected to ischemia, in situ or ex vivo, display a 2-4-fold increase in AR activity. The AR activity was not further enhanced by reperfusion. Activation increased Vmax of the enzyme without affecting the Km and decreased the sensitivity of the enzyme to inhibition by sorbinil. Enzyme activation could be prevented by pretreating the hearts with the radical scavenging thiol, N-(2-mercaptoproprionyl)glycine or the superoxide dismutase mimetic, Tiron, or by treating homogenates with dithiothreitol. In vitro, the recombinant enzyme was activated upon treatment with H2O2 and the activated, but not the native enzyme, formed a covalent adduct with the sulfenic acid-specific reagent dimedone. The enzyme activity in the ischemic, but not the nonischemic heart homogenates was inhibited by dimedone. Separation of proteins from hearts subjected to coronary occlusion by two-dimensional electrophoresis and subsequent matrix-assisted laser desorption ionization time-of-flight/mass spectrometry analysis revealed the formation of sulfenic acids at Cys-298 and Cys-303. These data indicate that reactive oxygen species formed in the ischemic heart activate AR by modifying its cysteine residues to sulfenic acids.
Collapse
Affiliation(s)
- Karin Kaiserova
- Institute of Molecular Cardiology, Department of Physiology and Biophysics, University of Louisville, Louisville, Kentucky 40202, USA
| | | | | | | | | | | | | |
Collapse
|
80
|
Lowes BD, Zolty R, Minobe WA, Robertson AD, Leach S, Hunter L, Bristow MR. Serial gene expression profiling in the intact human heart. J Heart Lung Transplant 2006; 25:579-88. [PMID: 16678038 PMCID: PMC2709530 DOI: 10.1016/j.healun.2006.01.006] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2005] [Revised: 01/10/2006] [Accepted: 01/16/2006] [Indexed: 10/24/2022] Open
Abstract
BACKGROUND In chronic heart failure due to a dilated cardiomyopathy phenotype, the molecular bases for contractile dysfunction and chamber remodeling remain largely unidentified. METHODS To investigate the feasibility of measuring global gene expression serially in the intact failing human heart, we performed repeated messenger RNA (mRNA) expression profiling using RNA extracted from endomyocardial biopsy specimens and gene chip methodology in 8 subjects with idiopathic dilated cardiomyopathy. In patients treated with beta-blocking agents or placebo, myocardial gene expression was measured in endomyocardial biopsy material and radionuclide ejection fraction was measured at baseline and after 4 to 12 months of treatment. Gene expression was measured for 12,625 gene sequences by using Affymetrix U95 gene chips and commercially available software. For 6 mRNAs, gene chip results were compared with measurements made by quantitative reverse transcriptase-polymerase chain reaction (RT-PCR). RESULTS In an unfiltered composite analysis of changes in expression detected in the patients with high-signal intensity chips, 241 genes showed an increase and 331 genes a decrease in mRNA abundance. There was good agreement between changes measured by quantitative RT-PCR and those determined by gene chips. There was less variance between differences in phenotype in patients sampled serially as compared between subjects with similar phenotypes sampled at baseline. CONCLUSIONS Serial gene expression profiling with association to phenotypic change is feasible in the intact human heart and may offer advantages to cross-sectional expression profiling. This study suggests that the intact failing remodeled human heart is in an activated state of gene expression, with a large net reduction in gene expression occurring as phenotypic improvement occurs.
Collapse
Affiliation(s)
- Brian D Lowes
- Division of Cardiology and the Center for Computational Pharmacology, University of Colorado Health Sciences Center, Denver, Colorado 80262, USA.
| | | | | | | | | | | | | |
Collapse
|
81
|
Razeghi P, Baskin KK, Sharma S, Young ME, Stepkowski S, Essop MF, Taegtmeyer H. Atrophy, hypertrophy, and hypoxemia induce transcriptional regulators of the ubiquitin proteasome system in the rat heart. Biochem Biophys Res Commun 2006; 342:361-4. [PMID: 16483544 DOI: 10.1016/j.bbrc.2006.01.163] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2006] [Accepted: 01/31/2006] [Indexed: 12/17/2022]
Abstract
BACKGROUND In skeletal muscle, transcript levels of proteins regulating the ubiquitin proteasome system (UPS) increase with atrophy and decrease with hypertrophy. Whether the same is true for heart muscle is not known. AIM OF THE STUDY We set out to characterize the transcriptional profile of regulators of the UPS during atrophy-, hypertrophy-, and hypoxia-induced remodeling of the heart. METHODS AND RESULTS Cardiac atrophy was induced by heterotopic transplantation of the rat heart. Left ventricular hypertrophy was induced by banding of the ascending aorta in rats. To study the effects of hypoxemia on the left ventricle, rats were exposed to hypobaric hypoxia. Transcript levels of six known regulators of the UPS, ubiquitin B (UbB), the ubiquitin conjugating enzymes UbcH2 and E2-14kDa, the ubiquitin ligases Mafbx/Atrogin-1 and MuRF-1, and the proteasomal subunit PSMB4 were measured using quantitative RT-PCR. Unloading-induced atrophy increased mRNA levels of UbB and decreased levels of both ubiquitin ligases. Transcript levels of all UPS genes investigated increased in the hypertrophied and hypoxic heart (with the exception of E2-14kDa). CONCLUSIONS Cardiac atrophy, hypertrophy, and hypoxemia all increase myocardial UbB expression, suggesting that UbB is a transcriptional marker for load-induced and hypoxia-mediated cardiac remodeling.
Collapse
Affiliation(s)
- Peter Razeghi
- Department of Internal Medicine, Division of Cardiology, The University of Texas Health Science Center, Houston, TX, USA
| | | | | | | | | | | | | |
Collapse
|
82
|
Andersson KB, Florholmen G, Winer LH, Tønnessen T, Christensen G. Regulation of neuronal type genes in congestive heart failure rats. Acta Physiol (Oxf) 2006; 186:17-27. [PMID: 16497176 DOI: 10.1111/j.1748-1716.2005.01503.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
AIM After myocardial infarction (MI), complex changes in the heart occur during progression into congestive heart failure (CHF). This study sought to identify regulated genes that could have a functional role in some of the changes seen in CHF. METHODS Myocardial infarction was induced by ligation of the left anterior descending coronary artery (LAD) in Wistar rats. Gene expression changes in 1- and 7-day MI left ventricular myocardium was analysed using complementary DNA (cDNA) filter arrays. Regulated genes were identified by repeated measurements and a ranked ratio analysis method. RESULTS A total of 135 genes were identified as differentially expressed. A few genes were robustly regulated at 1-day MI. In 7-day CHF hearts, changes in the expression of neuronal type genes was prominent (32%, n = 28). Eleven of these genes with no described association with CHF were selected for validation. One gene failed the validation. In CHF hearts, the expression of the muscarinic m4 (Chrm4) and nicotinic alpha4 (Chrna4) acetylcholin receptors, the ATP receptor P2rx4, nerve growth factor receptor (Ngfr), discoidin domain receptor 1 (Ddr1), neuronal pentraxin receptor (Nptxr), peripheral myelin protein Pmp-22, leukocyte type 12-lipoxygenase (Alox15), cytochrome P450 4F5 (Cyp4F5) and cardiac Kcne1 were all increased (range 1.6-6.0-fold, P < 0.01 for all genes). The lack of significant regulation of these genes at 1-day post-MI, suggests that the induction of these genes at 7-day post-MI is not a short-term response induced by the infarct itself. CONCLUSION These neuronal type genes may participate in underlying processes that affect contractility, intracardiac nerve function and development of arrhythmias in CHF hearts.
Collapse
Affiliation(s)
- K B Andersson
- Institute for Experimental Medical Research, Ullevaal University Hospital, Oslo, Norway.
| | | | | | | | | |
Collapse
|
83
|
Abstract
Cardiomyopathies are primary disorders of cardiac muscle associated with abnormalities of cardiac wall thickness, chamber size, contraction, relaxation, conduction, and rhythm. They are a major cause of morbidity and mortality at all ages and, like acquired forms of cardiovascular disease, often result in heart failure. Over the past two decades, molecular genetic studies of humans and analyses of model organisms have made remarkable progress in defining the pathogenesis of cardiomyopathies. Hypertrophic cardiomyopathy can result from mutations in 11 genes that encode sarcomere proteins, and dilated cardiomyopathy is caused by mutations at 25 chromosome loci where genes encoding contractile, cytoskeletal, and calcium regulatory proteins have been identified. Causes of cardiomyopathies associated with clinically important cardiac arrhythmias have also been discovered: Mutations in cardiac metabolic genes cause hypertrophy in association with ventricular pre-excitation and mutations causing arrhythmogenic right ventricular dysplasia were recently discovered in protein constituents of desmosomes. This considerable genetic heterogeneity suggests that there are multiple pathways that lead to changes in heart structure and function. Defects in myocyte force generation, force transmission, and calcium homeostasis have emerged as particularly critical signals driving these pathologies. Delineation of the cell and molecular events triggered by cardiomyopathy gene mutations provide new fundamental knowledge about myocyte biology and organ physiology that accounts for cardiac remodeling and defines mechanistic pathways that lead to heart failure.
Collapse
Affiliation(s)
- Ferhaan Ahmad
- Cardiovascular Institute and Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15213, USA
| | | | | |
Collapse
|
84
|
Steenman M, Lamirault G, Le Meur N, Léger JJ. Gene expression profiling in human cardiovascular disease. Clin Chem Lab Med 2005; 43:696-701. [PMID: 16207127 DOI: 10.1515/cclm.2005.118] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Gene expression profiling studies in human diseases have allowed better understanding of pathophysiological processes. In addition, they may lead to the development of new clinical tools to improve diagnosis and prognosis of patients. Most of these studies have been successfully performed for human cancers. Inspired by these results, researchers in the cardiovascular field have also started using large-scale transcriptional analysis to better understand and classify human cardiovascular disease. Here we provide an overview of the literature revealing new cardiac disease markers and encouraging results for further development of the expression profiling strategy for future clinical applications in cardiology.
Collapse
|
85
|
Satterthwaite G, Francis SE, Suvarna K, Blakemore S, Ward C, Wallace D, Braddock M, Crossman D. Differential gene expression in coronary arteries from patients presenting with ischemic heart disease: further evidence for the inflammatory basis of atherosclerosis. Am Heart J 2005; 150:488-99. [PMID: 16169330 DOI: 10.1016/j.ahj.2004.10.025] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2004] [Accepted: 10/09/2004] [Indexed: 11/28/2022]
Abstract
BACKGROUND AND OBJECTIVE The pathogenesis of human coronary artery disease (CAD) is likely to require the transcription of many different genes. We report here the differential gene expression profiling of human CAD using copy DNA (cDNA)/nylon array hybridization techniques. METHODS AND RESULTS Human coronary arteries were obtained at the time of cardiac transplantation. Ten patients were transplanted for ischemic heart disease (IHD) and 5 for dilated cardiomyopathy (DCM). We generated a customized cDNA array containing 9206 clones and after hybridization of patient samples, data reduction, and refinement, identified 515 sequence-verified, differentially expressed clones. These clones represented 361 genes that were differentially expressed at significant levels between IHD and DCM arteries (t test, P < .05). Of these clones, 70% were defined genes of known function and 30% were genes of unknown function. Of the differentially expressed genes, 53.6% were up-regulated and 46.4% were down-regulated. Hierarchical clustering was performed and several distinct functional clusters were identified, including a cluster of genes related to inflammatory mechanisms. Validation by real-time polymerase chain reaction was undertaken with 2 genes known to be up-regulated in atherosclerosis (interleukin 1beta [IL-1beta] and IL-8) and 2 novel genes identified by the array analysis (signal transducer and activator of transcription 6 [STAT6] and IL-1 receptor-associated kinase [IRAK]). Differential expression of IL-1beta, IL-8, and STAT6 were confirmed by this method. Immunohistochemistry of STAT6 demonstrated increased expression in vascular smooth muscle cells of IHD coronary arteries. CONCLUSION These data support the inflammatory basis of human atherosclerotic CAD and identify novel genes in atherosclerosis.
Collapse
Affiliation(s)
- Gemma Satterthwaite
- Division of Clinical Sciences (North), University of Sheffield, Sheffield, UK
| | | | | | | | | | | | | | | |
Collapse
|
86
|
Cunha-Neto E, Dzau VJ, Allen PD, Stamatiou D, Benvenutti L, Higuchi ML, Koyama NS, Silva JS, Kalil J, Liew CC. Cardiac gene expression profiling provides evidence for cytokinopathy as a molecular mechanism in Chagas' disease cardiomyopathy. THE AMERICAN JOURNAL OF PATHOLOGY 2005; 167:305-13. [PMID: 16049318 PMCID: PMC1603558 DOI: 10.1016/s0002-9440(10)62976-8] [Citation(s) in RCA: 122] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 04/21/2005] [Indexed: 01/23/2023]
Abstract
Chronic Chagas' disease cardiomyopathy is a leading cause of congestive heart failure in Latin America, affecting more than 3 million people. Chagas' cardiomyopathy is more aggressive than other cardiomyopathies, but little is known of the molecular mechanisms responsible for its severity. We characterized gene expression profiles of human Chagas' cardiomyopathy and dilated cardiomyopathy to identify selective disease pathways and potential therapeutic targets. Both our customized cDNA microarray (Cardiochip) and real-time reverse transcriptase-polymerase chain reaction analysis showed that immune response, lipid metabolism, and mitochondrial oxidative phosphorylation genes were selectively up-regulated in myocardial tissue of the tested Chagas' cardiomyopathy patients. Interferon (IFN)-gamma-inducible genes represented 15% of genes specifically up-regulated in Chagas' cardiomyopathy myocardial tissue, indicating the importance of IFN-gamma signaling. To assess whether IFN-gamma can directly modulate cardio-myocyte gene expression, we exposed fetal murine cardiomyocytes to IFN-gamma and the IFN-gamma-inducible chemokine monocyte chemoattractant protein-1. Atrial natriuretic factor expression increased 15-fold in response to IFN-gamma whereas combined IFN-gamma and monocyte chemoattractant protein-1 increased atrial natriuretic factor expression 400-fold. Our results suggest IFN-gamma and chemokine signaling may directly up-regulate cardiomyocyte expression of genes involved in pathological hypertrophy, which may lead to heart failure. IFN-gamma and other cytokine pathways may thus be novel therapeutic targets in Chagas' cardiomyopathy.
Collapse
Affiliation(s)
- Edecio Cunha-Neto
- Laboratory of Immunology, Heart Institute (InCor), University of São Paulo, São Paulo, Brazil
| | | | | | | | | | | | | | | | | | | |
Collapse
|
87
|
Faber MJ, Dalinghaus M, Lankhuizen IM, Bezstarosti K, Dekkers DHW, Duncker DJ, Helbing WA, Lamers JMJ. Proteomic changes in the pressure overloaded right ventricle after 6 weeks in young rats: Correlations with the degree of hypertrophy. Proteomics 2005; 5:2519-30. [PMID: 15912512 DOI: 10.1002/pmic.200401313] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Right ventricular (RV) hypertrophy is an important problem in congenital heart disease. We determined the alterations in phenotype that occur in the initial phase of RV hypertrophy and their possible correlations with the degree of hypertrophy. Therefore, we performed a differential proteomic profiling study on RV hypertrophy using an animal model of pulmonary artery banding (PAB) in parallel with hemodynamic characterization. The RV homogenates were subfractionated in myofilament and cytoplasmic proteins, which subsequently were separated by two-dimensional gel electrophoresis (2-DE), excised, and analyzed by mass spectrometry (MS). The cytoplasmic fraction showed expression changes in metabolic proteins, indicative of a shift from fatty acid to glucose as a substrate for energy supply. Up-regulation of three HSP-27s (1.9-, 1.7-, and 3.5-fold) indicated an altered stress response in RV hypertrophy. Detailed analysis by immunoblotting and MS showed that two of these HSP-27s were at least phosphorylated on Ser15. The myofilament fraction showed up-regulation of desmin and alpha-B-crystallin (1.4-and 1.3-fold, respectively). This alteration in desmin was confirmed by 1-DE immunoblots. Certain differentially expressed proteins, such as HSP-27, showed a significant correlation with the RV weight to the body weight ratio in the PAB rats, suggesting an association with the degree of hypertrophy.
Collapse
Affiliation(s)
- Matthijs J Faber
- Department of Pediatrics, Division of Pediatric Cardiology, Erasmus MC-Sophia Children's Hospital, Cardiovascular Research School COEUR, Erasmus University Medical Center, Rotterdam, The Netherlands
| | | | | | | | | | | | | | | |
Collapse
|
88
|
Ohki R, Yamamoto K, Ueno S, Mano H, Misawa Y, Fuse K, Ikeda U, Shimada K. Gene expression profiling of human atrial myocardium with atrial fibrillation by DNA microarray analysis. Int J Cardiol 2005; 102:233-8. [PMID: 15982490 DOI: 10.1016/j.ijcard.2004.05.026] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2003] [Revised: 03/31/2004] [Accepted: 05/05/2004] [Indexed: 10/26/2022]
Abstract
BACKGROUND Atrial fibrillation (AF) is the most frequently encountered arrhythmia in the clinical setting. However, a comprehensive investigation of the molecular mechanism of AF has not been performed. The aim of this study was to clarify transcriptional profiling of genes modulated in the atrium of AF patients using DNA microarray technology. METHODS We obtained 17 fresh cardiac specimens, right atrial appendages, isolated from 10 patients with normal sinus rhythm and seven chronic AF patients who underwent cardiac surgery. Affymetrix GeneChip (Human Genome U95A) investigating 12,000 human genes was used for each specimen. Quantitative analysis of selected genes was performed by the real-time PCR method. RESULTS The left atrial diameter in the AF group was greater than that in the sinus rhythm group. We could identify 33 AF-specific genes that were significantly activated (>1.5-fold), compared with the sinus rhythm group, including an ion channel, an antioxidant, an inflammation, three cell growth/cell cycle, three transcription such as nuclear factor-interleukin 6-beta, several cell signaling and several protein genes, and seven expressed sequence tags (ESTs). In contrast, we found 63 sinus rhythm-specific genes, including several cell signaling/communication such as sarcoplasmic reticulum Ca2+-ATPase 2, several cellular respiration and energy production and two antiproliferative or negative regulator of cell growth genes, and 22 ESTs. CONCLUSIONS The present study demonstrated that about one hundred genes were modulated in the atria of AF patients. These findings suggest that these genes may play critical roles in the initiation or perpetuation of AF and the pathophysiology of atrial remodeling.
Collapse
Affiliation(s)
- Ruri Ohki
- Division of Cardiovascular Medicine, Jichi Medical School, Minamikawachi-Machi, Tochigi 329-0498, Japan
| | | | | | | | | | | | | | | |
Collapse
|
89
|
Abstract
Cardiac hypertrophy is caused by hypertension, myocardial infarction, endocrine disorders, and perturbations in sarcomeric function, and has become a major cause of human morbidity and mortality. The generation of cardiac hypertrophy is associated with regulation of a cardiac gene program by cardiac transcription factors. The LIM proteins have been discovered to play an important role in cardiac hypertrophy. The LIM proteins contain one, two or multiple LIM domains and can be divided into different classes according to their amino acid sequence homologies. The LIM-only proteins, muscle LIM protein and human heart LIM protein are involved in cardiac hypertrophy by functioning as either an integrator of protein assembly of the actin-based cytoskeleton or tissue-specific coactivator of the receptor and the transcription factors. There have been many recent developments in the functions of LIM proteins related to cardiac hypertrophy and their interactions. It is hoped that the knowledge of LIM proteins will at least provide a greater choice of therapies and improved our management of cardiac hypertrophy.
Collapse
Affiliation(s)
- Mei Han
- Institute of Basic Medicine, Department of Biochemistry and Molecular Biology, Hebei Medical University, No. 361, Zhongshan East Road, Shijiazhuang 050017, China
| | - Jin-Kun Wen
- Institute of Basic Medicine,Department of Biochemistry and Molecular No. 361, Zhongshan East Road, Shijiazhuang 050017, China
| | - Bin Zheng
- Institute of Basic Medicine,Department of Biochemistry and Molecular No. 361, Zhongshan East Road, Shijiazhuang 050017, China
| |
Collapse
|
90
|
Sanoudou D, Vafiadaki E, Arvanitis DA, Kranias E, Kontrogianni-Konstantopoulos A. Array lessons from the heart: focus on the genome and transcriptome of cardiomyopathies. Physiol Genomics 2005; 21:131-43. [PMID: 15831843 DOI: 10.1152/physiolgenomics.00259.2004] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Our understanding of the cardiovascular system has evolved through the years by extensive studies emphasizing the identification of the molecular and physiological mechanisms involved in its normal function and disease pathogenesis. Major discoveries have been made along the way. However, the majority of this work has focused on specific genes or pathways rather than integrative approaches. In cardiomyopathies alone, over 30 different loci have shown mutations with varying inheritance patterns, yet mostly coding for structural proteins. The emergence of microarrays in the early 1990s paved the way to a new era of cardiovascular research. Microarrays dramatically accelerated the rhythm of discoveries by giving us the ability to simultaneously study thousands of genes in a single experiment. In the field of cardiovascular research, microarrays are having a significant contribution, with the majority of work focusing on end-stage cardiomyopathies that lead to heart failure. Novel molecular mechanisms have been identified, known pathways are seen under new light, disease subgroups begin to emerge, and the effects of various drugs are molecularly dissected. This cross-study data comparison concludes that consistent energy metabolism gene expression changes occur across dilated, hypertrophic, and ischemic cardiomyopathies, while Ca2+ homeostasis changes are prominent in the first two cardiomyopathies, and structural gene expression changes accompany mostly the dilated form. Gene expression changes are further correlated to disease genetics. The future of microarrays in the cardiomyopathy field is discussed with an emphasis on optimum experimental design and on applications in diagnosis, prognosis, and drug discovery.
Collapse
Affiliation(s)
- Despina Sanoudou
- Molecular Biology Division, Center for Basic Research, Foundation for Biomedical Research of the Academy of Athens, Athens, Greece.
| | | | | | | | | |
Collapse
|
91
|
Chon H, Bluyssen HAR, Holstege FCP, Koomans HA, Joles JA, Braam B. Gene expression of energy and protein metabolism in hearts of hypertensive nitric oxide- or GSH-depleted mice. Eur J Pharmacol 2005; 513:21-33. [PMID: 15878706 DOI: 10.1016/j.ejphar.2005.01.054] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2004] [Revised: 01/25/2005] [Accepted: 01/31/2005] [Indexed: 10/25/2022]
Abstract
Hypertension demands cardiac synthetic and metabolic adaptations to increased afterload. We studied gene expression in two models of mild hypertension without overt left ventricular hypertrophy using the NO synthase inhibitor nitro-L-arginine (L-NNA) and the glutathione depletor buthionine-S,R-sulfoximine (BSO). Mice were administered L-NNA, BSO, or water for 8 weeks. RNA of left ventricles was pooled per group, reverse transcribed, Cy3 and Cy5 labeled, and hybridized to cDNA microarrays. Normalized log(2) Cy3/Cy5 ratios of > or =0.7 or < or =-0.7 were considered significant. L-NNA and BSO both caused hypertension. Gene expression was regulated in cytoskeletal components in both models, protein synthesis in L-NNA-treated mice, and energy metabolism in BSO-treated mice. Energy metabolism genes shared several common transcription factor-binding sites such as Coup-Tf2, of which gene expression was increased in BSO-treated mice, and COMP-1. Characterization of the left ventricular adaptations as assessed with gene expression profiles reveals differential expression in energy and protein metabolism related to the pathogenetic background of the hypertension.
Collapse
Affiliation(s)
- Helena Chon
- Department of Nephrology and Hypertension, University Medical Center, GA Utrecht, Netherlands
| | | | | | | | | | | |
Collapse
|
92
|
Steenman M, Lamirault G, Le Meur N, Le Cunff M, Escande D, Léger JJ. Distinct molecular portraits of human failing hearts identified by dedicated cDNA microarrays. Eur J Heart Fail 2005; 7:157-65. [PMID: 15701461 DOI: 10.1016/j.ejheart.2004.05.008] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2004] [Revised: 04/19/2004] [Accepted: 05/17/2004] [Indexed: 11/20/2022] Open
Abstract
AIMS This study aimed to investigate whether a molecular profiling approach should be pursued for the classification of heart failure patients. METHODS AND RESULTS Applying a subtraction strategy we created a cDNA library consisting of cardiac- and heart failure-relevant clones that were used to construct dedicated cDNA microarrays. We measured relative expression levels of the corresponding genes in left ventricle tissue from 17 patients (15 failing hearts and 2 nonfailing hearts). Significance analysis of microarrays was used to select 159 genes that distinguished between all patients. Two-way hierarchical clustering of the 17 patients and the 159 selected genes led to the identification of three major subgroups of patients, each with a specific molecular portrait. The two nonfailing hearts clustered closely together. Interestingly, our classification of patients based on their molecular portraits did not correspond to an identified etiological classification. Remarkably, patients with the highest medical urgency status (United Network for Organ Sharing, Status 1A) clustered together. CONCLUSION With this pilot feasibility study we demonstrated a novel classification of end-stage heart failure patients, which encourages further development of this approach in prospective studies on heart failure patients at earlier stages of the disease.
Collapse
Affiliation(s)
- Marja Steenman
- Laboratoire de Physiopathologie et de Pharmacologie Cellulaires et Moléculaires, INSERM U533, Faculté de Médecine, 1 Rue Gaston Veil, BP 53508, 44035 Nantes, Cedex 1, France.
| | | | | | | | | | | |
Collapse
|
93
|
Abstract
Cardiovascular disease is the most important cause of morbidity and mortality in developed countries, causing twice as many deaths as cancer in the USA. The major cardiovascular diseases, including coronary artery disease (CAD), myocardial infarction (MI), congestive heart failure (CHF) and common congenital heart disease (CHD), are caused by multiple genetic and environmental factors, as well as the interactions between them. The underlying molecular pathogenic mechanisms for these disorders are still largely unknown, but gene expression may play a central role in the development and progression of cardiovascular disease. Microarrays are high-throughput genomic tools that allow the comparison of global expression changes in thousands of genes between normal and diseased cells/tissues. Microarrays have recently been applied to CAD/MI, CHF and CHD to profile changes in gene expression patterns in diseased and non-diseased patients. This same technology has also been used to characterise endothelial cells, vascular smooth muscle cells and inflammatory cells, with or without various treatments that mimic disease processes involved in CAD/MI. These studies have led to the identification of unique subsets of genes associated with specific diseases and disease processes. Ongoing microarray studies in the field will provide insights into the molecular mechanism of cardiovascular disease and may generate new diagnostic and therapeutic markers.
Collapse
Affiliation(s)
- Stephen Archacki
- Center for Molecular Genetics, Department of Molecular Cardiology, Lerner Research Institute; Center for Cardiovascular Genetics, Department of Cardiovascular Medicine, The Cleveland Clinic Foundation, Cleveland, OH, USA
- Department of Biological, Geological and Environmental Sciences Cleveland State University, Cleveland, OH 44115, USA
| | - Qing Wang
- Center for Molecular Genetics, Department of Molecular Cardiology, Lerner Research Institute; Center for Cardiovascular Genetics, Department of Cardiovascular Medicine, The Cleveland Clinic Foundation, Cleveland, OH, USA
- Department of Biological, Geological and Environmental Sciences Cleveland State University, Cleveland, OH 44115, USA
| |
Collapse
|
94
|
Tang Y, Schapiro MB, Franz DN, Patterson BJ, Hickey FJ, Schorry EK, Hopkin RJ, Wylie M, Narayan T, Glauser TA, Gilbert DL, Hershey AD, Sharp FR. Blood expression profiles for tuberous sclerosis complex 2, neurofibromatosis type 1, and Down's syndrome. Ann Neurol 2005; 56:808-14. [PMID: 15562430 DOI: 10.1002/ana.20291] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Blood gene expression profiling has been applied to a variety of hematological malignancies, autoimmune disorders, and infectious diseases. This study applies this approach to genetic diseases without obvious blood phenotypes. Three genetic diseases including tuberous sclerosis complex 2, neurofibromatosis type 1, and Down's syndrome were compared with a group of healthy controls. RNA from whole blood was surveyed using Affymetrix U133A arrays. Each disease was associated with a unique gene expression pattern in blood that can be accurately distinguished by a classifier. Genes on chromosome 21 were overexpressed in Down's syndrome, and genes controlling cell cycle and proliferation were associated with tuberous sclerosis complex type 2 or neurofibromatosis type 1. A subset of genes involved in cardiac development or remodeling were overexpressed in patients with Down's syndrome and congenital heart defects. These findings suggest that blood gene expression profiling on a broader basis might be useful for genetic disease screening/diagnosis and might help elucidate mechanisms and pathways that lead to genotype-phenotype differences.
Collapse
Affiliation(s)
- Yang Tang
- Department of Neurology and MIND Institute, University of California at Davis, Sacramento, CA, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
95
|
Abstract
The challenge of medical practice today is to identify individuals who are at risk of developing disease, determine the severity of the disease and distinguish the responders from the nonresponders to therapy (individualized medicine). Advances in molecular genetics and biology have shifted the paradigm for identification of markers from large-scale epidemiologic studies to studies on genomic- and proteomic-based techniques. Consequently, a large number of biologic markers, referred to as biomarkers, are being identified and validated to serve for risk stratification, prognostication and individualization of therapy. Identification of biomarkers for cardiovascular diseases could also provide insight into the pathogenesis of the phenotype, which is fundamental for the development of specific therapies. The list of biomarkers for cardiovascular disease is expanding rapidly. Nonetheless, the field is in the early stages of evolution and large-scale clinical studies are required to validate the utility of newly identified biomarkers in diagnosis, risk stratification and treatment of cardiovascular diseases. Selected biomarkers for coronary atherosclerosis, acute coronary syndromes and heart failure are discussed in this review.
Collapse
Affiliation(s)
- A J Marian
- Baylor College of Medicine, One Baylor Plaza, 519D, Houston, TX 77030, USA.
| | | |
Collapse
|
96
|
Abstract
Heart failure is a major disease burden worldwide, and its incidence continues to increase as premature deaths from other cardiovascular conditions decline. Although the overall molecular portrait of this multifactorial disease remains incomplete, molecular and genetic studies have implicated, in recent decades, various pathways and genes that participate in the pathophysiology of heart failure. Here, we highlight the current understanding of the molecular and genetic basis of heart failure and show how recently developed genomic tools are providing a new perspective on this complex disease.
Collapse
Affiliation(s)
- Choong-Chin Liew
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, 77 Louis Pasteur Avenue, NRB room 0630K, Boston, Massachusetts 02115, USA.
| | | |
Collapse
|
97
|
Yung CK, Halperin VL, Tomaselli GF, Winslow RL. Gene expression profiles in end-stage human idiopathic dilated cardiomyopathy: altered expression of apoptotic and cytoskeletal genes. Genomics 2004; 83:281-97. [PMID: 14706457 DOI: 10.1016/j.ygeno.2003.08.007] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Dilated cardiomyopathy is now the leading cause of cardiovascular morbidity and mortality. While the molecular basis of this disease remains uncertain, evidence is emerging that gene expression profiles of left ventricular myocardium isolated from failing versus nonfailing patients differ dramatically. In this study, we use high-density oligonucleotide microarrays with approximately 22000 probes to characterize differences in the expression profiles further. To facilitate interpretation of experimental data, we evaluate algorithms for normalization of hybridization data and for computation of gene expression indices using a control spike-in data set. We then use these methods to identify statistically significant changes in the expression levels of genes not previously implicated in the molecular phenotype of heart failure. These regulated genes take part in diverse cellular processes, including transcription, apoptosis, sarcomeric and cytoskeletal function, remodeling of the extracellular matrix, membrane transport, and metabolism.
Collapse
Affiliation(s)
- Christina K Yung
- Department of Biomedical Engineering, The Johns Hopkins University School of Medicine & Whiting School of Engineering, Baltimore, MD 21218, USA.
| | | | | | | |
Collapse
|
98
|
Zhao M, Chow A, Powers J, Fajardo G, Bernstein D. Microarray analysis of gene expression after transverse aortic constriction in mice. Physiol Genomics 2004; 19:93-105. [PMID: 15292486 DOI: 10.1152/physiolgenomics.00040.2004] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Cardiac hypertrophy is a compensatory response initially beneficial to heart function but can ultimately lead to cardiac decompensation. It is an integrated process involving multiple cellular signaling pathways and their cross talk. Microarray GeneChip technology is a powerful new tool to identify gene expression profiles of cardiac hypertrophy. To identify well-characterized as well as novel adaptive mechanisms, we utilized a murine model of compensated pressure overload hypertrophy (transverse aortic constriction, TAC). At 48 h, 10 days, and 3 wk, hearts were harvested and total RNA hybridized to Affymetrix U74Av2 GeneChips, which contain a 12,488-gene/EST probe set. Verification of gene expression was performed by SYBR quantitative real-time RT-PCR (QRT-PCR) for selected genes. A rigorous evaluation of the adequacy of the control condition was also performed. For statistical analysis we generated a four-step filtering criteria. Our results show an upregulation of 38 genes (48 h), 269 genes (10 days), and 203 genes (3 wk) and downregulation of 15 genes (48 h), 160 genes (10 days), and 124 genes (3 wk). Transcripts differentially expressed after TAC were categorized into 12 functional groups and revealed the presence of several intriguing transcripts, e.g., cell proliferation-related Ki-67 and several apoptosis-related genes. Overall changes in QRT-PCR were in accordance with GeneChip data, with the highest correlation for genes with the largest up- or downregulation with TAC. Thus TAC results in altered expression of genes in several pathways regulating both cardiac structure and function. However, for in vivo gene microarray experiments, it is critical to define adequate controls, perform rigorous statistical analysis, and provide validation by alternative methods.
Collapse
Affiliation(s)
- Mingming Zhao
- Department of Pediatrics, Stanford University, Stanford, California 94304, USA
| | | | | | | | | |
Collapse
|
99
|
Mistry AC, Kato A, Tran YH, Honda S, Tsukada T, Takei Y, Hirose S. FHL5, a novel actin-binding protein, is highly expressed in eel gill pillar cells and responds to wall tension. Am J Physiol Regul Integr Comp Physiol 2004; 287:R1141-54. [PMID: 15284080 DOI: 10.1152/ajpregu.00108.2004] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Supporting evidence for the contractile nature of fish branchial pillar cells was provided by demonstrating the presence of actin fibers and a novel four-and-a-half LIM (FHL) protein in which expression is specific for contractile tissues and sensitive to the tension applied to the pillar cell. When eel gill sections were stained with rhodamine-phalloidin, a selective fluorescent probe for fibrous actin, a strong bundle-like staining was observed around collagen columns in pillar cells, suggesting the presence of abundant actin fibers. A cDNA clone encoding a novel member of the actin-binding FHL family, FHL5, was isolated from a subtracted cDNA library of eel gill. Northern analysis revealed that FHL5 mRNA is highly expressed only in gills, heart, and skeletal muscle. In gills, FHL5 was found to be confined to pillar cells by immunohistochemistry. Confocal fluorescence microscopy showed that FHL5 is present in both cytosol and nucleus; within the cytosol, a large portion of FHL5 is colocalized with the phalloidin-positive actin bundles. Furthermore, transfection of myogenic C2C12 cells with FHL5 cDNA demonstrated, in addition to its interaction with actin stress fibers, a nuclear shuttling activity of FHL5. The mRNA and protein levels were found to be elevated on 1) transfer of eels from seawater to freshwater, 2) volume expansion by infusion of isotonic dextran-saline, and 3) constriction of gill vasculature by bolus injection of endothelin-1. These results suggest contractile nature of pillar cells and a role of FHL5 in maintaining the integrity and regulating the dynamics of pillar cells.
Collapse
MESH Headings
- Actins/metabolism
- Actins/physiology
- Amino Acid Sequence
- Animals
- Base Sequence
- Blotting, Western
- Cell Nucleus/physiology
- Cells, Cultured
- Cloning, Molecular
- DNA, Complementary/biosynthesis
- DNA, Complementary/genetics
- Eels/physiology
- Gene Expression Regulation/physiology
- Gills/cytology
- Gills/physiology
- Immunohistochemistry
- Injections, Intra-Arterial
- Microcirculation/physiology
- Microscopy, Confocal
- Microscopy, Fluorescence
- Molecular Sequence Data
- Muscle Contraction/physiology
- Muscle Fibers, Skeletal/physiology
- Muscle Proteins/metabolism
- Muscle Proteins/physiology
- Muscle, Smooth, Vascular/physiology
- Myosins/physiology
- Nucleic Acid Amplification Techniques
- RNA, Messenger/biosynthesis
- RNA, Messenger/genetics
Collapse
Affiliation(s)
- Abinash Chandra Mistry
- Department of Biological Sciences, Tokyo Institute of Technology, 4259-B-19 Nagatsuta-cho, Midori-ku, Yokohama 226-8501, Japan
| | | | | | | | | | | | | |
Collapse
|
100
|
Gilson WD, Yang Z, French BA, Epstein FH. Complementary displacement-encoded MRI for contrast-enhanced infarct detection and quantification of myocardial function in mice. Magn Reson Med 2004; 51:744-52. [PMID: 15065247 DOI: 10.1002/mrm.20003] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
MRI is emerging as an important modality for assessing myocardial function in transgenic and knockout mouse models of cardiovascular disease, including myocardial infarction (MI). Displacement encoding with stimulated echoes (DENSE) measures myocardial motion at high spatial resolution using phase-reconstructed images. The current DENSE technique uses inversion recovery (IR) to suppress T(1)-relaxation artifacts; however, IR is ill-suited for contrast-enhanced infarct imaging in the heart, where multiple T(1) values are observed. We have developed a modified DENSE method employing complementary acquisitions for T(1)-independent artifact suppression. With this technique, displacement and strain are measured in phase-reconstructed images, and contrast-enhanced regions of infarction are depicted in perfectly coregistered magnitude-reconstructed images. The displacement measurements and T(1)-weighted image contrast were validated with the use of a rotating phantom. Modified DENSE was performed in mice (N = 9) before and after MI. Circumferential (E(cc)) and radial (E(rr)) strain were measured, and contrast-enhanced infarcted myocardium was detected by DENSE. At baseline, E(cc) was -0.16 +/- 0.01 and E(rr) was 0.39 +/- 0.07. After MI, E(cc) was 0.04 +/- 0.02 and E(rr) was 0.03 +/- 0.04 in infarcted regions, whereas E(cc) was -0.12 +/- 0.02 and E(rr) was 0.38 +/- 0.09 in noninfarcted regions. In vivo E(cc) as determined by DENSE correlated well with E(cc) obtained by conventional tag analysis (R = 0.90).
Collapse
Affiliation(s)
- Wesley D Gilson
- Department of Radiology, University of Virginia Health System, Charlottesville, Virginia 22908, USA
| | | | | | | |
Collapse
|