51
|
Buniel M, Glazebrook PA, Ramirez-Navarro A, Kunze DL. Distribution of voltage-gated potassium and hyperpolarization-activated channels in sensory afferent fibers in the rat carotid body. J Comp Neurol 2008; 510:367-77. [PMID: 18668683 DOI: 10.1002/cne.21796] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The chemosensory glomus cells of the carotid body (CB) detect changes in O2 tension. Carotid sinus nerve fibers, which originate from peripheral sensory neurons located within the petrosal ganglion, innervate the CB. Release of transmitter from glomus cells activates the sensory afferent fibers to transmit information to the nucleus of the solitary tract in the brainstem. The ion channels expressed within the sensory nerve terminals play an essential role in the ability of the terminal to initiate action potentials in response to transmitter-evoked depolarization. However, with a few exceptions, the identity of ion channels expressed in these peripheral nerve fibers is unknown. This study addresses the expression of voltage-gated channels in the sensory fibers with a focus on channels that set the resting membrane potential and regulate discharge patterns. By using immunohistochemistry and fluorescence confocal microscopy, potassium channel subunits and HCN (hyperpolarization-activated) family members were localized both in petrosal neurons that expressed tyrosine hydroxylase and in the CSN axons within the carotid body. Channels contributing to resting membrane potential, including HCN2 responsible in part for I(h) current and the KCNQ2 and KCNQ5 subunits thought to underlie the neuronal "M current," were identified in the sensory neurons and their axons innervating the carotid body. In addition, the results presented here demonstrate expression of several potassium channels that shape the action potential and the frequency of discharge, including Kv1.4, Kv1.5, Kv4.3, and K(Ca) (BK). The role of these channels should be considered in interpretation of the fiber discharge in response to perturbation of the carotid body environment.
Collapse
Affiliation(s)
- Maria Buniel
- Rammelkamp Center for Education and Research, MetroHealth Campus of Case Western Reserve University, Cleveland, Ohio 44109-1998, USA
| | | | | | | |
Collapse
|
52
|
Sun H, Varela D, Chartier D, Ruben PC, Nattel S, Zamponi GW, Leblanc N. Differential interactions of Na+ channel toxins with T-type Ca2+ channels. ACTA ACUST UNITED AC 2008; 132:101-13. [PMID: 18591418 PMCID: PMC2442173 DOI: 10.1085/jgp.200709883] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Two types of voltage-dependent Ca2+ channels have been identified in heart: high (ICaL) and low (ICaT) voltage-activated Ca2+ channels. In guinea pig ventricular myocytes, low voltage–activated inward current consists of ICaT and a tetrodotoxin (TTX)-sensitive ICa component (ICa(TTX)). In this study, we reexamined the nature of low-threshold ICa in dog atrium, as well as whether it is affected by Na+ channel toxins. Ca2+ currents were recorded using the whole-cell patch clamp technique. In the absence of external Na+, a transient inward current activated near −50 mV, peaked at −30 mV, and reversed around +40 mV (HP = −90 mV). It was unaffected by 30 μM TTX or micromolar concentrations of external Na+, but was inhibited by 50 μM Ni2+ (by ∼90%) or 5 μM mibefradil (by ∼50%), consistent with the reported properties of ICaT. Addition of 30 μM TTX in the presence of Ni2+ increased the current approximately fourfold (41% of control), and shifted the dose–response curve of Ni2+ block to the right (IC50 from 7.6 to 30 μM). Saxitoxin (STX) at 1 μM abolished the current left in 50 μM Ni2+. In the absence of Ni2+, STX potently blocked ICaT (EC50 = 185 nM) and modestly reduced ICaL (EC50 = 1.6 μM). While TTX produced no direct effect on ICaT elicited by expression of hCaV3.1 and hCaV3.2 in HEK-293 cells, it significantly attenuated the block of this current by Ni2+ (IC50 increased to 550 μM Ni2+ for CaV3.1 and 15 μM Ni2+ for CaV3.2); in contrast, 30 μM TTX directly inhibited hCaV3.3-induced ICaT and the addition of 750 μM Ni2+ to the TTX-containing medium led to greater block of the current that was not significantly different than that produced by Ni2+ alone. 1 μM STX directly inhibited CaV3.1-, CaV3.2-, and CaV3.3-mediated ICaT but did not enhance the ability of Ni2+ to block these currents. These findings provide important new implications for our understanding of structure–function relationships of ICaT in heart, and further extend the hypothesis of a parallel evolution of Na+ and Ca2+ channels from an ancestor with common structural motifs.
Collapse
Affiliation(s)
- Hui Sun
- Excigen, Inc., Baltimore, MD 21224, USA
| | | | | | | | | | | | | |
Collapse
|
53
|
Abstract
The heart automaticity is a fundamental physiological function in higher organisms. The spontaneous activity is initiated by specialized populations of cardiac cells generating periodical electrical oscillations. The exact cascade of steps initiating the pacemaker cycle in automatic cells has not yet been entirely elucidated. Nevertheless, ion channels and intracellular Ca(2+) signaling are necessary for the proper setting of the pacemaker mechanism. Here, we review the current knowledge on the cellular mechanisms underlying the generation and regulation of cardiac automaticity. We discuss evidence on the functional role of different families of ion channels in cardiac pacemaking and review recent results obtained on genetically engineered mouse strains displaying dysfunction in heart automaticity. Beside ion channels, intracellular Ca(2+) release has been indicated as an important mechanism for promoting automaticity at rest as well as for acceleration of the heart rate under sympathetic nerve input. The potential links between the activity of ion channels and Ca(2+) release will be discussed with the aim to propose an integrated framework of the mechanism of automaticity.
Collapse
Affiliation(s)
- Matteo E Mangoni
- Institute of Functional Genomics, Department of Physiology, Centre National de la Recherche Scientifique UMR5203, INSERM U661, University of Montpellier I and II, Montpellier, France.
| | | |
Collapse
|
54
|
Kryukova Y, Rybin VO, Qu J, Steinberg SF, Robinson RB. Age-dependent differences in the inhibition of HCN2 current in rat ventricular myocytes by the tyrosine kinase inhibitor erbstatin. Pflugers Arch 2008; 457:821-30. [PMID: 18696104 DOI: 10.1007/s00424-008-0565-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2008] [Revised: 06/27/2008] [Accepted: 07/26/2008] [Indexed: 10/21/2022]
Abstract
Previously, we have shown that murine HCN2 channels over-expressed in newborn and adult cardiac myocytes produce currents with different biophysical characteristics. To investigate the role of tyrosine kinase modulation in these age-dependent differences, we employed the broad spectrum tyrosine kinase inhibitor erbstatin. Our results demonstrated distinct and separable effects of erbstatin on channel gating and current amplitude and a marked age dependence to these effects. In newborn myocytes, erbstatin decreased current amplitude, shifted the activation relation negative, and slowed activation kinetics. The effect on activation voltage but not that on amplitude was absent when expressing a cAMP-insensitive mutant (HCN2R/E), while a C-terminal truncated form of HCN2 (HCN2DeltaCx) exhibited only the voltage dependent but not the amplitude effect of erbstatin. Thus, the action of erbstatin on the activation relation and current amplitude are distinct and separable in newborn myocytes, and the effect on activation voltage depends on the cAMP status of HCN2 channels. In contrast to newborn myocytes, erbstatin had no effect on HCN2 under control conditions in adult myocytes but induced a negative shift with no change in amplitude when saturated cAMP was added to the pipette solution. We conclude that erbstatin's effects on HCN2 current magnitude and voltage dependence are distinct and separable, and there are fundamental developmental differences in the heart that affect channel function and its modulation by the tyrosine kinase inhibitor erbstatin.
Collapse
Affiliation(s)
- Yelena Kryukova
- Department of Pharmacology, College of Physicians and Surgeons, Columbia University, 630 West 168th Street, New York, NY 10032, USA
| | | | | | | | | |
Collapse
|
55
|
Dun W, Boyden PA. The Purkinje cell; 2008 style. J Mol Cell Cardiol 2008; 45:617-24. [PMID: 18778712 DOI: 10.1016/j.yjmcc.2008.08.001] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2008] [Revised: 07/22/2008] [Accepted: 08/01/2008] [Indexed: 11/26/2022]
Abstract
Cardiac Purkinje fibers, due to their unique anatomical location, cell structure and electrophysiologic characteristics, play an important role in cardiac conduction and arrhythmogenesis. Purkinje cell action potentials are longer than their ventricular counterpart, and display two levels of resting potential. Purkinje cells provide for rapid propagation of the cardiac impulse to ventricular cells and have pacemaker and triggered activity, which differs from ventricular cells. Additionally, a unique intracellular Ca2+ release coordination has been revealed recently for the normal Purkinje cell. However, since the isolation of single Purkinje cells is difficult, particularly in small animals, research using Purkinje cells has been restricted. This review concentrates on comparison of Purkinje and ventricular cells in the morphology of the action potential, ionic channel function and molecular determinants by summarizing our present day knowledge of Purkinje cells.
Collapse
Affiliation(s)
- Wen Dun
- Department of Pharmacology, Center for Molecular Therapeutics, Columbia University, New York, NY, USA
| | | |
Collapse
|
56
|
Luo X, Lin H, Pan Z, Xiao J, Zhang Y, Lu Y, Yang B, Wang Z. Down-regulation of miR-1/miR-133 contributes to re-expression of pacemaker channel genes HCN2 and HCN4 in hypertrophic heart. J Biol Chem 2008; 283:20045-52. [PMID: 18458081 DOI: 10.1074/jbc.m801035200] [Citation(s) in RCA: 139] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Cardiac hypertrophy is characterized by electrical remolding with increased risk of arrhythmogenesis. Enhanced abnormal automaticity of ventricular cells contributes critically to hypertrophic arrhythmias. The pacemaker current I(f), carried by the hyperpolarization-activated channels encoded mainly by the HCN2 and HCN4 genes in the heart, plays an important role in determining cardiac automaticity. Their expressions reportedly increase in hypertrophic and failing hearts, contributing to arrhythmogenesis under these conditions. We performed a study on post-transcriptional regulation of expression of HCN2 and HCN4 genes by microRNAs. We experimentally established HCN2 as a target for repression by the muscle-specific microRNAs miR-1 and miR-133 and established HCN4 as a target for miR-1 only. We unraveled robust increases in HCN2 and HCN4 protein levels in a rat model of left ventricular hypertrophy and in angiotensin II-induced neonatal ventricular hypertrophy. The up-regulation of HCN2/HCN4 was accompanied by pronounced reduction of miR-1/miR-133 levels. Forced expression of miR-1/miR-133 by transfection prevented overexpression of HCN2/HCN4 in hypertrophic cardiomyocytes. The serum-responsive factor protein level was found significantly decreased in hypertrophic hearts, and silencing of this protein by RNA interference resulted in increased levels of miR-1/miR-133 and concomitant increases in HCN2 and HCN4 protein levels. We conclude that down-regulation of miR-1 and miR-133 expression contributes to re-expression of HCN2/HCN4 and thereby the electrical remodeling process in hypertrophic hearts. Our study also sheds new light on the cellular function and pathological role of miR-1/miR-133 in the heart.
Collapse
Affiliation(s)
- Xiaobin Luo
- Research Center, Montreal Heart Institute, Montreal, PQ, Canada
| | | | | | | | | | | | | | | |
Collapse
|
57
|
Vigmond EJ, Clements C. Construction of a computer model to investigate sawtooth effects in the Purkinje system. IEEE Trans Biomed Eng 2007; 54:389-99. [PMID: 17355050 DOI: 10.1109/tbme.2006.888817] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The sawtooth effect refers to how one end of a cardiac cell is depolarized, while the opposite end is hyperpolarized, upon exposure to an exogenous electric field. Although hypothesized, it has not been observed in tissue. The Purkinje system is a one-dimensional (1-D) cable-like system residing on the endocardial surface of the heart and is the most obvious candidate for the manifestation of this phenomenon. This paper describes a computer modeling study of the effect of electric fields on the Purkinje system. Starting with a three-dimensional geometrically realistic, finite element, ventricular description, a Purkinje system is constructed which adheres to general physiological principles. Electrical activity in the Purkinje is described by use of 1-D cubic Hermite finite elements. Such a formulation allows for accurate modeling of loading effects at the Purkinje-myocyte junctions, and for preserving the discrete nature of the system. The response of a strand of Purkinje cells to defibrillation strength shocks is computed under several conditions. Also, the response of the isolated Purkinje network is illustrated. Results indicate that the geometry of the Purkinje system is the greatest determinant for far field excitation of the system. Given parameters within the plausible physiological range, the 1-D nature of the Purkinje system may lead to sawtooth potentials which are large enough to affect excitation. Thus, the Purkinje system is capable of affecting the defibrillation process, and warrants further experimentation to elucidate its role.
Collapse
Affiliation(s)
- Edward J Vigmond
- Department of Electrical and Computer Engineering, University of Calgary, Calgary, AB T2N 1N4, Canada.
| | | |
Collapse
|
58
|
Holycross BJ, Kukielka M, Nishijima Y, Altschuld RA, Carnes CA, Billman GE. Exercise training normalizes beta-adrenoceptor expression in dogs susceptible to ventricular fibrillation. Am J Physiol Heart Circ Physiol 2007; 293:H2702-9. [PMID: 17720768 DOI: 10.1152/ajpheart.00763.2007] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Previous studies demonstrated an enhanced beta(2)-adrenoceptor (AR) responsiveness in animals susceptible to ventricular fibrillation (VF) that was eliminated by exercise training. The present study investigated the effects of endurance exercise training on beta(1)-AR and beta(2)-AR expression in dogs susceptible to VF. Myocardial ischemia was induced by a 2-min occlusion of the left circumflex artery during the last minute of exercise in dogs with healed infarctions: 20 had VF [susceptible (S)] and 13 did not [resistant (R)]. These dogs were randomly assigned to either 10-wk exercise training [treadmill running; n = 9 (S) or 8 (R)] or an equivalent sedentary period [n = 11 (S) or 5 (R)]. Left ventricular tissue beta-AR protein and mRNA were quantified by Western blot analysis and RT-PCR, respectively. Because beta(2)-ARs are located in caveolae, caveolin-3 was also quantified. beta(1)-AR gene expression decreased ( approximately 5-fold), beta(2)-AR gene expression was not changed, and the ratio of beta(2)-AR to beta(1)-AR gene expression was significantly increased in susceptible compared with resistant dogs. beta(1)-AR protein decreased ( approximately 50%) and beta(2)-AR protein increased (400%) in noncaveolar fractions of the cell membrane in susceptible dogs. Exercise training returned beta(1)-AR gene expression to levels seen in resistant animals but did not alter beta(2)-AR protein levels in susceptible dogs. These data suggest that beta(1)-AR gene expression was decreased in susceptible dogs compared with resistant dogs and, further, that exercise training improves beta(1)-AR gene expression, thereby restoring a more normal beta-AR balance.
Collapse
Affiliation(s)
- Bethany J Holycross
- Department of Veterinary Biosciences, Ohio State University, Columbus, OH 43210-1218, USA
| | | | | | | | | | | |
Collapse
|
59
|
Tusscher KHWJT, Panfilov AV. Modelling of the ventricular conduction system. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2007; 96:152-70. [PMID: 17910889 DOI: 10.1016/j.pbiomolbio.2007.07.026] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The His-Purkinje conduction system initiates the normal excitation of the ventricles and is a major component of the specialized conduction system of the heart. Abnormalities and propagation blocks in the Purkinje system result in abnormal excitation of the heart. Experimental findings suggest that the Purkinje network plays an important role in ventricular tachycardia and fibrillation, which is the major cause of sudden cardiac death. Nowadays an important area in the study of cardiac arrhythmias is anatomically accurate modelling. The majority of current anatomical models have not included a description of the Purkinje network. As a consequence, these models cannot be used to study the important role of the Purkinje system in arrhythmia initiation and maintenance. In this article we provide an overview of previous work on modelling of the Purkinje system and report on the development of a His-Purkinje system for our human ventricular model. We use the model to simulate the normal activation pattern as well as abnormal activation patterns resulting from bundle branch block and bundle branch reentry.
Collapse
Affiliation(s)
- K H W J Ten Tusscher
- Department of Theoretical Biology, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands.
| | | |
Collapse
|
60
|
Xiao J, Yang B, Lin H, Lu Y, Luo X, Wang Z. Novel approaches for gene-specific interference via manipulating actions of microRNAs: examination on the pacemaker channel genes HCN2 and HCN4. J Cell Physiol 2007; 212:285-92. [PMID: 17516552 DOI: 10.1002/jcp.21062] [Citation(s) in RCA: 151] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Recent evidence has suggested microRNAs as viable therapeutic targets for a wide range of human disease. However, lack of gene-specificity of microRNA actions may hinder this application. Here we developed two new approaches, the gene-specific microRNA mimic and microRNA-masking antisense approaches, to explore the possibility of using microRNA's principle of actions in a gene-specific manner. We examined the value of these strategies as rational approaches to develop heart rate-reducing agents and "biological pacemakers" by manipulating the expression of the cardiac pacemaker channel genes HCN2 and HCN4. We showed that the gene-specific microRNA mimics, 22-nt RNAs designed to target the 3'untranslated regions (3'UTRs) of HCN2 and HCN4, respectively, were efficient in abrogating expression and function of HCN2 and HCN4. The gene-specific microRNA mimics repressed protein levels, accompanied by depressed f-channel conductance and the associated rhythmic activity, without affecting mRNA levels of HCN2 and HCN4. Meanwhile, we also designed the microRNA-masking antisense based on the miR-1 and miR-133 target sites in the 3'UTRs of HCN2 and HCN4 and found that these antisense oligodeoxynucleotides markedly enhanced HCN2/HCN4 expression and function, as reflected by increased protein levels of HCN2/HCN4 and If conductance, by removing the repression of HCN2/HCN4 expression induced by endogenous miR-1/miR-133. The experimental examination of these techniques and the resultant findings not only indicate feasibility of interfering miRNA action in a gene-specific fashion but also may provide a new research tool for studying function of miRNAs. The new approaches also have the potential of becoming alternative gene therapy strategies.
Collapse
Affiliation(s)
- Jiening Xiao
- Research Center, Montreal Heart Institute, Montreal, Canada
| | | | | | | | | | | |
Collapse
|
61
|
Knollmann BC, Sirenko S, Rong Q, Katchman AN, Casimiro M, Pfeifer K, Ebert SN. Kcnq1 contributes to an adrenergic-sensitive steady-state K+ current in mouse heart. Biochem Biophys Res Commun 2007; 360:212-8. [PMID: 17597584 PMCID: PMC2025686 DOI: 10.1016/j.bbrc.2007.06.038] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2007] [Accepted: 06/07/2007] [Indexed: 10/23/2022]
Abstract
It has been suggested that Kcne1 subunits are required for adrenergic regulation of Kcnq1 potassium channels. However, in adult mouse hearts, which do not express Kcne1, loss of Kcnq1 causes a Long QT phenotype during adrenergic challenge, raising the possibility that native Kcnq1 currents exist and are adrenergically regulated even in absence of Kcne1. Here, we used immunoblotting and immunohistochemical staining to show that Kcnq1 protein is present in adult mouse hearts. Voltage-clamp experiments demonstrated that Kcnq1 contributes to a steady-state outward current (I(SS)) in wild-type (Kcnq1(+/+)) ventricular myocytes during isoproterenol stimulation, resulting in a significant 7.1% increase in I(SS) density (0.43+/-0.16 pA/pF, p <0.05, n =15), an effect that was absent in Kcnq1-deficient (Kcnq1(-/-)) myocytes (-0.14+/-0.13 pA/pF, n =17). These results demonstrate for the first time that Kcnq1 protein is expressed in adult mouse hearts where it contributes to a beta-adrenergic-induced component of I(SS) that does not require co-assembly with Kcne1.
Collapse
Affiliation(s)
- Bjorn C Knollmann
- Department of Pharmacology, Georgetown University Medical Center, Washington, DC, USA
| | | | | | | | | | | | | |
Collapse
|
62
|
Vassalle M. The vicissitudes of the pacemaker current I Kdd of cardiac purkinje fibers. J Biomed Sci 2007; 14:699-716. [PMID: 17564816 DOI: 10.1007/s11373-007-9182-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2007] [Accepted: 05/10/2007] [Indexed: 01/23/2023] Open
Abstract
The mechanisms underlying the pacemaker current in cardiac tissues is not agreed upon. The pacemaker potential in Purkinje fibers has been attributed to the decay of the potassium current I (Kdd). An alternative proposal is that the hyperpolarization-activated current I (f) underlies the pacemaker potential in all cardiac pacemakers. The aim of this review is to retrace the experimental development related to the pacemaker mechanism in Purkinje fibers with reference to findings about the pacemaker mechanism in the SAN as warranted. Experimental data and their interpretation are critically reviewed. Major findings were attributed to K(+) depletion in narrow extracellular spaces which would result in a time dependent decay of the inward rectifier current I (K1). In turn, this decay would be responsible for a "fake" reversal of the pacemaker current. In order to avoid such a postulated depletion, Ba(2+) was used to block the decay of I (K1). In the presence of Ba(2+) the time-dependent current no longer reversed and instead increased with time and more so at potentials as negative as -120 mV. In this regard, the distinct possibility needs to be considered that Ba(2+) had blocked I (Kdd) (and not only I (K1)). That indeed this was the case was demonstrated by studying single Purkinje cells in the absence and in the presence of Ba(2+). In the absence of Ba(2+), I (Kdd) was present in the pacemaker potential range and reversed at E (K). In the presence of Ba(2+), I (Kdd) was blocked and I (f) appeared at potentials negative to the pacemaker range. The pacemaker potential behaves in a manner consistent with the underlying I (Kdd) but not with I (f). The fact that I (f) is activated on hyperpolarization at potential negative to the pacemaker range makes it suitable as a safety factor to prevent the inhibitory action of more negative potentials on pacemaker discharge. It is concluded that the large body of evidence reviewed proves the pacemaker role of I (Kdd) (but not of I (f)) in Purkinje fibers.
Collapse
Affiliation(s)
- Mario Vassalle
- Department of Physiology and Pharmacology, Box 31 State University of New York, Downstate Medical Center, 450 Clarkson Avenue, Brooklyn, NY 11203, USA.
| |
Collapse
|
63
|
Gaborit N, Le Bouter S, Szuts V, Varro A, Escande D, Nattel S, Demolombe S. Regional and tissue specific transcript signatures of ion channel genes in the non-diseased human heart. J Physiol 2007; 582:675-93. [PMID: 17478540 PMCID: PMC2075332 DOI: 10.1113/jphysiol.2006.126714] [Citation(s) in RCA: 376] [Impact Index Per Article: 22.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
The various cardiac regions have specific action potential properties appropriate to their electrical specialization, resulting from a specific pattern of ion-channel functional expression. The present study addressed regionally defined differential ion-channel expression in the non-diseased human heart with a genomic approach. High-throughput real-time RT-PCR was used to quantify the expression patterns of 79 ion-channel subunit transcripts and related genes in atria, ventricular epicardium and endocardium, and Purkinje fibres isolated from 15 non-diseased human donor hearts. Two-way non-directed hierarchical clustering separated atria, Purkinje fibre and ventricular compartments, but did not show specific patterns for epicardium versus endocardium, nor left- versus right-sided chambers. Genes that characterized the atria (versus ventricles) included Cx40, Kv1.5 and Kir3.1 as expected, but also Cav1.3, Cav3.1, Cav alpha2 delta2, Nav beta1, TWIK1, TASK1 and HCN4. Only Kir2.1, RyR2, phospholamban and Kv1.4 showed higher expression in the ventricles. The Purkinje fibre expression-portrait (versus ventricle) included stronger expression of Cx40, Kv4.3, Kir3.1, TWIK1, HCN4, ClC6 and CALM1, along with weaker expression of mRNA encoding Cx43, Kir2.1, KChIP2, the pumps/exchangers Na(+),K(+)-ATPase, NCX1, SERCA2, and the Ca(2+)-handling proteins RYR2 and CASQ2. Transcripts that were more strongly expressed in epicardium (versus endocardium) included Cav1.2, KChIP2, SERCA2, CALM3 and calcineurin-alpha. Nav1.5 and Nav beta1 were more strongly expressed in the endocardium. For selected genes, RT-PCR data were confirmed at the protein level. This is the first report of the global portrait of regional ion-channel subunit-gene expression in the non-diseased human heart. Our data point to significant regionally determined ion-channel expression differences, with potentially important implications for understanding regional electrophysiology, arrhythmia mechanisms, and responses to ion-channel blocking drugs. Concordance with previous functional studies suggests that regional regulation of cardiac ion-current expression may be primarily transcriptional.
Collapse
|
64
|
Nattel S, Maguy A, Le Bouter S, Yeh YH. Arrhythmogenic Ion-Channel Remodeling in the Heart: Heart Failure, Myocardial Infarction, and Atrial Fibrillation. Physiol Rev 2007; 87:425-56. [PMID: 17429037 DOI: 10.1152/physrev.00014.2006] [Citation(s) in RCA: 597] [Impact Index Per Article: 35.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Rhythmic and effective cardiac contraction depends on appropriately timed generation and spread of cardiac electrical activity. The basic cellular unit of such activity is the action potential, which is shaped by specialized proteins (channels and transporters) that control the movement of ions across cardiac cell membranes in a highly regulated fashion. Cardiac disease modifies the operation of ion channels and transporters in a way that promotes the occurrence of cardiac rhythm disturbances, a process called “arrhythmogenic remodeling.” Arrhythmogenic remodeling involves alterations in ion channel and transporter expression, regulation and association with important protein partners, and has important pathophysiological implications that contribute in major ways to cardiac morbidity and mortality. We review the changes in ion channel and transporter properties associated with three important clinical and experimental paradigms: congestive heart failure, myocardial infarction, and atrial fibrillation. We pay particular attention to K+, Na+, and Ca2+channels; Ca2+transporters; connexins; and hyperpolarization-activated nonselective cation channels and discuss the mechanisms through which changes in ion handling processes lead to cardiac arrhythmias. We highlight areas of future investigation, as well as important opportunities for improved therapeutic approaches that are being opened by an improved understanding of the mechanisms of arrhythmogenic remodeling.
Collapse
Affiliation(s)
- Stanley Nattel
- Department of Medicine and Research Center, Montreal Heart Institute and Université de Montréal, Quebec, Canada.
| | | | | | | |
Collapse
|
65
|
Rosati B, Dun W, Hirose M, Boyden PA, McKinnon D. Molecular basis of the T- and L-type Ca2+ currents in canine Purkinje fibres. J Physiol 2007; 579:465-71. [PMID: 17218348 PMCID: PMC2075395 DOI: 10.1113/jphysiol.2006.127480] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
This study examines the molecular basis for the T-type and L-type Ca(2+) currents in canine Purkinje cells. The I(CaT) in Purkinje cells was completely suppressed by 200 nM kurtoxin, a specific blocker of both Ca(v)3.1 and Ca(v)3.2 channels. Since only Ca(v)3.2 mRNA is expressed at high levels in Purkinje fibres, being approximately 100-fold more abundant than either Ca(v)3.1 or Ca(v)3.3 mRNAs, it is concluded that the Ca(v)3.2 gene encodes the bulk of the T-type Ca(2+) channels in canine Purkinje cells. This conclusion is consistent with the sensitivity of the current to blockade by Ni(2+) ions (K(D) = 32 microM). For L-type channels, Ca(v)1.2 mRNA was most abundant in Purkinje fibres but a significant level of Ca(v)1.3 mRNA expression was also found. A comparison of the sensitivity to blockade by isradipine of the L-type currents in Purkinje cells and ventricular epicardial myocytes, which only express Ca(v)1.2, suggests that the Ca(v)1.3 channels make, at most, a minor contribution to the L-type current in canine Purkinje cells.
Collapse
Affiliation(s)
- Barbara Rosati
- Department of Physiology and Biophysics, Stony Brook University, Stony Brook, NY 11794-8661, USA.
| | | | | | | | | |
Collapse
|
66
|
Nikitina E, Zhang ZD, Kawashima A, Jahromi BS, Bouryi VA, Takahashi M, Xie A, Macdonald RL. Voltage-dependent calcium channels of dog basilar artery. J Physiol 2006; 580:523-41. [PMID: 17185332 PMCID: PMC2075556 DOI: 10.1113/jphysiol.2006.126128] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Electrophysiological and molecular characteristics of voltage-dependent calcium (Ca(2+)) channels were studied using whole-cell patch clamp, polymerase chain reaction and Western blotting in smooth muscle cells freshly isolated from dog basilar artery. Inward currents evoked by depolarizing steps from a holding potential of -50 or -90 mV in 10 mm barium consisted of low- (LVA) and high-voltage activated (HVA) components. LVA current comprised more than half of total current in 24 (12%) of 203 cells and less than 10% of total current in 52 (26%) cells. The remaining cells (127 cells, 62%) had LVA currents between one tenth and one half of total current. LVA current was rapidly inactivating, slowly deactivating, inhibited by high doses of nimodipine and mibefradil (> 0.3 microM), not affected by omega-agatoxin GVIA (gamma100 nM), omega-conotoxin IVA (1 microM) or SNX-482 (200 nM) and probably carried by T-type Ca(2+) channels based on the presence of messenger ribonucleic acid (mRNA) and protein for Ca(v3.1) and Ca(v3.3) alpha(1) subunits of these channels. LVA currents exhibited window current with a maximum of 13% of the LVA current at -37.4 mV. HVA current was slowly inactivating and rapidly deactivating. It was inhibited by nimodipine (IC(50) = 0.018 microM), mibefradil (IC(50) = 0.39 microM) and omega-conotoxin IV (1 microM). Smooth muscle cells also contained mRNA and protein for L- (Ca(v1.2) and Ca(v1.3)), N- (Ca(v2.2)) and T-type (Ca(v3.1) and Ca(v3.3)) alpha(1) Ca(2+) channel subunits. Confocal microscopy showed Ca(v1.2) and Ca(v1.3) (L-type), Ca(v2.2) (N-type) and Ca(v3.1) and Ca(v3.3) (T-type) protein in smooth muscle cells. Relaxation of intact arteries under isometric tension in vitro to nimodipine (1 microM) and mibefradil (1 microM) but not to omega-agatoxin GVIA (100 nM), omega-conotoxin IVA (1 microM) or SNX-482 (1 microM) confirmed the functional significance of L- and T-type voltage-dependent Ca(2+) channel subtypes but not N-type. These results show that dog basilar artery smooth muscle cells express functional voltage-dependent Ca(2+) channels of multiple types.
Collapse
Affiliation(s)
- Elena Nikitina
- Department of Surgery, University of Chicago Medical Center, IL, USA
| | | | | | | | | | | | | | | |
Collapse
|
67
|
Liu J, Dobrzynski H, Yanni J, Boyett MR, Lei M. Organisation of the mouse sinoatrial node: structure and expression of HCN channels. Cardiovasc Res 2006; 73:729-38. [PMID: 17222809 DOI: 10.1016/j.cardiores.2006.11.016] [Citation(s) in RCA: 132] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2006] [Revised: 11/07/2006] [Accepted: 11/09/2006] [Indexed: 11/17/2022] Open
Abstract
OBJECTIVE To reveal the structural characteristics of the sinoatrial node (SAN) and the distribution of hyperpolarization-activated cyclic nucleotide-gated cation channels (HCN) in the SAN in the mouse. METHODS The structure of the SAN and the distribution of HCN channels in the SAN in the mouse were studied by histology and immunolabelling of ANP, Cx43 and HCN channels. RESULTS The mouse SAN is a comma-shaped structure with a length of approximately 1.5 mm parallel to the crista terminalis and is separated from atrial muscle by connective tissue at the border both with the crista terminalis and the atrial septum. A unique compact nodal structure with densely-packed nodal cells was identified at the head of the comma-shaped SAN. Cell size and fibre orientation vary regionally in the SAN: the cells in the compact node are small and are orientated perpendicular to the crista terminalis, whereas the cells in the more inferior part are larger and more loosely-packed and are orientated parallel to the crista terminalis. All SAN cells exhibited labelling of HCN4, but no cell exhibited detectable labelling of HCN1, HCN2, ANP and Cx43, while surrounding atrial cells exhibited labelling of ANP and Cx43, but not HCN1, HCN2 and HCN4. A specialised interface between the SAN and surrounding atrial muscle was also identified: strands of HCN4-positive nodal cells protrude into the atrial muscle and strands of Cx43-positive atrial cells protrude into the SAN; thus, there are interdigitations between the SAN and atrial muscle. CONCLUSIONS In the mouse, (i) the SAN is structurally complex with a densely-packed head and loosely-packed tail; (ii) HCN4 is the only HCN isoform detectable and is present throughout the SAN; and (iii) there is a specialised interface between the SAN and surrounding atrium that may be necessary for the SAN to drive the more hyperpolarized atrial muscle.
Collapse
Affiliation(s)
- Jie Liu
- University Laboratory of Physiology, University of Oxford, Oxford OX1 3PT, UK
| | | | | | | | | |
Collapse
|
68
|
Harrell MD, Harbi S, Hoffman JF, Zavadil J, Coetzee WA. Large-scale analysis of ion channel gene expression in the mouse heart during perinatal development. Physiol Genomics 2006; 28:273-83. [PMID: 16985003 DOI: 10.1152/physiolgenomics.00163.2006] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The immature and mature heart differ from each other in terms of excitability, action potential properties, contractility, and relaxation. This includes upregulation of repolarizing K(+) currents, an enhanced inward rectifier K(+) (Kir) current, and changes in Ca(2+), Na(+), and Cl(-) currents. At the molecular level, the developmental regulation of ion channels is scantily described. Using a large-scale real-time quantitative reverse transcriptase polymerase chain reaction (qRT-PCR) assay, we performed a comprehensive analysis of ion channel transcript expression during perinatal development in the embryonic (embryonic day 17.5), neonatal (postnatal days 1-2), and adult Swiss-Webster mouse hearts. These data are compared with publicly available microarray data sets (Cardiogenomics project). Developmental mRNA expression for several transcripts was consistent with the published literature. For example, transcripts such as Kir2.1, Kir3.1, Nav1.5, Cav1.2, etc. were upregulated after birth, whereas others [e.g., Ca(2+)-activated K(+) (KCa)2.3 and minK] were downregulated. Cl(-) channel transcripts were expressed at higher levels in immature heart, particularly those that are activated by intracellular Ca(2+). Defining alterations in the ion channel transcriptome during perinatal development will lead to a much improved understanding of the electrophysiological alterations occurring in the heart after birth. Our study may have important repercussions in understanding the mechanisms and consequences of electrophysiological alterations in infants and may pave the way for better understanding of clinically relevant events such as congenital abnormalities, cardiomyopathies, heart failure, arrhythmias, cardiac drug therapy, and the sudden infant death syndrome.
Collapse
Affiliation(s)
- M D Harrell
- Pediatric Cardiology, New York University School of Medicine, New York, New York 10016, USA
| | | | | | | | | |
Collapse
|
69
|
Abstract
One of the functional roles of the corneal epithelial layer is to protect the cornea, lens and other underlying ocular structures from damages caused by environmental insults. It is important for corneal epithelial cells to maintain this function by undergoing continuous renewal through a dynamic process of wound healing. Previous studies in corneal epithelial cells have provided substantial evidence showing that environmental insults, such as ultraviolet (UV) irradiation and other biohazards, can induce stress-related cellular responses resulting in apoptosis and thus interrupt the dynamic process of wound healing. We found that UV irradiation-induced apoptotic effects in corneal epithelial cells are started by the hyperactivation of K+ channels in the cell membrane resulting in a fast loss of intracellular K+ ions. Recent studies provide further evidence indicating that these complex responses in corneal epithelial cells are resulted from the activation of stress-related signaling pathways mediated by K+ channel activity. The effect of UV irradiation on corneal epithelial cell fate shares common signaling mechanisms involving the activation of intracellular responses that are often activated by the stimulation of various cytokines. One piece of evidence for making this distinction is that at early times UV irradiation activates a Kv3.4 channel in corneal epithelial cells to elicit activation of c-Jun N-terminal kinase cascades and p53 activation leading to cell cycle arrest and apoptosis. The hypothetic model is that UV-induced potassium channel hyperactivity as an early event initiates fast cell shrinkages due to the loss of intracellular potassium, resulting in the activation of scaffolding protein kinases and cytoskeleton reorganizations. This review article presents important control mechanisms that determine Kv channel activity-mediated cellular responses in corneal epithelial cells, involving activation of stress-induced signaling pathways, arrests of cell cycle progression and/or induction of apoptosis.
Collapse
Affiliation(s)
- Luo Lu
- Department of Medicine, Division of Molecular Medicine, David Geffen School of Medicine, University of California Los Angeles, Harbor-UCLA Medical Center, CA 90502, USA.
| |
Collapse
|
70
|
Han W, Nattel S, Noguchi T, Shrier A. C-terminal Domain of Kv4.2 and Associated KChIP2 Interactions Regulate Functional Expression and Gating of Kv4.2. J Biol Chem 2006; 281:27134-44. [PMID: 16820361 DOI: 10.1074/jbc.m604843200] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The Kv4.2 transient voltage-dependent potassium current contributes to the morphology of the cardiac action potential as well as to neuronal excitability and firing frequency. Here we report profound effects of the Kv4.2 C terminus on the surface expression and activation gating properties of Kv4.2 that are modulated by the direct interaction between KChIP2, an auxiliary regulatory subunit, and the C terminus of Kv4.2. We show that increasingly large truncations of the C terminus of rat Kv4.2 (wild type) cause a progressive decrease of Kv4.2 current along with a shift in voltage-dependent activation that is closely correlated with negative charge deletion. Co-expression of more limited Kv4.2 C-terminal truncation mutants (T588 and T528) with KChIP2 results in a doubling of Kv4.2 protein expression and up to an 8-fold increase in Kv4.2 current amplitude. Pulsechase experiments show that co-expression with KChIP2 slows Kv4.2 wild type degradation 8-fold. Co-expression of KChIP2 with an intermediate-length C-terminal truncation mutant (T474) shifts Kv4.2 activation voltage dependence and enhances expression of Kv4.2 current. The largest truncation mutants (T417 and DeltaC) show an intracellular localization with no measurable currents and no response to KChIP2 co-expression. Co-immunoprecipitation and competitive glutathione S-transferase-binding assays indicate a direct interaction between KChIP2 and the Kv4.2 C terminus with a relative binding affinity comparable with that of the N terminus. Overall, these results suggest that the C-terminal domain of Kv4.2 plays a critical role in voltage-dependent activation and functional expression that is mediated by direct interaction between the Kv4.2 C terminus and KChIP2.
Collapse
Affiliation(s)
- Wei Han
- Department of Physiology, McGill University, Montreal, Quebec H3G 1Y6, Canada
| | | | | | | |
Collapse
|
71
|
Arinsburg SS, Cohen IS, Yu HG. Constitutively active Src tyrosine kinase changes gating of HCN4 channels through direct binding to the channel proteins. J Cardiovasc Pharmacol 2006; 47:578-86. [PMID: 16680072 PMCID: PMC1693968 DOI: 10.1097/01.fjc.0000211740.47960.8b] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Cardiac pacemaker current, if, is generated by hyperpolarization-activated cyclic nucleotide-gated (HCN) channels. Our previous studies demonstrated that altered tyrosine phosphorylation can modulate the properties of both if and HCN channels. To assess a hypothesis that the intracellular tyrosine kinase Src may play a role in modulation by tyrosine phosphorylation of if, we cotransfected HEK293 cells with HCN4 and Src proteins. When HCN4 was cotransfected with a constitutively activated Src protein (Src529), the resultant voltage-dependent HCN4 activation was positively shifted (HCN4: V1/2 = -93 mV; Src529: V1/2 = -80 mV). The activation kinetics were accelerated at some potentials but not over the entire voltage range tested (eg, at -95 mV, tau_act(HCN4) = 3,243 ms; tau_act(Src529) = 1,113 ms). When HCN4 was cotransfected with a dominant negative Src protein (Src296), the HCN4 activation was shifted more negative to a smaller degree (HCN4: V1/2 = -93 mV; Src296: V1/2 = -98 mV; statistically insignificant) and the activation kinetics were slowed at most test potentials (eg, at -95 mV, tau_act(Src296) = 7,396 ms). Neither Src529 nor Src296 significantly altered HCN4 current density. Coimmunoprecipitation experiments revealed that Src forms a complex with HCN4 in HEK293 cells and in rat ventricular myocytes. Our data provide a novel mechanism of if regulation by Src tyrosine phosphorylation.
Collapse
Affiliation(s)
- Suzanne S. Arinsburg
- From the New York College of Osteopathic Medicine of the New York Institute of Technology, NY
| | - Ira S. Cohen
- From the Institute of Molecular Cardiology and Department of Physiology & Biophysics, State University of New York at Stony Brook, Stony Brook, NY
| | - Han-Gang Yu
- From the New York College of Osteopathic Medicine of the New York Institute of Technology, NY
| |
Collapse
|
72
|
CHEN G, HUANG CX, JIANG H, WANG T, XU L. Expression of ion-channel subunit mRNA in different regions of canine right atrium. Chin Med J (Engl) 2006. [DOI: 10.1097/00029330-200602020-00013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
73
|
Cohen IS, Robinson RB. Pacemaker current and automatic rhythms: toward a molecular understanding. Handb Exp Pharmacol 2006:41-71. [PMID: 16610340 DOI: 10.1007/3-540-29715-4_2] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
The ionic basis of automaticity in the sinoatrial node and His-Purkinje system, the primary and secondary cardiac pacemaking regions, is discussed. Consideration is given to potential targets for pharmacologic or genetic therapies of rhythm disorders. An ideal target would be an ion channel that functions only during diastole, so that action potential repolarization is not affected, and one that exhibits regional differences in expression and/or function so that the primary and secondary pacemakers can be selectively targeted. The so-called pacemaker current, If, generated by the HCN gene family, best fits these criteria. The biophysical and molecular characteristics of this current are reviewed, and progress to date in developing selective pharmacologic agents targeting If and in using gene and cell-based therapies to modulate the current are reviewed.
Collapse
Affiliation(s)
- I S Cohen
- Department of Physiology and Biophysics, Stony Brook University, Room 150 Basic Science Tower, Stony Brook, NY 11794-8661, USA
| | | |
Collapse
|
74
|
Patel SP, Campbell DL. Transient outward potassium current, 'Ito', phenotypes in the mammalian left ventricle: underlying molecular, cellular and biophysical mechanisms. J Physiol 2005; 569:7-39. [PMID: 15831535 PMCID: PMC1464208 DOI: 10.1113/jphysiol.2005.086223] [Citation(s) in RCA: 147] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 03/07/2005] [Accepted: 04/13/2005] [Indexed: 11/08/2022] Open
Abstract
At least two functionally distinct transient outward K(+) current (I(to)) phenotypes can exist across the free wall of the left ventricle (LV). Based upon their voltage-dependent kinetics of recovery from inactivation, these two phenotypes are designated 'I(to,fast)' (recovery time constants on the order of tens of milliseconds) and 'I(to,slow)' (recovery time constants on the order of thousands of milliseconds). Depending upon species, either I(to,fast), I(to,slow) or both current phenotypes may be expressed in the LV free wall. The expression gradients of these two I(to) phenotypes across the LV free wall are typically heterogeneous and, depending upon species, may consist of functional phenotypic gradients of both I(to,fast) and I(to,slow) and/or density gradients of either phenotype. We review the present evidence (molecular, biophysical, electrophysiological and pharmacological) for Kv4.2/4.3 alpha subunits underlying LV I(to,fast) and Kv1.4 alpha subunits underlying LV I(to,slow) and speculate upon the potential roles of each of these currents in determining frequency-dependent action potential characteristics of LV subepicardial versus subendocardial myocytes in different species. We also review the possible functional implications of (i) ancillary subunits that regulate Kv1.4 and Kv4.2/4.3 (Kvbeta subunits, DPPs), (ii) KChIP2 isoforms, (iii) spider toxin-mediated block of Kv4.2/4.3 (Heteropoda toxins, phrixotoxins), and (iv) potential mechanisms of modulation of I(to,fast) and I(to,slow) by cellular redox state, [Ca(2)(+)](i) and kinase-mediated phosphorylation. I(to) phenotypic activation and state-dependent gating models and molecular structure-function relationships are also discussed.
Collapse
Affiliation(s)
- Sangita P Patel
- Department of Physiology and Biophysics, University at Buffalo, State University of New York, NY 14214-3078, USA.
| | | |
Collapse
|
75
|
Krishnamurthy G, Patberg KW, Obreztchikova MN, Rybin AV, Rosen MR. Developmental evolution of the delayed rectifier current IKs in canine heart appears dependent on the beta subunit minK. Heart Rhythm 2005; 1:704-11. [PMID: 15851242 DOI: 10.1016/j.hrthm.2004.08.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2004] [Accepted: 08/26/2004] [Indexed: 11/24/2022]
Abstract
OBJECTIVES We tested the hypothesis that the developmental changes occurring in I(Kr) and I(Ks) can be explained by changes in the expression of ERG encoding I(Kr), and KCNQ1, the beta subunit minK, and the recently reported subunit FHL2 encoding I(Ks). BACKGROUND The delayed rectifier current contributes importantly to the developmental evolution of the canine myocardial action potential. Specifically, in left ventricular epicardial myocytes, I(Ks) is absent and I(Kr) is the major repolarizing current until age 4 weeks. With subsequent development, I(Ks) density increases and I(Kr) decreases, resulting in an altered voltage-time course of repolarization. METHODS We used Western blotting and real-time polymerase chain reaction to compare the expression of ERG, KCNQ1, minK, and FHL2 in 1-week-old pups and adult dogs. RESULTS ERG levels are high at 1 week and decrease significantly with age, consistent with developmental decrease in I(Kr). Whereas expression of KCNQ1 and FHL2 is unchanged between the two age groups, minK is minimally expressed at 1 week and increases in adults, consistent with developmental increase in I(Ks). CONCLUSIONS A reduction in ERG explains the developmental decrease in I(Kr), whereas the accessory subunit minK appears to be the critical determinant of developmental evolution of I(Ks).
Collapse
Affiliation(s)
- Ganga Krishnamurthy
- Department of Pharmacology, Center for Molecular Therapeutics, College of Physicians and Surgeons of Columbia University, New York, NY 10032, USA
| | | | | | | | | |
Collapse
|
76
|
Szabó G, Szentandrássy N, Bíró T, Tóth BI, Czifra G, Magyar J, Bányász T, Varró A, Kovács L, Nánási PP. Asymmetrical distribution of ion channels in canine and human left-ventricular wall: epicardium versus midmyocardium. Pflugers Arch 2005; 450:307-16. [PMID: 15952036 DOI: 10.1007/s00424-005-1445-z] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2005] [Accepted: 04/15/2005] [Indexed: 10/25/2022]
Abstract
The aim of the present study was to compare the distribution of ion currents and the major underlying ion channel proteins in canine and human subepicardial (EPI) and midmyocardial (MID) left-ventricular muscle. Ion currents and action potentials were recorded from canine cardiomyocytes derived from the very superficial EPI and central MID regions of the left ventricle. Amplitude, duration and the maximum velocity of depolarization of the action potential were significantly greater in MID than EPI myocytes, whereas phase-1 repolarization was more pronounced in the EPI cells. Amplitudes of the transient outwards K+ current (29.5+/-1.5 vs. 19.0+/-2.3 pA/pF at +50 mV) and the slow component of the delayed rectifier K+ current (10.3+/-2.3 vs. 6.5+/-1.0 pA/pF at +50 mV) were significantly larger in EPI than in MID myocytes under whole-cell voltage-clamp conditions. The densities of the inwards rectifier K+ current, rapid delayed rectifier K+ current and L-type Ca2+ current were similar in both cell types. Expression of channel proteins in both canine and human ventricular myocardium was determined by Western blotting. In the canine heart, the expression of Kv4.3, Kv1.4, KChIP2 and KvLQT1 was significantly higher, and that of Nav1.5 and MinK much lower, in EPI than in MID. No significant EPI-MID differences were observed in the expression of the other channel proteins studied (Kir2.1, alpha1C, HERG and MiRP1). Similar results were obtained in human hearts, although the HERG was more abundant in the EPI than in the MID layer. In the canine heart, the EPI-MID differences in ion current densities were proportional to differences in channel protein expression. Except for the density of HERG, the pattern of EPI-MID distribution of ion-channel proteins was identical in canine and human ventricles.
Collapse
Affiliation(s)
- Gergely Szabó
- Department of Physiology, University of Debrecen, 4012 Debrecen, P.O. Box 22, Hungary
| | | | | | | | | | | | | | | | | | | |
Collapse
|
77
|
Pasquié JL, Sanders P, Hocini M, Hsu LF, Scavée C, Jais P, Takahashi Y, Rotter M, Sacher F, Victor J, Clémenty J, Haïssaguerre M. Fever as a precipitant of idiopathic ventricular fibrillation in patients with normal hearts. J Cardiovasc Electrophysiol 2005; 15:1271-6. [PMID: 15574177 DOI: 10.1046/j.1540-8167.2004.04388.x] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
INTRODUCTION Ventricular fibrillation (VF) is the main mechanism of sudden cardiac death. The clinical precipitants of sudden cardiac death due to idiopathic VF are poorly characterized. Emerging evidence implicates triggers originating predominantly from the distal Purkinje arborization and the right ventricular outflow tract. METHODS AND RESULTS We report three patients without structural heart disease or repolarization abnormalities in whom a febrile illness was the only concurrent disease associated with unexpected sudden cardiac death due to VF storm. An automated defibrillator was implanted in all three patients. In one patient with persistent recurrent VF episodes, mapping demonstrated the origin of these triggers was from the Purkinje arborization of the anterior wall of the right ventricle. Ablation at a site of earliest activation during ectopy, where pace mapping was concordant and Purkinje potential preceded the onset of ventriculogram, resulted in suppression of all arrhythmias. After follow-up of 22, 9, and 18 months in the three patients, no ventricular arrhythmias have been recorded. CONCLUSION We present a series of patients in whom an apparently benign febrile illness was associated with malignant ventricular arrhythmias in the absence of cardiac disease or other factors known to precipitate sudden cardiac death. Physicians should be aware of this possible phenomenon in cases of febrile illness associated with syncope.
Collapse
Affiliation(s)
- Jean Luc Pasquié
- Hôpital Cardiologique du Haut-Lévêque and the Université Victor Segalen Bordeaux 2, Bordeaux, France.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
78
|
White SM, Claycomb WC. Embryonic stem cells form an organized, functional cardiac conduction system in vitro. Am J Physiol Heart Circ Physiol 2005; 288:H670-9. [PMID: 15471973 DOI: 10.1152/ajpheart.00841.2004] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
A functional pacemaking-conduction system is essential for maintaining normal cardiac function. However, no reproducible model system exists for studying the specialized cardiac pacemaking-conduction system in vitro. Although several molecular markers have been shown to delineate components of the cardiac conduction system in vivo, the functional characteristics of the cells expressing these markers remain unknown. The ability to accurately identify cells that function as cardiac pacemaking cells is crucial for being able to study their molecular phenotype. In differentiating murine embryonic stem cells, we demonstrate the development of an organized cardiac pacemaking-conduction system in vitro using the coexpression of the minK-lacZ transgene and the chicken GATA6 (cGATA6) enhancer. These markers identify clusters of pacemaking “nodes” that are functionally coupled with adjacent contracting regions. cGATA6-positive cell clusters spontaneously depolarize, emitting calcium signals to surrounding contracting regions. Physically separating cGATA6-positive cells from nearby contracting regions reduces the rate of spontaneous contraction or abolishes them altogether. cGATA6/ minK copositive cells isolated from embryoid cells display characteristics of specialized pacemaking-conducting cardiac myocytes with regard to morphology, action potential waveform, and expression of a hyperpolarization-activated depolarizing current. Using the cGATA6 enhancer, we have isolated cells that exhibit electrophysiological and genetic properties of cardiac pacemaking myocytes. Using molecular markers, we have generated a novel model system that can be used to study the functional properties of an organized pacemaking-conducting contracting system in vitro. Moreover, we have used a molecular marker to isolate a renewable population of cells that exhibit characteristics of cardiac pacemaking myocytes.
Collapse
Affiliation(s)
- Steven M White
- Department of Biochemistry and Molecular Biology, Louisiana State University Health Sciences Center, New Orleans, Louisiana 70112, USA
| | | |
Collapse
|
79
|
Nattel S. Regional discrepancies in ionic currents and arrhythmia susceptibility: Clinical relevance. Heart Rhythm 2005; 2:177-8. [PMID: 15851293 DOI: 10.1016/j.hrthm.2004.11.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
80
|
Doronin SV, Potapova IA, Lu Z, Cohen IS. Angiotensin Receptor Type 1 Forms a Complex with the Transient Outward Potassium Channel Kv4.3 and Regulates Its Gating Properties and Intracellular Localization. J Biol Chem 2004; 279:48231-7. [PMID: 15342638 DOI: 10.1074/jbc.m405789200] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We report a novel signal transduction complex of the angiotensin receptor type 1. In this complex the angiotensin receptor type 1 associates with the potassium channel alpha-subunit Kv4.3 and regulates its intracellular distribution and gating properties. Co-localization of Kv4.3 with angiotensin receptor type 1 and fluorescent resonance energy transfer between those two proteins labeled with cyan and yellow-green variants of green fluorescent protein revealed that Kv4.3 and angiotensin receptor type I are located in close proximity to each other in the cell. The angiotensin receptor type 1 also co-immunoprecipitates with Kv4.3 from canine ventricle or when co-expressed with Kv4.3 and its beta-subunit KChIP2 in human embryonic kidney 293 cells. Treatment of the cells with angiotensin II results in the internalization of Kv4.3 in a complex with the angiotensin receptor type 1. When stimulated with angiotensin II, angiotensin receptors type 1 modulate gating properties of the remaining Kv4.3 channels on the cell surface by shifting their activation voltage threshold to more positive values. We hypothesize that the angiotensin receptor type 1 provides its internalization molecular scaffold to Kv4.3 and in this way regulates the cell surface representation of the ion channel.
Collapse
Affiliation(s)
- Sergey V Doronin
- Department of Physiology and Biophysics, Institute of Molecular Cardiology, State University of New York at Stony Brook, Stony Brook, New York 11794, USA.
| | | | | | | |
Collapse
|
81
|
Pashmforoush M, Lu JT, Chen H, Amand TS, Kondo R, Pradervand S, Evans SM, Clark B, Feramisco JR, Giles W, Ho SY, Benson DW, Silberbach M, Shou W, Chien KR. Nkx2-5 pathways and congenital heart disease; loss of ventricular myocyte lineage specification leads to progressive cardiomyopathy and complete heart block. Cell 2004; 117:373-86. [PMID: 15109497 DOI: 10.1016/s0092-8674(04)00405-2] [Citation(s) in RCA: 315] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2003] [Revised: 02/03/2004] [Accepted: 03/09/2004] [Indexed: 01/09/2023]
Abstract
Human mutations in Nkx2-5 lead to progressive cardiomyopathy and conduction defects via unknown mechanisms. To define these pathways, we generated mice with a ventricular-restricted knockout of Nkx2-5, which display no structural defects but have progressive complete heart block, and massive trabecular muscle overgrowth found in some patients with Nkx2-5 mutations. At birth, mutant mice display a hypoplastic atrioventricular (AV) node and then develop selective dropout of these conduction cells. Transcriptional profiling uncovered the aberrant expression of a unique panel of atrial and conduction system-restricted target genes, as well as the ectopic, high level BMP-10 expression in the adult ventricular myocardium. Further, BMP-10 is shown to be necessary and sufficient for a major component of the ventricular muscle defects. Accordingly, loss of ventricular muscle cell lineage specification into trabecular and conduction system myocytes is a new mechanistic pathway for progressive cardiomyopathy and conduction defects in congenital heart disease.
Collapse
Affiliation(s)
- Mohammad Pashmforoush
- UCSD Institute of Molecular Medicine, University of California San Diego School of Medicine, La Jolla, CA 92093, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
82
|
Dun W, Baba S, Yagi T, Boyden PA. Dynamic remodeling of K+ and Ca2+ currents in cells that survived in the epicardial border zone of canine healed infarcted heart. Am J Physiol Heart Circ Physiol 2004; 287:H1046-54. [PMID: 15087289 PMCID: PMC4289133 DOI: 10.1152/ajpheart.00082.2004] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Action potentials (APs) of the epicardial border zone (EBZ) cells from the day 5 infarcted heart continue to be altered by day 14 postocclusion, namely, they shortened. However, by 2 mo, EBZ APs appear "normal," yet conduction of wave fronts remains abnormal. We hypothesize that the changes in transmembrane APs are due to a change in the distribution of ion channels in either density or function. Thus we focused on the changes in Ca2+ and K+ currents in cells isolated from the 14-day (IZ14d) and 2-mo (IZ2m) EBZ and compared them with those occurring in cells from the same hearts but remote (Rem) from the EBZ. Whole cell voltage-clamp techniques were used to measure and compare Ca2+ and K+ currents in cells from the different groups. Ca2+ current densities remain reduced in cells of the 14-day and 2-mo infarcted heart and the kinetic changes previously identified in the 5-day heart begin to, but do not recover to, cells from noninfarcted epicardium (NZ) values. Importantly, I(Ca,L) in both the EBZ and Rem regions still show a slowed recovery from inactivation. Furthermore, during the remodeling process, there is an increased expression of T-type Ca2+ currents, but only regionally, and only within a specific time window postmyocardial infarction (MI). Regional heterogeneity in beta-adrenergic responsiveness of I(Ca,L) exists between EBZ and remote cells of the 14-day hearts, but this regional heterogeneity is gone in the healed infarcted heart. In IZ14d, the transient outward K+ current (Ito) begins to reemerge and is accompanied by an upregulated tetraethylammonium-sensitive outward current. By 2-mo postocclusion, Ito and sustained outward K+ current have completed the reverse remodeling process. During the healing process post-MI, canine epicardial cells downregulate the fast Ito but compensate by upregulating a K+ current that in normal cells is minimally functional. For recovering I(Ca,L) of the 14-day and 2-mo EBZ cells, voltage-dependent processes appear to be reset, such that I(Ca,L) "window" current occurs at hyperpolarized potentials. Thus dynamic changes in both Ca2+ and K+ currents contribute to the altered AP observed in 14-day fibers and may account for return of APs of 2 mo EBZ fibers.
Collapse
Affiliation(s)
- Wen Dun
- Department of Pharmacology, Center of Molecular Therapeutics, Columbia University, New York, New York 10032, USA
| | | | | | | |
Collapse
|
83
|
Jiang M, Zhang M, Tang DG, Clemo HF, Liu J, Holwitt D, Kasirajan V, Pond AL, Wettwer E, Tseng GN. KCNE2 protein is expressed in ventricles of different species, and changes in its expression contribute to electrical remodeling in diseased hearts. Circulation 2004; 109:1783-8. [PMID: 15066947 DOI: 10.1161/01.cir.0000124225.43852.50] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Mutations in KCNE2 have been linked to long-QT syndrome (LQT6), yet KCNE2 protein expression in the ventricle and its functional role in native channels are not clear. METHODS AND RESULTS We detected KCNE2 protein in human, dog, and rat ventricles in Western blot experiments. Immunocytochemistry confirmed KCNE2 protein expression in ventricular myocytes. To explore the functional role of KCNE2, we studied how its expression was altered in 2 models of cardiac pathology and whether these alterations could help explain observed changes in the function of native channels, for which KCNE2 is a putative auxiliary (beta) subunit. In canine ventricle injured by coronary microembolizations, the rapid delayed rectifier current (I(Kr)) density was increased. Although the protein level of ERG (I(Kr) pore-forming, alpha, subunit) was not altered, the KCNE2 protein level was markedly reduced. These data are consistent with the effect of heterologously expressed KCNE2 on ERG and suggest that in canine ventricle, KCNE2 may associate with ERG and suppress its current amplitude. In aging rat ventricle, the pacemaker current (I(f)) density was increased. There was a significant increase in the KCNE2 protein level, whereas changes in the alpha-subunit (HCN2) were not significant. These data are consistent with the effect of heterologously expressed KCNE2 on HCN2 and suggest that in aging rat ventricle, KCNE2 may associate with HCN2 and enhance its current amplitude. CONCLUSIONS KCNE2 protein is expressed in ventricles, and it can play diverse roles in ventricular electrical activity under (patho)physiological conditions.
Collapse
Affiliation(s)
- Min Jiang
- Department of Physiology, Virginia Commonwealth UniversityRichmond, VA 23298, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
84
|
Abstract
Mutations in minK-related peptide 1 (MiRP1), the product of the KCNE2 gene, have been associated with malignant ventricular arrhythmia syndromes related to impaired repolarization. MiRP1 interacts with a variety of ion-channel alpha-subunits, dysfunction of which could account for arrhythmia syndromes; however, the observation of very low-level expression of MiRP1 in ventricular tissue has led to doubts about its relevance. The specialized His-Purkinje system plays a key role in cardiac electrophysiology and is an important contributor to ventricular arrhythmias related to abnormal repolarization. We examined the relative abundance of MiRP1 in canine Purkinje versus ventricular tissue and found much greater expression at both mRNA and protein levels in Purkinje tissue. Thus, the cardiac Purkinje system is a strong candidate to play a role in arrhythmic syndromes due to MiRP1 abnormalities.
Collapse
Affiliation(s)
- Marc Pourrier
- Department of Medicine, .), University of Montreal, Montreal, Quebec, Canada
| | | | | | | | | |
Collapse
|
85
|
Hatano N, Ohya S, Muraki K, Giles W, Imaizumi Y. Dihydropyridine Ca2+ channel antagonists and agonists block Kv4.2, Kv4.3 and Kv1.4 K+ channels expressed in HEK293 cells. Br J Pharmacol 2003; 139:533-44. [PMID: 12788813 PMCID: PMC1573880 DOI: 10.1038/sj.bjp.0705281] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
(1) We have determined the molecular basis of nicardipine-induced block of cardiac transient outward K(+) currents (I(to)). Inhibition of I(to) was studied using cloned voltage-dependent K(+) channels (Kv) channels, rat Kv4.3L, Kv4.2, and Kv1.4, expressed in human embryonic kidney cell line 293 (HEK293) cells. (2) Application of the dihydropyridine Ca(2+) channel antagonist, nicardipine, accelerated the inactivation rate and reduced the peak amplitude of Kv4.3L currents in a concentration-dependent manner (IC(50): 0.42 micro M). The dihydropyridine (DHP) Ca(2+) channel agonist, Bay K 8644, also blocked this K(+) current (IC(50): 1.74 micro M). (3) Nicardipine (1 micro M) slightly, but significantly, shifted the voltage dependence of activation and steady-state inactivation to more negative potentials, and also slowed markedly the recovery from inactivation of Kv4.3L currents. (4) Coexpression of K(+) channel-interacting protein 2 (KChIP2) significantly slowed the inactivation of Kv4.3L currents as expected. However, the features of DHP-induced block of K(+) current were not substantially altered. (5) Nicardipine exhibited similar block of Kv1.4 and Kv4.2 channels stably expressed in HEK293 cells; IC(50)'s were 0.80 and 0.62 micro M, respectively. (6) Thus, at submicromolar concentrations, DHP Ca(2+) antagonist and agonist inhibit Kv4.3L and have similar inhibiting effects on other components of cardiac I(to), Kv4.2 and Kv1.4.
Collapse
Affiliation(s)
- Noriyuki Hatano
- Department of Molecular and Cellular Pharmacology, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya 467-8603, Japan
| | - Susumu Ohya
- Department of Molecular and Cellular Pharmacology, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya 467-8603, Japan
| | - Katsuhiko Muraki
- Department of Molecular and Cellular Pharmacology, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya 467-8603, Japan
| | - Wayne Giles
- Department of Physiology and Biophysics, Faculty of Medicine, University of Calgary, Calgary, Alberta, Canada T2N 4N4
| | - Yuji Imaizumi
- Department of Molecular and Cellular Pharmacology, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya 467-8603, Japan
- Author for correspondence:
| |
Collapse
|