51
|
Nam KH, Smith AST, Lone S, Kwon S, Kim DH. Biomimetic 3D Tissue Models for Advanced High-Throughput Drug Screening. ACTA ACUST UNITED AC 2014; 20:201-15. [PMID: 25385716 DOI: 10.1177/2211068214557813] [Citation(s) in RCA: 106] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2014] [Indexed: 12/13/2022]
Abstract
Most current drug screening assays used to identify new drug candidates are 2D cell-based systems, even though such in vitro assays do not adequately re-create the in vivo complexity of 3D tissues. Inadequate representation of the human tissue environment during a preclinical test can result in inaccurate predictions of compound effects on overall tissue functionality. Screening for compound efficacy by focusing on a single pathway or protein target, coupled with difficulties in maintaining long-term 2D monolayers, can serve to exacerbate these issues when using such simplistic model systems for physiological drug screening applications. Numerous studies have shown that cell responses to drugs in 3D culture are improved from those in 2D, with respect to modeling in vivo tissue functionality, which highlights the advantages of using 3D-based models for preclinical drug screens. In this review, we discuss the development of microengineered 3D tissue models that accurately mimic the physiological properties of native tissue samples and highlight the advantages of using such 3D microtissue models over conventional cell-based assays for future drug screening applications. We also discuss biomimetic 3D environments, based on engineered tissues as potential preclinical models for the development of more predictive drug screening assays for specific disease models.
Collapse
Affiliation(s)
- Ki-Hwan Nam
- Department of Bioengineering, University of Washington, Seattle, WA, USA Department of Electrical and Computer Engineering, Seoul National University, Seoul, Republic of Korea Center for Analytical Instrumentation Development, The Korea Basic Science Institute, Deajeon, Republic of Korea
| | - Alec S T Smith
- Department of Bioengineering, University of Washington, Seattle, WA, USA
| | - Saifullah Lone
- Department of Electrical and Computer Engineering, Seoul National University, Seoul, Republic of Korea
| | - Sunghoon Kwon
- Department of Electrical and Computer Engineering, Seoul National University, Seoul, Republic of Korea
| | - Deok-Ho Kim
- Department of Bioengineering, University of Washington, Seattle, WA, USA Center for Cardiovascular Biology, University of Washington, Seattle, WA, USA Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA, USA
| |
Collapse
|
52
|
Weymann A, Patil NP, Sabashnikov A, Jungebluth P, Korkmaz S, Li S, Veres G, Soos P, Ishtok R, Chaimow N, Pätzold I, Czerny N, Schies C, Schmack B, Popov AF, Simon AR, Karck M, Szabo G. Bioartificial heart: a human-sized porcine model--the way ahead. PLoS One 2014; 9:e111591. [PMID: 25365554 PMCID: PMC4218780 DOI: 10.1371/journal.pone.0111591] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2014] [Accepted: 09/28/2014] [Indexed: 01/07/2023] Open
Abstract
Background A bioartificial heart is a theoretical alternative to transplantation or mechanical left ventricular support. Native hearts decellularized with preserved architecture and vasculature may provide an acellular tissue platform for organ regeneration. We sought to develop a tissue-engineered whole-heart neoscaffold in human-sized porcine hearts. Methods We decellularized porcine hearts (n = 10) by coronary perfusion with ionic detergents in a modified Langendorff circuit. We confirmed decellularization by histology, transmission electron microscopy and fluorescence microscopy, quantified residual DNA by spectrophotometry, and evaluated biomechanical stability with ex-vivo left-ventricular pressure/volume studies, all compared to controls. We then mounted the decellularized porcine hearts in a bioreactor and reseeded them with murine neonatal cardiac cells and human umbilical cord derived endothelial cells (HUVEC) under simulated physiological conditions. Results Decellularized hearts lacked intracellular components but retained specific collagen fibers, proteoglycan, elastin and mechanical integrity; quantitative DNA analysis demonstrated a significant reduction of DNA compared to controls (82.6±3.2 ng DNA/mg tissue vs. 473.2±13.4 ng DNA/mg tissue, p<0.05). Recellularized porcine whole-heart neoscaffolds demonstrated re-endothelialization of coronary vasculature and measurable intrinsic myocardial electrical activity at 10 days, with perfused organ culture maintained for up to 3 weeks. Conclusions Human-sized decellularized porcine hearts provide a promising tissue-engineering platform that may lead to future clinical strategies in the treatment of heart failure.
Collapse
Affiliation(s)
- Alexander Weymann
- Department of Cardiac Surgery, Heart and Marfan Center - University of Heidelberg, Heidelberg, Germany
- * E-mail:
| | - Nikhil Prakash Patil
- Department of Cardiothoracic Transplantation & Mechanical Circulatory Support, Royal Brompton and Harefield NHS Foundation Trust, Harefield Hospital, London, United Kingdom
| | - Anton Sabashnikov
- Department of Cardiothoracic Transplantation & Mechanical Circulatory Support, Royal Brompton and Harefield NHS Foundation Trust, Harefield Hospital, London, United Kingdom
| | - Philipp Jungebluth
- Department of Clinical Science, Intervention and Technology, Advanced Center for Translational Regenerative Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Sevil Korkmaz
- Department of Cardiac Surgery, Heart and Marfan Center - University of Heidelberg, Heidelberg, Germany
| | - Shiliang Li
- Department of Cardiac Surgery, Heart and Marfan Center - University of Heidelberg, Heidelberg, Germany
| | - Gabor Veres
- Department of Cardiac Surgery, Heart and Marfan Center - University of Heidelberg, Heidelberg, Germany
| | - Pal Soos
- Heart and Vascular Center, Semmelweis University, Budapest, Hungary
| | - Roland Ishtok
- 2 Department of Pathology, Semmelweis University, Budapest, Hungary
| | - Nicole Chaimow
- Department of Cardiac Surgery, Heart and Marfan Center - University of Heidelberg, Heidelberg, Germany
| | - Ines Pätzold
- Department of Cardiac Surgery, Heart and Marfan Center - University of Heidelberg, Heidelberg, Germany
| | - Natalie Czerny
- Department of Cardiac Surgery, Heart and Marfan Center - University of Heidelberg, Heidelberg, Germany
| | - Carsten Schies
- Department of Cardiac Surgery, Heart and Marfan Center - University of Heidelberg, Heidelberg, Germany
| | - Bastian Schmack
- Department of Cardiac Surgery, Heart and Marfan Center - University of Heidelberg, Heidelberg, Germany
| | - Aron-Frederik Popov
- Department of Cardiothoracic Transplantation & Mechanical Circulatory Support, Royal Brompton and Harefield NHS Foundation Trust, Harefield Hospital, London, United Kingdom
| | - André Rüdiger Simon
- Department of Cardiothoracic Transplantation & Mechanical Circulatory Support, Royal Brompton and Harefield NHS Foundation Trust, Harefield Hospital, London, United Kingdom
| | - Matthias Karck
- Department of Cardiac Surgery, Heart and Marfan Center - University of Heidelberg, Heidelberg, Germany
| | - Gabor Szabo
- Department of Cardiac Surgery, Heart and Marfan Center - University of Heidelberg, Heidelberg, Germany
| |
Collapse
|
53
|
Atmanli A, Hu D, Domian IJ. Molecular etching: a novel methodology for the generation of complex micropatterned growth surfaces for human cellular assays. Adv Healthc Mater 2014; 3:1759-64. [PMID: 24805162 PMCID: PMC4224634 DOI: 10.1002/adhm.201400010] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2014] [Revised: 03/29/2014] [Indexed: 12/21/2022]
Abstract
The extracellular matrix (ECM) is the non-cellular component of all tissues consisting of many different bioactive macromolecules including proteins, proteoglycans, glycoproteins and gradients of growth factors. It is a highly complex and dynamic structure that is subject to constant remodeling in vivo . The ECM not only provides essential structural support for tissues and cell layers but also modulates molecular and biomechanical signaling cues.[1 -4 ] ECM composition is tightly regulated during normal development and hemostasis and varies with tissue type as well as developmental stage. Hearts of different developmental stages have significant differences in ECM composition and elasticity.[5 , 6 ] Dysregulation of the ECM has also been shown to result in human aortic and connective tissue diseases.[7 ] In addition, ECM has been shown to control cell behavior and function through its elasticity, topography, and dimensionality. In vitro , culture surface stiffness has been shown to directly control the lineage commitment of mesenchymal stem cells.[8 , 9 ]
Collapse
Affiliation(s)
- Ayhan Atmanli
- Cardiovascular Research Center Massachusetts General Hospital 185 Cambridge Street, Boston, MA 02114, USA
- Harvard Medical School 250 Longwood Avenue, Boston, MA 02115, USA Dr. Ibrahim J. Domian
| | - Dongjian Hu
- Cardiovascular Research Center Massachusetts General Hospital 185 Cambridge Street, Boston, MA 02114, USA
- Harvard Medical School 250 Longwood Avenue, Boston, MA 02115, USA Dr. Ibrahim J. Domian
| | - Ibrahim J. Domian
- Cardiovascular Research Center Massachusetts General Hospital 185 Cambridge Street, Boston, MA 02114, USA
- Harvard Medical School 250 Longwood Avenue, Boston, MA 02115, USA Dr. Ibrahim J. Domian
- Harvard Stem Cell Institute 1350 Massachusetts Avenue Cambridge, MA 02138, USA
| |
Collapse
|
54
|
Shi D, Tatu R, Liu Q, Hosseinkhani H. Stem Cell-Based Tissue Engineering for Regenerative Medicine. ACTA ACUST UNITED AC 2014. [DOI: 10.1142/s1793984414300015] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The applications of stem cells in tissue engineering will show great promise in generating tailor-made tissue/organs for clinical applications. This paper gives a review on a broad spectrum of areas in stem cell-based tissue engineering including neuron repair, cardiac patches, skin regeneration, gene therapy and cartilage tissue engineering. This paper is intended to serve as an informative tutorial for scientists and physicians from fields other than stem cells and tissue engineering. It will shed light on various strategies of target tissue/organ repair involving stem cells.
Collapse
Affiliation(s)
- Donglu Shi
- Key Laboratory of Basic Research in Cardiology of the Ministry of Education of China, Shanghai East Hospital, The Institute for Biomedical Engineering and Nano Science, Tongji University School of Medicine, Shanghai 200120, P. R. China
- The Materials Science and Engineering Program, Department of Mechanical and Materials Engineering, College of Engineering and Applied Science, University of Cincinnati, Cincinnati, OH 45221-0072, USA
| | - Rigwed Tatu
- The Materials Science and Engineering Program, Department of Mechanical and Materials Engineering, College of Engineering and Applied Science, University of Cincinnati, Cincinnati, OH 45221-0072, USA
| | - Qing Liu
- Key Laboratory of Basic Research in Cardiology of the Ministry of Education of China, Shanghai East Hospital, The Institute for Biomedical Engineering and Nano Science, Tongji University School of Medicine, Shanghai 200120, P. R. China
| | - Hossein Hosseinkhani
- Graduate Institute of Biomedical Engineering, National Taiwan University of Science and Technology, Taipei 10607, Taiwan
| |
Collapse
|
55
|
Morgan KY, Black LD. Mimicking isovolumic contraction with combined electromechanical stimulation improves the development of engineered cardiac constructs. Tissue Eng Part A 2014; 20:1654-67. [PMID: 24410342 PMCID: PMC4029049 DOI: 10.1089/ten.tea.2013.0355] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2013] [Accepted: 12/17/2013] [Indexed: 01/22/2023] Open
Abstract
Electrical and mechanical stimulation have both been used extensively to improve the function of cardiac engineered tissue as each of these stimuli is present in the physical environment during normal development in vivo. However, to date, there has been no direct comparison between electrical and mechanical stimulation and current published data are difficult to compare due to the different systems used to create the engineered cardiac tissue and the different measures of functionality studied as outcomes. The goals of this study were twofold. First, we sought to directly compare the effects of mechanical and electrical stimulation on engineered cardiac tissue. Second, we aimed to determine the importance of the timing of the two stimuli in relation to each other in combined electromechanical stimulation. We hypothesized that delaying electrical stimulation after the beginning of mechanical stimulation to mimic the biophysical environment present during isovolumic contraction would improve construct function by improving proteins responsible for cell-cell communication and contractility. To test this hypothesis, we created a bioreactor system that would allow us to electromechanically stimulate engineered tissue created from neonatal rat cardiac cells entrapped in fibrin gel during 2 weeks in culture. Contraction force was higher for all stimulation groups as compared with the static controls, with the delayed combined stimulation constructs having the highest forces. Mechanical stimulation alone displayed increased final cell numbers but there were no other differences between electrical and mechanical stimulation alone. Delayed combined stimulation resulted in an increase in SERCA2a and troponin T expression levels, which did not happen with synchronous combined stimulation, indicating that the timing of combined stimulation is important to maximize the beneficial effect. Increases in Akt protein expression levels suggest that the improvements are at least in part induced by hypertrophic growth. In summary, combined electromechanical stimulation can create engineered cardiac tissue with improved functional properties over electrical or mechanical stimulation alone, and the timing of the combined stimulation greatly influences its effects on engineered cardiac tissue.
Collapse
Affiliation(s)
- Kathy Ye Morgan
- Department of Biomedical Engineering, Tufts University, Medford, Massachusetts
| | - Lauren Deems Black
- Department of Biomedical Engineering, Tufts University, Medford, Massachusetts
- Cellular, Molecular and Developmental Biology Program, Sackler School of Graduate Biomedical Sciences, Tufts University School of Medicine, Boston, Massachusetts
| |
Collapse
|
56
|
Qazi TH, Rai R, Dippold D, Roether JE, Schubert DW, Rosellini E, Barbani N, Boccaccini AR. Development and characterization of novel electrically conductive PANI-PGS composites for cardiac tissue engineering applications. Acta Biomater 2014; 10:2434-45. [PMID: 24561709 DOI: 10.1016/j.actbio.2014.02.023] [Citation(s) in RCA: 134] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2013] [Revised: 01/26/2014] [Accepted: 02/11/2014] [Indexed: 12/31/2022]
Abstract
Cardiovascular diseases, especially myocardial infarction, are the leading cause of morbidity and mortality in the world, also resulting in huge economic burdens on national economies. A cardiac patch strategy aims at regenerating an infarcted heart by providing healthy functional cells to the injured region via a carrier substrate, and providing mechanical support, thereby preventing deleterious ventricular remodeling. In the present work, polyaniline (PANI) was doped with camphorsulfonic acid and blended with poly(glycerol-sebacate) at ratios of 10, 20 and 30vol.% PANI content to produce electrically conductive composite cardiac patches via the solvent casting method. The composites were characterized in terms of their electrical, mechanical and physicochemical properties. The in vitro biodegradability of the composites was also evaluated. Electrical conductivity increased from 0Scm(-1) for pure PGS to 0.018Scm(-1) for 30vol.% PANI-PGS samples. Moreover, the conductivities were preserved for at least 100h post fabrication. Tensile tests revealed an improvement in the elastic modulus, tensile strength and elasticity with increasing PANI content. The degradation products caused a local drop in pH, which was higher in all composite samples compared with pure PGS, hinting at a buffering effect due to the presence of PANI. Finally, the cytocompatibility of the composites was confirmed when C2C12 cells attached and proliferated on samples with varying PANI content. Furthermore, leaching of acid dopants from the developed composites did not have any deleterious effect on the viability of C2C12 cells. Taken together, these results confirm the potential of PANI-PGS composites for use as substrates to modulate cellular behavior via electrical stimulation, and as biocompatible scaffolds for cardiac tissue engineering applications.
Collapse
Affiliation(s)
- Taimoor H Qazi
- Institute of Biomaterials, Department of Materials Science and Engineering, University of Erlangen-Nuremberg, Cauerstr. 6, 91058 Erlangen, Germany
| | - Ranjana Rai
- Institute of Biomaterials, Department of Materials Science and Engineering, University of Erlangen-Nuremberg, Cauerstr. 6, 91058 Erlangen, Germany.
| | - Dirk Dippold
- Institute of Biomaterials, Department of Materials Science and Engineering, University of Erlangen-Nuremberg, Cauerstr. 6, 91058 Erlangen, Germany
| | - Judith E Roether
- Institute of Polymer Materials, Department of Materials Science and Engineering, University of Erlangen-Nuremberg, 91058 Erlangen, Germany
| | - Dirk W Schubert
- Institute of Polymer Materials, Department of Materials Science and Engineering, University of Erlangen-Nuremberg, 91058 Erlangen, Germany
| | - Elisabetta Rosellini
- Department of Civil and Industrial Engineering, Largo Lucio Lazzarino, 56126 Pisa, Italy
| | - Niccoletta Barbani
- Department of Civil and Industrial Engineering, Largo Lucio Lazzarino, 56126 Pisa, Italy
| | - Aldo R Boccaccini
- Institute of Biomaterials, Department of Materials Science and Engineering, University of Erlangen-Nuremberg, Cauerstr. 6, 91058 Erlangen, Germany.
| |
Collapse
|
57
|
Emmert MY, Hitchcock RW, Hoerstrup SP. Cell therapy, 3D culture systems and tissue engineering for cardiac regeneration. Adv Drug Deliv Rev 2014; 69-70:254-69. [PMID: 24378579 DOI: 10.1016/j.addr.2013.12.004] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2013] [Revised: 12/06/2013] [Accepted: 12/17/2013] [Indexed: 01/02/2023]
Abstract
Ischemic Heart Disease (IHD) still represents the "Number One Killer" worldwide accounting for the death of numerous patients. However the capacity for self-regeneration of the adult heart is very limited and the loss of cardiomyocytes in the infarcted heart leads to continuous adverse cardiac-remodeling which often leads to heart-failure (HF). The concept of regenerative medicine comprising cell-based therapies, bio-engineering technologies and hybrid solutions has been proposed as a promising next-generation approach to address IHD and HF. Numerous strategies are under investigation evaluating the potential of regenerative medicine on the failing myocardium including classical cell-therapy concepts, three-dimensional culture techniques and tissue-engineering approaches. While most of these regenerative strategies have shown great potential in experimental studies, the translation into a clinical setting has either been limited or too rapid leaving many key questions unanswered. This review summarizes the current state-of-the-art, important challenges and future research directions as to regenerative approaches addressing IHD and resulting HF.
Collapse
|
58
|
Embryonic Decellularized Cardiac Scaffold Supports Embryonic Stem Cell Differentiation to Produce Beating Cardiac Tissue. ACTA ACUST UNITED AC 2014. [DOI: 10.1155/2014/625164] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Regenerative medicine offers a curative approach to treating heart disease through multiple emerging therapeutic concepts. Decellularized organ scaffolds are being optimized to guide and spatially organize stem cell differentiation in efforts to rebuild functional tissues. Additionally, pluripotent stem cells offer a transformative cell source to differentiate into the full spectrum of cellular building blocks. Adult cardiac tissues have been used as extracellular scaffolds as a proof of principle; however, matching the developmental stages of embryonic scaffold with primitive cardiac progenitors may be used to optimize the differentiation and maturation of bioengineered cardiac tissues. Our novel approach uses embryo-derived decellularized hearts as scaffolds to promote embryonic stem cell differentiation. Further, we determined that agitation with 0.25% sodium dodecyl sulfate (SDS) solution was the most effective protocol to maintain matrix integrity while eliminating endogenous cells. The scaffolds were successfully reseeded with different cellular sources derived from pluripotent stem cells to achieve beating cardiac tissues characterized by endothelial, cardiac, and smooth muscle markers. Therefore, embedding stem cells within a tissue-specific environment matched to the developmental stage of the progenitors may offer a practical solution for stem-cell-derived applications such as disease modeling, pharmaceutical safety testing, and screening of novel therapeutic targets.
Collapse
|
59
|
Abstract
The engineering of 3-dimensional (3D) heart muscles has undergone exciting progress for the past decade. Profound advances in human stem cell biology and technology, tissue engineering and material sciences, as well as prevascularization and in vitro assay technologies make the first clinical application of engineered cardiac tissues a realistic option and predict that cardiac tissue engineering techniques will find widespread use in the preclinical research and drug development in the near future. Tasks that need to be solved for this purpose include standardization of human myocyte production protocols, establishment of simple methods for the in vitro vascularization of 3D constructs and better maturation of myocytes, and, finally, thorough definition of the predictive value of these methods for preclinical safety pharmacology. The present article gives an overview of the present state of the art, bottlenecks, and perspectives of cardiac tissue engineering for cardiac repair and in vitro testing.
Collapse
Affiliation(s)
- Marc N. Hirt
- From the Department of Experimental Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany; and DZHK (German Centre for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, Hamburg, Germany
| | - Arne Hansen
- From the Department of Experimental Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany; and DZHK (German Centre for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, Hamburg, Germany
| | - Thomas Eschenhagen
- From the Department of Experimental Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany; and DZHK (German Centre for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, Hamburg, Germany
| |
Collapse
|
60
|
Rubach M, Adelmann R, Haustein M, Drey F, Pfannkuche K, Xiao B, Koester A, Udink ten Cate FEA, Choi YH, Neef K, Fatima A, Hannes T, Pillekamp F, Hescheler J, Šarić T, Brockmeier K, Khalil M. Mesenchymal stem cells and their conditioned medium improve integration of purified induced pluripotent stem cell-derived cardiomyocyte clusters into myocardial tissue. Stem Cells Dev 2014; 23:643-53. [PMID: 24219308 DOI: 10.1089/scd.2013.0272] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Induced pluripotent stem cell-derived cardiomyocytes (iPS-CMs) might become therapeutically relevant to regenerate myocardial damage. Purified iPS-CMs exhibit poor functional integration into myocardial tissue. The aim of this study was to investigate whether murine mesenchymal stem cells (MSCs) or their conditioned medium (MScond) improves the integration of murine iPS-CMs into myocardial tissue. Vital or nonvital embryonic murine ventricular tissue slices were cocultured with purified clusters of iPS-CMs in combination with murine embryonic fibroblasts (MEFs), MSCs, or MScond. Morphological integration was assessed by visual scoring and functional integration by isometric force and field potential measurements. We observed a moderate morphological integration of iPS-CM clusters into vital, but a poor integration into nonvital, slices. MEFs and MSCs but not MScond improved morphological integration of CMs into nonvital slices and enabled purified iPS-CMs to confer force. Coculture of vital slices with iPS-CMs and MEFs or MSCs resulted in an improved electrical integration. A comparable improvement of electrical coupling was achieved with the cell-free MScond, indicating that soluble factors secreted by MSCs were involved in electrical coupling. We conclude that cells such as MSCs support the engraftment and adhesion of CMs, and confer force to noncontractile tissue. Furthermore, soluble factors secreted by MSCs mediate electrical coupling of purified iPS-CM clusters to myocardial tissue. These data suggest that MSCs may increase the functional engraftment and therapeutic efficacy of transplanted iPS-CMs into infarcted myocardium.
Collapse
Affiliation(s)
- Martin Rubach
- 1 Department of Pediatric Cardiology, University of Cologne , Cologne, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
61
|
Radhakrishnan J, Krishnan UM, Sethuraman S. Hydrogel based injectable scaffolds for cardiac tissue regeneration. Biotechnol Adv 2014; 32:449-61. [PMID: 24406815 DOI: 10.1016/j.biotechadv.2013.12.010] [Citation(s) in RCA: 116] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2013] [Revised: 12/14/2013] [Accepted: 12/28/2013] [Indexed: 12/18/2022]
Abstract
Tissue engineering promises to be an effective strategy that can overcome the lacuna existing in the current pharmacological and interventional therapies and heart transplantation. Heart failure continues to be a major contributor to the morbidity and mortality across the globe. This may be attributed to the limited regeneration capacity after the adult cardiomyocytes are terminally differentiated or injured. Various strategies involving acellular scaffolds, stem cells, and combinations of stem cells, scaffolds and growth factors have been investigated for effective cardiac tissue regeneration. Recently, injectable hydrogels have emerged as a potential candidate among various categories of biomaterials for cardiac tissue regeneration due to improved patient compliance and facile administration via minimal invasive mode that treats complex infarction. This review discusses in detail on the advances made in the field of injectable materials for cardiac tissue engineering highlighting their merits over their preformed counterparts.
Collapse
Affiliation(s)
- Janani Radhakrishnan
- Centre for Nanotechnology & Advanced Biomaterials, School of Chemical & Biotechnology, SASTRA University, Thanjavur 613401, India
| | - Uma Maheswari Krishnan
- Centre for Nanotechnology & Advanced Biomaterials, School of Chemical & Biotechnology, SASTRA University, Thanjavur 613401, India
| | - Swaminathan Sethuraman
- Centre for Nanotechnology & Advanced Biomaterials, School of Chemical & Biotechnology, SASTRA University, Thanjavur 613401, India.
| |
Collapse
|
62
|
Ramade A, Legant WR, Picart C, Chen CS, Boudou T. Microfabrication of a Platform to Measure and Manipulate the Mechanics of Engineered Microtissues. Methods Cell Biol 2014; 121:191-211. [DOI: 10.1016/b978-0-12-800281-0.00013-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
63
|
Song M, Jang H, Lee J, Kim JH, Kim SH, Sun K, Park Y. Regeneration of chronic myocardial infarction by injectable hydrogels containing stem cell homing factor SDF-1 and angiogenic peptide Ac-SDKP. Biomaterials 2013; 35:2436-45. [PMID: 24378015 DOI: 10.1016/j.biomaterials.2013.12.011] [Citation(s) in RCA: 90] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2013] [Accepted: 12/08/2013] [Indexed: 01/09/2023]
Abstract
Regeneration of chronic myocardial infarction (CMI) is one of the challenging issues due to its limited regeneration activity compared to acute or sub-acute stage. In this study, we examined whether combination of stem cell homing factor (SDF-1) and angiogenic peptides (Ac-SDKP) injected with biomimetic hydrogels promote regeneration of cardiac function in a CMI model. We evaluated the regeneration of chronically infarcted myocardium using injectable biomimetic hydrogels containing two therapeutic factors; stromal-derived factor-1 (SDF-1) and Ac-SDKP for stem cell homing and angiogenesis, respectively. Injection of the two therapeutic factors into the infarct region of the left ventricle showed that the biomimetic hydrogels containing two therapeutic factor exhibited significantly improved left ventricle function, increased angiogenesis, decreased infarct size and greatest wall thickness within the infarct region at 4 weeks post-treatment. From these results, it is clear that hydrogels containing two therapeutic factors showed synergistic effects on regeneration in the chronic heart failure model. In conclusion, these results suggest that combination of stem cell homing factor with angiogenic peptides recruit stem cells to the microenvironments, increase the expression of angiogenic genes, enhance the matured vessel formation and improve the cardiac function in chronic MI.
Collapse
Affiliation(s)
- Myeongjin Song
- Korea Artificial Organ Center, Korea University, Seoul 136-705, Republic of Korea
| | - Hwanseok Jang
- Korea Artificial Organ Center, Korea University, Seoul 136-705, Republic of Korea; Department of Biomedical Engineering, College of Medicine, Korea University, Seoul 136-705, Republic Korea
| | - Jaeyeon Lee
- Korea Artificial Organ Center, Korea University, Seoul 136-705, Republic of Korea
| | - Ji Hyun Kim
- Biomaterials Research Center, Korea Institute of Science and Technology, Seoul 136-791, Republic of Korea
| | - Soo Hyun Kim
- Biomaterials Research Center, Korea Institute of Science and Technology, Seoul 136-791, Republic of Korea
| | - Kyung Sun
- Department of Biomedical Engineering, College of Medicine, Korea University, Seoul 136-705, Republic Korea; Department of Thoracic and Cardiovascular Surgery, College of Medicine, Korea University, Seoul 136-705, Republic of Korea
| | - Yongdoo Park
- Korea Artificial Organ Center, Korea University, Seoul 136-705, Republic of Korea; Department of Biomedical Engineering, College of Medicine, Korea University, Seoul 136-705, Republic Korea.
| |
Collapse
|
64
|
Vukadinovic-Nikolic Z, Andrée B, Dorfman SE, Pflaum M, Horvath T, Lux M, Venturini L, Bär A, Kensah G, Lara AR, Tudorache I, Cebotari S, Hilfiker-Kleiner D, Haverich A, Hilfiker A. Generation of bioartificial heart tissue by combining a three-dimensional gel-based cardiac construct with decellularized small intestinal submucosa. Tissue Eng Part A 2013; 20:799-809. [PMID: 24102409 DOI: 10.1089/ten.tea.2013.0184] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The in vitro generation of a bioartificial cardiac construct (CC) represents a promising tool for the repair of ischemic heart tissue. Several approaches to engineer cardiac tissue in vitro have been conducted. The main drawback of these studies is the insufficient size of the resulting construct for clinical applications. The focus of this study was the generation of an artificial three-dimensional (3D), contractile, and suturable myocardial patch by combining a gel-based CC with decellularized porcine small intestinal submucosa (SIS), thereby engineering an artificial tissue of 11 cm² in size. The alignment and morphology of rat neonatal cardiomyocytes (rCMs) in SIS-CC complexes were investigated as well as the re-organization of primary endothelial cells which were co-isolated in the rCM preparation. The ability of a rat heart endothelial cell line (RHE-A) to re-cellularize pre-existing vessel structures within the SIS or a biological vascularized matrix (BioVaM) was determined. SIS-CC contracted spontaneously, uniformly, and rhythmically with an average rate of 200 beats/min in contrast to undirected contractions observed in CC without SIS support. rCM exhibited an elongated morphology with well-defined sarcomeric structures oriented along the longitudinal axis in the SIS-CC, whereas round-shaped and random-arranged rCM were observed in CC. Electric coupling of rCM was demonstrated by microelectrode array measurements. A dense network of CD31⁺/eNOS⁺ cells was detected as permeating the whole construct. Superficial supplementation of RHE-A cells to SIS-CC led to the migration of these cells through the CC, resulting in the re-population of pre-existing vessel structures within the decelluarized SIS. By infusion of RHE-A cells into the BioVaM venous and arterial pedicles, a re-population of the BioVaM vessel bed as well as distribution of RHE-A cells throughout the CC was achieved. Rat endothelial cells within the CC were in contact with RHE-A cells. Ingrowth and formation of a network by endothelial cells infused through the BioVaM represent a promising step toward engineering a functional perfusion system, enabling the engineering of vascularized and well-nourished 3D CC of dimensions relevant for therapeutic heart repair.
Collapse
Affiliation(s)
- Zlata Vukadinovic-Nikolic
- 1 Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO), Department of Cardiothoracic, Transplantation and Vascular Surgery, Hannover Medical School , Hannover, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
65
|
Miklas JW, Nunes SS, Radisic M. Engineering Cardiac Tissues from Pluripotent Stem Cells for Drug Screening and Studies of Cell Maturation. Isr J Chem 2013. [DOI: 10.1002/ijch.201300064] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
66
|
Boffito M, Sartori S, Ciardelli G. Polymeric scaffolds for cardiac tissue engineering: requirements and fabrication technologies. POLYM INT 2013. [DOI: 10.1002/pi.4608] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Monica Boffito
- Department of Mechanical and Aerospace Engineering; Politecnico di Torino; Corso Duca degli Abruzzi 24 10129 Turin Italy
| | - Susanna Sartori
- Department of Mechanical and Aerospace Engineering; Politecnico di Torino; Corso Duca degli Abruzzi 24 10129 Turin Italy
| | - Gianluca Ciardelli
- Department of Mechanical and Aerospace Engineering; Politecnico di Torino; Corso Duca degli Abruzzi 24 10129 Turin Italy
- CNR-IPCF UOS Pisa; Via Moruzzi 1 56124 Pisa Italy
| |
Collapse
|
67
|
Martinelli V, Cellot G, Toma FM, Long CS, Caldwell JH, Zentilin L, Giacca M, Turco A, Prato M, Ballerini L, Mestroni L. Carbon nanotubes instruct physiological growth and functionally mature syncytia: nongenetic engineering of cardiac myocytes. ACS NANO 2013; 7:5746-56. [PMID: 23734857 DOI: 10.1021/nn4002193] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Myocardial tissue engineering currently represents one of the most realistic strategies for cardiac repair. We have recently discovered the ability of carbon nanotube scaffolds to promote cell division and maturation in cardiomyocytes. Here, we test the hypothesis that carbon nanotube scaffolds promote cardiomyocyte growth and maturation by altering the gene expression program, implementing the cell electrophysiological properties and improving networking and maturation of functional syncytia. In our study, we combine microscopy, biological and electrophysiological methodologies, and calcium imaging, to verify whether neonatal rat ventricular myocytes cultured on substrates of multiwall carbon nanotubes acquire a physiologically more mature phenotype compared to control (gelatin). We show that the carbon nanotube substrate stimulates the induction of a gene expression profile characteristic of terminal differentiation and physiological growth, with a 2-fold increase of α-myosin heavy chain (P < 0.001) and upregulation of sarcoplasmic reticulum Ca(2+) ATPase 2a. In contrast, markers of pathological hypertrophy remain unchanged (β-myosin heavy chain, skeletal α-actin, atrial natriuretic peptide). These modifications are paralleled by an increase of connexin-43 gene expression, gap junctions and functional syncytia. Moreover, carbon nanotubes appear to exert a protective effect against the pathologic stimulus of phenylephrine. Finally, cardiomyocytes on carbon nanotubes demonstrate a more mature electrophysiological phenotype of syncytia and intracellular calcium signaling. Thus, carbon nanotubes interacting with cardiomyocytes have the ability to promote physiological growth and functional maturation. These properties are unique in the current vexing field of tissue engineering, and offer unprecedented perspectives in the development of innovative therapies for cardiac repair.
Collapse
|
68
|
Silvestri A, Boffito M, Sartori S, Ciardelli G. Biomimetic Materials and Scaffolds for Myocardial Tissue Regeneration. Macromol Biosci 2013; 13:984-1019. [DOI: 10.1002/mabi.201200483] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2012] [Revised: 04/23/2013] [Indexed: 12/14/2022]
Affiliation(s)
- Antonella Silvestri
- Department of Mechanical and Aerospace Engineering; Politecnico di Torino; Corso Duca degli Abruzzi 24 10129 Turin Italy
| | - Monica Boffito
- Department of Mechanical and Aerospace Engineering; Politecnico di Torino; Corso Duca degli Abruzzi 24 10129 Turin Italy
| | - Susanna Sartori
- Department of Mechanical and Aerospace Engineering; Politecnico di Torino; Corso Duca degli Abruzzi 24 10129 Turin Italy
| | - Gianluca Ciardelli
- Department of Mechanical and Aerospace Engineering; Politecnico di Torino; Corso Duca degli Abruzzi 24 10129 Turin Italy
- CNR-IPCF UOS Pisa; Via Moruzzi 1 56124 Pisa Italy
| |
Collapse
|
69
|
Feigl B, Hutmacher D. Eyes on 3D-current 3D biomimetic disease concept models and potential applications in age-related macular degeneration. Adv Healthc Mater 2013; 2:1056-62. [PMID: 24000403 DOI: 10.1002/adhm.201200445] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Three-dimensional cellular models that mimic disease are being increasingly investigated and have opened an exciting new research area into understanding pathomechanisms. The advantage of 3D in vitro disease models is that they allow systematic and in depth studies of physiological and pathophysiological processes with less costs and ethical concerns that have arisen with animal models. The purpose of the 30 approach is to allow crosstalk between cells and microenvironment, and with cues from the microenvironment,cells can assemble their niche similar to in vivo conditions. The use of 3D models for mimicking disease processes such as cancer, osteoarthritis etc., Is only emerging and allows multidisciplinary teams consisting of tissue engineers, biologist biomaterial scientists and clinicians to work closely together. While in vitro systems require rigorous testing before they can be considered as replicates of the in vivo model, major steps have been made,suggesting that they will become powerful tools for studying physiological and pathophysiological processes. This paper aims to summarize some of the existing 3D models and proposes a novel 3D model of the eye structures that are involved in the most common cause of blindness in the Western World,namely age-related macular degeneration (AMD).
Collapse
|
70
|
Hülsmann J, Aubin H, Kranz A, Godehardt E, Munakata H, Kamiya H, Barth M, Lichtenberg A, Akhyari P. A novel customizable modular bioreactor system for whole-heart cultivation under controlled 3D biomechanical stimulation. J Artif Organs 2013; 16:294-304. [PMID: 23588844 DOI: 10.1007/s10047-013-0705-5] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2012] [Accepted: 03/17/2013] [Indexed: 11/27/2022]
Abstract
In the last decade, cardiovascular tissue engineering has made great progress developing new strategies for regenerative medicine applications. However, while tissue engineered heart valves are already entering the clinical routine, tissue engineered myocardial substitutes are still restrained to experimental approaches. In contrast to the heart valves, tissue engineered myocardium cannot be repopulated in vivo because of its biological complexity, requiring elaborate cultivation conditions ex vivo. Although new promising approaches-like the whole-heart decellularization concept-have entered the myocardial tissue engineering field, bioreactor technology needed for the generation of functional myocardial tissue still lags behind in the sense of user-friendly, flexible and low cost systems. Here, we present a novel customizable modular bioreactor system that can be used for whole-heart cultivation. Out of a commercially obtainable original equipment manufacturer platform we constructed a modular bioreactor system specifically aimed at the cultivation of decellularized whole-hearts through perfusion and controlled 3D biomechanical stimulation with a simple but highly flexible operation platform based on LabVIEW. The modular setup not only allows a wide range of variance regarding medium conditioning under controlled 3D myocardial stretching but can also easily be upgraded for e.g. electrophysiological monitoring or stimulation, allowing for a tailor-made low-cost myocardial bioreactor system.
Collapse
Affiliation(s)
- Jörn Hülsmann
- Research Group for Experimental Surgery, Department of Cardiovascular Surgery, Medical Faculty, Heinrich Heine University Medical School, Duesseldorf University Hospital, Moorenstr. 5, 40225, Duesseldorf, Germany,
| | | | | | | | | | | | | | | | | |
Collapse
|
71
|
Sreerekha PR, Menon D, Nair SV, Chennazhi KP. Fabrication of Electrospun Poly (Lactide-co-Glycolide)–Fibrin Multiscale Scaffold for Myocardial Regeneration In Vitro. Tissue Eng Part A 2013; 19:849-59. [DOI: 10.1089/ten.tea.2012.0374] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Affiliation(s)
- Perumcherry Raman Sreerekha
- Amrita Centre for Nanosciences and Molecular Medicine, Amrita Institute of Medical Sciences and Research Centre, Amrita Vishwa Vidyapeetham University, Kochi, India
| | - Deepthy Menon
- Amrita Centre for Nanosciences and Molecular Medicine, Amrita Institute of Medical Sciences and Research Centre, Amrita Vishwa Vidyapeetham University, Kochi, India
| | - Shantikumar V. Nair
- Amrita Centre for Nanosciences and Molecular Medicine, Amrita Institute of Medical Sciences and Research Centre, Amrita Vishwa Vidyapeetham University, Kochi, India
| | - Krishna Prasad Chennazhi
- Amrita Centre for Nanosciences and Molecular Medicine, Amrita Institute of Medical Sciences and Research Centre, Amrita Vishwa Vidyapeetham University, Kochi, India
| |
Collapse
|
72
|
Sandri M, Rizzi R, Schiattarella GG, Levialdi Ghiron JH, Latronico MV, Pironti G, Chiariello GA, Esposito G, Tampieri A, Condorelli G. A collagen membrane-based engineered heart tissue improves cardiac function in ischemic rat hearts. BIOINSPIRED BIOMIMETIC AND NANOBIOMATERIALS 2013. [DOI: 10.1680/bbn.12.00028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
In the relatively new field of cardiac tissue engineering, different biomaterials, methods and techniques have been tested for cardiac repair, but we are still far from the achievement of a valid model that can be tested for therapeutic goals. In this study, the authors examined the efficacy of newly preformed membranes based on collagen type I for the transplantation of cardiac cells. The membrane prototype, cross-linked with 1,4-butanediol diglycidyl ether (BDDGE) and fibronectin-enriched, gave rise to spontaneously beating heart cell constructs, 5–9 days after seeding with neonatal rat cardiac cells. This membrane was grafted, with and without beating cardiac cells, onto the infarcted area of rat models of heart failure. Seriate echocardiography, performed on rats before transplantation and at 4 and 8 weeks after transplantation, demonstrated that rats treated with collagen membranes previously seeded with beating cells showed an improvement in cardiac function after 8 weeks. These results suggest that this new type of collagen membrane can be used as vector for the transplantation of beating heart cells for the regeneration of the injured myocardium and hence represents an important potential tool for cardiac tissue repair technologies.
Collapse
Affiliation(s)
- Monica Sandri
- Institute of Science and Technology for Ceramics – National Research Council of Italy (ISTEC-CNR), Faenza, Italy
| | - Roberto Rizzi
- Institute of Genetic and Biomedical Research – National Research Council of Italy (IRGB-CNR), Milan, Italy
| | | | - Jung Hee Levialdi Ghiron
- Institute of Genetic and Biomedical Research, National Research Council of Italy (IRGB-CNR), Milan, Italy
| | | | - Gianluigi Pironti
- Division of Cardiology, University of Naples “Federico II,” Naples, Italy
| | - Giovanni A. Chiariello
- Institute of Genetic and Biomedical Research, National Research Council of Italy (IRGB-CNR), Milan, Italy
| | - Giovanni Esposito
- Division of Cardiology, University of Naples “Federico II,” Naples, Italy
| | - Anna Tampieri
- Institute of Science and Technology for Ceramics – National Research Council of Italy (ISTEC-CNR), Faenza, Italy
| | - Gianluigi Condorelli
- Humanitas Clinical and Research Center (IRCCS), Rozzano, Milan, Italy
- Institute of Genetic and Biomedical Research – National Research Council of Italy (IRGB-CNR), Milan, Italy
| |
Collapse
|
73
|
Abstract
The unexpected discovery that somatic cells can be reprogrammed to a pluripotent state yielding induced pluripotent stem cells has made it possible to produce cardiovascular cells exhibiting inherited traits and disorders. Use of these cells in high throughput analyses should broaden our insight into fundamental disease mechanisms and provide many benefits for patients, including new therapeutics and individually tailored therapies. Here we review recent progress in generating induced pluripotent stem cell-based models of cardiovascular disease and their multiple applications in drug development.
Collapse
Affiliation(s)
- Mark Mercola
- Muscle Development and Regeneration Program, Sanford-Burnham Medical Research Institute, 10901 North Torrey Pines Rd, La Jolla, CA 92037, USA.
| | | | | |
Collapse
|
74
|
Steinhoff G, Strauer BE. Heart. Regen Med 2013. [DOI: 10.1007/978-94-007-5690-8_36] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
75
|
Romanazzo S, Forte G, Ebara M, Uto K, Pagliari S, Aoyagi T, Traversa E, Taniguchi A. Substrate stiffness affects skeletal myoblast differentiation in vitro. SCIENCE AND TECHNOLOGY OF ADVANCED MATERIALS 2012; 13:064211. [PMID: 27877538 PMCID: PMC5099771 DOI: 10.1088/1468-6996/13/6/064211] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2012] [Accepted: 10/11/2012] [Indexed: 05/06/2023]
Abstract
To maximize the therapeutic efficacy of cardiac muscle constructs produced by stem cells and tissue engineering protocols, suitable scaffolds should be designed to recapitulate all the characteristics of native muscle and mimic the microenvironment encountered by cells in vivo. Moreover, so not to interfere with cardiac contractility, the scaffold should be deformable enough to withstand muscle contraction. Recently, it was suggested that the mechanical properties of scaffolds can interfere with stem/progenitor cell functions, and thus careful consideration is required when choosing polymers for targeted applications. In this study, cross-linked poly-ε-caprolactone membranes having similar chemical composition and controlled stiffness in a supra-physiological range were challenged with two sources of myoblasts to evaluate the suitability of substrates with different stiffness for cell adhesion, proliferation and differentiation. Furthermore, muscle-specific and non-related feeder layers were prepared on stiff surfaces to reveal the contribution of biological and mechanical cues to skeletal muscle progenitor differentiation. We demonstrated that substrate stiffness does affect myogenic differentiation, meaning that softer substrates can promote differentiation and that a muscle-specific feeder layer can improve the degree of maturation in skeletal muscle stem cells.
Collapse
Affiliation(s)
- Sara Romanazzo
- Cell–Materials Interaction Group, Biomaterials Unit, International Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), Tsukuba, Japan
- Graduate School of Advanced Science and Engineering, Waseda University, Tokyo, Japan
| | - Giancarlo Forte
- Smart Biomaterials Laboratory, Biomaterials Unit, International Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), Tsukuba, Japan
| | - Mitsuhiro Ebara
- Smart Biomaterials Laboratory, Biomaterials Unit, International Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), Tsukuba, Japan
| | - Koichiro Uto
- Smart Biomaterials Laboratory, Biomaterials Unit, International Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), Tsukuba, Japan
| | - Stefania Pagliari
- Smart Biomaterials Laboratory, Biomaterials Unit, International Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), Tsukuba, Japan
| | - Takao Aoyagi
- Smart Biomaterials Laboratory, Biomaterials Unit, International Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), Tsukuba, Japan
| | - Enrico Traversa
- Department of Chemical Science and Technology, University of Rome ‘Tor Vergata’, Italy
| | - Akiyoshi Taniguchi
- Cell–Materials Interaction Group, Biomaterials Unit, International Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), Tsukuba, Japan
| |
Collapse
|
76
|
Xu T, Zhao W, Zhu JM, Albanna MZ, Yoo JJ, Atala A. Complex heterogeneous tissue constructs containing multiple cell types prepared by inkjet printing technology. Biomaterials 2012; 34:130-9. [PMID: 23063369 DOI: 10.1016/j.biomaterials.2012.09.035] [Citation(s) in RCA: 329] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2012] [Accepted: 09/17/2012] [Indexed: 02/07/2023]
Abstract
This study was designed to develop a versatile method for fabricating complex and heterogeneous three-dimensional (3D) tissue constructs using simultaneous ink-jetting of multiple cell types. Human amniotic fluid-derived stem cells (hAFSCs), canine smooth muscle cells (dSMCs), and bovine aortic endothelial cells (bECs), were separately mixed with ionic cross-linker calcium chloride (CaCl(2)), loaded into separate ink cartridges and printed using a modified thermal inkjet printer. The three cell types were delivered layer-by-layer to pre-determined locations in a sodium alginate-collagen composite located in a chamber under the printer. The reaction between CaCl(2) and sodium alginate resulted in a rapid formation of a solid composite gel and the printed cells were anchored in designated areas within the gel. The printing process was repeated for several cycles leading to a complex 3D multi-cell hybrid construct. The biological functions of the 3D printed constructs were evaluated in vitro and in vivo. Each of the printed cell types maintained their viability and normal proliferation rates, phenotypic expression, and physiological functions within the heterogeneous constructs. The bioprinted constructs were able to survive and mature into functional tissues with adequate vascularization in vivo. These findings demonstrate the feasibility of fabricating complex heterogeneous tissue constructs containing multiple cell types using inkjet printing technology.
Collapse
Affiliation(s)
- Tao Xu
- Wake Forest Institute for Regenerative Medicine, Medical Center Boulevard, Winston-Salem, NC 27157, USA
| | | | | | | | | | | |
Collapse
|
77
|
Ruvinov E, Sapir Y, Cohen S. Cardiac Tissue Engineering: Principles, Materials, and Applications. ACTA ACUST UNITED AC 2012. [DOI: 10.2200/s00437ed1v01y201207tis009] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
78
|
Ion channels/transporters as epigenetic regulators? -a microRNA perspective. SCIENCE CHINA-LIFE SCIENCES 2012; 55:753-60. [PMID: 23015123 DOI: 10.1007/s11427-012-4369-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2012] [Accepted: 07/30/2012] [Indexed: 10/27/2022]
Abstract
MicroRNA (miRNA) alterations in response to changes in an extracellular microenvironment have been observed and considered as one of the major mechanisms for epigenetic modifications of the cell. While enormous efforts have been made in the understanding of the role of miRNAs in regulating cellular responses to the microenvironment, the mechanistic insight into how extracellular signals can be transduced into miRNA alterations in cells is still lacking. Interestingly, recent studies have shown that ion channels/transporters, which are known to conduct or transport ions across the cell membrane, also exhibit changes in levels of expression and activities in response to changes of extracellular microenvironment. More importantly, alterations in expression and function of ion channels/transporters have been shown to result in changes in miRNAs that are known to change in response to alteration of the microenvironment. In this review, we aim to summarize the recent data demonstrating the ability of ion channels/transporters to transduce extracellular signals into miRNA changes and propose a potential link between cells and their microenvironment through ion channels/transporters. At the same time, we hope to provide new insights into epigenetic regulatory mechanisms underlying a number of physiological and pathological processes, including embryo development and cancer metastasis.
Collapse
|
79
|
Abstract
Heart attack remains the leading cause of death in both men and women worldwide. Stem cell-based therapies, including the use of engineered cardiac tissues, have the potential to treat the massive cell loss and pathological remodeling resulting from heart attack. Specifically, embryonic and induced pluripotent stem cells are a promising source for generation of therapeutically relevant numbers of functional cardiomyocytes and engineering of cardiac tissues in vitro. This review will describe methodologies for successful differentiation of pluripotent stem cells towards the cardiovascular cell lineages as they pertain to the field of cardiac tissue engineering. The emphasis will be placed on comparing the functional maturation in engineered cardiac tissues and developing heart and on methods to quantify cardiac electrical and mechanical function at different spatial scales.
Collapse
Affiliation(s)
- Brian Liau
- Department of Biomedical Engineering, Faculty of Cardiology, Duke University, Room 136 Hudson Hall, Durham, NC 27708, USA
| | | | | |
Collapse
|
80
|
Patra C, Ricciardi F, Engel FB. The functional properties of nephronectin: An adhesion molecule for cardiac tissue engineering. Biomaterials 2012; 33:4327-35. [DOI: 10.1016/j.biomaterials.2012.03.021] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2012] [Accepted: 03/05/2012] [Indexed: 01/22/2023]
|
81
|
Srinivasan SP, Neef K, Treskes P, Liakopoulos OJ, Stamm C, Cowan DB, Madershahian N, Kuhn E, Slottosch I, Wittwer T, Wahlers T, Choi YH. Enhanced gap junction expression in myoblast-containing engineered tissue. Biochem Biophys Res Commun 2012; 422:462-468. [PMID: 22579687 DOI: 10.1016/j.bbrc.2012.05.016] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2012] [Accepted: 05/03/2012] [Indexed: 10/28/2022]
Abstract
Transplantation of skeletal myoblasts (SMs) has been investigated as a potential cardiac cell therapy approach. SM are available autologously, predetermined for muscular differentiation and resistant to ischemia. Major hurdles for their clinical application are limitations in purity and yield during cell isolation as well as the absence of gap junction expression after differentiation into myotubes. Furthermore, transplanted SMs do not functionally or electrically integrate with the host myocardium. Here, we describe an efficient method for isolating homogeneous SM populations from neonatal mice and demonstrate persistent gap junction expression in an engineered tissue. This method resulted in a yield of 1.4 × 10(8) high-purity SMs (>99% desmin positive) after 10 days in culture from 162.12 ± 11.85 mg muscle tissue. Serum starvation conditions efficiently induced differentiation into spontaneously contracting myotubes that coincided with loss of gap junction expression. For mechanical conditioning, cells were integrated into engineered tissue constructs. SMs within tissue constructs exhibited long term survival, ordered alignment, and a preserved ability to differentiate into contractile myotubes. When the tissue constructs were subjected to passive longitudinal tensile stress, the expression of gap junction and cell adherence proteins was maintained or increased throughout differentiation. Our studies demonstrate that mechanical loading of SMs may provide for improved electromechanical integration within the myocardium, which could lead to more therapeutic opportunities.
Collapse
Affiliation(s)
- Sureshkumar Perumal Srinivasan
- Department of Cardiac and Thoracic Surgery, Heart Center of the University, University of Cologne, Cologne, Germany.,Center for Molecular Medicine, University of Cologne, Cologne, Germany
| | - Klaus Neef
- Department of Cardiac and Thoracic Surgery, Heart Center of the University, University of Cologne, Cologne, Germany.,Center for Molecular Medicine, University of Cologne, Cologne, Germany
| | - Philipp Treskes
- Department of Cardiac and Thoracic Surgery, Heart Center of the University, University of Cologne, Cologne, Germany.,Center for Molecular Medicine, University of Cologne, Cologne, Germany
| | - Oliver J Liakopoulos
- Department of Cardiac and Thoracic Surgery, Heart Center of the University, University of Cologne, Cologne, Germany
| | - Christof Stamm
- Department of Cardiac and Thoracic and Vascular Surgery, German Heart Institute Berlin, Berlin, Germany.,Berlin-Brandenburg Center for Regenerative Therapies, Berlin, Germany
| | - Douglas B Cowan
- Department of Anesthesiology, Perioperative and Pain Medicine, Children's Hospital Boston and Harvard Medical School, Boston, MA, USA
| | - Navid Madershahian
- Department of Cardiac and Thoracic Surgery, Heart Center of the University, University of Cologne, Cologne, Germany
| | - Elmar Kuhn
- Department of Cardiac and Thoracic Surgery, Heart Center of the University, University of Cologne, Cologne, Germany
| | - Ingo Slottosch
- Department of Cardiac and Thoracic Surgery, Heart Center of the University, University of Cologne, Cologne, Germany
| | - Thorsten Wittwer
- Department of Cardiac and Thoracic Surgery, Heart Center of the University, University of Cologne, Cologne, Germany.,Center for Molecular Medicine, University of Cologne, Cologne, Germany
| | - Thorsten Wahlers
- Department of Cardiac and Thoracic Surgery, Heart Center of the University, University of Cologne, Cologne, Germany.,Center for Molecular Medicine, University of Cologne, Cologne, Germany
| | - Yeong-Hoon Choi
- Department of Cardiac and Thoracic Surgery, Heart Center of the University, University of Cologne, Cologne, Germany.,Center for Molecular Medicine, University of Cologne, Cologne, Germany
| |
Collapse
|
82
|
Egorova MV, Rogovskaya YV, Ivanov AV, Andreev SL, Akhmedov SD, Afanas'ev SA. Economical technology of creation of cell-free matrix of animal and human arterial vessels. Bull Exp Biol Med 2012; 151:543-6. [PMID: 22448387 DOI: 10.1007/s10517-011-1377-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
We present a technology of creation of blood vessel connective tissue framework by 2-3-h vessel perfusion with detergents. The technology ensures effective removal of vascular cells without damaging collagen and elastic fibers. The connective tissue frameworks prepared by this method can the used for restoring blood flow in various vascular pathologies. The presented approach attenuates the damaging effect of treatment on the vascular framework due to maximum simplification and shortening of the duration of treatment and is universal for human and animal vessels.
Collapse
Affiliation(s)
- M V Egorova
- Institute of Cardiology, Siberian Division of Russian Academy of Medical Sciences, Tomsk, Russia
| | | | | | | | | | | |
Collapse
|
83
|
Alcon A, Cagavi Bozkulak E, Qyang Y. Regenerating functional heart tissue for myocardial repair. Cell Mol Life Sci 2012; 69:2635-56. [PMID: 22388688 DOI: 10.1007/s00018-012-0942-4] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2011] [Revised: 01/21/2012] [Accepted: 02/13/2012] [Indexed: 12/20/2022]
Abstract
Heart disease is one of the leading causes of death worldwide and the number of patients with the disease is likely to grow with the continual decline in health for most of the developed world. Heart transplantation is one of the only treatment options for heart failure due to an acute myocardial infarction, but limited donor supply and organ rejection limit its widespread use. Cellular cardiomyoplasty, or cellular implantation, combined with various tissue-engineering methods aims to regenerate functional heart tissue. This review highlights the numerous cell sources that have been used to regenerate the heart as well as cover the wide range of tissue-engineering strategies that have been devised to optimize the delivery of these cells. It will probably be a long time before an effective regenerative therapy can make a serious impact at the bedside.
Collapse
Affiliation(s)
- Andre Alcon
- Yale University School of Medicine, Yale University, New Haven, CT, USA
| | | | | |
Collapse
|
84
|
Boudou T, Legant WR, Mu A, Borochin MA, Thavandiran N, Radisic M, Zandstra PW, Epstein JA, Margulies KB, Chen CS. A microfabricated platform to measure and manipulate the mechanics of engineered cardiac microtissues. Tissue Eng Part A 2012; 18:910-9. [PMID: 22092279 DOI: 10.1089/ten.tea.2011.0341] [Citation(s) in RCA: 301] [Impact Index Per Article: 23.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Engineered myocardial tissues can be used to elucidate fundamental features of myocardial biology, develop organotypic in vitro model systems, and as engineered tissue constructs for replacing damaged heart tissue in vivo. However, a key limitation is an inability to test the wide range of parameters (cell source, mechanical, soluble and electrical stimuli) that might impact the engineered tissue in a high-throughput manner and in an environment that mimics native heart tissue. Here we used microelectromechanical systems technology to generate arrays of cardiac microtissues (CMTs) embedded within three-dimensional micropatterned matrices. Microcantilevers simultaneously constrain CMT contraction and report forces generated by the CMTs in real time. We demonstrate the ability to routinely produce ~200 CMTs per million cardiac cells (<1 neonatal rat heart) whose spontaneous contraction frequency, duration, and forces can be tracked. Independently varying the mechanical stiffness of the cantilevers and collagen matrix revealed that both the dynamic force of cardiac contraction as well as the basal static tension within the CMT increased with boundary or matrix rigidity. Cell alignment is, however, reduced within a stiff collagen matrix; therefore, despite producing higher force, CMTs constructed from higher density collagen have a lower cross-sectional stress than those constructed from lower density collagen. We also study the effect of electrical stimulation on cell alignment and force generation within CMTs and we show that the combination of electrical stimulation and auxotonic load strongly improves both the structure and the function of the CMTs. Finally, we demonstrate the suitability of our technique for high-throughput monitoring of drug-induced changes in spontaneous frequency or contractility in CMTs as well as high-speed imaging of calcium dynamics using fluorescent dyes. Together, these results highlight the potential for this approach to quantitatively demonstrate the impact of physical parameters on the maturation, structure, and function of cardiac tissue and open the possibility to use high-throughput, low volume screening for studies on engineered myocardium.
Collapse
Affiliation(s)
- Thomas Boudou
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
85
|
Hayakawa T, Kunihiro T, Dowaki S, Uno H, Matsui E, Uchida M, Kobayashi S, Yasuda A, Shimizu T, Okano T. Noninvasive Evaluation of Contractile Behavior of Cardiomyocyte Monolayers Based on Motion Vector Analysis. Tissue Eng Part C Methods 2012; 18:21-32. [DOI: 10.1089/ten.tec.2011.0273] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Tomohiro Hayakawa
- Life Science Laboratory, Advanced Material Laboratories, Sony Corporation, Tokyo, Japan
| | - Takeshi Kunihiro
- Signal Processing Technology Department No. 1, Common Technology Division, Technology Development Group, Sony Corporation, Tokyo, Japan
| | - Suguru Dowaki
- Life Science Laboratory, Advanced Material Laboratories, Sony Corporation, Tokyo, Japan
| | - Hatsume Uno
- Life Science Laboratory, Advanced Material Laboratories, Sony Corporation, Tokyo, Japan
| | - Eriko Matsui
- Life Science Laboratory, Advanced Material Laboratories, Sony Corporation, Tokyo, Japan
| | - Masashi Uchida
- Signal Processing Technology Department No. 1, Common Technology Division, Technology Development Group, Sony Corporation, Tokyo, Japan
| | - Seiji Kobayashi
- Signal Processing Technology Department No. 1, Common Technology Division, Technology Development Group, Sony Corporation, Tokyo, Japan
| | - Akio Yasuda
- Life Science Laboratory, Advanced Material Laboratories, Sony Corporation, Tokyo, Japan
| | - Tatsuya Shimizu
- Institute of Advanced Biomedical Engineering and Science, Tokyo Women's Medical University, TWIns, Tokyo, Japan
| | - Teruo Okano
- Institute of Advanced Biomedical Engineering and Science, Tokyo Women's Medical University, TWIns, Tokyo, Japan
| |
Collapse
|
86
|
Bass GT, Ryall KA, Katikapalli A, Taylor BE, Dang ST, Acton ST, Saucerman JJ. Automated image analysis identifies signaling pathways regulating distinct signatures of cardiac myocyte hypertrophy. J Mol Cell Cardiol 2011; 52:923-30. [PMID: 22142594 DOI: 10.1016/j.yjmcc.2011.11.009] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2011] [Revised: 10/08/2011] [Accepted: 11/13/2011] [Indexed: 11/24/2022]
Abstract
Cardiac hypertrophy is controlled by a complex signal transduction and gene regulatory network, containing multiple layers of crosstalk and feedback. While numerous individual components of this network have been identified, understanding how these elements are coordinated to regulate heart growth remains a challenge. Past approaches to measure cardiac myocyte hypertrophy have been manual and often qualitative, hindering the ability to systematically characterize the network's higher-order control structure and identify therapeutic targets. Here, we develop and validate an automated image analysis approach for objectively quantifying multiple hypertrophic phenotypes from immunofluorescence images. This approach incorporates cardiac myocyte-specific optimizations and provides quantitative measures of myocyte size, elongation, circularity, sarcomeric organization, and cell-cell contact. As a proof-of-concept, we examined the hypertrophic response to α-adrenergic, β-adrenergic, tumor necrosis factor (TNFα), insulin-like growth factor-1 (IGF-1), and fetal bovine serum pathways. While all five hypertrophic pathways increased myocyte size, other hypertrophic metrics were differentially regulated, forming a distinct phenotype signature for each pathway. Sarcomeric organization was uniquely enhanced by α-adrenergic signaling. TNFα and α-adrenergic pathways markedly decreased cell circularity due to increased myocyte protrusion. Surprisingly, adrenergic and IGF-1 pathways differentially regulated myocyte-myocyte contact, potentially forming a feed-forward loop that regulates hypertrophy. Automated image analysis unlocks a range of new quantitative phenotypic data, aiding dissection of the complex hypertrophic signaling network and enabling myocyte-based high-content drug screening.
Collapse
Affiliation(s)
- Gregory T Bass
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA 22908-0759, USA
| | | | | | | | | | | | | |
Collapse
|
87
|
Zhang T, Wan LQ, Xiong Z, Marsano A, Maidhof R, Park M, Yan Y, Vunjak-Novakovic G. Channelled scaffolds for engineering myocardium with mechanical stimulation. J Tissue Eng Regen Med 2011; 6:748-56. [PMID: 22081518 DOI: 10.1002/term.481] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2010] [Revised: 04/21/2011] [Accepted: 07/11/2011] [Indexed: 01/30/2023]
Abstract
The characteristics of the matrix (composition, structure, mechanical properties) and external culture environment (pulsatile perfusion, physical stimulation) of the heart are important characteristics in the engineering of functional myocardial tissue. This study reports on the development of chitosan-collagen scaffolds with micropores and an array of parallel channels (~ 200 µm in diameter) that were specifically designed for cardiac tissue engineering using mechanical stimulation. The scaffolds were designed to have similar structural and mechanical properties of those of native heart matrix. Scaffolds were seeded with neonatal rat heart cells and subjected to dynamic tensile stretch using a custom designed bioreactor. The channels enhanced oxygen transport and facilitated the establishment of cell connections within the construct. The myocardial patches (14 mm in diameter, 1-2 mm thick) consisted of metabolically active cells that began to contract synchronously after 3 days of culture. Mechanical stimulation with high tensile stress promoted cell alignment, elongation, and expression of connexin-43 (Cx-43). This study confirms the importance of scaffold design and mechanical stimulation for the formation of contractile cardiac constructs.
Collapse
Affiliation(s)
- Ting Zhang
- Department of Mechanical Engineering, Tsinghua University & Key Laboratory for Advanced Materials Processing Technology, Ministry of Education of China, Beijing, China
| | - Leo Q Wan
- Department of Biomedical Engineering, Columbia University, NY, USA
| | - Zhuo Xiong
- Department of Mechanical Engineering, Tsinghua University & Key Laboratory for Advanced Materials Processing Technology, Ministry of Education of China, Beijing, China
| | - Anna Marsano
- Department of Biomedical Engineering, Columbia University, NY, USA
| | - Robert Maidhof
- Department of Biomedical Engineering, Columbia University, NY, USA
| | - Miri Park
- Department of Biomedical Engineering, Columbia University, NY, USA
| | - Yongnian Yan
- Department of Mechanical Engineering, Tsinghua University & Key Laboratory for Advanced Materials Processing Technology, Ministry of Education of China, Beijing, China
| | | |
Collapse
|
88
|
Kennedy J, McCandless S, Rauf A, Williams L, Hillam J, Hitchcock R. Engineered channels enhance cellular density in perfused scaffolds. Acta Biomater 2011; 7:3896-904. [PMID: 21745609 DOI: 10.1016/j.actbio.2011.06.037] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2010] [Revised: 05/18/2011] [Accepted: 06/22/2011] [Indexed: 12/31/2022]
Abstract
Scaffold-based tissue engineering provides cells with an engineered matrix to enhance and direct cell attachment, proliferation and differentiation. One critical limitation to current tissue engineering approaches is the inability to create densely populated constructs thicker than a few 100 μm. We hypothesized that development of porous, channeled scaffolds would increase cell density and uniformity of their spatial distribution through scaffold channel perfusion. Patterned polyurethane sheets were fabricated using a sprayed phase separation technique and laminated together to form 1.5 mm thick channeled scaffolds. Hydraulic permeability testing confirmed the presence of functional channels throughout the multilaminate construct. A continuous flow bioreactor was used to perfuse the construct with medium during the culture period. Cross-sectional cell densities and spatial uniformities were measured in channeled and nonchanneled scaffolds under different seeding and culture conditions. Channeled scaffolds were found to have higher densities of human mesenchymal stem cells than nonchanneled samples. Perfused scaffolds had more uniform spatial distribution of cells within the scaffold compared to statically cultured scaffolds. In conclusion, we have shown the channeled scaffolds to be a promising approach toward creating thick tissue-engineered constructs.
Collapse
|
89
|
Tiburcy M, Didié M, Boy O, Christalla P, Döker S, Naito H, Karikkineth BC, El-Armouche A, Grimm M, Nose M, Eschenhagen T, Zieseniss A, Katschinski DM, Hamdani N, Linke WA, Yin X, Mayr M, Zimmermann WH. Terminal Differentiation, Advanced Organotypic Maturation, and Modeling of Hypertrophic Growth in Engineered Heart Tissue. Circ Res 2011; 109:1105-14. [DOI: 10.1161/circresaha.111.251843] [Citation(s) in RCA: 112] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Rationale:
Cardiac tissue engineering should provide “realistic” in vitro heart muscle models and surrogate tissue for myocardial repair. For either application, engineered myocardium should display features of native myocardium, including terminal differentiation, organotypic maturation, and hypertrophic growth.
Objective:
To test the hypothesis that 3D-engineered heart tissue (EHT) culture supports (1) terminal differentiation as well as (2) organotypic assembly and maturation of immature cardiomyocytes, and (3) constitutes a methodological platform to investigate mechanisms underlying hypertrophic growth.
Methods and Results:
We generated EHTs from neonatal rat cardiomyocytes and compared morphological and molecular properties of EHT and native myocardium from fetal, neonatal, and adult rats. We made the following key observations: cardiomyocytes in EHT (1) gained a high level of binucleation in the absence of notable cytokinesis, (2) regained a rod-shape and anisotropic sarcomere organization, (3) demonstrated a fetal-to-adult gene expression pattern, and (4) responded to distinct hypertrophic stimuli with concentric or eccentric hypertrophy and reexpression of fetal genes. The process of terminal differentiation and maturation (culture days 7–12) was preceded by a tissue consolidation phase (culture days 0–7) with substantial cardiomyocyte apoptosis and dynamic extracellular matrix restructuring.
Conclusions:
This study documents the propensity of immature cardiomyocytes to terminally differentiate and mature in EHT in a remarkably organotypic manner. It moreover provides the rationale for the utility of the EHT technology as a methodological bridge between 2D cell culture and animal models.
Collapse
Affiliation(s)
- Malte Tiburcy
- From the Department of Pharmacology, Georg-August-University Goettingen, Germany (M.T., M.D., O.B., P.C., S.D., H.N., B.C.K., A.E.-A., W.-H.Z.); Institute of Experimental and Clinical Pharmacology, University Medical Center Hamburg-Eppendorf, Germany (M.G., M.N., T.E.); the Department of Cardiovascular Physiology, Georg-August-University Goettingen, Germany (A.Z., D.M.K.); the Department of Cardiovascular Physiology, Institute of Physiology, Ruhr University Bochum, Germany (N.H., W.A.L.); and King's
| | - Michael Didié
- From the Department of Pharmacology, Georg-August-University Goettingen, Germany (M.T., M.D., O.B., P.C., S.D., H.N., B.C.K., A.E.-A., W.-H.Z.); Institute of Experimental and Clinical Pharmacology, University Medical Center Hamburg-Eppendorf, Germany (M.G., M.N., T.E.); the Department of Cardiovascular Physiology, Georg-August-University Goettingen, Germany (A.Z., D.M.K.); the Department of Cardiovascular Physiology, Institute of Physiology, Ruhr University Bochum, Germany (N.H., W.A.L.); and King's
| | - Oliver Boy
- From the Department of Pharmacology, Georg-August-University Goettingen, Germany (M.T., M.D., O.B., P.C., S.D., H.N., B.C.K., A.E.-A., W.-H.Z.); Institute of Experimental and Clinical Pharmacology, University Medical Center Hamburg-Eppendorf, Germany (M.G., M.N., T.E.); the Department of Cardiovascular Physiology, Georg-August-University Goettingen, Germany (A.Z., D.M.K.); the Department of Cardiovascular Physiology, Institute of Physiology, Ruhr University Bochum, Germany (N.H., W.A.L.); and King's
| | - Peter Christalla
- From the Department of Pharmacology, Georg-August-University Goettingen, Germany (M.T., M.D., O.B., P.C., S.D., H.N., B.C.K., A.E.-A., W.-H.Z.); Institute of Experimental and Clinical Pharmacology, University Medical Center Hamburg-Eppendorf, Germany (M.G., M.N., T.E.); the Department of Cardiovascular Physiology, Georg-August-University Goettingen, Germany (A.Z., D.M.K.); the Department of Cardiovascular Physiology, Institute of Physiology, Ruhr University Bochum, Germany (N.H., W.A.L.); and King's
| | - Stephan Döker
- From the Department of Pharmacology, Georg-August-University Goettingen, Germany (M.T., M.D., O.B., P.C., S.D., H.N., B.C.K., A.E.-A., W.-H.Z.); Institute of Experimental and Clinical Pharmacology, University Medical Center Hamburg-Eppendorf, Germany (M.G., M.N., T.E.); the Department of Cardiovascular Physiology, Georg-August-University Goettingen, Germany (A.Z., D.M.K.); the Department of Cardiovascular Physiology, Institute of Physiology, Ruhr University Bochum, Germany (N.H., W.A.L.); and King's
| | - Hiroshi Naito
- From the Department of Pharmacology, Georg-August-University Goettingen, Germany (M.T., M.D., O.B., P.C., S.D., H.N., B.C.K., A.E.-A., W.-H.Z.); Institute of Experimental and Clinical Pharmacology, University Medical Center Hamburg-Eppendorf, Germany (M.G., M.N., T.E.); the Department of Cardiovascular Physiology, Georg-August-University Goettingen, Germany (A.Z., D.M.K.); the Department of Cardiovascular Physiology, Institute of Physiology, Ruhr University Bochum, Germany (N.H., W.A.L.); and King's
| | - Bijoy Chandapillai Karikkineth
- From the Department of Pharmacology, Georg-August-University Goettingen, Germany (M.T., M.D., O.B., P.C., S.D., H.N., B.C.K., A.E.-A., W.-H.Z.); Institute of Experimental and Clinical Pharmacology, University Medical Center Hamburg-Eppendorf, Germany (M.G., M.N., T.E.); the Department of Cardiovascular Physiology, Georg-August-University Goettingen, Germany (A.Z., D.M.K.); the Department of Cardiovascular Physiology, Institute of Physiology, Ruhr University Bochum, Germany (N.H., W.A.L.); and King's
| | - Ali El-Armouche
- From the Department of Pharmacology, Georg-August-University Goettingen, Germany (M.T., M.D., O.B., P.C., S.D., H.N., B.C.K., A.E.-A., W.-H.Z.); Institute of Experimental and Clinical Pharmacology, University Medical Center Hamburg-Eppendorf, Germany (M.G., M.N., T.E.); the Department of Cardiovascular Physiology, Georg-August-University Goettingen, Germany (A.Z., D.M.K.); the Department of Cardiovascular Physiology, Institute of Physiology, Ruhr University Bochum, Germany (N.H., W.A.L.); and King's
| | - Michael Grimm
- From the Department of Pharmacology, Georg-August-University Goettingen, Germany (M.T., M.D., O.B., P.C., S.D., H.N., B.C.K., A.E.-A., W.-H.Z.); Institute of Experimental and Clinical Pharmacology, University Medical Center Hamburg-Eppendorf, Germany (M.G., M.N., T.E.); the Department of Cardiovascular Physiology, Georg-August-University Goettingen, Germany (A.Z., D.M.K.); the Department of Cardiovascular Physiology, Institute of Physiology, Ruhr University Bochum, Germany (N.H., W.A.L.); and King's
| | - Monika Nose
- From the Department of Pharmacology, Georg-August-University Goettingen, Germany (M.T., M.D., O.B., P.C., S.D., H.N., B.C.K., A.E.-A., W.-H.Z.); Institute of Experimental and Clinical Pharmacology, University Medical Center Hamburg-Eppendorf, Germany (M.G., M.N., T.E.); the Department of Cardiovascular Physiology, Georg-August-University Goettingen, Germany (A.Z., D.M.K.); the Department of Cardiovascular Physiology, Institute of Physiology, Ruhr University Bochum, Germany (N.H., W.A.L.); and King's
| | - Thomas Eschenhagen
- From the Department of Pharmacology, Georg-August-University Goettingen, Germany (M.T., M.D., O.B., P.C., S.D., H.N., B.C.K., A.E.-A., W.-H.Z.); Institute of Experimental and Clinical Pharmacology, University Medical Center Hamburg-Eppendorf, Germany (M.G., M.N., T.E.); the Department of Cardiovascular Physiology, Georg-August-University Goettingen, Germany (A.Z., D.M.K.); the Department of Cardiovascular Physiology, Institute of Physiology, Ruhr University Bochum, Germany (N.H., W.A.L.); and King's
| | - Anke Zieseniss
- From the Department of Pharmacology, Georg-August-University Goettingen, Germany (M.T., M.D., O.B., P.C., S.D., H.N., B.C.K., A.E.-A., W.-H.Z.); Institute of Experimental and Clinical Pharmacology, University Medical Center Hamburg-Eppendorf, Germany (M.G., M.N., T.E.); the Department of Cardiovascular Physiology, Georg-August-University Goettingen, Germany (A.Z., D.M.K.); the Department of Cardiovascular Physiology, Institute of Physiology, Ruhr University Bochum, Germany (N.H., W.A.L.); and King's
| | - Doerthe M. Katschinski
- From the Department of Pharmacology, Georg-August-University Goettingen, Germany (M.T., M.D., O.B., P.C., S.D., H.N., B.C.K., A.E.-A., W.-H.Z.); Institute of Experimental and Clinical Pharmacology, University Medical Center Hamburg-Eppendorf, Germany (M.G., M.N., T.E.); the Department of Cardiovascular Physiology, Georg-August-University Goettingen, Germany (A.Z., D.M.K.); the Department of Cardiovascular Physiology, Institute of Physiology, Ruhr University Bochum, Germany (N.H., W.A.L.); and King's
| | - Nazha Hamdani
- From the Department of Pharmacology, Georg-August-University Goettingen, Germany (M.T., M.D., O.B., P.C., S.D., H.N., B.C.K., A.E.-A., W.-H.Z.); Institute of Experimental and Clinical Pharmacology, University Medical Center Hamburg-Eppendorf, Germany (M.G., M.N., T.E.); the Department of Cardiovascular Physiology, Georg-August-University Goettingen, Germany (A.Z., D.M.K.); the Department of Cardiovascular Physiology, Institute of Physiology, Ruhr University Bochum, Germany (N.H., W.A.L.); and King's
| | - Wolfgang A. Linke
- From the Department of Pharmacology, Georg-August-University Goettingen, Germany (M.T., M.D., O.B., P.C., S.D., H.N., B.C.K., A.E.-A., W.-H.Z.); Institute of Experimental and Clinical Pharmacology, University Medical Center Hamburg-Eppendorf, Germany (M.G., M.N., T.E.); the Department of Cardiovascular Physiology, Georg-August-University Goettingen, Germany (A.Z., D.M.K.); the Department of Cardiovascular Physiology, Institute of Physiology, Ruhr University Bochum, Germany (N.H., W.A.L.); and King's
| | - Xiaoke Yin
- From the Department of Pharmacology, Georg-August-University Goettingen, Germany (M.T., M.D., O.B., P.C., S.D., H.N., B.C.K., A.E.-A., W.-H.Z.); Institute of Experimental and Clinical Pharmacology, University Medical Center Hamburg-Eppendorf, Germany (M.G., M.N., T.E.); the Department of Cardiovascular Physiology, Georg-August-University Goettingen, Germany (A.Z., D.M.K.); the Department of Cardiovascular Physiology, Institute of Physiology, Ruhr University Bochum, Germany (N.H., W.A.L.); and King's
| | - Manuel Mayr
- From the Department of Pharmacology, Georg-August-University Goettingen, Germany (M.T., M.D., O.B., P.C., S.D., H.N., B.C.K., A.E.-A., W.-H.Z.); Institute of Experimental and Clinical Pharmacology, University Medical Center Hamburg-Eppendorf, Germany (M.G., M.N., T.E.); the Department of Cardiovascular Physiology, Georg-August-University Goettingen, Germany (A.Z., D.M.K.); the Department of Cardiovascular Physiology, Institute of Physiology, Ruhr University Bochum, Germany (N.H., W.A.L.); and King's
| | - Wolfram-Hubertus Zimmermann
- From the Department of Pharmacology, Georg-August-University Goettingen, Germany (M.T., M.D., O.B., P.C., S.D., H.N., B.C.K., A.E.-A., W.-H.Z.); Institute of Experimental and Clinical Pharmacology, University Medical Center Hamburg-Eppendorf, Germany (M.G., M.N., T.E.); the Department of Cardiovascular Physiology, Georg-August-University Goettingen, Germany (A.Z., D.M.K.); the Department of Cardiovascular Physiology, Institute of Physiology, Ruhr University Bochum, Germany (N.H., W.A.L.); and King's
| |
Collapse
|
90
|
Poon E, Kong CW, Li RA. Human pluripotent stem cell-based approaches for myocardial repair: from the electrophysiological perspective. Mol Pharm 2011; 8:1495-504. [PMID: 21879736 DOI: 10.1021/mp2002363] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Heart diseases are a leading cause of mortality worldwide. Terminally differentiated adult cardiomyocytes (CMs) lack the innate ability to regenerate. Their malfunction or significant loss can lead to conditions from cardiac arrhythmias to heart failure. For myocardial repair, cell- and gene-based therapies offer promising alternatives to donor organ transplantation. Human embryonic stem cells (hESCs) can self-renew while maintaining their pluripotency. Direct reprogramming of adult somatic cells to become pluripotent hES-like cells (also known as induced pluripotent stem cells or iPSCs) has been achieved. Both hESCs and iPSCs have been successfully differentiated into genuine human CMs. In this review, we describe our current knowledge of the structure-function properties of hESC/iPSC-CMs, with an emphasis on their electrophysiology and Ca(2+) handling, along with the hurdles faced and potential solutions for translating into clinical and other applications (e.g., disease modeling, cardiotoxicity and drug screening).
Collapse
Affiliation(s)
- Ellen Poon
- Stem Cell & Regenerative Medicine Consortium, LKS Faculty of Medicine, University of Hong Kong, Pokfulam, Hong Kong
| | | | | |
Collapse
|
91
|
Venugopal JR, Prabhakaran MP, Mukherjee S, Ravichandran R, Dan K, Ramakrishna S. Biomaterial strategies for alleviation of myocardial infarction. J R Soc Interface 2011; 9:1-19. [PMID: 21900319 PMCID: PMC3223634 DOI: 10.1098/rsif.2011.0301] [Citation(s) in RCA: 137] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
World Health Organization estimated that heart failure initiated by coronary artery disease and myocardial infarction (MI) leads to 29 per cent of deaths worldwide. Heart failure is one of the leading causes of death in industrialized countries and is expected to become a global epidemic within the twenty-first century. MI, the main cause of heart failure, leads to a loss of cardiac tissue impairment of left ventricular function. The damaged left ventricle undergoes progressive ‘remodelling’ and chamber dilation, with myocyte slippage and fibroblast proliferation. Repair of diseased myocardium with in vitro-engineered cardiac muscle patch/injectable biopolymers with cells may become a viable option for heart failure patients. These events reflect an apparent lack of effective intrinsic mechanism for myocardial repair and regeneration. Motivated by the desire to develop minimally invasive procedures, the last 10 years observed growing efforts to develop injectable biomaterials with and without cells to treat cardiac failure. Biomaterials evaluated include alginate, fibrin, collagen, chitosan, self-assembling peptides, biopolymers and a range of synthetic hydrogels. The ultimate goal in therapeutic cardiac tissue engineering is to generate biocompatible, non-immunogenic heart muscle with morphological and functional properties similar to natural myocardium to repair MI. This review summarizes the properties of biomaterial substrates having sufficient mechanical stability, which stimulates the native collagen fibril structure for differentiating pluripotent stem cells and mesenchymal stem cells into cardiomyocytes for cardiac tissue engineering.
Collapse
Affiliation(s)
- Jayarama Reddy Venugopal
- Healthcare and Energy Materials Laboratory, Nanoscience and Nanotechnology Initiative, Faculty of Engineering, National University of Singapore, Singapore.
| | | | | | | | | | | |
Collapse
|
92
|
Kim JH, Jung Y, Kim SH, Sun K, Choi J, Kim HC, Park Y, Kim SH. The enhancement of mature vessel formation and cardiac function in infarcted hearts using dual growth factor delivery with self-assembling peptides. Biomaterials 2011; 32:6080-8. [DOI: 10.1016/j.biomaterials.2011.05.003] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2011] [Accepted: 05/01/2011] [Indexed: 02/01/2023]
|
93
|
Ng SLJ, Narayanan K, Gao S, Wan ACA. Lineage restricted progenitors for the repopulation of decellularized heart. Biomaterials 2011; 32:7571-80. [PMID: 21783251 DOI: 10.1016/j.biomaterials.2011.06.065] [Citation(s) in RCA: 111] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2011] [Accepted: 06/26/2011] [Indexed: 12/14/2022]
Abstract
The severe shortage of available donor hearts necessitates the development of other options for heart replacement. Recent results underline the promise of the decellularized organ approach in engineering a functional heart. However, little is known so far regarding the ability of decellularized heart ECM to differentiate embryonic stem cells or committed progenitor cells. In the present work, we compared the differentiation potential of human embryonic stem cells (hESCs) and human mesendodermal cells (hMECs) derived from hESCs, in decellularized hearts under static culture. Expression of various cardiac specific markers such as cTnT, Nkx-2.5, Myl2, Myl7, Myh6 and CD31 was elucidated by gene expression, immunostaining and flow cytometry. Both hMECs and hESCs upregulated expression of cardiac markers upon differentiation, but they exclusively expressed genes for myosin light chain (Myl2, Myl7) and myosin heavy chain (Myh6), respectively. To enhance the differentiation ability of the stem/progenitor cells in the acellular constructs, they were implanted subcutaneously in SCID mice. Immunostaining of the explants revealed the persistence of cardiac marker expressing cells, but which lacked beating function. Our results indicate that the intact extracellular matrix components and preserved mechanical properties of the decellularized heart had directed differentiation of the stem/progenitor cells into the cardiac lineage.
Collapse
Affiliation(s)
- Serina L J Ng
- Institute of Bioengineering and Nanotechnology, The Nanos 138669, Singapore
| | | | | | | |
Collapse
|
94
|
Shin YM, Park H, Shin H. Enhancement of cardiac myoblast responses onto electrospun PLCL fibrous matrices coated with polydopamine for gelatin immobilization. Macromol Res 2011. [DOI: 10.1007/s13233-011-0815-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
95
|
Methods in cardiomyocyte isolation, culture, and gene transfer. J Mol Cell Cardiol 2011; 51:288-98. [PMID: 21723873 DOI: 10.1016/j.yjmcc.2011.06.012] [Citation(s) in RCA: 352] [Impact Index Per Article: 25.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2011] [Revised: 05/13/2011] [Accepted: 06/06/2011] [Indexed: 12/30/2022]
Abstract
Since techniques for cardiomyocyte isolation were first developed 35 years ago, experiments on single myocytes have yielded great insight into their cellular and sub-cellular physiology. These studies have employed a broad range of techniques including electrophysiology, calcium imaging, cell mechanics, immunohistochemistry and protein biochemistry. More recently, techniques for cardiomyocyte culture have gained additional importance with the advent of gene transfer technology. While such studies require a high quality cardiomyocyte population, successful cell isolation and maintenance during culture remain challenging. In this review, we describe methods for the isolation of adult and neonatal ventricular myocytes from rat and mouse heart. This discussion outlines general principles for the beginner, but also provides detailed specific protocols and advice for common caveats. We additionally review methods for short-term myocyte culture, with particular attention given to the importance of substrate and media selection, and describe time-dependent alterations in myocyte physiology that should be anticipated. Gene transfer techniques for neonatal and adult cardiomyocytes are also reviewed, including methods for transfection (liposome, electroporation) and viral-based gene delivery.
Collapse
|
96
|
Rubin LL, Haston KM. Stem cell biology and drug discovery. BMC Biol 2011; 9:42. [PMID: 21649940 PMCID: PMC3110139 DOI: 10.1186/1741-7007-9-42] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2011] [Accepted: 06/07/2011] [Indexed: 12/21/2022] Open
Abstract
There are many reasons to be interested in stem cells, one of the most prominent being their potential use in finding better drugs to treat human disease. This article focuses on how this may be implemented. Recent advances in the production of reprogrammed adult cells and their regulated differentiation to disease-relevant cells are presented, and diseases that have been modeled using these methods are discussed. Remaining difficulties are highlighted, as are new therapeutic insights that have emerged.
Collapse
Affiliation(s)
- Lee L Rubin
- Dept of Stem Cell and Regenerative Biology and Harvard Stem Cell Institute, Harvard University, Cambridge, MA 02138, USA.
| | | |
Collapse
|
97
|
Pok S, Jacot JG. Biomaterials Advances in Patches for Congenital Heart Defect Repair. J Cardiovasc Transl Res 2011; 4:646-54. [DOI: 10.1007/s12265-011-9289-8] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2011] [Accepted: 05/26/2011] [Indexed: 11/24/2022]
|
98
|
Conradi L, Pahrmann C, Schmidt S, Deuse T, Hansen A, Eder A, Reichenspurner H, Robbins RC, Eschenhagen T, Schrepfer S. Bioluminescence imaging for assessment of immune responses following implantation of engineered heart tissue (EHT). J Vis Exp 2011:2605. [PMID: 21673633 DOI: 10.3791/2605] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Various techniques of cardiac tissue engineering have been pursued in the past decades including scaffolding strategies using either native or bioartificial scaffold materials, entrapment of cardiac myocytes in hydrogels such as fibrin or collagen and stacking of myocyte monolayers. These concepts aim at restoration of compromised cardiac function (e.g. after myocardial infarction) or as experimental models (e.g. predictive toxicology and substance screening or disease modelling). Precise monitoring of cell survival after implantation of engineered heart tissue (EHT) has now become possible using in-vivo bioluminescence imaging (BLI) techniques. Here we describe the generation of fibrin-based EHT from a transgenic rat strain with ubiquitous expression of firefly luciferase (ROSA/luciferase-LEW Tg; ). Implantation is performed into the greater omentum of different rat strains to assess immune responses of the recipient organism following EHT implantation. Comparison of results generated by BLI and the Enzyme Linked Immuno Spot Technique (ELISPOT) confirm the usability of BLI for the assessment of immune responses.
Collapse
Affiliation(s)
- Lenard Conradi
- Transplant and Stem Cell Immunobiology Lab and CVRC, University Hospital Hamburg, University Heart Center Hamburg
| | | | | | | | | | | | | | | | | | | |
Collapse
|
99
|
Kamp TJ. An electrifying iPSC disease model: long QT syndrome type 2 and heart cells in a dish. Cell Stem Cell 2011; 8:130-1. [PMID: 21295269 DOI: 10.1016/j.stem.2011.01.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
In a recent Nature paper, Itzhaki et al. (2011) generate induced pluripotent stem cells (iPSCs) from patients with a potentially fatal inherited arrhythmia, long QT syndrome type 2. Cardiomyocytes differentiated from the patient-derived iPSCs exhibit the hallmark cardiac electrical signatures of the disease, which can be reversed by pharmacological intervention.
Collapse
Affiliation(s)
- Timothy J Kamp
- Department of Medicine, University of Wisconsin School of Medicine and Public Health, Clinical Science Center, 600 Highland Avenue, Madison, WI 53792-3248 USA
| |
Collapse
|
100
|
Abstract
Myocardial infarction (MI) remains a common fatal disease all over the world. The adult cardiac myocytes regenerative capability is very limited after infarct injury. Heart transplantation would be the best therapeutic option currently but is restricted due to the lack of donor organs and the serious side effects of immune suppression. The emerging of tissue engineering has evolved to provide solutions to tissue repair and replacement. Engineering myocardial tissue is considered to be a new therapeutic approach to repair infarcted myocardium and ameliorate cardiac function after MI. Engineering myocardial tissue is the combination of biodegradable scaffolds with viable cells and has made much progress in the experimental phase. However, the largest challenge of this field is the revascularization of the engineering constructs to provide oxygen and nutrients for cells. This review will give an overview on the current evolution of engineering myocardial tissue and address a new method to improve the vascularization of myocardium tissue in vivo.
Collapse
Affiliation(s)
- Runqian Sui
- Department of Cardiothoracic Surgery, Xiangya Second Hospital, Central South University, Changsha, Hunan 410011, China
| | | | | | | |
Collapse
|