51
|
Ratte A, Wiedmann F, Kraft M, Katus HA, Schmidt C. Antiarrhythmic Properties of Ranolazine: Inhibition of Atrial Fibrillation Associated TASK-1 Potassium Channels. Front Pharmacol 2019; 10:1367. [PMID: 32038227 PMCID: PMC6988797 DOI: 10.3389/fphar.2019.01367] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Accepted: 10/28/2019] [Indexed: 12/03/2022] Open
Abstract
Background: Atrial fibrillation (AF) is the most common sustained cardiac arrhythmia and one of the major causes of cardiovascular morbidity and mortality. Despite good progress within the past years, safe and effective treatment of AF remains an unmet clinical need. The anti-anginal agent ranolazine has been shown to exhibit antiarrhythmic properties via mainly late INa and IKr blockade. This results in prolongation of the atrial action potential duration (APD) and effective refractory period (ERP) with lower effect on ventricular electrophysiology. Furthermore, ranolazine has been shown to be effective in the treatment of AF. TASK-1 is a two-pore domain potassium (K2P) channel that shows nearly atrial specific expression within the human heart and has been found to be upregulated in AF, resulting in shortening the atrial APD in patients suffering from AF. We hypothesized that inhibition TASK-1 contributes to the observed electrophysiological and clinical effects of ranolazine. Methods: We used Xenopus laevis oocytes and CHO-cells as heterologous expression systems for the study of TASK-1 inhibition by ranolazine and molecular drug docking simulations to investigate the ranolazine binding site and binding characteristics. Results: Ranolazine acts as an inhibitor of TASK-1 potassium channels that inhibits TASK-1 currents with an IC50 of 30.6 ± 3.7 µM in mammalian cells and 198.4 ± 1.1 µM in X. laevis oocytes. TASK-1 inhibition by ranolazine is not frequency dependent but shows voltage dependency with a higher inhibitory potency at more depolarized membrane potentials. Ranolazine binds within the central cavity of the TASK-1 inner pore, at the bottom of the selectivity filter. Conclusions: In this study, we show that ranolazine inhibits TASK-1 channels. We suggest that inhibition of TASK-1 may contribute to the observed antiarrhythmic effects of Ranolazine. This puts forward ranolazine as a prototype drug for the treatment of atrial arrhythmia because of its combined efficacy on atrial electrophysiology and lower risk for ventricular side effects.
Collapse
Affiliation(s)
- Antonius Ratte
- Department of Cardiology, University of Heidelberg, Heidelberg, Germany.,DZHK (German Centre for Cardiovascular Research), partner site Heidelberg/Mannheim, University of Heidelberg, Heidelberg, Germany.,HCR, Heidelberg Centre for Heart Rhythm Disorders, University of Heidelberg, Heidelberg, Germany
| | - Felix Wiedmann
- Department of Cardiology, University of Heidelberg, Heidelberg, Germany.,DZHK (German Centre for Cardiovascular Research), partner site Heidelberg/Mannheim, University of Heidelberg, Heidelberg, Germany.,HCR, Heidelberg Centre for Heart Rhythm Disorders, University of Heidelberg, Heidelberg, Germany
| | - Manuel Kraft
- Department of Cardiology, University of Heidelberg, Heidelberg, Germany.,DZHK (German Centre for Cardiovascular Research), partner site Heidelberg/Mannheim, University of Heidelberg, Heidelberg, Germany.,HCR, Heidelberg Centre for Heart Rhythm Disorders, University of Heidelberg, Heidelberg, Germany
| | - Hugo A Katus
- Department of Cardiology, University of Heidelberg, Heidelberg, Germany.,DZHK (German Centre for Cardiovascular Research), partner site Heidelberg/Mannheim, University of Heidelberg, Heidelberg, Germany.,HCR, Heidelberg Centre for Heart Rhythm Disorders, University of Heidelberg, Heidelberg, Germany
| | - Constanze Schmidt
- Department of Cardiology, University of Heidelberg, Heidelberg, Germany.,DZHK (German Centre for Cardiovascular Research), partner site Heidelberg/Mannheim, University of Heidelberg, Heidelberg, Germany.,HCR, Heidelberg Centre for Heart Rhythm Disorders, University of Heidelberg, Heidelberg, Germany
| |
Collapse
|
52
|
Weise-Cross L, Resta TC, Jernigan NL. Redox Regulation of Ion Channels and Receptors in Pulmonary Hypertension. Antioxid Redox Signal 2019; 31:898-915. [PMID: 30569735 PMCID: PMC7061297 DOI: 10.1089/ars.2018.7699] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2018] [Accepted: 12/11/2018] [Indexed: 02/06/2023]
Abstract
Significance: Pulmonary hypertension (PH) is characterized by elevated vascular resistance due to vasoconstriction and remodeling of the normally low-pressure pulmonary vasculature. Redox stress contributes to the pathophysiology of this disease by altering the regulation and activity of membrane receptors, K+ channels, and intracellular Ca2+ homeostasis. Recent Advances: Antioxidant therapies have had limited success in treating PH, leading to a growing appreciation that reductive stress, in addition to oxidative stress, plays a role in metabolic and cell signaling dysfunction in pulmonary vascular cells. Reactive oxygen species generation from mitochondria and NADPH oxidases has substantial effects on K+ conductance and membrane potential, and both receptor-operated and store-operated Ca2+ entry. Critical Issues: Some specific redox changes resulting from oxidation, S-nitrosylation, and S-glutathionylation are known to modulate membrane receptor and ion channel activity in PH. However, many sites of regulation that have been elucidated in nonpulmonary cell types have not been tested in the pulmonary vasculature, and context-specific molecular mechanisms are lacking. Future Directions: Here, we review what is known about redox regulation of membrane receptors and ion channels in PH. Further investigation of the mechanisms involved is needed to better understand the etiology of PH and develop better targeted treatment strategies.
Collapse
Affiliation(s)
- Laura Weise-Cross
- Vascular Physiology Group, Department of Cell Biology and Physiology, University of New Mexico Health Sciences Center, Albuquerque, New Mexico
| | - Thomas C. Resta
- Vascular Physiology Group, Department of Cell Biology and Physiology, University of New Mexico Health Sciences Center, Albuquerque, New Mexico
| | - Nikki L. Jernigan
- Vascular Physiology Group, Department of Cell Biology and Physiology, University of New Mexico Health Sciences Center, Albuquerque, New Mexico
| |
Collapse
|
53
|
Theilmann AL, Ormiston ML. Repurposing benzbromarone for pulmonary arterial hypertension: can channelling the past deliver the therapy of the future? Eur Respir J 2019; 53:53/6/1900583. [PMID: 31167883 DOI: 10.1183/13993003.00583-2019] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2019] [Accepted: 03/28/2019] [Indexed: 12/21/2022]
Affiliation(s)
- Anne L Theilmann
- Queen's University, Depts of Biomedical and Molecular Sciences, Medicine and Surgery, Kingston, ON, Canada
| | - Mark L Ormiston
- Queen's University, Depts of Biomedical and Molecular Sciences, Medicine and Surgery, Kingston, ON, Canada
| |
Collapse
|
54
|
Kitagawa MG, Reynolds JO, Durgan D, Rodney G, Karmouty‐Quintana H, Bryan R, Pandit LM. Twik-2 -/- mouse demonstrates pulmonary vascular heterogeneity in intracellular pathways for vasocontractility. Physiol Rep 2019; 7:e13950. [PMID: 30632293 PMCID: PMC6328926 DOI: 10.14814/phy2.13950] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 11/06/2018] [Accepted: 11/15/2018] [Indexed: 11/24/2022] Open
Abstract
We have previously shown Twik-2-/- mice develop pulmonary hypertension and vascular remodeling. We hypothesized that distal pulmonary arteries (D-PAs) of the Twik-2-/- mice are hypercontractile under physiological venous conditions due to altered electrophysiologic properties between the conduit and resistance vessels in the pulmonary vascular bed. We measured resting membrane potential and intracellular calcium through Fura-2 in freshly digested pulmonary artery smooth muscles (PASMCs) from both the right main (RM-PA) and D-PA (distal) regions of pulmonary artery from WT and Twik-2-/- mice. Whole segments of RM-PAs and D-PAs from 20 to 24-week-old wildtype (WT) and Twik-2-/- mice were also pressurized between two glass micropipettes and bathed in buffer with either arterial or venous conditions. Abluminally-applied phenylephrine (PE) and U46619 were added to the buffer at log increments and vessel diameter was measured. All values were expressed as averages with ±SEM. Vasoconstrictor responses did not differ between WT and Twik-2-/- RM-PAs under arterial conditions. Under venous conditions, Twik-2-/- RM-PAs showed an increased sensitivity to PE with a lower EC50 (P = 0.02). Under venous conditions, Twik-2-/- D-PAs showed an increase maximal vasoconstrictor response to both phenylephrine and U46619 compared to the WT mice (P < 0.05). Isolated PASMCs from Twik-2 -/- D-PA were depolarized and had higher intracellular calcium levels compared to PASMCs from RM-PA of both WT and Twik-2-/- mice. These studies suggest that hypercontractile responses and electrophysiologic properties unique to the anatomic location of the D-PAs may contribute to pulmonary hypertensive vasculopathy.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Lavannya M. Pandit
- Baylor College of MedicineHoustonTexas
- Michael E.DeBakey Veterans Affairs Medical CenterHoustonTexas
| |
Collapse
|
55
|
Abstract
Cannabinoids influence cardiovascular variables in health and disease via multiple mechanisms. The chapter covers the impact of cannabinoids on cardiovascular function in physiology and pathology and presents a critical analysis of the proposed signalling pathways governing regulation of cardiovascular function by endogenously produced and exogenous cannabinoids. We know that endocannabinoid system is overactivated under pathological conditions and plays both a protective compensatory role, such as in some forms of hypertension, atherosclerosis and other inflammatory conditions, and a pathophysiological role, such as in disease states associated with excessive hypotension. This chapter focuses on the mechanisms affecting hemodynamics and vasomotor effects of cannabinoids in health and disease states, highlighting mismatches between some studies. The chapter will first review the effects of marijuana smoking on cardiovascular system and then describe the impact of exogenous cannabinoids on cardiovascular parameters in humans and experimental animals. This will be followed by analysis of the impact of cannabinoids on reactivity of isolated vessels. The article critically reviews current knowledge on cannabinoid induction of vascular relaxation by cannabinoid receptor-dependent and -independent mechanisms and dysregulation of vascular endocannabinoid signaling in disease states.
Collapse
Affiliation(s)
- Alexander I Bondarenko
- Circulatory Physiology Department, Bogomoletz Institute of Physiology National Academy of Sciences of Ukraine, Kiev, Ukraine.
| |
Collapse
|
56
|
Cunningham KP, Holden RG, Escribano-Subias PM, Cogolludo A, Veale EL, Mathie A. Characterization and regulation of wild-type and mutant TASK-1 two pore domain potassium channels indicated in pulmonary arterial hypertension. J Physiol 2018; 597:1087-1101. [PMID: 30365877 PMCID: PMC6376074 DOI: 10.1113/jp277275] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2018] [Accepted: 10/24/2018] [Indexed: 12/22/2022] Open
Abstract
Key points The TASK‐1 channel gene (KCNK3) has been identified as a possible disease‐causing gene in heritable pulmonary arterial hypertension (PAH). In the present study, we show that novel mutated TASK‐1 channels, seen in PAH patients, have a substantially reduced current compared to wild‐type TASK‐1 channels. These mutated TASK‐1 channels are located at the plasma membrane to the same degree as wild‐type TASK‐1 channels. ONO‐RS‐082 and alkaline pH 8.4 both activate TASK‐1 channels but do not recover current through mutant TASK‐1 channels. We show that the guanylate cyclase activator, riociguat, a novel treatment for PAH, enhances current through TASK‐1 channels but does not recover current through mutant TASK‐1 channels.
Abstract Pulmonary arterial hypertension (PAH) affects ∼15–50 people per million. KCNK3, the gene that encodes the two pore domain potassium channel TASK‐1 (K2P3.1), has been identified as a possible disease‐causing gene in heritable PAH. Recently, two new mutations have been identified in KCNK3 in PAH patients: G106R and L214R. The present study aimed to characterize the functional properties and regulation of wild‐type (WT) and mutated TASK‐1 channels and determine how these might contribute to PAH and its treatment. Currents through WT and mutated human TASK‐1 channels transiently expressed in tsA201 cells were measured using whole‐cell patch clamp electrophysiology. Localization of fluorescence‐tagged channels was visualized using confocal microscopy and quantified with in‐cell and on‐cell westerns. G106R or L214R mutated channels were located at the plasma membrane to the same degree as WT channels; however, their current was markedly reduced compared to WT TASK‐1 channels. Functional current through these mutated channels could not be restored using activators of WT TASK‐1 channels (pH 8.4, ONO‐RS‐082). The guanylate cyclase activator, riociguat, enhanced current through WT TASK‐1 channels; however, similar to the other activators investigated, riociguat did not have any effect on current through mutated TASK‐1 channels. Thus, novel mutations in TASK‐1 seen in PAH substantially alter the functional properties of these channels. Current through these channels could not be restored by activators of TASK‐1 channels. Riociguat enhancement of current through TASK‐1 channels could contribute to its therapeutic benefit in the treatment of PAH. The TASK‐1 channel gene (KCNK3) has been identified as a possible disease‐causing gene in heritable pulmonary arterial hypertension (PAH). In the present study, we show that novel mutated TASK‐1 channels, seen in PAH patients, have a substantially reduced current compared to wild‐type TASK‐1 channels. These mutated TASK‐1 channels are located at the plasma membrane to the same degree as wild‐type TASK‐1 channels. ONO‐RS‐082 and alkaline pH 8.4 both activate TASK‐1 channels but do not recover current through mutant TASK‐1 channels. We show that the guanylate cyclase activator, riociguat, a novel treatment for PAH, enhances current through TASK‐1 channels but does not recover current through mutant TASK‐1 channels.
Collapse
Affiliation(s)
- Kevin P Cunningham
- Medway School of Pharmacy, University of Kent and University of Greenwich, Chatham Maritime, Kent, UK
| | - Robyn G Holden
- Medway School of Pharmacy, University of Kent and University of Greenwich, Chatham Maritime, Kent, UK
| | | | - Angel Cogolludo
- Department of Pharmacology and Toxicology, School of Medicine, University Complutense of Madrid, Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Madrid, Spain.,Ciber Enfermedades Respiratorias (CIBERES), Madrid, Spain
| | - Emma L Veale
- Medway School of Pharmacy, University of Kent and University of Greenwich, Chatham Maritime, Kent, UK
| | - Alistair Mathie
- Medway School of Pharmacy, University of Kent and University of Greenwich, Chatham Maritime, Kent, UK
| |
Collapse
|
57
|
Kovacs G, Olschewski H. Should patients with pulmonary hypertension fly and climb? Int J Cardiol 2018; 270:276-277. [DOI: 10.1016/j.ijcard.2018.07.054] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Accepted: 07/09/2018] [Indexed: 11/29/2022]
|
58
|
Lambert M, Capuano V, Olschewski A, Sabourin J, Nagaraj C, Girerd B, Weatherald J, Humbert M, Antigny F. Ion Channels in Pulmonary Hypertension: A Therapeutic Interest? Int J Mol Sci 2018; 19:ijms19103162. [PMID: 30322215 PMCID: PMC6214085 DOI: 10.3390/ijms19103162] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Revised: 10/05/2018] [Accepted: 10/08/2018] [Indexed: 12/25/2022] Open
Abstract
Pulmonary arterial hypertension (PAH) is a multifactorial and severe disease without curative therapies. PAH pathobiology involves altered pulmonary arterial tone, endothelial dysfunction, distal pulmonary vessel remodeling, and inflammation, which could all depend on ion channel activities (K⁺, Ca2+, Na⁺ and Cl-). This review focuses on ion channels in the pulmonary vasculature and discusses their pathophysiological contribution to PAH as well as their therapeutic potential in PAH.
Collapse
Affiliation(s)
- Mélanie Lambert
- Univ. Paris-Sud, Faculté de Médecine, 94270 Kremlin-Bicêtre, France.
- AP-HP, Centre de Référence de l'Hypertension Pulmonaire Sévère, Département Hospitalo-Universitaire (DHU) Thorax Innovation, Service de Pneumologie et Réanimation Respiratoire, Hôpital de Bicêtre, 94270 Le Kremlin-Bicêtre, France.
- UMRS 999, INSERM and Univ. Paris⁻Sud, Laboratoire d'Excellence (LabEx) en Recherche sur le Médicament et l'Innovation Thérapeutique (LERMIT), Hôpital-Marie-Lannelongue, 92350 Le Plessis Robinson, France.
| | - Véronique Capuano
- Univ. Paris-Sud, Faculté de Médecine, 94270 Kremlin-Bicêtre, France.
- AP-HP, Centre de Référence de l'Hypertension Pulmonaire Sévère, Département Hospitalo-Universitaire (DHU) Thorax Innovation, Service de Pneumologie et Réanimation Respiratoire, Hôpital de Bicêtre, 94270 Le Kremlin-Bicêtre, France.
- UMRS 999, INSERM and Univ. Paris⁻Sud, Laboratoire d'Excellence (LabEx) en Recherche sur le Médicament et l'Innovation Thérapeutique (LERMIT), Hôpital-Marie-Lannelongue, 92350 Le Plessis Robinson, France.
| | - Andrea Olschewski
- Ludwig Boltzmann Institute for Lung Vascular Research, Stiftingtalstrasse 24, Graz 8010, Austria.
- Department of Physiology, Medical University Graz, Neue Stiftingtalstraße 6, Graz 8010, Austria.
| | - Jessica Sabourin
- Signalisation et Physiopathologie Cardiovasculaire, UMRS 1180, Univ. Paris-Sud, INSERM, Université Paris-Saclay, 92296 Châtenay-Malabry, France.
| | - Chandran Nagaraj
- Ludwig Boltzmann Institute for Lung Vascular Research, Stiftingtalstrasse 24, Graz 8010, Austria.
| | - Barbara Girerd
- Univ. Paris-Sud, Faculté de Médecine, 94270 Kremlin-Bicêtre, France.
- AP-HP, Centre de Référence de l'Hypertension Pulmonaire Sévère, Département Hospitalo-Universitaire (DHU) Thorax Innovation, Service de Pneumologie et Réanimation Respiratoire, Hôpital de Bicêtre, 94270 Le Kremlin-Bicêtre, France.
- UMRS 999, INSERM and Univ. Paris⁻Sud, Laboratoire d'Excellence (LabEx) en Recherche sur le Médicament et l'Innovation Thérapeutique (LERMIT), Hôpital-Marie-Lannelongue, 92350 Le Plessis Robinson, France.
| | - Jason Weatherald
- Univ. Paris-Sud, Faculté de Médecine, 94270 Kremlin-Bicêtre, France.
- AP-HP, Centre de Référence de l'Hypertension Pulmonaire Sévère, Département Hospitalo-Universitaire (DHU) Thorax Innovation, Service de Pneumologie et Réanimation Respiratoire, Hôpital de Bicêtre, 94270 Le Kremlin-Bicêtre, France.
- UMRS 999, INSERM and Univ. Paris⁻Sud, Laboratoire d'Excellence (LabEx) en Recherche sur le Médicament et l'Innovation Thérapeutique (LERMIT), Hôpital-Marie-Lannelongue, 92350 Le Plessis Robinson, France.
- Division of Respirology, Department of Medicine, University of Calgary, Calgary, AB T1Y 6J4, Canada.
- Libin Cardiovascular Institute of Alberta, University of Calgary, Calgary, AB T1Y 6J4, Canada.
| | - Marc Humbert
- Univ. Paris-Sud, Faculté de Médecine, 94270 Kremlin-Bicêtre, France.
- AP-HP, Centre de Référence de l'Hypertension Pulmonaire Sévère, Département Hospitalo-Universitaire (DHU) Thorax Innovation, Service de Pneumologie et Réanimation Respiratoire, Hôpital de Bicêtre, 94270 Le Kremlin-Bicêtre, France.
- UMRS 999, INSERM and Univ. Paris⁻Sud, Laboratoire d'Excellence (LabEx) en Recherche sur le Médicament et l'Innovation Thérapeutique (LERMIT), Hôpital-Marie-Lannelongue, 92350 Le Plessis Robinson, France.
| | - Fabrice Antigny
- Univ. Paris-Sud, Faculté de Médecine, 94270 Kremlin-Bicêtre, France.
- AP-HP, Centre de Référence de l'Hypertension Pulmonaire Sévère, Département Hospitalo-Universitaire (DHU) Thorax Innovation, Service de Pneumologie et Réanimation Respiratoire, Hôpital de Bicêtre, 94270 Le Kremlin-Bicêtre, France.
- UMRS 999, INSERM and Univ. Paris⁻Sud, Laboratoire d'Excellence (LabEx) en Recherche sur le Médicament et l'Innovation Thérapeutique (LERMIT), Hôpital-Marie-Lannelongue, 92350 Le Plessis Robinson, France.
| |
Collapse
|
59
|
Bohnen MS, Ma L, Zhu N, Qi H, McClenaghan C, Gonzaga-Jauregui C, Dewey FE, Overton JD, Reid JG, Shuldiner AR, Baras A, Sampson KJ, Bleda M, Hadinnapola C, Haimel M, Bogaard HJ, Church C, Coghlan G, Corris PA, Eyries M, Gibbs JSR, Girerd B, Houweling AC, Humbert M, Guignabert C, Kiely DG, Lawrie A, MacKenzie Ross RV, Martin JM, Montani D, Peacock AJ, Pepke-Zaba J, Soubrier F, Suntharalingam J, Toshner M, Treacy CM, Trembath RC, Vonk Noordegraaf A, Wharton J, Wilkins MR, Wort SJ, Yates K, Gräf S, Morrell NW, Krishnan U, Rosenzweig EB, Shen Y, Nichols CG, Kass RS, Chung WK. Loss-of-Function ABCC8 Mutations in Pulmonary Arterial Hypertension. CIRCULATION. GENOMIC AND PRECISION MEDICINE 2018; 11:e002087. [PMID: 30354297 PMCID: PMC6206877 DOI: 10.1161/circgen.118.002087] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Accepted: 08/01/2018] [Indexed: 11/16/2022]
Abstract
BACKGROUND In pulmonary arterial hypertension (PAH), pathological changes in pulmonary arterioles progressively raise pulmonary artery pressure and increase pulmonary vascular resistance, leading to right heart failure and high mortality rates. Recently, the first potassium channelopathy in PAH, because of mutations in KCNK3, was identified as a genetic cause and pharmacological target. METHODS Exome sequencing was performed to identify novel genes in a cohort of 99 pediatric and 134 adult-onset group I PAH patients. Novel rare variants in the gene identified were independently identified in a cohort of 680 adult-onset patients. Variants were expressed in COS cells and function assessed by patch-clamp and rubidium flux analysis. RESULTS We identified a de novo novel heterozygous predicted deleterious missense variant c.G2873A (p.R958H) in ABCC8 in a child with idiopathic PAH. We then evaluated all individuals in the original and a second cohort for rare or novel variants in ABCC8 and identified 11 additional heterozygous predicted damaging ABCC8 variants. ABCC8 encodes SUR1 (sulfonylurea receptor 1)-a regulatory subunit of the ATP-sensitive potassium channel. We observed loss of ATP-sensitive potassium channel function for all ABCC8 variants evaluated and pharmacological rescue of all channel currents in vitro by the SUR1 activator, diazoxide. CONCLUSIONS Novel and rare missense variants in ABCC8 are associated with PAH. Identified ABCC8 mutations decreased ATP-sensitive potassium channel function, which was pharmacologically recovered.
Collapse
Affiliation(s)
- Michael S. Bohnen
- Dept of Pharmacology, College of Physicians and Surgeons, Columbia University, New York, NY
| | - Lijiang Ma
- Dept of Pediatrics, College of Physicians & Surgeons, Columbia University, New York, NY
| | - Na Zhu
- Dept of Pediatrics, College of Physicians & Surgeons, Columbia University, New York, NY
- Dept of Systems Biology, Columbia University, New York, NY
| | - Hongjian Qi
- Dept of Applied Physics & Applied Mathematics, Columbia University, New York, NY
- Dept of Systems Biology, Columbia University, New York, NY
| | - Conor McClenaghan
- Dept of Cell Biology & Physiology, and the Centre for the Investigation of Membrane Excitability Diseases, Washington University School of Medicine, Washington University in St Louis, St Louis, MO
| | | | | | - John D. Overton
- Regeneron Genetics Center, Regeneron Pharmaceuticals Inc. Tarrytown, NY
| | - Jeffrey G. Reid
- Regeneron Genetics Center, Regeneron Pharmaceuticals Inc. Tarrytown, NY
| | - Alan R. Shuldiner
- Regeneron Genetics Center, Regeneron Pharmaceuticals Inc. Tarrytown, NY
| | - Aris Baras
- Regeneron Genetics Center, Regeneron Pharmaceuticals Inc. Tarrytown, NY
| | - Kevin J. Sampson
- Dept of Pharmacology, College of Physicians and Surgeons, Columbia University, New York, NY
| | - Marta Bleda
- Dept of Medicine, University of Cambridge, Addenbrookes Hospital, Hills Road, Cambridge, United Kingdom
| | - Charaka Hadinnapola
- Dept of Medicine, University of Cambridge, Addenbrookes Hospital, Hills Road, Cambridge, United Kingdom
| | - Matthias Haimel
- Dept of Medicine, University of Cambridge, Addenbrookes Hospital, Hills Road, Cambridge, United Kingdom
| | | | - Colin Church
- Golden Jubilee National Hospital, Glasgow, Scotland
| | | | - Paul A. Corris
- Newcastle University & The Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, United Kingdom
| | - Mélanie Eyries
- Dépt de génétique, hôpital Pitié-Salpêtrière, Assistance Publique-Hôpitaux de Paris, and UMR_S 1166-ICAN, INSERM, UPMC Sorbonne Universités, Paris, France
| | - J. Simon R. Gibbs
- National Heart & Lung Institute, Imperial College London, United Kingdom
| | - Barbara Girerd
- Université Paris-Sud, Faculté de Médecine, Université Paris-Saclay, AP-HP, Centre de référence de l’hypertension pulmonaire sévère, INSERM UMR_S 999, Hôpital Bicêtre, Le Kremlin-Bicêtre, France
| | | | - Marc Humbert
- Université Paris-Sud, Faculté de Médecine, Université Paris-Saclay, AP-HP, Centre de référence de l’hypertension pulmonaire sévère, INSERM UMR_S 999, Hôpital Bicêtre, Le Kremlin-Bicêtre, France
| | - Christophe Guignabert
- Université Paris-Sud, Faculté de Médecine, Université Paris-Saclay, AP-HP, Centre de référence de l’hypertension pulmonaire sévère, INSERM UMR_S 999, Hôpital Bicêtre, Le Kremlin-Bicêtre, France
| | | | - Allan Lawrie
- Dept of Infection, Immunity & Cardiovascular Disease, University of Sheffield
| | | | - Jennifer M. Martin
- Dept of Medicine, University of Cambridge, Addenbrookes Hospital, Hills Road, Cambridge, United Kingdom
| | - David Montani
- Université Paris-Sud, Faculté de Médecine, Université Paris-Saclay, AP-HP, Centre de référence de l’hypertension pulmonaire sévère, INSERM UMR_S 999, Hôpital Bicêtre, Le Kremlin-Bicêtre, France
| | | | | | - Florent Soubrier
- Dépt de génétique, hôpital Pitié-Salpêtrière, Assistance Publique-Hôpitaux de Paris, and UMR_S 1166-ICAN, INSERM, UPMC Sorbonne Universités, Paris, France
| | | | - Mark Toshner
- Dept of Medicine, University of Cambridge, Addenbrookes Hospital, Hills Road, Cambridge, United Kingdom
- Papworth Hospital, Cambridge
| | - Carmen M. Treacy
- Dept of Medicine, University of Cambridge, Addenbrookes Hospital, Hills Road, Cambridge, United Kingdom
| | - Richard C. Trembath
- Division of Genetics & Molecular Medicine, King’s College, London, Hammersmith Campus, London
| | | | - John Wharton
- Dept of Medicine, Imperial College London, Hammersmith Campus, London
| | - Martin R. Wilkins
- Dept of Medicine, Imperial College London, Hammersmith Campus, London
| | - Stephen J. Wort
- National Heart & Lung Institute, Imperial College London, United Kingdom
- Royal Brompton Hospital, London, United Kingdom
| | - Katherine Yates
- Dept of Medicine, University of Cambridge, Addenbrookes Hospital, Hills Road, Cambridge, United Kingdom
| | - Stefan Gräf
- Dept of Medicine, University of Cambridge, Addenbrookes Hospital, Hills Road, Cambridge, United Kingdom
- Dept of Haematology, University of Cambridge, Addenbrookes Hospital, Hills Road, Cambridge, United Kingdom
| | - Nicholas W. Morrell
- Dept of Medicine, University of Cambridge, Addenbrookes Hospital, Hills Road, Cambridge, United Kingdom
| | - Usha Krishnan
- Dept of Pediatrics, College of Physicians & Surgeons, Columbia University, New York, NY
| | - Erika B. Rosenzweig
- Dept of Pediatrics, College of Physicians & Surgeons, Columbia University, New York, NY
| | - Yufeng Shen
- Dept of Applied Physics & Applied Mathematics, Columbia University, New York, NY
- Dept of Systems Biology, Columbia University, New York, NY
| | - Colin G. Nichols
- Dept of Cell Biology & Physiology, and the Centre for the Investigation of Membrane Excitability Diseases, Washington University School of Medicine, Washington University in St Louis, St Louis, MO
| | - Robert S. Kass
- Dept of Pharmacology, College of Physicians and Surgeons, Columbia University, New York, NY
| | - Wendy K. Chung
- Dept of Pediatrics, College of Physicians & Surgeons, Columbia University, New York, NY
| |
Collapse
|
60
|
Mondejar-Parreño G, Morales-Cano D, Barreira B, Callejo M, Ruiz-Cabello J, Moreno L, Esquivel-Ruiz S, Mathie A, Butrous G, Perez-Vizcaino F, Cogolludo A. HIV transgene expression impairs K + channel function in the pulmonary vasculature. Am J Physiol Lung Cell Mol Physiol 2018; 315:L711-L723. [PMID: 30136611 DOI: 10.1152/ajplung.00045.2018] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Human immunodeficiency virus (HIV) infection is an established risk factor for pulmonary arterial hypertension (PAH); however, the pathogenesis of HIV-related PAH remains unclear. Since K+ channel dysfunction is a common marker in most forms of PAH, our aim was to analyze whether the expression of HIV proteins is associated with impairment of K+ channel function in the pulmonary vascular bed. HIV transgenic mice (Tg26) expressing seven of the nine HIV viral proteins and wild-type (WT) mice were used. Hemodynamic assessment was performed by echocardiography and catheterization. Vascular reactivity was studied in endothelium-intact pulmonary arteries. K+ currents were recorded in freshly isolated pulmonary artery smooth muscle cells (PASMC) using the patch-clamp technique. Gene expression was assessed using quantitative RT-PCR. PASMC from Tg26 mice had reduced K+ currents and were more depolarized than those from WT. Whereas voltage-gated K+ channel 1.5 (Kv1.5) currents were preserved, pH-sensitive noninactivating background currents ( IKN) were nearly abolished in PASMC from Tg26 mice. Tg26 mice had reduced lung expression of Kv7.1 and Kv7.4 channels and decreased responses to the Kv7.1 channel activator L-364,373 assessed by vascular reactivity and patch-clamp experimental approaches. Although we found pulmonary vascular remodeling and endothelial dysfunction in Tg26 mice, this was not accompanied by changes in hemodynamic parameters. In conclusion, the expression of HIV proteins in vivo impairs pH-sensitive IKN and Kv7 currents. This negative impact of HIV proteins in K+ channels was not sufficient to induce PAH, at least in mice, but may play a permissive or accessory role in the pathophysiology of HIV-associated PAH.
Collapse
Affiliation(s)
- Gema Mondejar-Parreño
- Department of Pharmacology and Toxicology, School of Medicine, Universidad Complutense de Madrid, Instituto de Investigación Sanitaria Gregorio Marañón , Madrid , Spain.,Centro de Investigación Biomédica en Red Enfermedades Respiratorias , Madrid , Spain
| | - Daniel Morales-Cano
- Department of Pharmacology and Toxicology, School of Medicine, Universidad Complutense de Madrid, Instituto de Investigación Sanitaria Gregorio Marañón , Madrid , Spain.,Centro de Investigación Biomédica en Red Enfermedades Respiratorias , Madrid , Spain
| | - Bianca Barreira
- Department of Pharmacology and Toxicology, School of Medicine, Universidad Complutense de Madrid, Instituto de Investigación Sanitaria Gregorio Marañón , Madrid , Spain.,Centro de Investigación Biomédica en Red Enfermedades Respiratorias , Madrid , Spain
| | - María Callejo
- Department of Pharmacology and Toxicology, School of Medicine, Universidad Complutense de Madrid, Instituto de Investigación Sanitaria Gregorio Marañón , Madrid , Spain.,Centro de Investigación Biomédica en Red Enfermedades Respiratorias , Madrid , Spain
| | - Jesús Ruiz-Cabello
- Centro de Investigación Biomédica en Red Enfermedades Respiratorias , Madrid , Spain.,Centro de Investigación Cooperativa en Biomateriales, Donostia- San Sebastián , Spain.,Basque Foundation for Science , Bilbao , Spain.,Departamento de Química en Ciencias Farmacéuticas, Facultad de Farmacia, Universidad Complutense de Madrid , Madrid , Spain
| | - Laura Moreno
- Department of Pharmacology and Toxicology, School of Medicine, Universidad Complutense de Madrid, Instituto de Investigación Sanitaria Gregorio Marañón , Madrid , Spain.,Centro de Investigación Biomédica en Red Enfermedades Respiratorias , Madrid , Spain
| | - Sergio Esquivel-Ruiz
- Department of Pharmacology and Toxicology, School of Medicine, Universidad Complutense de Madrid, Instituto de Investigación Sanitaria Gregorio Marañón , Madrid , Spain.,Centro de Investigación Biomédica en Red Enfermedades Respiratorias , Madrid , Spain
| | - Alistair Mathie
- Medway School of Pharmacy, University of Kent and University of Greenwich , Chatham , United Kingdom
| | - Ghazwan Butrous
- Medway School of Pharmacy, University of Kent and University of Greenwich , Chatham , United Kingdom
| | - Francisco Perez-Vizcaino
- Department of Pharmacology and Toxicology, School of Medicine, Universidad Complutense de Madrid, Instituto de Investigación Sanitaria Gregorio Marañón , Madrid , Spain.,Centro de Investigación Biomédica en Red Enfermedades Respiratorias , Madrid , Spain
| | - Angel Cogolludo
- Department of Pharmacology and Toxicology, School of Medicine, Universidad Complutense de Madrid, Instituto de Investigación Sanitaria Gregorio Marañón , Madrid , Spain.,Centro de Investigación Biomédica en Red Enfermedades Respiratorias , Madrid , Spain
| |
Collapse
|
61
|
Iyinikkel J, Murray F. GPCRs in pulmonary arterial hypertension: tipping the balance. Br J Pharmacol 2018; 175:3063-3079. [PMID: 29468655 PMCID: PMC6031878 DOI: 10.1111/bph.14172] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Revised: 01/30/2018] [Accepted: 02/01/2018] [Indexed: 02/06/2023] Open
Abstract
Pulmonary arterial hypertension (PAH) is a progressive, fatal disease characterised by increased pulmonary vascular resistance and excessive proliferation of pulmonary artery smooth muscle cells (PASMC). GPCRs, which are attractive pharmacological targets, are important regulators of pulmonary vascular tone and PASMC phenotype. PAH is associated with the altered expression and function of a number of GPCRs in the pulmonary circulation, which leads to the vasoconstriction and proliferation of PASMC and thereby contributes to the imbalance of pulmonary vascular tone associated with PAH; drugs targeting GPCRs are currently used clinically to treat PAH and extensive preclinical work supports the utility of a number of additional GPCRs. Here we review how GPCR expression and function changes with PAH and discuss why GPCRs continue to be relevant drug targets for the disease.
Collapse
Affiliation(s)
- Jean Iyinikkel
- College of Life Sciences and Medicine, School of Medicine, Medical Sciences and NutritionUniversity of AberdeenAberdeenUK
| | - Fiona Murray
- College of Life Sciences and Medicine, School of Medicine, Medical Sciences and NutritionUniversity of AberdeenAberdeenUK
| |
Collapse
|
62
|
Abstract
Following its initial description over a century ago, pulmonary arterial hypertension (PAH) continues to challenge researchers committed to understanding its pathobiology and finding a cure. The last two decades have seen major developments in our understanding of the genetics and molecular basis of PAH that drive cells within the pulmonary vascular wall to produce obstructive vascular lesions; presently, the field of PAH research has taken numerous approaches to dissect the complex amalgam of genetic, molecular and inflammatory pathways that interact to initiate and drive disease progression. In this review, we discuss the current understanding of PAH pathology and the role that genetic factors and environmental influences share in the development of vascular lesions and abnormal cell function. We also discuss how animal models can assist in elucidating gene function and the study of novel therapeutics, while at the same time addressing the limitations of the most commonly used rodent models. Novel experimental approaches based on application of next generation sequencing, bioinformatics and epigenetics research are also discussed as these are now being actively used to facilitate the discovery of novel gene mutations and mechanisms that regulate gene expression in PAH. Finally, we touch on recent discoveries concerning the role of inflammation and immunity in PAH pathobiology and how they are being targeted with immunomodulatory agents. We conclude that the field of PAH research is actively expanding and the major challenge in the coming years is to develop a unified theory that incorporates genetic and mechanistic data to address viable areas for disease modifying drugs that can target key processes that regulate the evolution of vascular pathology of PAH.
Collapse
|
63
|
Bondarenko AI, Panasiuk O, Okhai I, Montecucco F, Brandt KJ, Mach F. Ca 2+-dependent potassium channels and cannabinoid signaling in the endothelium of apolipoprotein E knockout mice before plaque formation. J Mol Cell Cardiol 2018; 115:54-63. [PMID: 29305938 DOI: 10.1016/j.yjmcc.2018.01.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Revised: 12/30/2017] [Accepted: 01/02/2018] [Indexed: 01/06/2023]
Abstract
Endothelial Ca2+-dependent K+ channels (KCa) regulate endothelial function. We also know that stimulation of type 2 cannabinoid (CB2) receptors ameliorates atherosclerosis. However, whether atherosclerosis is accompanied by altered endothelial KCa- and CB2 receptor-dependent signaling is unknown. By utilizing an in situ patch-clamp approach, we directly evaluated the KCa channel function and the CB2 receptor-dependent electrical responses in the endothelium of aortic strips from young ApoE-/- and C57Bl/6 mice. In the ApoE-/- group, the resting membrane potential (-30.1±1.1mV) was less negative (p<0.05) compared to WT (-38.9±1.4mV) and voltage ramps generated an overall KCa current of reduced amplitude. The peak hyperpolarization to 2μM Ach was not different between the groups. However, the sustained component was significantly reduced in ApoE-/- strips. In contrast, the peak hyperpolarization to 0.2μM Ach was increased in the ApoE-/- group, and SKA-31, a direct IKCa/SKCa channel opener, produced a hyperpolarization and whole-cell current of greater amplitude. The BKCa opener NS1619 produced hyperpolarization that was enhanced in ApoE-/- group. N-arachidonoyl glycine, a BKCa opener, produced a hyperpolarization of enhanced amplitude in ApoE-/- arteries. Selective CB2 receptor agonist AM1241 (5μM) had no effect on endothelial membrane potential in WT group; however, in ApoE-/- group, it elicited hyperpolarization that was inhibited by a selective CB2 receptor antagonist AM630. Conclusively, our data point to functional down-regulation of basal IKCa activity in unstimulated endothelium of ApoE-/- mice. Direct and indirect IKCa stimulation resulted in increased recruitment of the channels. In addition, our data point to up-regulation of endothelial BKCa channels and CB2 receptors in ApoE-/- arteries.
Collapse
Affiliation(s)
- Alexander I Bondarenko
- Circulatory Physiology Department, Bogomoletz Institute of Physiology, NAS of Ukraine, Bogomoletz Str.4, 01024 Kiev, Ukraine.
| | - Olga Panasiuk
- Circulatory Physiology Department, Bogomoletz Institute of Physiology, NAS of Ukraine, Bogomoletz Str.4, 01024 Kiev, Ukraine
| | - Iryna Okhai
- Circulatory Physiology Department, Bogomoletz Institute of Physiology, NAS of Ukraine, Bogomoletz Str.4, 01024 Kiev, Ukraine
| | - Fabrizio Montecucco
- First Clinic of Internal Medicine, Department of Internal Medicine, University of Genoa, 6 viale Benedetto XV, 16132 Genoa, Italy; Ospedale Policlinico San Martino, largo Benzi 10, 16132 Genoa, Italy; Centre of Excellence for Biomedical Research (CEBR), University of Genoa, 9 viale Benedetto XV, 16132 Genoa, Italy
| | - Karim J Brandt
- Division of Cardiology, Foundation for Medical Researches, Department of Internal Medicine, University of Geneva, Av. de la Roseraie 64, CH -1211 Geneva, 4, Switzerland
| | - François Mach
- Division of Cardiology, Foundation for Medical Researches, Department of Internal Medicine, University of Geneva, Av. de la Roseraie 64, CH -1211 Geneva, 4, Switzerland
| |
Collapse
|
64
|
Liu JJ, Zhang H, Xing F, Tang B, Wu SL, Xuan L, Kang PF, Xu Q, Wang HJ, Zhang NR, Wang XJ. MicroRNA‑138 promotes proliferation and suppresses mitochondrial depolarization in human pulmonary artery smooth muscle cells through targeting TASK‑1. Mol Med Rep 2017; 17:3021-3027. [PMID: 29257242 PMCID: PMC5783522 DOI: 10.3892/mmr.2017.8200] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Accepted: 10/25/2017] [Indexed: 12/29/2022] Open
Abstract
MicroRNA (miR)‑138 serves an important role in the proliferation, differentiation and apoptosis of human pulmonary artery smooth muscle cells (HPASMCs), indi-cating the involvement of miR‑138 in the development and progression of pulmonary artery hypertension (PAH). Potassium channel subfamily K member 3 (TASK‑1), a two‑pore domain K+ channel, is expressed in HPASMCs and is associated with hypoxic PAH. However, whether miR‑138 mediates PAH through targeting TASK‑1 is not known. In the present study, HPASMCs were transfected with miR‑138 mimic to establish a PAH model in vitro, and the effects of a miR‑138 inhibitor and a TASK‑1 inhibitor (A293) were examined. Cell proliferation and mitochondrial membrane potential (MMP) were measured by CCK‑8 assay and flow cytometry, respectively. Reverse transcription-quantitative polymerase chain reaction and western blotting were performed to examine the expression of miR‑138, TASK‑1, Bcl‑2, caspase‑3 and activation of extracellular signal‑regulated kinase 1/2 (ERK1/2). A dual‑luciferase reporter assay was also used to analyse the expression level of TASK‑1 in HPASMCs. The results of the present study demonstrated that the miR‑138 mimic promoted proliferation and MMP level, which was similar to the effect of A293 treatment on HPASMCs. However, the miR‑138 inhibitor inhibited the effects induced by miR‑138 mimic or A293 treatment, as demonstrated by a decrease in proliferation and MMP level in HPASMCs, accompanied by a decrease of Bcl‑2 and an increase of caspase‑3 expression levels, as well as ERK1/2 activation. The dual‑luciferase reporter assay indicated that TASK‑1 expression was negatively regulated by miR‑138. The results of the present study suggested that miR‑138 promoted proliferation and suppressed mitochondrial depolarization of HPASMCs by targeting TASK‑1.
Collapse
Affiliation(s)
- Jin-Jun Liu
- Department of Cardiovascular Medicine, The First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui 233004, P.R. China
| | - Heng Zhang
- Department of Cardiovascular Medicine, The First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui 233004, P.R. China
| | - Fang Xing
- Department of Pharmacy, The First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui 233004, P.R. China
| | - Bi Tang
- Department of Cardiovascular Medicine, The First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui 233004, P.R. China
| | - Shi-Li Wu
- Department of Cardiovascular Medicine, The First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui 233004, P.R. China
| | - Ling Xuan
- Department of Cardiovascular Medicine, The First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui 233004, P.R. China
| | - Pin-Fang Kang
- Department of Cardiovascular Medicine, The First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui 233004, P.R. China
| | - Qiong Xu
- Department of Cardiovascular Medicine, The First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui 233004, P.R. China
| | - Hong-Ju Wang
- Department of Cardiovascular Medicine, The First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui 233004, P.R. China
| | - Ning-Ru Zhang
- Department of Cardiovascular Medicine, The First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui 233004, P.R. China
| | - Xiao-Jing Wang
- Clinical and Basic Provincial Laboratory of Respiratory System Diseases of Anhui, The First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui 233004, P.R. China
| |
Collapse
|
65
|
Olschewski A, Veale EL, Nagy BM, Nagaraj C, Kwapiszewska G, Antigny F, Lambert M, Humbert M, Czirják G, Enyedi P, Mathie A. TASK-1 (KCNK3) channels in the lung: from cell biology to clinical implications. Eur Respir J 2017; 50:50/5/1700754. [PMID: 29122916 DOI: 10.1183/13993003.00754-2017] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Accepted: 08/05/2017] [Indexed: 12/18/2022]
Abstract
TWIK-related acid-sensitive potassium channel 1 (TASK-1 encoded by KCNK3) belongs to the family of two-pore domain potassium channels. This gene subfamily is constitutively active at physiological resting membrane potentials in excitable cells, including smooth muscle cells, and has been particularly linked to the human pulmonary circulation. TASK-1 channels are sensitive to a wide array of physiological and pharmacological mediators that affect their activity such as unsaturated fatty acids, extracellular pH, hypoxia, anaesthetics and intracellular signalling pathways. Recent studies show that modulation of TASK-1 channels, either directly or indirectly by targeting their regulatory mechanisms, has the potential to control pulmonary arterial tone in humans. Furthermore, mutations in KCNK3 have been identified as a rare cause of both familial and idiopathic pulmonary arterial hypertension. This review summarises our current state of knowledge of the functional role of TASK-1 channels in the pulmonary circulation in health and disease, with special emphasis on current advancements in the field.
Collapse
Affiliation(s)
- Andrea Olschewski
- Ludwig Boltzmann Institute for Lung Vascular Research Graz, Graz, Austria .,Institute of Physiology, Medical University of Graz, Graz, Austria
| | - Emma L Veale
- Medway School of Pharmacy, University of Kent, Central Avenue, Chatham Maritime, UK
| | - Bence M Nagy
- Institute of Physiology, Medical University of Graz, Graz, Austria
| | - Chandran Nagaraj
- Ludwig Boltzmann Institute for Lung Vascular Research Graz, Graz, Austria.,Institute of Physiology, Medical University of Graz, Graz, Austria
| | - Grazyna Kwapiszewska
- Ludwig Boltzmann Institute for Lung Vascular Research Graz, Graz, Austria.,Institute of Physiology, Medical University of Graz, Graz, Austria
| | - Fabrice Antigny
- Univ. Paris-Sud, Faculté de Médecine, Kremlin-Bicêtre, France.,AP-HP, Centre de Référence de l'Hypertension Pulmonaire Sévère, Département Hospitalo-Universitaire (DHU) Thorax Innovation, Service de Pneumologie et Réanimation Respiratoire, Hôpital de Bicêtre, Le Kremlin-Bicêtre, France.,UMRS 999, INSERM and Univ. Paris-Sud, Laboratoire d'Excellence (LabEx) en Recherche sur le Médicament et l'Innovation Thérapeutique (LERMIT), Hôpital-Marie-Lannelongue, Le Plessis Robinson, France
| | - Mélanie Lambert
- Univ. Paris-Sud, Faculté de Médecine, Kremlin-Bicêtre, France.,AP-HP, Centre de Référence de l'Hypertension Pulmonaire Sévère, Département Hospitalo-Universitaire (DHU) Thorax Innovation, Service de Pneumologie et Réanimation Respiratoire, Hôpital de Bicêtre, Le Kremlin-Bicêtre, France.,UMRS 999, INSERM and Univ. Paris-Sud, Laboratoire d'Excellence (LabEx) en Recherche sur le Médicament et l'Innovation Thérapeutique (LERMIT), Hôpital-Marie-Lannelongue, Le Plessis Robinson, France
| | - Marc Humbert
- Univ. Paris-Sud, Faculté de Médecine, Kremlin-Bicêtre, France.,AP-HP, Centre de Référence de l'Hypertension Pulmonaire Sévère, Département Hospitalo-Universitaire (DHU) Thorax Innovation, Service de Pneumologie et Réanimation Respiratoire, Hôpital de Bicêtre, Le Kremlin-Bicêtre, France.,UMRS 999, INSERM and Univ. Paris-Sud, Laboratoire d'Excellence (LabEx) en Recherche sur le Médicament et l'Innovation Thérapeutique (LERMIT), Hôpital-Marie-Lannelongue, Le Plessis Robinson, France
| | - Gábor Czirják
- Dept of Physiology, Semmelweis University, Budapest, Hungary
| | - Péter Enyedi
- Dept of Physiology, Semmelweis University, Budapest, Hungary
| | - Alistair Mathie
- Medway School of Pharmacy, University of Kent, Central Avenue, Chatham Maritime, UK
| |
Collapse
|
66
|
Nagy BM, Nagaraj C, Meinitzer A, Sharma N, Papp R, Foris V, Ghanim B, Kwapiszewska G, Kovacs G, Klepetko W, Pieber TR, Mangge H, Olschewski H, Olschewski A. Importance of kynurenine in pulmonary hypertension. Am J Physiol Lung Cell Mol Physiol 2017; 313:L741-L751. [DOI: 10.1152/ajplung.00517.2016] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Revised: 07/10/2017] [Accepted: 07/10/2017] [Indexed: 11/22/2022] Open
Abstract
The tryptophan metabolite kynurenine is significantly increased in pulmonary arterial hypertension (PAH) patients, and it is a potent vasodilator of systemic arteries. Our aim was to investigate the role of kynurenine in the pulmonary circulation. Serum tryptophan, kynurenine, and kynurenic acid levels were measured in 20 idiopathic PAH (IPAH) patients, 20 healthy controls, and 20 patients with chronic lung disease or metabolic syndrome without PH. Laser-dissected pulmonary arteries from IPAH and control lungs were tested for the expression of indoleamine-2, 3-dioxygenase (IDO), the rate-limiting enzyme for the conversion from tryptophan to kynurenine. Acute effects of kynurenine were tested in pulmonary vascular preparations, two different models of chronic pulmonary hypertension (PH), and in human pulmonary arterial smooth muscle cells (hPASMCs). In IPAH vs. control serum, kynurenine was significantly elevated (3.6 ± 0.2 vs. 2.6 ± 0.1 µM, P < 0.0001), and strongly associated with PH (area under the curve = 0.86), but kynurenine levels were not elevated in lung disease and metabolic syndrome. Among all investigated tryptophan metabolites, kynurenine displayed the strongest correlation with mean pulmonary arterial pressure (mPAP) (ρ: 0.770, P < 0.0001). Tryptophan was significantly decreased in IPAH lungs; however, IDO expression was not changed. In hPASMCs, kynurenine increased both cAMP and cGMP; in intrapulmonary arteries, it relaxed the preconstriction via NO/cGMP and cAMP pathways, and in two models of established PH, it acutely decreased the mPAP. Our data suggest that kynurenine elevation might be specifically associated with mPAP; kynurenine acts on hPASMCs in synergy with NO and exerts acute pulmonary vasodilatation in chronic PH models. Kynurenine might provide both a new biomarker and a new therapeutic option for PH.
Collapse
Affiliation(s)
- Bence M. Nagy
- Ludwig Boltzmann Institute for Lung Vascular Research, Graz, Austria
- Institute of Physiology, Medical University of Graz, Graz, Austria
| | - Chandran Nagaraj
- Ludwig Boltzmann Institute for Lung Vascular Research, Graz, Austria
- Institute of Physiology, Medical University of Graz, Graz, Austria
| | - Andreas Meinitzer
- Clinical Institute of Medical and Chemical Laboratory Diagnostics, Medical University of Graz, Graz, Austria
| | - Neha Sharma
- Institute of Physiology, Medical University of Graz, Graz, Austria
| | - Rita Papp
- Ludwig Boltzmann Institute for Lung Vascular Research, Graz, Austria
| | - Vasile Foris
- Ludwig Boltzmann Institute for Lung Vascular Research, Graz, Austria
- Department of Internal Medicine, Division of Pulmonology, Medical University of Graz, Graz, Austria
| | - Bahil Ghanim
- Ludwig Boltzmann Institute for Lung Vascular Research, Graz, Austria
- Division of Thoracic Surgery, Department of Surgery, Medical University of Vienna, Vienna, Austria; and
| | - Grazyna Kwapiszewska
- Ludwig Boltzmann Institute for Lung Vascular Research, Graz, Austria
- Institute of Physiology, Medical University of Graz, Graz, Austria
| | - Gabor Kovacs
- Ludwig Boltzmann Institute for Lung Vascular Research, Graz, Austria
- Department of Internal Medicine, Division of Pulmonology, Medical University of Graz, Graz, Austria
| | - Walter Klepetko
- Division of Thoracic Surgery, Department of Surgery, Medical University of Vienna, Vienna, Austria; and
| | - Thomas R. Pieber
- Department of Internal Medicine, Division of Endocrinology and Diabetology, Medical University of Graz, Graz, Austria
| | - Harald Mangge
- Clinical Institute of Medical and Chemical Laboratory Diagnostics, Medical University of Graz, Graz, Austria
| | - Horst Olschewski
- Ludwig Boltzmann Institute for Lung Vascular Research, Graz, Austria
- Department of Internal Medicine, Division of Pulmonology, Medical University of Graz, Graz, Austria
| | - Andrea Olschewski
- Ludwig Boltzmann Institute for Lung Vascular Research, Graz, Austria
- Institute of Physiology, Medical University of Graz, Graz, Austria
| |
Collapse
|
67
|
Kitagawa MG, Reynolds JO, Wehrens XHT, Bryan RM, Pandit LM. Hemodynamic and Pathologic Characterization of the TASK-1 -/- Mouse Does Not Demonstrate Pulmonary Hypertension. Front Med (Lausanne) 2017; 4:177. [PMID: 29109948 PMCID: PMC5660113 DOI: 10.3389/fmed.2017.00177] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Accepted: 10/02/2017] [Indexed: 01/22/2023] Open
Abstract
Introduction Pulmonary hypertension (PH) carries significant associated morbidity and mortality and the underlying molecular mechanisms of PH are not well understood. Loss-of-function mutations in TASK-1 potassium channels are associated with PH in humans. Although TASK-1 has been considered in the development of PH for over a decade, characterization of TASK-1 knockout mice has been limited to in vitro studies or in vivo studies in room air at isolated time points. The purpose of this study was twofold. First, we sought to determine if TASK-/- male and female mice developed PH over the span of one year. Second, we sought to determine the effect of chronic hypoxia, a stimulus for PH, and its recovery on PH in TASK-1-/- mice. Methods We measured right ventricular systolic pressure (RVSP) and vascular remodeling in male and female C57BL/6 WT and TASK-1-/- mice at separate time points: 20-24 weeks and 1 year of age. Additionally, we measured RVSP and vascular remodeling in TASK-1-/- and wild-type mice between 13 and 16 weeks of age exposed to 10% hypoxia for 3 weeks followed by recovery to room air conditions for an additional 6 weeks. Results RVSP was similar between WT and TASK-/- mice. Male and female WT and TASK-1-/- mice all demonstrated age-related increases in RVSP, which correlated to age-related vascular remodeling in male mice but not in female mice. Male TASK-1-/- and WT mice exposed to chronic hypoxia demonstrated increased RVSP, which decreased following room air recovery. WT and TASK-1-/- male mice demonstrated vascular remodeling upon exposure to hypoxia that persisted in room air recovery. Conclusion Female and male TASK-1-/- mice do not develop hemodynamic or vascular evidence for PH, but RVSP rises in an age-dependent manner independent of genotype. TASK-1-/- and WT male mice develop hypoxia-induced elevations in RVSP that decrease to baseline after recovery in room air. TASK-1-/- and WT male mice demonstrate vascular remodeling after exposure to hypoxia that persists despite recovery to room air conditions and does not correlate with RVSP normalization.
Collapse
Affiliation(s)
- Melanie G Kitagawa
- Baylor College of Medicine, Texas Children's Hospital, Houston, TX, United States
| | - Julia O Reynolds
- Michael E. DeBakey Veterans Affairs Medical Center, Houston, TX, United States.,Baylor College of Medicine, Houston, TX, United States
| | | | | | - Lavannya M Pandit
- Michael E. DeBakey Veterans Affairs Medical Center, Houston, TX, United States.,Baylor College of Medicine, Houston, TX, United States
| |
Collapse
|
68
|
Bohnen MS, Roman-Campos D, Terrenoire C, Jnani J, Sampson KJ, Chung WK, Kass RS. The Impact of Heterozygous KCNK3 Mutations Associated With Pulmonary Arterial Hypertension on Channel Function and Pharmacological Recovery. J Am Heart Assoc 2017; 6:JAHA.117.006465. [PMID: 28889099 PMCID: PMC5634293 DOI: 10.1161/jaha.117.006465] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
BACKGROUND Heterozygous loss of function mutations in the KCNK3 gene cause hereditary pulmonary arterial hypertension (PAH). KCNK3 encodes an acid-sensitive potassium channel, which contributes to the resting potential of human pulmonary artery smooth muscle cells. KCNK3 is widely expressed in the body, and dimerizes with other KCNK3 subunits, or the closely related, acid-sensitive KCNK9 channel. METHODS AND RESULTS We engineered homomeric and heterodimeric mutant and nonmutant KCNK3 channels associated with PAH. Using whole-cell patch-clamp electrophysiology in human pulmonary artery smooth muscle and COS7 cell lines, we determined that homomeric and heterodimeric mutant channels in heterozygous KCNK3 conditions lead to mutation-specific severity of channel dysfunction. Both wildtype and mutant KCNK3 channels were activated by ONO-RS-082 (10 μmol/L), causing cell hyperpolarization. We observed robust gene expression of KCNK3 in healthy and familial PAH patient lungs, but no quantifiable expression of KCNK9, and demonstrated in functional studies that KCNK9 minimizes the impact of select KCNK3 mutations when the 2 channel subunits co-assemble. CONCLUSIONS Heterozygous KCNK3 mutations in PAH lead to variable loss of channel function via distinct mechanisms. Homomeric and heterodimeric mutant KCNK3 channels represent novel therapeutic substrates in PAH. Pharmacological and pH-dependent activation of wildtype and mutant KCNK3 channels in pulmonary artery smooth muscle cells leads to membrane hyperpolarization. Co-assembly of KCNK3 with KCNK9 subunits may provide protection against KCNK3 loss of function in tissues where both KCNK9 and KCNK3 are expressed, contributing to the lung-specific phenotype observed clinically in patients with PAH because of KCNK3 mutations.
Collapse
Affiliation(s)
- Michael S Bohnen
- Department of Pharmacology, College of Physicians and Surgeons, Columbia University, New York, NY
| | | | - Cecile Terrenoire
- Department of Biophysics, Paulista School of Medicine, Federal University of Sao Paulo, Sao Paulo, Brazil
| | - Jack Jnani
- Department of Pharmacology, College of Physicians and Surgeons, Columbia University, New York, NY
| | - Kevin J Sampson
- Department of Pharmacology, College of Physicians and Surgeons, Columbia University, New York, NY
| | - Wendy K Chung
- Department of Pediatrics, College of Physicians and Surgeons, Columbia University, New York, NY
| | - Robert S Kass
- Department of Pharmacology, College of Physicians and Surgeons, Columbia University, New York, NY
| |
Collapse
|
69
|
Du G, Wang S, Li Z, Liu J. Sevoflurane Posttreatment Attenuates Lung Injury Induced by Oleic Acid in Dogs. Anesth Analg 2017; 124:1555-1563. [PMID: 28431421 DOI: 10.1213/ane.0000000000002034] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
BACKGROUND In animal models, both sevoflurane and propofol protect against acute lung injury (ALI), especially when administered prior to ALI onset. We hypothesized that when compared to propofol, sevoflurane administration after the onset of acute respiratory distress syndrome would mitigate oleic acid (OA)-induced ALI in dogs. METHODS Dogs were randomly assigned to receive intravenous OA to induce ALI (n = 7 for each OA group) or saline as an OA control (n = 6 for each control). Dogs were then mechanically ventilated for 6 hours during which propofol (5 mg/kg/h) or sevoflurane (1.0 minimum alveolar concentration) was administered for sedation. Study end points included PO2/FIO2 ratio, pulmonary arterial pressure, pulmonary edema, histology, and tumor nuclear factor-α. RESULTS In OA-injured animals, oxygenation was worse at 1, 2, 3, and 4 hours after 6-hour mechanical ventilation in sevoflurane-sedated animals compared with propofol-sedated animals, with mean difference (95% confidence interval; propofol minus sevoflurane) of 75 (39-111), 87 (55-119), 66 (44-87), and 67 (27-107) mm Hg for the respective time points. However, sevoflurane reduced the elevated pulmonary arterial pressure and vascular resistance, attenuated pulmonary edema as evidenced by reduced extravascular lung water index, and decreased tumor nuclear factor-α and diffuse alveolar damage score compared with propofol in the OA-injured lungs. CONCLUSIONS When compared with propofol, sevoflurane attenuates OA-induced lung damage. However, despite this effect on lung histology and inflammation, sevoflurane worsened oxygenation in OA-induced ALI, possibly via inhibition of hypoxic pulmonary vasoconstriction.
Collapse
Affiliation(s)
- Guizhi Du
- From the *Laboratory of Anesthesia and Critical Care Medicine, Department of Anesthesiology, West China Hospital of Sichuan University, Chengdu, Sichuan, China; †Department of Neurology, The Second People's Hospital of Chengdu, Chengdu, Sichuan, China; and ‡Department of Pharmacy, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi, China
| | | | | | | |
Collapse
|
70
|
Sankhe S, Manousakidi S, Antigny F, Arthur Ataam J, Bentebbal S, Ruchon Y, Lecerf F, Sabourin J, Price L, Fadel E, Dorfmüller P, Eddahibi S, Humbert M, Perros F, Capuano V. T-type Ca 2+ channels elicit pro-proliferative and anti-apoptotic responses through impaired PP2A/Akt1 signaling in PASMCs from patients with pulmonary arterial hypertension. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2017; 1864:1631-1641. [PMID: 28655554 DOI: 10.1016/j.bbamcr.2017.06.018] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Revised: 06/13/2017] [Accepted: 06/21/2017] [Indexed: 10/19/2022]
Abstract
Idiopathic pulmonary arterial hypertension (iPAH) is characterized by obstructive hyperproliferation and apoptosis resistance of distal pulmonary artery smooth muscle cells (PASMCs). T-type Ca2+ channel blockers have been shown to reduce experimental pulmonary hypertension, although the impact of T-type channel inhibition remains unexplored in PASMCs from iPAH patients. Here we show that T-type channels Cav3.1 and Cav3.2 are present in the lung and PASMCs from iPAH patients and control subjects. The blockade of T-type channels by the specific blocker, TTA-A2, prevents cell cycle progression and PASMCs growth. In iPAH cells, T-type channel signaling fails to activate phosphatase PP2A, leading to an increase in ERK1/2, P38 activation. Moreover, T-type channel signaling is redirected towards the activation of the kinase Akt1, leading to increased expression of the anti-apoptotic protein survivin, and a decrease in the pro-apoptotic mediator FoxO3A. Finally, in iPAH cells, Akt1 is no longer able to regulate caspase 9 activation, whereas T-type channel overexpression reverses PP2A defect in iPAH cells but reinforces the deleterious effects of Akt1 activation. Altogether, these data highlight T-type channel signaling as a strong trigger of the pathological phenotype of PASMCs from iPAH patients (hyper-proliferation/cells survival and apoptosis resistance), suggesting that both T-type channels and PP2A may be promising therapeutic targets for pulmonary hypertension.
Collapse
Affiliation(s)
- Safietou Sankhe
- INSERM U999, Hôpital Marie Lannelongue, Le Plessis Robinson, France; Univ. Paris-Sud, Faculté de Médecine, Univ. Paris-Saclay, Le Kremlin Bicêtre, France
| | - Sevasti Manousakidi
- INSERM U999, Hôpital Marie Lannelongue, Le Plessis Robinson, France; Univ. Paris-Sud, Faculté de Médecine, Univ. Paris-Saclay, Le Kremlin Bicêtre, France
| | - Fabrice Antigny
- INSERM U999, Hôpital Marie Lannelongue, Le Plessis Robinson, France; Univ. Paris-Sud, Faculté de Médecine, Univ. Paris-Saclay, Le Kremlin Bicêtre, France
| | - Jennifer Arthur Ataam
- INSERM U999, Hôpital Marie Lannelongue, Le Plessis Robinson, France; Univ. Paris-Sud, Faculté de Médecine, Univ. Paris-Saclay, Le Kremlin Bicêtre, France
| | - Sana Bentebbal
- PhyMedExp, Univ. Montpellier, Inserm U1046, cNRS UMR9214.34295 MINSERM U1046, Montpellier, France
| | - Yann Ruchon
- INSERM U999, Hôpital Marie Lannelongue, Le Plessis Robinson, France; Univ. Paris-Sud, Faculté de Médecine, Univ. Paris-Saclay, Le Kremlin Bicêtre, France
| | - Florence Lecerf
- INSERM U999, Hôpital Marie Lannelongue, Le Plessis Robinson, France; Univ. Paris-Sud, Faculté de Médecine, Univ. Paris-Saclay, Le Kremlin Bicêtre, France
| | - Jessica Sabourin
- INSERM UMR-S1180, Univ. Paris-Sud, Université Paris-Saclay, 92296 Châtenay-Malabry, France
| | - Laura Price
- National Pulmonary Hypertension Service, Royal Brompton Hospital, Sydney Street, London SW3 6NP, UK
| | - Elie Fadel
- INSERM U999, Hôpital Marie Lannelongue, Le Plessis Robinson, France; Univ. Paris-Sud, Faculté de Médecine, Univ. Paris-Saclay, Le Kremlin Bicêtre, France
| | - Peter Dorfmüller
- INSERM U999, Hôpital Marie Lannelongue, Le Plessis Robinson, France; Univ. Paris-Sud, Faculté de Médecine, Univ. Paris-Saclay, Le Kremlin Bicêtre, France
| | - Saadia Eddahibi
- PhyMedExp, Univ. Montpellier, Inserm U1046, cNRS UMR9214.34295 MINSERM U1046, Montpellier, France
| | - Marc Humbert
- INSERM U999, Hôpital Marie Lannelongue, Le Plessis Robinson, France; Univ. Paris-Sud, Faculté de Médecine, Univ. Paris-Saclay, Le Kremlin Bicêtre, France; AP-HP, Service de pneumologie, Hôpital Bicêtre, Le Kremlin Bicêtre, France
| | - Frédéric Perros
- INSERM U999, Hôpital Marie Lannelongue, Le Plessis Robinson, France; Univ. Paris-Sud, Faculté de Médecine, Univ. Paris-Saclay, Le Kremlin Bicêtre, France
| | - Véronique Capuano
- INSERM U999, Hôpital Marie Lannelongue, Le Plessis Robinson, France; Univ. Paris-Sud, Faculté de Médecine, Univ. Paris-Saclay, Le Kremlin Bicêtre, France.
| |
Collapse
|
71
|
Locomotion Behavior Is Affected by the Gα S Pathway and the Two-Pore-Domain K + Channel TWK-7 Interacting in GABAergic Motor Neurons in Caenorhabditis elegans. Genetics 2017; 206:283-297. [PMID: 28341653 DOI: 10.1534/genetics.116.195669] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Accepted: 03/19/2017] [Indexed: 01/03/2023] Open
Abstract
Adjusting the efficiency of movement in response to environmental cues is an essential integrative characteristic of adaptive locomotion behavior across species. However, the modulatory molecules and the pathways involved are largely unknown. Recently, we demonstrated that in Caenorhabditis elegans, a loss-of-function of the two-pore-domain potassium (K2P) channel TWK-7 causes a fast, coordinated, and persistent forward crawling behavior in which five central aspects of stimulated locomotion-velocity, direction, wave parameters, duration, and straightness-are affected. Here, we isolated the reduction-of-function allele cau1 of the C. elegans gene kin-2 in a forward genetic screen and showed that it phenocopies the locomotor activity and locomotion behavior of twk-7(null) animals. Kin-2 encodes the negative regulatory subunit of protein kinase A (KIN-1/PKA). Consistently, we found that other gain-of-function mutants of the GαS-KIN-1/PKA pathway resemble kin-2(cau1) and twk-7(null) in locomotion phenotype. Using the powerful genetics of the C. elegans system in combination with cell type-specific approaches and detailed locomotion analyses, we identified TWK-7 as a putative downstream target of the GαS-KIN-1/PKA pathway at the level of the γ-aminobutyric acid (GABA)ergic D-type motor neurons. Due to this epistatic interaction, we suggest that KIN-1/PKA and TWK-7 may share a common pathway that is probably involved in the modulation of both locomotor activity and locomotion behavior during forward crawling.
Collapse
|
72
|
Murtaza G, Mermer P, Goldenberg A, Pfeil U, Paddenberg R, Weissmann N, Lochnit G, Kummer W. TASK-1 potassium channel is not critically involved in mediating hypoxic pulmonary vasoconstriction of murine intra-pulmonary arteries. PLoS One 2017; 12:e0174071. [PMID: 28301582 PMCID: PMC5354433 DOI: 10.1371/journal.pone.0174071] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Accepted: 03/02/2017] [Indexed: 11/26/2022] Open
Abstract
The two-pore domain potassium channel KCNK3 (TASK-1) is expressed in rat and human pulmonary artery smooth muscle cells. There, it is associated with hypoxia-induced signalling, and its dysfunction is linked to pathogenesis of human pulmonary hypertension. We here aimed to determine its role in hypoxic pulmonary vasoconstriction (HPV) in the mouse, and hence the suitability of this model for further mechanistic investigations, using appropriate inhibitors and TASK-1 knockout (KO) mice. RT-PCR revealed expression of TASK-1 mRNA in murine lungs and pre-acinar pulmonary arteries. Protein localization by immunohistochemistry and western blot was unreliable since all antibodies produced labelling also in TASK-1 KO organs/tissues. HPV was investigated by videomorphometric analysis of intra- (inner diameter: 25–40 μm) and pre-acinar pulmonary arteries (inner diameter: 41–60 μm). HPV persisted in TASK-1 KO intra-acinar arteries. Pre-acinar arteries developed initial HPV, but the response faded earlier (after 30 min) in KO vessels. This HPV pattern was grossly mimicked by the TASK-1 inhibitor anandamide in wild-type vessels. Hypoxia-provoked rise in pulmonary arterial pressure (PAP) in isolated ventilated lungs was affected neither by TASK-1 gene deficiency nor by the TASK-1 inhibitor A293. TASK-1 is dispensable for initiating HPV of murine intra-pulmonary arteries, but participates in sustained HPV specifically in pre-acinar arteries. This does not translate into abnormal rise in PAP. While there is compelling evidence that TASK-1 is involved in the pathogenesis of pulmonary arterial hypertension in humans, the mouse does not appear to serve as a suitable model to study the underlying molecular mechanisms.
Collapse
Affiliation(s)
- Ghulam Murtaza
- Institute of Anatomy and Cell Biology, Justus-Liebig-University, Giessen, Germany
- * E-mail:
| | - Petra Mermer
- Institute of Anatomy and Cell Biology, Justus-Liebig-University, Giessen, Germany
| | - Anna Goldenberg
- Institute of Anatomy and Cell Biology, Justus-Liebig-University, Giessen, Germany
| | - Uwe Pfeil
- Institute of Anatomy and Cell Biology, Justus-Liebig-University, Giessen, Germany
| | - Renate Paddenberg
- Institute of Anatomy and Cell Biology, Justus-Liebig-University, Giessen, Germany
| | - Nobert Weissmann
- Universities of Giessen and Marburg Lung Center, Justus-Liebig-University, Giessen, Germany
- German Center for Lung Research, Excellence Cluster Cardio-Pulmonary System, Justus-Liebig-University, Giessen, Germany
| | - Guenter Lochnit
- Institute of Biochemistry, Faculty of Medicine, Justus-Liebig University, Giessen, Germany
| | - Wolfgang Kummer
- Institute of Anatomy and Cell Biology, Justus-Liebig-University, Giessen, Germany
- German Center for Lung Research, Excellence Cluster Cardio-Pulmonary System, Justus-Liebig-University, Giessen, Germany
| |
Collapse
|
73
|
Telles CJ, Decker SE, Motley WW, Peters AW, Mehr AP, Frizzell RA, Forrest JN. Functional and molecular identification of a TASK-1 potassium channel regulating chloride secretion through CFTR channels in the shark rectal gland: implications for cystic fibrosis. Am J Physiol Cell Physiol 2016; 311:C884-C894. [PMID: 27653983 PMCID: PMC5206301 DOI: 10.1152/ajpcell.00030.2016] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Accepted: 09/18/2016] [Indexed: 11/22/2022]
Abstract
In the shark rectal gland (SRG), apical chloride secretion through CFTR channels is electrically coupled to a basolateral K+ conductance whose type and molecular identity are unknown. We performed studies in the perfused SRG with 17 K+ channel inhibitors to begin this search. Maximal chloride secretion was markedly inhibited by low-perfusate pH, bupivicaine, anandamide, zinc, quinidine, and quinine, consistent with the properties of an acid-sensitive, four-transmembrane, two-pore-domain K+ channel (4TM-K2P). Using PCR with degenerate primers to this family, we identified a TASK-1 fragment in shark rectal gland, brain, gill, and kidney. Using 5' and 3' rapid amplification of cDNA ends PCR and genomic walking, we cloned the full-length shark gene (1,282 bp), whose open reading frame encodes a protein of 375 amino acids that was 80% identical to the human TASK-1 protein. We expressed shark and human TASK-1 cRNA in Xenopus oocytes and characterized these channels using two-electrode voltage clamping. Both channels had identical current-voltage relationships (outward rectifying) and a reversal potential of -90 mV. Both were inhibited by quinine, bupivicaine, and acidic pH. The pKa for current inhibition was 7.75 for shark TASK-1 vs. 7.37 for human TASK-1, values similar to the arterial pH for each species. We identified this protein in SRG by Western blot and confocal immunofluorescent microscopy and detected the protein in SRG and human airway cells. Shark TASK-1 is the major K+ channel coupled to chloride secretion in the SRG, is the oldest 4TM 2P family member identified, and is the first TASK-1 channel identified to play a role in setting the driving force for chloride secretion in epithelia. The detection of this potassium channel in mammalian lung tissue has implications for human biology and disease.
Collapse
Affiliation(s)
- Connor J Telles
- Nephrology Division, Department of Medicine, Yale University School of Medicine, New Haven, Connecticut
- Mount Desert Island Biological Laboratory, Salisbury Cove, Maine
| | - Sarah E Decker
- Nephrology Division, Department of Medicine, Yale University School of Medicine, New Haven, Connecticut
- Mount Desert Island Biological Laboratory, Salisbury Cove, Maine
| | - William W Motley
- Nephrology Division, Department of Medicine, Yale University School of Medicine, New Haven, Connecticut
- Mount Desert Island Biological Laboratory, Salisbury Cove, Maine
| | - Alexander W Peters
- Nephrology Division, Department of Medicine, Yale University School of Medicine, New Haven, Connecticut
- Mount Desert Island Biological Laboratory, Salisbury Cove, Maine
| | - Ali Poyan Mehr
- Nephrology Division, Department of Medicine, Yale University School of Medicine, New Haven, Connecticut
- Mount Desert Island Biological Laboratory, Salisbury Cove, Maine
| | - Raymond A Frizzell
- Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania; and
- Mount Desert Island Biological Laboratory, Salisbury Cove, Maine
| | - John N Forrest
- Nephrology Division, Department of Medicine, Yale University School of Medicine, New Haven, Connecticut;
- Mount Desert Island Biological Laboratory, Salisbury Cove, Maine
| |
Collapse
|
74
|
Ma L, Chung WK. The role of genetics in pulmonary arterial hypertension. J Pathol 2016; 241:273-280. [PMID: 27770446 DOI: 10.1002/path.4833] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Revised: 09/30/2016] [Accepted: 10/17/2016] [Indexed: 12/14/2022]
Abstract
Group 1 pulmonary hypertension or pulmonary arterial hypertension (PAH) is a rare disease characterized by proliferation and occlusion of small pulmonary arterioles, leading to progressive elevation of pulmonary artery pressure and pulmonary vascular resistance, and right ventricular failure. Historically, it has been associated with a high mortality rate, although, over the last decade, treatment has improved survival. PAH includes idiopathic PAH (IPAH), heritable PAH (HPAH), and PAH associated with certain medical conditions. The aetiology of PAH is heterogeneous, and genetics play an important role in some cases. Mutations in BMPR2, encoding bone morphogenetic protein receptor 2, a member of the transforming growth factor-β superfamily of receptors, have been identified in 70% of cases of HPAH, and in 10-40% of cases of IPAH. Other genetic causes of PAH include mutations in the genes encoding activin receptor-like type 1, endoglin, SMAD9, caveolin 1, and potassium two-pore-domain channel subfamily K member 3. Mutations in the gene encoding T-box 4 have been identified in 10-30% of paediatric PAH patients, but rarely in adults with PAH. PAH in children is much more heterogeneous than in adults, and can be associated with several genetic syndromes, congenital heart disease, pulmonary disease, and vascular disease. In addition to rare mutations as a monogenic cause of HPAH, common variants in the gene encoding cerebellin 2 increase the risk of PAH by approximately two-fold. A PAH panel of genes is available for clinical testing, and should be considered for use in clinical management, especially for patients with a family history of PAH. Copyright © 2016 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Lijiang Ma
- Department of Pediatrics, Columbia University, New York, NY, USA
| | - Wendy K Chung
- Department of Pediatrics, Columbia University, New York, NY, USA.,Department of Medicine, Columbia University, New York, NY, USA
| |
Collapse
|
75
|
Therapeutic targeting of two-pore-domain potassium (K(2P)) channels in the cardiovascular system. Clin Sci (Lond) 2016; 130:643-50. [PMID: 26993052 DOI: 10.1042/cs20150533] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The improvement of treatment strategies in cardiovascular medicine is an ongoing process that requires constant optimization. The ability of a therapeutic intervention to prevent cardiovascular pathology largely depends on its capacity to suppress the underlying mechanisms. Attenuation or reversal of disease-specific pathways has emerged as a promising paradigm, providing a mechanistic rationale for patient-tailored therapy. Two-pore-domain K(+) (K(2P)) channels conduct outward K(+) currents that stabilize the resting membrane potential and facilitate action potential repolarization. K(2P) expression in the cardiovascular system and polymodal K2P current regulation suggest functional significance and potential therapeutic roles of the channels. Recent work has focused primarily on K(2P)1.1 [tandem of pore domains in a weak inwardly rectifying K(+) channel (TWIK)-1], K(2P)2.1 [TWIK-related K(+) channel (TREK)-1], and K(2P)3.1 [TWIK-related acid-sensitive K(+) channel (TASK)-1] channels and their role in heart and vessels. K(2P) currents have been implicated in atrial and ventricular arrhythmogenesis and in setting the vascular tone. Furthermore, the association of genetic alterations in K(2P)3.1 channels with atrial fibrillation, cardiac conduction disorders and pulmonary arterial hypertension demonstrates the relevance of the channels in cardiovascular disease. The function, regulation and clinical significance of cardiovascular K(2P) channels are summarized in the present review, and therapeutic options are emphasized.
Collapse
|
76
|
Schmidt C, Wiedmann F, Voigt N, Zhou XB, Heijman J, Lang S, Albert V, Kallenberger S, Ruhparwar A, Szabó G, Kallenbach K, Karck M, Borggrefe M, Biliczki P, Ehrlich JR, Baczkó I, Lugenbiel P, Schweizer PA, Donner BC, Katus HA, Dobrev D, Thomas D. Response to Letter Regarding Article, "Upregulation of K2P3.1 K+ Current Causes Action Potential Shortening in Patients With Chronic Atrial Fibrillation". Circulation 2016; 133:e440-1. [PMID: 26976923 DOI: 10.1161/circulationaha.115.020662] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Constanze Schmidt
- Department of Cardiology, University of Heidelberg, Heidelberg, Germany
| | - Felix Wiedmann
- Department of Cardiology, University of Heidelberg, Heidelberg, Germany
| | - Niels Voigt
- Institute of Pharmacology, West German Heart and Vascular Center, University Duisburg-Essen, Essen, Germany
| | - Xiao-Bo Zhou
- First Department of Medicine, University Medical Center Mannheim, Mannheim, Germany
| | - Jordi Heijman
- Department of Cardiology, Cardiovascular Research Institute Maastricht, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Siegfried Lang
- First Department of Medicine, University Medical Center Mannheim, Mannheim, Germany
| | - Virginia Albert
- Department of Cardiology, University of Heidelberg, Heidelberg, Germany
| | - Stefan Kallenberger
- Department for Bioinformatics and Functional Genomics, Division of Theoretical Bioinformatics, German Cancer Research Center (DKFZ), Institute for Pharmacy and Molecular Biotechnology (IPMB) and BioQuant, Heidelberg University, Heidelberg, Germany
| | - Arjang Ruhparwar
- Department of Cardiac Surgery, University Hospital Heidelberg, Heidelberg, Germany
| | - Gábor Szabó
- Department of Cardiac Surgery, University Hospital Heidelberg, Heidelberg, Germany
| | - Klaus Kallenbach
- Department of Cardiac Surgery, University Hospital Heidelberg, Heidelberg, Germany
| | - Matthias Karck
- Department of Cardiac Surgery, University Hospital Heidelberg, Heidelberg, Germany
| | - Martin Borggrefe
- First Department of Medicine, University Medical Center Mannheim, Mannheim, Germany
| | - Peter Biliczki
- Department of Cardiology, Internal Medicine III, Goethe University, Frankfurt, Germany
| | | | - István Baczkó
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, University of Szeged, Szeged, Hungary
| | - Patrick Lugenbiel
- Department of Cardiology, University of Heidelberg, Heidelberg, Germany
| | | | - Birgit C Donner
- Department of Cardiology, University of Basel Children's Hospital, Basel, Switzerland
| | - Hugo A Katus
- Department of Cardiology, University of Heidelberg, Heidelberg, Germany
| | - Dobromir Dobrev
- Institute of Pharmacology, West German Heart and Vascular Center, University Duisburg-Essen, Essen, Germany
| | - Dierk Thomas
- Department of Cardiology, University of Heidelberg, Heidelberg, Germany
| |
Collapse
|
77
|
Olschewski A, Chandran N, Olschewski H. Letter by Olschewski et al Regarding Article, "Upregulation of K2P3.1 K+ Current Causes Action Potential Shortening in Patients With Chronic Atrial Fibrillation". Circulation 2016; 133:e439. [PMID: 26976922 DOI: 10.1161/circulationaha.115.018800] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Andrea Olschewski
- Ludwig Boltzmann Institute for Lung Vascular Research, Graz, Austria
| | - Nagaraj Chandran
- Ludwig Boltzmann Institute for Lung Vascular Research, Graz, Austria
| | - Horst Olschewski
- Ludwig Boltzmann Institute for Lung Vascular Research, Graz, Austria
| |
Collapse
|
78
|
Antigny F, Hautefort A, Meloche J, Belacel-Ouari M, Manoury B, Rucker-Martin C, Péchoux C, Potus F, Nadeau V, Tremblay E, Ruffenach G, Bourgeois A, Dorfmüller P, Breuils-Bonnet S, Fadel E, Ranchoux B, Jourdon P, Girerd B, Montani D, Provencher S, Bonnet S, Simonneau G, Humbert M, Perros F. Potassium Channel Subfamily K Member 3 (KCNK3) Contributes to the Development of Pulmonary Arterial Hypertension. Circulation 2016; 133:1371-85. [PMID: 26912814 DOI: 10.1161/circulationaha.115.020951] [Citation(s) in RCA: 132] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Accepted: 02/12/2016] [Indexed: 11/16/2022]
Abstract
BACKGROUND Mutations in the KCNK3 gene have been identified in some patients suffering from heritable pulmonary arterial hypertension (PAH). KCNK3 encodes an outward rectifier K(+) channel, and each identified mutation leads to a loss of function. However, the pathophysiological role of potassium channel subfamily K member 3 (KCNK3) in PAH is unclear. We hypothesized that loss of function of KCNK3 is a hallmark of idiopathic and heritable PAH and contributes to dysfunction of pulmonary artery smooth muscle cells and pulmonary artery endothelial cells, leading to pulmonary artery remodeling: consequently, restoring KCNK3 function could alleviate experimental pulmonary hypertension (PH). METHODS AND RESULTS We demonstrated that KCNK3 expression and function were reduced in human PAH and in monocrotaline-induced PH in rats. Using a patch-clamp technique in freshly isolated (not cultured) pulmonary artery smooth muscle cells and pulmonary artery endothelial cells, we found that KCNK3 current decreased progressively during the development of monocrotaline-induced PH and correlated with plasma-membrane depolarization. We demonstrated that KCNK3 modulated pulmonary arterial tone. Long-term inhibition of KCNK3 in rats induced distal neomuscularization and early hemodynamic signs of PH, which were related to exaggerated proliferation of pulmonary artery endothelial cells, pulmonary artery smooth muscle cell, adventitial fibroblasts, and pulmonary and systemic inflammation. Lastly, in vivo pharmacological activation of KCNK3 significantly reversed monocrotaline-induced PH in rats. CONCLUSIONS In PAH and experimental PH, KCNK3 expression and activity are strongly reduced in pulmonary artery smooth muscle cells and endothelial cells. KCNK3 inhibition promoted increased proliferation, vasoconstriction, and inflammation. In vivo pharmacological activation of KCNK3 alleviated monocrotaline-induced PH, thus demonstrating that loss of KCNK3 is a key event in PAH pathogenesis and thus could be therapeutically targeted.
Collapse
Affiliation(s)
- Fabrice Antigny
- From Université Paris-Sud, Faculté de Médecine, Kremlin-Bicêtre, France (F.A., A.H., C.R.-M., P.D., E.F., B.R., P.J., B.G., D.M., G.S., M.H., F.P.); AP-HP, Centre de Référence de l'Hypertension Pulmonaire Sévère, Département Hospitalo-Universitaire Thorax Innovation, Service de Pneumologie et Réanimation Respiratoire, Hôpital de Bicêtre, Le Kremlin-Bicêtre, France (F.A., A.H., C.R.-M., P.D., E.F., B.R., P.J., B.G., D.M., G.S., M.H., F. Perros); UMRS 999, INSERM and Université Paris-Sud, Laboratoire d'Excellence en Recherche sur le Médicament et l'Innovation Thérapeutique, Centre Chirurgical Marie Lannelongue, Le Plessis Robinson, France (F.A., A.H., C.R.-M., P.D., E.F., B.R., P.J., B.G., D.M., G.S., M.H., F. Perros); Inserm, UMR S1180, Faculté de Pharmacie, Université Paris Sud, Laboratoire d'Excellence en Recherche sur le Médicament et l'Innovation Thérapeutique, Département Hospitalo-Universitaire TORINO, Châtenay-Malabry, France (M.B.-O., B.M.); Pulmonary Hypertension Research Group, Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec, Université Laval, Québec, QC, Canada (J.M., F. Potus, V.N., E.T., G.R., A.B., S.B.-B., S.P., S.B., F. Perros); INRA, UMR1313 Génétique Animale Biologie Intégrative, Equipe Plateforme MET-MIMA2-78352 Jouy-en-Josas, France (C.P.); and Service de Chirurgie Thoracique, Centre Chirurgical Marie Lannelongue, Le Plessis-Robinson, France (E.F.).
| | - Aurélie Hautefort
- From Université Paris-Sud, Faculté de Médecine, Kremlin-Bicêtre, France (F.A., A.H., C.R.-M., P.D., E.F., B.R., P.J., B.G., D.M., G.S., M.H., F.P.); AP-HP, Centre de Référence de l'Hypertension Pulmonaire Sévère, Département Hospitalo-Universitaire Thorax Innovation, Service de Pneumologie et Réanimation Respiratoire, Hôpital de Bicêtre, Le Kremlin-Bicêtre, France (F.A., A.H., C.R.-M., P.D., E.F., B.R., P.J., B.G., D.M., G.S., M.H., F. Perros); UMRS 999, INSERM and Université Paris-Sud, Laboratoire d'Excellence en Recherche sur le Médicament et l'Innovation Thérapeutique, Centre Chirurgical Marie Lannelongue, Le Plessis Robinson, France (F.A., A.H., C.R.-M., P.D., E.F., B.R., P.J., B.G., D.M., G.S., M.H., F. Perros); Inserm, UMR S1180, Faculté de Pharmacie, Université Paris Sud, Laboratoire d'Excellence en Recherche sur le Médicament et l'Innovation Thérapeutique, Département Hospitalo-Universitaire TORINO, Châtenay-Malabry, France (M.B.-O., B.M.); Pulmonary Hypertension Research Group, Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec, Université Laval, Québec, QC, Canada (J.M., F. Potus, V.N., E.T., G.R., A.B., S.B.-B., S.P., S.B., F. Perros); INRA, UMR1313 Génétique Animale Biologie Intégrative, Equipe Plateforme MET-MIMA2-78352 Jouy-en-Josas, France (C.P.); and Service de Chirurgie Thoracique, Centre Chirurgical Marie Lannelongue, Le Plessis-Robinson, France (E.F.)
| | - Jolyane Meloche
- From Université Paris-Sud, Faculté de Médecine, Kremlin-Bicêtre, France (F.A., A.H., C.R.-M., P.D., E.F., B.R., P.J., B.G., D.M., G.S., M.H., F.P.); AP-HP, Centre de Référence de l'Hypertension Pulmonaire Sévère, Département Hospitalo-Universitaire Thorax Innovation, Service de Pneumologie et Réanimation Respiratoire, Hôpital de Bicêtre, Le Kremlin-Bicêtre, France (F.A., A.H., C.R.-M., P.D., E.F., B.R., P.J., B.G., D.M., G.S., M.H., F. Perros); UMRS 999, INSERM and Université Paris-Sud, Laboratoire d'Excellence en Recherche sur le Médicament et l'Innovation Thérapeutique, Centre Chirurgical Marie Lannelongue, Le Plessis Robinson, France (F.A., A.H., C.R.-M., P.D., E.F., B.R., P.J., B.G., D.M., G.S., M.H., F. Perros); Inserm, UMR S1180, Faculté de Pharmacie, Université Paris Sud, Laboratoire d'Excellence en Recherche sur le Médicament et l'Innovation Thérapeutique, Département Hospitalo-Universitaire TORINO, Châtenay-Malabry, France (M.B.-O., B.M.); Pulmonary Hypertension Research Group, Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec, Université Laval, Québec, QC, Canada (J.M., F. Potus, V.N., E.T., G.R., A.B., S.B.-B., S.P., S.B., F. Perros); INRA, UMR1313 Génétique Animale Biologie Intégrative, Equipe Plateforme MET-MIMA2-78352 Jouy-en-Josas, France (C.P.); and Service de Chirurgie Thoracique, Centre Chirurgical Marie Lannelongue, Le Plessis-Robinson, France (E.F.)
| | - Milia Belacel-Ouari
- From Université Paris-Sud, Faculté de Médecine, Kremlin-Bicêtre, France (F.A., A.H., C.R.-M., P.D., E.F., B.R., P.J., B.G., D.M., G.S., M.H., F.P.); AP-HP, Centre de Référence de l'Hypertension Pulmonaire Sévère, Département Hospitalo-Universitaire Thorax Innovation, Service de Pneumologie et Réanimation Respiratoire, Hôpital de Bicêtre, Le Kremlin-Bicêtre, France (F.A., A.H., C.R.-M., P.D., E.F., B.R., P.J., B.G., D.M., G.S., M.H., F. Perros); UMRS 999, INSERM and Université Paris-Sud, Laboratoire d'Excellence en Recherche sur le Médicament et l'Innovation Thérapeutique, Centre Chirurgical Marie Lannelongue, Le Plessis Robinson, France (F.A., A.H., C.R.-M., P.D., E.F., B.R., P.J., B.G., D.M., G.S., M.H., F. Perros); Inserm, UMR S1180, Faculté de Pharmacie, Université Paris Sud, Laboratoire d'Excellence en Recherche sur le Médicament et l'Innovation Thérapeutique, Département Hospitalo-Universitaire TORINO, Châtenay-Malabry, France (M.B.-O., B.M.); Pulmonary Hypertension Research Group, Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec, Université Laval, Québec, QC, Canada (J.M., F. Potus, V.N., E.T., G.R., A.B., S.B.-B., S.P., S.B., F. Perros); INRA, UMR1313 Génétique Animale Biologie Intégrative, Equipe Plateforme MET-MIMA2-78352 Jouy-en-Josas, France (C.P.); and Service de Chirurgie Thoracique, Centre Chirurgical Marie Lannelongue, Le Plessis-Robinson, France (E.F.)
| | - Boris Manoury
- From Université Paris-Sud, Faculté de Médecine, Kremlin-Bicêtre, France (F.A., A.H., C.R.-M., P.D., E.F., B.R., P.J., B.G., D.M., G.S., M.H., F.P.); AP-HP, Centre de Référence de l'Hypertension Pulmonaire Sévère, Département Hospitalo-Universitaire Thorax Innovation, Service de Pneumologie et Réanimation Respiratoire, Hôpital de Bicêtre, Le Kremlin-Bicêtre, France (F.A., A.H., C.R.-M., P.D., E.F., B.R., P.J., B.G., D.M., G.S., M.H., F. Perros); UMRS 999, INSERM and Université Paris-Sud, Laboratoire d'Excellence en Recherche sur le Médicament et l'Innovation Thérapeutique, Centre Chirurgical Marie Lannelongue, Le Plessis Robinson, France (F.A., A.H., C.R.-M., P.D., E.F., B.R., P.J., B.G., D.M., G.S., M.H., F. Perros); Inserm, UMR S1180, Faculté de Pharmacie, Université Paris Sud, Laboratoire d'Excellence en Recherche sur le Médicament et l'Innovation Thérapeutique, Département Hospitalo-Universitaire TORINO, Châtenay-Malabry, France (M.B.-O., B.M.); Pulmonary Hypertension Research Group, Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec, Université Laval, Québec, QC, Canada (J.M., F. Potus, V.N., E.T., G.R., A.B., S.B.-B., S.P., S.B., F. Perros); INRA, UMR1313 Génétique Animale Biologie Intégrative, Equipe Plateforme MET-MIMA2-78352 Jouy-en-Josas, France (C.P.); and Service de Chirurgie Thoracique, Centre Chirurgical Marie Lannelongue, Le Plessis-Robinson, France (E.F.)
| | - Catherine Rucker-Martin
- From Université Paris-Sud, Faculté de Médecine, Kremlin-Bicêtre, France (F.A., A.H., C.R.-M., P.D., E.F., B.R., P.J., B.G., D.M., G.S., M.H., F.P.); AP-HP, Centre de Référence de l'Hypertension Pulmonaire Sévère, Département Hospitalo-Universitaire Thorax Innovation, Service de Pneumologie et Réanimation Respiratoire, Hôpital de Bicêtre, Le Kremlin-Bicêtre, France (F.A., A.H., C.R.-M., P.D., E.F., B.R., P.J., B.G., D.M., G.S., M.H., F. Perros); UMRS 999, INSERM and Université Paris-Sud, Laboratoire d'Excellence en Recherche sur le Médicament et l'Innovation Thérapeutique, Centre Chirurgical Marie Lannelongue, Le Plessis Robinson, France (F.A., A.H., C.R.-M., P.D., E.F., B.R., P.J., B.G., D.M., G.S., M.H., F. Perros); Inserm, UMR S1180, Faculté de Pharmacie, Université Paris Sud, Laboratoire d'Excellence en Recherche sur le Médicament et l'Innovation Thérapeutique, Département Hospitalo-Universitaire TORINO, Châtenay-Malabry, France (M.B.-O., B.M.); Pulmonary Hypertension Research Group, Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec, Université Laval, Québec, QC, Canada (J.M., F. Potus, V.N., E.T., G.R., A.B., S.B.-B., S.P., S.B., F. Perros); INRA, UMR1313 Génétique Animale Biologie Intégrative, Equipe Plateforme MET-MIMA2-78352 Jouy-en-Josas, France (C.P.); and Service de Chirurgie Thoracique, Centre Chirurgical Marie Lannelongue, Le Plessis-Robinson, France (E.F.)
| | - Christine Péchoux
- From Université Paris-Sud, Faculté de Médecine, Kremlin-Bicêtre, France (F.A., A.H., C.R.-M., P.D., E.F., B.R., P.J., B.G., D.M., G.S., M.H., F.P.); AP-HP, Centre de Référence de l'Hypertension Pulmonaire Sévère, Département Hospitalo-Universitaire Thorax Innovation, Service de Pneumologie et Réanimation Respiratoire, Hôpital de Bicêtre, Le Kremlin-Bicêtre, France (F.A., A.H., C.R.-M., P.D., E.F., B.R., P.J., B.G., D.M., G.S., M.H., F. Perros); UMRS 999, INSERM and Université Paris-Sud, Laboratoire d'Excellence en Recherche sur le Médicament et l'Innovation Thérapeutique, Centre Chirurgical Marie Lannelongue, Le Plessis Robinson, France (F.A., A.H., C.R.-M., P.D., E.F., B.R., P.J., B.G., D.M., G.S., M.H., F. Perros); Inserm, UMR S1180, Faculté de Pharmacie, Université Paris Sud, Laboratoire d'Excellence en Recherche sur le Médicament et l'Innovation Thérapeutique, Département Hospitalo-Universitaire TORINO, Châtenay-Malabry, France (M.B.-O., B.M.); Pulmonary Hypertension Research Group, Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec, Université Laval, Québec, QC, Canada (J.M., F. Potus, V.N., E.T., G.R., A.B., S.B.-B., S.P., S.B., F. Perros); INRA, UMR1313 Génétique Animale Biologie Intégrative, Equipe Plateforme MET-MIMA2-78352 Jouy-en-Josas, France (C.P.); and Service de Chirurgie Thoracique, Centre Chirurgical Marie Lannelongue, Le Plessis-Robinson, France (E.F.)
| | - François Potus
- From Université Paris-Sud, Faculté de Médecine, Kremlin-Bicêtre, France (F.A., A.H., C.R.-M., P.D., E.F., B.R., P.J., B.G., D.M., G.S., M.H., F.P.); AP-HP, Centre de Référence de l'Hypertension Pulmonaire Sévère, Département Hospitalo-Universitaire Thorax Innovation, Service de Pneumologie et Réanimation Respiratoire, Hôpital de Bicêtre, Le Kremlin-Bicêtre, France (F.A., A.H., C.R.-M., P.D., E.F., B.R., P.J., B.G., D.M., G.S., M.H., F. Perros); UMRS 999, INSERM and Université Paris-Sud, Laboratoire d'Excellence en Recherche sur le Médicament et l'Innovation Thérapeutique, Centre Chirurgical Marie Lannelongue, Le Plessis Robinson, France (F.A., A.H., C.R.-M., P.D., E.F., B.R., P.J., B.G., D.M., G.S., M.H., F. Perros); Inserm, UMR S1180, Faculté de Pharmacie, Université Paris Sud, Laboratoire d'Excellence en Recherche sur le Médicament et l'Innovation Thérapeutique, Département Hospitalo-Universitaire TORINO, Châtenay-Malabry, France (M.B.-O., B.M.); Pulmonary Hypertension Research Group, Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec, Université Laval, Québec, QC, Canada (J.M., F. Potus, V.N., E.T., G.R., A.B., S.B.-B., S.P., S.B., F. Perros); INRA, UMR1313 Génétique Animale Biologie Intégrative, Equipe Plateforme MET-MIMA2-78352 Jouy-en-Josas, France (C.P.); and Service de Chirurgie Thoracique, Centre Chirurgical Marie Lannelongue, Le Plessis-Robinson, France (E.F.)
| | - Valérie Nadeau
- From Université Paris-Sud, Faculté de Médecine, Kremlin-Bicêtre, France (F.A., A.H., C.R.-M., P.D., E.F., B.R., P.J., B.G., D.M., G.S., M.H., F.P.); AP-HP, Centre de Référence de l'Hypertension Pulmonaire Sévère, Département Hospitalo-Universitaire Thorax Innovation, Service de Pneumologie et Réanimation Respiratoire, Hôpital de Bicêtre, Le Kremlin-Bicêtre, France (F.A., A.H., C.R.-M., P.D., E.F., B.R., P.J., B.G., D.M., G.S., M.H., F. Perros); UMRS 999, INSERM and Université Paris-Sud, Laboratoire d'Excellence en Recherche sur le Médicament et l'Innovation Thérapeutique, Centre Chirurgical Marie Lannelongue, Le Plessis Robinson, France (F.A., A.H., C.R.-M., P.D., E.F., B.R., P.J., B.G., D.M., G.S., M.H., F. Perros); Inserm, UMR S1180, Faculté de Pharmacie, Université Paris Sud, Laboratoire d'Excellence en Recherche sur le Médicament et l'Innovation Thérapeutique, Département Hospitalo-Universitaire TORINO, Châtenay-Malabry, France (M.B.-O., B.M.); Pulmonary Hypertension Research Group, Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec, Université Laval, Québec, QC, Canada (J.M., F. Potus, V.N., E.T., G.R., A.B., S.B.-B., S.P., S.B., F. Perros); INRA, UMR1313 Génétique Animale Biologie Intégrative, Equipe Plateforme MET-MIMA2-78352 Jouy-en-Josas, France (C.P.); and Service de Chirurgie Thoracique, Centre Chirurgical Marie Lannelongue, Le Plessis-Robinson, France (E.F.)
| | - Eve Tremblay
- From Université Paris-Sud, Faculté de Médecine, Kremlin-Bicêtre, France (F.A., A.H., C.R.-M., P.D., E.F., B.R., P.J., B.G., D.M., G.S., M.H., F.P.); AP-HP, Centre de Référence de l'Hypertension Pulmonaire Sévère, Département Hospitalo-Universitaire Thorax Innovation, Service de Pneumologie et Réanimation Respiratoire, Hôpital de Bicêtre, Le Kremlin-Bicêtre, France (F.A., A.H., C.R.-M., P.D., E.F., B.R., P.J., B.G., D.M., G.S., M.H., F. Perros); UMRS 999, INSERM and Université Paris-Sud, Laboratoire d'Excellence en Recherche sur le Médicament et l'Innovation Thérapeutique, Centre Chirurgical Marie Lannelongue, Le Plessis Robinson, France (F.A., A.H., C.R.-M., P.D., E.F., B.R., P.J., B.G., D.M., G.S., M.H., F. Perros); Inserm, UMR S1180, Faculté de Pharmacie, Université Paris Sud, Laboratoire d'Excellence en Recherche sur le Médicament et l'Innovation Thérapeutique, Département Hospitalo-Universitaire TORINO, Châtenay-Malabry, France (M.B.-O., B.M.); Pulmonary Hypertension Research Group, Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec, Université Laval, Québec, QC, Canada (J.M., F. Potus, V.N., E.T., G.R., A.B., S.B.-B., S.P., S.B., F. Perros); INRA, UMR1313 Génétique Animale Biologie Intégrative, Equipe Plateforme MET-MIMA2-78352 Jouy-en-Josas, France (C.P.); and Service de Chirurgie Thoracique, Centre Chirurgical Marie Lannelongue, Le Plessis-Robinson, France (E.F.)
| | - Grégoire Ruffenach
- From Université Paris-Sud, Faculté de Médecine, Kremlin-Bicêtre, France (F.A., A.H., C.R.-M., P.D., E.F., B.R., P.J., B.G., D.M., G.S., M.H., F.P.); AP-HP, Centre de Référence de l'Hypertension Pulmonaire Sévère, Département Hospitalo-Universitaire Thorax Innovation, Service de Pneumologie et Réanimation Respiratoire, Hôpital de Bicêtre, Le Kremlin-Bicêtre, France (F.A., A.H., C.R.-M., P.D., E.F., B.R., P.J., B.G., D.M., G.S., M.H., F. Perros); UMRS 999, INSERM and Université Paris-Sud, Laboratoire d'Excellence en Recherche sur le Médicament et l'Innovation Thérapeutique, Centre Chirurgical Marie Lannelongue, Le Plessis Robinson, France (F.A., A.H., C.R.-M., P.D., E.F., B.R., P.J., B.G., D.M., G.S., M.H., F. Perros); Inserm, UMR S1180, Faculté de Pharmacie, Université Paris Sud, Laboratoire d'Excellence en Recherche sur le Médicament et l'Innovation Thérapeutique, Département Hospitalo-Universitaire TORINO, Châtenay-Malabry, France (M.B.-O., B.M.); Pulmonary Hypertension Research Group, Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec, Université Laval, Québec, QC, Canada (J.M., F. Potus, V.N., E.T., G.R., A.B., S.B.-B., S.P., S.B., F. Perros); INRA, UMR1313 Génétique Animale Biologie Intégrative, Equipe Plateforme MET-MIMA2-78352 Jouy-en-Josas, France (C.P.); and Service de Chirurgie Thoracique, Centre Chirurgical Marie Lannelongue, Le Plessis-Robinson, France (E.F.)
| | - Alice Bourgeois
- From Université Paris-Sud, Faculté de Médecine, Kremlin-Bicêtre, France (F.A., A.H., C.R.-M., P.D., E.F., B.R., P.J., B.G., D.M., G.S., M.H., F.P.); AP-HP, Centre de Référence de l'Hypertension Pulmonaire Sévère, Département Hospitalo-Universitaire Thorax Innovation, Service de Pneumologie et Réanimation Respiratoire, Hôpital de Bicêtre, Le Kremlin-Bicêtre, France (F.A., A.H., C.R.-M., P.D., E.F., B.R., P.J., B.G., D.M., G.S., M.H., F. Perros); UMRS 999, INSERM and Université Paris-Sud, Laboratoire d'Excellence en Recherche sur le Médicament et l'Innovation Thérapeutique, Centre Chirurgical Marie Lannelongue, Le Plessis Robinson, France (F.A., A.H., C.R.-M., P.D., E.F., B.R., P.J., B.G., D.M., G.S., M.H., F. Perros); Inserm, UMR S1180, Faculté de Pharmacie, Université Paris Sud, Laboratoire d'Excellence en Recherche sur le Médicament et l'Innovation Thérapeutique, Département Hospitalo-Universitaire TORINO, Châtenay-Malabry, France (M.B.-O., B.M.); Pulmonary Hypertension Research Group, Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec, Université Laval, Québec, QC, Canada (J.M., F. Potus, V.N., E.T., G.R., A.B., S.B.-B., S.P., S.B., F. Perros); INRA, UMR1313 Génétique Animale Biologie Intégrative, Equipe Plateforme MET-MIMA2-78352 Jouy-en-Josas, France (C.P.); and Service de Chirurgie Thoracique, Centre Chirurgical Marie Lannelongue, Le Plessis-Robinson, France (E.F.)
| | - Peter Dorfmüller
- From Université Paris-Sud, Faculté de Médecine, Kremlin-Bicêtre, France (F.A., A.H., C.R.-M., P.D., E.F., B.R., P.J., B.G., D.M., G.S., M.H., F.P.); AP-HP, Centre de Référence de l'Hypertension Pulmonaire Sévère, Département Hospitalo-Universitaire Thorax Innovation, Service de Pneumologie et Réanimation Respiratoire, Hôpital de Bicêtre, Le Kremlin-Bicêtre, France (F.A., A.H., C.R.-M., P.D., E.F., B.R., P.J., B.G., D.M., G.S., M.H., F. Perros); UMRS 999, INSERM and Université Paris-Sud, Laboratoire d'Excellence en Recherche sur le Médicament et l'Innovation Thérapeutique, Centre Chirurgical Marie Lannelongue, Le Plessis Robinson, France (F.A., A.H., C.R.-M., P.D., E.F., B.R., P.J., B.G., D.M., G.S., M.H., F. Perros); Inserm, UMR S1180, Faculté de Pharmacie, Université Paris Sud, Laboratoire d'Excellence en Recherche sur le Médicament et l'Innovation Thérapeutique, Département Hospitalo-Universitaire TORINO, Châtenay-Malabry, France (M.B.-O., B.M.); Pulmonary Hypertension Research Group, Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec, Université Laval, Québec, QC, Canada (J.M., F. Potus, V.N., E.T., G.R., A.B., S.B.-B., S.P., S.B., F. Perros); INRA, UMR1313 Génétique Animale Biologie Intégrative, Equipe Plateforme MET-MIMA2-78352 Jouy-en-Josas, France (C.P.); and Service de Chirurgie Thoracique, Centre Chirurgical Marie Lannelongue, Le Plessis-Robinson, France (E.F.)
| | - Sandra Breuils-Bonnet
- From Université Paris-Sud, Faculté de Médecine, Kremlin-Bicêtre, France (F.A., A.H., C.R.-M., P.D., E.F., B.R., P.J., B.G., D.M., G.S., M.H., F.P.); AP-HP, Centre de Référence de l'Hypertension Pulmonaire Sévère, Département Hospitalo-Universitaire Thorax Innovation, Service de Pneumologie et Réanimation Respiratoire, Hôpital de Bicêtre, Le Kremlin-Bicêtre, France (F.A., A.H., C.R.-M., P.D., E.F., B.R., P.J., B.G., D.M., G.S., M.H., F. Perros); UMRS 999, INSERM and Université Paris-Sud, Laboratoire d'Excellence en Recherche sur le Médicament et l'Innovation Thérapeutique, Centre Chirurgical Marie Lannelongue, Le Plessis Robinson, France (F.A., A.H., C.R.-M., P.D., E.F., B.R., P.J., B.G., D.M., G.S., M.H., F. Perros); Inserm, UMR S1180, Faculté de Pharmacie, Université Paris Sud, Laboratoire d'Excellence en Recherche sur le Médicament et l'Innovation Thérapeutique, Département Hospitalo-Universitaire TORINO, Châtenay-Malabry, France (M.B.-O., B.M.); Pulmonary Hypertension Research Group, Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec, Université Laval, Québec, QC, Canada (J.M., F. Potus, V.N., E.T., G.R., A.B., S.B.-B., S.P., S.B., F. Perros); INRA, UMR1313 Génétique Animale Biologie Intégrative, Equipe Plateforme MET-MIMA2-78352 Jouy-en-Josas, France (C.P.); and Service de Chirurgie Thoracique, Centre Chirurgical Marie Lannelongue, Le Plessis-Robinson, France (E.F.)
| | - Elie Fadel
- From Université Paris-Sud, Faculté de Médecine, Kremlin-Bicêtre, France (F.A., A.H., C.R.-M., P.D., E.F., B.R., P.J., B.G., D.M., G.S., M.H., F.P.); AP-HP, Centre de Référence de l'Hypertension Pulmonaire Sévère, Département Hospitalo-Universitaire Thorax Innovation, Service de Pneumologie et Réanimation Respiratoire, Hôpital de Bicêtre, Le Kremlin-Bicêtre, France (F.A., A.H., C.R.-M., P.D., E.F., B.R., P.J., B.G., D.M., G.S., M.H., F. Perros); UMRS 999, INSERM and Université Paris-Sud, Laboratoire d'Excellence en Recherche sur le Médicament et l'Innovation Thérapeutique, Centre Chirurgical Marie Lannelongue, Le Plessis Robinson, France (F.A., A.H., C.R.-M., P.D., E.F., B.R., P.J., B.G., D.M., G.S., M.H., F. Perros); Inserm, UMR S1180, Faculté de Pharmacie, Université Paris Sud, Laboratoire d'Excellence en Recherche sur le Médicament et l'Innovation Thérapeutique, Département Hospitalo-Universitaire TORINO, Châtenay-Malabry, France (M.B.-O., B.M.); Pulmonary Hypertension Research Group, Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec, Université Laval, Québec, QC, Canada (J.M., F. Potus, V.N., E.T., G.R., A.B., S.B.-B., S.P., S.B., F. Perros); INRA, UMR1313 Génétique Animale Biologie Intégrative, Equipe Plateforme MET-MIMA2-78352 Jouy-en-Josas, France (C.P.); and Service de Chirurgie Thoracique, Centre Chirurgical Marie Lannelongue, Le Plessis-Robinson, France (E.F.)
| | - Benoît Ranchoux
- From Université Paris-Sud, Faculté de Médecine, Kremlin-Bicêtre, France (F.A., A.H., C.R.-M., P.D., E.F., B.R., P.J., B.G., D.M., G.S., M.H., F.P.); AP-HP, Centre de Référence de l'Hypertension Pulmonaire Sévère, Département Hospitalo-Universitaire Thorax Innovation, Service de Pneumologie et Réanimation Respiratoire, Hôpital de Bicêtre, Le Kremlin-Bicêtre, France (F.A., A.H., C.R.-M., P.D., E.F., B.R., P.J., B.G., D.M., G.S., M.H., F. Perros); UMRS 999, INSERM and Université Paris-Sud, Laboratoire d'Excellence en Recherche sur le Médicament et l'Innovation Thérapeutique, Centre Chirurgical Marie Lannelongue, Le Plessis Robinson, France (F.A., A.H., C.R.-M., P.D., E.F., B.R., P.J., B.G., D.M., G.S., M.H., F. Perros); Inserm, UMR S1180, Faculté de Pharmacie, Université Paris Sud, Laboratoire d'Excellence en Recherche sur le Médicament et l'Innovation Thérapeutique, Département Hospitalo-Universitaire TORINO, Châtenay-Malabry, France (M.B.-O., B.M.); Pulmonary Hypertension Research Group, Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec, Université Laval, Québec, QC, Canada (J.M., F. Potus, V.N., E.T., G.R., A.B., S.B.-B., S.P., S.B., F. Perros); INRA, UMR1313 Génétique Animale Biologie Intégrative, Equipe Plateforme MET-MIMA2-78352 Jouy-en-Josas, France (C.P.); and Service de Chirurgie Thoracique, Centre Chirurgical Marie Lannelongue, Le Plessis-Robinson, France (E.F.)
| | - Philippe Jourdon
- From Université Paris-Sud, Faculté de Médecine, Kremlin-Bicêtre, France (F.A., A.H., C.R.-M., P.D., E.F., B.R., P.J., B.G., D.M., G.S., M.H., F.P.); AP-HP, Centre de Référence de l'Hypertension Pulmonaire Sévère, Département Hospitalo-Universitaire Thorax Innovation, Service de Pneumologie et Réanimation Respiratoire, Hôpital de Bicêtre, Le Kremlin-Bicêtre, France (F.A., A.H., C.R.-M., P.D., E.F., B.R., P.J., B.G., D.M., G.S., M.H., F. Perros); UMRS 999, INSERM and Université Paris-Sud, Laboratoire d'Excellence en Recherche sur le Médicament et l'Innovation Thérapeutique, Centre Chirurgical Marie Lannelongue, Le Plessis Robinson, France (F.A., A.H., C.R.-M., P.D., E.F., B.R., P.J., B.G., D.M., G.S., M.H., F. Perros); Inserm, UMR S1180, Faculté de Pharmacie, Université Paris Sud, Laboratoire d'Excellence en Recherche sur le Médicament et l'Innovation Thérapeutique, Département Hospitalo-Universitaire TORINO, Châtenay-Malabry, France (M.B.-O., B.M.); Pulmonary Hypertension Research Group, Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec, Université Laval, Québec, QC, Canada (J.M., F. Potus, V.N., E.T., G.R., A.B., S.B.-B., S.P., S.B., F. Perros); INRA, UMR1313 Génétique Animale Biologie Intégrative, Equipe Plateforme MET-MIMA2-78352 Jouy-en-Josas, France (C.P.); and Service de Chirurgie Thoracique, Centre Chirurgical Marie Lannelongue, Le Plessis-Robinson, France (E.F.)
| | - Barbara Girerd
- From Université Paris-Sud, Faculté de Médecine, Kremlin-Bicêtre, France (F.A., A.H., C.R.-M., P.D., E.F., B.R., P.J., B.G., D.M., G.S., M.H., F.P.); AP-HP, Centre de Référence de l'Hypertension Pulmonaire Sévère, Département Hospitalo-Universitaire Thorax Innovation, Service de Pneumologie et Réanimation Respiratoire, Hôpital de Bicêtre, Le Kremlin-Bicêtre, France (F.A., A.H., C.R.-M., P.D., E.F., B.R., P.J., B.G., D.M., G.S., M.H., F. Perros); UMRS 999, INSERM and Université Paris-Sud, Laboratoire d'Excellence en Recherche sur le Médicament et l'Innovation Thérapeutique, Centre Chirurgical Marie Lannelongue, Le Plessis Robinson, France (F.A., A.H., C.R.-M., P.D., E.F., B.R., P.J., B.G., D.M., G.S., M.H., F. Perros); Inserm, UMR S1180, Faculté de Pharmacie, Université Paris Sud, Laboratoire d'Excellence en Recherche sur le Médicament et l'Innovation Thérapeutique, Département Hospitalo-Universitaire TORINO, Châtenay-Malabry, France (M.B.-O., B.M.); Pulmonary Hypertension Research Group, Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec, Université Laval, Québec, QC, Canada (J.M., F. Potus, V.N., E.T., G.R., A.B., S.B.-B., S.P., S.B., F. Perros); INRA, UMR1313 Génétique Animale Biologie Intégrative, Equipe Plateforme MET-MIMA2-78352 Jouy-en-Josas, France (C.P.); and Service de Chirurgie Thoracique, Centre Chirurgical Marie Lannelongue, Le Plessis-Robinson, France (E.F.)
| | - David Montani
- From Université Paris-Sud, Faculté de Médecine, Kremlin-Bicêtre, France (F.A., A.H., C.R.-M., P.D., E.F., B.R., P.J., B.G., D.M., G.S., M.H., F.P.); AP-HP, Centre de Référence de l'Hypertension Pulmonaire Sévère, Département Hospitalo-Universitaire Thorax Innovation, Service de Pneumologie et Réanimation Respiratoire, Hôpital de Bicêtre, Le Kremlin-Bicêtre, France (F.A., A.H., C.R.-M., P.D., E.F., B.R., P.J., B.G., D.M., G.S., M.H., F. Perros); UMRS 999, INSERM and Université Paris-Sud, Laboratoire d'Excellence en Recherche sur le Médicament et l'Innovation Thérapeutique, Centre Chirurgical Marie Lannelongue, Le Plessis Robinson, France (F.A., A.H., C.R.-M., P.D., E.F., B.R., P.J., B.G., D.M., G.S., M.H., F. Perros); Inserm, UMR S1180, Faculté de Pharmacie, Université Paris Sud, Laboratoire d'Excellence en Recherche sur le Médicament et l'Innovation Thérapeutique, Département Hospitalo-Universitaire TORINO, Châtenay-Malabry, France (M.B.-O., B.M.); Pulmonary Hypertension Research Group, Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec, Université Laval, Québec, QC, Canada (J.M., F. Potus, V.N., E.T., G.R., A.B., S.B.-B., S.P., S.B., F. Perros); INRA, UMR1313 Génétique Animale Biologie Intégrative, Equipe Plateforme MET-MIMA2-78352 Jouy-en-Josas, France (C.P.); and Service de Chirurgie Thoracique, Centre Chirurgical Marie Lannelongue, Le Plessis-Robinson, France (E.F.)
| | - Steeve Provencher
- From Université Paris-Sud, Faculté de Médecine, Kremlin-Bicêtre, France (F.A., A.H., C.R.-M., P.D., E.F., B.R., P.J., B.G., D.M., G.S., M.H., F.P.); AP-HP, Centre de Référence de l'Hypertension Pulmonaire Sévère, Département Hospitalo-Universitaire Thorax Innovation, Service de Pneumologie et Réanimation Respiratoire, Hôpital de Bicêtre, Le Kremlin-Bicêtre, France (F.A., A.H., C.R.-M., P.D., E.F., B.R., P.J., B.G., D.M., G.S., M.H., F. Perros); UMRS 999, INSERM and Université Paris-Sud, Laboratoire d'Excellence en Recherche sur le Médicament et l'Innovation Thérapeutique, Centre Chirurgical Marie Lannelongue, Le Plessis Robinson, France (F.A., A.H., C.R.-M., P.D., E.F., B.R., P.J., B.G., D.M., G.S., M.H., F. Perros); Inserm, UMR S1180, Faculté de Pharmacie, Université Paris Sud, Laboratoire d'Excellence en Recherche sur le Médicament et l'Innovation Thérapeutique, Département Hospitalo-Universitaire TORINO, Châtenay-Malabry, France (M.B.-O., B.M.); Pulmonary Hypertension Research Group, Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec, Université Laval, Québec, QC, Canada (J.M., F. Potus, V.N., E.T., G.R., A.B., S.B.-B., S.P., S.B., F. Perros); INRA, UMR1313 Génétique Animale Biologie Intégrative, Equipe Plateforme MET-MIMA2-78352 Jouy-en-Josas, France (C.P.); and Service de Chirurgie Thoracique, Centre Chirurgical Marie Lannelongue, Le Plessis-Robinson, France (E.F.)
| | - Sébastien Bonnet
- From Université Paris-Sud, Faculté de Médecine, Kremlin-Bicêtre, France (F.A., A.H., C.R.-M., P.D., E.F., B.R., P.J., B.G., D.M., G.S., M.H., F.P.); AP-HP, Centre de Référence de l'Hypertension Pulmonaire Sévère, Département Hospitalo-Universitaire Thorax Innovation, Service de Pneumologie et Réanimation Respiratoire, Hôpital de Bicêtre, Le Kremlin-Bicêtre, France (F.A., A.H., C.R.-M., P.D., E.F., B.R., P.J., B.G., D.M., G.S., M.H., F. Perros); UMRS 999, INSERM and Université Paris-Sud, Laboratoire d'Excellence en Recherche sur le Médicament et l'Innovation Thérapeutique, Centre Chirurgical Marie Lannelongue, Le Plessis Robinson, France (F.A., A.H., C.R.-M., P.D., E.F., B.R., P.J., B.G., D.M., G.S., M.H., F. Perros); Inserm, UMR S1180, Faculté de Pharmacie, Université Paris Sud, Laboratoire d'Excellence en Recherche sur le Médicament et l'Innovation Thérapeutique, Département Hospitalo-Universitaire TORINO, Châtenay-Malabry, France (M.B.-O., B.M.); Pulmonary Hypertension Research Group, Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec, Université Laval, Québec, QC, Canada (J.M., F. Potus, V.N., E.T., G.R., A.B., S.B.-B., S.P., S.B., F. Perros); INRA, UMR1313 Génétique Animale Biologie Intégrative, Equipe Plateforme MET-MIMA2-78352 Jouy-en-Josas, France (C.P.); and Service de Chirurgie Thoracique, Centre Chirurgical Marie Lannelongue, Le Plessis-Robinson, France (E.F.)
| | - Gérald Simonneau
- From Université Paris-Sud, Faculté de Médecine, Kremlin-Bicêtre, France (F.A., A.H., C.R.-M., P.D., E.F., B.R., P.J., B.G., D.M., G.S., M.H., F.P.); AP-HP, Centre de Référence de l'Hypertension Pulmonaire Sévère, Département Hospitalo-Universitaire Thorax Innovation, Service de Pneumologie et Réanimation Respiratoire, Hôpital de Bicêtre, Le Kremlin-Bicêtre, France (F.A., A.H., C.R.-M., P.D., E.F., B.R., P.J., B.G., D.M., G.S., M.H., F. Perros); UMRS 999, INSERM and Université Paris-Sud, Laboratoire d'Excellence en Recherche sur le Médicament et l'Innovation Thérapeutique, Centre Chirurgical Marie Lannelongue, Le Plessis Robinson, France (F.A., A.H., C.R.-M., P.D., E.F., B.R., P.J., B.G., D.M., G.S., M.H., F. Perros); Inserm, UMR S1180, Faculté de Pharmacie, Université Paris Sud, Laboratoire d'Excellence en Recherche sur le Médicament et l'Innovation Thérapeutique, Département Hospitalo-Universitaire TORINO, Châtenay-Malabry, France (M.B.-O., B.M.); Pulmonary Hypertension Research Group, Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec, Université Laval, Québec, QC, Canada (J.M., F. Potus, V.N., E.T., G.R., A.B., S.B.-B., S.P., S.B., F. Perros); INRA, UMR1313 Génétique Animale Biologie Intégrative, Equipe Plateforme MET-MIMA2-78352 Jouy-en-Josas, France (C.P.); and Service de Chirurgie Thoracique, Centre Chirurgical Marie Lannelongue, Le Plessis-Robinson, France (E.F.)
| | - Marc Humbert
- From Université Paris-Sud, Faculté de Médecine, Kremlin-Bicêtre, France (F.A., A.H., C.R.-M., P.D., E.F., B.R., P.J., B.G., D.M., G.S., M.H., F.P.); AP-HP, Centre de Référence de l'Hypertension Pulmonaire Sévère, Département Hospitalo-Universitaire Thorax Innovation, Service de Pneumologie et Réanimation Respiratoire, Hôpital de Bicêtre, Le Kremlin-Bicêtre, France (F.A., A.H., C.R.-M., P.D., E.F., B.R., P.J., B.G., D.M., G.S., M.H., F. Perros); UMRS 999, INSERM and Université Paris-Sud, Laboratoire d'Excellence en Recherche sur le Médicament et l'Innovation Thérapeutique, Centre Chirurgical Marie Lannelongue, Le Plessis Robinson, France (F.A., A.H., C.R.-M., P.D., E.F., B.R., P.J., B.G., D.M., G.S., M.H., F. Perros); Inserm, UMR S1180, Faculté de Pharmacie, Université Paris Sud, Laboratoire d'Excellence en Recherche sur le Médicament et l'Innovation Thérapeutique, Département Hospitalo-Universitaire TORINO, Châtenay-Malabry, France (M.B.-O., B.M.); Pulmonary Hypertension Research Group, Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec, Université Laval, Québec, QC, Canada (J.M., F. Potus, V.N., E.T., G.R., A.B., S.B.-B., S.P., S.B., F. Perros); INRA, UMR1313 Génétique Animale Biologie Intégrative, Equipe Plateforme MET-MIMA2-78352 Jouy-en-Josas, France (C.P.); and Service de Chirurgie Thoracique, Centre Chirurgical Marie Lannelongue, Le Plessis-Robinson, France (E.F.)
| | - Frédéric Perros
- From Université Paris-Sud, Faculté de Médecine, Kremlin-Bicêtre, France (F.A., A.H., C.R.-M., P.D., E.F., B.R., P.J., B.G., D.M., G.S., M.H., F.P.); AP-HP, Centre de Référence de l'Hypertension Pulmonaire Sévère, Département Hospitalo-Universitaire Thorax Innovation, Service de Pneumologie et Réanimation Respiratoire, Hôpital de Bicêtre, Le Kremlin-Bicêtre, France (F.A., A.H., C.R.-M., P.D., E.F., B.R., P.J., B.G., D.M., G.S., M.H., F. Perros); UMRS 999, INSERM and Université Paris-Sud, Laboratoire d'Excellence en Recherche sur le Médicament et l'Innovation Thérapeutique, Centre Chirurgical Marie Lannelongue, Le Plessis Robinson, France (F.A., A.H., C.R.-M., P.D., E.F., B.R., P.J., B.G., D.M., G.S., M.H., F. Perros); Inserm, UMR S1180, Faculté de Pharmacie, Université Paris Sud, Laboratoire d'Excellence en Recherche sur le Médicament et l'Innovation Thérapeutique, Département Hospitalo-Universitaire TORINO, Châtenay-Malabry, France (M.B.-O., B.M.); Pulmonary Hypertension Research Group, Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec, Université Laval, Québec, QC, Canada (J.M., F. Potus, V.N., E.T., G.R., A.B., S.B.-B., S.P., S.B., F. Perros); INRA, UMR1313 Génétique Animale Biologie Intégrative, Equipe Plateforme MET-MIMA2-78352 Jouy-en-Josas, France (C.P.); and Service de Chirurgie Thoracique, Centre Chirurgical Marie Lannelongue, Le Plessis-Robinson, France (E.F.)
| |
Collapse
|
79
|
Sommer N, Strielkov I, Pak O, Weissmann N. Oxygen sensing and signal transduction in hypoxic pulmonary vasoconstriction. Eur Respir J 2015; 47:288-303. [PMID: 26493804 DOI: 10.1183/13993003.00945-2015] [Citation(s) in RCA: 99] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Accepted: 08/24/2015] [Indexed: 01/17/2023]
Abstract
Hypoxic pulmonary vasoconstriction (HPV), also known as the von Euler-Liljestrand mechanism, is an essential response of the pulmonary vasculature to acute and sustained alveolar hypoxia. During local alveolar hypoxia, HPV matches perfusion to ventilation to maintain optimal arterial oxygenation. In contrast, during global alveolar hypoxia, HPV leads to pulmonary hypertension. The oxygen sensing and signal transduction machinery is located in the pulmonary arterial smooth muscle cells (PASMCs) of the pre-capillary vessels, albeit the physiological response may be modulated in vivo by the endothelium. While factors such as nitric oxide modulate HPV, reactive oxygen species (ROS) have been suggested to act as essential mediators in HPV. ROS may originate from mitochondria and/or NADPH oxidases but the exact oxygen sensing mechanisms, as well as the question of whether increased or decreased ROS cause HPV, are under debate. ROS may induce intracellular calcium increase and subsequent contraction of PASMCs via direct or indirect interactions with protein kinases, phospholipases, sarcoplasmic calcium channels, transient receptor potential channels, voltage-dependent potassium channels and L-type calcium channels, whose relevance may vary under different experimental conditions. Successful identification of factors regulating HPV may allow development of novel therapeutic approaches for conditions of disturbed HPV.
Collapse
Affiliation(s)
- Natascha Sommer
- Excellence Cluster Cardiopulmonary System, University of Giessen Lung Center, German Center for Lung Research (DZL), Justus-Liebig-University, Giessen, Germany
| | - Ievgen Strielkov
- Excellence Cluster Cardiopulmonary System, University of Giessen Lung Center, German Center for Lung Research (DZL), Justus-Liebig-University, Giessen, Germany
| | - Oleg Pak
- Excellence Cluster Cardiopulmonary System, University of Giessen Lung Center, German Center for Lung Research (DZL), Justus-Liebig-University, Giessen, Germany
| | - Norbert Weissmann
- Excellence Cluster Cardiopulmonary System, University of Giessen Lung Center, German Center for Lung Research (DZL), Justus-Liebig-University, Giessen, Germany
| |
Collapse
|
80
|
Boucherat O, Chabot S, Antigny F, Perros F, Provencher S, Bonnet S. Potassium channels in pulmonary arterial hypertension. Eur Respir J 2015; 46:1167-77. [PMID: 26341985 DOI: 10.1183/13993003.00798-2015] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2015] [Accepted: 07/09/2015] [Indexed: 12/15/2022]
Abstract
Pulmonary arterial hypertension (PAH) is a devastating cardiopulmonary disorder with various origins. All forms of PAH share a common pulmonary arteriopathy characterised by vasoconstriction, remodelling of the pre-capillary pulmonary vessel wall, and in situ thrombosis. Although the pathogenesis of PAH is recognised as a complex and multifactorial process, there is growing evidence that potassium channels dysfunction in pulmonary artery smooth muscle cells is a hallmark of PAH. Besides regulating many physiological functions, reduced potassium channels expression and/or activity have significant effects on PAH establishment and progression. This review describes the molecular mechanisms and physiological consequences of potassium channel modulation. Special emphasis is placed on KCNA5 (Kv1.5) and KCNK3 (TASK1), which are considered to play a central role in determining pulmonary vascular tone and may represent attractive therapeutic targets in the treatment of PAH.
Collapse
Affiliation(s)
- Olivier Boucherat
- Pulmonary Hypertension Research Group, Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec, Université Laval, Québec, QC, Canada
| | - Sophie Chabot
- Pulmonary Hypertension Research Group, Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec, Université Laval, Québec, QC, Canada
| | - Fabrice Antigny
- Pulmonary Hypertension Research Group, Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec, Université Laval, Québec, QC, Canada UMRS 999, INSERM and Univ. Paris-Sud, Laboratoire d'Excellence (LabEx) en Recherche sur le Médicament et l'Innovation Thérapeutique (LERMIT), Centre Chirurgical Marie Lannelongue, Le Plessis Robinson, France
| | - Frédéric Perros
- Pulmonary Hypertension Research Group, Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec, Université Laval, Québec, QC, Canada UMRS 999, INSERM and Univ. Paris-Sud, Laboratoire d'Excellence (LabEx) en Recherche sur le Médicament et l'Innovation Thérapeutique (LERMIT), Centre Chirurgical Marie Lannelongue, Le Plessis Robinson, France
| | - Steeve Provencher
- Pulmonary Hypertension Research Group, Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec, Université Laval, Québec, QC, Canada
| | - Sébastien Bonnet
- Pulmonary Hypertension Research Group, Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec, Université Laval, Québec, QC, Canada
| |
Collapse
|
81
|
Chokshi RH, Larsen AT, Bhayana B, Cotten JF. Breathing Stimulant Compounds Inhibit TASK-3 Potassium Channel Function Likely by Binding at a Common Site in the Channel Pore. Mol Pharmacol 2015; 88:926-34. [PMID: 26268529 DOI: 10.1124/mol.115.100107] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2015] [Accepted: 08/11/2015] [Indexed: 11/22/2022] Open
Abstract
Compounds PKTHPP (1-{1-[6-(biphenyl-4-ylcarbonyl)-5,6,7,8-tetrahydropyrido[4,3-d]-pyrimidin-4-yl]piperidin-4-yl}propan-1-one), A1899 (2''-[(4-methoxybenzoylamino)methyl]biphenyl-2-carboxylic acid 2,4-difluorobenzylamide), and doxapram inhibit TASK-1 (KCNK3) and TASK-3 (KCNK9) tandem pore (K2P) potassium channel function and stimulate breathing. To better understand the molecular mechanism(s) of action of these drugs, we undertook studies to identify amino acid residues in the TASK-3 protein that mediate this inhibition. Guided by homology modeling and molecular docking, we hypothesized that PKTHPP and A1899 bind in the TASK-3 intracellular pore. To test our hypothesis, we mutated each residue in or near the predicted PKTHPP and A1899 binding site (residues 118-128 and 228-248), individually, to a negatively charged aspartate. We quantified each mutation's effect on TASK-3 potassium channel concentration response to PKTHPP. Studies were conducted on TASK-3 transiently expressed in Fischer rat thyroid epithelial monolayers; channel function was measured in an Ussing chamber. TASK-3 pore mutations at residues 122 (L122D, E, or K) and 236 (G236D) caused the IC50 of PKTHPP to increase more than 1000-fold. TASK-3 mutants L122D, G236D, L239D, and V242D were resistant to block by PKTHPP, A1899, and doxapram. Our data are consistent with a model in which breathing stimulant compounds PKTHPP, A1899, and doxapram inhibit TASK-3 function by binding at a common site within the channel intracellular pore region, although binding outside the channel pore cannot yet be excluded.
Collapse
Affiliation(s)
- Rikki H Chokshi
- Department of Anesthesia, Critical Care, and Pain Medicine (R.H.C., J.F.C.), Center for Computational and Integrative Biology, and Department of Molecular Biology (A.T.L.), and Department of Dermatology (B.B.), Massachusetts General Hospital, Boston, Massachusetts
| | - Aaron T Larsen
- Department of Anesthesia, Critical Care, and Pain Medicine (R.H.C., J.F.C.), Center for Computational and Integrative Biology, and Department of Molecular Biology (A.T.L.), and Department of Dermatology (B.B.), Massachusetts General Hospital, Boston, Massachusetts
| | - Brijesh Bhayana
- Department of Anesthesia, Critical Care, and Pain Medicine (R.H.C., J.F.C.), Center for Computational and Integrative Biology, and Department of Molecular Biology (A.T.L.), and Department of Dermatology (B.B.), Massachusetts General Hospital, Boston, Massachusetts
| | - Joseph F Cotten
- Department of Anesthesia, Critical Care, and Pain Medicine (R.H.C., J.F.C.), Center for Computational and Integrative Biology, and Department of Molecular Biology (A.T.L.), and Department of Dermatology (B.B.), Massachusetts General Hospital, Boston, Massachusetts
| |
Collapse
|
82
|
Abstract
PURPOSE OF REVIEW The identification of the genetic basis for heritable predisposition to pulmonary arterial hypertension (PAH) has altered the clinical and research landscape for PAH patients and their care providers. This review aims to describe the genetic discoveries and their impact on clinical medicine. RECENT FINDINGS Since the landmark discovery that bone morphogenetic protein receptor type II (BMPR2) mutations cause the majority of cases of familial PAH, investigators have discovered mutations in genes that cause PAH in families without BMPR2 mutations, including the type I receptor ACVRL1 and the type III receptor ENG (both associated with hereditary hemorrhagic telangiectasia), caveolin-1 (CAV1), and a gene (KCNK3) encoding a two-pore potassium channel. Mutations in these genes cause an autosomal-dominant predisposition to PAH in which a fraction of mutation carriers develop PAH (incomplete penetrance). In 2014, scientists discovered mutations in eukaryotic initiation factor 2 alpha kinase 4 (EIF2AK4) that cause pulmonary capillary hemangiomatosis and pulmonary veno-occlusive disease, an autosomal recessively inherited disorder. SUMMARY The discovery that some forms of pulmonary hypertension are heritable and can be genetically defined adds important opportunities for physicians to educate their patients and their families to understand the potential risks and benefits of genetic testing.
Collapse
Affiliation(s)
- D Hunter Best
- aDepartment of Pathology, University of Utah School of Medicine bARUP Laboratories, ARUP Institute for Clinical and Experimental Pathology, Salt Lake City, Utah cDepartment of Pediatrics, Vanderbilt University Medical Center, Nashville, Tennessee dDepartments of Pediatrics and Medicine, Columbia University Medical Center, New York, New York eDepartment of Medicine, Intermountain Medical Center, Murray fDepartment of Medicine, University of Utah School of Medicine, Salt Lake City, Utah, USA
| | | | | | | |
Collapse
|
83
|
Dadi PK, Luo B, Vierra NC, Jacobson DA. TASK-1 Potassium Channels Limit Pancreatic α-Cell Calcium Influx and Glucagon Secretion. MOLECULAR ENDOCRINOLOGY (BALTIMORE, MD.) 2015. [PMID: 25849724 DOI: 10.1210/me.2014‐1321] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Glucose regulation of pancreatic α-cell Ca(2+) entry through voltage-dependent Ca(2+) channels is essential for normal glucagon secretion and becomes defective during the pathogenesis of diabetes mellitus. The 2-pore domain K(+) channel, TWIK-related acid-sensitive K(+) channel 1 (TASK-1), is an important modulator of membrane voltage and Ca(2+) entry. However, its role in α-cells has not been determined. Therefore, we addressed how TASK-1 channels regulate α-cell electrical activity, Ca(2+) entry, and glucagon secretion. We find that TASK-1 channels expressed in human and rodent α-cells are blocked by the TASK-1 channel inhibitor A1899. Alpha-cell 2-pore domain K(+) currents were also significantly reduced after ablation of mouse α-cell TASK-1 channels. Inhibition of TASK-1 channels with A1899 caused plasma membrane potential depolarization in both human and mouse α-cells, which resulted in increased electrical excitability. Moreover, ablation of α-cell TASK-1 channels increased α-cell electrical excitability under elevated glucose (11 mM) conditions compared with control α-cells. This resulted in significantly elevated α-cell Ca(2+) influx when TASK-1 channels were inhibited in the presence of high glucose (14 mM). However, there was an insignificant change in α-cell Ca(2+) influx after TASK-1 inhibition in low glucose (1 mM). Glucagon secretion from mouse and human islets was also elevated specifically in high (11 mM) glucose after acute TASK-1 inhibition. Interestingly, mice deficient for α-cell TASK-1 showed improvements in both glucose inhibition of glucagon secretion and glucose tolerance, which resulted from the chronic loss of α-cell TASK-1 currents. Therefore, these data suggest an important role for TASK-1 channels in limiting α-cell excitability and glucagon secretion during glucose stimulation.
Collapse
Affiliation(s)
- Prasanna K Dadi
- Department of Molecular Physiology and Biophysics (P.K.D., N.C.V., D.A.J.), Vanderbilt University, Nashville, Tennessee 37232-0615; and University of Oklahoma College of Medicine (B.L.), Oklahoma City, Oklahoma 73104-5042
| | | | | | | |
Collapse
|
84
|
Dadi PK, Luo B, Vierra NC, Jacobson DA. TASK-1 Potassium Channels Limit Pancreatic α-Cell Calcium Influx and Glucagon Secretion. Mol Endocrinol 2015; 29:777-87. [PMID: 25849724 DOI: 10.1210/me.2014-1321] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Glucose regulation of pancreatic α-cell Ca(2+) entry through voltage-dependent Ca(2+) channels is essential for normal glucagon secretion and becomes defective during the pathogenesis of diabetes mellitus. The 2-pore domain K(+) channel, TWIK-related acid-sensitive K(+) channel 1 (TASK-1), is an important modulator of membrane voltage and Ca(2+) entry. However, its role in α-cells has not been determined. Therefore, we addressed how TASK-1 channels regulate α-cell electrical activity, Ca(2+) entry, and glucagon secretion. We find that TASK-1 channels expressed in human and rodent α-cells are blocked by the TASK-1 channel inhibitor A1899. Alpha-cell 2-pore domain K(+) currents were also significantly reduced after ablation of mouse α-cell TASK-1 channels. Inhibition of TASK-1 channels with A1899 caused plasma membrane potential depolarization in both human and mouse α-cells, which resulted in increased electrical excitability. Moreover, ablation of α-cell TASK-1 channels increased α-cell electrical excitability under elevated glucose (11 mM) conditions compared with control α-cells. This resulted in significantly elevated α-cell Ca(2+) influx when TASK-1 channels were inhibited in the presence of high glucose (14 mM). However, there was an insignificant change in α-cell Ca(2+) influx after TASK-1 inhibition in low glucose (1 mM). Glucagon secretion from mouse and human islets was also elevated specifically in high (11 mM) glucose after acute TASK-1 inhibition. Interestingly, mice deficient for α-cell TASK-1 showed improvements in both glucose inhibition of glucagon secretion and glucose tolerance, which resulted from the chronic loss of α-cell TASK-1 currents. Therefore, these data suggest an important role for TASK-1 channels in limiting α-cell excitability and glucagon secretion during glucose stimulation.
Collapse
Affiliation(s)
- Prasanna K Dadi
- Department of Molecular Physiology and Biophysics (P.K.D., N.C.V., D.A.J.), Vanderbilt University, Nashville, Tennessee 37232-0615; and University of Oklahoma College of Medicine (B.L.), Oklahoma City, Oklahoma 73104-5042
| | | | | | | |
Collapse
|
85
|
Lau EM, Humbert M. A Critical Appraisal of the Updated 2014 Nice Pulmonary Hypertension Classification System. Can J Cardiol 2015; 31:367-74. [DOI: 10.1016/j.cjca.2014.09.033] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2014] [Revised: 09/28/2014] [Accepted: 09/28/2014] [Indexed: 01/07/2023] Open
|
86
|
Humbert M, Lau EMT, Montani D, Jaïs X, Sitbon O, Simonneau G. Advances in therapeutic interventions for patients with pulmonary arterial hypertension. Circulation 2015; 130:2189-208. [PMID: 25602947 DOI: 10.1161/circulationaha.114.006974] [Citation(s) in RCA: 246] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Marc Humbert
- From the Université Paris-Sud, Le Kremlin-Bicêtre, France (M.H., D.M., X.J., O.S., G.S.); AP-HP, Service de Pneumologie, Centre de Référence de l'Hypertension Pulmonaire Sévère, DHU Thorax Innovation, Hôpital Bicêtre, Le Kremlin-Bicêtre, France (M.H., E.M.T.L., D.M., X.J., O.S., G.S.); INSERM UMR_S999, LabEx LERMIT, Centre Chirurgical Marie Lannelongue, Le Plessis Robinson, France (M.H., E.M.T.L., D.M., X.J., O.S., G.S.); and Sydney Medical School, University of Sydney, Camperdown, Australia (E.M.T.L.).
| | - Edmund M T Lau
- From the Université Paris-Sud, Le Kremlin-Bicêtre, France (M.H., D.M., X.J., O.S., G.S.); AP-HP, Service de Pneumologie, Centre de Référence de l'Hypertension Pulmonaire Sévère, DHU Thorax Innovation, Hôpital Bicêtre, Le Kremlin-Bicêtre, France (M.H., E.M.T.L., D.M., X.J., O.S., G.S.); INSERM UMR_S999, LabEx LERMIT, Centre Chirurgical Marie Lannelongue, Le Plessis Robinson, France (M.H., E.M.T.L., D.M., X.J., O.S., G.S.); and Sydney Medical School, University of Sydney, Camperdown, Australia (E.M.T.L.)
| | - David Montani
- From the Université Paris-Sud, Le Kremlin-Bicêtre, France (M.H., D.M., X.J., O.S., G.S.); AP-HP, Service de Pneumologie, Centre de Référence de l'Hypertension Pulmonaire Sévère, DHU Thorax Innovation, Hôpital Bicêtre, Le Kremlin-Bicêtre, France (M.H., E.M.T.L., D.M., X.J., O.S., G.S.); INSERM UMR_S999, LabEx LERMIT, Centre Chirurgical Marie Lannelongue, Le Plessis Robinson, France (M.H., E.M.T.L., D.M., X.J., O.S., G.S.); and Sydney Medical School, University of Sydney, Camperdown, Australia (E.M.T.L.)
| | - Xavier Jaïs
- From the Université Paris-Sud, Le Kremlin-Bicêtre, France (M.H., D.M., X.J., O.S., G.S.); AP-HP, Service de Pneumologie, Centre de Référence de l'Hypertension Pulmonaire Sévère, DHU Thorax Innovation, Hôpital Bicêtre, Le Kremlin-Bicêtre, France (M.H., E.M.T.L., D.M., X.J., O.S., G.S.); INSERM UMR_S999, LabEx LERMIT, Centre Chirurgical Marie Lannelongue, Le Plessis Robinson, France (M.H., E.M.T.L., D.M., X.J., O.S., G.S.); and Sydney Medical School, University of Sydney, Camperdown, Australia (E.M.T.L.)
| | - Oliver Sitbon
- From the Université Paris-Sud, Le Kremlin-Bicêtre, France (M.H., D.M., X.J., O.S., G.S.); AP-HP, Service de Pneumologie, Centre de Référence de l'Hypertension Pulmonaire Sévère, DHU Thorax Innovation, Hôpital Bicêtre, Le Kremlin-Bicêtre, France (M.H., E.M.T.L., D.M., X.J., O.S., G.S.); INSERM UMR_S999, LabEx LERMIT, Centre Chirurgical Marie Lannelongue, Le Plessis Robinson, France (M.H., E.M.T.L., D.M., X.J., O.S., G.S.); and Sydney Medical School, University of Sydney, Camperdown, Australia (E.M.T.L.)
| | - Gérald Simonneau
- From the Université Paris-Sud, Le Kremlin-Bicêtre, France (M.H., D.M., X.J., O.S., G.S.); AP-HP, Service de Pneumologie, Centre de Référence de l'Hypertension Pulmonaire Sévère, DHU Thorax Innovation, Hôpital Bicêtre, Le Kremlin-Bicêtre, France (M.H., E.M.T.L., D.M., X.J., O.S., G.S.); INSERM UMR_S999, LabEx LERMIT, Centre Chirurgical Marie Lannelongue, Le Plessis Robinson, France (M.H., E.M.T.L., D.M., X.J., O.S., G.S.); and Sydney Medical School, University of Sydney, Camperdown, Australia (E.M.T.L.)
| |
Collapse
|
87
|
Renigunta V, Schlichthörl G, Daut J. Much more than a leak: structure and function of K₂p-channels. Pflugers Arch 2015; 467:867-94. [PMID: 25791628 DOI: 10.1007/s00424-015-1703-7] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2015] [Accepted: 03/09/2015] [Indexed: 11/27/2022]
Abstract
Over the last decade, we have seen an enormous increase in the number of experimental studies on two-pore-domain potassium channels (K2P-channels). The collection of reviews and original articles compiled for this special issue of Pflügers Archiv aims to give an up-to-date summary of what is known about the physiology and pathophysiology of K2P-channels. This introductory overview briefly describes the structure of K2P-channels and their function in different organs. Its main aim is to provide some background information for the 19 reviews and original articles of this special issue of Pflügers Archiv. It is not intended to be a comprehensive review; instead, this introductory overview focuses on some unresolved questions and controversial issues, such as: Do K2P-channels display voltage-dependent gating? Do K2P-channels contribute to the generation of action potentials? What is the functional role of alternative translation initiation? Do K2P-channels have one or two or more gates? We come to the conclusion that we are just beginning to understand the extremely complex regulation of these fascinating channels, which are often inadequately described as 'leak channels'.
Collapse
Affiliation(s)
- Vijay Renigunta
- Institute of Physiology and Pathophysiology, Marburg University, 35037, Marburg, Germany
| | | | | |
Collapse
|
88
|
Veit F, Pak O, Brandes RP, Weissmann N. Hypoxia-dependent reactive oxygen species signaling in the pulmonary circulation: focus on ion channels. Antioxid Redox Signal 2015; 22:537-52. [PMID: 25545236 PMCID: PMC4322788 DOI: 10.1089/ars.2014.6234] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
SIGNIFICANCE An acute lack of oxygen in the lung causes hypoxic pulmonary vasoconstriction, which optimizes gas exchange. In contrast, chronic hypoxia triggers a pathological vascular remodeling causing pulmonary hypertension, and ischemia can cause vascular damage culminating in lung edema. RECENT ADVANCES Regulation of ion channel expression and gating by cellular redox state is a widely accepted mechanism; however, it remains a matter of debate whether an increase or a decrease in reactive oxygen species (ROS) occurs under hypoxic conditions. Ion channel redox regulation has been described in detail for some ion channels, such as Kv channels or TRPC6. However, in general, information on ion channel redox regulation remains scant. CRITICAL ISSUES AND FUTURE DIRECTIONS In addition to the debate of increased versus decreased ROS production during hypoxia, we aim here at describing and deciphering why different oxidants, under different conditions, can cause both activation and inhibition of channel activity. While the upstream pathways affecting channel gating are often well described, we need a better understanding of redox protein modifications to be able to determine the complexity of ion channel redox regulation. Against this background, we summarize the current knowledge on hypoxia-induced ROS-mediated ion channel signaling in the pulmonary circulation.
Collapse
Affiliation(s)
- Florian Veit
- 1 Excellence Cluster Cardiopulmonary System (ECCPS), Universities of Giessen and Marburg Lung Center (UGMLC), German Center for Lung Research (DZL) , Giessen, Germany
| | | | | | | |
Collapse
|
89
|
Abstract
SIGNIFICANCE The pulmonary circulation is a low-pressure, low-resistance, highly compliant vasculature. In contrast to the systemic circulation, it is not primarily regulated by a central nervous control mechanism. The regulation of resting membrane potential due to ion channels is of integral importance in the physiology and pathophysiology of the pulmonary vasculature. RECENT ADVANCES Redox-driven ion conductance changes initiated by direct oxidation, nitration, and S-nitrosylation of the cysteine thiols and indirect phosphorylation of the threonine and serine residues directly affect pulmonary vascular tone. CRITICAL ISSUES Molecular mechanisms of changes in ion channel conductance, especially the identification of the sites of action, are still not fully elucidated. FUTURE DIRECTIONS Further investigation of the interaction between redox status and ion channel gating, especially the physiological significance of S-glutathionylation and S-nitrosylation, could result in a better understanding of the physiological and pathophysiological importance of these mediators in general and the implications of such modifications in cellular functions and related diseases and their importance for targeted treatment strategies.
Collapse
Affiliation(s)
- Andrea Olschewski
- 1 Ludwig Boltzmann Institute for Lung Vascular Research , Graz, Austria
| | | |
Collapse
|
90
|
Sepsis varies arterial two-pore-domain potassium channel messenger RNA in mice. J Surg Res 2015; 193:816-24. [DOI: 10.1016/j.jss.2014.08.020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2014] [Revised: 08/09/2014] [Accepted: 08/13/2014] [Indexed: 11/21/2022]
|
91
|
TASK channels in arterial chemoreceptors and their role in oxygen and acid sensing. Pflugers Arch 2015; 467:1013-25. [PMID: 25623783 PMCID: PMC4428840 DOI: 10.1007/s00424-015-1689-1] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2014] [Revised: 01/06/2015] [Accepted: 01/07/2015] [Indexed: 01/05/2023]
Abstract
Arterial chemoreceptors play a vital role in cardiorespiratory control by providing the brain with information regarding blood oxygen, carbon dioxide, and pH. The main chemoreceptor, the carotid body, is composed of sensory (type 1) cells which respond to hypoxia or acidosis with a depolarising receptor potential which in turn activates voltage-gated calcium entry, neurosecretion and excitation of adjacent afferent nerves. The receptor potential is generated by inhibition of Twik-related acid-sensitive K(+) channel 1 and 3 (TASK1/TASK3) heterodimeric channels which normally maintain the cells' resting membrane potential. These channels are thought to be directly inhibited by acidosis. Oxygen sensitivity, however, probably derives from a metabolic signalling pathway. The carotid body, isolated type 1 cells, and all forms of TASK channel found in the type 1 cell, are highly sensitive to inhibitors of mitochondrial metabolism. Moreover, type1 cell TASK channels are activated by millimolar levels of MgATP. In addition to their role in the transduction of chemostimuli, type 1 cell TASK channels have also been implicated in the modulation of chemoreceptor function by a number of neurocrine/paracrine signalling molecules including adenosine, GABA, and serotonin. They may also be instrumental in mediating the depression of the acute hypoxic ventilatory response that occurs with some general anaesthetics. Modulation of TASK channel activity is therefore a key mechanism by which the excitability of chemoreceptors can be controlled. This is not only of physiological importance but may also offer a therapeutic strategy for the treatment of cardiorespiratory disorders that are associated with chemoreceptor dysfunction.
Collapse
|
92
|
Park SH, Chen WC, Esmaeil N, Lucas B, Marsh LM, Reibman J, Grunig G. Interleukin 13- and interleukin 17A-induced pulmonary hypertension phenotype due to inhalation of antigen and fine particles from air pollution. Pulm Circ 2015; 4:654-68. [PMID: 25610601 DOI: 10.1086/678511] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2014] [Accepted: 04/10/2014] [Indexed: 12/12/2022] Open
Abstract
Pulmonary hypertension has a marked detrimental effect on quality of life and life expectancy. In a mouse model of antigen-induced pulmonary arterial remodeling, we have recently shown that coexposure to urban ambient particulate matter (PM) significantly increased the thickening of the pulmonary arteries and also resulted in significantly increased right ventricular systolic pressures. Here we interrogate the mechanism and show that combined neutralization of interleukin 13 (IL-13) and IL-17A significantly ameliorated the increase in right ventricular systolic pressure, the circumferential muscularization of pulmonary arteries, and the molecular change in the right ventricle. Surprisingly, our data revealed a protective role of IL-17A for the antigen- and PM-induced severe thickening of pulmonary arteries. This protection was due to the inhibition of the effects of IL-13, which drove this response, and the expression of metalloelastase and resistin-like molecule α. However, the latter was redundant for the arterial thickening response. Anti-IL-13 exacerbated airway neutrophilia, which was due to a resulting excess effect of IL-17A, confirming concurrent cross inhibition of IL-13- and IL-17A-dependent responses in the lungs of animals exposed to antigen and PM. Our experiments also identified IL-13/IL-17A-independent molecular reprogramming in the lungs induced by exposure to antigen and PM, which indicates a risk for arterial remodeling and protection from arterial constriction. Our study points to IL-13- and IL-17A-coinduced inflammation as a new template for biomarkers and therapeutic targeting for the management of immune response-induced pulmonary hypertension.
Collapse
Affiliation(s)
- Sung-Hyun Park
- Department of Environmental Medicine, New York University School of Medicine, Tuxedo, New York, USA
| | - Wen-Chi Chen
- Department of Environmental Medicine, New York University School of Medicine, Tuxedo, New York, USA
| | - Nafiseh Esmaeil
- Department of Environmental Medicine, New York University School of Medicine, Tuxedo, New York, USA ; Current affiliation: Department of Immunology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Benjamin Lucas
- Department of Environmental Medicine, New York University School of Medicine, Tuxedo, New York, USA
| | - Leigh M Marsh
- Ludwig Boltzmann Institute for Lung Vascular Research, Graz, Austria
| | - Joan Reibman
- Department of Environmental Medicine, New York University School of Medicine, Tuxedo, New York, USA ; Pulmonary Medicine, Department of Medicine, New York University School of Medicine, New York, New York, USA
| | - Gabriele Grunig
- Department of Environmental Medicine, New York University School of Medicine, Tuxedo, New York, USA ; Pulmonary Medicine, Department of Medicine, New York University School of Medicine, New York, New York, USA
| |
Collapse
|
93
|
Braun G, Lengyel M, Enyedi P, Czirják G. Differential sensitivity of TREK-1, TREK-2 and TRAAK background potassium channels to the polycationic dye ruthenium red. Br J Pharmacol 2015; 172:1728-38. [PMID: 25409575 DOI: 10.1111/bph.13019] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2014] [Revised: 10/15/2014] [Accepted: 11/11/2014] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND AND PURPOSE Pharmacological separation of the background potassium currents of closely related K2P channels is a challenging problem. We previously demonstrated that ruthenium red (RR) inhibits TASK-3 (K2 P 9.1), but not TASK-1 (K2 P 3.1) channels. RR has been extensively used to distinguish between TASK currents in native cells. In the present study, we systematically investigate the RR sensitivity of a more comprehensive set of K2 P channels. EXPERIMENTAL APPROACH K(+) currents were measured by two-electrode voltage clamp in Xenopus oocytes and by whole-cell patch clamp in mouse dorsal root ganglion (DRG) neurons. KEY RESULTS RR differentiates between two closely related members of the TREK subfamily. TREK-2 (K2 P 10.1) proved to be highly sensitive to RR (IC50 = 0.2 μM), whereas TREK-1 (K2 P 2.1) was not affected by the compound. We identified aspartate 135 (D135) as the target of the inhibitor in mouse TREK-2c. D135 lines the wall of the extracellular ion pathway (EIP), a tunnel structure through the extracellular cap characteristic for K2 P channels. TREK-1 contains isoleucine in the corresponding position. The mutation of this isoleucine (I110D) rendered TREK-1 sensitive to RR. The third member of the TREK subfamily, TRAAK (K2 P 4.1) was more potently inhibited by ruthenium violet, a contaminant in some RR preparations, than by RR. DRG neurons predominantly express TREK-2 and RR-resistant TREK-1 and TRESK (K2 P 18.1) background K(+) channels. We detected the RR-sensitive leak K(+) current component in DRG neurons. CONCLUSIONS AND IMPLICATIONS We propose that RR may be useful for distinguishing TREK-2 (K2P 10.1) from TREK-1 (K2P 2.1) and other RR-resistant K2 P channels in native cells.
Collapse
Affiliation(s)
- G Braun
- Department of Physiology, Semmelweis University, Budapest, Hungary
| | | | | | | |
Collapse
|
94
|
Involvement of potassium channels in the progression of cancer to a more malignant phenotype. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2014; 1848:2477-92. [PMID: 25517985 DOI: 10.1016/j.bbamem.2014.12.008] [Citation(s) in RCA: 95] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2014] [Revised: 12/01/2014] [Accepted: 12/08/2014] [Indexed: 12/22/2022]
Abstract
Potassium channels are a diverse group of pore-forming transmembrane proteins that selectively facilitate potassium flow through an electrochemical gradient. They participate in the control of the membrane potential and cell excitability in addition to different cell functions such as cell volume regulation, proliferation, cell migration, angiogenesis as well as apoptosis. Because these physiological processes are essential for the correct cell function, K+ channels have been associated with a growing number of diseases including cancer. In fact, different K+ channel families such as the voltage-gated K+ channels, the ether à-go-go K+ channels, the two pore domain K+ channels and the Ca2+-activated K+ channels have been associated to tumor biology. Potassium channels have a role in neoplastic cell-cycle progression and their expression has been found abnormal in many types of tumors and cancer cells. In addition, the expression and activity of specific K+ channels have shown a significant correlation with the tumor malignancy grade. The aim of this overview is to summarize published data on K+ channels that exhibit oncogenic properties and have been linked to a more malignant cancer phenotype. This article is part of a Special Issue entitled: Membrane channels and transporters in cancers.
Collapse
|
95
|
Yoo HY, Park SJ, Kim HJ, Kim WK, Kim SJ. Integrative understanding of hypoxic pulmonary vasoconstriction using in vitro models: from ventilated/perfused lung to single arterial myocyte. Integr Med Res 2014; 3:180-188. [PMID: 28664095 PMCID: PMC5481745 DOI: 10.1016/j.imr.2014.08.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2014] [Revised: 08/27/2014] [Accepted: 08/27/2014] [Indexed: 10/25/2022] Open
Abstract
Contractile response of a pulmonary artery (PA) to hypoxia (hypoxic pulmonary vasoconstriction; HPV) is a unique physiological reaction. HPV is beneficial for the optimal distribution of blood flow to differentially ventilated alveolar regions in the lung, thereby preventing systemic hypoxemia. Numerous in vitro studies have been conducted to elucidate the mechanisms underlying HPV. These studies indicate that PA smooth muscle cells (PASMCs) sense lowers the oxygen partial pressure (PO2) and contract under hypoxia. As for the PO2-sensing molecules, a variety of ion channels in PASMCs had been suggested. Nonetheless, the modulator(s) of the ion channels alone cannot mimic HPV in the experiments using PA segments and/or isolated organs. We compared the hypoxic responses of PASMCs, PAs, lung slices, and total lungs using a variety of methods (e.g., patch-clamp technique, isometric contraction measurement, video analysis of precision-cut lung slices, and PA pressure measurement in ventilated/perfused lungs). In this review, the relevant results are compared to provide a comprehensive understanding of HPV. Integration of the influences from surrounding tissues including blood cells as well as the hypoxic regulation of ion channels in PASMCs are indispensable for insights into HPV and other related clinical conditions.
Collapse
Affiliation(s)
- Hae Young Yoo
- Red Cross College of Nursing, Chung-Ang University, Seoul, Korea
| | - Su Jung Park
- Department of Physiology, College of Medicine, Seoul National University, Seoul, Korea.,Department of Biomedical Sciences, College of Medicine, Seoul National University, Seoul, Korea.,Ischemic/Hypoxic Disease Institute, College of Medicine, Seoul National University, Seoul, Korea
| | - Hae Jin Kim
- Department of Physiology, College of Medicine, Seoul National University, Seoul, Korea.,Department of Biomedical Sciences, College of Medicine, Seoul National University, Seoul, Korea.,Ischemic/Hypoxic Disease Institute, College of Medicine, Seoul National University, Seoul, Korea
| | - Woo Kyung Kim
- Department of Internal Medicine and Channelopathy Research Institute (CRC), College of Medicine, Dongguk University, Goyang, Korea
| | - Sung Joon Kim
- Department of Physiology, College of Medicine, Seoul National University, Seoul, Korea.,Department of Biomedical Sciences, College of Medicine, Seoul National University, Seoul, Korea.,Ischemic/Hypoxic Disease Institute, College of Medicine, Seoul National University, Seoul, Korea
| |
Collapse
|
96
|
Borsotto M, Veyssiere J, Moha Ou Maati H, Devader C, Mazella J, Heurteaux C. Targeting two-pore domain K(+) channels TREK-1 and TASK-3 for the treatment of depression: a new therapeutic concept. Br J Pharmacol 2014; 172:771-84. [PMID: 25263033 DOI: 10.1111/bph.12953] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2014] [Revised: 08/20/2014] [Accepted: 09/22/2014] [Indexed: 12/17/2022] Open
Abstract
Depression is a disease that is particularly frequent, affecting up to 20% of the population in Western countries. The origins of this pathology involve multiple genes as well as environmental and developmental factors leading to a disorder that remains difficult to treat. Several therapies for depression have been developed and these mainly target monoamine neurotransmitters. However, these treatments are not only associated with numerous adverse effects, but they are also ineffective for more than one-third of patients. Therefore, the need to develop new concepts to treat depression is crucial. Recently, studies using knockout mouse models have provided evidence for a crucial role of two members of the two-pore domain potassium channel (K2P ) family, tandem P-domain weak inward rectifying K(+) (TWIK)-related K(+) channel 1 (TREK-1) and TWIK-related acid-sensitive K(+) channel 3 (TASK-3) in the pathophysiology of depression. It is believed that TREK-1 and TASK-3 antagonists could lead to the development of new antidepressants. Herein, we describe the discovery of spadin, a natural peptide released from the maturation of the neurotensin receptor-3 (also known as sortilin), which specifically blocks the activity of the TREK-1 channel and displays particular antidepressant properties, with a rapid onset of action and the absence of adverse effects. The development of such molecules may open a new era in the field of psychiatry.
Collapse
Affiliation(s)
- M Borsotto
- Institut de Pharmacologie Moléculaire et Cellulaire, Centre National de la Recherche Scientifique (CNRS) UMR 7275, Université Nice Sophia Antipolis, Valbonne, France
| | | | | | | | | | | |
Collapse
|
97
|
The role of acid-sensitive two-pore domain potassium channels in cardiac electrophysiology: focus on arrhythmias. Pflugers Arch 2014; 467:1055-67. [PMID: 25404566 DOI: 10.1007/s00424-014-1637-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2014] [Revised: 10/14/2014] [Accepted: 10/21/2014] [Indexed: 10/24/2022]
Abstract
The current kinetics of two-pore domain potassium (K2P) channels resemble those of the steady-state K(+) currents being active during the plateau phase of cardiac action potentials. Recent studies support that K2P channels contribute to these cardiac currents and thereby influence action potential duration in the heart. Ten of the 15 K2P channels present in the human genome are sensitive to variations of the extracellular and/or intracellular pH value. This review focuses on a set of K2P channels which are inhibited by extracellular protons, including the subgroup of tandem of P domains in a weak inward-rectifying K(+) (TWIK)-related acid-sensitive potassium (TASK) and TWIK-related alkaline-activated K(+) (TALK) channels. The role of TWIK-1 in the heart is also discussed since, after successful expression, an extracellular pH dependence, similar to that of TASK-1, was described as a hallmark of TWIK-1. The expression profile in cardiac tissue of different species and the functional data in the heart are summarized. The distinct role of the different acid-sensitive K2P channels in cardiac electrophysiology, inherited forms of arrhythmias and pharmacology, and their role as drug targets is currently emerging and is the subject of this review.
Collapse
|
98
|
Sedivy V, Joshi S, Ghaly Y, Mizera R, Zaloudikova M, Brennan S, Novotna J, Herget J, Gurney AM. Role of Kv7 channels in responses of the pulmonary circulation to hypoxia. Am J Physiol Lung Cell Mol Physiol 2014; 308:L48-57. [PMID: 25361569 PMCID: PMC4281702 DOI: 10.1152/ajplung.00362.2013] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Hypoxic pulmonary vasoconstriction (HPV) is a beneficial mechanism that diverts blood from hypoxic alveoli to better ventilated areas of the lung, but breathing hypoxic air causes the pulmonary circulation to become hypertensive. Responses to airway hypoxia are associated with depolarization of smooth muscle cells in the pulmonary arteries and reduced activity of K+ channels. As Kv7 channels have been proposed to play a key role in regulating the smooth muscle membrane potential, we investigated their involvement in the development of HPV and hypoxia-induced pulmonary hypertension. Vascular effects of the selective Kv7 blocker, linopirdine, and Kv7 activator, flupirtine, were investigated in isolated, saline-perfused lungs from rats maintained for 3–5 days in an isobaric hypoxic chamber (FiO2 = 0.1) or room air. Linopirdine increased vascular resistance in lungs from normoxic, but not hypoxic rats. This effect was associated with reduced mRNA expression of the Kv7.4 channel α-subunit in hypoxic arteries, whereas Kv7.1 and Kv7.5 were unaffected. Flupirtine had no effect in normoxic lungs but reduced vascular resistance in hypoxic lungs. Moreover, oral dosing with flupirtine (30 mg/kg/day) prevented short-term in vivo hypoxia from increasing pulmonary vascular resistance and sensitizing the arteries to acute hypoxia. These findings suggest a protective role for Kv7.4 channels in the pulmonary circulation, limiting its reactivity to pressor agents and preventing hypoxia-induced pulmonary hypertension. They also provide further support for the therapeutic potential of Kv7 activators in pulmonary vascular disease.
Collapse
Affiliation(s)
- Vojtech Sedivy
- Department of Physiology, Charles University - Second Faculty of Medicine, Prague, Czech Republic; Department of Paediatrics, Charles University - Second Faculty of Medicine and University Hospital Motol, Prague, Czech Republic; and
| | - Shreena Joshi
- Faculty of Life Sciences, University of Manchester, Manchester, United Kingdom
| | - Youssef Ghaly
- Department of Physiology, Charles University - Second Faculty of Medicine, Prague, Czech Republic
| | - Roman Mizera
- Department of Physiology, Charles University - Second Faculty of Medicine, Prague, Czech Republic
| | - Marie Zaloudikova
- Department of Pathophysiology, Charles University - Second Faculty of Medicine, Prague, Czech Republic
| | - Sean Brennan
- Faculty of Life Sciences, University of Manchester, Manchester, United Kingdom
| | - Jana Novotna
- Department of Biochemistry, Charles University - Second Faculty of Medicine, Prague, Czech Republic
| | - Jan Herget
- Department of Physiology, Charles University - Second Faculty of Medicine, Prague, Czech Republic
| | - Alison M Gurney
- Faculty of Life Sciences, University of Manchester, Manchester, United Kingdom
| |
Collapse
|
99
|
Gashouta MA, Humbert M, Hassoun PM. Update in systemic sclerosis-associated pulmonary arterial hypertension. Presse Med 2014; 43:e293-304. [DOI: 10.1016/j.lpm.2014.06.007] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2014] [Accepted: 06/18/2014] [Indexed: 01/08/2023] Open
|
100
|
Dadi PK, Vierra NC, Jacobson DA. Pancreatic β-cell-specific ablation of TASK-1 channels augments glucose-stimulated calcium entry and insulin secretion, improving glucose tolerance. Endocrinology 2014; 155:3757-68. [PMID: 24932805 PMCID: PMC4164933 DOI: 10.1210/en.2013-2051] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Calcium entry through voltage-dependent Ca(2+) channels (VDCCs) is required for pancreatic β-cell insulin secretion. The 2-pore-domain acid-sensitive potassium channel (TASK-1) regulates neuronal excitability and VDCC activation by hyperpolarizing the plasma membrane potential (Δψp); however, a role for pancreatic β-cell TASK-1 channels is unknown. Here we examined the influence of TASK-1 channel activity on the β-cell Δψp and insulin secretion during secretagogue stimulation. TASK-1 channels were found to be highly expressed in human and rodent islets and localized to the plasma membrane of β-cells. TASK-1-like currents of mouse and human β-cells were blocked by the potent TASK-1 channel inhibitor, A1899 (250nM). Although inhibition of TASK-1 currents did not influence the β-cell Δψp in the presence of low (2mM) glucose, A1899 significantly enhanced glucose-stimulated (14mM) Δψp depolarization of human and mouse β-cells. TASK-1 inhibition also resulted in greater secretagogue-stimulated Ca(2+) influx in both human and mouse islets. Moreover, conditional ablation of mouse β-cell TASK-1 channels reduced K2P currents, increased glucose-stimulated Δψp depolarization, and augmented secretagogue-stimulated Ca(2+) influx. The Δψp depolarization caused by TASK-1 inhibition resulted in a transient increase in glucose-stimulated mouse β-cell action potential (AP) firing frequency. However, secretagogue-stimulated β-cell AP duration eventually increased in the presence of A1899 as well as in β-cells without TASK-1, causing a decrease in AP firing frequency. Ablation or inhibition of mouse β-cell TASK-1 channels also significantly enhanced glucose-stimulated insulin secretion, which improved glucose tolerance. Conversely, TASK-1 ablation did not perturb β-cell Δψp, Ca(2+) influx, or insulin secretion under low-glucose conditions (2mM). These results reveal a glucose-dependent role for β-cell TASK-1 channels of limiting glucose-stimulated Δψp depolarization and insulin secretion, which modulates glucose homeostasis.
Collapse
Affiliation(s)
- Prasanna K Dadi
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, Tennessee 37232
| | | | | |
Collapse
|