51
|
Abstract
Background A growing body of literature suggests the cell–intrinsic activity of Atf6α during ER stress responses has implications for tissue cell number during growth and development, as well as in adult biology and tumorigenesis [1]. This concept is important, linking the cellular processes of secretory protein synthesis and endoplasmic reticulum stress response with functional tissue capacity and organ size. However, the field contains conflicting observations, especially notable in secretory cell types like the pancreatic beta cell. Scope of review Here we summarize current knowledge of the basic biology of Atf6α, along with the pleiotropic roles Atf6α plays in cell life and death decisions and possible explanations for conflicting observations. We include studies investigating the roles of Atf6α in cell survival, death and proliferation using well-controlled methodology and specific validated outcome measures, with a focus on endocrine and metabolic tissues when information was available. Major conclusions The net outcome of Atf6α on cell survival and cell death depends on cell type and growth conditions, the presence and degree of ER stress, and the duration and intensity of Atf6α activation. It is unquestioned that Atf6α activity influences the cell fate decision between survival and death, although opposite directions of this outcome are reported in different contexts. Atf6α can also trigger cell cycle activity to expand tissue cell number through proliferation. Much work remains to be done to clarify the many gaps in understanding in this important emerging field.
Collapse
Affiliation(s)
- Rohit B Sharma
- Diabetes Center of Excellence, Department of Medicine, University of Massachusetts Medical School, Worcester, MA, USA
| | - Jarin T Snyder
- Diabetes Center of Excellence, Department of Medicine, University of Massachusetts Medical School, Worcester, MA, USA
| | - Laura C Alonso
- Diabetes Center of Excellence, Department of Medicine, University of Massachusetts Medical School, Worcester, MA, USA.
| |
Collapse
|
52
|
Lai L, Liu Y, Liu Y, Zhang N, Cao S, Zhang X, Wu D. Role of endoplasmic reticulum oxidase 1α in H9C2 cardiomyocytes following hypoxia/reoxygenation injury. Mol Med Rep 2020; 22:1420-1428. [PMID: 32626998 PMCID: PMC7339728 DOI: 10.3892/mmr.2020.11217] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2019] [Accepted: 03/30/2020] [Indexed: 01/04/2023] Open
Abstract
Endoplasmic reticulum (ER) oxidase 1α (ERO1α) is a glycosylated flavoenzyme that is located on the luminal side of the ER membrane, which serves an important role in catalyzing the formation of protein disulfide bonds and ER redox homeostasis. However, the role of ERO1α in myocardial hypoxia/reoxygenation (H/R) injury remains largely unknown. In the present study, ERO1α expression levels in H9C2 cardiomyocytes increased following H/R, reaching their highest levels following 3 h of hypoxia and 6 h of reoxygenation. In addition, H/R induced apoptosis, and significantly increased expression levels of ER stress (ERS) markers 78 kDa glucose-regulated protein and C/EBP homologous protein. Moreover, the genetic knockdown of ERO1α using short hairpin RNA suppressed cell apoptosis, caspase-3 activity, expression levels of cleaved caspase-12 and cytochrome c in the cytoplasm. Overall, this suggested that ERO1α knockdown may protect against H/R injury. The ERS activator tunicamycin (TM) was used to counteract the ERO1α-induced reduction in ERS; however, the percentage of apoptotic cells and the level of mitochondrial damage did not change. In conclusion, the results from the present study suggested that ERO1α knockdown may protect H9C2 cardiomyocytes from H/R injury through inhibiting intracellular ROS production and increasing intracellular levels of Ca2+, suggesting that ERO1α may serve an important role in H/R.
Collapse
Affiliation(s)
- Lina Lai
- Department of Pharmacology, Changzhi Medical College, Changzhi, Shanxi 046000, P.R. China
| | - Yue Liu
- Department of Clinical Medicine, Changzhi Medical College, Changzhi, Shanxi 046000, P.R. China
| | - Yuanyuan Liu
- Department of Clinical Medicine, Changzhi Medical College, Changzhi, Shanxi 046000, P.R. China
| | - Ni Zhang
- Department of Clinical Medicine, Changzhi Medical College, Changzhi, Shanxi 046000, P.R. China
| | - Shilu Cao
- Department of Clinical Medicine, Changzhi Medical College, Changzhi, Shanxi 046000, P.R. China
| | - Xiaojing Zhang
- Department of Pharmacology, Changzhi Medical College, Changzhi, Shanxi 046000, P.R. China
| | - Di Wu
- Department of Surgery, University of Virginia, Charlottesville, VA 22908, USA
| |
Collapse
|
53
|
Hatami S, White CW, Qi X, Buchko M, Ondrus M, Kinnear A, Himmat S, Sergi C, Nagendran J, Freed DH. Immunity and Stress Responses Are Induced During Ex Situ Heart Perfusion. Circ Heart Fail 2020; 13:e006552. [PMID: 32498623 DOI: 10.1161/circheartfailure.119.006552] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
BACKGROUND Ex situ heart perfusion (ESHP) preserves the donated heart in a perfused, beating condition preventing cold storage-related ischemia and provides a platform to evaluate myocardial viability during preservation. However, myocardial function declines gradually during ESHP. Extracorporeal circulation systems are associated with the induction of systemic inflammatory and stress responses. Our aim was to evaluate the incidence of inflammation and induction of endoplasmic reticulum stress responses during an extended period of ESHP. METHODS Cardiac function, myocardial tissue injury, markers of inflammation, oxidative stress, and endoplasmic reticulum stress were assessed in healthy pig hearts, perfused for 12 hours either in nonworking mode (non-WM=7) or working mode (WM, n=6). RESULTS Cardiac function declined during ESHP but was significantly better preserved in the hearts perfused in WM (median 11-hour cardiac index/1-hour cardiac index: WM=27% versus non-WM=9.5%, P=0.022). Myocardial markers of endoplasmic reticulum stress were expressed higher in ESHP hearts compared with in vivo samples. The proinflammatory cytokines and oxidized low-density lipoprotein significantly increased in the perfusate throughout the perfusion in both perfusion groups. The left ventricular expression of the cytokines and malondialdehyde was induced in non-WM, whereas it was not different between WM and in vivo. CONCLUSIONS Myocardial function declines during ESHP regardless of perfusion mode. However, ESHP in WM may lead to superior preservation of myocardial function and viability. Both inflammation and endoplasmic reticulum stress responses are significantly induced during ESHP and may contribute to the myocardial functional decline, representing a potential therapeutic target to improve the clinical donor heart preservation.
Collapse
Affiliation(s)
- Sanaz Hatami
- Departments of Surgery (S. Hatami, X.Q., M.B., M.O., A.K., S. Himmat, J.N., D.H.F.), University of Alberta, Edmonton, Canada.,Canadian Transplant Research Program (S. Hatami, X.Q., S. Himmat, J.N., D.H.F.)
| | | | - Xiao Qi
- Departments of Surgery (S. Hatami, X.Q., M.B., M.O., A.K., S. Himmat, J.N., D.H.F.), University of Alberta, Edmonton, Canada.,Canadian Transplant Research Program (S. Hatami, X.Q., S. Himmat, J.N., D.H.F.)
| | - Max Buchko
- Departments of Surgery (S. Hatami, X.Q., M.B., M.O., A.K., S. Himmat, J.N., D.H.F.), University of Alberta, Edmonton, Canada
| | - Martin Ondrus
- Departments of Surgery (S. Hatami, X.Q., M.B., M.O., A.K., S. Himmat, J.N., D.H.F.), University of Alberta, Edmonton, Canada
| | - Alexandra Kinnear
- Departments of Surgery (S. Hatami, X.Q., M.B., M.O., A.K., S. Himmat, J.N., D.H.F.), University of Alberta, Edmonton, Canada
| | - Sayed Himmat
- Departments of Surgery (S. Hatami, X.Q., M.B., M.O., A.K., S. Himmat, J.N., D.H.F.), University of Alberta, Edmonton, Canada.,Canadian Transplant Research Program (S. Hatami, X.Q., S. Himmat, J.N., D.H.F.)
| | - Consolato Sergi
- Laboratory Medicine and Pathology (C.S.), University of Alberta, Edmonton, Canada
| | - Jayan Nagendran
- Departments of Surgery (S. Hatami, X.Q., M.B., M.O., A.K., S. Himmat, J.N., D.H.F.), University of Alberta, Edmonton, Canada.,Alberta Transplant Institute, Edmonton, Canada (J.N., D.N.F.).,Canadian Transplant Research Program (S. Hatami, X.Q., S. Himmat, J.N., D.H.F.)
| | - Darren H Freed
- Departments of Surgery (S. Hatami, X.Q., M.B., M.O., A.K., S. Himmat, J.N., D.H.F.), University of Alberta, Edmonton, Canada.,Physiology (D.H.F.), University of Alberta, Edmonton, Canada.,Biomedical Engineering (D.H.F.), University of Alberta, Edmonton, Canada.,Alberta Transplant Institute, Edmonton, Canada (J.N., D.N.F.).,Canadian Transplant Research Program (S. Hatami, X.Q., S. Himmat, J.N., D.H.F.)
| |
Collapse
|
54
|
Peserico D, Stranieri C, Garbin U, Mozzini C C, Danese E, Cominacini L, Fratta Pasini AM. Ezetimibe Prevents Ischemia/Reperfusion-Induced Oxidative Stress and Up-Regulates Nrf2/ARE and UPR Signaling Pathways. Antioxidants (Basel) 2020; 9:E349. [PMID: 32340270 PMCID: PMC7222361 DOI: 10.3390/antiox9040349] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 04/15/2020] [Accepted: 04/17/2020] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND While reperfusion is crucial for survival after an episode of ischemia, it also causes oxidative stress. Nuclear factor-E2-related factor 2 (Nrf2) and unfolded protein response (UPR) are protective against oxidative stress and endoplasmic reticulum (ER) stress. Ezetimibe, a cholesterol absorption inhibitor, has been shown to activate the AMP-activated protein kinase (AMPK)/Nrf2 pathway. In this study we evaluated whether Ezetimibe affects oxidative stress and Nrf2 and UPR gene expression in cellular models of ischemia-reperfusion (IR). METHODS Cultured cells were subjected to simulated IR with or without Ezetimibe. RESULTS IR significantly increased reactive oxygen species (ROS) production and the percentage of apoptotic cells without the up-regulation of Nrf2, of the related antioxidant response element (ARE) gene expression or of the pro-survival UPR activating transcription factor 6 (ATF6) gene, whereas it significantly increased the pro-apoptotic CCAAT-enhancer-binding protein homologous protein (CHOP). Ezetimibe significantly decreased the cellular ROS formation and apoptosis induced by IR. These effects were paralleled by the up-regulation of Nrf2/ARE and ATF6 gene expression and by a down-regulation of CHOP. We also found that Nrf2 activation was dependent on AMPK, since Compound C, a pan inhibitor of p-AMPK, blunted the activation of Nrf2. CONCLUSIONS Ezetimibe counteracts IR-induced oxidative stress and induces Nrf2 and UPR pathway activation.
Collapse
Affiliation(s)
- Denise Peserico
- Department of Medicine, Section of General Medicine and Atherothrombotic and Degenerative Diseases, University of Verona, Policlinico G.B. Rossi, Piazzale L.A. Scuro 10, 37134 Verona, Italy; (D.P.); (C.S.); (U.G.); (C.M.C.); (L.C.)
| | - Chiara Stranieri
- Department of Medicine, Section of General Medicine and Atherothrombotic and Degenerative Diseases, University of Verona, Policlinico G.B. Rossi, Piazzale L.A. Scuro 10, 37134 Verona, Italy; (D.P.); (C.S.); (U.G.); (C.M.C.); (L.C.)
| | - Ulisse Garbin
- Department of Medicine, Section of General Medicine and Atherothrombotic and Degenerative Diseases, University of Verona, Policlinico G.B. Rossi, Piazzale L.A. Scuro 10, 37134 Verona, Italy; (D.P.); (C.S.); (U.G.); (C.M.C.); (L.C.)
| | - Chiara Mozzini C
- Department of Medicine, Section of General Medicine and Atherothrombotic and Degenerative Diseases, University of Verona, Policlinico G.B. Rossi, Piazzale L.A. Scuro 10, 37134 Verona, Italy; (D.P.); (C.S.); (U.G.); (C.M.C.); (L.C.)
| | - Elisa Danese
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, 37134 Verona, Italy;
| | - Luciano Cominacini
- Department of Medicine, Section of General Medicine and Atherothrombotic and Degenerative Diseases, University of Verona, Policlinico G.B. Rossi, Piazzale L.A. Scuro 10, 37134 Verona, Italy; (D.P.); (C.S.); (U.G.); (C.M.C.); (L.C.)
| | - Anna M. Fratta Pasini
- Department of Medicine, Section of General Medicine and Atherothrombotic and Degenerative Diseases, University of Verona, Policlinico G.B. Rossi, Piazzale L.A. Scuro 10, 37134 Verona, Italy; (D.P.); (C.S.); (U.G.); (C.M.C.); (L.C.)
| |
Collapse
|
55
|
Arrieta A, Blackwood EA, Stauffer WT, Santo Domingo M, Bilal AS, Thuerauf DJ, Pentoney AN, Aivati C, Sarakki AV, Doroudgar S, Glembotski CC. Mesencephalic astrocyte-derived neurotrophic factor is an ER-resident chaperone that protects against reductive stress in the heart. J Biol Chem 2020; 295:7566-7583. [PMID: 32327487 DOI: 10.1074/jbc.ra120.013345] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 04/17/2020] [Indexed: 12/13/2022] Open
Abstract
We have previously demonstrated that ischemia/reperfusion (I/R) impairs endoplasmic reticulum (ER)-based protein folding in the heart and thereby activates an unfolded protein response sensor and effector, activated transcription factor 6α (ATF6). ATF6 then induces mesencephalic astrocyte-derived neurotrophic factor (MANF), an ER-resident protein with no known structural homologs and unclear ER function. To determine MANF's function in the heart in vivo, here we developed a cardiomyocyte-specific MANF-knockdown mouse model. MANF knockdown increased cardiac damage after I/R, which was reversed by AAV9-mediated ectopic MANF expression. Mechanistically, MANF knockdown in cultured neonatal rat ventricular myocytes (NRVMs) impaired protein folding in the ER and cardiomyocyte viability during simulated I/R. However, this was not due to MANF-mediated protection from reactive oxygen species generated during reperfusion. Because I/R impairs oxygen-dependent ER protein disulfide formation and such impairment can be caused by reductive stress in the ER, we examined the effects of the reductive ER stressor DTT. MANF knockdown in NRVMs increased cell death from DTT-mediated reductive ER stress, but not from nonreductive ER stresses caused by thapsigargin-mediated ER Ca2+ depletion or tunicamycin-mediated inhibition of ER protein glycosylation. In vitro, recombinant MANF exhibited chaperone activity that depended on its conserved cysteine residues. Moreover, in cells, MANF bound to a model ER protein exhibiting improper disulfide bond formation during reductive ER stress but did not bind to this protein during nonreductive ER stress. We conclude that MANF is an ER chaperone that enhances protein folding and myocyte viability during reductive ER stress.
Collapse
Affiliation(s)
- Adrian Arrieta
- San Diego State University Heart Institute and the Department of Biology, San Diego State University, San Diego, California, USA
| | - Erik A Blackwood
- San Diego State University Heart Institute and the Department of Biology, San Diego State University, San Diego, California, USA
| | - Winston T Stauffer
- San Diego State University Heart Institute and the Department of Biology, San Diego State University, San Diego, California, USA
| | - Michelle Santo Domingo
- San Diego State University Heart Institute and the Department of Biology, San Diego State University, San Diego, California, USA
| | - Alina S Bilal
- San Diego State University Heart Institute and the Department of Biology, San Diego State University, San Diego, California, USA
| | - Donna J Thuerauf
- San Diego State University Heart Institute and the Department of Biology, San Diego State University, San Diego, California, USA
| | - Amber N Pentoney
- San Diego State University Heart Institute and the Department of Biology, San Diego State University, San Diego, California, USA
| | - Cathrine Aivati
- San Diego State University Heart Institute and the Department of Biology, San Diego State University, San Diego, California, USA
| | - Anup V Sarakki
- San Diego State University Heart Institute and the Department of Biology, San Diego State University, San Diego, California, USA
| | - Shirin Doroudgar
- San Diego State University Heart Institute and the Department of Biology, San Diego State University, San Diego, California, USA.,Department of Cardiology, Angiology, and Pneumology, University Hospital Heidelberg, Innere Medizin III, Heidelberg, Germany.,DZHK (German Centre for Cardiovascular Research), Partner Site Heidelberg/Mannheim, Heidelberg, Germany
| | - Christopher C Glembotski
- San Diego State University Heart Institute and the Department of Biology, San Diego State University, San Diego, California, USA
| |
Collapse
|
56
|
Glembotski CC, Arrieta A, Blackwood EA, Stauffer WT. ATF6 as a Nodal Regulator of Proteostasis in the Heart. Front Physiol 2020; 11:267. [PMID: 32322217 PMCID: PMC7156617 DOI: 10.3389/fphys.2020.00267] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Accepted: 03/09/2020] [Indexed: 12/15/2022] Open
Abstract
Proteostasis encompasses a homeostatic cellular network in all cells that maintains the integrity of the proteome, which is critical for optimal cellular function. The components of the proteostasis network include protein synthesis, folding, trafficking, and degradation. Cardiac myocytes have a specialized endoplasmic reticulum (ER) called the sarcoplasmic reticulum that is well known for its role in contractile calcium handling. However, less studied is the proteostasis network associated with the ER, which is of particular importance in cardiac myocytes because it ensures the integrity of proteins that are critical for cardiac contraction, e.g., ion channels, as well as proteins necessary for maintaining myocyte viability and interaction with other cell types, e.g., secreted hormones and growth factors. A major aspect of the ER proteostasis network is the ER unfolded protein response (UPR), which is initiated when misfolded proteins in the ER activate a group of three ER transmembrane proteins, one of which is the transcription factor, ATF6. Prior to studies in the heart, ATF6 had been shown in model cell lines to be primarily adaptive, exerting protective effects by inducing genes that encode ER proteins that fortify protein-folding in this organelle, thus establishing the canonical role for ATF6. Subsequent studies in isolated cardiac myocytes and in the myocardium, in vivo, have expanded roles for ATF6 beyond the canonical functions to include the induction of genes that encode proteins outside of the ER that do not have known functions that are obviously related to ER protein-folding. The identification of such non-canonical roles for ATF6, as well as findings that the gene programs induced by ATF6 differ depending on the stimulus, have piqued interest in further research on ATF6 as an adaptive effector in cardiac myocytes, underscoring the therapeutic potential of activating ATF6 in the heart. Moreover, discoveries of small molecule activators of ATF6 that adaptively affect the heart, as well as other organs, in vivo, have expanded the potential for development of ATF6-based therapeutics. This review focuses on the ATF6 arm of the ER UPR and its effects on the proteostasis network in the myocardium.
Collapse
Affiliation(s)
- Christopher C Glembotski
- Department of Biology, College of Sciences, San Diego State University Heart Institute, San Diego State University, San Diego, CA, United States
| | - Adrian Arrieta
- Department of Biology, College of Sciences, San Diego State University Heart Institute, San Diego State University, San Diego, CA, United States
| | - Erik A Blackwood
- Department of Biology, College of Sciences, San Diego State University Heart Institute, San Diego State University, San Diego, CA, United States
| | - Winston T Stauffer
- Department of Biology, College of Sciences, San Diego State University Heart Institute, San Diego State University, San Diego, CA, United States
| |
Collapse
|
57
|
Halbe L, Rami A. Inhibition of Autophagy Potentiated Hippocampal Cell Death Induced by Endoplasmic Reticulum Stress and its Activation by Trehalose Failed to be Neuroprotective. Curr Neurovasc Res 2020; 16:3-11. [PMID: 30706781 DOI: 10.2174/1567202616666190131155834] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Revised: 01/07/2019] [Accepted: 01/09/2019] [Indexed: 01/09/2023]
Abstract
INTRODUCTION Endoplasmic reticulum (ER) stress induced the mobilization of two protein breakdown routes, the proteasomal- and autophagy-associated degradation. During ERassociated degradation, unfolded ER proteins are translocated to the cytosol where they are cleaved by the proteasome. When the accumulation of misfolded or unfolded proteins excels the ER capacity, autophagy can be activated in order to undertake the degradative machinery and to attenuate the ER stress. Autophagy is a mechanism by which macromolecules and defective organelles are included in autophagosomes and delivered to lysosomes for degradation and recycling of bioenergetics substrate. MATERIALS AND METHODS Autophagy upon ER stress serves initially as a protective mechanism, however when the stress is more pronounced the autophagic response will trigger cell death. Because autophagy could function as a double edged sword in cell viability, we examined the effects autophagy modulation on ER stress-induced cell death in HT22 murine hippocampal neuronal cells. We investigated the effects of both autophagy-inhibition by 3-methyladenine (3-MA) and autophagy-activation by trehalose on ER-stress induced damage in hippocampal HT22 neurons. We evaluated the expression of ER stress- and autophagy-sensors as well as the neuronal viability. RESULTS AND CONCLUSION Based on our findings, we conclude that under ER-stress conditions, inhibition of autophagy exacerbates cell damage and induction of autophagy by trehalose failed to be neuroprotective.
Collapse
Affiliation(s)
- Luisa Halbe
- Institut fur Zellulare und Molekulare Anatomie (Anatomie III), Klinikum der Johann Wolfgang von Goethe-Universitat, Theodor-Stern-Kai 7, 60590 Frankfurt/Main, Germany
| | - Abdelhaq Rami
- Institut fur Zellulare und Molekulare Anatomie (Anatomie III), Klinikum der Johann Wolfgang von Goethe-Universitat, Theodor-Stern-Kai 7, 60590 Frankfurt/Main, Germany
| |
Collapse
|
58
|
Designing Novel Therapies to Mend Broken Hearts: ATF6 and Cardiac Proteostasis. Cells 2020; 9:cells9030602. [PMID: 32138230 PMCID: PMC7140506 DOI: 10.3390/cells9030602] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Accepted: 02/28/2020] [Indexed: 12/12/2022] Open
Abstract
The heart exhibits incredible plasticity in response to both environmental and genetic alterations that affect workload. Over the course of development, or in response to physiological or pathological stimuli, the heart responds to fluctuations in workload by hypertrophic growth primarily by individual cardiac myocytes growing in size. Cardiac hypertrophy is associated with an increase in protein synthesis, which must coordinate with protein folding and degradation to allow for homeostatic growth without affecting the functional integrity of cardiac myocytes (i.e., proteostasis). This increase in the protein folding demand in the growing cardiac myocyte activates the transcription factor, ATF6 (activating transcription factor 6α, an inducer of genes that restore proteostasis. Previously, ATF6 has been shown to induce ER-targeted proteins functioning primarily to enhance ER protein folding and degradation. More recent studies, however, have illuminated adaptive roles for ATF6 functioning outside of the ER by inducing non-canonical targets in a stimulus-specific manner. This unique ability of ATF6 to act as an initial adaptive responder has bolstered an enthusiasm for identifying small molecule activators of ATF6 and similar proteostasis-based therapeutics.
Collapse
|
59
|
Stauffer WT, Blackwood EA, Azizi K, Kaufman RJ, Glembotski CC. The ER Unfolded Protein Response Effector, ATF6, Reduces Cardiac Fibrosis and Decreases Activation of Cardiac Fibroblasts. Int J Mol Sci 2020; 21:ijms21041373. [PMID: 32085622 PMCID: PMC7073073 DOI: 10.3390/ijms21041373] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Revised: 02/06/2020] [Accepted: 02/14/2020] [Indexed: 02/06/2023] Open
Abstract
Activating transcription factor-6 α (ATF6) is one of the three main sensors and effectors of the endoplasmic reticulum (ER) stress response and, as such, it is critical for protecting the heart and other tissues from a variety of environmental insults and disease states. In the heart, ATF6 has been shown to protect cardiac myocytes. However, its roles in other cell types in the heart are unknown. Here we show that ATF6 decreases the activation of cardiac fibroblasts in response to the cytokine, transforming growth factor β (TGFβ), which can induce fibroblast trans-differentiation into a myofibroblast phenotype through signaling via the TGFβ–Smad pathway. ATF6 activation suppressed fibroblast contraction and the induction of α smooth muscle actin (αSMA). Conversely, fibroblasts were hyperactivated when ATF6 was silenced or deleted. ATF6 thus represents a novel inhibitor of the TGFβ–Smad axis of cardiac fibroblast activation.
Collapse
Affiliation(s)
- Winston T. Stauffer
- Department of Biology, San Diego State University Heart Institute, San Diego State University, San Diego, CA 92182, USA; (W.T.S.); (E.A.B.); (K.A.)
| | - Erik A. Blackwood
- Department of Biology, San Diego State University Heart Institute, San Diego State University, San Diego, CA 92182, USA; (W.T.S.); (E.A.B.); (K.A.)
| | - Khalid Azizi
- Department of Biology, San Diego State University Heart Institute, San Diego State University, San Diego, CA 92182, USA; (W.T.S.); (E.A.B.); (K.A.)
| | - Randal J. Kaufman
- Degenerative Diseases Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA;
- Department of Pharmacology, University of California, San Diego, La Jolla, CA 92161, USA
| | - Christopher C. Glembotski
- Department of Biology, San Diego State University Heart Institute, San Diego State University, San Diego, CA 92182, USA; (W.T.S.); (E.A.B.); (K.A.)
- Correspondence: ; Tel.: +1-619-594-2958
| |
Collapse
|
60
|
Sledgehammer to Scalpel: Broad Challenges to the Heart and Other Tissues Yield Specific Cellular Responses via Transcriptional Regulation of the ER-Stress Master Regulator ATF6α. Int J Mol Sci 2020; 21:ijms21031134. [PMID: 32046286 PMCID: PMC7037772 DOI: 10.3390/ijms21031134] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Revised: 02/04/2020] [Accepted: 02/06/2020] [Indexed: 12/28/2022] Open
Abstract
There are more than 2000 transcription factors in eukaryotes, many of which are subject to complex mechanisms fine-tuning their activity and their transcriptional programs to meet the vast array of conditions under which cells must adapt to thrive and survive. For example, conditions that impair protein folding in the endoplasmic reticulum (ER), sometimes called ER stress, elicit the relocation of the ER-transmembrane protein, activating transcription factor 6α (ATF6α), to the Golgi, where it is proteolytically cleaved. This generates a fragment of ATF6α that translocates to the nucleus, where it regulates numerous genes that restore ER protein-folding capacity but is degraded soon after. Thus, upon ER stress, ATF6α is converted from a stable, transmembrane protein, to a rapidly degraded, nuclear protein that is a potent transcription factor. This review focuses on the molecular mechanisms governing ATF6α location, activity, and stability, as well as the transcriptional programs ATF6α regulates, whether canonical genes that restore ER protein-folding or unexpected, non-canonical genes affecting cellular functions beyond the ER. Moreover, we will review fascinating roles for an ATF6α isoform, ATF6β, which has a similar mode of activation but, unlike ATF6α, is a long-lived, weak transcription factor that may moderate the genetic effects of ATF6α.
Collapse
|
61
|
Yang Y, Zhou Q, Gao A, Chen L, Li L. Endoplasmic reticulum stress and focused drug discovery in cardiovascular disease. Clin Chim Acta 2020; 504:125-137. [PMID: 32017925 DOI: 10.1016/j.cca.2020.01.031] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 01/29/2020] [Accepted: 01/29/2020] [Indexed: 12/28/2022]
Abstract
Endoplasmic reticulum (ER) is an intracellular membranous organelle involved in the synthesis, folding, maturation and post-translation modification of secretory and transmembrane proteins. Therefore, ER is closely related to the maintenance of intracellular homeostasis and the good balance between health and diseases. Endoplasmic reticulum stress (ERS) occurs when unfolded/misfolded proteins accumulate after disturbance of ER environment. In response to ERS, cells trigger an adaptive response called the Unfolded protein response (UPR), which helps cells cope with the stress. In recent years, a large number of studies show that ERS can aggravate cardiovascular diseases. ERS-related proteins expression in cardiovascular diseases is on the rise. Therefore, down-regulation of ERS is critical for alleviating symptoms of cardiovascular diseases, which may be used in the near future to treat cardiovascular diseases. This article reviews the relationship between ERS and cardiovascular diseases and drugs that inhibit ERS. Furthermore, we detail the role of ERS inhibitors in the treatment of cardiovascular disease. Drugs that inhibit ERS are considered as promising strategies for the treatment of cardiovascular diseases.
Collapse
Affiliation(s)
- Yiyuan Yang
- Institute of Pharmacy and Pharmacology, Learning Key Laboratory for Pharmacoproteomics, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang 421001, China
| | - Qionglin Zhou
- Institute of Pharmacy and Pharmacology, Learning Key Laboratory for Pharmacoproteomics, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang 421001, China
| | - Anbo Gao
- Institute of Pharmacy and Pharmacology, Learning Key Laboratory for Pharmacoproteomics, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang 421001, China
| | - Linxi Chen
- Institute of Pharmacy and Pharmacology, Learning Key Laboratory for Pharmacoproteomics, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang 421001, China.
| | - Lanfang Li
- Institute of Pharmacy and Pharmacology, Learning Key Laboratory for Pharmacoproteomics, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang 421001, China.
| |
Collapse
|
62
|
Mariángelo JIE, Román B, Silvestri MA, Salas M, Vittone L, Said M, Mundiña‐Weilenmann C. Chemical chaperones improve the functional recovery of stunned myocardium by attenuating the endoplasmic reticulum stress. Acta Physiol (Oxf) 2020; 228:e13358. [PMID: 31385408 DOI: 10.1111/apha.13358] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 07/30/2019] [Accepted: 07/31/2019] [Indexed: 12/26/2022]
Abstract
AIM Myocardial ischaemia/reperfusion (I/R) produces structural and functional alterations depending on the duration of ischaemia. Brief ischaemia followed by reperfusion causes reversible contractile dysfunction (stunned heart) but long-lasting ischaemia followed by reperfusion can result in irreversible injury with cell death. Events during I/R can alter endoplasmic reticulum (ER) function leading to the accumulation of unfolded/misfolded proteins. The resulting ER stress induces activation of several signal transduction pathways, known as unfolded protein response (UPR). Experimental evidence shows that UPR contributes to cell death in irreversible I/R injury; however, there is still uncertainty for its occurrence in the stunned myocardium. This study investigated the ER stress response and its functional impact on the post-ischaemic cardiac performance of the stunned heart. METHODS Perfused rat hearts were subjected to 20 minutes of ischaemia followed by 30 minutes of reperfusion. UPR markers were evaluated by qRT-PCR and western blot. Post-ischaemic mechanical recovery was measured in absence and presence of two chemical chaperones: tauroursodeoxycholic acid (TUDCA) and 4-phenylbutyric acid (4-PBA). RESULTS Analysis of mRNA and protein levels of various ER stress effectors demonstrated that different UPR signalling cascades, involving both pro-survival and pro-apoptotic pathways, are activated. Inhibition of the UPR with chemical chaperones improved the post-ischaemic recovery of cardiac mechanical function without affecting the I/R-induced increase in oxidative stress. CONCLUSION Our results suggest that prevention of ER stress by chemical chaperones could be a therapeutic tool to limit deterioration of the contractile function in clinical settings in which the phenomenon of myocardial stunning is present.
Collapse
Affiliation(s)
- Juan Ignacio Elio Mariángelo
- Centro de Investigaciones Cardiovasculares, CCT‐CONICET La Plata, Facultad de Ciencias Médicas Universidad Nacional de La Plata La Plata Argentina
| | - Bárbara Román
- Centro de Investigaciones Cardiovasculares, CCT‐CONICET La Plata, Facultad de Ciencias Médicas Universidad Nacional de La Plata La Plata Argentina
| | - María Agustina Silvestri
- Centro de Investigaciones Cardiovasculares, CCT‐CONICET La Plata, Facultad de Ciencias Médicas Universidad Nacional de La Plata La Plata Argentina
| | - Margarita Salas
- Centro de Investigaciones Cardiovasculares, CCT‐CONICET La Plata, Facultad de Ciencias Médicas Universidad Nacional de La Plata La Plata Argentina
| | - Leticia Vittone
- Centro de Investigaciones Cardiovasculares, CCT‐CONICET La Plata, Facultad de Ciencias Médicas Universidad Nacional de La Plata La Plata Argentina
| | - Matilde Said
- Centro de Investigaciones Cardiovasculares, CCT‐CONICET La Plata, Facultad de Ciencias Médicas Universidad Nacional de La Plata La Plata Argentina
| | - Cecilia Mundiña‐Weilenmann
- Centro de Investigaciones Cardiovasculares, CCT‐CONICET La Plata, Facultad de Ciencias Médicas Universidad Nacional de La Plata La Plata Argentina
| |
Collapse
|
63
|
Simpson LJ, Reader JS, Tzima E. Mechanical Regulation of Protein Translation in the Cardiovascular System. Front Cell Dev Biol 2020; 8:34. [PMID: 32083081 PMCID: PMC7006472 DOI: 10.3389/fcell.2020.00034] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Accepted: 01/15/2020] [Indexed: 12/12/2022] Open
Abstract
The cardiovascular system can sense and adapt to changes in mechanical stimuli by remodeling the physical properties of the heart and blood vessels in order to maintain homeostasis. Imbalances in mechanical forces and/or impaired sensing are now not only implicated but are, in some cases, considered to be drivers for the development and progression of cardiovascular disease. There is now growing evidence to highlight the role of mechanical forces in the regulation of protein translation pathways. The canonical mechanism of protein synthesis typically involves transcription and translation. Protein translation occurs globally throughout the cell to maintain general function but localized protein synthesis allows for precise spatiotemporal control of protein translation. This Review will cover studies on the role of biomechanical stress -induced translational control in the heart (often in the context of physiological and pathological hypertrophy). We will also discuss the much less studied effects of mechanical forces in regulating protein translation in the vasculature. Understanding how the mechanical environment influences protein translational mechanisms in the cardiovascular system, will help to inform disease pathogenesis and potential areas of therapeutic intervention.
Collapse
Affiliation(s)
- Lisa J Simpson
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, Wellcome Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
| | - John S Reader
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, Wellcome Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
| | - Ellie Tzima
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, Wellcome Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
64
|
Arrieta A, Blackwood EA, Stauffer WT, Glembotski CC. Integrating ER and Mitochondrial Proteostasis in the Healthy and Diseased Heart. Front Cardiovasc Med 2020; 6:193. [PMID: 32010709 PMCID: PMC6974444 DOI: 10.3389/fcvm.2019.00193] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Accepted: 12/18/2019] [Indexed: 12/12/2022] Open
Abstract
The integrity of the proteome in cardiac myocytes is critical for robust heart function. Proteome integrity in all cells is managed by protein homeostasis or proteostasis, which encompasses processes that maintain the balance of protein synthesis, folding, and degradation in ways that allow cells to adapt to conditions that present a potential challenge to viability (1). While there are processes in various cellular locations in cardiac myocytes that contribute to proteostasis, those in the cytosol, mitochondria and endoplasmic reticulum (ER) have dominant roles in maintaining cardiac contractile function. Cytosolic proteostasis has been reviewed elsewhere (2, 3); accordingly, this review focuses on proteostasis in the ER and mitochondria, and how they might influence each other and, thus, impact heart function in the settings of cardiac physiology and disease.
Collapse
Affiliation(s)
- Adrian Arrieta
- Department of Biology, San Diego State University Heart Institute, San Diego State University, San Diego, CA, United States
| | - Erik A Blackwood
- Department of Biology, San Diego State University Heart Institute, San Diego State University, San Diego, CA, United States
| | - Winston T Stauffer
- Department of Biology, San Diego State University Heart Institute, San Diego State University, San Diego, CA, United States
| | - Christopher C Glembotski
- Department of Biology, San Diego State University Heart Institute, San Diego State University, San Diego, CA, United States
| |
Collapse
|
65
|
Yan B, Wang H, Tan Y, Fu W. microRNAs in Cardiovascular Disease: Small Molecules but Big Roles. Curr Top Med Chem 2019; 19:1918-1947. [PMID: 31393249 DOI: 10.2174/1568026619666190808160241] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 06/01/2019] [Accepted: 07/25/2019] [Indexed: 01/01/2023]
Abstract
microRNAs (miRNAs) are an evolutionarily conserved class of small single-stranded noncoding RNAs. The aberrant expression of specific miRNAs has been implicated in the development and progression of diverse cardiovascular diseases. For many decades, miRNA therapeutics has flourished, taking advantage of the fact that miRNAs can modulate gene expression and control cellular phenotypes at the posttranscriptional level. Genetic replacement or knockdown of target miRNAs by chemical molecules, referred to as miRNA mimics or inhibitors, has been used to reverse their abnormal expression as well as their adverse biological effects in vitro and in vivo in an effort to fully implement the therapeutic potential of miRNA-targeting treatment. However, the limitations of the chemical structure and delivery systems are hindering progress towards clinical translation. Here, we focus on the regulatory mechanisms and therapeutic trials of several representative miRNAs in the context of specific cardiovascular diseases; from this basic perspective, we evaluate chemical modifications and delivery vectors of miRNA-based chemical molecules and consider the underlying challenges of miRNA therapeutics as well as the clinical perspectives on their applications.
Collapse
Affiliation(s)
- Bingqian Yan
- Institute of Pediatric Translational Medicine, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Huijing Wang
- Institute of Pediatric Translational Medicine, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Yao Tan
- Institute of Pediatric Translational Medicine, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Wei Fu
- Institute of Pediatric Translational Medicine, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China.,Department of Pediatric Cardiothoracic Surgery, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China.,Shanghai Key Laboratory of Tissue Engineering, Shanghai 9th People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200011, China
| |
Collapse
|
66
|
Maejima Y. The critical roles of protein quality control systems in the pathogenesis of heart failure. J Cardiol 2019; 75:219-227. [PMID: 31699567 DOI: 10.1016/j.jjcc.2019.09.019] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Accepted: 09/26/2019] [Indexed: 01/30/2023]
Abstract
Heart failure is a refractory disease with a prevalence that has continuously increased around the world. Over the past decade, we have made remarkable progress in the treatment of heart failure, including drug therapies, device therapies, and regeneration therapies. However, as each of these heart failure therapies does not go much beyond symptomatic therapy, there is a compelling need to establish novel therapeutic strategies for heart failure in a fundamental way. As cardiomyocytes are terminally differentiated cells, protein quality control is critical for maintaining cellular homeostasis, optimal performance, and longevity. There are five evolutionarily conserved mechanisms for ensuring protein quality control in cells: the ubiquitin-proteasome system, autophagy, the unfolded protein response, SUMOylation, and NEDDylation. Recent research has clarified the molecular mechanism underlying how these processes degrade misfolded proteins and damaged organelles in cardiomyocytes. In addition, a growing body of evidence suggests that deviation from appropriate levels of protein quality control causes cellular dysfunction and death, which in turn leads to heart failure. We herein review recent advances in understanding the role of protein quality control systems in heart disease and discuss the therapeutic potential of modulating protein quality control systems in the human heart.
Collapse
Affiliation(s)
- Yasuhiro Maejima
- Department of Cardiovascular Medicine, Tokyo Medical and Dental University, Tokyo, Japan.
| |
Collapse
|
67
|
Blackwood EA, Hofmann C, Santo Domingo M, Bilal AS, Sarakki A, Stauffer W, Arrieta A, Thuerauf DJ, Kolkhorst FW, Müller OJ, Jakobi T, Dieterich C, Katus HA, Doroudgar S, Glembotski CC. ATF6 Regulates Cardiac Hypertrophy by Transcriptional Induction of the mTORC1 Activator, Rheb. Circ Res 2019; 124:79-93. [PMID: 30582446 DOI: 10.1161/circresaha.118.313854] [Citation(s) in RCA: 85] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
RATIONALE Endoplasmic reticulum (ER) stress dysregulates ER proteostasis, which activates the transcription factor, ATF6 (activating transcription factor 6α), an inducer of genes that enhance protein folding and restore ER proteostasis. Because of increased protein synthesis, it is possible that protein folding and ER proteostasis are challenged during cardiac myocyte growth. However, it is not known whether ATF6 is activated, and if so, what its function is during hypertrophic growth of cardiac myocytes. OBJECTIVE To examine the activity and function of ATF6 during cardiac hypertrophy. METHODS AND RESULTS We found that ER stress and ATF6 were activated and ATF6 target genes were induced in mice subjected to an acute model of transverse aortic constriction, or to free-wheel exercise, both of which promote adaptive cardiac myocyte hypertrophy with preserved cardiac function. Cardiac myocyte-specific deletion of Atf6 (ATF6 cKO [conditional knockout]) blunted transverse aortic constriction and exercise-induced cardiac myocyte hypertrophy and impaired cardiac function, demonstrating a role for ATF6 in compensatory myocyte growth. Transcript profiling and chromatin immunoprecipitation identified RHEB (Ras homologue enriched in brain) as an ATF6 target gene in the heart. RHEB is an activator of mTORC1 (mammalian/mechanistic target of rapamycin complex 1), a major inducer of protein synthesis and subsequent cell growth. Both transverse aortic constriction and exercise upregulated RHEB, activated mTORC1, and induced cardiac hypertrophy in wild type mouse hearts but not in ATF6 cKO hearts. Mechanistically, knockdown of ATF6 in neonatal rat ventricular myocytes blocked phenylephrine- and IGF1 (insulin-like growth factor 1)-mediated RHEB induction, mTORC1 activation, and myocyte growth, all of which were restored by ectopic RHEB expression. Moreover, adeno-associated virus 9- RHEB restored cardiac growth to ATF6 cKO mice subjected to transverse aortic constriction. Finally, ATF6 induced RHEB in response to growth factors, but not in response to other activators of ATF6 that do not induce growth, indicating that ATF6 target gene induction is stress specific. CONCLUSIONS Compensatory cardiac hypertrophy activates ER stress and ATF6, which induces RHEB and activates mTORC1. Thus, ATF6 is a previously unrecognized link between growth stimuli and mTORC1-mediated cardiac growth.
Collapse
Affiliation(s)
- Erik A Blackwood
- From the Department of Biology, San Diego State University Heart Institute, San Diego State University, CA (E.A.B., C.H., M.S.D., A.S.B., A.S., W.S., A.A., D.J.T., F.W.K., C.C.G.)
| | - Christoph Hofmann
- From the Department of Biology, San Diego State University Heart Institute, San Diego State University, CA (E.A.B., C.H., M.S.D., A.S.B., A.S., W.S., A.A., D.J.T., F.W.K., C.C.G.).,Department of Cardiology, Angiology, and Pneumology, University Hospital Heidelberg, Germany (C.H., O.J.M., H.A.K., S.D.).,German Centre for Cardiovascular Research, Partner Site Heidelberg (C.H., O.J.M., T.J., C.D., H.A.K., S.D.)
| | - Michelle Santo Domingo
- From the Department of Biology, San Diego State University Heart Institute, San Diego State University, CA (E.A.B., C.H., M.S.D., A.S.B., A.S., W.S., A.A., D.J.T., F.W.K., C.C.G.)
| | - Alina S Bilal
- From the Department of Biology, San Diego State University Heart Institute, San Diego State University, CA (E.A.B., C.H., M.S.D., A.S.B., A.S., W.S., A.A., D.J.T., F.W.K., C.C.G.)
| | - Anup Sarakki
- From the Department of Biology, San Diego State University Heart Institute, San Diego State University, CA (E.A.B., C.H., M.S.D., A.S.B., A.S., W.S., A.A., D.J.T., F.W.K., C.C.G.)
| | - Winston Stauffer
- From the Department of Biology, San Diego State University Heart Institute, San Diego State University, CA (E.A.B., C.H., M.S.D., A.S.B., A.S., W.S., A.A., D.J.T., F.W.K., C.C.G.)
| | - Adrian Arrieta
- From the Department of Biology, San Diego State University Heart Institute, San Diego State University, CA (E.A.B., C.H., M.S.D., A.S.B., A.S., W.S., A.A., D.J.T., F.W.K., C.C.G.)
| | - Donna J Thuerauf
- From the Department of Biology, San Diego State University Heart Institute, San Diego State University, CA (E.A.B., C.H., M.S.D., A.S.B., A.S., W.S., A.A., D.J.T., F.W.K., C.C.G.)
| | - Fred W Kolkhorst
- From the Department of Biology, San Diego State University Heart Institute, San Diego State University, CA (E.A.B., C.H., M.S.D., A.S.B., A.S., W.S., A.A., D.J.T., F.W.K., C.C.G.)
| | - Oliver J Müller
- Department of Cardiology, Angiology, and Pneumology, University Hospital Heidelberg, Germany (C.H., O.J.M., H.A.K., S.D.).,German Centre for Cardiovascular Research, Partner Site Heidelberg (C.H., O.J.M., T.J., C.D., H.A.K., S.D.).,Department of Internal Medicine III, University of Kiel, Germany, and German Centre for Cardiovascular Research, Partner Site Hamburg/Kiel/Lübeck, Germany (O.J.M.)
| | - Tobias Jakobi
- Department of Cardiology, Angiology, and Pneumology, University Hospital Heidelberg, Germany (C.H., O.J.M., H.A.K., S.D.).,German Centre for Cardiovascular Research, Partner Site Heidelberg (C.H., O.J.M., T.J., C.D., H.A.K., S.D.).,Section of Bioinformatics and Systems Cardiology, Department of Internal Medicine III, University Hospital Heidelberg, Germany (T.J., C.D.)
| | - Christoph Dieterich
- Department of Cardiology, Angiology, and Pneumology, University Hospital Heidelberg, Germany (C.H., O.J.M., H.A.K., S.D.).,German Centre for Cardiovascular Research, Partner Site Heidelberg (C.H., O.J.M., T.J., C.D., H.A.K., S.D.).,Section of Bioinformatics and Systems Cardiology, Department of Internal Medicine III, University Hospital Heidelberg, Germany (T.J., C.D.)
| | - Hugo A Katus
- Department of Cardiology, Angiology, and Pneumology, University Hospital Heidelberg, Germany (C.H., O.J.M., H.A.K., S.D.).,German Centre for Cardiovascular Research, Partner Site Heidelberg (C.H., O.J.M., T.J., C.D., H.A.K., S.D.)
| | - Shirin Doroudgar
- Department of Cardiology, Angiology, and Pneumology, University Hospital Heidelberg, Germany (C.H., O.J.M., H.A.K., S.D.).,German Centre for Cardiovascular Research, Partner Site Heidelberg (C.H., O.J.M., T.J., C.D., H.A.K., S.D.)
| | - Christopher C Glembotski
- From the Department of Biology, San Diego State University Heart Institute, San Diego State University, CA (E.A.B., C.H., M.S.D., A.S.B., A.S., W.S., A.A., D.J.T., F.W.K., C.C.G.)
| |
Collapse
|
68
|
Li J, Yue G, Ma W, Zhang A, Zou J, Cai Y, Tang X, Wang J, Liu J, Li H, Su H. Ufm1-Specific Ligase Ufl1 Regulates Endoplasmic Reticulum Homeostasis and Protects Against Heart Failure. Circ Heart Fail 2019; 11:e004917. [PMID: 30354401 DOI: 10.1161/circheartfailure.118.004917] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
BACKGROUND Defects in protein homeostasis are sufficient to provoke cardiac remodeling and dysfunction. Although posttranslational modifications by ubiquitin and ubiquitin-like proteins are emerging as an important regulatory mechanism of protein function, the role of Ufm1 (ubiquitin-fold modifier 1)-a novel ubiquitin-like protein-has not been explored in either the normal or stressed heart. METHODS AND RESULTS Western blotting revealed that Ufl1 (Ufm1-specific E3 ligase 1)-an enzyme essential for Ufm1 modification-was increased in hypertrophic mouse hearts but reduced in the failing hearts of patients with dilated cardiomyopathy. To determine the functional role of Ufl1 in the heart, we generated a cardiac-specific knockout mouse and showed that Ufl1-deficient mice developed age-dependent cardiomyopathy and heart failure, as indicated by elevated cardiac fetal gene expression, increased fibrosis, and impaired cardiac contractility. When challenged with pressure overload, Ufl1-deficient hearts exhibited remarkably greater hypertrophy, exacerbated fibrosis, and worsened cardiac contractility compared with control counterparts. Transcriptome analysis identified that genes associated with the endoplasmic reticulum (ER) function were dysregulated in Ufl1-deficient hearts. Biochemical analysis revealed that excessive ER stress preceded and deteriorated along with the development of cardiomyopathy in Ufl1-deficient hearts. Mechanistically, Ufl1 depletion impaired (PKR-like ER-resident kinase) signaling and aggravated cardiomyocyte cell death after ER stress. Administration of the chemical ER chaperone tauroursodeoxycholic acid to Ufl1-deficient mice alleviated ER stress and attenuated pressure overload-induced cardiac dysfunction. CONCLUSIONS Our results advance a novel concept that the Ufm1 system is essential for cardiac homeostasis through regulation of ER function and that upregulation of myocardial Ufl1 could be protective against heart failure.
Collapse
Affiliation(s)
- Jie Li
- Vascular Biology Center (J.L., G.Y., W.M., A.Z., J.Z., H.S.), Medical College of Georgia, Augusta University
| | - Guihua Yue
- Vascular Biology Center (J.L., G.Y., W.M., A.Z., J.Z., H.S.), Medical College of Georgia, Augusta University.,Guangxi Medical College, Nanning, China (G.Y.)
| | - Wenxia Ma
- Vascular Biology Center (J.L., G.Y., W.M., A.Z., J.Z., H.S.), Medical College of Georgia, Augusta University
| | - Aizhen Zhang
- Vascular Biology Center (J.L., G.Y., W.M., A.Z., J.Z., H.S.), Medical College of Georgia, Augusta University.,Affiliated Ruikang Hospital, Guangxi University of Chinese Medicine, Nanning (A.Z.)
| | - Jianqiu Zou
- Vascular Biology Center (J.L., G.Y., W.M., A.Z., J.Z., H.S.), Medical College of Georgia, Augusta University
| | - Yafei Cai
- College of Animal Science and Technology, Nanjing Agricultural University, China (Y.C.)
| | - Xiaoli Tang
- Department of Biochemistry, School of Medicine, Nanchang University, Jiangxi, China (X.T.)
| | - Jun Wang
- Department of Basic Research Laboratories, Center for Stem Cell Engineering, Texas Heart Institute, Houston (J.W.)
| | - Jinbao Liu
- Protein Modification and Degradation Lab, School of Basic Medical Sciences, Guangzhou Medical University, China (J.L., H.S.)
| | - Honglin Li
- Department of Biochemistry and Molecular Biology (H.L.), Medical College of Georgia, Augusta University
| | - Huabo Su
- Vascular Biology Center (J.L., G.Y., W.M., A.Z., J.Z., H.S.), Medical College of Georgia, Augusta University.,Department of Pharmacology and Toxicology (H.S.), Medical College of Georgia, Augusta University.,Protein Modification and Degradation Lab, School of Basic Medical Sciences, Guangzhou Medical University, China (J.L., H.S.)
| |
Collapse
|
69
|
Han D, Wang Y, Chen J, Zhang J, Yu P, Zhang R, Li S, Tao B, Wang Y, Qiu Y, Xu M, Gao E, Cao F. Activation of melatonin receptor 2 but not melatonin receptor 1 mediates melatonin-conferred cardioprotection against myocardial ischemia/reperfusion injury. J Pineal Res 2019; 67:e12571. [PMID: 30903623 DOI: 10.1111/jpi.12571] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 03/01/2019] [Accepted: 03/17/2019] [Indexed: 12/14/2022]
Abstract
Accumulated pieces of evidence have proved the beneficial effects of melatonin on myocardial ischemia/reperfusion (MI/R) injury, and these effects were largely dependent on melatonin membrane receptor activation. In humans and other mammals, there are two types of melatonin receptors, including the melatonin receptor 1 (MT1, melatonin receptor 1a or MTNR1A) and melatonin receptor 1 (MT2, melatonin receptor 1b or MTNR1B) receptor subtypes. However, which receptor mediates melatonin-conferred cardioprotection remains unclear. In this study, we employed both loss-of-function and gain-of-function approaches to reveal the answer. Mice (wild-type; MT1 or MT2 silencing by in vivo minicircle vector; and those overexpressing MT1 or MT2 by in vivo AAV9 vector) were exposed to MI/R injury. Both MT1 and MT2 were present in wild-type myocardium. MT2, but not MT1, was essentially upregulated after MI/R Melatonin administration significantly reduced myocardial injury and improved cardiac function after MI/R Mechanistically, melatonin treatment suppressed MI/R-initiated myocardial oxidative stress and nitrative stress, alleviated endoplasmic reticulum stress and mitochondrial injury, and inhibited myocardial apoptosis. These beneficial actions of melatonin were absent in MT2-silenced heart, but not the MT1 subtype. Furthermore, AAV9-mediated cardiomyocyte-specific overexpression of MT2, but not MT1, mitigated MI/R injury and improved cardiac dysfunction, which was accompanied by significant amelioration of oxidative stress, endoplasmic reticulum stress, and mitochondrial dysfunction. Mechanistically, MT2 protected primary cardiomyocytes against hypoxia/reoxygenation injury via MT2/Notch1/Hes1/RORα signaling. Our study presents the first direct evidence that the MT2 subtype, but not MT1, is a novel endogenous cardiac protective receptor against MI/R injury. Medications specifically targeting MT2 may hold promise in fighting ischemic heart disease.
Collapse
MESH Headings
- Animals
- Apoptosis
- Disease Models, Animal
- Endoplasmic Reticulum Stress/genetics
- Humans
- Male
- Mice
- Myocardial Reperfusion Injury/genetics
- Myocardial Reperfusion Injury/metabolism
- Myocardial Reperfusion Injury/pathology
- Myocardial Reperfusion Injury/prevention & control
- Myocardium/metabolism
- Myocardium/pathology
- Myocytes, Cardiac/metabolism
- Myocytes, Cardiac/pathology
- Oxidative Stress/genetics
- Receptor, Melatonin, MT1/genetics
- Receptor, Melatonin, MT1/metabolism
- Receptor, Melatonin, MT2/genetics
- Receptor, Melatonin, MT2/metabolism
- Signal Transduction
Collapse
Affiliation(s)
- Dong Han
- Department of Cardiology, National Clinical Research Center for Geriatric Diseases, 2nd Medical Center, Chinese PLA General Hospital, Beijing, China
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Yongjun Wang
- Department of Cardiovascular Surgery, Union Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jiangwei Chen
- Department of Cardiology, National Clinical Research Center for Geriatric Diseases, 2nd Medical Center, Chinese PLA General Hospital, Beijing, China
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Jibin Zhang
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Peng Yu
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Ran Zhang
- Department of Cardiology, National Clinical Research Center for Geriatric Diseases, 2nd Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Shuang Li
- Department of Cardiology, Chengdu Military General Hospital, Chengdu, China
| | - Bo Tao
- Department of Cardiology, National Clinical Research Center for Geriatric Diseases, 2nd Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Yabin Wang
- Department of Cardiology, National Clinical Research Center for Geriatric Diseases, 2nd Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Ya Qiu
- Department of Cardiology, National Clinical Research Center for Geriatric Diseases, 2nd Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Mengqi Xu
- Department of Cardiology, National Clinical Research Center for Geriatric Diseases, 2nd Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Erhe Gao
- Center for Translational Medicine, Temple University School of Medicine, Philadelphia, Pennsylvania
| | - Feng Cao
- Department of Cardiology, National Clinical Research Center for Geriatric Diseases, 2nd Medical Center, Chinese PLA General Hospital, Beijing, China
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| |
Collapse
|
70
|
MicroRNA-33-3p Regulates Vein Endothelial Cell Apoptosis in Selenium-Deficient Broilers by Targeting E4F1. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:6274010. [PMID: 31249647 PMCID: PMC6556262 DOI: 10.1155/2019/6274010] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 03/22/2019] [Accepted: 05/05/2019] [Indexed: 12/11/2022]
Abstract
Selenium (Se) is a type of nutrient element. The tissues of organisms can have pathological damage, including apoptosis, due to Se deficiency. Apoptosis is an important cell process and plays a key role in vascular disease and Se-deficient symptoms. In this study, the Se-deficient broiler model was duplicated, miR-33-3p in the vein was overexpressed in response to Se-deficiency, and miR-33-3p target gene E4F transcription factor 1 (E4F1) expression was also confirmed. We utilized ectopic miR-33-3p expression to validate its function for apoptosis. The results showed that miR-33-3p-targeted E4F1 are involved in the glucose-regulated protein 78- (GRP78-) induced endoplasmic reticulum stress (ERS) apoptosis pathway. We presumed that Se deficiency might trigger apoptosis via downregulating miR-33-3p. Interestingly, the miR-33-3p inhibitor and VER-155008 (GRP78 inhibitor) partly hindered the apoptosis caused by Se deficiency. Thus, the above information provides a new avenue toward understanding the mechanism of Se deficiency and reveals a novel apoptotic injury regulation model in vascular disease.
Collapse
|
71
|
Glembotski CC, Rosarda JD, Wiseman RL. Proteostasis and Beyond: ATF6 in Ischemic Disease. Trends Mol Med 2019; 25:538-550. [PMID: 31078432 DOI: 10.1016/j.molmed.2019.03.005] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Revised: 03/16/2019] [Accepted: 03/25/2019] [Indexed: 12/28/2022]
Abstract
Endoplasmic reticulum (ER) stress is a pathological hallmark of numerous ischemic diseases, including stroke and myocardial infarction (MI). In these diseases, ER stress leads to activation of the unfolded protein response (UPR) and subsequent adaptation of cellular physiology in ways that dictate cellular fate following ischemia. Recent evidence highlights a protective role for the activating transcription factor 6 (ATF6) arm of the UPR in mitigating adverse outcomes associated with ischemia/reperfusion (I/R) injury in multiple disease models. This suggests ATF6 as a potential therapeutic target for intervening in diverse ischemia-related disorders. Here, we discuss the evidence demonstrating the importance of ATF6 signaling in protecting different tissues against ischemic damage and discuss preclinical results focused on defining the potential for pharmacologically targeting ATF6 to intervene in such diseases.
Collapse
Affiliation(s)
- Christopher C Glembotski
- San Diego State University Heart Institute and the Department of Biology, San Diego State University, San Diego, CA 92182, USA
| | - Jessica D Rosarda
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - R Luke Wiseman
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA.
| |
Collapse
|
72
|
Kazaz IO, Demir S, Yulug E, Colak F, Bodur A, Yaman SO, Karaguzel E, Mentese A. N-acetylcysteine protects testicular tissue against ischemia/reperfusion injury via inhibiting endoplasmic reticulum stress and apoptosis. J Pediatr Urol 2019; 15:253.e1-253.e8. [PMID: 30890312 DOI: 10.1016/j.jpurol.2019.02.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Accepted: 02/05/2019] [Indexed: 12/21/2022]
Abstract
BACKGROUND In animal models, endoplasmic reticulum (ER) stress has been reported to play a vital role in mediating ischemia/reperfusion (I/R) injury in certain organs, such as brain, liver, and intestine. However, there are a limited number of studies examining the relationship between ER stress and torsion and detorsion (T/D)-induced testicular injury. OBJECTIVE To investigate the effects of N-acetylcysteine (NAC) on ER-stress and apoptosis in an experimental testicular I/R injury model. DESIGN A non-blinded experimental study with three arms. Rats were divided into three groups: control group, T/D group, and NAC group. In the pretreatment of the NAC group, 20 mg/kg NAC was given intraperitoneally 30 min before detorsion. Tissue 4-hydroxynonenal (4-HNE), 78-kDa glucose-regulated protein (GRP78), and activating transcription factor 6 (ATF6) levels were determined using enzyme-linked immunosorbent assay. The apoptosis levels were evaluated using terminal deoxynucleotide transferase-mediated dUTP nick-end label assay. RESULTS In T/D group, tissue 4-HNE, GRP78, ATF6, and apoptotic index levels were significantly higher than control group. These increases were significantly reversed with NAC pretreatment. DISCUSSION There are some potential drugs that have been shown to reduce ER stress in the experimental ischemia model, and it is questioned that these drug candidates can be used as a therapeutic agent in the treatment of ischemic diseases in the near future. This study was not without limitations. First, the authors applied NAC only 20 mg/kg. In a future study, a dose-dependent assay should be performed to assess the likelihood of an additional testicular protective effect. One limitation of this research is also that in vivo studies cannot be extrapolated to possible effect in clinics. More experiments therefore need to be conducted to extrapolate the study findings to humans. CONCLUSION The study results showed that, after testicular torsion (TT), the ER stress-related apoptotic pathway plays a pivotal role in testicular injury. Further studies of other experimental models of TT may prove that NAC is a useful agent as an adjunctive treatment in surgical repair in human cases.
Collapse
Affiliation(s)
- I O Kazaz
- Department of Urology, Faculty of Medicine, Karadeniz Technical University, 61080 Trabzon, Turkey
| | - S Demir
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Karadeniz Technical University, 61080 Trabzon, Turkey.
| | - E Yulug
- Department of Histology and Embryology, Faculty of Medicine, Karadeniz Technical University, 61080 Trabzon, Turkey
| | - F Colak
- Department of Urology, Faculty of Medicine, Karadeniz Technical University, 61080 Trabzon, Turkey
| | - A Bodur
- Department of Medical Biochemistry, Faculty of Medicine, Karadeniz Technical University, 61080 Trabzon, Turkey
| | - S O Yaman
- Department of Medical Biochemistry, Faculty of Medicine, Karadeniz Technical University, 61080 Trabzon, Turkey
| | - E Karaguzel
- Department of Urology, Faculty of Medicine, Karadeniz Technical University, 61080 Trabzon, Turkey
| | - A Mentese
- Program of Medical Laboratory Techniques, Vocational School of Health Sciences, Karadeniz Technical University, 61080 Trabzon, Turkey
| |
Collapse
|
73
|
McKimpson WM, Kitsis RN. A New Role for the ER Unfolded Protein Response Mediator ATF6: Induction of a Generalized Antioxidant Program. Circ Res 2019; 120:759-761. [PMID: 28254796 DOI: 10.1161/circresaha.117.310577] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Wendy M McKimpson
- From the Department of Medicine (W.M.M., R.N.K.), Department of Cell Biology (W.M.M., R.N.K.), Wilf Family Cardiovascular Research Center (W.M.M., R.N.K.), Einstein-Mount Sinai Diabetes Research Center (R.N.K.), and Albert Einstein Cancer Center (R.N.K.), Albert Einstein College of Medicine, Bronx, NY
| | - Richard N Kitsis
- From the Department of Medicine (W.M.M., R.N.K.), Department of Cell Biology (W.M.M., R.N.K.), Wilf Family Cardiovascular Research Center (W.M.M., R.N.K.), Einstein-Mount Sinai Diabetes Research Center (R.N.K.), and Albert Einstein Cancer Center (R.N.K.), Albert Einstein College of Medicine, Bronx, NY.
| |
Collapse
|
74
|
Correll RN, Grimes KM, Prasad V, Lynch JM, Khalil H, Molkentin JD. Overlapping and differential functions of ATF6α versus ATF6β in the mouse heart. Sci Rep 2019; 9:2059. [PMID: 30765833 PMCID: PMC6375966 DOI: 10.1038/s41598-019-39515-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Accepted: 01/02/2019] [Indexed: 01/22/2023] Open
Abstract
Hemodynamic stress on the mammalian heart results in compensatory hypertrophy and activation of the unfolded protein response through activating transcription factor 6α (ATF6α) in cardiac myocytes, but the roles of ATF6α or the related transcription factor ATF6β in regulating this hypertrophic response are not well-understood. Here we examined the effects of loss of ATF6α or ATF6β on the cardiac response to pressure overload. Mice gene-deleted for Atf6 or Atf6b were subjected to 2 weeks of transverse aortic constriction, and each showed a significant reduction in hypertrophy with reduced expression of endoplasmic reticulum (ER) stress-associated proteins compared with controls. However, with long-term pressure overload both Atf6 and Atf6b null mice showed enhanced decompensation typified by increased heart weight, pulmonary edema and reduced function compared to control mice. Our subsequent studies using cardiac-specific transgenic mice expressing the transcriptionally active N-terminus of ATF6α or ATF6β revealed that these factors control overlapping gene expression networks that include numerous ER protein chaperones and ER associated degradation components. This work reveals previously unappreciated roles for ATF6α and ATF6β in regulating the pressure overload induced cardiac hypertrophic response and in controlling the expression of genes that condition the ER during hemodynamic stress.
Collapse
Affiliation(s)
- Robert N Correll
- Department of Biological Sciences, University of Alabama, Tuscaloosa, Alabama, 35487, USA.,Department of Pediatrics, University of Cincinnati, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, 45229, USA
| | - Kelly M Grimes
- Department of Pediatrics, University of Cincinnati, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, 45229, USA
| | - Vikram Prasad
- Department of Pediatrics, University of Cincinnati, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, 45229, USA
| | - Jeffrey M Lynch
- Department of Pediatrics, University of Cincinnati, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, 45229, USA
| | - Hadi Khalil
- Department of Pediatrics, University of Cincinnati, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, 45229, USA
| | - Jeffery D Molkentin
- Department of Pediatrics, University of Cincinnati, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, 45229, USA. .,Howard Hughes Medical Institute, Cincinnati, Ohio, 45229, USA.
| |
Collapse
|
75
|
Blackwood EA, Azizi K, Thuerauf DJ, Paxman RJ, Plate L, Kelly JW, Wiseman RL, Glembotski CC. Pharmacologic ATF6 activation confers global protection in widespread disease models by reprograming cellular proteostasis. Nat Commun 2019; 10:187. [PMID: 30643122 PMCID: PMC6331617 DOI: 10.1038/s41467-018-08129-2] [Citation(s) in RCA: 130] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Accepted: 12/11/2018] [Indexed: 01/05/2023] Open
Abstract
Pharmacologic activation of stress-responsive signaling pathways provides a promising approach for ameliorating imbalances in proteostasis associated with diverse diseases. However, this approach has not been employed in vivo. Here we show, using a mouse model of myocardial ischemia/reperfusion, that selective pharmacologic activation of the ATF6 arm of the unfolded protein response (UPR) during reperfusion, a typical clinical intervention point after myocardial infarction, transcriptionally reprograms proteostasis, ameliorates damage and preserves heart function. These effects were lost upon cardiac myocyte-specific Atf6 deletion in the heart, demonstrating the critical role played by ATF6 in mediating pharmacologically activated proteostasis-based protection of the heart. Pharmacological activation of ATF6 is also protective in renal and cerebral ischemia/reperfusion models, demonstrating its widespread utility. Thus, pharmacologic activation of ATF6 represents a proteostasis-based therapeutic strategy for ameliorating ischemia/reperfusion damage, underscoring its unique translational potential for treating a wide range of pathologies caused by imbalanced proteostasis.
Collapse
Affiliation(s)
- Erik A Blackwood
- San Diego State University Heart Institute and the Department of Biology, San Diego State University, San Diego, CA, 92182, USA
| | - Khalid Azizi
- San Diego State University Heart Institute and the Department of Biology, San Diego State University, San Diego, CA, 92182, USA
| | - Donna J Thuerauf
- San Diego State University Heart Institute and the Department of Biology, San Diego State University, San Diego, CA, 92182, USA
| | - Ryan J Paxman
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Lars Plate
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA, 92037, USA
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Jeffery W Kelly
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA, 92037, USA
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - R Luke Wiseman
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Christopher C Glembotski
- San Diego State University Heart Institute and the Department of Biology, San Diego State University, San Diego, CA, 92182, USA.
| |
Collapse
|
76
|
Affiliation(s)
- Ellen Malovrh
- From the Department of Cardiology, Angiology, and Pneumology, University Hospital Heidelberg, University of Heidelberg, Germany (E.M., M.V.).,DZHK (German Centre for Cardiovascular Research), Partner Site Heidelberg/Mannheim, Germany (E.M., M.V.)
| | - Mirko Völkers
- From the Department of Cardiology, Angiology, and Pneumology, University Hospital Heidelberg, University of Heidelberg, Germany (E.M., M.V.).,DZHK (German Centre for Cardiovascular Research), Partner Site Heidelberg/Mannheim, Germany (E.M., M.V.)
| |
Collapse
|
77
|
Zhang G, Wang X, Gillette TG, Deng Y, Wang ZV. Unfolded Protein Response as a Therapeutic Target in Cardiovascular Disease. Curr Top Med Chem 2019; 19:1902-1917. [PMID: 31109279 PMCID: PMC7024549 DOI: 10.2174/1568026619666190521093049] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2019] [Revised: 04/09/2019] [Accepted: 05/02/2019] [Indexed: 12/15/2022]
Abstract
Cardiovascular disease is the leading cause of death worldwide. Despite overwhelming socioeconomic impact and mounting clinical needs, our understanding of the underlying pathophysiology remains incomplete. Multiple forms of cardiovascular disease involve an acute or chronic disturbance in cardiac myocytes, which may lead to potent activation of the Unfolded Protein Response (UPR), a cellular adaptive reaction to accommodate protein-folding stress. Accumulation of unfolded or misfolded proteins in the Endoplasmic Reticulum (ER) elicits three signaling branches of the UPR, which otherwise remain quiescent. This ER stress response then transiently suppresses global protein translation, augments production of protein-folding chaperones, and enhances ER-associated protein degradation, with an aim to restore cellular homeostasis. Ample evidence has established that the UPR is strongly induced in heart disease. Recently, the mechanisms of action and multiple pharmacological means to favorably modulate the UPR are emerging to curb the initiation and progression of cardiovascular disease. Here, we review the current understanding of the UPR in cardiovascular disease and discuss existing therapeutic explorations and future directions.
Collapse
Affiliation(s)
- Guangyu Zhang
- Division of Cardiology, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, United States
| | - Xiaoding Wang
- Division of Cardiology, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, United States
| | - Thomas G. Gillette
- Division of Cardiology, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, United States
| | - Yingfeng Deng
- Touchstone Diabetes Center, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, United States
| | - Zhao V. Wang
- Division of Cardiology, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, United States
| |
Collapse
|
78
|
Almanza A, Carlesso A, Chintha C, Creedican S, Doultsinos D, Leuzzi B, Luís A, McCarthy N, Montibeller L, More S, Papaioannou A, Püschel F, Sassano ML, Skoko J, Agostinis P, de Belleroche J, Eriksson LA, Fulda S, Gorman AM, Healy S, Kozlov A, Muñoz‐Pinedo C, Rehm M, Chevet E, Samali A. Endoplasmic reticulum stress signalling - from basic mechanisms to clinical applications. FEBS J 2019; 286:241-278. [PMID: 30027602 PMCID: PMC7379631 DOI: 10.1111/febs.14608] [Citation(s) in RCA: 595] [Impact Index Per Article: 99.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2018] [Revised: 06/24/2018] [Accepted: 07/18/2018] [Indexed: 02/06/2023]
Abstract
The endoplasmic reticulum (ER) is a membranous intracellular organelle and the first compartment of the secretory pathway. As such, the ER contributes to the production and folding of approximately one-third of cellular proteins, and is thus inextricably linked to the maintenance of cellular homeostasis and the fine balance between health and disease. Specific ER stress signalling pathways, collectively known as the unfolded protein response (UPR), are required for maintaining ER homeostasis. The UPR is triggered when ER protein folding capacity is overwhelmed by cellular demand and the UPR initially aims to restore ER homeostasis and normal cellular functions. However, if this fails, then the UPR triggers cell death. In this review, we provide a UPR signalling-centric view of ER functions, from the ER's discovery to the latest advancements in the understanding of ER and UPR biology. Our review provides a synthesis of intracellular ER signalling revolving around proteostasis and the UPR, its impact on other organelles and cellular behaviour, its multifaceted and dynamic response to stress and its role in physiology, before finally exploring the potential exploitation of this knowledge to tackle unresolved biological questions and address unmet biomedical needs. Thus, we provide an integrated and global view of existing literature on ER signalling pathways and their use for therapeutic purposes.
Collapse
Affiliation(s)
- Aitor Almanza
- Apoptosis Research CentreNational University of IrelandGalwayIreland
| | - Antonio Carlesso
- Department of Chemistry and Molecular BiologyUniversity of GothenburgGöteborgSweden
| | - Chetan Chintha
- Apoptosis Research CentreNational University of IrelandGalwayIreland
| | | | - Dimitrios Doultsinos
- INSERM U1242University of RennesFrance
- Centre de Lutte Contre le Cancer Eugène MarquisRennesFrance
| | - Brian Leuzzi
- Apoptosis Research CentreNational University of IrelandGalwayIreland
| | - Andreia Luís
- Ludwig Boltzmann Institute for Experimental and Clinical TraumatologyAUVA Research CentreViennaAustria
| | - Nicole McCarthy
- Institute for Experimental Cancer Research in PaediatricsGoethe‐UniversityFrankfurtGermany
| | - Luigi Montibeller
- Neurogenetics GroupDivision of Brain SciencesFaculty of MedicineImperial College LondonUK
| | - Sanket More
- Department Cellular and Molecular MedicineLaboratory of Cell Death and TherapyKU LeuvenBelgium
| | - Alexandra Papaioannou
- INSERM U1242University of RennesFrance
- Centre de Lutte Contre le Cancer Eugène MarquisRennesFrance
| | - Franziska Püschel
- Cell Death Regulation GroupOncobell ProgramBellvitge Biomedical Research Institute (IDIBELL)BarcelonaSpain
| | - Maria Livia Sassano
- Department Cellular and Molecular MedicineLaboratory of Cell Death and TherapyKU LeuvenBelgium
| | - Josip Skoko
- Institute of Cell Biology and ImmunologyUniversity of StuttgartGermany
| | - Patrizia Agostinis
- Department Cellular and Molecular MedicineLaboratory of Cell Death and TherapyKU LeuvenBelgium
| | - Jackie de Belleroche
- Neurogenetics GroupDivision of Brain SciencesFaculty of MedicineImperial College LondonUK
| | - Leif A. Eriksson
- Department of Chemistry and Molecular BiologyUniversity of GothenburgGöteborgSweden
| | - Simone Fulda
- Institute for Experimental Cancer Research in PaediatricsGoethe‐UniversityFrankfurtGermany
| | | | - Sandra Healy
- Apoptosis Research CentreNational University of IrelandGalwayIreland
| | - Andrey Kozlov
- Ludwig Boltzmann Institute for Experimental and Clinical TraumatologyAUVA Research CentreViennaAustria
| | - Cristina Muñoz‐Pinedo
- Cell Death Regulation GroupOncobell ProgramBellvitge Biomedical Research Institute (IDIBELL)BarcelonaSpain
| | - Markus Rehm
- Institute of Cell Biology and ImmunologyUniversity of StuttgartGermany
| | - Eric Chevet
- INSERM U1242University of RennesFrance
- Centre de Lutte Contre le Cancer Eugène MarquisRennesFrance
| | - Afshin Samali
- Apoptosis Research CentreNational University of IrelandGalwayIreland
| |
Collapse
|
79
|
Drullion C, Marot G, Martin N, Desle J, Saas L, Salazar-Cardozo C, Bouali F, Pourtier A, Abbadie C, Pluquet O. Pre-malignant transformation by senescence evasion is prevented by the PERK and ATF6alpha branches of the Unfolded Protein Response. Cancer Lett 2018; 438:187-196. [DOI: 10.1016/j.canlet.2018.09.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Revised: 09/06/2018] [Accepted: 09/07/2018] [Indexed: 10/28/2022]
|
80
|
Network pharmacology-based identification of major component of Angelica sinensis and its action mechanism for the treatment of acute myocardial infarction. Biosci Rep 2018; 38:BSR20180519. [PMID: 30232231 PMCID: PMC6239257 DOI: 10.1042/bsr20180519] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Revised: 09/10/2018] [Accepted: 09/12/2018] [Indexed: 01/06/2023] Open
Abstract
Background: To decipher the mechanisms of Angelica sinensis for the treatment of acute myocardial infarction (AMI) using network pharmacology analysis. Methods: Databases were searched for the information on constituents, targets, and diseases. Cytoscape software was used to construct the constituent–target–disease network and screen the major targets, which were annotated with the DAVID (Database for Annotation, Visualization and Integrated Discovery) tool. The cardioprotective effects of Angelica sinensis polysaccharide (ASP), a major component of A. sinensis, were validated both in H9c2 cells subjected to simulated ischemia by oxygen and glucose deprivation and in rats with AMI by ligation of the left anterior coronary artery. Results: We identified 228 major targets against AMI injury for A. sinensis, which regulated multiple pathways and hit multiple targets involved in several biological processes. ASP significantly decreased endoplasmic reticulum (ER) stress-induced cell death both in vitro and in vivo. In ischemia injury rats, ASP treatment reduced infarct size and preserved heart function. ASP enhanced activating transcription factor 6 (ATF6) activity, which improved ER-protein folding capacity. ASP activated the expression of p-AMP-activated protein kinase (p-AMPK) and peroxisome proliferator-activated receptor γ coactivator 1α (PGC1α). Additionally, ASP attenuated levels of proinflammatory cytokines and maintained a balance in the oxidant/antioxidant levels after AMI. Conclusion:In silico analysis revealed the associations between A. sinensis and AMI through multiple targets and several key signaling pathways. Experimental data indicate that ASP protects the heart against ischemic injury by activating ATF6 to ameliorate the detrimental ER stress. ASP’s effects could be mediated via the activation of AMPK-PGC1α pathway.
Collapse
|
81
|
Hu C, Tian Y, Xu H, Pan B, Terpstra EM, Wu P, Wang H, Li F, Liu J, Wang X. Inadequate ubiquitination-proteasome coupling contributes to myocardial ischemia-reperfusion injury. J Clin Invest 2018; 128:5294-5306. [PMID: 30204128 DOI: 10.1172/jci98287] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Accepted: 09/04/2018] [Indexed: 12/14/2022] Open
Abstract
The ubiquitin-proteasome system (UPS) degrades a protein molecule via 2 main steps: ubiquitination and proteasomal degradation. Extraproteasomal ubiquitin receptors are thought to couple the 2 steps, but this proposition has not been tested in vivo with vertebrates. More importantly, impaired UPS performance plays a major role in cardiac pathogenesis, including myocardial ischemia-reperfusion injury (IRI), but the molecular basis of UPS impairment remains poorly understood. Ubiquilin1 is a bona fide extraproteasomal ubiquitin receptor. Here, we report that mice with a cardiomyocyte-restricted knockout of Ubiquilin1 (Ubqln1-CKO mice) accumulated a surrogate UPS substrate (GFPdgn) and increased myocardial ubiquitinated proteins without altering proteasome activities, resulting in late-onset cardiomyopathy and a markedly shortened life span. When subject to regional myocardial ischemia-reperfusion, young Ubqln1-CKO mice showed substantially exacerbated cardiac malfunction and enlarged infarct size, and conversely, mice with transgenic Ubqln1 overexpression displayed attenuated IRI. Furthermore, Ubqln1 overexpression facilitated proteasomal degradation of oxidized proteins and the degradation of a UPS surrogate substrate in cultured cardiomyocytes without increasing autophagic flux. These findings demonstrate that Ubiquilin1 is essential to cardiac ubiquitination-proteasome coupling and that an inadequacy in the coupling represents a major pathogenic factor for myocardial IRI; therefore, strategies to strengthen coupling have the potential to reduce IRI.
Collapse
Affiliation(s)
- Chengjun Hu
- Department of Human Anatomy, Wuhan University College of Basic Medical Sciences, Wuhan, Hubei, China.,Division of Basic Biomedical Sciences, Sanford School of Medicine of the University of South Dakota, Vermillion, South Dakota, USA
| | - Yihao Tian
- Department of Human Anatomy, Wuhan University College of Basic Medical Sciences, Wuhan, Hubei, China.,Division of Basic Biomedical Sciences, Sanford School of Medicine of the University of South Dakota, Vermillion, South Dakota, USA
| | - Hongxin Xu
- Division of Basic Biomedical Sciences, Sanford School of Medicine of the University of South Dakota, Vermillion, South Dakota, USA.,Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Bo Pan
- Division of Basic Biomedical Sciences, Sanford School of Medicine of the University of South Dakota, Vermillion, South Dakota, USA
| | - Erin M Terpstra
- Division of Basic Biomedical Sciences, Sanford School of Medicine of the University of South Dakota, Vermillion, South Dakota, USA
| | - Penglong Wu
- Division of Basic Biomedical Sciences, Sanford School of Medicine of the University of South Dakota, Vermillion, South Dakota, USA.,Protein Modification and Degradation Lab, School of Basic Medical Sciences, Affiliated Tumor Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Hongmin Wang
- Division of Basic Biomedical Sciences, Sanford School of Medicine of the University of South Dakota, Vermillion, South Dakota, USA
| | - Faqian Li
- Department of Pathology and Laboratory Medicine, University of Minnesota, Minneapolis, Minnesota, USA
| | - Jinbao Liu
- Protein Modification and Degradation Lab, School of Basic Medical Sciences, Affiliated Tumor Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Xuejun Wang
- Division of Basic Biomedical Sciences, Sanford School of Medicine of the University of South Dakota, Vermillion, South Dakota, USA
| |
Collapse
|
82
|
Sun MY, Ma DS, Zhao S, Wang L, Ma CY, Bai Y. Salidroside mitigates hypoxia/reoxygenation injury by alleviating endoplasmic reticulum stress‑induced apoptosis in H9c2 cardiomyocytes. Mol Med Rep 2018; 18:3760-3768. [PMID: 30132527 PMCID: PMC6131614 DOI: 10.3892/mmr.2018.9403] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2017] [Accepted: 11/23/2017] [Indexed: 02/07/2023] Open
Abstract
Endoplasmic reticulum (ER) stress‑induced apoptosis serves a crucial role in the development of myocardial ischemia/reperfusion (I/R) injury. Salidroside is a phenylpropanoid glycoside isolated from Rhodiola rosea L., which is a plant often used in traditional Chinese medicine. It possesses multiple pharmacological actions and protects against myocardial I/R injury in vitro and in vivo. However, it is not yet clear whether ER stress or ER stress‑induced apoptosis contributes to the cardioprotective effects of salidroside against myocardial I/R injury. Hence, hypoxia/reoxygenation (H/R)‑treated H9c2 cardiomyocytes were used in the current study to mimic myocardium I/R injury in vivo. It was hypothesized that salidroside alleviates ER stress and ER stress‑induced apoptosis, thereby reducing H/R injury in H9c2 cells. The results demonstrated that salidroside attenuated H/R‑induced H9c2 cardiomyocyte injury, as cell viability was increased, lactate dehydrogenase release was decreased, morphological changes in apoptotic cells were ameliorated and the apoptosis ratio was reduced compared with the H/R group. ER stress was reversed, indicated by the downregulation of glucose regulated protein 78 and C/EBP homologous protein following pretreatment with salidroside. In addition, salidroside attenuated ER stress‑induced apoptosis, as the expression of cleaved caspase‑12 and pro‑apoptotic protein Bcl‑2 associated X protein and activity of caspase‑3 was decreased, while the expression of anti‑apoptotic protein Bcl‑2 was increased following pretreatment with salidroside. Furthermore, the results indicated that salidroside decreases the activation of the ER stress‑associated signaling pathway, as the expression of phosphorylated protein kinase RNA (PKR)‑like ER kinase (p‑PERK) and phosphorylated inositol‑requiring enzyme‑1α (p‑IRE1α) proteins were decreased following pretreatment with salidroside. These results demonstrate that salidroside protects against H/R injury via regulation of the PERK and IRE1α pathways, resulting in alleviation of ER stress or ER stress‑induced apoptosis in H9c2 cardiomyocytes.
Collapse
Affiliation(s)
- Meng-Yao Sun
- Department of Cardiac Surgery, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Da-Shi Ma
- Department of Cardiac Surgery, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Song Zhao
- Department of Spine Surgery, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Lei Wang
- Department of Cardiac Surgery, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Chun-Ye Ma
- Department of Cardiac Surgery, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Yang Bai
- Department of Cardiac Surgery, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| |
Collapse
|
83
|
Forouhan M, Mori K, Boot-Handford RP. Paradoxical roles of ATF6α and ATF6β in modulating disease severity caused by mutations in collagen X. Matrix Biol 2018; 70:50-71. [PMID: 29522813 PMCID: PMC6090092 DOI: 10.1016/j.matbio.2018.03.004] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Revised: 03/02/2018] [Accepted: 03/03/2018] [Indexed: 01/05/2023]
Abstract
Whilst the role of ATF6α in modulating the unfolded protein response (UPR) has been well documented, the function of its paralogue ATF6β is less well understood. Using knockdown in cell culture and gene ablation in mice we have directly compared the roles of ATF6α & β in responding to the increased ER stress induced by mutant forms of type X collagen that cause the ER stress-associated metaphyseal chondrodysplasia type Schmid (MCDS). ATF6α more efficiently deals with the disease-associated ER stress in the absence of ATF6β and conversely, ATF6β is less effective in the absence of ATF6α. Furthermore, disease severity in vivo is increased by ATF6α ablation and decreased by ATF6β ablation. In addition, novel functions for each paralogue are described including an ATF6β-specific role in controlling growth plate chondrocyte proliferation. The clear demonstration of the intimate relationship of the two ATF6 isoforms and how ATF6β can moderate the activity of ATF6α and vice versa is of great significance for understanding the UPR mechanism. The activities of both ATF6 isoforms and their separate roles need consideration when deciding how to target increased ER stress as a means of treating MCDS and other ER stress-associated diseases.
Collapse
Affiliation(s)
- M Forouhan
- Wellcome Trust Centre for Cell-Matrix Research, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, Manchester, UK
| | - K Mori
- Department of Biophysics, Graduate School of Science, Kyoto University, Kyoto, Japan
| | - R P Boot-Handford
- Wellcome Trust Centre for Cell-Matrix Research, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, Manchester, UK.
| |
Collapse
|
84
|
Abstract
Human heart failure is characterized by arrhythmogenic electrical remodeling consisting mostly of ion channel downregulations. Reversing these downregulations is a logical approach to antiarrhythmic therapy, but understanding the pathophysiological mechanisms of the reduced currents is crucial for finding the proper treatments. The unfolded protein response (UPR) is activated by endoplasmic reticulum (ER) stress and has been found to play pivotal roles in different diseases including neurodegenerative diseases, diabetes mellitus, and heart disease. Recently, the UPR is reported to regulate multiple cardiac ion channels, contributing to arrhythmias in heart disease. In this review, we will discuss which UPR modulators and effectors could be involved in regulation of cardiac ion channels in heart disease, and how the understanding of these regulating mechanisms may lead to new antiarrhythmic therapeutics that lack the proarrhythmic risk of current ion channel blocking therapies.
Collapse
Affiliation(s)
- Man Liu
- a Division of Cardiology, Department of Medicine, The Lillehei Heart Institute , University of Minnesota at Twin Cities , Minneapolis , USA
| | - Samuel C Dudley
- a Division of Cardiology, Department of Medicine, The Lillehei Heart Institute , University of Minnesota at Twin Cities , Minneapolis , USA
| |
Collapse
|
85
|
Steiger D, Yokota T, Li J, Ren S, Minamisawa S, Wang Y. The serine/threonine-protein kinase/endoribonuclease IRE1α protects the heart against pressure overload-induced heart failure. J Biol Chem 2018; 293:9652-9661. [PMID: 29769316 DOI: 10.1074/jbc.ra118.003448] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2018] [Revised: 05/04/2018] [Indexed: 12/26/2022] Open
Abstract
Heart failure is associated with induction of endoplasmic reticulum (ER) stress and the unfolded protein response (UPR). The serine/threonine protein kinase/endoribonuclease IRE1α is a key protein in ER stress signal transduction. IRE1α activity can induce both protective UPR and apoptotic downstream signaling events, but the specific role for IRE1α activity in the heart is unknown. A major aim of this study was to characterize the specific contribution of IRE1α in cardiac physiology and pathogenesis. We used both cultured myocytes and a transgenic mouse line with inducible and cardiomyocyte-specific IRE1α overexpression as experimental models to achieve targeted IRE1α activation. IRE1α expression induced a potent but transient ER stress response in cardiomyocytes and did not cause significant effects in the intact heart under normal physiological conditions. Furthermore, the IRE1α-activated transgenic heart responding to pressure overload exhibited preserved function and reduced fibrotic area, associated with increased adaptive UPR signaling and with blunted inflammatory and pathological gene expression. Therefore, we conclude that IRE1α induces transient ER stress signaling and confers a protective effect against pressure overload-induced pathological remodeling in the heart. To our knowledge, this report provides first direct evidence of a specific and protective role for IRE1α in the heart and reveals an interaction between ER stress signaling and inflammatory regulation in the pathologically stressed heart.
Collapse
Affiliation(s)
- DeAnna Steiger
- From the Departments of Anesthesiology, Physiology, and Medicine, David Geffen School of Medicine, UCLA, Los Angeles, California 90095 and
| | - Tomohiro Yokota
- From the Departments of Anesthesiology, Physiology, and Medicine, David Geffen School of Medicine, UCLA, Los Angeles, California 90095 and
| | - Jin Li
- From the Departments of Anesthesiology, Physiology, and Medicine, David Geffen School of Medicine, UCLA, Los Angeles, California 90095 and
| | - Shuxun Ren
- From the Departments of Anesthesiology, Physiology, and Medicine, David Geffen School of Medicine, UCLA, Los Angeles, California 90095 and
| | - Susumu Minamisawa
- the Department of Cell Physiology, Jikei University School of Medicine, Tokyo 105-8461, Japan
| | - Yibin Wang
- From the Departments of Anesthesiology, Physiology, and Medicine, David Geffen School of Medicine, UCLA, Los Angeles, California 90095 and
| |
Collapse
|
86
|
Choy KW, Murugan D, Mustafa MR. Natural products targeting ER stress pathway for the treatment of cardiovascular diseases. Pharmacol Res 2018; 132:119-129. [PMID: 29684674 DOI: 10.1016/j.phrs.2018.04.013] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Revised: 03/06/2018] [Accepted: 04/16/2018] [Indexed: 12/22/2022]
Abstract
Endoplasmic reticulum (ER) is the main organelle for the synthesis, folding, and processing of secretory and transmembrane proteins. Pathological stimuli including hypoxia, ischaemia, inflammation and oxidative stress interrupt the homeostatic function of ER, leading to accumulation of unfolded proteins, a condition referred to as ER stress. ER stress triggers a complex signalling network referred as the unfolded protein response (UPR). Extensive studies have demonstrated that ER stress plays an important role in the pathogenesis of various cardiovascular diseases such as heart failure, ischemic heart disease and atherosclerosis. The importance of natural products in modern medicine are well recognized and continues to be of interests as a source of novel lead compounds. Natural products targeting components of UPR and reducing ER stress offers an innovative strategic approach to treat cardiovascular diseases. In this review, we discussed several therapeutic interventions using natural products with potential cardiovascular protective properties targeting ER stress signalling pathways.
Collapse
Affiliation(s)
- Ker Woon Choy
- Department of Pharmacology, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Dharmani Murugan
- Department of Pharmacology, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Mohd Rais Mustafa
- Department of Pharmacology, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia; Centre for Natural Products Research and Drug Discovery (CENAR), University of Malaya, 50603 Kuala Lumpur, Malaysia.
| |
Collapse
|
87
|
Bi X, Zhang G, Wang X, Nguyen C, May HI, Li X, Al-Hashimi AA, Austin RC, Gillette TG, Fu G, Wang ZV, Hill JA. Endoplasmic Reticulum Chaperone GRP78 Protects Heart From Ischemia/Reperfusion Injury Through Akt Activation. Circ Res 2018; 122:1545-1554. [PMID: 29669712 DOI: 10.1161/circresaha.117.312641] [Citation(s) in RCA: 119] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/29/2017] [Revised: 03/30/2018] [Accepted: 04/17/2018] [Indexed: 12/14/2022]
Abstract
RATIONALE Restoration of coronary artery blood flow is the most effective means of ameliorating myocardial damage triggered by ischemic heart disease. However, coronary reperfusion elicits an increment of additional injury to the myocardium. Accumulating evidence indicates that the unfolded protein response (UPR) in cardiomyocytes is activated by ischemia/reperfusion (I/R) injury. Xbp1s (spliced X-box binding protein 1), the most highly conserved branch of the unfolded protein response, is protective in response to cardiac I/R injury. GRP78 (78 kDa glucose-regulated protein), a master regulator of the UPR and an Xbp1s target, is upregulated after I/R. However, its role in the protective response of Xbp1s during I/R remains largely undefined. OBJECTIVE To elucidate the role of GRP78 in the cardiomyocyte response to I/R using both in vitro and in vivo approaches. METHODS AND RESULTS Simulated I/R injury to cultured neonatal rat ventricular myocytes induced apoptotic cell death and strong activation of the UPR and GRP78. Overexpression of GRP78 in neonatal rat ventricular myocytes significantly protected myocytes from I/R-induced cell death. Furthermore, cardiomyocyte-specific overexpression of GRP78 ameliorated I/R damage to the heart in vivo. Exploration of underlying mechanisms revealed that GRP78 mitigates cellular damage by suppressing the accumulation of reactive oxygen species. We go on to show that the GRP78-mediated cytoprotective response involves plasma membrane translocation of GRP78 and interaction with PI3 kinase, culminating in stimulation of Akt. This response is required as inhibition of the Akt pathway significantly blunted the antioxidant activity and cardioprotective effects of GRP78. CONCLUSIONS I/R induction of GRP78 in cardiomyocytes stimulates Akt signaling and protects against oxidative stress, which together protect cells from I/R damage.
Collapse
Affiliation(s)
- Xukun Bi
- From the Department of Cardiology, Biomedical Research (Therapy) Center, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China (X.B., X.L., G.F.).,Division of Cardiology, Department of Internal Medicine (X.B., G.Z., X.W., C.N., H.I.M., T.G.G., Z.V.W., J.A.H.)
| | - Guangyu Zhang
- Division of Cardiology, Department of Internal Medicine (X.B., G.Z., X.W., C.N., H.I.M., T.G.G., Z.V.W., J.A.H.).,University of Texas Southwestern Medical Center, Dallas; Department of Cardiology, Zhongnan Hospital of Wuhan University, Hubei, China (G.Z.)
| | - Xiaoding Wang
- Division of Cardiology, Department of Internal Medicine (X.B., G.Z., X.W., C.N., H.I.M., T.G.G., Z.V.W., J.A.H.).,Department of Cardiology, Renmin Hospital of Wuhan University, Hubei, China (X.W.)
| | - Chau Nguyen
- Division of Cardiology, Department of Internal Medicine (X.B., G.Z., X.W., C.N., H.I.M., T.G.G., Z.V.W., J.A.H.)
| | - Herman I May
- Division of Cardiology, Department of Internal Medicine (X.B., G.Z., X.W., C.N., H.I.M., T.G.G., Z.V.W., J.A.H.)
| | - Xiaoting Li
- From the Department of Cardiology, Biomedical Research (Therapy) Center, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China (X.B., X.L., G.F.)
| | - Ali A Al-Hashimi
- Department of Medicine, Hamilton Center for Kidney Research, McMaster University and the Research Institute of St. Joseph's Healthcare Hamilton, ON, Canada (A.A.A.-H., R.C.A.)
| | - Richard C Austin
- Department of Medicine, Hamilton Center for Kidney Research, McMaster University and the Research Institute of St. Joseph's Healthcare Hamilton, ON, Canada (A.A.A.-H., R.C.A.)
| | - Thomas G Gillette
- Division of Cardiology, Department of Internal Medicine (X.B., G.Z., X.W., C.N., H.I.M., T.G.G., Z.V.W., J.A.H.)
| | - Guosheng Fu
- From the Department of Cardiology, Biomedical Research (Therapy) Center, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China (X.B., X.L., G.F.)
| | - Zhao V Wang
- Division of Cardiology, Department of Internal Medicine (X.B., G.Z., X.W., C.N., H.I.M., T.G.G., Z.V.W., J.A.H.)
| | - Joseph A Hill
- Division of Cardiology, Department of Internal Medicine (X.B., G.Z., X.W., C.N., H.I.M., T.G.G., Z.V.W., J.A.H.).,Department of Molecular Biology (J.A.H.)
| |
Collapse
|
88
|
Du Y, Wang M, Liu X, Zhang J, Xu X, Xu H, Sun G, Sun X. Araloside C Prevents Hypoxia/Reoxygenation-Induced Endoplasmic Reticulum Stress via Increasing Heat Shock Protein 90 in H9c2 Cardiomyocytes. Front Pharmacol 2018; 9:180. [PMID: 29719506 PMCID: PMC5914297 DOI: 10.3389/fphar.2018.00180] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Accepted: 02/19/2018] [Indexed: 01/06/2023] Open
Abstract
Araloside C (AsC) is a cardioprotective triterpenoid compound that is mainly isolated from Aralia elata. This study aims to determine the effects of AsC on hypoxia-reoxygenation (H/R)-induced apoptosis in H9c2 cardiomyocytes and its underlying mechanisms. Results demonstrated that pretreatment with AsC (12.5 μM) for 12 h significantly suppressed the H/R injury in H9c2 cardiomyocytes, including improving cell viability, attenuating the LDH leakage and preventing cardiomyocyte apoptosis. AsC also inhibited H/R-induced ER stress by reducing the activation of ER stress pathways (PERK/eIF2α and ATF6), and decreasing the expression of ER stress-related apoptotic proteins (CHOP and caspase-12). Moreover, AsC greatly improved the expression level of HSP90 compared with that in the H/R group. The use of HSP90 inhibitor 17-AAG and HSP90 siRNA blocked the above suppression effect of AsC on ER stress-related apoptosis caused by H/R. Taken together, AsC could reduce H/R-induced apoptosis possibly because it attenuates ER stress-dependent apoptotic pathways by increasing HSP90 expression.
Collapse
Affiliation(s)
- Yuyang Du
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Beijing, China
| | - Min Wang
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Beijing, China
| | - Xuesong Liu
- Center of Research and Development on Life Sciences and Environmental Sciences, Harbin University of Commerce, Harbin, China
| | - Jingyi Zhang
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Beijing, China
| | - Xudong Xu
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Beijing, China
| | - Huibo Xu
- Academy of Chinese Medical Sciences of Jilin Province, Changchun, China
| | - Guibo Sun
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Beijing, China
| | - Xiaobo Sun
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Beijing, China
| |
Collapse
|
89
|
Wang X, Bi X, Zhang G, Deng Y, Luo X, Xu L, Scherer PE, Ferdous A, Fu G, Gillette TG, Lee AS, Jiang X, Wang ZV. Glucose-regulated protein 78 is essential for cardiac myocyte survival. Cell Death Differ 2018; 25:2181-2194. [PMID: 29666470 PMCID: PMC6261960 DOI: 10.1038/s41418-018-0109-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Revised: 03/09/2018] [Accepted: 03/19/2018] [Indexed: 02/03/2023] Open
Abstract
Secretory and transmembrane proteins rely on proper function of the secretory pathway for folding, posttranslational modification, assembly, and secretion. Accumulation of misfolded proteins in the endoplasmic reticulum (ER) stimulates the unfolded protein response (UPR), which communicates between the ER and other organelles to enhance ER-folding capacity and restore cellular homeostasis. Glucose-regulated protein of 78 kDa (GRP78), an ER-resident protein chaperone, is a master regulator of all UPR signaling branches. Accumulating studies have established a fundamental role of GRP78 in protein folding, ER stress response, and cell survival. However, role of GRP78 in the heart remains incompletely characterized. Here we showed that embryos lacking GRP78 specifically in cardiac myocytes manifest cardiovascular malformations and die in utero at late gestation. We went further to show that inducible knockout of GRP78 in adult cardiac myocytes causes early mortality due to cardiac cell death and severe decline in heart performance. At the cellular level, we found that loss of GRP78 increases apoptotic cell death, which is accompanied by reduction in AKT signaling and augmentation of production for reactive oxygen species. Importantly, enhancing AKT phosphorylation and activity leads to decreases in oxidative stress and increases in cardiac myocyte survival. Collectively, our results demonstrate an essential role of GRP78 in ensuring normal cardiogenesis and maintaining cardiac contractility and function.
Collapse
Affiliation(s)
- Xiaoding Wang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China.,Division of Cardiology, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Xukun Bi
- Division of Cardiology, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA.,Department of Cardiology, Biomedical Research (Therapy) Center, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Guangyu Zhang
- Division of Cardiology, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA.,Department of Cardiology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Yingfeng Deng
- Touchstone Diabetes Center, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Xiang Luo
- Division of Cardiology, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Lin Xu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Philipp E Scherer
- Touchstone Diabetes Center, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Anwarul Ferdous
- Division of Cardiology, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Guosheng Fu
- Department of Cardiology, Biomedical Research (Therapy) Center, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Thomas G Gillette
- Division of Cardiology, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Amy S Lee
- Department of Biochemistry and Molecular Medicine, USC Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Xuejun Jiang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China.
| | - Zhao V Wang
- Division of Cardiology, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
90
|
Mullick M, Sen D. The Delta Opioid Peptide DADLE Represses Hypoxia-Reperfusion Mimicked Stress Mediated Apoptotic Cell Death in Human Mesenchymal Stem Cells in Part by Downregulating the Unfolded Protein Response and ROS along with Enhanced Anti-Inflammatory Effect. Stem Cell Rev Rep 2018; 14:558-573. [DOI: 10.1007/s12015-018-9810-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
91
|
Xu S, Liu WY, Zhao FF, Li YJ, Yue Z, Jiao F, Xie SY. Identification and functional characterization of unfolded protein response transcription factor ATF6 gene in kuruma shrimp Marsupenaeus japonicus. FISH & SHELLFISH IMMUNOLOGY 2018; 75:223-230. [PMID: 29427718 DOI: 10.1016/j.fsi.2018.02.013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2017] [Revised: 01/29/2018] [Accepted: 02/06/2018] [Indexed: 06/08/2023]
Abstract
Activating transcription factor 6 (ATF6) pathway is the key branch of unfolded protein response (UPR). In this study, a homolog of ATFα from Marsupenaeus japonicus (MjATF6) was identified using genome sequencing and characterized, so as to investigate the role of ATF6 pathway in anti-viral immunity of M. japonicus. The cDNA of MjATF6 obtained was 1008 bp in length, with an open reading frame (ORF) of 849bp, which had encoded a putative of 283 amino acid proteins. Results of qRT-PCR showed that MjATF6 was distributed in all the six tested tissues, with the higher expression level being seen in hemocytes and hepatopancreas. Furthermore, MjATF6 expression would be up-regulated from 1 day to 7 day under white spot syndrome virus (WSSV) challenge. In comparison, RNA interference-induced MjATF6 knockdown had resulted in a lower 7-day cumulative mortality of M. japonicus in the presence of WSSV infection. Additionally, our results also revealed that less VP28 mRNA was extracted from hemocytes or hepatopancreas of MjATF6 knockdown shrimp than that from the control. Taken together, these results have confirmed that ATF6 pathway is vital for WSSV replication, and that UPR in M. japonicus may facilitate WSSV infection.
Collapse
Affiliation(s)
- Sen Xu
- Key Laboratory of Tumour Molecular Biology, Department of Clinical Medicine, Binzhou Medical University, Yantai, 264003, China.
| | - Wen-Ying Liu
- Key Laboratory of Tumour Molecular Biology, Department of Clinical Medicine, Binzhou Medical University, Yantai, 264003, China
| | - Fei-Fei Zhao
- Key Laboratory of Tumour Molecular Biology, Department of Clinical Medicine, Binzhou Medical University, Yantai, 264003, China
| | - You-Jie Li
- Key Laboratory of Tumour Molecular Biology, Department of Clinical Medicine, Binzhou Medical University, Yantai, 264003, China
| | - Zhen Yue
- Key Laboratory of Tumour Molecular Biology, Department of Clinical Medicine, Binzhou Medical University, Yantai, 264003, China
| | - Fei Jiao
- Key Laboratory of Tumour Molecular Biology, Department of Clinical Medicine, Binzhou Medical University, Yantai, 264003, China.
| | - Shu-Yang Xie
- Key Laboratory of Tumour Molecular Biology, Department of Clinical Medicine, Binzhou Medical University, Yantai, 264003, China.
| |
Collapse
|
92
|
Wang S, Binder P, Fang Q, Wang Z, Xiao W, Liu W, Wang X. Endoplasmic reticulum stress in the heart: insights into mechanisms and drug targets. Br J Pharmacol 2018; 175:1293-1304. [PMID: 28548229 PMCID: PMC5867005 DOI: 10.1111/bph.13888] [Citation(s) in RCA: 136] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Revised: 05/04/2017] [Accepted: 05/16/2017] [Indexed: 01/03/2023] Open
Abstract
The endoplasmic reticulum (ER) serves several essential cellular functions including protein synthesis, protein folding, protein translocation, calcium homoeostasis and lipid biosynthesis. Physiological or pathological stimuli, which disrupt ER homoeostasis and disturb its functions, lead to an accumulation of misfolded and unfolded proteins, a condition referred to as ER stress. ER stress triggers the unfolded protein response to restore the homoeostasis of ER, through activating transcriptional and translational pathways. However, prolonged ER stress will lead to cell dysfunction and apoptosis. Recent evidence revealed that ER stress is involved in the development and progression of various heart diseases, such as cardiac hypertrophy, ischaemic heart diseases and heart failure. Therefore, improved understanding of the molecular mechanisms of ER stress in heart disease will help to investigate more potential targets for new therapeutic interventions and drug discovery. LINKED ARTICLES This article is part of a themed section on Spotlight on Small Molecules in Cardiovascular Diseases. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v175.8/issuetoc.
Collapse
Affiliation(s)
- Shunyao Wang
- Faculty of Biology, Medicine and HealthThe University of ManchesterManchesterUK
| | - Pablo Binder
- Faculty of Biology, Medicine and HealthThe University of ManchesterManchesterUK
| | - Qiru Fang
- State Key Laboratory of New‐tech for Chinese Medicine Pharmaceutical ProcessLianyungangChina
| | - Zhenzhong Wang
- State Key Laboratory of New‐tech for Chinese Medicine Pharmaceutical ProcessLianyungangChina
| | - Wei Xiao
- State Key Laboratory of New‐tech for Chinese Medicine Pharmaceutical ProcessLianyungangChina
| | - Wei Liu
- Faculty of Biology, Medicine and HealthThe University of ManchesterManchesterUK
| | - Xin Wang
- Faculty of Biology, Medicine and HealthThe University of ManchesterManchesterUK
| |
Collapse
|
93
|
Ochoa CD, Wu RF, Terada LS. ROS signaling and ER stress in cardiovascular disease. Mol Aspects Med 2018; 63:18-29. [PMID: 29559224 DOI: 10.1016/j.mam.2018.03.002] [Citation(s) in RCA: 219] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Revised: 03/12/2018] [Accepted: 03/16/2018] [Indexed: 12/21/2022]
Abstract
The endoplasmic reticulum (ER) produces the vast majority of all proteins secreted into the extracellular space, including hormones and cytokines, as well as cell surface receptors and other proteins which interact with the environment. Accordingly, this organelle controls essentially all vital links to a cell's external milieu, responding to systemic metabolic, inflammatory, endocrine, and mechanical stimuli. The central role the ER plays in meeting protein synthetic and quality control requirements in the face of such demands is matched by an extensive and versatile ER stress response signaling network. ROS mediate several critical aspects of this response. Nox4, an ER resident capable of producing ROS, acts as a proximal signaling intermediate to transduce ER stress-related conditions to the unfolded protein response, a homeostatic corrective mechanism. However, chronic ER stress caused by unrelenting internal or external demands produces a secondary rise in ROS, generally resulting in cell death. Sorting out the involvement of ROS at different levels of the ER stress response in specific cell types is key to understanding the molecular basis for chronic diseases such as atherosclerosis, hypertension, and diabetes. Here, we provide an overview of ER stress signaling with an emphasis on the role of ROS.
Collapse
Affiliation(s)
- Cristhiaan D Ochoa
- Department of Internal Medicine, Pulmonary and Critical Care, University of Texas Southwestern, Dallas, TX, USA
| | - Ru Feng Wu
- Department of Internal Medicine, Pulmonary and Critical Care, University of Texas Southwestern, Dallas, TX, USA
| | - Lance S Terada
- Department of Internal Medicine, Pulmonary and Critical Care, University of Texas Southwestern, Dallas, TX, USA.
| |
Collapse
|
94
|
Fratta Pasini AM, Stranieri C, Rigoni AM, De Marchi S, Peserico D, Mozzini C, Cominacini L, Garbin U. Physical Exercise Reduces Cytotoxicity and Up-Regulates Nrf2 and UPR Expression in Circulating Cells of Peripheral Artery Disease Patients: An Hypoxic Adaptation? J Atheroscler Thromb 2018. [PMID: 29540636 PMCID: PMC6143780 DOI: 10.5551/jat.42432] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Aim: Ischemia-reperfusion (I-R) produces reactive oxygen species (ROS) that damage cells and favour cytotoxicity and apoptosis in peripheral artery disease (PAD) patients. Since brief episodes of I-R (ischemic conditioning) protect cells against ischemic harms, we evaluated whether a short-course of supervised treadmill training, characterized by repeated episodes of I-R, makes peripheral blood mononuclear cells (PBMCs) from PAD patients with intermittent claudication more resistant to I-R injuries by reducing oxidative stress and by inducing an adaptative response of unfolded protein response (UPR) and nuclear factor-E2-related factor (Nrf2) pathway expression. Methods: 24 PAD patients underwent 21 sessions of treadmill training and a treadmill test as indicator of acute response to I-R. Results: Maximal and pain free walking distance improved (p < 0.01), whereas LDH leakage and apoptosis of PBMCs decreased (p < 0.01); plasma malondialdehyde and ROS generation in PBMCs declined, while plasma glutathione augmented (p < 0.01). Moreover we demonstrated an up-regulation of UPR and Nrf2 expression in PBMCs (p < 0.01). To understand whether treadmill training may act as a trigger of ischemic conditioning, we examined the effect of repeated episodes of I-R on adaptative response in PBMCs derived from the patients. We showed an up-regulation of UPR and Nrf2 gene expression (p < 0.01), while oxidative stress and cytotoxicity, after an initial increase, declined (p < 0.01). This positive effect on cytotoxicity was reduced after inhibition of UPR and Nrf2 pathways. Conclusions: Treadmill training in PAD patients through UPR and Nrf2 up-regulation may trigger hypoxic adaptation similar to conditioning, thus modifying cell survival.
Collapse
Affiliation(s)
- Anna Maria Fratta Pasini
- Department of Medicine, Section of Internal Medicine and Atherothrombotic and Degenerative Diseases, University of Verona
| | - Chiara Stranieri
- Department of Medicine, Section of Internal Medicine and Atherothrombotic and Degenerative Diseases, University of Verona
| | | | - Sergio De Marchi
- Department of Medicine, Section of Angiology, University of Verona
| | - Denise Peserico
- Department of Medicine, Section of Internal Medicine and Atherothrombotic and Degenerative Diseases, University of Verona
| | - Chiara Mozzini
- Department of Medicine, Section of Internal Medicine and Atherothrombotic and Degenerative Diseases, University of Verona
| | - Luciano Cominacini
- Department of Medicine, Section of Internal Medicine and Atherothrombotic and Degenerative Diseases, University of Verona
| | - Ulisse Garbin
- Department of Medicine, Section of Internal Medicine and Atherothrombotic and Degenerative Diseases, University of Verona
| |
Collapse
|
95
|
Niu X, Zhang J, Ling C, Bai M, Peng Y, Sun S, Li Y, Zhang Z. Polysaccharide from Angelica sinensis protects H9c2 cells against oxidative injury and endoplasmic reticulum stress by activating the ATF6 pathway. J Int Med Res 2018. [PMID: 29517941 PMCID: PMC5991254 DOI: 10.1177/0300060518758863] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Objectives Angelica sinensis exerts various pharmacological effects, such as antioxidant and anti-apoptotic activity. This study aimed to investigate the active ingredients in A. sinensis with antioxidant properties and whether A. sinensis polysaccharide (ASP) protects H9c2 cells against oxidative and endoplasmic reticulum (ER) stress. Methods The ingredients of A. sinensis and their targets and related pathways were determined using web-based databases. Markers of oxidative stress, cell viability, apoptosis, and ER stress-related signalling pathways were measured in H9c2 cells treated with hydrogen peroxide (H2O2) and ASP. Results The ingredient–pathway–disease network showed that A. sinensis exerted protective effects against oxidative injury through its various active ingredients on regulation of multiple pathways. Subsequent experiments showed that ASP pretreatment significantly decreased H2O2-induced cytotoxicity and apoptosis in H9c2 cells. ASP pretreatment inhibited H2O2-induced reactive oxygen species generation, lactic dehydrogenase release, and malondialdehyde production. ASP exerted beneficial effects by inducing activating transcription factor 6 (ATF6) and increasing ATF6 target protein levels, which in turn attenuated ER stress and increased antioxidant activity. Conclusions Our findings indicate that ASP, a major water-soluble component of A. sinensis, exerts protective effects against H2O2-induced injury in H9c2 cells by activating the ATF6 pathway, thus ameliorating ER and oxidative stress.
Collapse
Affiliation(s)
- Xiaowei Niu
- 1 The First School of Clinical Medicine, Lanzhou University, Lanzhou, Gansu, China
| | | | - Chun Ling
- 3 The First People's Hospital of Chuzhou, Chuzhou, Anhui, China
| | - Ming Bai
- 4 Department of Cardiology, the First Hospital of Lanzhou University, Lanzhou, Gansu, China.,5 Gansu Key Laboratory of Cardiovascular Disease, Lanzhou, Gansu, China
| | - Yu Peng
- 4 Department of Cardiology, the First Hospital of Lanzhou University, Lanzhou, Gansu, China.,5 Gansu Key Laboratory of Cardiovascular Disease, Lanzhou, Gansu, China
| | - Shaobo Sun
- 6 Key Lab of Prevention and Treatment for Chronic Disease, Traditional Chinese Medicine of Gansu Province, Lanzhou, Gansu, China
| | - Yingdong Li
- 6 Key Lab of Prevention and Treatment for Chronic Disease, Traditional Chinese Medicine of Gansu Province, Lanzhou, Gansu, China
| | - Zheng Zhang
- 4 Department of Cardiology, the First Hospital of Lanzhou University, Lanzhou, Gansu, China.,5 Gansu Key Laboratory of Cardiovascular Disease, Lanzhou, Gansu, China
| |
Collapse
|
96
|
Wang X, Xu L, Gillette TG, Jiang X, Wang ZV. The unfolded protein response in ischemic heart disease. J Mol Cell Cardiol 2018; 117:19-25. [PMID: 29470977 DOI: 10.1016/j.yjmcc.2018.02.013] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Revised: 02/10/2018] [Accepted: 02/17/2018] [Indexed: 12/28/2022]
Abstract
Ischemic heart disease is a severe stress condition that causes extensive pathological alterations and triggers cardiac cell death. Accumulating evidence suggests that the unfolded protein response (UPR) is strongly induced by myocardial ischemia. The UPR is an evolutionarily conserved cellular response to cope with protein-folding stress, from yeast to mammals. Endoplasmic reticulum (ER) transmembrane sensors detect the accumulation of unfolded proteins and stimulate a signaling network to accommodate unfolded and misfolded proteins. Distinct mechanisms participate in the activation of three major signal pathways, viz. protein kinase RNA-like ER kinase, inositol-requiring protein 1, and activating transcription factor 6, to transiently suppress protein translation, enhance protein folding capacity of the ER, and augment ER-associated degradation to refold denatured proteins and restore cellular homeostasis. However, if the stress is severe and persistent, the UPR elicits inflammatory and apoptotic pathways to eliminate terminally affected cells. The ER is therefore recognized as a vitally important organelle that determines cell survival or death. Recent studies indicate the UPR plays critical roles in the pathophysiology of ischemic heart disease. The three signaling branches may elicit distinct but overlapping effects in cardiac response to ischemia. Here, we outline the findings and discuss the mechanisms of action and therapeutic potentials of the UPR in the treatment of ischemic heart disease.
Collapse
Affiliation(s)
- Xiaoding Wang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China; Division of Cardiology, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Lin Xu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Thomas G Gillette
- Division of Cardiology, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Xuejun Jiang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China.
| | - Zhao V Wang
- Division of Cardiology, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
97
|
Endoplasmic reticulum stress/autophagy pathway is involved in diabetes-induced neuronal apoptosis and cognitive decline in mice. Clin Sci (Lond) 2018; 132:111-125. [PMID: 29212786 DOI: 10.1042/cs20171432] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Revised: 11/27/2017] [Accepted: 12/05/2017] [Indexed: 12/28/2022]
Abstract
Diabetes mellitus is a significant global public health problem depicting a rising prevalence worldwide. As a serious complication of diabetes, diabetes-associated cognitive decline is attracting increasing attention. However, the underlying mechanisms are yet to be fully determined. Both endoplasmic reticulum (ER) stress and autophagy have been reported to modulate neuronal survival and death and be associated with several neurodegenerative diseases. Here, a streptozotocin-induced diabetic mouse model and primary cultured mouse hippocampal neurons were employed to investigate the possible role of ER stress and autophagy in diabetes-induced neuronal apoptosis and cognitive impairments, and further explore the potential molecular mechanisms. ER stress markers GRP78 and CHOP were both enhanced in diabetic mice, as was phosphorylation of PERK, IRE1α, and JNK. In addition, the results indicated an elevated level of autophagy in diabetic mice, as demonstrated by up-regulated expressions of autophagy markers LC3-II, beclin 1 and down-regulated level of p62, and increased formation of autophagic vacuoles and LC3-II aggregates. Meanwhile, we found that these effects could be abolished by ER stress inhibitor 4-phenylbutyrate or JNK inhibitor SP600125 in vitro. Furthermore, neuronal apoptosis of diabetic mice was attenuated by pretreatment with 4-phenylbutyrate, while aggravated by application of inhibitor of autophagy bafilomycin A1 in vitro. These results suggest that ER stress pathway may be involved in diabetes-mediated neurotoxicity and promote the following cognitive impairments. More important, autophagy was induced by diabetes possibly through ER stress-mediated JNK pathway, which may protect neurons against ER stress-associated cell damages.
Collapse
|
98
|
Gouveia M, Xia K, Colón W, Vieira SI, Ribeiro F. Protein aggregation, cardiovascular diseases, and exercise training: Where do we stand? Ageing Res Rev 2017; 40:1-10. [PMID: 28757291 DOI: 10.1016/j.arr.2017.07.005] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2017] [Revised: 07/11/2017] [Accepted: 07/24/2017] [Indexed: 12/11/2022]
Abstract
Cells ensure their protein quality control through the proteostasis network. Aging and age-related diseases, such as neurodegenerative and cardiovascular diseases, have been associated to the reduction of proteostasis network efficiency and, consequently, to the accumulation of protein misfolded aggregates. The decline in protein homeostasis has been associated with the development and progression of atherosclerotic cardiovascular disease, cardiac hypertrophy, cardiomyopathies, and heart failure. Exercise training is a key component of the management of patients with cardiovascular disease, consistently improving quality of life and prognosis. In this review, we give an overview on age-related protein aggregation, the role of the increase of misfolded protein aggregates on cardiovascular pathophysiology, and describe the beneficial or deleterious effects of the proteostasis network on the development of cardiovascular disease. We subsequently discuss how exercise training, a key lifestyle intervention in those with cardiovascular disease, could restore proteostasis and improve disease status.
Collapse
|
99
|
Doran AC, Ozcan L, Cai B, Zheng Z, Fredman G, Rymond CC, Dorweiler B, Sluimer JC, Hsieh J, Kuriakose G, Tall AR, Tabas I. CAMKIIγ suppresses an efferocytosis pathway in macrophages and promotes atherosclerotic plaque necrosis. J Clin Invest 2017; 127:4075-4089. [PMID: 28972541 DOI: 10.1172/jci94735] [Citation(s) in RCA: 78] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Accepted: 08/10/2017] [Indexed: 01/29/2023] Open
Abstract
Atherosclerosis is the underlying etiology of cardiovascular disease, the leading cause of death worldwide. Atherosclerosis is a heterogeneous disease in which only a small fraction of lesions lead to heart attack, stroke, or sudden cardiac death. A distinct type of plaque containing large necrotic cores with thin fibrous caps often precipitates these acute events. Here, we show that Ca2+/calmodulin-dependent protein kinase γ (CaMKIIγ) in macrophages plays a major role in the development of necrotic, thin-capped plaques. Macrophages in necrotic and symptomatic atherosclerotic plaques in humans as well as advanced atherosclerotic lesions in mice demonstrated activation of CaMKII. Western diet-fed LDL receptor-deficient (Ldlr-/-) mice with myeloid-specific deletion of CaMKII had smaller necrotic cores with concomitantly thicker collagen caps. These lesions demonstrated evidence of enhanced efferocytosis, which was associated with increased expression of the macrophage efferocytosis receptor MerTK. Mechanistic studies revealed that CaMKIIγ-deficient macrophages and atherosclerotic lesions lacking myeloid CaMKIIγ had increased expression of the transcription factor ATF6. We determined that ATF6 induces liver X receptor-α (LXRα), an Mertk-inducing transcription factor, and that increased MerTK expression and efferocytosis in CaMKIIγ-deficient macrophages is dependent on LXRα. These findings identify a macrophage CaMKIIγ/ATF6/LXRα/MerTK pathway as a key factor in the development of necrotic atherosclerotic plaques.
Collapse
Affiliation(s)
- Amanda C Doran
- Department of Medicine, Columbia University, New York, New York, USA
| | - Lale Ozcan
- Department of Medicine, Columbia University, New York, New York, USA
| | - Bishuang Cai
- Department of Medicine, Columbia University, New York, New York, USA
| | - Ze Zheng
- Department of Medicine, Columbia University, New York, New York, USA
| | - Gabrielle Fredman
- Department of Molecular and Cellular Physiology, Center for Cardiovascular Sciences, Albany Medical Center, Albany, New York, USA
| | | | - Bernhard Dorweiler
- Department of Cardiothoracic and Vascular Surgery, Universitätsmedizin Mainz, Johannes-Gutenberg University, Mainz, Germany
| | - Judith C Sluimer
- Department of Pathology, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Joanne Hsieh
- Department of Medicine, Columbia University, New York, New York, USA
| | | | - Alan R Tall
- Department of Medicine, Columbia University, New York, New York, USA
| | - Ira Tabas
- Department of Medicine, Columbia University, New York, New York, USA.,Department of Physiology and Cellular Biophysics and.,Department of Pathology and Cell Biology, Columbia University, New York, New York, USA
| |
Collapse
|
100
|
Kim Y, Park SJ, Chen YM. Mesencephalic astrocyte-derived neurotrophic factor (MANF), a new player in endoplasmic reticulum diseases: structure, biology, and therapeutic roles. Transl Res 2017; 188:1-9. [PMID: 28719799 PMCID: PMC5601018 DOI: 10.1016/j.trsl.2017.06.010] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2017] [Revised: 06/20/2017] [Accepted: 06/23/2017] [Indexed: 02/06/2023]
Abstract
Mesencephalic astrocyte-derived neurotrophic factor (MANF), a newly identified 18-kDa soluble protein, localizes to the luminal endoplasmic reticulum (ER), whose stress can stimulate MANF expression and secretion. In Drosophila and zebrafish, MANF regulates dopaminergic neuron development. In contrast, in mice, MANF deficiency leads to diabetes and activation of the unfolded protein response. Recent studies in rodent models have demonstrated that MANF mitigates diabetes, exerts neurotrophic function in neurodegenerative disease, protects cardiomyocytes and neurons in myocardial infarction and cerebral ischemia, respectively, and promotes immune cell phenotype switch from proinflammatory macrophages to prorepair anti-inflammatory macrophages. The cytoprotective mechanisms of MANF on ER stress are currently under active investigation. In addition, for the first time, we have discovered that MANF can potentially serve as a urinary ER stress biomarker in ER stress-mediated kidney disease. These studies have underscored the diagnostic and therapeutic importance of MANF in ER diseases.
Collapse
Affiliation(s)
- Yeawon Kim
- Division of Nephrology, Department of Internal Medicine, Washington University School of Medicine, St. Louis, Mo
| | - Sun-Ji Park
- Division of Nephrology, Department of Internal Medicine, Washington University School of Medicine, St. Louis, Mo
| | - Ying Maggie Chen
- Division of Nephrology, Department of Internal Medicine, Washington University School of Medicine, St. Louis, Mo.
| |
Collapse
|