51
|
Demirci T, Aydin MD, Caglar O, Aydin N, Ozmen S, Nalci KA, Ahiskalioglu A, Kocak MN, Keles S. First definition of burned choroid plexus in acidic cerebrospinal fluid-filled brain ventricles during subarachnoid hemorrhage: Experimental study. Neuropathology 2020; 40:251-260. [PMID: 32153066 DOI: 10.1111/neup.12645] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 12/11/2019] [Accepted: 01/03/2020] [Indexed: 01/01/2023]
Abstract
Blood and cerebrospinal fluid (CSF) acidosis is the most troubling complication in subarachnoid hemorrhage (SAH) if carotid body (CB) networks are disrupted. However, histopathological examination of the choroid plexus (CP) in acidic CSF has not been evaluated so far. In this study, we aimed to investigate the CP in acidic CSF following SAH. Twenty-eight rabbits were used. Five rabbits were used to analyze CB network (control group; n = 5); seven rabbits were injected 1 mL of saline (Sham group; n = 7); and the rest 16 rabbits were given 1 mL of autologous arterial blood inject into the cisterna magna to create SAH (SAH group; n = 16). Blood and CSF pH values were recorded before/during/after the experimental procedures. Nuclear darkening, cellular shrinkage and pyknosis suggested the presence of apoptosis of epithelial cells of CP. The densities of normal and degenerated epithelial cells of CPs were estimated using stereological methods. The relationship between the pH values and degenerated epithelial cell densities of CPs were statistically compared by Mann-Whitney U-test. The pH values of blood were estimated as 7.359 ± 0.039 in the control group, 7.318 ± 0.062 in the Sham group, 7.23 ± 0.013 in the SAH group. CSF pH values were 7.313 ± 0.028 in the control group, 7.296 ± 0.045 in the Sham group, and 7.224 ± 0.012 in the SAH group. Degenerated epithelial cell density of CP was 25 ± 7 in the control group, 226 ± 64 in the Sham group, and 2115 ± 635 in the SAH group. There was a considerable link between CSF pH values and degenerated epithelial cells of CP (P < 0.0001). This study shows that CB insult causes acidosis of CSF as well as cellular degeneration of CP during SAH. This is the first description of this in the literature.
Collapse
Affiliation(s)
- Tuba Demirci
- Department of Histology and Embryology, Medical Faculty of Ataturk University, Erzurum, Turkey
| | - Mehmet D Aydin
- Department of Neurosurgery, Medical Faculty of Ataturk University, Erzurum, Turkey
| | - Ozgur Caglar
- Department of Pediatric Surgery, Medical Faculty of Ataturk University, Erzurum, Turkey
| | - Nazan Aydin
- Department of Psychology, Humanities and Social Sciences Faculty, Uskudar University, İstanbul, Turkey
| | - Sevilay Ozmen
- Department of Pathology, Medical Faculty of Ataturk University, Erzurum, Turkey
| | - Kemal A Nalci
- Department of Pharmacology, Medical Faculty of Ataturk University, Erzurum, Turkey
| | - Ali Ahiskalioglu
- Department of Anesthesiology, Medical Faculty of Ataturk University, Erzurum, Turkey
| | - Mehmet N Kocak
- Department of Neurology, Medical Faculty of Ataturk University, Erzurum, Turkey
| | - Sait Keles
- Department of Biochemistry, Medical Faculty of Ataturk University, Erzurum, Turkey
| |
Collapse
|
52
|
Mielke D, Bleuel K, Stadelmann C, Rohde V, Malinova V. The ESAS-score: A histological severity grading system of subarachnoid hemorrhage using the modified double hemorrhage model in rats. PLoS One 2020; 15:e0227349. [PMID: 32097426 PMCID: PMC7041796 DOI: 10.1371/journal.pone.0227349] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2019] [Accepted: 12/15/2019] [Indexed: 11/19/2022] Open
Abstract
Objective The amount of extravasated blood is an established surrogate marker for subarachnoid hemorrhage (SAH) severity, which varies in different experimental SAH (eSAH) models. A comprehensive eSAH grading system would allow a more reliable correlation of outcome parameters with SAH severity. The aim of this study was to define a severity score for eSAH related to the Fisher-Score in humans. Material and methods SAH was induced in 135 male rats using the modified double hemorrhage model. A sham group included 8 rats, in which saline solution instead of blood was injected. Histological analysis with HE(hematoxylin-eosin)-staining for the visualization of blood was performed in all rats on day 5. The amount and distribution of blood within the subarachnoid space and ventricles (IVH) was analyzed. Results The mortality rate was 49.6% (71/143). In all except five SAH rats, blood was visible within the subarachnoid space. As expected, no blood was detected in the sham group. The following eSAH severity score was established (ESAS-score): grade I: no SAH visible; grade II: local or diffuse thin SAH, no IVH; grade III: diffuse / thick layers of blood, no IVH; grade IV: additional IVH. Grade I was seen in five rats (7.9%), grade II in 28.6% (18/63), grade III in 41.3% (26/63) and grade IV in 22.2% (14/63) of the rats with eSAH. Conclusion The double hemorrhage model allows the induction of a high grade SAH in more than 60% of the rats, making it suitable for the evaluation of outcome parameters in severe SAH.
Collapse
Affiliation(s)
- Dorothee Mielke
- Department of Neurosurgery, Georg-August-University Göttingen, Göttingen, Germany
| | - Kim Bleuel
- Department of Neuropathology, Georg-August-University Göttingen, Göttingen, Germany
| | - Christine Stadelmann
- Department of Neuropathology, Georg-August-University Göttingen, Göttingen, Germany
| | - Veit Rohde
- Department of Neurosurgery, Georg-August-University Göttingen, Göttingen, Germany
| | - Vesna Malinova
- Department of Neurosurgery, Georg-August-University Göttingen, Göttingen, Germany
- * E-mail:
| |
Collapse
|
53
|
Xiong Y, Xin DQ, Hu Q, Wang LX, Qiu J, Yuan HT, Chu XL, Liu DX, Li G, Wang Z. Neuroprotective mechanism of L-cysteine after subarachnoid hemorrhage. Neural Regen Res 2020; 15:1920-1930. [PMID: 32246641 PMCID: PMC7513988 DOI: 10.4103/1673-5374.280321] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Hydrogen sulfide, which can be generated in the central nervous system from the sulfhydryl-containing amino acid, L-cysteine, by cystathionine-β-synthase, may exert protective effects in experimental subarachnoid hemorrhage; however, the mechanism underlying this effect is unknown. This study explored the mechanism using a subarachnoid hemorrhage rat model induced by an endovascular perforation technique. Rats were treated with an intraperitoneal injection of 100 mM L-cysteine (30 μL) 30 minutes after subarachnoid hemorrhage. At 48 hours after subarachnoid hemorrhage, hematoxylin-eosin staining was used to detect changes in prefrontal cortex cells. L-cysteine significantly reduced cell edema. Neurological function was assessed using a modified Garcia score. Brain water content was measured by the wet-dry method. L-cysteine significantly reduced neurological deficits and cerebral edema after subarachnoid hemorrhage. Immunofluorescence was used to detect the number of activated microglia. Reverse transcription-polymerase chain reaction (RT-PCR) was used to detect the levels of interleukin 1β and CD86 mRNA in the prefrontal cortex. L-cysteine inhibited microglial activation in the prefrontal cortex and reduced the mRNA levels of interleukin 1β and CD86. RT-PCR and western blot analysis of the complement system showed that L-cysteine reduced expression of the complement factors, C1q, C3α and its receptor C3aR1, and the deposition of C1q in the prefrontal cortex. Dihydroethidium staining was applied to detect changes in reactive oxygen species, and immunohistochemistry was used to detect the number of NRF2- and HO-1-positive cells. L-cysteine reduced the level of reactive oxygen species in the prefrontal cortex and the number of NRF2- and HO-1-positive cells. Western blot assays and immunohistochemistry were used to detect the protein levels of CHOP and GRP78 in the prefrontal cortex and the number of CHOP- and GRP78-positive cells. L-cysteine reduced CHOP and GRP78 levels and the number of CHOP- and GRP78-positive cells. The cystathionine-β-synthase inhibitor, aminooxyacetic acid, significantly reversed the above neuroprotective effects of L-cysteine. Taken together, L-cysteine can play a neuroprotective role by regulating neuroinflammation, complement deposition, oxidative stress and endoplasmic reticulum stress. The study was approved by the Animals Ethics Committee of Shandong University, China on February 22, 2016 (approval No. LL-201602022).
Collapse
Affiliation(s)
- Ye Xiong
- Department of Physiology, School of Basic Medical Sciences; Department of Neurosurgery, Qilu Hospital of Shandong University and Brain Science Research Institute, Shandong University, Jinan, Shandong Province, China
| | - Dan-Qing Xin
- Department of Physiology, School of Basic Medical Sciences, Shandong University, Jinan, Shandong Province, China
| | - Quan Hu
- Department of Physiology, School of Basic Medical Sciences, Shandong University, Jinan; Department of Neurosurgery, Taian Central Hospital, Taian, Shandong Province, China
| | - Ling-Xiao Wang
- Department of Physiology, School of Basic Medical Sciences; Department of Neurosurgery, Qilu Hospital of Shandong University and Brain Science Research Institute, Shandong University, Jinan, Shandong Province, China
| | - Jie Qiu
- Department of Physiology, School of Basic Medical Sciences, Shandong University, Jinan, Shandong Province, China
| | - Hong-Tao Yuan
- Department of Physiology, School of Basic Medical Sciences, Shandong University, Jinan, Shandong Province, China
| | - Xi-Li Chu
- Department of Physiology, School of Basic Medical Sciences, Shandong University, Jinan, Shandong Province, China
| | - De-Xiang Liu
- Department of Medical Psychology and Ethics, School of Basic Medicine Sciences, Shandong University, Jinan, Shandong Province, China
| | - Gang Li
- Department of Neurosurgery, Qilu Hospital of Shandong University and Brain Science Research Institute, Shandong University, Jinan, Shandong Province, China
| | - Zhen Wang
- Department of Physiology, School of Basic Medical Sciences, Shandong University, Jinan, Shandong Province, China
| |
Collapse
|
54
|
Gris T, Laplante P, Thebault P, Cayrol R, Najjar A, Joannette-Pilon B, Brillant-Marquis F, Magro E, English SW, Lapointe R, Bojanowski M, Francoeur CL, Cailhier JF. Innate immunity activation in the early brain injury period following subarachnoid hemorrhage. J Neuroinflammation 2019; 16:253. [PMID: 31801576 PMCID: PMC6894125 DOI: 10.1186/s12974-019-1629-7] [Citation(s) in RCA: 87] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Accepted: 10/31/2019] [Indexed: 01/01/2023] Open
Abstract
Background Aneurysmal subarachnoid hemorrhage (SAH) is a catastrophic disease with devastating consequences, including a high mortality rate and severe disabilities among survivors. Inflammation is induced following SAH, but the exact role and phenotype of innate immune cells remain poorly characterized. We investigated the inflammatory components of the early brain injury in an animal model and in SAH patients. Method SAH was induced through injection of blood in the subarachnoid space of C57Bl/6 J wild-type mice. Prospective blood collections were obtained at 12 h, days 1, 2, and 7 to evaluate the systemic inflammatory consequences of SAH by flow cytometry and enzyme-linked immunosorbent-assay (ELISA). Brains were collected, enzymatically digested, or fixed to characterize infiltrating inflammatory cells and neuronal death using flow cytometry and immunofluorescence. Phenotypic evaluation was performed at day 7 using the holding time and footprint tests. We then compared the identified inflammatory proteins to the profiles obtained from the plasma of 13 human SAH patients. Results Following SAH, systemic IL-6 levels increased rapidly, whereas IL-10 levels were reduced. Neutrophils were increased both in the brain and in the blood reflecting local and peripheral inflammation following SAH. More intracerebral pro-inflammatory monocytes were found at early time points. Astrocyte and microglia activation were also increased, and mice had severe motor deficits, which were associated with an increase in the percentage of caspase-3-positive apoptotic neurons. Similarly, we found that IL-6 levels in patients were rapidly increased following SAH. ICAM-1, bFGF, IL-7, IL-12p40, and MCP-4 variations over time were different between SAH patients with good versus bad outcomes. Moreover, high levels of Flt-1 and VEGF at admission were associated with worse outcomes. Conclusion SAH induces an early intracerebral infiltration and peripheral activation of innate immune cells. Furthermore, microglia and astrocytic activation are present at later time points. Our human and mouse data illustrate that SAH is a systemic inflammatory disease and that immune cells represent potential therapeutic targets to help this population of patients in need of new treatments.
Collapse
Affiliation(s)
- Typhaine Gris
- Research Centre of Centre Hospitalier de l'Université de Montréal (CRCHUM), Montreal, Quebec, Canada.,CRCHUM and Montreal Cancer Institute, 900 rue St-Denis, Montreal, Quebec, H2X 0A9, Canada
| | - Patrick Laplante
- Research Centre of Centre Hospitalier de l'Université de Montréal (CRCHUM), Montreal, Quebec, Canada.,CRCHUM and Montreal Cancer Institute, 900 rue St-Denis, Montreal, Quebec, H2X 0A9, Canada
| | - Paméla Thebault
- Research Centre of Centre Hospitalier de l'Université de Montréal (CRCHUM), Montreal, Quebec, Canada.,CRCHUM and Montreal Cancer Institute, 900 rue St-Denis, Montreal, Quebec, H2X 0A9, Canada
| | - Romain Cayrol
- Department of Pathology and Cellular Biology, Faculty of Medicine, Université de Montréal, Pavillon Roger-Gaudry, 5e étage, 2900, Boulevard Édouard-Montpetit, Montreal, Quebec, Canada
| | - Ahmed Najjar
- Department of Surgery, Division of Neurosurgery, Centre Hospitalier de l'Université de Montréal (CHUM), 850 rue St-Denis, Montreal, Quebec, H2X 0A9, Canada
| | - Benjamin Joannette-Pilon
- Research Centre of Centre Hospitalier de l'Université de Montréal (CRCHUM), Montreal, Quebec, Canada.,CRCHUM and Montreal Cancer Institute, 900 rue St-Denis, Montreal, Quebec, H2X 0A9, Canada
| | - Frédéric Brillant-Marquis
- Research Centre of Centre Hospitalier de l'Université de Montréal (CRCHUM), Montreal, Quebec, Canada.,CRCHUM and Montreal Cancer Institute, 900 rue St-Denis, Montreal, Quebec, H2X 0A9, Canada
| | - Elsa Magro
- Neurosurgery Service of CHU Cavale Blanche, INSERM, Boulevard Tanguy Prigent, Finistère, 29200, Brest, Bretagne, France
| | - Shane W English
- Clinical Epidemiology Program, Ottawa Hospital Research Institute, Civic Campus, 1053 Carling Avenue, Ottawa, ON, K1Y 4E9, Canada.,Departments of Medicine (Critical Care) and School of Epidemiology and Public Health, Division of Critical Care, The Ottawa Hospital, University of Ottawa, Civic Campus, 1053 Carling Avenue, Ottawa, ON, K1Y 4E9, Canada
| | - Réjean Lapointe
- Research Centre of Centre Hospitalier de l'Université de Montréal (CRCHUM), Montreal, Quebec, Canada.,CRCHUM and Montreal Cancer Institute, 900 rue St-Denis, Montreal, Quebec, H2X 0A9, Canada
| | - Michel Bojanowski
- Department of Surgery, Division of Neurosurgery, Centre Hospitalier de l'Université de Montréal (CHUM), 850 rue St-Denis, Montreal, Quebec, H2X 0A9, Canada
| | - Charles L Francoeur
- Population Health and Optimal Health Practices Research Unit (Trauma-Emergency-Critical Care Medicine) and Department of Anesthesiology and Critical Care, CHU de Québec-Université Laval, (Hôpital de l'Enfant-Jésus), 1401, 18e rue, Room Z-204, Québec, G1J 1Z4, Canada
| | - Jean-François Cailhier
- Research Centre of Centre Hospitalier de l'Université de Montréal (CRCHUM), Montreal, Quebec, Canada. .,CRCHUM and Montreal Cancer Institute, 900 rue St-Denis, Montreal, Quebec, H2X 0A9, Canada. .,Nephrology Division, CHUM and Department of Medicine, Université de Montréal, Montreal, Quebec, Canada.
| | | |
Collapse
|
55
|
Boltze J, Ferrara F, Hainsworth AH, Bridges LR, Zille M, Lobsien D, Barthel H, McLeod DD, Gräßer F, Pietsch S, Schatzl AK, Dreyer AY, Nitzsche B. Lesional and perilesional tissue characterization by automated image processing in a novel gyrencephalic animal model of peracute intracerebral hemorrhage. J Cereb Blood Flow Metab 2019; 39:2521-2535. [PMID: 30239258 PMCID: PMC6893983 DOI: 10.1177/0271678x18802119] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Revised: 08/09/2018] [Accepted: 08/15/2018] [Indexed: 12/19/2022]
Abstract
Intracerebral hemorrhage (ICH) is an important stroke subtype, but preclinical research is limited by a lack of translational animal models. Large animal models are useful to comparatively investigate key pathophysiological parameters in human ICH. To (i) establish an acute model of moderate ICH in adult sheep and (ii) an advanced neuroimage processing pipeline for automatic brain tissue and hemorrhagic lesion determination; 14 adult sheep were assigned for stereotactically induced ICH into cerebral white matter under physiological monitoring. Six hours after ICH neuroimaging using 1.5T MRI including structural as well as perfusion and diffusion, weighted imaging was performed before scarification and subsequent neuropathological investigation including immunohistological staining. Controlled, stereotactic application of autologous blood caused a space-occupying intracerebral hematoma of moderate severity, predominantly affecting white matter at 5 h post-injection. Neuroimage post-processing including lesion probability maps enabled automatic quantification of structural alterations including perilesional diffusion and perfusion restrictions. Neuropathological and immunohistological investigation confirmed perilesional vacuolation, axonal damage, and perivascular blood as seen after human ICH. The model and imaging platform reflects key aspects of human ICH and enables future translational research on hematoma expansion/evacuation, white matter changes, hematoma evacuation, and other aspects.
Collapse
Affiliation(s)
- Johannes Boltze
- Department of Translational Medicine and
Cell Technology, Fraunhofer Research Institution for Marine Biotechnology and Cell
Technology, Lübeck, Germany
- Institute for Medical and Marine
Biotechnology, University of Lübeck, Lübeck, Germany
| | - Fabienne Ferrara
- Max Delbrück Center for Molecular
Medicine in the Helmholtz Association, Berlin, Germany
| | - Atticus H Hainsworth
- Cell Biology and Genetics Research
Centre, Molecular and Clinical Sciences Research Institute, St George’s University
of London, London, UK
| | - Leslie R Bridges
- Cell Biology and Genetics Research
Centre, Molecular and Clinical Sciences Research Institute, St George’s University
of London, London, UK
- Department of Cellular Pathology, St
George's University Hospitals NHS Foundation Trust, London, UK
| | - Marietta Zille
- Department of Translational Medicine and
Cell Technology, Fraunhofer Research Institution for Marine Biotechnology and Cell
Technology, Lübeck, Germany
- Institute for Medical and Marine
Biotechnology, University of Lübeck, Lübeck, Germany
- Institute for Experimental and Clinical
Pharmacology and Toxicology, University of Lübeck, Lübeck, Germany
| | - Donald Lobsien
- Department of Neuroradiology, University
Hospital of Leipzig, Leipzig, Germany
| | - Henryk Barthel
- Clinic for Nuclear Medicine, University
of Leipzig, Leipzig, Germany
| | - Damian D McLeod
- OncoRay – National Center for Radiation
Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus,
Technische Universität Dresden, Helmholtz-Zentrum
- School of Biomedical Sciences and
Pharmacy, Faculty of Health and Medicine, and Hunter Medical Research Institute, The
University of Newcastle, Callaghan, Australia
| | - Felix Gräßer
- Institute of Biomedical Engineering,
Faculty of Electrical and Computer Engineering, Technical University of Dresden,
Dresden, Germany
| | - Sören Pietsch
- Department of Translational Medicine and
Cell Technology, Fraunhofer Research Institution for Marine Biotechnology and Cell
Technology, Lübeck, Germany
| | - Ann-Kathrin Schatzl
- Department for Cell Therapies,
Fraunhofer Institute for Cell Therapy and Immunology, Leipzig, Germany
| | - Antje Y Dreyer
- Department for Cell Therapies,
Fraunhofer Institute for Cell Therapy and Immunology, Leipzig, Germany
| | - Björn Nitzsche
- Clinic for Nuclear Medicine, University
of Leipzig, Leipzig, Germany
- Department of Pharmacology and
Personalised Medicine, Faculty of Health, Medicine and Life Sciences, Maastricht
University, Maastricht, The Netherlands
| |
Collapse
|
56
|
Takemoto Y, Hasegawa Y, Hayashi K, Cao C, Hamasaki T, Kawano T, Mukasa A, Kim-Mitsuyama S. The Stabilization of Central Sympathetic Nerve Activation by Renal Denervation Prevents Cerebral Vasospasm after Subarachnoid Hemorrhage in Rats. Transl Stroke Res 2019; 11:528-540. [DOI: 10.1007/s12975-019-00740-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Revised: 08/22/2019] [Accepted: 09/20/2019] [Indexed: 02/07/2023]
|
57
|
Kumagai K, Horikawa M, Yamada K, Uchida BT, Farsad K. Transtail Artery Access in Rats: A New Technique for Repeatable Selective Angiography. J Vasc Interv Radiol 2019; 31:678-681.e4. [PMID: 31706884 DOI: 10.1016/j.jvir.2019.07.027] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 07/11/2019] [Accepted: 07/22/2019] [Indexed: 10/25/2022] Open
Abstract
Transtail artery approach successfully enables selective arterial catheterization and angiography in the rat. This technique is effective and repeatable. In addition to its utility in imaging, it may also have a wide range of applications in transcatheter therapy and experimental cerebral stroke models.
Collapse
Affiliation(s)
- Kosuke Kumagai
- Dotter Department of Interventional Radiology, Oregon Health and Science University, 3181 SW Sam Jackson Park Road, Portland, OR; Department of Neurosurgery, National Defense Medical College, Tokorozawa, Japan.
| | - Masahiro Horikawa
- Dotter Department of Interventional Radiology, Oregon Health and Science University, 3181 SW Sam Jackson Park Road, Portland, OR
| | - Kentaro Yamada
- Dotter Department of Interventional Radiology, Oregon Health and Science University, 3181 SW Sam Jackson Park Road, Portland, OR
| | - Barry T Uchida
- Dotter Department of Interventional Radiology, Oregon Health and Science University, 3181 SW Sam Jackson Park Road, Portland, OR
| | - Khashayar Farsad
- Dotter Department of Interventional Radiology, Oregon Health and Science University, 3181 SW Sam Jackson Park Road, Portland, OR
| |
Collapse
|
58
|
Daou BJ, Koduri S, Thompson BG, Chaudhary N, Pandey AS. Clinical and experimental aspects of aneurysmal subarachnoid hemorrhage. CNS Neurosci Ther 2019; 25:1096-1112. [PMID: 31583833 PMCID: PMC6776745 DOI: 10.1111/cns.13222] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 08/30/2019] [Accepted: 09/01/2019] [Indexed: 11/30/2022] Open
Abstract
Aneurysmal subarachnoid hemorrhage (aSAH) continues to be associated with significant morbidity and mortality despite advances in care and aneurysm treatment strategies. Cerebral vasospasm continues to be a major source of clinical worsening in patients. We intended to review the clinical and experimental aspects of aSAH and identify strategies that are being evaluated for the treatment of vasospasm. A literature review on aSAH and cerebral vasospasm was performed. Available treatments for aSAH continue to expand as research continues to identify new therapeutic targets. Oral nimodipine is the primary medication used in practice given its neuroprotective properties. Transluminal balloon angioplasty is widely utilized in patients with symptomatic vasospasm and ischemia. Prophylactic "triple-H" therapy, clazosentan, and intraarterial papaverine have fallen out of practice. Trials have not shown strong evidence supporting magnesium or statins. Other calcium channel blockers, milrinone, tirilazad, fasudil, cilostazol, albumin, eicosapentaenoic acid, erythropoietin, corticosteroids, minocycline, deferoxamine, intrathecal thrombolytics, need to be further investigated. Many of the current experimental drugs may have significant roles in the treatment algorithm, and further clinical trials are needed. There is growing evidence supporting that early brain injury in aSAH may lead to significant morbidity and mortality, and this needs to be explored further.
Collapse
Affiliation(s)
- Badih J. Daou
- Department of Neurological SurgeryUniversity of MichiganAnn ArborMichigan
| | - Sravanthi Koduri
- Department of Neurological SurgeryUniversity of MichiganAnn ArborMichigan
| | | | - Neeraj Chaudhary
- Department of Neurological SurgeryUniversity of MichiganAnn ArborMichigan
| | - Aditya S. Pandey
- Department of Neurological SurgeryUniversity of MichiganAnn ArborMichigan
| |
Collapse
|
59
|
The Role of Intracranial Pressure and Subarachnoid Blood Clots in Early Brain Injury After Experimental Subarachnoid Hemorrhage in Rats. World Neurosurg 2019; 129:e63-e72. [DOI: 10.1016/j.wneu.2019.05.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2019] [Revised: 04/30/2019] [Accepted: 05/02/2019] [Indexed: 01/16/2023]
|
60
|
Abstract
Haemoglobin is released into the CNS during the breakdown of red blood cells after intracranial bleeding. Extracellular free haemoglobin is directly neurotoxic. Haemoglobin scavenging mechanisms clear haemoglobin and reduce toxicity; these mechanisms include erythrophagocytosis, haptoglobin binding of haemoglobin, haemopexin binding of haem and haem oxygenase breakdown of haem. However, the capacity of these mechanisms is limited in the CNS, and they easily become overwhelmed. Targeting of haemoglobin toxicity and scavenging is, therefore, a rational therapeutic strategy. In this Review, we summarize the neurotoxic mechanisms of extracellular haemoglobin and the peculiarities of haemoglobin scavenging pathways in the brain. Evidence for a role of haemoglobin toxicity in neurological disorders is discussed, with a focus on subarachnoid haemorrhage and intracerebral haemorrhage, and emerging treatment strategies based on the molecular pathways involved are considered. By focusing on a fundamental biological commonality between diverse neurological conditions, we aim to encourage the application of knowledge of haemoglobin toxicity and scavenging across various conditions. We also hope that the principles highlighted will stimulate research to explore the potential of the pathways discussed. Finally, we present a consensus opinion on the research priorities that will help to bring about clinical benefits.
Collapse
|
61
|
Qin Y, Li G, Sun Z, Xu X, Gu J, Gao F. Comparison of the effects of nimodipine and deferoxamine on brain injury in rat with subarachnoid hemorrhage. Behav Brain Res 2019; 367:194-200. [PMID: 30953658 DOI: 10.1016/j.bbr.2019.04.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Revised: 03/28/2019] [Accepted: 04/02/2019] [Indexed: 02/05/2023]
Abstract
Subarachnoid hemorrhage (SAH) may lead to brain atrophy and cognitive dysfunction. This study aimed to compare the efficacy of nimodipine and deferoxamine on these sequelae of SAH. A rat model of SAH was established by the double-hemorrhage method. These rats were injected with saline (intraperitoneal, IP), nimodipine (IP), or deferoxamine (IP and intranasal) every 12 h for 5 days after SAH. The MRI scanning, including magnetic resonance angiography, diffusion tensor imaging, T2-weighted imaging, was performed to detect the brain structure. The levels of iron metabolism-related proteins were examined by Western blot analysis. The Morris water maze (MWM) test was used to assess the cognitive function. Then, then neurons in the cortex and hippocampus were counted on hematoxylin and eosin-stained brain sections. Significant cerebral vasospasm (CVS) was found in the saline and deferoxamine groups, but not in the nimodipine group. Cerebral peduncle injury was detected in the saline and nimodipine groups, but not significantly in the deferoxamine group. Compared with nimodipine, deferoxamine reduced transferrin (Tf), Tf receptor, and ferritin levels after SAH. The MWM performances were significantly worse in the saline and nimodipine groups than that in the deferoxamine group. Brain atrophy and neuronal losses were more significant in the saline and nimodipine groups than in the deferoxamine group. Nimodipine significantly ameliorated CVS, but it did not improve the late changes in brain structure and cognitive function. Deferoxamine effectively reduced neuronal cell death and ameliorated cognitive function after SAH.
Collapse
Affiliation(s)
- Yang Qin
- Department of Neurosurgery, The General Hospital of Western Theater Command, Chengdu, China; Department of Geriatrics, The General Hospital of Western Theater Command, Chengdu, China
| | - Gaili Li
- Department of Geriatrics, The General Hospital of Western Theater Command, Chengdu, China
| | - Zhiyong Sun
- Department of Nuclear Medicine, The General Hospital of Western Theater Command, Chengdu, China
| | - Xianhua Xu
- Department of Geriatrics, The General Hospital of Western Theater Command, Chengdu, China
| | - Jianwen Gu
- Department of Neurosurgery, The General Hospital of Western Theater Command, Chengdu, China; Department of Neurosurgery, The 306th Hospital of PLA, Beijing, China.
| | - Fabao Gao
- Department of Radiology, West China Hospital, Sichuan University, Chengdu, China.
| |
Collapse
|
62
|
Li G, Wang Q, Lin T, Liu C. Effect of thrombin injection on cerebral vascular in rats with subarachnoid hemorrhage. J Int Med Res 2019; 47:2819-2831. [PMID: 31179838 PMCID: PMC6683912 DOI: 10.1177/0300060519851353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Objective To evaluate the effect of thrombin (TM) injection via the cerebellomedullary cistern on cerebral vessels in rats with subarachnoid hemorrhage (SAH). Methods Eighteen rats were randomly divided into three groups. In the A1 group, physiological saline was injected via the cerebellomedullary cistern; in the A2 group, 3 U of TM was injected into the subarachnoid space; and in the A3 group, SAH models were established and 3 U of TM was injected with the first injection of whole blood. Three days later, basilar artery specimens were collected for pathological examination. Results The basilar arterial lumen cross-sectional area was significantly smaller in the A2 versus the A1 group, and proteinase-activated receptor (PAR)-1 and tumor necrosis factor (TNF)-α average optical densities were significantly higher (all P < 0.05). Basilar arterial lumen cross-sectional areas were significantly smaller in the A3 than the A2 group and average TNF-α optical densities were significantly lower (both P < 0.05), while those of PAR-1 did not differ significantly. Conclusions There was no significant difference in the extent of cerebral vasospasm between SAH and non-SAH model groups following TM injection into the subarachnoid space, so TM was considered to be an independent factor affecting cerebral vasospasm.
Collapse
Affiliation(s)
- Gang Li
- 1 Department of Neurosurgery, The Third People's Hospital of Hainan Province, SanYa, Hainan Province, China
| | - Qingsong Wang
- 2 Department of Neurosurgery, Haikou Municipal Hospital, Haikou, Hainan Province, China
| | - Tingting Lin
- 2 Department of Neurosurgery, Haikou Municipal Hospital, Haikou, Hainan Province, China
| | - Chengye Liu
- 1 Department of Neurosurgery, The Third People's Hospital of Hainan Province, SanYa, Hainan Province, China
| |
Collapse
|
63
|
Golanov EV, Sharpe MA, Regnier-Golanov AS, Del Zoppo GJ, Baskin DS, Britz GW. Fibrinogen Chains Intrinsic to the Brain. Front Neurosci 2019; 13:541. [PMID: 31191233 PMCID: PMC6549596 DOI: 10.3389/fnins.2019.00541] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Accepted: 05/09/2019] [Indexed: 11/13/2022] Open
Abstract
We observed fine fibrin deposition along the paravascular spaces in naive animals, which increased dramatically following subarachnoid hemorrhage (SAH). Following SAH, fibrin deposits in the areas remote from the hemorrhage. Traditionally it is thought that fibrinogen enters subarachnoid space through damaged blood brain barrier. However, deposition of fibrin remotely from hemorrhage suggests that fibrinogen chains Aα, Bβ, and γ can originate in the brain. Here we demonstrate in vivo and in vitro that astroglia and neurons are capable of expression of fibrinogen chains. SAH in mice was induced by the filament perforation of the circle of Willis. Four days after SAH animals were anesthetized, transcardially perfused and fixed. Whole brain was processed for immunofluorescent (IF) analysis of fibrin deposition on the brain surface or in brains slices processed for fibrinogen chains Aα, Bβ, γ immunohistochemical detection. Normal human astrocytes were grown media to confluency and stimulated with NOC-18 (100 μM), TNF-α (100 nM), ATP-γ-S (100 μM) for 24 h. Culture was fixed and washed/permeabilized with 0.1% Triton and processed for IF. Four days following SAH fibrinogen chains Aα IF associated with glia limitans and superficial brain layers increased 3.2 and 2.5 times (p < 0.05 and p < 0.01) on the ventral and dorsal brain surfaces respectively; fibrinogen chains Bβ increased by 3 times (p < 0.01) on the dorsal surface and fibrinogen chain γ increased by 3 times (p < 0.01) on the ventral surface compared to sham animals. Human cultured astrocytes and neurons constitutively expressed all three fibrinogen chains. Their expression changed differentially when exposed for 24 h to biologically significant stimuli: TNFα, NO or ATP. Western blot and RT-qPCR confirmed presence of the products of the appropriate molecular weight and respective mRNA. We demonstrate for the first time that mouse and human astrocytes and neurons express fibrinogen chains suggesting potential presence of endogenous to the brain fibrinogen chains differentially changing to biologically significant stimuli. SAH is followed by increased expression of fibrinogen chains associated with glia limitans remote from the hemorrhage. We conclude that brain astrocytes and neurons are capable of production of fibrinogen chains, which may be involved in various normal and pathological processes.
Collapse
Affiliation(s)
- Eugene V Golanov
- Department of Neurosurgery, Houston Methodist Hospital, Houston, TX, United States
| | - Martyn A Sharpe
- Department of Neurosurgery, Houston Methodist Hospital, Houston, TX, United States
| | | | - Gregory J Del Zoppo
- Division of Hematology, University of Washington School of Medicine, Seattle, WA, United States
| | - David S Baskin
- Department of Neurosurgery, Houston Methodist Hospital, Houston, TX, United States
| | - Gavin W Britz
- Department of Neurosurgery, Houston Methodist Hospital, Houston, TX, United States
| |
Collapse
|
64
|
Sun J, Yang X, Zhang Y, Zhang W, Lu J, Hu Q, Liu R, Zhou C, Chen C. Salvinorin A attenuates early brain injury through PI3K/Akt pathway after subarachnoid hemorrhage in rat. Brain Res 2019; 1719:64-70. [PMID: 31125530 DOI: 10.1016/j.brainres.2019.05.026] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Revised: 05/17/2019] [Accepted: 05/20/2019] [Indexed: 02/01/2023]
Abstract
Early brain injury (EBI) refers to the direct injury to the brain during the first 72 h after subarachnoid hemorrhage (SAH), which is one of the major causes for the poor clinical outcome after SAH. In this study, we investigated the effect and the related mechanism of Salvinorin A (SA), a selective kappa opioid receptor agonist, on EBI after SAH. SA was administered by intraperitoneal injection at 24 h, 48 h and 72 h after SAH. The volume of lateral ventricle was measured by magnetic resonance imaging (MRI). The neuronal morphological changes and the apoptotic level in CA1 area of hippocampus were observed by Nissl and TUNEL staining respectively. Protein expression of p-PI3K, p-Akt, p-IKKα/β, p-NF-κB, FoxO1, Bim, Bax and Cleaved-caspase-3 was measured to explore the potential mechanism. We found that SA alleviated the neuronal morphological changes and apoptosis in CA1 area of hippocampus. The mechanism might be related to the increased protein expression of p-PI3K/p-Akt, which accompanied by decreased expression of p-IKKα/β, p-NF-κB, FoxO1, Bim, Bax and Cleaved-caspase-3 in the hippocampus. Thus, therapeutic interventions of SA targeting the PI3K/Akt pathway might be a novel approach to ameliorate EBI via reducing the apoptosis and inflammation after SAH.
Collapse
Affiliation(s)
- Juan Sun
- Department of Anatomy and Embryology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China; Department of Neurology, Affiliated Hospital of Qinghai University, China
| | - Xiaomei Yang
- Department of Anatomy and Embryology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Yan Zhang
- Department of Anatomy and Embryology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Weiguang Zhang
- Department of Anatomy and Embryology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Jianfei Lu
- Discipline of Neuroscience, Department of Anatomy and Physiology, Shanghai Jiao Tong University School of Medicine, China
| | - Qin Hu
- Discipline of Neuroscience, Department of Anatomy and Physiology, Shanghai Jiao Tong University School of Medicine, China
| | - Renyu Liu
- Department of Anesthesiology and Critical Care, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Changman Zhou
- Department of Anatomy and Embryology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Chunhua Chen
- Department of Anatomy and Embryology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China.
| |
Collapse
|
65
|
Ozmen S, Altinkaynak K, Aydin MD, Ahiskalioglu A, Demirci T, Özlü C, Kanat A, Aydin N. Toward understanding the causes of blood pH irregularities and the roles of newly described binuclear neurons of carotid bodies on blood pH regulation during subarachnoid hemorrhage: Experimental study. Neuropathology 2019; 39:259-267. [DOI: 10.1111/neup.12552] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Revised: 02/24/2019] [Accepted: 02/26/2019] [Indexed: 11/29/2022]
Affiliation(s)
- Sevilay Ozmen
- Department of PathologyMedical Faculty of Ataturk University Erzurum Turkey
| | - Konca Altinkaynak
- Department of BiochemistryErzurum Research Training Hospital Erzurum Turkey
| | - Mehmet D. Aydin
- Department of NeurosurgeryAtaturk University, Medical Faculty Erzurum Turkey
| | - Ali Ahiskalioglu
- Department of AnesthesiologyMedical Faculty of Ataturk University Erzurum Turkey
| | - Tuba Demirci
- Department of HistologyMedical Faculty of Ataturk University Erzurum Turkey
| | - Can Özlü
- Department of HematologyErzurum Research Training Hospital Erzurum Turkey
| | - Ayhan Kanat
- Department of NeurosurgeryRecep Tayyip Erdogan University Rize Turkey
| | - Nazan Aydin
- Department of PsychiatryBakirkoy Mental Diseases Education Hospital İstanbul Turkey
| |
Collapse
|
66
|
Li Z, Han X. Resveratrol alleviates early brain injury following subarachnoid hemorrhage: possible involvement of the AMPK/SIRT1/autophagy signaling pathway. Biol Chem 2019; 399:1339-1350. [PMID: 30067508 DOI: 10.1515/hsz-2018-0269] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Accepted: 07/17/2018] [Indexed: 12/20/2022]
Abstract
Resveratrol (RSV) attenuates early brain injury (EBI) after subarachnoid hemorrhage (SAH). This study aimed to investigate whether the effects of RSV on SAH-induced EBI were mediated via the AMPK/SIRT1/autophagy pathway. A SAH rat model was established and oxyhemoglobin (Oxyhb)-induced primary cortical neurons were prepared to mimic SAH in vitro. The results showed that RSV significantly reduced microglia activation and the release of inflammatory cytokines, resulting in the alleviation of neurological behavior impairment, brain edema and neural apoptosis at 24 h post-SAH. However, RSV failed to ameliorate neurological deficits, brain edema and neural apoptosis when SAH injury lasted for 72 h. Additionally, at 24 h post-SAH, RSV-administered rats showed a significant increase in the LC3-II/I ratio and the phosphorylation state of AMPK and SIRT1 protein expression in brain tissues. Further in vitro studies revealed that RSV notably reduced the release of inflammatory cytokines and neural apoptosis in neurons at 24 post-Oxyhb, which was abolished by 3MA (an autophagy inhibitor) and Compound C (an AMPK inhibitor). Moreover, Compound C decreased LC3-II/I ratio and inhibited SIRT1 protein expression, whereas 3MA had no significant effects on AMPK/SIRT1-related proteins. In conclusion, the AMPK/SIRT1/autophagy pathway plays an important role in the alleviation of SAH-induced EBI by RSV.
Collapse
Affiliation(s)
- Zhiguo Li
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, No. 1 East Jian She Road, Zhengzhou 450052, Henan, China
| | - Xinwei Han
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, No. 1 East Jian She Road, Zhengzhou 450052, Henan, China
| |
Collapse
|
67
|
Vadokas G, Koehler S, Weiland J, Lilla N, Stetter C, Westermaier T. Early Antiinflammatory Therapy Attenuates Brain Damage After Sah in Rats. Transl Neurosci 2019; 10:104-111. [PMID: 31098320 PMCID: PMC6487785 DOI: 10.1515/tnsci-2019-0018] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2019] [Accepted: 03/18/2019] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Early inflammatory processes may play an important role in the development of early brain injury (EBI) after subarachnoid hemorrhage (SAH). Experimental studies suggest that anti-inflammatory and membrane-stabilizing drugs might have beneficial effects, although the underlying mechanisms are not fully understood. The aim of this study was to investigate the effect of early treatment with methylprednisolone and minocycline on cerebral perfusion and EBI after experimental SAH. METHODS Male Sprague-Dawley rats were subjected to SAH using the endovascular filament model. 30 minutes after SAH, they were randomly assigned to receive an intravenous injection of methylprednisolone (16mg/kg body weight, n=10), minocycline (45mg/kg body weight, n=10) or saline (n=11). Mean arterial blood pressure (MABP), intracranial pressure (ICP) and local cerebral blood flow (LCBF) over both hemispheres were recorded continuously for three hours following SAH. Neurological assessment was performed after 24 hours. Hippocampal damage was analyzed by immunohistochemical staining (caspase 3). RESULTS Treatment with methylprednisolone or minocycline did not result in a significant improvement of MABP, ICP or LCBF. Animals of both treatment groups showed a non-significant trend to better neurological recovery compared to animals of the control group. Mortality was reduced and hippocampal damage significantly attenuated in both methylprednisolone and minocycline treated animals. CONCLUSION The results of this study suggest that inflammatory processes may play an important role in the pathophysiology of EBI after SAH. Early treatment with the anti-inflammatory drugs methylprednisolone or minocycline in the acute phase of SAH has the potential to reduce brain damage and exert a neuroprotective effect.
Collapse
Affiliation(s)
- Georg Vadokas
- Department of Neurosurgery, University Hospital Würzburg, Josef-Schneider-Straße 11, 97080Würzburg, Germany
- Department of Urology, Canisius Wilhelmina Hospital Nijmegen, Weg door Jonkerbos 100, 6532 SZ Nijmegen, Netherlands
| | - Stefan Koehler
- Department of Neurosurgery, University Hospital Würzburg, Josef-Schneider-Straße 11, 97080Würzburg, Germany
| | - Judith Weiland
- Department of Neurosurgery, University Hospital Würzburg, Josef-Schneider-Straße 11, 97080Würzburg, Germany
| | - Nadine Lilla
- Department of Neurosurgery, University Hospital Würzburg, Josef-Schneider-Straße 11, 97080Würzburg, Germany
| | - Christian Stetter
- Department of Neurosurgery, University Hospital Würzburg, Josef-Schneider-Straße 11, 97080Würzburg, Germany
| | - Thomas Westermaier
- Department of Neurosurgery, University Hospital Würzburg, Josef-Schneider-Straße 11, 97080Würzburg, Germany
| |
Collapse
|
68
|
RP001 hydrochloride improves neurological outcome after subarachnoid hemorrhage. J Neurol Sci 2019; 399:6-14. [PMID: 30738334 DOI: 10.1016/j.jns.2019.02.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Revised: 02/01/2019] [Accepted: 02/04/2019] [Indexed: 02/08/2023]
Abstract
Subarachnoid hemorrhage (SAH) results in neurological damage, acute cardiac damage and has a high mortality rate. Immunoresponse in the acute phase after SAH plays a key role in mediating vasospasm, edema, inflammation and neuronal damage. The S1P/S1PR pathway impacts multiple cellular functions, exerts anti-inflammatory and anti-apoptotic effects, promotes remyelination, and improves outcome in several central nervous system (CNS) diseases. RP001 hydrochloride is a novel S1PR agonist, which sequesters lymphocytes within their secondary tissues and prevents infiltration of immune cells into the CNS thereby reducing immune response. In this study, we investigated whether RP001 attenuates neuronal injury after SAH by reducing inflammation. S1PRs, specifically S1PR1, 3 not only exerts anti-inflammatory effects, but also decreases heart rate and induces atrioventricular conduction abnormalities. Therefore, we also tested whether RP001 treatment of SAH regulates cardiac functional outcome. Male adult C57BL/6 mice were subjected to SAH, and neurological function tests, echocardiography, and immunohistochemical analysis were performed. SAH induces neurological deficits and acute cardiac dysfunction compared to sham control mice. Treatment of SAH with a low-dose of RP001 induces better neurological outcome and cardiac function compared to a high-dose of RP001. Low-dose-RP001 treatment significantly decreases apoptosis, white matter damage, blood brain barrier permeability, microglial/astrocyte activation, macrophage chemokine protein-1, matrix metalloproteinase-9 and NADPH oxidase-2 expression in the brain compared to SAH control mice. Our findings indicate that low-dose of RP001 alleviates neurological damage after SAH, in part by decreasing neuroinflammation.
Collapse
|
69
|
Enkhjargal B, Malaguit J, Ho WM, Jiang W, Wan W, Wang G, Tang J, Zhang JH. Vitamin D attenuates cerebral artery remodeling through VDR/AMPK/eNOS dimer phosphorylation pathway after subarachnoid hemorrhage in rats. J Cereb Blood Flow Metab 2019; 39:272-284. [PMID: 28825325 PMCID: PMC6365598 DOI: 10.1177/0271678x17726287] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Revised: 07/11/2017] [Accepted: 07/12/2017] [Indexed: 01/29/2023]
Abstract
The role of vitamin D3 (VitD3) in the upregulation of osteopontin (OPN) and eNOS in the endothelium of cerebral arteries after subarachnoid hemorrhage (SAH) is investigated. The endovascular perforation SAH model in Sprague-Dawley rats ( n = 103) was used. The VitD3 pretreatment (30 ng/kg) increased endogenous OPN and eNOS expression in cerebral arteries compared with naïve rats ( n = 5 per group). Neurobehavioral scores were significantly improved in Pre-SAH+VitD3 group compared with the SAH group. The effects of VitD3 were attenuated by intracerebroventricular (i.c.v) injections of siRNA for the vitamin D receptor (VDR) and OPN in Pre-SAH+VitD3+VDR siRNA and Pre-SAH+VitD3+OPN siRNA rats, respectively ( n = 5 per group). The significant increase of VDR, OPN and decrease of C44 splicing in the cerebral arteries of Pre-SAH+VitD3 rats lead to an increase in basilar artery lumen. The increase in VDR expression led to an upregulation and phosphorylation of AMPK and eNOS, especially dimer form, in endothelium of cerebral artery. The results provide that VitD3 pretreatment attenuates cerebral artery remodeling and vasospasm through the upregulation of OPN and phosphorylation of AMPK (p-AMPK) and eNOS (p-eNOS) at Ser1177-Dimer in the cerebral arteries. Vitamin D may be a useful new preventive and therapeutic strategy against cerebral artery remodeling in stroke patients.
Collapse
Affiliation(s)
- Budbazar Enkhjargal
- Departments of Physiology and Pharmacology, Loma Linda University, Loma Linda, CA, USA
| | - Jay Malaguit
- Departments of Physiology and Pharmacology, Loma Linda University, Loma Linda, CA, USA
| | - Wing M Ho
- Departments of Physiology and Pharmacology, Loma Linda University, Loma Linda, CA, USA
| | - Wu Jiang
- Departments of Physiology and Pharmacology, Loma Linda University, Loma Linda, CA, USA
| | - Weifeng Wan
- Departments of Physiology and Pharmacology, Loma Linda University, Loma Linda, CA, USA
| | - Gaiqing Wang
- Departments of Physiology and Pharmacology, Loma Linda University, Loma Linda, CA, USA
| | - Jiping Tang
- Departments of Physiology and Pharmacology, Loma Linda University, Loma Linda, CA, USA
| | - John H Zhang
- Departments of Physiology and Pharmacology, Loma Linda University, Loma Linda, CA, USA
| |
Collapse
|
70
|
Influence of sex and hormonal status on initial impact and neurocognitive outcome after subarachnoid haemorrhage in rats. Behav Brain Res 2019; 363:13-22. [PMID: 30703399 DOI: 10.1016/j.bbr.2019.01.050] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Revised: 01/24/2019] [Accepted: 01/26/2019] [Indexed: 12/23/2022]
Abstract
The aim of this study was to detect differences in functional outcome after experimental subarachnoid haemorrhage (SAH) in rodents with different hormonal status. For this purpose, the endovascular perforation model was applied to four groups of Sprague-Dawley-Rats: male intact, male neutered, female intact and female neutered animals. Initial impact was measured by ICP, CPP and cerebral blood flow in the first hour after SAH. From day 4-14, the modified hole board test was applied to assess functional and neuro-cognitive outcome. Histological outcome was examined in the motor cortex and hippocampus of each hemisphere. Mortality was highest in the female intact group albeit not statistically significant. Physiologic parameters did not differ significantly between groups either. In the modified hole board test, male intact animals showed a greater impairment of declarative memory than the female intact and neutered groups. However, male intact animals showed greater avoidance behaviour and male animals revealed higher anxiety levels independent of hormonal status. No differences in histological damage of hippocampus and motor cortex between groups could be shown. We therefore speculate that the marginal deficits in cognitive performance that are shown by the male intact group in the modified hole board test are mostly caused by higher anxiety levels and cannot be interpreted as pure cognitive impairment.
Collapse
|
71
|
Liu W, Li R, Yin J, Guo S, Chen Y, Fan H, Li G, Li Z, Li X, Zhang X, He X, Duan C. Mesenchymal stem cells alleviate the early brain injury of subarachnoid hemorrhage partly by suppression of Notch1-dependent neuroinflammation: involvement of Botch. J Neuroinflammation 2019; 16:8. [PMID: 30646897 PMCID: PMC6334441 DOI: 10.1186/s12974-019-1396-5] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Accepted: 01/02/2019] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Activated microglia-mediated neuroinflammation has been regarded as an underlying key player in the pathogenesis of subarachnoid hemorrhage (SAH)-induced early brain injury (EBI). The therapeutic potential of bone marrow mesenchymal stem cells (BMSCs) transplantation has been demonstrated in several brain injury models and is thought to involve modulation of the inflammatory response. The present study investigated the salutary effects of BMSCs on EBI after SAH and the potential mechanism mediated by Notch1 signaling pathway inhibition. METHODS The Sprague-Dawley rats SAH model was induced by endovascular perforation method. BMSCs (3 × 106 cells) were transplanted intravenously into rats, and N-[N-(3,5-difluorophenacetyl-L-alanyl)]-S-phenylglycine t-butyl ester (DAPT), a Notch1 activation inhibitor, and Notch1 small interfering RNA (siRNA) were injected intracerebroventricularly. The effects of BMSCs on EBI were assayed by neurological score, brain water content (BWC), blood-brain barrier (BBB) permeability, magnetic resonance imaging, hematoxylin and eosin staining, and Fluoro-Jade C staining. Immunofluorescence and immunohistochemistry staining, Western blotting, and quantitative real-time polymerase chain reaction were used to analyze various proteins and transcript levels. Pro-inflammatory cytokines were measured by enzyme-linked immunosorbent assay. RESULTS BMSCs treatment mitigated the neurobehavioral dysfunction, BWC and BBB disruption associated with EBI after SAH, reduced ionized calcium binding adapter molecule 1 and cluster of differentiation 68 staining and interleukin (IL)-1 beta, IL-6 and tumor necrosis factor alpha expression in the left hemisphere but concurrently increased IL-10 expression. DAPT or Notch1 siRNA administration reduced Notch1 signaling pathway activation following SAH, ameliorated neurobehavioral impairments, and BBB disruption; increased BWC and neuronal degeneration; and inhibited activation of microglia and production of pro-inflammatory factors. The augmentation of Notch1 signal pathway agents and phosphorylation of nuclear factor-κB after SAH were suppressed by BMSCs but the levels of Botch were upregulated in the ipsilateral hemisphere. Botch knockdown in BMSCs abrogated the protective effects of BMSCs treatment on EBI and the suppressive effects of BMSCs on Notch1 expression. CONCLUSIONS BMSCs treatment alleviated neurobehavioral impairments and the inflammatory response in EBI after SAH; these effects may be attributed to Botch upregulation in brain tissue, which subsequently inhibited the Notch1 signaling pathway.
Collapse
Affiliation(s)
- Wenchao Liu
- Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Guangzhou, 510282 China
| | - Ran Li
- Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Guangzhou, 510282 China
| | - Jian Yin
- Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Guangzhou, 510282 China
| | - Shenquan Guo
- Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Guangzhou, 510282 China
| | - Yunchang Chen
- Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Guangzhou, 510282 China
| | - Haiyan Fan
- Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Guangzhou, 510282 China
| | - Gancheng Li
- Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Guangzhou, 510282 China
| | - Zhenjun Li
- Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Guangzhou, 510282 China
| | - Xifeng Li
- Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Guangzhou, 510282 China
| | - Xin Zhang
- Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Guangzhou, 510282 China
| | - Xuying He
- Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Guangzhou, 510282 China
| | - Chuanzhi Duan
- Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Guangzhou, 510282 China
| |
Collapse
|
72
|
Sun J, Zhang Y, Lu J, Zhang W, Yan J, Yang L, Zhou C, Liu R, Chen C. Salvinorin A ameliorates cerebral vasospasm through activation of endothelial nitric oxide synthase in a rat model of subarachnoid hemorrhage. Microcirculation 2019; 25:e12442. [PMID: 29377443 DOI: 10.1111/micc.12442] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Accepted: 01/19/2018] [Indexed: 12/12/2022]
Abstract
OBJECTIVE This study aimed to demonstrate the potential of salvinorin A (SA) for cerebral vasospasm after subarachnoid hemorrhage (SAH) and investigate mechanisms of therapeutic effect using rat SAH model. METHODS Salvinorin A was injected intraperitoneally, and the neurobehavioral changes were observed at 12 hours, 24 hours, 48 hours, and 72 hours after SAH. Basilar artery was observed by magnetic resonance imaging (MRI). The inner diameter and thickness of basilar artery were measured. The morphological changes and the apoptosis in CA1 area of hippocampus were detected. Endothelin-1 (ET-1) and nitric oxide (NO) levels were detected by ELISA kit. The protein expression of endothelial NO synthase (eNOS) and aquaporin-4 (AQP-4) was determined by Western blot for potential mechanism exploration. RESULTS Salvinorin A administration could relieve neurological deficits, decrease the neuronal apoptosis, and alleviate the morphological changes in CA1 area of hippocampus. SA alleviated CVS by increasing diameter and decreasing thickness of basilar artery, and such changes were accompanied by the decreased concentration of ET-1 and increased level of NO. Meanwhile, SA increased the expression of eNOS and decreased the expression of AQP-4 protein in the basilar artery and hippocampus. CONCLUSIONS Salvinorin A attenuated CVS and alleviated brain injury after SAH via increasing expression of eNOS and NO content, and decreasing ET-1 concentration and AQP-4 protein expression.
Collapse
Affiliation(s)
- Juan Sun
- Department of Anatomy and Embryology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Yan Zhang
- Department of Anatomy and Embryology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Jianfei Lu
- Department of Anatomy and Embryology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Weiguang Zhang
- Department of Anatomy and Embryology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Junhao Yan
- Department of Anatomy and Embryology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Lei Yang
- Department of Anatomy and Embryology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Changman Zhou
- Department of Anatomy and Embryology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Renyu Liu
- Department of Anesthesiology and Critical Care, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Chunhua Chen
- Department of Anatomy and Embryology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| |
Collapse
|
73
|
Liu ZW, Zhao JJ, Pang HG, Song JN. Vascular endothelial growth factor A promotes platelet adhesion to collagen IV and causes early brain injury after subarachnoid hemorrhage. Neural Regen Res 2019; 14:1726-1733. [PMID: 31169190 PMCID: PMC6585561 DOI: 10.4103/1673-5374.257530] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
The role of vascular endothelial growth factor A in platelet adhesion in cerebral microvessels in the early stage of subarachnoid hemorrhage remains unclear. In this study, the endovascular puncture method was used to produce a rat model of subarachnoid hemorrhage. Then, 30 minutes later, vascular endothelial growth factor A antagonist anti-vascular endothelial growth factor receptor 2 antibody, 10 μg, was injected into the right ventricle. Immunohistochemistry and western blot assay were used to assess expression of vascular endothelial growth factor A, occludin and claudin-5. Immunohistochemical double labeling was conducted to examine co-expression of GP Ia-II integrin and type IV collagen. TUNEL was used to detect apoptosis in the hippocampus. Neurological score was used to assess behavioral performance. After subarachnoid hemorrhage, the expression of vascular endothelial growth factor A increased in the hippocampus, while occludin and claudin-5 expression levels decreased. Co-expression of GP Ia-II integrin and type IV collagen and the number of apoptotic cells increased, whereas behavioral performance was markedly impaired. After treatment with anti-vascular endothelial growth factor receptor 2 antibody, occludin and claudin-5 expression recovered, while co-expression of GP Ia-II integrin and type IV collagen and the number of apoptotic cells decreased. Furthermore, behavioral performance improved notably. Our findings suggest that increased vascular endothelial growth factor A levels promote platelet adhesion and contribute to early brain injury after subarachnoid hemorrhage. This study was approved by the Biomedical Ethics Committee, Medical College of Xi’an Jiaotong University, China in December 2015.
Collapse
Affiliation(s)
- Zun-Wei Liu
- Department of Renal Transplantation, Nephropathy Hospital, the First Affiliated Hospital, Medical College of Xi'an Jiaotong University; Institute of Organ Transplantation, Xi'an Jiaotong University, Xi'an, Shaanxi Province, China
| | - Jun-Jie Zhao
- Department of Neurosurgery, the First Affiliated Hospital, Medical College of Xi'an Jiaotong University, Xi'an, Shaanxi Province, China
| | - Hong-Gang Pang
- The First Affiliated Hospital, Medical College of Xi'an Jiaotong University, Xi'an, Shaanxi Province, China
| | - Jin-Ning Song
- Department of Neurosurgery, the First Affiliated Hospital, Medical College of Xi'an Jiaotong University, Xi'an, Shaanxi Province, China
| |
Collapse
|
74
|
Subarachnoid hemorrhage induces neuronal nitric oxide synthase phosphorylation at Ser1412 in the dentate gyrus of the rat brain. Nitric Oxide 2018; 81:67-74. [DOI: 10.1016/j.niox.2017.10.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Revised: 10/07/2017] [Accepted: 10/22/2017] [Indexed: 11/22/2022]
|
75
|
Petridis AK, Kamp MA, Cornelius JF, Beez T, Beseoglu K, Turowski B, Steiger HJ. Aneurysmal Subarachnoid Hemorrhage. DEUTSCHES ARZTEBLATT INTERNATIONAL 2018; 114:226-236. [PMID: 28434443 DOI: 10.3238/arztebl.2017.0226] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2016] [Revised: 08/29/2016] [Accepted: 11/28/2016] [Indexed: 01/10/2023]
Abstract
BACKGROUND Aneurysmal subarachnoid hemorrhage (SAH) is associated with a mortality of more than 30%. Only about 30% of patients with SAB recover sufficiently to return to independent living. METHODS This article is based on a selective review of pertinent literature retrieved by a PubMed search. RESULTS Acute, severe headache, typically described as the worst headache of the patient's life, and meningismus are the characteristic manifestations of SAH. Computed tomog raphy (CT) reveals blood in the basal cisterns in the first 12 hours after SAH with approximately 95% sensitivity and specificity. If no blood is seen on CT, a lumbar puncture must be performed to confirm or rule out the diagnosis of SAH. All patients need intensive care so that rebleeding can be avoided and the sequelae of the initial bleed can be minimized. The immediate transfer of patients with acute SAH to a specialized center is crucially important for their outcome. In such centers, cerebral aneurysms can be excluded from the circulation either with an interventional endovascular procedure (coiling) or by microneurosurgery (clipping). CONCLUSION SAH is a life-threatening condition that requires immediate diagnosis, transfer to a neurovascular center, and treatment without delay.
Collapse
Affiliation(s)
- Athanasios K Petridis
- Department of Neurosurgery, Düsseldorf University Hospital; Department of Diagnostic and Interventional Radiology, Düsseldorf University Hospital; Department of Diagnostic and Interventional Radiology, Düsseldorf University Hospital
| | | | | | | | | | | | | |
Collapse
|
76
|
Han YW, Liu XJ, Zhao Y, Li XM. Role of Oleanolic acid in maintaining BBB integrity by targeting p38MAPK/VEGF/Src signaling pathway in rat model of subarachnoid hemorrhage. Eur J Pharmacol 2018; 839:12-20. [PMID: 30240794 DOI: 10.1016/j.ejphar.2018.09.018] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Revised: 09/10/2018] [Accepted: 09/18/2018] [Indexed: 02/08/2023]
Abstract
Vasogenic brain edema after subarachnoid hemorrhage (SAH) is an independent risk factor for death and poor prognosis. Disruption of the blood-brain barrier (BBB) is the main cause of vasogenic brain edema induced by SAH. Oleanolic acid (OA) is a natural pentacyclic triterpenoid with various biological functions. Previous studies have shown that prophylactic administration of OA could prevent the BBB disruption in autoimmune encephalomyelitis mice. In this context, we speculate that OA may play a neuroprotective role by protecting the integrity of the BBB and reducing vasogenic cerebral edema after SAH. To validate this hypothesis, a SAH model was established on Sprague Dawley rats using a standard intravascular puncture model. The effects of OA on various physiological indexes were observed, including SAH grades, mortality, neurological function score, brain edema and BBB permeability. Related proteins of the brain endothelial cell junction complex were also detected, including tight junctions (TJs) and adherent junctions (AJs). Results showed that OA significantly reduced the permeability of BBB and relieved brain edema by increasing protein expression of TJs and AJs, and decreased the SAH grades by increasing the protein expression of heme oxygenase-1 (HO-1) in SAH rats. Additionally, we found OA could inhibit up-regulation of VEGF and the phosphorylation of p38 mitogen-activated protein kinase (MAPK), and suppress p38MAPK/VEGF/Src signaling pathway which involved in BBB disruption following SAH. From the experimental results, we speculate that OA effectively alleviated SAH-induced vasogenic edema by targeting p38 MAPK/VEGF/Src axis.
Collapse
Affiliation(s)
- Yu-Wei Han
- Institute of Neurology, General Hospital of Shenyang Military Command, Shenyang, Liaoning 110016, China.
| | - Xiu-Juan Liu
- Institute of Neurology, General Hospital of Shenyang Military Command, Shenyang, Liaoning 110016, China.
| | - Ying Zhao
- Physical Examination Center, Shenyang Red Cross Hospital, Shenyang, Liaoning 110013, China.
| | - Xiao-Ming Li
- Institute of Neurology, General Hospital of Shenyang Military Command, Shenyang, Liaoning 110016, China.
| |
Collapse
|
77
|
The Acute Phase of Experimental Subarachnoid Hemorrhage: Intracranial Pressure Dynamics and Their Effect on Cerebral Blood Flow and Autoregulation. Transl Stroke Res 2018; 10:566-582. [PMID: 30443885 DOI: 10.1007/s12975-018-0674-3] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Revised: 10/11/2018] [Accepted: 11/07/2018] [Indexed: 02/07/2023]
Abstract
Clinical presentation and neurological outcome in subarachnoid hemorrhage (SAH) is highly variable. Aneurysmal SAH (aSAH) is hallmarked by sudden increase of intracranial pressure (ICP) and acute hypoperfusion contributing to early brain injury (EBI) and worse outcome, while milder or non-aneurysmal SAH with comparable amount of blood are associated with better neurological outcome, possibly due to less dramatic changes in ICP. Acute pressure dynamics may therefore be an important pathophysiological aspect determining neurological complications and outcome. We investigated the influence of ICP variability on acute changes after SAH by modulating injection velocity and composition in an experimental model of SAH. Five hundred microliters of arterial blood (AB) or normal saline (NS) were injected intracisternally over 1 (AB1, NS1), 10 (AB10, NS10), or 30 min (AB30) with monitoring for 6 h (n = 68). Rapid blood injection resulted in highest ICP peaks (AB1 median 142.7 mmHg [1.Q 116.7-3.Q 230.6], AB30 33.42 mmHg [18.8-38.3], p < 0.001) and most severe hypoperfusion (AB1 16.6% [11.3-30.6], AB30 44.2% [34.8-59.8]; p < 0.05). However, after 30 min, all blood groups showed comparable ICP elevation and prolonged hypoperfusion. Cerebral autoregulation was disrupted initially due to the immediate ICP increase in all groups except NS10; only AB1, however, resulted in sustained impairment of autoregulation, as well as early neuronal cell loss. Rapidity and composition of hemorrhage resulted in characteristic hyperacute hemodynamic changes, with comparable hypoperfusion despite different ICP ranges. Only rapid ICP increase was associated with pronounced and early, but sustained disruption of cerebral autoregulation, possibly contributing to EBI.
Collapse
|
78
|
Westermaier T, Stetter C, Koehler D, Weiland J, Lilla N. Acute reaction of arterial blood vessels after experimental subarachnoid hemorrhage - An in vivo microscopic study. J Neurol Sci 2018; 396:172-177. [PMID: 30472554 DOI: 10.1016/j.jns.2018.11.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Revised: 10/13/2018] [Accepted: 11/05/2018] [Indexed: 11/29/2022]
Abstract
Subarachnoid hemorrhage (SAH) results in a rapid decrease of cerebral perfusion. While cerebral perfusion pressure (CPP) may quickly recover, a sustained decrease of cerebral blood flow (CBF) has been observed. Acute vasospasm has been concluded from this mismatch. This study was conducted to visualize and investigate immediate vascular reactions during and after experimental SAH. Male Sprague-Dawley rats were subjected to SAH by the endovascular filament model (n = 7) or served as controls (n = 4). Videomicroscopy was performed via a cranial window. Regions of interest were defined in areas covered by videomicroscopy and arterial diameters measured at defined time-points from 15 min before until 3 h after SAH. Local CBF was monitored over the opposite hemisphere by laser-Doppler flowmetry. Local CBF showed a typical decrease immediately after vessel perforation followed by an incomplete recovery in the 3 h thereafter. Videomicroscopy demonstrated a sharp decrease of the arterial diameter in the first minutes after SAH. In some animals, SAH was followed by a complete disappearance of arterial vessel filling. In the following minutes, arterial filling reappeared or improved, respectively. All animals subjected to SAH showed significant vasospasm in subarachnoid arteries. This is the first study to visualize acute vascular reactions during and immediately after SAH. Although the cranial window technique only covers a part of the cerebral vasculature, it covers cerebral vessels rather distant from the site of endovascular perforation. Therefore, it is likely that acute vasospasm observed in the monitored areas reflects a global vascular reaction.
Collapse
Affiliation(s)
- Thomas Westermaier
- Department of Neurosurgery, University Hospital Wuerzburg, 97080 Wuerzburg, Germany.
| | - Christian Stetter
- Department of Neurosurgery, University Hospital Wuerzburg, 97080 Wuerzburg, Germany
| | - Diana Koehler
- Department of Neurosurgery, University Hospital Wuerzburg, 97080 Wuerzburg, Germany
| | - Judith Weiland
- Department of Neurosurgery, University Hospital Wuerzburg, 97080 Wuerzburg, Germany
| | - Nadine Lilla
- Department of Neurosurgery, University Hospital Wuerzburg, 97080 Wuerzburg, Germany
| |
Collapse
|
79
|
Kolar M, Nohejlova K, Duska F, Mares J, Pachl J. Changes of cortical perfusion in the early phase of subarachnoid bleeding in a rat model and the role of intracranial hypertension. Physiol Res 2018; 66:S545-S551. [PMID: 29355383 DOI: 10.33549/physiolres.933795] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Brain perfusion is reduced early after subarachnoid hemorrhage (SAH) due to intracranial hypertension and early vasospasm. The contribution of these two mechanisms is unknown. By performing a prophylactic decompressive craniectomy (DC) in a rat model of SAH we aimed to study brain perfusion after the component of intracranial hypertension has been eliminated. We used 2x2 factorial design, where rats received either decompressive craniectomy or sham operation followed by injection of 250 microl of blood or normal saline into prechiasmatic cistern. The cortical perfusion has been continually measured by laser speckle-contrast analysis for 30 min. Injection of blood caused a sudden increase of intracranial pressure (ICP) and drop of cerebral perfusion, which returned to baseline within 6 min. DC effectively prevented the rise of ICP, but brain perfusion after SAH was significantly lower and took longer to normalize compared to non-DC animals due to increased cerebral vascular resistance, which lasted throughout 30 min experimental period. Our findings suggest that intracranial hypertension plays dominant role in the very early hypoperfusion after SAH whilst the role of early vasospasm is only minor. Prophylactic DC effectively maintained cerebral perfusion pressure, but worsened cerebral perfusion by increased vascular resistance.
Collapse
Affiliation(s)
- M Kolar
- Department of Anesthesiology and Critical Care Medicine, Teaching Hospital Kralovske Vinohrady and Third Faculty of Medicine, Charles University, Prague, Czech Republic.
| | | | | | | | | |
Collapse
|
80
|
Early Administration of Hypertonic-Hyperoncotic Hydroxyethyl Starch (HyperHES) Improves Cerebral Blood Flow and Outcome After Experimental Subarachnoid Hemorrhage in Rats. World Neurosurg 2018; 116:e57-e65. [DOI: 10.1016/j.wneu.2018.03.205] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Revised: 03/28/2018] [Accepted: 03/29/2018] [Indexed: 11/21/2022]
|
81
|
Blackburn SL, Kumar PT, McBride D, Zeineddine HA, Leclerc J, Choi HA, Dash PK, Grotta J, Aronowski J, Cardenas JC, Doré S. Unique Contribution of Haptoglobin and Haptoglobin Genotype in Aneurysmal Subarachnoid Hemorrhage. Front Physiol 2018; 9:592. [PMID: 29904350 PMCID: PMC5991135 DOI: 10.3389/fphys.2018.00592] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Accepted: 05/02/2018] [Indexed: 01/12/2023] Open
Abstract
Survivors of cerebral aneurysm rupture are at risk for significant morbidity and neurological deficits. Much of this is related to the effects of blood in the subarachnoid space which induces an inflammatory cascade with numerous downstream consequences. Recent clinical trials have not been able to reduce the toxic effects of free hemoglobin or improve clinical outcome. One reason for this may be the inability to identify patients at high risk for neurologic decline. Recently, haptoglobin genotype has been identified as a pertinent factor in diabetes, sickle cell, and cardiovascular disease, with the Hp 2-2 genotype contributing to increased complications. Haptoglobin is a protein synthesized by the liver that binds free hemoglobin following red blood cell lysis, and in doing so, prevents hemoglobin induced toxicity and facilitates clearance. Clinical studies in patients with subarachnoid hemorrhage indicate that Hp 2-2 patients may be a high-risk group for hemorrhage related complications and poor outcome. We review the relevance of haptoglobin in subarachnoid hemorrhage and discuss the effects of genotype and expression levels on the known mechanisms of early brain injury (EBI) and cerebral ischemia after aneurysm rupture. A better understanding of haptoglobin and its role in preventing hemoglobin related toxicity should lead to novel therapeutic avenues.
Collapse
Affiliation(s)
- Spiros L Blackburn
- Department of Neurosurgery, The University of Texas Houston Health Sciences Center, Houston, TX, United States
| | - Peeyush T Kumar
- Department of Neurosurgery, The University of Texas Houston Health Sciences Center, Houston, TX, United States
| | - Devin McBride
- Department of Neurosurgery, The University of Texas Houston Health Sciences Center, Houston, TX, United States
| | - Hussein A Zeineddine
- Department of Neurosurgery, The University of Texas Houston Health Sciences Center, Houston, TX, United States
| | - Jenna Leclerc
- Department of Anesthesiology, University of Florida, College of Medicine, Gainesville, FL, United States
| | - H Alex Choi
- Department of Neurosurgery, The University of Texas Houston Health Sciences Center, Houston, TX, United States
| | - Pramod K Dash
- Department of Neurosurgery, The University of Texas Houston Health Sciences Center, Houston, TX, United States
| | - James Grotta
- Department of Neurology, The University of Texas Health Sciences Center, Houston, TX, United States
| | - Jaroslaw Aronowski
- Department of Neurology, The University of Texas Health Sciences Center, Houston, TX, United States
| | - Jessica C Cardenas
- Department of Surgery, Division of Acute Care Surgery and Center for Translational Injury Research, The University of Texas Health Science Center, Houston, TX, United States
| | - Sylvain Doré
- Department of Anesthesiology, University of Florida, College of Medicine, Gainesville, FL, United States.,Departments of Neurology, Psychiatry, Psychology, Pharmaceutics, and Neuroscience, University of Florida, McKnight Brain Institute, Gainesville, FL, United States
| |
Collapse
|
82
|
Golanov EV, Bovshik EI, Wong KK, Pautler RG, Foster CH, Federley RG, Zhang JY, Mancuso J, Wong ST, Britz GW. Subarachnoid hemorrhage - Induced block of cerebrospinal fluid flow: Role of brain coagulation factor III (tissue factor). J Cereb Blood Flow Metab 2018; 38:793-808. [PMID: 28350198 PMCID: PMC5987942 DOI: 10.1177/0271678x17701157] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Subarachnoid hemorrhage (SAH) in 95% of cases results in long-term disabilities due to brain damage, pathogenesis of which remains uncertain. Hindrance of cerebrospinal fluid (CSF) circulation along glymphatic pathways is a possible mechanism interrupting drainage of damaging substances from subarachnoid space and parenchyma. We explored changes in CSF circulation at different time following SAH and possible role of brain tissue factor (TF). Fluorescent solute and fluorescent microspheres injected into cisterna magna were used to track CSF flow in mice. SAH induced by perforation of circle of Willis interrupted CSF flow for up to 30 days. Block of CSF flow did not correlate with the size of hemorrhage. Following SAH, fibrin deposits were observed on the brain surface including areas without visible blood. Block of astroglia-associated TF by intracerebroventricular administration of specific antibodies increased size of hemorrhage, decreased fibrin deposition and facilitated spread of fluorophores in sham/naïve animals. We conclude that brain TF plays an important role in localization of hemorrhage and also regulates CSF flow under normal conditions. Targeting of the TF system will allow developing of new therapeutic approaches to the treatment of SAH and pathologies related to CSF flow such as hydrocephalus.
Collapse
Affiliation(s)
- Eugene V Golanov
- 1 Department of Neurosurgery, Houston Methodist Hospital, Houston, TX, USA
| | - Evgeniy I Bovshik
- 1 Department of Neurosurgery, Houston Methodist Hospital, Houston, TX, USA
| | - Kelvin K Wong
- 1 Department of Neurosurgery, Houston Methodist Hospital, Houston, TX, USA.,2 Department of Systems Medicine & Bioengineering, Houston Methodist Research Institute, Houston, TX, USA
| | - Robia G Pautler
- 3 Departments of Molecular Physiology and Biophysics and Neuroscience and Radiology, Baylor College of Medicine, Texas Children's Hospital, Houston, TX, USA
| | - Chase H Foster
- 1 Department of Neurosurgery, Houston Methodist Hospital, Houston, TX, USA
| | - Richard G Federley
- 1 Department of Neurosurgery, Houston Methodist Hospital, Houston, TX, USA.,2 Department of Systems Medicine & Bioengineering, Houston Methodist Research Institute, Houston, TX, USA
| | - Jonathan Y Zhang
- 1 Department of Neurosurgery, Houston Methodist Hospital, Houston, TX, USA
| | - James Mancuso
- 2 Department of Systems Medicine & Bioengineering, Houston Methodist Research Institute, Houston, TX, USA
| | - Stephen Tc Wong
- 2 Department of Systems Medicine & Bioengineering, Houston Methodist Research Institute, Houston, TX, USA
| | - Gavin W Britz
- 1 Department of Neurosurgery, Houston Methodist Hospital, Houston, TX, USA
| |
Collapse
|
83
|
Bix GJ, Fraser JF, Mack WJ, Carmichael ST, Perez-Pinzon M, Offner H, Sansing L, Bosetti F, Ayata C, Pennypacker KR. Uncovering the Rosetta Stone: Report from the First Annual Conference on Key Elements in Translating Stroke Therapeutics from Pre-Clinical to Clinical. Transl Stroke Res 2018; 9:258-266. [PMID: 29633156 PMCID: PMC5982459 DOI: 10.1007/s12975-018-0628-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Accepted: 03/27/2018] [Indexed: 01/12/2023]
Abstract
The first annual Stroke Translational Research Advancement Workshop (STRAW), entitled “Uncovering the Rosetta Stone: Key Elements in Translating Stroke Therapeutics from Pre-Clinical to Clinical” was held at the University of Kentucky on October 4–5, 2017. This workshop was organized by the Center for Advanced Translational Stroke Science. The workshop consisted of 2 days of activities. These included three presentations establishing the areas of research in stroke therapeutics, discussing the routes for translation from bench to bedside, and identifying successes and failures in the field. On day 2, grant funding opportunities and goals for the National Institute for Neurological Diseases and Stroke were presented. In addition, the meeting also included break-out sessions designed to connect researchers in areas of stroke, and to foster potential collaborations. Finally, the meeting concluded with an open discussion among attendees led by a panel of experts.
Collapse
Affiliation(s)
- Gregory J Bix
- Center for Advanced Translational Stroke Science, University of Kentucky, Lexington, KY, USA.,Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY, USA.,Department of Neurology, University of Kentucky, Lexington, KY, USA.,Department of Neuroscience, University of Kentucky, Lexington, KY, USA.,Department of Neurosurgery, University of Kentucky, Lexington, KY, USA
| | - Justin F Fraser
- Center for Advanced Translational Stroke Science, University of Kentucky, Lexington, KY, USA.,Department of Neurology, University of Kentucky, Lexington, KY, USA.,Department of Neuroscience, University of Kentucky, Lexington, KY, USA.,Department of Neurosurgery, University of Kentucky, Lexington, KY, USA.,Department of Radiology, University of Kentucky, Lexington, KY, USA
| | - William J Mack
- Department of Neurosurgery, Keck School of Medicine, University of Southern California, California, Los Angeles, USA
| | - S Thomas Carmichael
- Department of Neurology, David Geffen School of Medicine, University of California at Los Angeles, California, Los Angeles, USA
| | - Miguel Perez-Pinzon
- Department of Neurology, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Halina Offner
- Department of Neurology, Oregon Health & Science University, Portland, Oregon, USA.,Department of Anesthesiology, Oregon Health & Science University, Portland, Oregon, USA.,Perioperative Medicine, Oregon Health & Science University, Portland, Oregon, USA
| | - Lauren Sansing
- Department of Neurology, Yale University School of Medicine, New Haven, CT, USA
| | - Francesca Bosetti
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Cenk Ayata
- Department of Neurology, Harvard Medical School, Charlestown, MA, USA.,Department of Radiology, Harvard Medical School, Charlestown, MA, USA
| | - Keith R Pennypacker
- Center for Advanced Translational Stroke Science, University of Kentucky, Lexington, KY, USA. .,Department of Neurology, University of Kentucky, Lexington, KY, USA. .,Department of Neuroscience, University of Kentucky, Lexington, KY, USA.
| |
Collapse
|
84
|
Leclerc JL, Garcia JM, Diller MA, Carpenter AM, Kamat PK, Hoh BL, Doré S. A Comparison of Pathophysiology in Humans and Rodent Models of Subarachnoid Hemorrhage. Front Mol Neurosci 2018; 11:71. [PMID: 29623028 PMCID: PMC5875105 DOI: 10.3389/fnmol.2018.00071] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Accepted: 02/20/2018] [Indexed: 01/03/2023] Open
Abstract
Non-traumatic subarachnoid hemorrhage (SAH) affects an estimated 30,000 people each year in the United States, with an overall mortality of ~30%. Most cases of SAH result from a ruptured intracranial aneurysm, require long hospital stays, and result in significant disability and high fatality. Early brain injury (EBI) and delayed cerebral vasospasm (CV) have been implicated as leading causes of morbidity and mortality in these patients, necessitating intense focus on developing preclinical animal models that replicate clinical SAH complete with delayed CV. Despite the variety of animal models currently available, translation of findings from rodent models to clinical trials has proven especially difficult. While the explanation for this lack of translation is unclear, possibilities include the lack of standardized practices and poor replication of human pathophysiology, such as delayed cerebral vasospasm and ischemia, in rodent models of SAH. In this review, we summarize the different approaches to simulating SAH in rodents, in particular elucidating the key pathophysiology of the various methods and models. Ultimately, we suggest the development of standardized model of rodent SAH that better replicates human pathophysiology for moving forward with translational research.
Collapse
Affiliation(s)
- Jenna L Leclerc
- Department of Anesthesiology, University of Florida, Gainesville, FL, United States.,Department of Neuroscience, Center for Translational Research in Neurodegenerative Disease, McKnight Brain Institute, University of Florida, Gainesville, FL, United States
| | - Joshua M Garcia
- Department of Anesthesiology, University of Florida, Gainesville, FL, United States
| | - Matthew A Diller
- Department of Anesthesiology, University of Florida, Gainesville, FL, United States
| | - Anne-Marie Carpenter
- Department of Anesthesiology, University of Florida, Gainesville, FL, United States
| | - Pradip K Kamat
- Department of Anesthesiology, University of Florida, Gainesville, FL, United States
| | - Brian L Hoh
- Department of Neuroscience, Center for Translational Research in Neurodegenerative Disease, McKnight Brain Institute, University of Florida, Gainesville, FL, United States.,Department of Neurosurgery, University of Florida, Gainesville, FL, United States
| | - Sylvain Doré
- Department of Anesthesiology, University of Florida, Gainesville, FL, United States.,Department of Neuroscience, Center for Translational Research in Neurodegenerative Disease, McKnight Brain Institute, University of Florida, Gainesville, FL, United States.,Department of Neurology, Psychiatry, and Pharmaceutics, University of Florida, Gainesville, FL, United States
| |
Collapse
|
85
|
Hu X, Lv T, Yang SF, Zhang XH, Miao YF. Limb remote ischemic post‑conditioning reduces injury and improves long‑term behavioral recovery in rats following subarachnoid hemorrhage: Possible involvement of the autophagic process. Mol Med Rep 2018; 17:21-30. [PMID: 29115588 PMCID: PMC5780133 DOI: 10.3892/mmr.2017.7858] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2016] [Accepted: 03/16/2017] [Indexed: 12/14/2022] Open
Abstract
Hemorrhage‑related neurologic injury is a primary cause of disability and mortality following subarachnoid hemorrhage (SAH). The aim of the present study was to investigate the potential neuroprotective effect and the possible role of autophagy in limb remote ischemic post‑conditioning (RIPostC) using an endovascular puncture rat model of SAH. RIPostC was induced by three cycles of occlusion (10 min) and release (10 min) in the bilateral femoral artery using an aneurysm clip. Early RIPostC began immediately following SAH, delayed RIPostC began following a 30 min delay and the repeated RIPostC group underwent the protocol every day for 3 days. Brain water content, SAH grading, terminal deoxynucleotidyl transferase dUTP nick end labeling‑DAPI staining, transmission electron microscopy, and neurological and behavioral tests were conducted three days following surgery. Long term outcomes of behavior and memory were assessed using a rotarod test and Morris water maze test 1 month subsequently. Biomarkers of autophagy, including Beclin‑1 and light chain 3 (LC3), were assessed using western blotting. The results of the present study demonstrated that, compared with other groups, repeated RIPostC was able to alleviate brain edema, prevent neuronal apoptosis, and improve short term and long term neurological function and memory. Beclin‑1 and LC3 in the cortex were upregulated following treatment with repeated RIPostC. Autolysosomes increased 3 days following SAH and were maintained for 1 month in the repeated RIPostC group. Therefore, the present study indicated that the optimized repeated RIPostC may provide a noninvasive strategy to induce neuroprotection, and improve the short and long term outcomes of SAH‑related cerebral injury, possibly involving the autophagy pathway.
Collapse
Affiliation(s)
- Xiang Hu
- Department of Neurosurgery, AoYoung Hospital, Zhangjiagang, Jiangsu 215617, P.R. China
| | - Tao Lv
- Department of Neurosurgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, P.R. China
| | - Shao-Feng Yang
- Department of Neurosurgery, Ren Ji Hospital South Campus, School of Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai 201112, P.R. China
| | - Xiao-Hua Zhang
- Department of Neurosurgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, P.R. China
| | - Yi-Feng Miao
- Department of Neurosurgery, Ren Ji Hospital South Campus, School of Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai 201112, P.R. China
| |
Collapse
|
86
|
Duris K, Splichal Z, Jurajda M. The Role of Inflammatory Response in Stroke Associated Programmed Cell Death. Curr Neuropharmacol 2018; 16:1365-1374. [PMID: 29473512 PMCID: PMC6251044 DOI: 10.2174/1570159x16666180222155833] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Revised: 07/17/2017] [Accepted: 02/22/2018] [Indexed: 01/13/2023] Open
Abstract
Stroke represents devastating pathology which is associated with a high morbidity and mortality. Initial damage caused directly by the onset of stroke, primary injury, may be eclipsed by secondary injury which may have a much more devastating effect on the brain. Primary injury is predominantly associated with necrotic cell death due to fatal insufficiency of oxygen and glucose. Secondary injury may on the contrary, lead apoptotic cell death due to structural damage which is not compatible with cellular functions or which may even represent the danger of malign transformation. The immune system is responsible for surveillance, defense and healing processes and the immune system plays a major role in triggering programmed cell death. Severe pathologies, such as stroke, are often associated with deregulation of the immune system, resulting in aggravation of secondary brain injury. The goal of this article is to overview the current knowledge about the role of immune system in the pathophysiology of stroke with respect to programmed neuronal cell death as well as to discuss current therapeutic strategies targeting inflammation after stroke.
Collapse
Affiliation(s)
| | | | - M. Jurajda
- Address correspondence to this author at the Department of Pathological Physiology, Faculty of Medicine, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic; E-mail:
| |
Collapse
|
87
|
Morris NA, Robinson D, Schmidt JM, Frey HP, Park S, Agarwal S, Connolly ES, Claassen J. Hunt-Hess 5 subarachnoid haemorrhage presenting with cardiac arrest is associated with larger volume bleeds. Resuscitation 2017; 123:71-76. [PMID: 29253648 DOI: 10.1016/j.resuscitation.2017.12.015] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Revised: 12/08/2017] [Accepted: 12/13/2017] [Indexed: 11/28/2022]
Abstract
AIMS The mechanism, effects, and outcomes of cardiac arrest (CA) caused by subarachnoid haemorrhage (SAH) remain unclear. We compared SAH patients presenting with CA to other high-grade SAH patients presenting without CA in order to better understand (1) the cause of CA, (2) cerebral pathophysiology following CA, and (3) outcomes of CA in patients with SAH. METHODS We performed a retrospective analysis of a prospectively collected observational cohort. 31 Hunt-Hess 5 patients that presented with CA were compared to 146 Hunt-Hess 5 patients that presented without CA. Clinical and imaging findings were predefined and adjudicated. Cerebral physiology measures were available for a subset of patients, matched 1:1 by age. RESULTS Twenty-two (71%) CA patients had pulseless electrical activity/asystole compared to 2 (6%) with a shockable rhythm. The CA patients were younger (OR 0.96, 95% CI 0.93-0.99, p=0.009), had more SAH on CT (OR 1.07, 95% CI 1.01-1.13, p=0.02), and had higher in-hospital mortality (87% vs. 58%, OR 6.2 (2.1-26.6), p=0.004). There were no differences in aneurysm location, cerebral herniation, or ictal seizures. Despite similar cerebral perfusion pressure, CA patients had pathologically lower brain tissue oxygenation, lower glucose, and higher lactate to pyruvate ratios. CONCLUSIONS CA in SAH is associated with larger volume bleeds. Despite normal cerebral perfusion pressures, CA patients show compromised cerebral physiology.
Collapse
Affiliation(s)
- Nicholas A Morris
- Department of Neurology, Program in Trauma, University of Maryland Medical Center, Baltimore, MD, United States
| | - David Robinson
- Department of Neurology, Columbia University Medical Center, New York, NY, United States
| | - J Michael Schmidt
- Department of Neurology, Columbia University Medical Center, New York, NY, United States
| | - Hans Peter Frey
- Department of Neurology, Columbia University Medical Center, New York, NY, United States
| | - Soojin Park
- Department of Neurology, Columbia University Medical Center, New York, NY, United States
| | - Sachin Agarwal
- Department of Neurology, Columbia University Medical Center, New York, NY, United States
| | - E Sander Connolly
- Department of Neurosurgery, Columbia University Medical Center, New York, NY, United States
| | - Jan Claassen
- Department of Neurology, Columbia University Medical Center, New York, NY, United States.
| |
Collapse
|
88
|
Wang TH, Xiong LL, Yang SF, You C, Xia QJ, Xu Y, Zhang P, Wang SF, Liu J. LPS Pretreatment Provides Neuroprotective Roles in Rats with Subarachnoid Hemorrhage by Downregulating MMP9 and Caspase3 Associated with TLR4 Signaling Activation. Mol Neurobiol 2017; 54:7746-7760. [PMID: 27844284 DOI: 10.1007/s12035-016-0259-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Accepted: 10/24/2016] [Indexed: 02/05/2023]
Abstract
Subarachnoid hemorrhage (SAH), as a severe brain disease, has high morbidity and mortality. SAH usually induced neurological dysfunction or death and the treatment is far from satisfaction. Here, we investigated the effect of low dose of LPS pretreatment and underlying molecular mechanism in rat SAH model. Firstly, SAH model was induced by prechiasmal cistern injection method (SAH1) and common carotid artery-prechiasmal cistern shunt method (SAH2), respectively, to select the more suitable SAH model. At 6, 12, 24, 48, and 72 h after SAH, brain injury including neurological dysfunction, blood-brain barrier disruption, brain edema, and cell apoptosis were detected. And the expression of MMP9, HMGB1/TLR4, and caspase3 in cortex were also explored. Then, SB-3CT, an inhibitor of MMP9, was administrated to investigate the exact function of MMP9 in the brain injury at 24 h after SAH. Moreover, low dose of LPS was used to verify whether it had nerve protection after SAH and the mechanism involving in MMP9 and caspase 3 was investigated. Our results showed SAH1 seems to be the most suitable SAH model. In addition, MMP9 activated by HMGB1/TLR4 may promote or aggravate brain injury, while inhibiting MMP9 via SB-3CT exerted a neuroprotective effect. Moreover, LPS improved the neurological dysfunction, reduced Evans blue extravasation and brain edema, and inhibited cell apoptosis of cortex in rats with brain injury induced by SAH. Importantly, LPS pretreatment increased the expression level of TLR4, and decreased the level of MMP9 and caspase3. Therefore, the present study revealed that low dose of LPS pretreatment could provide neuroprotective effects on brain injury caused by SAH via downregulating MMP9 and caspase3 and activating TLR4 signal pathway.
Collapse
Affiliation(s)
- Ting-Hua Wang
- Institute of Neurological Disease, and Department of Neurosurgery, Translational Neuroscience Center, the state key laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, People's Republic of China
| | - Liu-Lin Xiong
- Institute of Neurological Disease, and Department of Neurosurgery, Translational Neuroscience Center, the state key laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, People's Republic of China
| | - Shuai-Fen Yang
- Institute of Neurological Disease, and Department of Neurosurgery, Translational Neuroscience Center, the state key laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, People's Republic of China
| | - Chao You
- Institute of Neurological Disease, and Department of Neurosurgery, Translational Neuroscience Center, the state key laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, People's Republic of China
| | - Qing-Jie Xia
- Institute of Neurological Disease, and Department of Neurosurgery, Translational Neuroscience Center, the state key laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, People's Republic of China
| | - Yang Xu
- Institute of Neurological Disease, and Department of Neurosurgery, Translational Neuroscience Center, the state key laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, People's Republic of China
| | - Piao Zhang
- Animal Zoology Department, Institute of Neuroscience, Kunming medical University, Kunming, 650000, China
| | - Shu-Fen Wang
- Yunnan Key Laboratory of Stem Cells and Regenerative Medicine, Institute of Molecular and Clinical Medicine, Kunming Medical University, Kunming, 650000, China.
| | - Jia Liu
- Institute of Neurological Disease, and Department of Neurosurgery, Translational Neuroscience Center, the state key laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, People's Republic of China.
- Animal Zoology Department, Institute of Neuroscience, Kunming medical University, Kunming, 650000, China.
| |
Collapse
|
89
|
An JY, Pang HG, Huang TQ, Song JN, Li DD, Zhao YL, Ma XD. AG490 ameliorates early brain injury via inhibition of JAK2/STAT3-mediated regulation of HMGB1 in subarachnoid hemorrhage. Exp Ther Med 2017; 15:1330-1338. [PMID: 29434719 PMCID: PMC5774435 DOI: 10.3892/etm.2017.5539] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2015] [Accepted: 02/27/2017] [Indexed: 11/06/2022] Open
Abstract
High mobility group box 1 (HMGB1) is a classic damage-associated molecular pattern that has an important role in the pathological inflammatory response. In vitro studies have demonstrated that the Janus kinase 2 (JAK2)/signal transducer and activator of transcription 3 (STAT3) signaling pathway is involved in the regulation of HMGB1 expression, mediating the inflammatory response. Therefore, the purpose of the present study was to evaluate JAK2/STAT3 pathway involvement in the subarachnoid hemorrhage (SAH)-dependent regulation of HMGB1, using an in vivo rat model. A SAH model was established by endovascular perforation. Western blotting, immunohistochemistry and immunofluorescence were used to analyze HMGB1 expression after SAH. In addition, the effects of AG490 after SAH on JAK2/STAT3 phosphorylation, HMGB1 expression and brain damage were evaluated. The results of the present study demonstrated that JAK2/STAT3 was significantly phosphorylated (P<0.05) and the total HMGB1 protein level was significantly increased (P<0.05) after SAH. In addition, the cytosolic HMGB1 level after SAH demonstrated an initial increase followed by a decrease to the control level, while the nuclear HMGB1 level after SAH demonstrated the opposite trend, with an initial decrease and subsequent increase. AG490 administration after SAH significantly inhibited JAK2/STAT3 phosphorylation (P<0.05), suppressed the expression and translocation of HMGB1, reduced cortical apoptosis, brain edema and neurological deficits. These results demonstrated the involvement of the JAK2/STAT3 pathway in HMGB1 regulation after SAH.
Collapse
Affiliation(s)
- Ji-Yang An
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Hong-Gang Pang
- Department of Neurosurgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Ting-Qin Huang
- Department of Neurosurgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Jin-Ning Song
- Department of Neurosurgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Dan-Dong Li
- Department of Neurosurgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Yong-Lin Zhao
- Department of Neurosurgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Xu-Dong Ma
- Department of Neurosurgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| |
Collapse
|
90
|
Veldeman M, Coburn M, Rossaint R, Clusmann H, Nolte K, Kremer B, Höllig A. Xenon Reduces Neuronal Hippocampal Damage and Alters the Pattern of Microglial Activation after Experimental Subarachnoid Hemorrhage: A Randomized Controlled Animal Trial. Front Neurol 2017; 8:511. [PMID: 29021779 PMCID: PMC5623683 DOI: 10.3389/fneur.2017.00511] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Accepted: 09/13/2017] [Indexed: 01/03/2023] Open
Abstract
Objective The neuroprotective properties of the noble gas xenon have already been demonstrated using a variety of injury models. Here, we examine for the first time xenon’s possible effect in attenuating early brain injury (EBI) and its influence on posthemorrhagic microglial neuroinflammation in an in vivo rat model of subarachnoid hemorrhage (SAH). Methods Sprague-Dawley rats (n = 22) were randomly assigned to receive either Sham surgery (n = 9; divided into two groups) or SAH induction via endovascular perforation (n = 13, divided into two groups). Of those randomized for SAH, 7 animals were postoperatively ventilated with 50 vol% oxygen/50 vol% xenon for 1 h and 6 received 50 vol% oxygen/50 vol% nitrogen (control). The animals were sacrificed 24 h after SAH. Of each animal, a cerebral coronal section (−3.60 mm from bregma) was selected for assessment of histological damage 24 h after SAH. A 5-point neurohistopathological severity score was applied to assess neuronal cell damage in H&E and NeuN stained sections in a total of four predefined anatomical regions of interest. Microglial activation was evaluated by a software-assisted cell count of Iba-1 stained slices in three cortical regions of interest. Results A diffuse cellular damage was apparent in all regions of the ipsilateral hippocampus 24 h after SAH. Xenon-treated animals presented with a milder damage after SAH. This effect was found to be particularly pronounced in the medial regions of the hippocampus, CA3 (p = 0.040), and dentate gyrus (DG p = 0.040). However, for the CA1 and CA2 regions, there were no statistical differences in neuronal damage according to our histological scoring. A cell count of activated microglia was lower in the cortex of xenon-treated animals. This difference was especially apparent in the left piriform cortex (p = 0.017). Conclusion In animals treated with 50 vol% xenon (for 1 h) after SAH, a less pronounced neuronal damage was observed for the ipsilateral hippocampal regions CA3 and DG, when compared to the control group. In xenon-treated animals, a lower microglial cell count was observed suggesting an immunomodulatory effect generated by xenon. As for now, these results cannot be generalized as only some hippocampal regions are affected. Future studies should assess the time and localization dependency of xenon’s beneficial properties after SAH.
Collapse
Affiliation(s)
- Michael Veldeman
- Department of Neurosurgery, RWTH Aachen University Hospital, Aachen, Germany.,Department of Anesthesiology, RWTH Aachen University Hospital, Aachen, Germany
| | - Mark Coburn
- Department of Anesthesiology, RWTH Aachen University Hospital, Aachen, Germany
| | - Rolf Rossaint
- Department of Anesthesiology, RWTH Aachen University Hospital, Aachen, Germany
| | - Hans Clusmann
- Department of Neurosurgery, RWTH Aachen University Hospital, Aachen, Germany
| | - Kay Nolte
- Department of Neuropathology, RWTH Aachen University Hospital, Aachen, Germany
| | - Benedikt Kremer
- Department of Neurosurgery, RWTH Aachen University Hospital, Aachen, Germany
| | - Anke Höllig
- Department of Neurosurgery, RWTH Aachen University Hospital, Aachen, Germany
| |
Collapse
|
91
|
Lilla N, Rinne C, Weiland J, Linsenmann T, Ernestus RI, Westermaier T. Early Transient Mild Hypothermia Attenuates Neurologic Deficits and Brain Damage After Experimental Subarachnoid Hemorrhage in Rats. World Neurosurg 2017; 109:e88-e98. [PMID: 28951276 DOI: 10.1016/j.wneu.2017.09.109] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Revised: 09/15/2017] [Accepted: 09/16/2017] [Indexed: 12/12/2022]
Abstract
OBJECTIVE Metabolic exhaustion in ischemic tissue is the basis for a detrimental cascade of cell damage. In the acute stage of subarachnoid hemorrhage (SAH), a sequence of global and focal ischemia occurs, threatening brain tissue to undergo ischemic damage. This study was conducted to investigate whether early therapy with moderate hypothermia can offer neuroprotection after experimental SAH. METHODS Twenty male Sprague-Dawley rats were subjected to SAH and treated by active cooling (34°C) or served as controls by continuous maintenance of normothermia (37.0°C). Mean arterial blood pressure, intracranial pressure, and local cerebral blood flow over both hemispheres were continuously measured. Neurologic assessment was performed 24 hours later. Hippocampal damage was assessed by hematoxylin-eosin and caspase-3 staining. RESULTS By a slight increase of mean arterial blood pressure in the cooling phase and a significant reduction of intracranial pressure, hypothermia improved cerebral perfusion pressure in the first 60 minutes after SAH. Accordingly, a trend to increased cerebral blood flow was observed during this period. The rate of injured neurons was significantly reduced in hypothermia-treated animals compared with normothermic controls. CONCLUSIONS The results of this series cannot finally answer whether this form of treatment permanently attenuates or only delays ischemic damage. In the latter case, slowing down metabolic exhaustion by hypothermia may still be a valuable treatment during this state of ischemic brain damage and prolong the therapeutic window for possible causal treatments of the acute perfusion deficit. Therefore, it may be useful as a first-tier therapy in suspected SAH.
Collapse
Affiliation(s)
- Nadine Lilla
- Department of Neurosurgery, University Hospital Wuerzburg, Wuerzburg, Germany.
| | - Christoph Rinne
- Department of Neurosurgery, University Hospital Wuerzburg, Wuerzburg, Germany
| | - Judith Weiland
- Department of Neurosurgery, University Hospital Wuerzburg, Wuerzburg, Germany
| | - Thomas Linsenmann
- Department of Neurosurgery, University Hospital Wuerzburg, Wuerzburg, Germany
| | - Ralf-Ingo Ernestus
- Department of Neurosurgery, University Hospital Wuerzburg, Wuerzburg, Germany
| | - Thomas Westermaier
- Department of Neurosurgery, University Hospital Wuerzburg, Wuerzburg, Germany
| |
Collapse
|
92
|
Kanat A, Aydin MD, Bayram E, Kazdal H, Aydin N, Omeroglu M, Altinkaynak K, Kabalar ME, Yolas C, Ozturk C, Kepoglu U, Calik M. A New Determinant of Poor Outcome After Spontaneous Subarachnoid Hemorrhage: Blood pH and the Disruption of Glossopharyngeal Nerve–Carotid Body Network: First Experimental Study. World Neurosurg 2017; 104:330-338. [DOI: 10.1016/j.wneu.2017.04.105] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Revised: 04/16/2017] [Accepted: 04/17/2017] [Indexed: 12/16/2022]
|
93
|
Naringin alleviates early brain injury after experimental subarachnoid hemorrhage by reducing oxidative stress and inhibiting apoptosis. Brain Res Bull 2017; 133:42-50. [DOI: 10.1016/j.brainresbull.2016.12.008] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Revised: 12/16/2016] [Accepted: 12/19/2016] [Indexed: 12/19/2022]
|
94
|
Yin C, Huang GF, Sun XC, Guo Z, Zhang JH. DLK silencing attenuated neuron apoptosis through JIP3/MA2K7/JNK pathway in early brain injury after SAH in rats. Neurobiol Dis 2017; 103:133-143. [PMID: 28396258 PMCID: PMC5493044 DOI: 10.1016/j.nbd.2017.04.006] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2016] [Revised: 03/21/2017] [Accepted: 04/05/2017] [Indexed: 01/19/2023] Open
Abstract
OBJECTIVE Dual leucine zipper kinase (DLK/MA3K12) has been reported involved in apoptosis and neuronal degeneration during neural development and traumatic brain injury. This study was designed to investigate the role of DLK with its adaptor protein JNK interacting protein-3 (JIP3), and its downstream MA2K7/JNK signaling pathway in early brain injury (EBI) after subarachnoid hemorrhage (SAH) in a rat model. DESIGN Controlled in vivo laboratory study. SETTING Animal research laboratory. SUBJECTS Two hundred and twenty-three adult male Sprague-Dawley rats weighing 280-320g. INTERVENTIONS SAH was induced by endovascular perforation in rats. The SAH grade, neurological score, and brain water content were measured at 24 and 72h after SAH. Immunofluorescence staining was used to detect the cells that expressed DLK. The terminal deoxynucleotid transferase-deoxyuridine triphosphate (dUTP) nick end labeling (TUNEL) was used to detect the neuronal apoptosis. In mechanism research, the expression of DLK, JIP3, phosphorylated-JNK (p-JNK)/JNK, and cleaved caspase-3 (CC-3) were analyzed by western blot at 24h after SAH. The DLK small interfering RNA (siRNA), JIP3 siRNA, MA2K7 siRNA and recombinant DLK protein which injected intracerebroventricularly were given as the interventions. MEASUREMENTS AND MAIN RESULTS The DLK expression was increased in the left cortex neurons and peaked at 24h after SAH. DLK siRNA attenuated brain edema, reduced neuronal apoptosis, and improved the neurobehavioral functions after SAH, but the recombinant DLK protein deteriorated neurobehavioral functions and brain edema. DLK siRNA decreased and recombinant DLK protein increased the expression of MA2K7/p-JNK/CC-3 at 24h after SAH. The JIP3 siRNA reduced the level of JIP3/MA2K7/p-JNK/CC-3, combined DLK siRNA and JIP3 siRNA further decreased the expression of DLK/MA2K7/p-JNK/CC-3, and MA2K7 siRNA lowered the amount of MA2K7/p-JNK/CC-3 at 24h after SAH. CONCLUSIONS As a negative role, DLK was involved in EBI after SAH, possibly mediated by its adaptor protein JIP3 and MA2K7/JNK signaling pathways. To reduce the level of DLK may be a new target as intervention for SAH.
Collapse
Affiliation(s)
- Cheng Yin
- Departments of Anesthesiology and Physiology, Loma Linda University School of Medicine, Loma Linda, CA, USA; Department of Neurosurgery, Affiliated Hospital of the University of Electronic Science and Technology of China, Sichuan Provincial People's Hospital, Chengdu, China
| | - Guang-Fu Huang
- Department of Neurosurgery, Affiliated Hospital of the University of Electronic Science and Technology of China, Sichuan Provincial People's Hospital, Chengdu, China
| | - Xiao-Chuan Sun
- Department of Neurosurgery, First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Zongduo Guo
- Department of Neurosurgery, First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - John H Zhang
- Departments of Anesthesiology and Physiology, Loma Linda University School of Medicine, Loma Linda, CA, USA.
| |
Collapse
|
95
|
Enkhjargal B, McBride DW, Manaenko A, Reis C, Sakai Y, Tang J, Zhang JH. Intranasal administration of vitamin D attenuates blood-brain barrier disruption through endogenous upregulation of osteopontin and activation of CD44/P-gp glycosylation signaling after subarachnoid hemorrhage in rats. J Cereb Blood Flow Metab 2017; 37:2555-2566. [PMID: 27671249 PMCID: PMC5531351 DOI: 10.1177/0271678x16671147] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
In this study, we investigated the role of vitamin D3 (VitD3) on endogenous osteopontin (OPN), a neuroprotective glycoprotein, after subarachnoid hemorrhage (SAH). The endovascular perforation SAH model in Sprague-Dawley rats was used to study the effect of intranasal VitD3 (30 ng/kg) before (Pre-SAH + VitD3) and after (Post-SAH + VitD3) subarachnoid hemorrhage. Vitamin D3 (30, 60, 120 ng/kg/day) increased more than one fold endogenous OPN expression in astrocytes and endothelial cells of rat brain. Vitamin D3 significantly decreased brain edema and Evans blue extravasation. In addition, neurobehavioral scores were significantly higher in Pre-SAH + VitD3, but partly higher in Post-SAH + VitD3, group compared with SAH group. These protective effects of vitamin D3 were completely attenuated by intracerebroventricular injection of transcription inhibitor Actinomycin D and significantly inhibited by small interfering ribonucleic acid (siRNA) for vitamin D receptor and OPN in Pre-SAH + VitD3 rats. OPN expression was significantly higher in Pre-SAH + VitD3 rats, specifically A and C, but not B, isomers were upregulated in the astrocytes, leading to CD44 splicing, and P-gp glycosylation in brain endothelial cells. The results show that intranasal vitamin D3 attenuates blood-brain barrier (BBB) disruption through endogenous upregulation of OPN and subsequent CD44 and P-gp glycosylation signals in brain endothelial cells. Furthermore, this study identifies a novel strategy for the cost-effective management of subarachnoid hemorrhage.
Collapse
Affiliation(s)
- Budbazar Enkhjargal
- 1 Departments of Anesthesiology and Physiology, Loma Linda University, Loma Linda, CA, USA.,2 Departments of Neurology and Psychiatry, National Medical University, Mongolia
| | - Devin W McBride
- 1 Departments of Anesthesiology and Physiology, Loma Linda University, Loma Linda, CA, USA
| | - Anatol Manaenko
- 1 Departments of Anesthesiology and Physiology, Loma Linda University, Loma Linda, CA, USA
| | - Cesar Reis
- 1 Departments of Anesthesiology and Physiology, Loma Linda University, Loma Linda, CA, USA
| | - Yasushi Sakai
- 3 Laboratory of Physiology and Pharmacology, Faculty of Health Science Technology, Bunkyo Gakuin University, Saitama, Japan
| | - Jiping Tang
- 1 Departments of Anesthesiology and Physiology, Loma Linda University, Loma Linda, CA, USA
| | - John H Zhang
- 1 Departments of Anesthesiology and Physiology, Loma Linda University, Loma Linda, CA, USA
| |
Collapse
|
96
|
A rabbit model of aneurysmal subarachnoid hemorrhage by ear central artery-suprasellar cistern shunt. J Clin Neurosci 2017. [PMID: 28625587 DOI: 10.1016/j.jocn.2017.05.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Aneurysmal subarachnoid hemorrhage (aSAH) is a life-threatening hemorrhagic cerebrovascular disease. The concept of early brain injury (EBI), induced by sharply increased intracranial pressure (ICP) and low cerebral perfusion pressure (CPP) with cerebral global ischemia following aneurysm rupture, has been increasingly accepted. However, EBI has not been well studied partly due to lack of an ideal animal model. The purpose of this study was to establish a new aSAH model which can mimic the pathophysiological damage of EBI. Right frontal craniotomy was performed on New Zealand rabbits for placing a PE-50 tube at the suprasella cistern and an ICP probe at the anterior cranial fossa. The central ear artery was punctured and blood was shunted into the suprasellar cistern through the PE-50 tube. ICP, blood pressure, CPP and heart rate peri-aSAH were monitored throughout the experiments. The rabbits were examined for neurological deficits at 24h post-SAH. Brain coronal sections near the optic chiasma were assessed by HE and Cresyl violet staining. Three minutes after SAH induction, the ICP peaked to 61.7±9.8mmHg while CPP decreased to nadir 23.5±8.9mmHg, and both were gradually restored in 15min. At 24h post-SAH, significant neurological deficits were found in SAH rabbits as compared to the sham-operated animals. In addition, neuronal degeneration and loss were also detected. Our results indicate that a new rabbit model of aSAH with EBI is successfully established. Moreover, this model is controllable, economical, and no side-injury to the main artery.
Collapse
|
97
|
Han Y, Zhang T, Su J, Zhao Y, Chenchen, Wang, Li X. Apigenin attenuates oxidative stress and neuronal apoptosis in early brain injury following subarachnoid hemorrhage. J Clin Neurosci 2017; 40:157-162. [DOI: 10.1016/j.jocn.2017.03.003] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Accepted: 03/05/2017] [Indexed: 10/19/2022]
|
98
|
Rehni AK, Liu A, Perez-Pinzon MA, Dave KR. Diabetic aggravation of stroke and animal models. Exp Neurol 2017; 292:63-79. [PMID: 28274862 PMCID: PMC5400679 DOI: 10.1016/j.expneurol.2017.03.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Revised: 02/03/2017] [Accepted: 03/03/2017] [Indexed: 12/16/2022]
Abstract
Cerebral ischemia in diabetics results in severe brain damage. Different animal models of cerebral ischemia have been used to study the aggravation of ischemic brain damage in the diabetic condition. Since different disease conditions such as diabetes differently affect outcome following cerebral ischemia, the Stroke Therapy Academic Industry Roundtable (STAIR) guidelines recommends use of diseased animals for evaluating neuroprotective therapies targeted to reduce cerebral ischemic damage. The goal of this review is to discuss the technicalities and pros/cons of various animal models of cerebral ischemia currently being employed to study diabetes-related ischemic brain damage. The rational use of such animal systems in studying the disease condition may better help evaluate novel therapeutic approaches for diabetes related exacerbation of ischemic brain damage.
Collapse
Affiliation(s)
- Ashish K Rehni
- Cerebral Vascular Disease Research Laboratories, University of Miami Miller School of Medicine, Miami, FL 33136, USA; Department of Neurology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Allen Liu
- Cerebral Vascular Disease Research Laboratories, University of Miami Miller School of Medicine, Miami, FL 33136, USA; Department of Neurology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Miguel A Perez-Pinzon
- Cerebral Vascular Disease Research Laboratories, University of Miami Miller School of Medicine, Miami, FL 33136, USA; Department of Neurology, University of Miami Miller School of Medicine, Miami, FL 33136, USA; Neuroscience Program, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Kunjan R Dave
- Cerebral Vascular Disease Research Laboratories, University of Miami Miller School of Medicine, Miami, FL 33136, USA; Department of Neurology, University of Miami Miller School of Medicine, Miami, FL 33136, USA; Neuroscience Program, University of Miami Miller School of Medicine, Miami, FL 33136, USA.
| |
Collapse
|
99
|
Kolar M, Nohejlova K, Mares J, Pachl J. Early changes of brain perfusion after subarachnoid hemorrhage - the effect of sodium nitroprusside. Physiol Res 2017; 65:S591-S599. [PMID: 28006941 DOI: 10.33549/physiolres.933536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Causes of early hypoperfusion after subarachnoid hemorrhage (SAH) include intracranial hypertension as well as vasoconstriction. The aim of the study was to assess the effect of intracerebroventricular (ICV) administration of sodium nitroprusside (SNP) on early hypoperfusion after SAH. Male Wistar rats (220-240 g) were used, SAH group received 250 microl of fresh autologous arterial blood into the prechiasmatic cistern; sham-operated animals received 250 microl of isotonic solution. Therapeutic intervention: ICV administration of 10 microg SNP; 5 microl 5 % glucose (SNP vehicle) and untreated control. Brain perfusion and invasive blood pressure were monitored for 30 min during and after induction of SAH. Despite SNP caused increase of perfusion in sham-operated animals, no response was observed in half of SAH animals. The other half developed hypotension accompanied by brain hypoperfusion. There was no difference between brain perfusion in SNP-treated, glucose-treated and untreated SAH animals during the monitored period. We did not observe expected beneficial effect of ICV administration of SNP after SAH. Moreover, half of the SNP-treated animals developed serious hypotension which led to brain hypoperfusion. This is the important finding showing that this is not the option for early management in patient after SAH.
Collapse
Affiliation(s)
- M Kolar
- Department of Anesthesiology and Critical Care Medicine, Third Faculty of Medicine, Charles University, Prague, Czech Republic; Department of Normal, Pathological and Clinical Physiology, Third Faculty of Medicine, Charles University, Prague, Czech Republic.
| | | | | | | |
Collapse
|
100
|
Hua C, Zhao G. Adult posthaemorrhagic hydrocephalus animal models. J Neurol Sci 2017; 379:39-43. [PMID: 28716276 DOI: 10.1016/j.jns.2017.05.038] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Revised: 05/18/2017] [Accepted: 05/19/2017] [Indexed: 12/26/2022]
Abstract
Posthaemorrhagic hydrocephalus (PHH) is often associated with high morbidity and mortality and serves as an important clinical predictor of poor outcomes after intracranial haemorrhage (ICH). We are lack of effective medical intervention methods to improve functional outcomes in patients with PHH because little is still known about the mechanisms of PHH pathogenesis. Animal models play a key role in the study of PHH. Developed a suitable animal model that will help us to be better to find preventative strategies and improve the prognosis of patients with PHH. The purpose of this review is to summarize the body of knowledge gained from animal studies.
Collapse
Affiliation(s)
- Cong Hua
- Department of Neurosurgery of the First Clinical Hospital, Jilin University, Changchun, China.
| | - Gang Zhao
- Department of Neurosurgery of the First Clinical Hospital, Jilin University, Changchun, China.
| |
Collapse
|