51
|
NIH-3T3 fibroblast transplants enhance host regeneration and improve spatial learning in ventral subicular lesioned rats. Behav Brain Res 2010; 218:315-24. [PMID: 21074573 DOI: 10.1016/j.bbr.2010.11.020] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2010] [Revised: 10/25/2010] [Accepted: 11/05/2010] [Indexed: 12/28/2022]
Abstract
Transplants, besides providing neural replacement, also stimulate host regeneration, which could serve as a powerful means to establish functional recovery in CNS insults. Earlier, we have reported the H3-GFP transplant mediated recovery of cognitive functions in the ventral subicular lesioned rats. In the present study, we demonstrate the efficacy of a non-neural fibroblast transplants in mediating host regeneration and functional recovery in ventral subicular lesioned rats. Adult male Wistar rats were lesioned with ibotenic acid in the ventral subiculum (VSL) and were transplanted with NIH-3T3 fibroblast cells into CA1 region of the hippocampus. Ventral subicular lesioning impaired the spatial task performances in rats and produced considerable degree of dendritic atrophy of the hippocampal pyramidal neurons. Two months following transplantation, the transplants were seen in the dentate gyrus and expressed BDNF and bFGF. Further, the VSL rats with fibroblast transplants showed enhanced expression of BDNF in the hippocampus and enhanced dendritic branching and increased spine density in the CA1 hippocampal pyramidal neurons. Transplantation of fibroblast cells also helped to establish functional recovery and the rats with transplants showed enhanced spatial learning performances. We attribute the recovery of cognitive functions to the graft mediated host regeneration, although the mechanisms of functional recovery remain to be elucidated.
Collapse
|
52
|
Lee JM, Bae JS, Jin HK. Intracerebellar transplantation of neural stem cells into mice with neurodegeneration improves neuronal networks with functional synaptic transmission. J Vet Med Sci 2010; 72:999-1009. [PMID: 20339259 DOI: 10.1292/jvms.09-0514] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Recent studies have shown that many kinds of stem cells are beneficial for patients suffering with neurodegenerative diseases. We investigated the effects of neural stem cell (NSC), Maudsley hippocampal clone 36 (MHP36) in the Niemann-Pick disease type C (NP-C) model mice. Herein, we demonstrate that MHP36 transplantation improves the neuropathological features without acute immune response and promotes neuronal networks with functional synaptic transmission. The number of surviving Purkinje neurons substantially increased in MHP36 transplanted NP-C mice compared with sham-transplanted NP-C mice. MHP36 significantly reduced both of astrocytic and microglial activations. We also found that these surviving Purkinje neurons have normal functional synapses with parallel fibers that have normal glutamate release probability in MHP36 transplanted NP-C mice. Furthermore, real-time PCR analysis revealed up-regulation of genes involved in both excitatory and inhibitory neurotransmission encoding subunits of the ionotropic glutamate receptors GluR2, 3 and GABAA receptor beta2. These findings suggest that NSC, MHP36 transplantation may have therapeutic effects in the treatment of NP-C and other neurodegenerative diseases.
Collapse
Affiliation(s)
- Ji Min Lee
- Stem Cell Neuroplasticity Research Group, Department of Laboratory Animal Medicine, Kyungpook National University, Daegu, Korea
| | | | | |
Collapse
|
53
|
Wu W, Chen X, Hu C, Li J, Yu Z, Cai W. Transplantation of neural stem cells expressing hypoxia-inducible factor-1alpha (HIF-1alpha) improves behavioral recovery in a rat stroke model. J Clin Neurosci 2009; 17:92-5. [PMID: 19913430 DOI: 10.1016/j.jocn.2009.03.039] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2008] [Revised: 03/28/2009] [Accepted: 03/30/2009] [Indexed: 11/18/2022]
Abstract
We explored the possibility that hypoxia-inducible factor-1alpha (HIF-1alpha) might contribute to the therapeutic effect of neural stem cell (NSC) transplantation in cerebral ischemia. The relative efficacy of modified NSC to promote behavioral recovery was investigated in a rat model of stroke induced by a transient middle cerebral artery occlusion (MCAO). A recombinant adenovirus (Ad-HIF-1alpha) was engineered to express HIF-1alpha. Control NSC infected with control adenovirus (NSC-Ad), recombinant adenovirus Ad-HIF-1alpha, or NSC infected by Ad-HIF-1alpha (NSC-Ad-HIF-1alpha), were used for intraventricular transplantion into rat brain 24 hours after MCAO. Neurological deficits were assessed over 4 weeks using the modified neurological severity scale (NSS) score. Long-term in vivo expression of HIF-1alpha was demonstrated by Western blotting and immunocytochemistry, and derivatives of nestin-positive transplanted cells contributed to both neuronal (neurofilament-positive) and astroglial (glial fibrillary acidic protein-positive) lineages. All animals showed functional improvement. Improvement was accelerated in animals receiving either NSC-Ad or Ad-HIF-1alpha, while improvement at all times between 7 days and 28 days post MCAO was significantly greater in animals transplanted with NSC-Ad-HIF-1alpha than for other treated animals. NSC-Ad-HIF-1alpha cells also increased the number of factor VIII-positive cells in the region of ischemic injury, indicating that HIF-1alpha expression can promote angiogenesis. Gene-modified NSC expressing HIF-1alpha have therapeutic potential in ischemic stroke.
Collapse
Affiliation(s)
- Wanfu Wu
- Department of Neurology, The First Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | | | | | | | | | | |
Collapse
|
54
|
Mine Y, Hayashi T, Yamada M, Okano H, Kawase T. ENVIRONMENTAL CUE-DEPENDENT DOPAMINERGIC NEURONAL DIFFERENTIATION AND FUNCTIONAL EFFECT OF GRAFTED NEUROEPITHELIAL STEM CELLS IN PARKINSONIAN BRAIN. Neurosurgery 2009; 65:741-53; discussion 753. [DOI: 10.1227/01.neu.0000351281.45986.76] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Affiliation(s)
- Yutaka Mine
- Department of Neurosurgery, School of Medicine, Keio University, Tokyo, Japan
| | - Takuro Hayashi
- Department of Neurosurgery, Eiju General Hospital, Tokyo, Japan
| | - Motoyuki Yamada
- Department of Neurosurgery, College of Medicine, University of South Florida, Tampa, Florida
| | - Hideyuki Okano
- Department of Neurosurgery, Tokyo-Kita Social Insurance Hospital, Tokyo, Japan
| | - Takeshi Kawase
- Department of Physiology, School of Medicine, Keio University, Tokyo, Japan
| |
Collapse
|
55
|
Kim SU, de Vellis J. Stem cell-based cell therapy in neurological diseases: a review. J Neurosci Res 2009; 87:2183-200. [PMID: 19301431 DOI: 10.1002/jnr.22054] [Citation(s) in RCA: 301] [Impact Index Per Article: 20.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Human neurological disorders such as Parkinson's disease, Huntington's disease, amyotrophic lateral sclerosis (ALS), Alzheimer's disease, multiple sclerosis (MS), stroke, and spinal cord injury are caused by a loss of neurons and glial cells in the brain or spinal cord. Cell replacement therapy and gene transfer to the diseased or injured brain have provided the basis for the development of potentially powerful new therapeutic strategies for a broad spectrum of human neurological diseases. However, the paucity of suitable cell types for cell replacement therapy in patients suffering from neurological disorders has hampered the development of this promising therapeutic approach. In recent years, neurons and glial cells have successfully been generated from stem cells such as embryonic stem cells, mesenchymal stem cells, and neural stem cells, and extensive efforts by investigators to develop stem cell-based brain transplantation therapies have been carried out. We review here notable experimental and preclinical studies previously published involving stem cell-based cell and gene therapies for Parkinson's disease, Huntington's disease, ALS, Alzheimer's disease, MS, stroke, spinal cord injury, brain tumor, and lysosomal storage diseases and discuss the future prospects for stem cell therapy of neurological disorders in the clinical setting. There are still many obstacles to be overcome before clinical application of cell therapy in neurological disease patients is adopted: 1) it is still uncertain what kind of stem cells would be an ideal source for cellular grafts, and 2) the mechanism by which transplantation of stem cells leads to an enhanced functional recovery and structural reorganization must to be better understood. Steady and solid progress in stem cell research in both basic and preclinical settings should support the hope for development of stem cell-based cell therapies for neurological diseases.
Collapse
Affiliation(s)
- Seung U Kim
- Division of Neurology, Department of Medicine, UBC Hospital, University of British Columbia, Vancouver, British Columbia, Canada.
| | | |
Collapse
|
56
|
Hayase M, Kitada M, Wakao S, Itokazu Y, Nozaki K, Hashimoto N, Takagi Y, Dezawa M. Committed neural progenitor cells derived from genetically modified bone marrow stromal cells ameliorate deficits in a rat model of stroke. J Cereb Blood Flow Metab 2009; 29:1409-20. [PMID: 19436312 DOI: 10.1038/jcbfm.2009.62] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Bone marrow stromal cells (MSCs) are an excellent source of cells for treating a variety of central nervous system diseases. In this study, we report the efficient induction of committed neural progenitor cells from rat and human MSCs (NS-MSCs) by introduction of cells with the intracellular domain of Notch-1 followed by growth in the free-floating culture system. NS-MSCs successfully formed spheres, in which cells highly expressed the neural precursor cell markers. The commitment of spheres to neural lineage cells was confirmed by their successful differentiation into neuronal cells when exposed to a differentiation medium. To determine the therapeutic potential of NS-MSCs, cells were transplanted into the cortex and striatum in a rat model of focal cerebral ischemia. The survival, distribution, and integration of NS-MSCs in the host brain were very high, and at day 100, grafted NS-MSCs were positive for dopaminergic, glutamatergic, and gamma-amino butyric acid(GABA)ergic neuronal markers. They extended long neurites for nearly 6.3 mm and many of these expressed synaptophysin. Significant behavioral recovery was also observed in limb-placing and water-maze tests. These suggest a high potential for this MSC approach in the replenishment of neural cells for stroke and for a wide range of neurodegenerative conditions that require various types of neural cells.
Collapse
Affiliation(s)
- Makoto Hayase
- Department of Neurosurgery, Kyoto University Graduate School of Medicine, 54 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto 606-8507 , Japan
| | | | | | | | | | | | | | | |
Collapse
|
57
|
Stroemer P, Patel S, Hope A, Oliveira C, Pollock K, Sinden J. The neural stem cell line CTX0E03 promotes behavioral recovery and endogenous neurogenesis after experimental stroke in a dose-dependent fashion. Neurorehabil Neural Repair 2009; 23:895-909. [PMID: 19633272 DOI: 10.1177/1545968309335978] [Citation(s) in RCA: 110] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
BACKGROUND This study investigated behavioral recovery in rats following implanting increasing doses of CTX0E03 cells into the putamen ipsilateral to the stroke damage. Postmortem histological analysis investigated possible mechanisms of behavioral recovery. METHODS . At 4 weeks after middle cerebral artery occlusion (MCAO), rats were treated with 4500, 45,000, or 450,000 CTX0E03 cells or vehicle implanted into the putamen with testing on a battery of tasks preocclusion and postocclusion. Histological examination of brains included assessment of lesion volumes, implant cell survival and differentiation, changes to host brain matrix, angiogenesis, and neurogenesis using immunohistochemical methods. RESULTS . Statistically significant dose-related recovery in sensorimotor function deficits (bilateral asymmetry test [BAT; P < .0002] in the mid- and high-dose groups and rotameter test after amphetamine exposure [P < .05] in the high-dose group) was found in the CTX0E03 cell implanted groups compared to the vehicle group. In-life functional improvements correlated with cell dose, though did not correlate with survival of CTX0E03 cells measured at postmortem. Surviving CTX0E03 cells differentiated into oligodendroglial and endothelial phenotypes. MCAO-induced reduction of neurogenesis in the subventricular zone (SVZ) was partially restored to that observed in sham operated controls. No adverse CTX0E03 cell-related effects were observed during in-life observations or on tissue histology. CONCLUSIONS . This study found that the implantation of CTX0E03 human neural stem cells in rats after MCAO stroke promoted significant behavioral recovery depending on cell dose. The authors propose a paracrine trophic mechanism, which is triggered early after CTX0E03 cell implantation, and which in turn targets restoration of neurogenesis in the SVZ of MCAO rats.
Collapse
|
58
|
Stevanato L, Corteling RL, Stroemer P, Hope A, Heward J, Miljan EA, Sinden JD. c-MycERTAM transgene silencing in a genetically modified human neural stem cell line implanted into MCAo rodent brain. BMC Neurosci 2009; 10:86. [PMID: 19622162 PMCID: PMC2725042 DOI: 10.1186/1471-2202-10-86] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2009] [Accepted: 07/21/2009] [Indexed: 12/20/2022] Open
Abstract
Background The human neural stem cell line CTX0E03 was developed for the cell based treatment of chronic stroke disability. Derived from fetal cortical brain tissue, CTX0E03 is a clonal cell line that contains a single copy of the c-mycERTAM transgene delivered by retroviral infection. Under the conditional regulation by 4-hydroxytamoxifen (4-OHT), c-mycERTAM enabled large-scale stable banking of the CTX0E03 cells. In this study, we investigated the fate of this transgene following growth arrest (EGF, bFGF and 4-OHT withdrawal) in vitro and following intracerebral implantation into a mid-cerebral artery occluded (MCAo) rat brain. In vitro, 4-weeks after removing growth factors and 4-OHT from the culture medium, c-mycERTAM transgene transcription is reduced by ~75%. Furthermore, immunocytochemistry and western blotting demonstrated a concurrent decrease in the c-MycERTAM protein. To examine the transcription of the transgene in vivo, CTX0E03 cells (450,000) were implanted 4-weeks post MCAo lesion and analysed for human cell survival and c-mycERTAM transcription by qPCR and qRT-PCR, respectively. Results The results show that CTX0E03 cells were present in all grafted animal brains ranging from 6.3% to 39.8% of the total cells injected. Prior to implantation, the CTX0E03 cell suspension contained 215.7 (SEM = 13.2) copies of the c-mycERTAM transcript per cell. After implantation the c-mycERTAM transcript copy number per CTX0E03 cell had reduced to 6.9 (SEM = 3.4) at 1-week and 7.7 (SEM = 2.5) at 4-weeks. Bisulfite genomic DNA sequencing of the in vivo samples confirmed c-mycERTAM silencing occurred through methylation of the transgene promoter sequence. Conclusion In conclusion the results confirm that CTX0E03 cells downregulated c-mycERTAM transgene expression both in vitro following EGF, bFGF and 4-OHT withdrawal and in vivo following implantation in MCAo rat brain. The silencing of the c-mycERTAM transgene in vivo provides an additional safety feature of CTX0E03 cells for potential clinical application.
Collapse
Affiliation(s)
- Lara Stevanato
- ReNeuron Limited, Surrey Research Park, 10 Nugent Road, Guildford, Surrey, GU2 7AF, UK.
| | | | | | | | | | | | | |
Collapse
|
59
|
Edalatmanesh MA, Matin MM, Neshati Z, Bahrami AR, Kheirabadi M. Systemic transplantation of mesenchymal stem cells can reduce cognitive and motor deficits in rats with unilateral lesions of the neostriatum. Neurol Res 2009; 32:166-72. [PMID: 19570323 DOI: 10.1179/174313209x409025] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Abstract
Huntington's disease (HD) is an inherited neurodegenerative disorder that usually occurs in the third or fourth decades of life. Stem cell therapy is one of the approaches for HD treatment. Since mesenchymal stem cells (MSCs) have the ability to migrate into the lesioned site, we transplanted rat bone marrow-derived MSCs intravenously, following unilateral intrastriatal lesion made by quinolinic acid (QA) in Wistar rats. QA administration caused widespread neuropathological deficits similar to those found in HD, including impairments in motor and cognitive functions. Animals receiving MSCs exhibited significant improvement in motor and cognitive performance compared with sham group animals that did not receive cells. Animals were tested by apomorphine-induced rotations, beam walk, cylinder and hang wire tests at different times after cell transplantation. Results indicate that systemic transplantation of MSCs can significantly reduce the behavioral abnormalities of these animals. This method of systemic injection has a great advantage over invasive surgical techniques for transplantation of cells at the lesioned site.
Collapse
|
60
|
Abstract
Recent advances in stem cell biology have raised expectations that both diseases of, and injuries to, the central nervous system may be ameliorated by cell transplantation. In particular, cell therapy has been studied for inducing efficient remyelination in disorders of myelin, including both the largely pediatric disorders of myelin formation and maintenance and the acquired demyelinations of both children and adults. Potential cell-based treatments of two major groups of disorders include both delivery of myelinogenic replacements and mobilization of residual oligodendrocyte progenitor cells as a means of stimulating endogenous repair; the choice of modality is then predicated upon the disease target. In this review we consider the potential application of cell-based therapeutic strategies to disorders of myelin, highlighting the promises as well as the problems and potential perils of this treatment approach.
Collapse
Affiliation(s)
- Tamir Ben-Hur
- Department of Neurology, The Agnes Ginges Center for Human Neurogenetics, Hadassah-Hebrew University Hospital, Jerusalem, Israel.
| | | |
Collapse
|
61
|
A chronic 1 year assessment of MRI contrast agent-labelled neural stem cell transplants in stroke. Neuroimage 2008; 47 Suppl 2:T133-42. [PMID: 18634886 DOI: 10.1016/j.neuroimage.2008.06.017] [Citation(s) in RCA: 88] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2008] [Revised: 06/09/2008] [Accepted: 06/14/2008] [Indexed: 12/21/2022] Open
Abstract
Non-invasive identification of transplanted neural stem cells in vivo by pre-labelling with contrast agents may play an important role in the translation of cell therapy to the clinic. Understanding the impact of these labels on the cells' ability to repair is therefore vital. In rats with middle cerebral artery occlusion (MCAo), a model of stroke, the transhemispheric migration of MHP36 cells labelled with the bimodal contrast agent GRID was detected on magnetic resonance images (MRI) up to 4 weeks following transplantation. However, compared to MHP36 cells labelled with the red fluorescent dye PKH26, GRID-labelled transplants did not significantly improve behaviour, and performance was akin to non-treated animals. Likewise, the evolution of anatomical damage as assessed by serial, T(2)-weighted MRI over 1 year indicated that GRID-labelled transplants resulted in a slight increase in lesion size compared to MCAo-only animals, whereas the same, PKH26-labelled cells significantly decreased lesion size by 35%. Although GRID labelling allows the in vivo identification of transplanted cells up to 1 month after transplantation, it is likely that some is gradually degraded inside cells. The translation of cellular imaging therefore does not only require the in vitro assessment of contrast agents on cellular functions, but also requires the chronic, in vivo assessment of the label on the stem cells' ability to repair in preclinical models of neurological disease.
Collapse
|
62
|
Stem cells: implications in experimental ischaemic stroke therapy. ACTA ACUST UNITED AC 2008; 4:227-33. [PMID: 18516704 DOI: 10.1007/s12015-008-9025-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/05/2008] [Indexed: 12/19/2022]
Abstract
Ischaemic stroke is a syndrome characterized by rapid onset of neurological injury due to interruption of blood flow to the brain. Widespread neuronal damage throughout the CNS has been shown to cause marked and multifarious functional impairments in the ischaemic brain. Recent advances as enumerated above have propelled acute ischaemic stroke management into a therapeutic era. However, once the damage from a stroke event has maximized, little can be done to recover premorbid function. Experimental animal data suggests that stem cell therapy may be an effective alternate to the conventional disease management strategies of ischaemic stroke. Therefore, the present review focuses on detailing the scope of stem cell therapy in the treatment of ischaemic stroke.
Collapse
|
63
|
Mukhida K, Baghbaderani BA, Hong M, Lewington M, Phillips T, McLeod M, Sen A, Behie LA, Mendez I. Survival, differentiation, and migration of bioreactor-expanded human neural precursor cells in a model of Parkinson disease in rats. Neurosurg Focus 2008; 24:E8. [DOI: 10.3171/foc/2008/24/3-4/e7] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Object
Fetal tissue transplantation for Parkinson disease (PD) has demonstrated promising results in experimental and clinical studies. However, the widespread clinical application of this therapeutic approach is limited by a lack of fetal tissue. Human neural precursor cells (HNPCs) are attractive candidates for transplantation because of their long-term proliferation activity. Furthermore, these cells can be reproducibly expanded in a standardized fashion in suspension bioreactors. In this study the authors sought to determine whether the survival, differentiation, and migration of HNPCs after transplantation depended on the region of precursor cell origin, intracerebral site of transplantation, and duration of their expansion.
Methods
Human neural precursor cells were isolated from the telencephalon, brainstem, ventral mesencephalon, and spinal cord of human fetuses 8–10 weeks of gestational age, and their differentiation potential characterized in vitro. After expansion in suspension bioreactors, the HNPCs were transplanted into the striatum and substantia nigra of parkinsonian rats. Histological analyses were performed 7 weeks posttransplantation.
Results
The HNPCs isolated from various regions of the neuraxis demonstrated diverse propensities to differentiate into astrocytes and neurons and could all successfully expand under standardized conditions in suspension bioreactors. At 7 weeks posttransplantation, survival and migration were significantly greater for HNPCs obtained from the more rostral brain regions. The HNPCs differentiated predominantly into astrocytes after transplantation into the striatum or substantia nigra regions, and thus no behavioral improvement was observed.
Conclusions
Understanding the regional differences in HNPC properties is prerequisite to their application for PD cell restoration strategies.
Collapse
Affiliation(s)
- Karim Mukhida
- 1Division of Neurosurgery, Department of Surgery, Cell Restoration Laboratory, Dalhousie Medical School; Departments of Anatomy and Neurobiology, Dalhousie University, Halifax, Nova Scotia; and
| | - Behnam A. Baghbaderani
- 2Pharmaceutical Production Research Facility, Schulich School of Engineering, University of Calgary, Alberta, Canada
| | - Murray Hong
- 1Division of Neurosurgery, Department of Surgery, Cell Restoration Laboratory, Dalhousie Medical School; Departments of Anatomy and Neurobiology, Dalhousie University, Halifax, Nova Scotia; and
| | - Matthew Lewington
- 1Division of Neurosurgery, Department of Surgery, Cell Restoration Laboratory, Dalhousie Medical School; Departments of Anatomy and Neurobiology, Dalhousie University, Halifax, Nova Scotia; and
| | - Timothy Phillips
- 1Division of Neurosurgery, Department of Surgery, Cell Restoration Laboratory, Dalhousie Medical School; Departments of Anatomy and Neurobiology, Dalhousie University, Halifax, Nova Scotia; and
| | - Marcus McLeod
- 1Division of Neurosurgery, Department of Surgery, Cell Restoration Laboratory, Dalhousie Medical School; Departments of Anatomy and Neurobiology, Dalhousie University, Halifax, Nova Scotia; and
| | - Arindom Sen
- 2Pharmaceutical Production Research Facility, Schulich School of Engineering, University of Calgary, Alberta, Canada
| | - Leo A. Behie
- 2Pharmaceutical Production Research Facility, Schulich School of Engineering, University of Calgary, Alberta, Canada
| | - Ivar Mendez
- 1Division of Neurosurgery, Department of Surgery, Cell Restoration Laboratory, Dalhousie Medical School; Departments of Anatomy and Neurobiology, Dalhousie University, Halifax, Nova Scotia; and
| |
Collapse
|
64
|
Yamasaki TR, Blurton-Jones M, Morrissette DA, Kitazawa M, Oddo S, LaFerla FM. Neural stem cells improve memory in an inducible mouse model of neuronal loss. J Neurosci 2007; 27:11925-33. [PMID: 17978032 PMCID: PMC6673368 DOI: 10.1523/jneurosci.1627-07.2007] [Citation(s) in RCA: 121] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2007] [Revised: 09/12/2007] [Accepted: 09/14/2007] [Indexed: 01/19/2023] Open
Abstract
Neuronal loss is a major pathological outcome of many common neurological disorders, including ischemia, traumatic brain injury, and Alzheimer disease. Stem cell-based approaches have received considerable attention as a potential means of treatment, although it remains to be determined whether stem cells can ameliorate memory dysfunction, a devastating component of these disorders. We generated a transgenic mouse model in which the tetracycline-off system is used to regulate expression of diphtheria toxin A chain. After induction, we find progressive neuronal loss primarily within the hippocampus, leading to specific impairments in memory. We find that neural stem cells transplanted into the brain after neuronal ablation survive, migrate, differentiate and, most significantly, improve memory. These results show that stem cells may have therapeutic value in diseases and conditions that result in memory loss.
Collapse
Affiliation(s)
- Tritia R. Yamasaki
- Department of Neurobiology and Behavior, University of California, Irvine, Irvine, California 92697
| | - Mathew Blurton-Jones
- Department of Neurobiology and Behavior, University of California, Irvine, Irvine, California 92697
| | - Debbi A. Morrissette
- Department of Neurobiology and Behavior, University of California, Irvine, Irvine, California 92697
| | - Masashi Kitazawa
- Department of Neurobiology and Behavior, University of California, Irvine, Irvine, California 92697
| | - Salvatore Oddo
- Department of Neurobiology and Behavior, University of California, Irvine, Irvine, California 92697
| | - Frank M. LaFerla
- Department of Neurobiology and Behavior, University of California, Irvine, Irvine, California 92697
| |
Collapse
|
65
|
Agoston VA, Zádori A, Demeter K, Nagy Z, Madarász E. Different behaviour of implanted stem cells in intact and lesioned forebrain cortices. Neuropathol Appl Neurobiol 2007; 33:510-22. [PMID: 17854438 DOI: 10.1111/j.1365-2990.2007.00845.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Cell-replacement therapy promises a useful tool to regenerate compromised brain tissue, but the interaction between grafted cells and host tissues is not well understood. In these studies, the fates of neuroectodermal stem cells were compared in 'healthy' or damaged mouse forebrains. One-cell derived, fluorescent GFP-4C neural stem cells were implanted into normal and cold-lesioned mouse cortices. The fates of implanted cells were followed by histological and immunocytochemical assays for a 55-day postimplantation period. Cells were recultivated from lesioned cortices and characterized by cell cycle parameters, chromosome numbers, immunocytochemical markers and in vitro inducibility. Their intracerebral fates were checked upon re-implanting into 'healthy' mouse brain cortices. GFP-4C cells, giving rise to neurones and astrocytes upon in vitro induction, failed to differentiate in either normal or lesioned cortical tissues. The rate of proliferation and the length of the survival, however, depended on the host environment, markedly. In intact cortices, implanted cells formed compact, isolated aggregates and their survival did not exceed 4 weeks. In compromised cortices, GFP-4C cells survived longer than 8 weeks and repopulated the decayed region. The morphology, viability, immunocytochemical properties, in vitro inducibility and chromosome number of cells recultivated from lesioned cortices were identical to those of the master cells. Long-term survival and repopulating capability were due to signals present in the lesioned, but missing from the intact cortical environment. The results underline the importance of host environment in the fate determination of grafted cells and emphasize the need to understand the 'roles' of recipient tissues for potential cell-replacement methodologies.
Collapse
Affiliation(s)
- V A Agoston
- Institute of Experimental Medicine of Hungarian Academy of Sciences, Budapest, Hungary
| | | | | | | | | |
Collapse
|
66
|
Divani AA, Hussain MS, Magal E, Heary RF, Qureshi AI. The Use of Stem Cells’ Hematopoietic Stimulating Factors Therapy Following Spinal Cord Injury. Ann Biomed Eng 2007; 35:1647-56. [PMID: 17641973 DOI: 10.1007/s10439-007-9359-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2007] [Accepted: 07/13/2007] [Indexed: 11/29/2022]
Abstract
Spinal cord injury (SCI) remains one of the most devastating conditions in medicine, particularly due to the loss of productive life years and the high economic burden it places on our society. There are limited therapeutic options available to reduce the morbidity and mortality related to SCI. However, recent work with stem cells in repairing SCI appears to be promising, making this one of the most exciting frontiers in medicine. A brief review of the mechanisms of SCI is presented. Stem cells from a variety of sources have shown effectiveness in improving motor function after SCI in animals. The pre-clinical use of stem cells in SCI and methods of delivery are discussed. The potential use of granulocyte-colony stimulating factor (G-CSF) to increase the number of stem cells engrafting at the site of injury in order to improve neurological and motor function recovery following SCI is introduced. G-CSF, through stimulation of lymphohemopoietic stem cells in peripheral blood, can potentially cause repopulation of the SCI region with neural progenitor cells. This allows for improved functional outcomes. More pre-clinical and translational research exploring this possibility is required.
Collapse
Affiliation(s)
- Afshin A Divani
- Department of Neurology and Neurosciences, UMDNJ, New Jersey Medical School, Zeenat Qureshi Stroke Research Center, Newark, NJ 07103, USA.
| | | | | | | | | |
Collapse
|
67
|
Kim SU. Genetically engineered human neural stem cells for brain repair in neurological diseases. Brain Dev 2007; 29:193-201. [PMID: 17303360 DOI: 10.1016/j.braindev.2006.07.012] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2006] [Accepted: 07/31/2006] [Indexed: 11/23/2022]
Abstract
Neural stem cells (NSCs)of the central nervous system (CNS) have recently received a great deal of attention and interest for their therapeutic potential for neurological disorders. NSCs are defined as CNS progenitor cells that have the capacity for self-renewal and multipotent potential to become neurons or glial cells. Recent studies have shown that NSCs isolated from mammalian CNS including human can be propagated in vitro and then implanted into the brain of animal models of human neurological disorders. Recently, we have generated clonally derived immortalized human NSC cell lines via a retroviral vector encoded with v-myc oncogene. One of the human NSC lines, HB1.F3, was utilized in stem-cell based therapy in animal models of human neurological disorders. When F3 human NSCs were implanted into the brain of murine models of lysosomal storage diseases, stroke, Parkinson disease, Huntington disease or stroke, implanted F3 NSCs were found to migrate to the lesion sites, differentiate into neurons and glial cells, and restore functional deficits found in these neurological disorders. In animal models of brain tumors, F3 NSCs could deliver a bioactive therapeutically relevant molecules to effect a significant anti-tumor response intracranial tumor mass. Since these genetically engineered human NSCs are immortalized and continuously multiplying, there would be limitless supply of human neurons for treatment for patients suffering from neurological disorders including stroke, Parkinson disease, Huntington disease, ALS, multiple sclerosis and spinal cord injury. The promising field of stem cell research as it applies to regenerative medicine is still in infancy, but its potential appears limitless, and we are blessed to be involved in this exciting realm of research.
Collapse
Affiliation(s)
- Seung U Kim
- Brain Disease Research Center, Ajou University School of Medicine, Suwon 442-721, Republic of Korea.
| |
Collapse
|
68
|
Abstract
Stem cells carry the promise to cure a broad range of diseases and injuries, from diabetes, heart and muscular diseases, to neurological diseases, disorders and injuries. Significant progresses have been made in stem cell research over the past decade; the derivation of embryonic stem cells (ESCs) from human tissues, the development of cloning technology by somatic cell nuclear transfer (SCNT) and the confirmation that neurogenesis occurs in the adult mammalian brain and that neural stem cells (NSCs) reside in the adult central nervous system (CNS), including that of humans. Despite these advances, there may be decades before stem cell research will translate into therapy. Stem cell research is also subject to ethical and political debates, controversies and legislation, which slow its progress. Cell engineering has proven successful in bringing genetic research to therapy. In this review, I will review, in two examples, how investigators are applying cell engineering to stem cell biology to circumvent stem cells' ethical and political constraints and bolster stem cell research and therapy.
Collapse
Affiliation(s)
- Philippe Taupin
- National Neuroscience Institute, 11 Jalan Tan Tock Seng, Singapore 308433, Singapore.
| |
Collapse
|
69
|
Brekke C, Morgan SC, Lowe AS, Meade TJ, Price J, Williams SCR, Modo M. The in vitro effects of a bimodal contrast agent on cellular functions and relaxometry. NMR IN BIOMEDICINE 2007; 20:77-89. [PMID: 16952123 DOI: 10.1002/nbm.1077] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
The in vivo monitoring of cell survival and migration will be essential to the translation of cell-based therapies from the laboratory to clinical studies. The pre-labeling of cells with magnetic resonance imaging (MRI) contrast agents renders them visible in vivo for serial cellular imaging. However, little is known about the impact of the presence of these metal particles inside transplanted cells. The use of the bimodal contrast agent GRID made it possible to demonstrate by means of fluorescent microscopy and inductively coupled plasma mass spectrometry (ICP-MS) that, after 16 h of incubation (without the use of a transfection agent), neural stem cells (NSCs) were saturated and no longer incorporated particles. With this maximal uptake, no significant effect on cell viability was observed. However, a significant decrease in proliferation was evident in cells that underwent 24 h of labeling. A significant increase in reactive oxygen species was observed for all GRID labeling, with a very significant increase with 24 h of labeling. GRID labeling did not affect cell motility in comparison with PKH26-labeled NSCs in a glioma-based migration assay and also allowed differentiation into all major cell types of the brain. GRID-labeled cells induced a signal change of 47% on T(2) measurements and allows a detection of cell clusters of approximately 220 cells/microl. Further in vivo testing will be required to ensure that cell labeling with gadolinium-based MRI contrast agents does not impair their ability to repair.
Collapse
Affiliation(s)
- Cecilie Brekke
- NeuroImaging Research Group - Department of Neurology, Institute of Psychiatry, King's College London, UK
| | | | | | | | | | | | | |
Collapse
|
70
|
Riess P, Molcanyi M, Bentz K, Maegele M, Simanski C, Carlitscheck C, Schneider A, Hescheler J, Bouillon B, Schäfer U, Neugebauer E. Embryonic stem cell transplantation after experimental traumatic brain injury dramatically improves neurological outcome, but may cause tumors. J Neurotrauma 2007; 24:216-25. [PMID: 17263685 DOI: 10.1089/neu.2006.0141] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Transplantation of embryonic stem (ES) cells may provide cures for the damaged nervous system. Pre-differentiated ES or neuronal precursor cells have been investigated in various animal models of neurodegenerative diseases including traumatic brain injury (TBI). To our knowledge, no study has yet examined the effects of undifferentiated, murine ES cells on functional recovery and tumorigenity following implantation into injured rat brains. We evaluated the effect of transplantation of undifferentiated, murine embryonic cells on the recovery of motor function following lateral fluid percussion brain injury in Sprague-Dawley rats. At 3 days post-injury, animals received stereotactic injections of either embryonic stem cell suspension or injections of phosphate buffered saline without cells (control) into the injured cortex. Neurological motor function assessments were performed before injury, 72 h, 1, 3, and 6 weeks after transplantation using a Rotatrod and a Composite Neuroscore test. During this time period brain injured animals receiving ES cell transplantation showed a significant improvement in the Rotarod Test and in the Composite Neuroscore Test as compared to phosphate buffered saline (PBS)-treated animals. At 1 week post-transplantation, ES cells were detectable in 100% of transplanted animals. At 7 weeks following transplantation, EScells were detectable in only one animal. Two of 10 xenotransplanted animals revealed tumor formation over the observation period. These findings provide evidence for therapeutic potency of embryonic stem cell transplantation after TBI in rat, but also raise serious safety concerns about the use of such cells in human.
Collapse
Affiliation(s)
- Peter Riess
- Department of Trauma and Orthopedic Surgery, University of Witten/Herdecke, Cologne Merheim Medical Center, Ostmerheimerstrasse 200, 51109 Cologne, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
71
|
SHAH KHALID. NEURAL STEM CELLS AND ARMED DERIVATIVES: FATE AND THERAPEUTIC POTENTIAL IN THE BRAIN. ACTA ACUST UNITED AC 2007. [DOI: 10.1142/s1568558607000071] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
72
|
Bentz K, Molcanyi M, Riess P, Elbers A, Pohl E, Sachinidis A, Hescheler J, Neugebauer E, Schäfer U. Embryonic stem cells produce neurotrophins in response to cerebral tissue extract: Cell line-dependent differences. J Neurosci Res 2007; 85:1057-64. [PMID: 17335079 DOI: 10.1002/jnr.21219] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
In the present study, we compare the capacity of two different embryonic stem (ES) cell lines to secrete neurotrophins in response to cerebral tissue extract derived from healthy or injured rat brains. The intrinsic capacity of the embryonic cell lines BAC7 (feeder cell-dependent cultivation) to release brain-derived neurotrophic factor (BDNF) or neurotrophin-3 (NT-3) exceeded the release of these factors by CGR8 cells (feeder cell-free growth) by factors of 10 and 4, respectively. Nerve growth factor (NGF) was secreted only by BAC7 cells. Conditioning of cell lines with cerebral tissue extract derived from healthy or fluid percussion-injured rat brains resulted in a significant time-dependent increase in BDNF release in both cell lines. The increase in BDNF release by BAC7 cells was more pronounced when cells were incubated with brain extract derived from injured brain. However, differences in neurotrophin release associated with the origin of brain extract were at no time statistically significant. Neutrophin-3 and NGF release was inhibited when cell lines were exposed to cerebral tissue extract. The magnitude of the response to cerebral tissue extract was dependent on the intrinsic capacity of the cell lines to release neurotrophins. Our results clearly demonstrate significant variations in the intrinsic capability of different stem cell lines to produce neurotrophic factors. Furthermore, a significant modulation of neurotrophic factor release was observed following conditioning of cell lines with tissue extract derived from rat brains. A significant modulation of neurotrophin release dependent on the source of cerebral tissue extract used was not observed.
Collapse
Affiliation(s)
- Kristine Bentz
- Institute of Developmental Genetics, GSF-National Research Centre for Environment and Health, Munich, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
73
|
Wakayama K, Shimamura M, Sata M, Sato N, Kawakami K, Fukuda H, Tomimatsu T, Ogihara T, Morishita R. Quantitative measurement of neurological deficit after mild (30 min) transient middle cerebral artery occlusion in rats. Brain Res 2006; 1130:181-7. [PMID: 17173875 DOI: 10.1016/j.brainres.2006.10.088] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2006] [Revised: 10/04/2006] [Accepted: 10/04/2006] [Indexed: 11/15/2022]
Abstract
Although 30-min transient middle cerebral artery occlusion (30-min tMCAo) causes reproducible subcortical infarction in rats, it is difficult to evaluate the resulting neurological deficit using common behavioral tests such as the rota-rod test, adhesive-removal test, or narrow beam test. Establishment of a method of quantitative evaluation would help to develop a novel therapeutic approach to treat cerebral infarction. To solve this problem, we examined whether the neurological deficit could be detected by the Montoya staircase test or methamphetamine-induced rotation, which are commonly used in a Parkinson disease model induced by intrastriatal injection of 6-hydroxydopamine (6-OHDA). From 10 to 14 days after tMCAo, the Montoya staircase test showed significant clumsiness in forelimb tasks contralateral to the lesion side, whereas sham-operated rats showed no significant clumsiness in both forelimbs. The number of ipsilateral rotations induced by methamphetamine was also increased in tMCAo-rats at 21 days after tMCAo. Although Pearson's correlations coefficient showed that the results of these tests were correlated with the infarction volume, there was no significant correlation between the results of these two tests. These findings imply that the neurological deficit detected by both tests might reflect the severity of ischemic injury, but each test might evaluate different aspects of neurological deficit. Thus, the Montoya staircase test and methamphetamine-induced rotation are useful to evaluate neurological deficit in the chronic stage of subcortical infarction induced by 30-min tMCAo.
Collapse
Affiliation(s)
- Kouji Wakayama
- Department of Advanced Clinical Science and Therapeutics, Graduate School of Medicine, The University of Tokyo, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
74
|
Jomura S, Uy M, Mitchell K, Dallasen R, Bode CJ, Xu Y. Potential treatment of cerebral global ischemia with Oct-4+ umbilical cord matrix cells. Stem Cells 2006; 25:98-106. [PMID: 16960128 DOI: 10.1634/stemcells.2006-0055] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Potential therapeutic effects of Oct-4-positive rat umbilical cord matrix (RUCM) cells in treating cerebral global ischemia were evaluated using a reproducible model of cardiac arrest (CA) and resuscitation in rats. Animals were randomly assigned to four groups: A, sham-operated; B, 8-minute CA without pretreatment; C, 8-minute CA pretreated with defined media; and D, 8-minute CA pretreated with Oct-4(+) RUCM cells. Pretreatment was done 3 days before CA by 2.5-microl microinjection of defined media or approximately 10(4) Oct-4(+) RUCM cells in left thalamic nucleus, hippocampus, corpus callosum, and cortex. Damage was assessed histologically 7 days after CA and was quantified by the percentage of injured neurons in hippocampal CA1 regions. Little damage (approximately 3%-4%) was found in the sham group, whereas 50%-68% CA1 pyramidal neurons were injured in groups B and C. Pretreatment with Oct-4(+) RUCM cells significantly (p < .001) reduced neuronal loss to 25%-32%. Although the transplanted cells were found to have survived in the brain with significant migration, few were found directly in CA1. Therefore, transdifferentiation and fusion with host cells cannot be the predominant mechanisms for the observed protection. The Oct-4(+) RUCM cells might repair nonfocal tissue damage by an extracellular signaling mechanism. Treating cerebral global ischemia with umbilical cord matrix cells seems promising and worthy of further investigation.
Collapse
Affiliation(s)
- Sachiko Jomura
- Department of Anesthesiology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15260, USA
| | | | | | | | | | | |
Collapse
|
75
|
Seitz RJ, Buetefisch CM. Recovery from ischemic stroke: a translational research perspective for neurology. FUTURE NEUROLOGY 2006. [DOI: 10.2217/14796708.1.5.571] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Ischemic stroke is the most frequent neurological disease, characterized by an age-related incidence and chronic disability in the majority of patients. A great challenge in acute stroke is to predict the degree to which a patient will eventually recover. Magnetic resonance imaging has revealed that treatment-induced reperfusion limits the extent of ischemic brain damage, thereby enabling rapid and profound recovery. Nevertheless, patients may retain deficits in motor, sensory or cognitive functions due to the residual lesion. Functional neuroimaging and transcranial magnetic stimulation have shown that recovery is associated with abnormal activation in the perilesional vicinity and in brain areas remote from the lesion. This is likely related to altered functional properties or morphological changes in both cerebral hemispheres. Recent neurorehabilitative strategies, including forced use, mental imagery and peripheral nerve or cortex stimulation, aim at modulating these functional networks. Accordingly, translational research has provided new vistas on the neurobiological mechanisms of recovery and opened future avenues for science-based pharmacological and neurophysiological training strategies in stroke.
Collapse
Affiliation(s)
- Rüdiger J Seitz
- Department of Neurology, Biomedical Research Centre, Hienrich-Heine-University Düsseldorf, Brain Imaging Centre West, Research Centre Jülich, University Hospital Düsseldorf, Moorenstrasse 5 40225 Düsseldorf, Germany
| | - Cathrin M Buetefisch
- Department of Neurology, Robert C Byrd Health Science Center, , 1 Medical Center Drive, West Virginia University PO Box 9180, Morgantown, WV 26505, USA
| |
Collapse
|
76
|
An Y, Tsang KKS, Zhang H. Potential of stem cell based therapy and tissue engineering in the regeneration of the central nervous system. Biomed Mater 2006; 1:R38-44. [PMID: 18460755 DOI: 10.1088/1748-6041/1/2/r02] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The insufficiency of self-repair and regeneration of the central nervous system (CNS) leads to difficulty of rehabilitation of the injured brain. In the past few decades, the significant progress in cell therapy and tissue engineering has contributed to the functional recovery of the CNS to a great extent. The present review focuses on the potential role of stem cell based therapy and tissue engineering in the regeneration of the CNS.
Collapse
Affiliation(s)
- Yihua An
- Department of Neural Stem Cell, Beijing Neurosurgical Institute affiliated to Capital University of Medical Sciences, Beijing 100050, People's Republic of China
| | | | | |
Collapse
|
77
|
Zhu W, Mao Y, Zhao Y, Zhou LF, Wang Y, Zhu JH, Zhu Y, Yang GY. Transplantation of vascular endothelial growth factor-transfected neural stem cells into the rat brain provides neuroprotection after transient focal cerebral ischemia. Neurosurgery 2006; 57:325-33; discussion 325-33. [PMID: 16094163 DOI: 10.1227/01.neu.0000166682.50272.bc] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
OBJECTIVE Vascular endothelial growth factor (VEGF) stimulation and neural stem cell (NSC) transplantation have been implicated in the treatment of cerebral ischemia because of their crucial roles in neuroprotection, neurogenesis, and angiogenesis. However, effective delivery of VEGF or NSCs remains difficult. This study attempted to explore whether VEGF121 complementary deoxyribonucleic acid could be transferred into the NSCs and, furthermore, whether transplanting these VEGF121-transfected NSCs into the rat brain provides sufficient neuroprotection after transient focal cerebral ischemia. METHODS The VEGF121 gene was transfected to the NSCs isolated from E14 fetal rat hippocampus. In vitro studies revealed that VEGF messenger ribonucleic acid could be consistently expressed in NSCs from 1 day to up to 2 weeks. RESULTS After transplantation of VEGF121-transfected NSCs into the perifocal area of the ischemic rat brain, we found that these cells could survive and migrate in the ischemic region for 12 weeks. Furthermore, we observed a significant improvement of the Neurological Severity Scale score in the rats transplanted with VEGF121-transfected NSCs in comparison to the phosphate-buffered saline-injected or the sham-operated rats (P < 0.05). Transplantation of nontransfected NSCs into ischemic rat brain improved the Neurological Severity Scale score as well. Of note, the improvement in the Neurological Severity Scale score occurred earlier in the VEGF121-transfected NSC rats than in the nontransfected NSC rats (range, 2-12 wk versus 8-12 wk), suggesting a potent neuroprotection mediated by additional VEGF121 transfection. CONCLUSION We conclude that transplantation of VEGF121-transfected NSCs improved ischemic neurological deficiency. This finding provides a novel approach for the treatment of cerebral ischemia.
Collapse
Affiliation(s)
- Wei Zhu
- Institution of Neurosurgery, Hua-Shan Hospital, Fudan University, Shanghai, China
| | | | | | | | | | | | | | | |
Collapse
|
78
|
Horváth EM, Lacza Z, Csordás A, Szabó C, Kollai M, Busija DW. Graft derived cells with double nuclei in the penumbral region of experimental brain trauma. Neurosci Lett 2006; 396:182-6. [PMID: 16377084 DOI: 10.1016/j.neulet.2005.11.044] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2005] [Revised: 10/13/2005] [Accepted: 11/17/2005] [Indexed: 12/23/2022]
Abstract
Recent in vitro studies showed that stem cells might fuse with mature cells or each other; however, there is no in vivo evidence for this phenomenon in the cerebral cortex. Our goal was to find evidence for cell fusion in a model of traumatic brain injury followed by grafting of embryonic cortical cells. Cold lesion protocol was applied to induce lesion of the motor cortex in adult male rats. Six days later we grafted a suspension of freshly isolated rat brain cortical cells of early embryonic stage (E14) into the penumbra area of the lesion. The grafted cell nuclei were labelled with bromodeoxyuridine (BrDU). Six days after transplantation 4,328 BrDU positive cells were observed in nine animals. 89.5% of these cells had cytoplasmic staining probably representing dead or phagocyted grafted cells. Ten percent of surviving BrDU positive cells had only one BrDU positive nucleus and negative cytoplasm, while 0.5% had two distinct nuclei, one was unlabelled and one was BrDU positive. These cells were similar in appearance and size to the astrocytes in the vicinity and expressed the astocyte specific glial fibrillaly acidic protein. Thus, these cells showed a possible sign of cell fusion in the penumbral region of the injured brain.
Collapse
Affiliation(s)
- Eszter M Horváth
- Department of Physiology and Pharmacology, Wake Forest University Health Sciences, Winston-Salem, NC, USA.
| | | | | | | | | | | |
Collapse
|
79
|
Einstein O, Grigoriadis N, Mizrachi-Kol R, Reinhartz E, Polyzoidou E, Lavon I, Milonas I, Karussis D, Abramsky O, Ben-Hur T. Transplanted neural precursor cells reduce brain inflammation to attenuate chronic experimental autoimmune encephalomyelitis. Exp Neurol 2006; 198:275-84. [PMID: 16472805 DOI: 10.1016/j.expneurol.2005.11.007] [Citation(s) in RCA: 141] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2005] [Revised: 09/06/2005] [Accepted: 11/08/2005] [Indexed: 12/11/2022]
Abstract
Stem cell transplantation was introduced as a mean of cell replacement therapy, but the mechanism by which it confers clinical improvement in experimental models of neurological diseases is not clear. Here, we transplanted neural precursor cells (NPCs) into the ventricles of mice at day 6 after induction of chronic experimental autoimmune encephalomyelitis (EAE), a model of multiple sclerosis (MS). Transplanted cells migrated into white matter tracts and attenuated the clinical course of disease. NPC transplantation down-regulated the inflammatory brain process at the acute phase of disease, as indicated by a reduction in the number of perivascular infiltrates and of brain CD3+ T cells, an increase in the number and proportion of regulatory T cells and a reduction in the expression of ICAM-1 and LFA-1 in the brain. Demyelination and acute axonal injury in this model are considered to result mainly from the acute inflammatory process and correlate well with the chronic neurological residua. In consequence to inhibition of brain inflammation, precursor cell transplantation attenuated the primary demyelinating process and reduced the acute axonal injury. As a result, the size of demyelinated areas and extent of chronic axonal pathology were reduced in the transplanted brains. We suggest that the beneficial effect of transplanted NPCs in chronic EAE is mediated, in part, by decreasing brain inflammation and reducing tissue injury.
Collapse
MESH Headings
- Amyloid beta-Protein Precursor
- Animals
- Animals, Newborn
- Antigens/metabolism
- Axons/pathology
- Blotting, Northern/methods
- Bromodeoxyuridine/pharmacokinetics
- Disease Models, Animal
- Encephalitis/etiology
- Encephalitis/metabolism
- Encephalitis/pathology
- Encephalitis/surgery
- Encephalomyelitis, Autoimmune, Experimental/chemically induced
- Encephalomyelitis, Autoimmune, Experimental/complications
- Encephalomyelitis, Autoimmune, Experimental/surgery
- Epidermal Growth Factor/pharmacology
- Female
- Fibroblast Growth Factor 2/pharmacology
- Gene Expression Regulation/drug effects
- Gene Expression Regulation/physiology
- Glial Fibrillary Acidic Protein/metabolism
- Green Fluorescent Proteins/genetics
- Green Fluorescent Proteins/metabolism
- Immunohistochemistry/methods
- Intercellular Adhesion Molecule-1/metabolism
- Intermediate Filament Proteins/metabolism
- Ki-1 Antigen/metabolism
- Lymphocyte Function-Associated Antigen-1/metabolism
- Mice
- Mice, Inbred C57BL
- Mice, Transgenic
- Myelin Sheath/pathology
- Nerve Tissue Proteins/metabolism
- Nestin
- Neural Cell Adhesion Molecule L1/metabolism
- Neurons/drug effects
- Neurons/physiology
- O Antigens/metabolism
- Phosphopyruvate Hydratase/metabolism
- Proteoglycans/metabolism
- RNA, Messenger/biosynthesis
- Reverse Transcriptase Polymerase Chain Reaction/methods
- Sialic Acids/metabolism
- Stem Cell Transplantation/methods
Collapse
Affiliation(s)
- Ofira Einstein
- Department of Neurology, The Agnes Ginges Center for Human Neurogenetics, Hadassah--Hebrew University Hospital, Jerusalem, Israel
| | | | | | | | | | | | | | | | | | | |
Collapse
|
80
|
Lee ST, Park JE, Lee K, Kang L, Chu K, Kim SU, Kim M, Roh JK. Noninvasive method of immortalized neural stem-like cell transplantation in an experimental model of Huntington's disease. J Neurosci Methods 2006; 152:250-4. [PMID: 16257450 DOI: 10.1016/j.jneumeth.2005.09.013] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2005] [Revised: 09/08/2005] [Accepted: 09/09/2005] [Indexed: 11/29/2022]
Abstract
A loss of neostriatal neurons is a characteristic of Huntington's disease (HD), and neural tissue transplantation has been performed directly into the striatum. Since the neural stem cells have ability to migrate into the lesion site, we administered immortalized neural stem-like cells (NSC) into the ventricle or via a tail vein following unilateral intrastriatal quinolinic acid lesioning in Sprague-Dawley rats. To identify transplanted NSC, cells were encoded with lac Z and beta-galactosidase histochemistry was performed. lac Z+ cells were detected in the lesioned striatum but tissue damage or tumor formation was not observed. This study shows that NSC migrate into the striatum, either from ventricle or from the systemic circulation, providing less invasive routes for stem cell application in HD.
Collapse
Affiliation(s)
- Soon-Tae Lee
- Department of Neurology, Seoul National University Hospital, Neuroscience Research Institute of SNUMRC, 28 Yongondong, Chongnoku, Seoul 110-744, South Korea
| | | | | | | | | | | | | | | |
Collapse
|
81
|
Bliss TM, Kelly S, Shah AK, Foo WC, Kohli P, Stokes C, Sun GH, Ma M, Masel J, Kleppner SR, Schallert T, Palmer T, Steinberg GK. Transplantation of hNT neurons into the ischemic cortex: Cell survival and effect on sensorimotor behavior. J Neurosci Res 2006; 83:1004-14. [PMID: 16496370 DOI: 10.1002/jnr.20800] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Cell transplantation offers a potential new treatment for stroke. Animal studies using models that produce ischemic damage in both the striatum and the frontal cortex have shown beneficial effects when hNT cells (postmitotic immature neurons) were transplanted into the ischemic striatum. In this study, we investigated the effect of hNT cells in a model of stroke in which the striatum remains intact and damage is restricted to the cortex. hNT cells were transplanted into the ischemic cortex 1 week after stroke induced by distal middle cerebral artery occlusion (dMCAo). The cells exhibited robust survival at 4 weeks posttransplant even at the lesion border. hNT cells did not migrate, but they did extend long neurites into the surrounding parenchyma mainly through the white matter. Neurite extension was predominantly toward the lesion in ischemic animals but was bidirectional in uninjured animals. Extension of neurites through the cortex toward the lesion was also seen when there was some surviving cortical tissue between the graft and the infarct. Prolonged deficits were obtained in four tests of sensory-motor function. hNT-transplanted animals showed a significant improvement in functional recovery on one motor test, but there was no effect on the other three tests relative to control animals. Thus, despite clear evidence of graft survival and neurite extension, the functional benefit of hNT cells after ischemia is not guaranteed. Functional benefit could depend on other variables, such as infarct location, whether the cells mature, the behavioral tests employed, rehabilitation training, or as yet unidentified factors.
Collapse
Affiliation(s)
- T M Bliss
- Department of Neurosurgery, Stanford University, Stanford, California, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
82
|
Erdo F, Berzsenyi P, Német L, Andrási F. Talampanel improves the functional deficit after transient focal cerebral ischemia in rats. A 30-day follow up study. Brain Res Bull 2006; 68:269-76. [PMID: 16377432 DOI: 10.1016/j.brainresbull.2005.08.018] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2005] [Accepted: 08/29/2005] [Indexed: 11/17/2022]
Abstract
The neuroprotective effect of talampanel, a negative allosteric modulator of alpha-amino-3-hydroxy-methyl-4-isoxazolyl-propionic acid (AMPA) receptors has been described previously. However, in these studies the histological changes and not the functional consequences of the brain damage were evaluated. The aim of present investigation was to analyze the sensorimotor function after stroke and to test the influence of talampanel (GYKI-53773, LY-300164) by 30-day monitoring in rats. After 1h middle cerebral artery occlusion (MCAO) general 'well-being', neurological status, spontaneous motor activity, rotation, motor coordination, balancing, muscle strength and reaction time were followed for 1 month. Talampanel (6 x 10 mg/kg i.p. given on the day of stroke) improved the motor coordination in rotarod (p < 0.01) and beam walking (p < 0.01) tests, reduced the number of stroke-induced rotations (p < 0.05), shortened the reflex time on the forelimb contralateral to brain ischemia and improved the survival rate comparing with vehicle treated control. After stroke, serious sensorimotor deficits appeared in rats but they showed partial spontaneous recovery after 30 days. Talampanel treatment enhanced the rate of functional improvement without changing the morphology at the end of the experiment. Our results indicate that modulation of AMPA receptors by talampanel can be a promising therapeutic approach to the treatment of stroke.
Collapse
Affiliation(s)
- Franciska Erdo
- Department of Pharmacology, IVAX Drug Research Institute Ltd, P.O.B. 82, Budapest H-1325, Hungary.
| | | | | | | |
Collapse
|
83
|
Wong AM, Hodges H, Horsburgh K. Neural stem cell grafts reduce the extent of neuronal damage in a mouse model of global ischaemia. Brain Res 2005; 1063:140-50. [PMID: 16289485 DOI: 10.1016/j.brainres.2005.09.049] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2005] [Revised: 09/13/2005] [Accepted: 09/25/2005] [Indexed: 12/27/2022]
Abstract
The therapeutic potential of neural stem cell transplantation has been well demonstrated in many models of focal brain damage. However, few studies have sought to determine whether neural stem cells are therapeutic in models of diffuse brain injury, such as observed in Alzheimer's disease and global ischaemia. The present study investigated the effects of transplanted MHP36 neural stem cells on the extent of ischaemic damage in a mouse model of global ischaemia and the effects of the immunosuppressive agent cyclosporin A (CsA). C57Bl/6J mice received an intrastriatal graft of MHP36 neural stem cells 3 days after selective neuronal damage had been induced by global ischaemia. The experimental group was subdivided into CsA or saline controls. We discovered that grafts of MHP36 neural stem cells were able to differentiate into neurons and reduce the extent of ischaemic neuronal damage. This reduction was particularly apparent at 4 week post-transplantation and is independent of CsA immunosuppression. MHP36 cells survived robustly in host ischaemic brain and migrated away from the injection tract towards the caudate nucleus and corpus callosum. Although MHP36 grafts were associated with an acute inflammatory response from reactive astrocytes and microglia at 1 week post-transplantation, this decreased markedly by 4 weeks post-transplantation even in the absence of CsA immunosuppression. This is the first study showing a therapeutic benefit of neural stem cells in a highly diffuse brain injury, further highlighting the possibilities of stem cell transplantation for all types of neurodegenerative disease.
Collapse
Affiliation(s)
- Andrew M Wong
- Centre for Neuroscience Research, University of Edinburgh, 1 George Square, Edinburgh EH8 9LS, UK.
| | | | | |
Collapse
|
84
|
Tran-Dinh A, Kubis N. [From bench to bedside: should we believe in the efficacy of stem cells in cerebral ischaemia?]. Morphologie 2005; 89:154-67. [PMID: 16444945 DOI: 10.1016/s1286-0115(05)83253-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Stroke is the third cause of mortality and the leading cause of morbidity in industrialized countries. At the present time, ischaemic stroke is treated at the acute phase by thrombolysis with a recombinant of the tissular-plasminogen activator, which must be administered within the first 3 hours. Cell therapy, while using the self-renewal and differentiation potentials of stem cells, brings new hope for the long-term care of ischaemic stroke. Animal studies show that stem cells improve functional deficit without reduction of infarct volume and with very rare differentiation of the stem cell. These experimental studies suggest that stem cells would support cerebral plasticity via growth factor production and stimulation of endogenous mechanisms of local repair. Assessment of effectiveness and safety in the use of stem cells in cerebral ischaemia still require thorough investigation before clinical trials in humans can be developed.
Collapse
Affiliation(s)
- A Tran-Dinh
- Centre de Recherche Cardiovasculaire, INSERM U689, Hôpital Lariboisière, Paris
| | | |
Collapse
|
85
|
Collin T, Arvidsson A, Kokaia Z, Lindvall O. Quantitative analysis of the generation of different striatal neuronal subtypes in the adult brain following excitotoxic injury. Exp Neurol 2005; 195:71-80. [PMID: 15936016 DOI: 10.1016/j.expneurol.2005.03.017] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2004] [Revised: 02/22/2005] [Accepted: 03/30/2005] [Indexed: 11/26/2022]
Abstract
Recent findings in adult rodents have provided evidence for the formation of new striatal neurons from subventricular zone (SVZ) precursors following stroke. Little is known about which factors determine the magnitude of striatal neurogenesis in the damaged brain. Here we studied striatal neurogenesis following an excitotoxic lesion to the adult rat striatum induced by intrastriatal quinolinic acid (QA) infusion. New cells were labeled with the thymidine-analogue 5-bromo-2'-deoxyuridine (BrdU) and their identity was determined immunocytochemically with various phenotypic markers. The unilateral lesion gave rise to increased cell proliferation mainly in the ipsilateral SVZ. At 2 weeks following the insult, there was a pronounced increase of the number of new neurons co-expressing BrdU and a marker of migrating neuroblasts, doublecortin, in the ipsilateral striatum, particularly its non-damaged medial parts. About 80% of the new neurons survived up to 6 weeks, when they expressed the mature neuronal marker NeuN and were preferentially located in the outer parts of the damaged area. Lesion-generated neurons expressed phenotypic markers of striatal medium spiny neurons (DARPP-32) and interneurons (parvalbumin or neuropeptide Y). The magnitude of neurogenesis correlated to the size of the striatal damage. Our data show for the first time that an excitotoxic lesion to the striatum can trigger the formation of new striatal neurons with phenotypes of both projection neurons and interneurons.
Collapse
Affiliation(s)
- Tove Collin
- Laboratory of Neurogenesis and Cell Therapy, Section of Restorative Neurology, Wallenberg Neuroscience Center, BMC A11, SE-221 84 Lund, Sweden
| | | | | | | |
Collapse
|
86
|
Abstract
Increasing experimental evidence suggests that cell transplantation can enhance recovery from stroke in animal models of focal cerebral ischemia. Clinical trials have been investigating the effects of a human immortalized neuronal cell line and porcine fetal neurons in stroke victims with persistent and stable deficits. Preclinical studies are focusing on the effects of human stem cells from various sources including brain, bone marrow, umbilical cord, and adipose tissue. This review presents an overview of preclinical and clinical studies on cell therapy for stroke. We emphasize the current, limited knowledge about the biology of implant sources and discuss special conditions in stroke that will impact the potential success of neurotransplantation in clinical trials.
Collapse
Affiliation(s)
- Sean I Savitz
- Department of Neurology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts 02215, USA.
| | | | | | | | | |
Collapse
|
87
|
Weber R, Wegener S, Ramos-Cabrer P, Wiedermann D, Hoehn M. MRI detection of macrophage activity after experimental stroke in rats: new indicators for late appearance of vascular degradation? Magn Reson Med 2005; 54:59-66. [PMID: 15968679 DOI: 10.1002/mrm.20532] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Focal cerebral ischemia was induced in rats and followed with high-resolution MRI methods for a chronic period of 10 weeks. Two weeks after stroke induction and at the end of the observation period, conventional histological analysis was combined with immunohistochemical staining for macrophages and with Prussian blue staining for the detection of ferric iron. In the late chronic phase, a patchy hypointensity was observed in the ischemic caudoputamen exclusively on T2*-weighted (T2*W) images, with no change in quantitative T(1) and T(2) relaxation time maps. This characteristic MRI pattern is different from hemorrhagic transformations (HTs) at earlier time points (2 weeks post stroke induction), which became apparent on images of all three imaging sequences. The exclusive T2*-sensitive hypointensity colocalized with iron-positive macrophages in the lesion territory at this time. These iron-containing macrophages were found predominantly around blood vessels in the ischemic tissue, and interpreted as the result of a phagocytotic incorporation of red blood cells leaking from slowly degrading vessels. The present investigation demonstrates the sensitivity of heavily T2*W 3D MRI for observing the inflammatory response in the chronic phase after stroke, without prior systemic labeling of the blood-borne macrophages by iron oxide nanoparticles.
Collapse
Affiliation(s)
- Ralph Weber
- In Vivo NMR Laboratory, Max Planck Institute for Neurological Research, Cologne, Germany
| | | | | | | | | |
Collapse
|
88
|
Pan Y, Zhang H, Acharya AB, Patrick PH, Oliver D, Morley JE. Effect of testosterone on functional recovery in a castrate male rat stroke model. Brain Res 2005; 1043:195-204. [PMID: 15862533 DOI: 10.1016/j.brainres.2005.02.078] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2004] [Revised: 02/21/2005] [Accepted: 02/24/2005] [Indexed: 10/25/2022]
Abstract
Both increased and decreased testosterone levels have been reported to correlate with poor outcome after acute ischemic stroke. The present study focused on the role of testosterone during recovery from neurological deficits in a rat focal ischemia model. Castrate male rats were subjected to behavioral tests after 90 min of middle cerebral artery occlusion (MCAO). On day 7 post-MCAO, neurological deficit-matched rats were assigned to a treatment group implanted with subcutaneous testosterone pellets or a control group implanted with sham cholesterol pellets. After 4 weeks post-MCAO, the average infarct volume was not significantly different between the two groups. Rats in the testosterone group demonstrated significantly earlier improvement in neurological deficits and shortened latency of adhesive tape removal compared with the control group as analyzed by Wilcoxon signed ranks test. Walking on parallel bars improved in both groups with a trend towards early recovery observed in the testosterone group. Biased left body swings persisted during the test period in both groups post-MCAO. Serum testosterone was within physiological levels in the treatment group but was not detectable in the control group by radioimmunoassay. GAP-43 and synaptophysin expression did not differ between groups. Less GFAP expression and reactive astrocyte hypertrophy were found around the infarct area in testosterone-treated rats compared with control rats. In conclusion, testosterone replacement post-MCAO accelerated functional recovery in castrate rats, suggesting a potential therapeutic role for testosterone replacement in stroke recovery.
Collapse
Affiliation(s)
- Yi Pan
- Department of Neurology, Saint Louis University Hospital, Saint Louis, MO 63110, USA.
| | | | | | | | | | | |
Collapse
|
89
|
Pan Y, Nastav JB, Zhang H, Bretton RH, Panneton WM, Bicknese AR. Engraftment of freshly isolated or cultured human umbilical cord blood cells and the effect of cyclosporin A on the outcome. Exp Neurol 2005; 192:365-72. [PMID: 15755554 DOI: 10.1016/j.expneurol.2004.11.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2004] [Revised: 08/19/2004] [Accepted: 11/09/2004] [Indexed: 12/15/2022]
Abstract
Human umbilical cord blood (HUCB) is a potentially valuable resource for cell therapy. The present study investigated the short-term survival of intrastriatal grafts of either freshly isolated or cultured HUCB cells and the effect of the immunosuppressive agent cyclosporin A (CSA) in host rat brains. The group injected with either freshly isolated or cultured HUCB cells was subdivided into CSA or saline controls. Freshly isolated and cultured HUCB cells displayed surface markers CD33, CD44, CD45, CD51/61 and CD90/Thy-1. The hematopoietic progenitor marker CD34 was expressed only in freshly isolated cells. The majority of injected HUCB cells were localized within a 500-mum radius from the injection site in the striatum; however, a subpopulation migrated along the corpus callosum. There was no significant statistical difference in the cell count between freshly isolated and cultured HUCB cells with or without CSA. Some grafted HUCB cells expressed either a neural or microglial marker. There was weak up-regulation of major histocompatibility complex (MHC) class I antigen in rats either with or without CSA. However, there were considerably fewer positive cells labeled with an MHC class II antigen in CSA groups. These results suggest that neither freshly isolated nor cultured HUCB cells induce acute rejection after intrastriatal transplantation up to 14 days. CSA suppressed up-regulation of MHC class II antigen in the host brain.
Collapse
Affiliation(s)
- Yi Pan
- Department of Neurology, Saint Louis University, School of Medicine, 3635 Vista Avenue, St. Louis, MO 63110, USA.
| | | | | | | | | | | |
Collapse
|
90
|
Chu K, Kim M, Chae SH, Jeong SW, Kang KS, Jung KH, Kim J, Kim YJ, Kang L, Kim SU, Yoon BW. Distribution and in situ proliferation patterns of intravenously injected immortalized human neural stem-like cells in rats with focal cerebral ischemia. Neurosci Res 2005; 50:459-65. [PMID: 15567483 DOI: 10.1016/j.neures.2004.08.015] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2004] [Accepted: 08/18/2004] [Indexed: 11/21/2022]
Abstract
Neural stem cells are considered as a candidate for cell replacement therapy in various neurological diseases. To investigate whether human neural stem cells can migrate into the adult ischemic rat brain, we transplanted immortalized human neural 'tem-like' cells intravenously 24 h after focal cerebral ischemia. The intravenously injected human neural stem-like cells were found around the infarcted area, differentiated into neurons and astrocytes in the lesioned areas, and survive up to 56 days after transplantation. The number of the injected cells increased between 7 and 14 days after transplantation with incorporating BrdU. Our findings show that intravenously injected human neural stem-like cells may incorporate into the ischemic brain, and undergo proliferation responding to the endogenous mitotic signal during the acute period of focal ischemia.
Collapse
Affiliation(s)
- Kon Chu
- Department of Neurology, Clinical Research Institute, Seoul National University Hospital, 28 Yongon-Dong, Chongro-Gu, Seoul 110-744, South Korea
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
91
|
Armstrong RJE, Jain M, Barker RA. Stem cell transplantation as an approach to brain repair. Expert Opin Ther Pat 2005. [DOI: 10.1517/13543776.11.10.1563] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
92
|
Zhang N, Yan H, Wen X. Tissue-engineering approaches for axonal guidance. ACTA ACUST UNITED AC 2005; 49:48-64. [PMID: 15960986 DOI: 10.1016/j.brainresrev.2004.11.002] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2004] [Revised: 09/29/2004] [Accepted: 11/29/2004] [Indexed: 02/04/2023]
Abstract
Owing to the profound impact of nervous system damage, extensive studies have been carried out aimed at facilitating axonal regeneration following injury. Tissue engineering, as an emerging and rapidly growing field, has received extensive attention for nervous system axonal guidance. Numerous engineered substrates containing oriented extracellular matrix molecules, cells or channels have displayed potential of supporting axonal regeneration and functional recovery. Most attempts are focused on seeking new biomaterials, new cell sources, as well as novel designs of tissue-engineered neuronal bridging devices, to generate safer and more efficacious neuronal tissue repairs.
Collapse
Affiliation(s)
- Ning Zhang
- Department of Bioengineering, Clemson University, BSB# 303, 173 Ashley Avenue, Charleston, SC 29425, USA
| | | | | |
Collapse
|
93
|
Bithell A, Williams BP. Neural stem cells and cell replacement therapy: making the right cells. Clin Sci (Lond) 2004; 108:13-22. [PMID: 15462670 DOI: 10.1042/cs20040276] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The past few years have seen major advances in the field of NSC (neural stem cell) research with increasing emphasis towards its application in cell-replacement therapy for neurological disorders. However, the clinical application of NSCs will remain largely unfeasible until a comprehensive understanding of the cellular and molecular mechanisms of NSC fate specification is achieved. With this understanding will come an increased possibility to exploit the potential of stem cells in order to manufacture transplantable NSCs able to provide a safe and effective therapy for previously untreatable neurological disorders. Since the pathology of each of these disorders is determined by the loss or damage of a specific neural cell population, it may be necessary to generate a range of NSCs able to replace specific neurons or glia rather than generating a generic NSC population. Currently, a diverse range of strategies is being investigated with this goal in mind. In this review, we focus on the relationship between NSC specification and differentiation and discuss how this information may be used to direct NSCs towards a particular fate.
Collapse
Affiliation(s)
- Angela Bithell
- Institute of Psychiatry, Department of Psychological Medicine, PO Box 52, De Crespigny Park, London SE5 8AF, U.K
| | | |
Collapse
|
94
|
Abstract
Existence of multipotent neural stem cells (NSC) has been known in developing or adult mammalian CNS, including humans. NSC have the capacity to grow indefinitely and have multipotent potential to differentiate into three major cell types of CNS, neurons, astrocytes and oligodendrocytes. Stable clonal lines of human NSC have recently been generated from the human fetal telencephalon using a retroviral vector encoding v-myc. One of the NSC lines, HB1.F3, carries normal human karyotype of 46XX and has the ability to self-renew, differentiate into cells of neuronal and glial lineages, and integrate into the damaged CNS loci upon transplantation into the brain of animal models of Parkinson disease, HD, stroke and mucopolysaccharidosis. F3 human NSC were genetically engineered to produce L-dihydroxyphenylalanine (L-DOPA) by double transfection with cDNA for tyrosine hydroxylase and guanosine triphosphate cylohydrolase-1, and transplantation of these cells in the brain of Parkinson disease model rats led to L-DOPA production and functional recovery. Proactively transplanted F3 human NSC in rat striatum, supported the survival of host striatal neurons against neuronal injury caused by 3-nitropro-pionic acid in rat model of HD. Intravenously introduced through the tail vein, F3 human NSC were found to migrate into ischemic lesion sites, differentiate into neurons and glial cells, and improve functional deficits in rat stroke models. These results indicate that human NSC should be an ideal vehicle for cell replacement and gene transfer therapy for patients with neurological diseases. In addition to immortalized human NSC, immortalized human bone marrow mesenchymal stem cell lines have been generated from human embryonic bone marrow issues with retroviral vectors encording v-myc or teromerase gene. These immortalized cell lines of human bone marrow mesenchymal stem cells differentiated into neurons/glial cells, bone, cartilage and adipose tissue when they were grown in selective inducing media. There is further need for investigation into the neurogenic potential of the human bone marrow stem cell lines and their utility in animal models of neurological diseases.
Collapse
Affiliation(s)
- Seung U Kim
- Brain Disease Research Center, Ajou University School of Medicine, Suwon, Korea.
| |
Collapse
|
95
|
Abstract
In this review we trace back the history of an idea that takes a new approach in restorative neurotransplantation by focusing on the "multifaceted dialogue" between graft and host and assigns a central role to graft-evoked host plasticity. In several experimental examples ranging from the transfer of solid fetal tissue grafts into mechanical cortical injuries to deposits of neural stem cells into hemisectioned spinal cord. MPTP-damaged substantia nigra or mutant cerebella supportive evidence is provided for the hypothesis, that in many CNS disorders regeneration of the host CNS can be achieved by taking advantage of the inherent capacity of neural grafts to induce protective and restorative mechanisms within the host. This principle might once allow us to spare even complex circuitry from neurodegeneration.
Collapse
Affiliation(s)
- Jitka Ourednik
- Department of Biomedical Sciences, College of Veterinary Medicine, Iowa State University, Ames, IA 50011, USA.
| | | |
Collapse
|
96
|
Schouten JW, Fulp CT, Royo NC, Saatman KE, Watson DJ, Snyder EY, Trojanowski JQ, Prockop DJ, Maas AIR, McIntosh TK. A Review and Rationale for the Use of Cellular Transplantation as a Therapeutic Strategy for Traumatic Brain Injury. J Neurotrauma 2004; 21:1501-38. [PMID: 15684646 DOI: 10.1089/neu.2004.21.1501] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Experimental research during the past decade has greatly increased our understanding of the pathophysiology of traumatic brain injury (TBI) and allowed us to develop neuroprotective pharmacological therapies. Encouraging results of experimental pharmacological interventions, however, have not been translated into successful clinical trials, to date. Traumatic brain injury is now believed to be a progressive degenerative disease characterized by cell loss. The limited capacity for self-repair of the brain suggests that functional recovery following TBI is likely to require cellular transplantation of exogenous cells to replace those lost to trauma. Recent advances in central nervous system transplantation techniques involve technical and experimental refinements and the analysis of the feasibility and efficacy of transplantation of a range of stem cells, progenitor cells and postmitotic cells. Cellular transplantation has begun to be evaluated in several models of experimental TBI, with promising results. The following is a compendium of these new and exciting studies, including a critical discussion of the rationale and caveats associated with cellular transplantation techniques in experimental TBI research. Further refinements in future research are likely to improve results from transplantation-based treatments for TBI.
Collapse
Affiliation(s)
- Joost W Schouten
- Traumatic Brain Injury Laboratory, Department of Neurosurgery, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
97
|
Chu K, Kim M, Park KI, Jeong SW, Park HK, Jung KH, Lee ST, Kang L, Lee K, Park DK, Kim SU, Roh JK. Human neural stem cells improve sensorimotor deficits in the adult rat brain with experimental focal ischemia. Brain Res 2004; 1016:145-53. [PMID: 15246850 DOI: 10.1016/j.brainres.2004.04.038] [Citation(s) in RCA: 178] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/15/2004] [Indexed: 01/10/2023]
Abstract
Ischemic stroke is caused by the interruption of cerebral blood flow that leads to brain damage with long-term sensorimotor deficits. Stem cell transplantation may recover functional deficit by replacing damaged brain. In this study, we attempted to test whether the human neural stem cells (NSCs) can improve the outcome in the rat brain with intravenous injection and also determine the migration, differentiation and the long-term viabilities of human NSCs in the rat brain. Focal cerebral ischemia was induced by intraluminal thread occlusion of middle cerebral artery (MCA). One day after surgery, the rats were randomly divided into two groups: NSCs-ischemia vs. Ischemia-only. Human NSCs infected with retroviral vector encoding beta galactosidase were intravenously injected in NSCs-ischemia group (5 x 10(6) cells) and the same amount of saline was injected in Ischemia-only group for control. The animals were evaluated for 4 weeks using turning in an alley (TIA) test, modified limb placing test (MLPT) and rotarod test. Transplanted cells were detected by X gal cytohistochemistry or beta gal immunohistochemistry with double labeling of other cell markers. The NSCs-ischemia group showed better performance on TIA test at 2 weeks, and MLPT and rotarod test from 3 weeks after ischemia compared with the Ischemia-only group. Human NSCs were detected in the lesion side and labeled with marker for neurons or astrocytes. Postischemic hemispheric atrophy was noted but reduced in NSCs-ischemia group. X gal+ cells were detected in the rat brain as long as 540 days after transplantation. Our data suggest intravenously transplanted human NSCs can migrate and differentiate in the rat brain with focal ischemia and improve functional recovery.
Collapse
Affiliation(s)
- Kon Chu
- Department of Neurology, Stroke and Neural Stem Cell Laboratory in Clinical Research Institute, Seoul National University Hospital, Seoul National University, 28, Yongon-Dong, Chongro-Gu, Seoul 110-744, South Korea
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
98
|
Bottai D, Fiocco R, Gelain F, Defilippis L, Galli R, Gritti A, Vescovi LA. Neural stem cells in the adult nervous system. ACTA ACUST UNITED AC 2004; 12:655-70. [PMID: 14977475 DOI: 10.1089/15258160360732687] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The concept of the immutability of the nervous tissue has recently been replaced with the new idea that a continuous neurogenic turnover does occur in some limited areas of the central nervous system (CNS). At least two neurogenic regions of the adult mammalian CNS are involved in this process: the subventricular zone of the forebrain and the dentate gyrus of the hippocampus, which are considered to be a reservoir of new neural cells. Neural stem cells (NSCs) are multipotential progenitors that have self-renewal capability. While in vivo endogenous NSCs seem able to produce almost exclusively neurons, a single NSC in vitro is competent to generate neurons, astrocytes, and oligodendrocytes. NSCs lack a specific morphology and unambiguous surface markers that could allow their identification. For this reason, one of the major difficulties in identifying stem cells is that they are defined in terms of their functional capabilities, the determination of which might alter the cells' nature. The purpose of this review is to describe the characteristics of the NSCs of the adult mammalian CNS, their potentiality in terms of proliferation and differentiation capabilities, as well as their stability in long-term culture, all attributes that make them a good tool for tissue replacement therapies.
Collapse
Affiliation(s)
- Daniele Bottai
- Stem Cell Research Institute, DIBIT, Fondazione Centro San Raffaele del Monte Tabor, 20132 Milan, Italy.
| | | | | | | | | | | | | |
Collapse
|
99
|
Kelly S, Bliss TM, Shah AK, Sun GH, Ma M, Foo WC, Masel J, Yenari MA, Weissman IL, Uchida N, Palmer T, Steinberg GK. Transplanted human fetal neural stem cells survive, migrate, and differentiate in ischemic rat cerebral cortex. Proc Natl Acad Sci U S A 2004; 101:11839-44. [PMID: 15280535 PMCID: PMC511061 DOI: 10.1073/pnas.0404474101] [Citation(s) in RCA: 456] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
We characterize the survival, migration, and differentiation of human neurospheres derived from CNS stem cells transplanted into the ischemic cortex of rats 7 days after distal middle cerebral artery occlusion. Transplanted neurospheres survived robustly in naive and ischemic brains 4 wk posttransplant. Survival was influenced by proximity of the graft to the stroke lesion and was negatively correlated with the number of IB4-positive inflammatory cells. Targeted migration of the human cells was seen in ischemic animals, with many human cells migrating long distances ( approximately 1.2 mm) predominantly toward the lesion; in naive rats, cells migrated radially from the injection site in smaller number and over shorter distances (0.2 mm). The majority of migrating cells in ischemic rats had a neuronal phenotype. Migrating cells between the graft and the lesion expressed the neuroblast marker doublecortin, whereas human cells at the lesion border expressed the immature neuronal marker beta-tubulin, although a small percentage of cells at the lesion border also expressed glial fibrillary acid protein (GFAP). Thus, transplanted human CNS (hCNS)-derived neurospheres survived robustly in naive and ischemic brains, and the microenvironment influenced their migration and fate.
Collapse
Affiliation(s)
- S Kelly
- Department of Neurosurgery, Stanford University, Stanford, CA 94305, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
100
|
Szentirmai O, Carter BS. Genetic and Cellular Therapies for Cerebral Infarction. Neurosurgery 2004; 55:283-6; discussion 296-7. [PMID: 15271234 DOI: 10.1227/01.neu.0000129681.85731.00] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2003] [Accepted: 03/04/2004] [Indexed: 12/28/2022] Open
Abstract
Neurosurgeons, working as surgical scientists, can have a prominent role in developing and implementing genetic and cellular therapies for cerebral ischemia. The rapid emergence of both genetic and cellular therapies for neural regeneration warrants a careful analysis before implementation of human studies to understand the pitfalls and promises of this strategy. In this article, we review the topic of genetic and cellular therapy for stroke to provide a foundation for practicing neurosurgeons and clinical scientists who may become involved in this type of work. In Part 1, we review preclinical approaches with gene transfer, such as 1) improved energy delivery, 2) reduction of intracellular calcium availability, 3) abrogation of effects of reactive oxygen species, 4) reduction of proinflammatory cytokine signaling, 5) inhibition of apoptosis mediators, and 6) restorative gene therapy, that are paving the way to develop new strategies to treat cerebral infarction. In Part 2, we discuss the results of studies that address the possibility of using cellular therapies for stroke in animal models and in human trials by reviewing 1) the basics of stem cell biology, 2) exogenous and 3) and endogenous cell sources for therapy, and 4) clinical considerations in cell therapy applications. These emerging technologies based on the advancements made in recent years in the fields of genetics, therapeutic cloning, neuroscience, stem cell biology, and gene therapy provide significant potential for new therapies for stroke.
Collapse
Affiliation(s)
- Oszkar Szentirmai
- Laboratory of Genetic and Cellular Engineering, and Neurosurgical Service, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts 02114, USA
| | | |
Collapse
|